Sample records for f-substituted hydroxyapatite nanopowders

  1. Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders

    NASA Astrophysics Data System (ADS)

    Latifi, S. M.; Fathi, M. H.; Golozar, M. A.

    One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.

  2. Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Batra, Uma; Kapoor, Seema; Sharma, Sonia

    2013-06-01

    Hydroxyapatite (HA), incorporating small amount of magnesium, shows attractive biological performance in terms of improved bone metabolism, osteoblast and osteoclast activity, and bone in-growth. This article reports a systematic investigation on the influence of magnesium (Mg) substitution on structural and thermal behavior of nanodimensional HA. HA and Mg-substituted HA nanopowders were synthesized through sol-gel route. The morphology and size of nanopowders were characterized by transmission electron microscopy. The BET surface area was evaluated from N2 adsorption isotherms. Structural analysis and thermal behavior were investigated by means of Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential thermal analysis. As-synthesized powders consisted of flake-like agglomerates of HA and calcium-deficient HA. The incorporation of magnesium in HA resulted in decrease of crystallite size, crystallinity, and lattice parameters a and c and increase in BET surface area. β-tricalcium phosphate formation occured at lower calcination temperature in Mg-substituted HA than HA.

  3. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration.

    PubMed

    Frasnelli, Matteo; Cristofaro, Francesco; Sglavo, Vincenzo M; Dirè, Sandra; Callone, Emanuela; Ceccato, Riccardo; Bruni, Giovanna; Cornaglia, Antonia Icaro; Visai, Livia

    2017-02-01

    The production of stable suspensions of strontium-substituted hydroxyapatite (Sr-HA) nanopowders, as Sr ions vector for bone tissue regeneration, was carried out in the present work. Sr-HA nanopowders were synthesized via aqueous precipitation methods using Sr 2+ amount from 0 to 100mol% and were characterized by several complementary techniques such as solid-state Nuclear Magnetic Resonance spectroscopy, X-ray diffraction, Infrared spectroscopy, N 2 physisorption and Transmission Electron Microscopy. The substitution of Ca 2+ with Sr 2+ in HA is always isomorphic with gradual evolution between the two limit compositions (containing 100% Ca and 100% Sr), this pointing out the homogeneity of the synthesized nanopowders and the complete solubility of strontium in HA lattice. Strontium addition is responsible for an increasing c/a ratio in the triclinic unit cell. A significant variation of the nanopowders shape and dimension is also observed, a preferential growth along the c-axis direction being evident at higher strontium loads. Modifications in the local chemical environment of phosphate and hydroxyl groups in the apatite lattice are also observed. Stable suspensions were produced by dispersing the synthesized nanopowders in bovine serum albumin. Characterization by Dynamic Light Scattering and ζ-potential determination allowed to show that Ca 2+ →Sr 2+ substitution influences the hydrodynamic diameter, which is always twice the particles size determined by TEM, the nanoparticles being always negatively charged as a result from the albumin rearrangement upon the interaction with nanoparticles surface. The biocompatibility of the suspensions was studied in terms of cell viability, apoptosis, proliferation and morphology, using osteosarcoma cell line SAOS-2. The data pointed out an increased cell proliferation for HA nanoparticles containing larger Sr 2+ load, the cells morphology remaining essentially unaffected. Copyright © 2016 Elsevier B.V. All rights

  4. In vitro characterisation of a sol-gel derived in situ silica-coated silicate and carbonate co-doped hydroxyapatite nanopowder for bone grafting.

    PubMed

    Latifi, Seyed Mohsen; Fathi, Mohammadhossein; Sharifnabi, Ali; Varshosaz, Jaleh

    2017-06-01

    Design and synthesis of materials with better properties and performance are essential requirements in the field of biomaterials science that would directly improve patient quality of life. For this purpose, in situ silica-coated silicate and carbonate co-doped hydroxyapatite (Sc/S.C.HA) nanopowder was synthesized via the sol-gel method. Characterisation of the prepared nanopowder was carried out by XRD, FTIR, TEM, SEM, EDX, ICP, zeta potential, acid dissolution test, and cell culture test. The substitution of the silicate and carbonate ions into hydroxyapatite structure was confirmed by FTIR analysis. XRD analysis showed that silica is an amorphous phase, which played a role in covering the surface of the S.C.HA nanoparticles as confirmed by acid dissolution test. Low thickness and low integrity of the amorphous silica surface layer facilitated ions release from S.C.HA nanoparticles into physiological saline solution. Zeta potential of the prepared nanopowder suspended in physiological saline solution was -27.3±0.2mV at pH7.4. This negatively charged surface, due to the presence of amorphous silica layer upon the S.C.HA nanoparticles, not only had an accelerating effect on in vitro biomineralization of apatite, but also had a positive effect on cell attachment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    PubMed

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.

  6. Nutrient-substituted hydroxyapatites: synthesis and characterization

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  7. Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process.

    PubMed

    Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang

    2012-11-01

    Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    PubMed

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects

    NASA Astrophysics Data System (ADS)

    Stanić, Vojislav; Dimitrijević, Suzana; Antonović, Dušan G.; Jokić, Bojan M.; Zec, Slavica P.; Tanasković, Sladjana T.; Raičević, Slavica

    2014-01-01

    Synthetic biomaterials based on fluorine substituted hydroxyapatite are potentially attractive for orthopedic and dental implant applications. The new synthesis of fluorine substituted hydroxyapatite samples were done by neutralization, which consists of adding the solution of HF and H3PO4 in suspension of Ca(OH)2. Characterization studies from XRD, SEM and FTIR spectra showed that crystals are obtained with apatite structure and those particles of all samples are nano size, with an average length of 80 nm and about 15-25 nm in diameter. The central composite design was used in order to determine the optimal conditions for the antimicrobial activity of the synthesized samples. In order to evaluate the influence of operating parameters on the percent of viable cell reduction of Streptococcus mutans, three independent variables were chosen: exposure time, pH of saline and floride concentration in apatite samples. The experimental and predicted antimicrobial activities were in close agreement. Antimicrobial activity of the samples increases with the increase of fluoride concentration and the decreased pH of saline. The maximum antimicrobial activity was achieved at the initial pH of 4.

  10. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite.

    PubMed

    Fahami, Abbas; Beall, Gary W; Betancourt, Tania

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Preparation and characterization of selenite substituted hydroxyapatite.

    PubMed

    Ma, Jun; Wang, Yanhua; Zhou, Lei; Zhang, Shengmin

    2013-01-01

    Selenite-substituted hydroxyapatite (Se-HA) with different Se/P ratios was synthesized by a co-precipitation method, using sodium selenite (Na2SeO3) as a Se source. Selenium has been incorporated into the hydroxyapatite lattice by partially replacing phosphate (PO4(3-)) groups with selenite (SeO3(2-)) groups. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques reveal that substitutions of phosphate groups by selenite groups cause lower carbonate groups occupying at phosphate sites and change the lattice parameters of hydroxyapatite. The powders obtained are nano-crystalline hydroxyapatite when the Se/P ratios are not more than 0.1. The particle shape of Se-HA has not been altered compared with selenite-free hydroxyapatite but Se-incorporation reduces the crystallite size. The crystallinity was reduced as the Se/P ratios increased until amorphous phase (Se/P=0.3) appeared in the Se-HA powder obtained, and then another crystal phase presented as calcium selenite hydrate (Se/P=10). In addition, the sintering tests show that the Se-HA powders with the Se/P ratio of 0.1 have thermal stability at 900 °C for 2 h; hence they have great potential in the fabrication of bone repair scaffolds. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Zinc and Carbonate Co-Substituted Nano-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Girija, E. K.; Kumar, G. Suresh; Thamizhavel, A.

    2011-07-01

    Synthesis of Zn or CO32- substituted nano-hydroxyapatite (HA) and its physico-chemical properties have been well documented. However, the effects of the simultaneous substitution of Zn and CO32- in nano-HA have not been reported. In the present study, Zn and CO32- substitutions in nano HA independently and concurrently have been done by wet precipitation method and characterized by XRD and FT-IR for its phase purity and chemical homogeneity. Further modulations of the bioactivity and thermal stability of HA due to the substitutions have been studied.

  13. Hydroxyapatite substituted by transition metals: experiment and theory.

    PubMed

    Zilm, M E; Chen, L; Sharma, V; McDannald, A; Jain, M; Ramprasad, R; Wei, M

    2016-06-28

    Bioceramics are versatile materials for hard tissue engineering. Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA allows for a wide range of substitutions, which allows for tailoring materials properties. Transition metals and lanthanides are of interest since substitution in HA can result in magnetic properties. In this study, experimental results were compared to theoretical calculations of HA substituted with a transition metal. Calculation of a 10 atomic percent substitution of a transition metal ion Mn(2+), Fe(2+), and Co(2+) substituted HA samples lead to magnetic moments of 5, 4, and 3 Bohr magnetons, respectively. Hydroxyapatite substituted by transition metals (MHA) was fabricated through an ion exchange procedure and characterized with X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy, and vibrating sample magnetometer, and results were compared to theoretical calculations. All the substitutions resulted in phase-pure M(2+)HA with lattice parameters and FTIR spectra in good agreement with calculations. Magnetic measurements revealed that the substitution of Mn(2+) has the greatest effect on the magnetic properties of HA followed by the substitution of Fe(2+) and then Co(2+). The present work underlines the power of synergistic theoretical-experimental work in guiding the rational design of materials.

  14. Synthesis of nanopowders of the aluminum-substituted lanthanum gallate solid electrolyte by mechanochemical route

    NASA Astrophysics Data System (ADS)

    Domingues, Eddy M.; Gonçalves, Priscila; Figueiredo, Filipe M.

    2012-07-01

    The room temperature mechanosynthesis of La1-xSrxGa1-y-zMgyAlzO3-δ nanopowders is successfully demonstrated for a broad compositional range (x ≤ 0.1; y ≤ 0.2, z ≤ 0.4) by resorting to a nearly amorphous alumina precursor with enhanced reactivity. It is shown that ceramics with one single phase and free from open porosity can be obtained by sintering these nanopowders at 1350-1450 °C. Microstructural data show that the substitution of Ga by Al hinders densification and decreases the grain size of ceramics. This is explained assuming the segregation of aluminum cations to the grain boundaries as a result of the decrease of the cationic diffusion coefficients.

  15. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai

    2013-09-01

    In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.

  16. Preparation and characterization of strontium-fluorapatite nanopowders by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kamaei, Maryam; Fathi, Mohammad Hossein

    2018-01-01

    Biomaterials based on calcium orthophosphate are especially attractive for use in medicine, for bone and teeth implants due to their biological properties, such as biocompatibility and bioactivity. Among them, hydroxyapatite (HAP; Ca10(PO4)6(OH)2) is used particularly because of its similarities to the inorganic component of bone. Hydroxyapatite has been widely used for biomedical applications. Despite desirable properties such as bioactivity, biocompatibility, solubility and adsorption, synthetic HA is limited in application due to poor thermostability and poor mechanical properties. Properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. Use of the sol-gel technique is technically simple, cost effective and beneficial for fabrication biomaterials. This research aimed to prepare and characterize Sr-doped FA nanopowders (Sr-FA). Sr-FA with different Sr contents was prepared by sol-gel method. The designated degree of substitution of Ca by Sr in the mixture was determined by the x value in the general formula of (Ca10-x Srx(PO4)6F2), where x=0,0.5,1. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques were utilized to characterize the obtained nano powders. Results showed that Sr ions entered into the fluorapatite lattice and occupied Ca sites. The incorporation of Sr ions into the fluorapatite resulted in the increase of the lattice parameters.

  17. Carbonate Hydroxyapatite and Silicon-Substituted Carbonate Hydroxyapatite: Synthesis, Mechanical Properties, and Solubility Evaluations

    PubMed Central

    Bang, L. T.; Long, B. D.; Othman, R.

    2014-01-01

    The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO4 4−) and carbonate (CO3 2−) ions competed to occupy the phosphate (PO4 3−) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS) of Si-CO3Ap and CO3Ap were about 10.8 ± 0.3 and 11.8 ± 0.4 MPa, respectively. PMID:24723840

  18. Coralline hydroxyapatite bone graft substitutes.

    PubMed

    Elsinger, E C; Leal, L

    1996-01-01

    The authors present a review of the various bone grafts currently available with special attention to coral bone grafts. Several of the benefits of coralline hydroxyapatite bone graft substitutes, such as safety and biocompatibility, will be addressed in this article, part of an ongoing investigation of coral bone grafts used in triple arthrodesis procedures. To date, eight cases have been performed. In seven cases, granular chips were employed to pack the subtalar joint. The final case, presented in this article, represents a 26-year-old male who, 2 years previously, sustained a calcaneal fracture with resultant shortening along the lateral column. A coralline hydroxyapatite block was used at the calcaneocuboid joint to achieve distraction. Clinically, the patient is progressing well at 10 months postoperatively. Radiographically, one can still clearly appreciate the margins of the bone graft at 5 months.

  19. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute material.

    PubMed

    Kruse, A; Jung, R E; Nicholls, F; Zwahlen, R A; Hämmerle, C H F; Weber, F E

    2011-05-01

    A comparison of synthetic hydroxyapatite/silica oxide, xenogenic hydroxyapatite-based bone substitute materials with empty control sites in terms of bone regeneration enhancement in a rabbit calvarial four non-critical-sized defect model. In each of six rabbits, four bicortical calvarial bone defects were generated. The following four treatment modalities were randomly allocated: (1) empty control site, (2) synthetic hydroxyapatite/silica oxide-based (HA/SiO) test granules, (3) xenogenic hydroxyapatite -based granules, (4) synthetic hydroxyapatite/silica oxide -based (HA/SiO) test two granules. The results of the latter granules have not been reported due to their size being three times bigger than the other two granule types. After 4 weeks, the animals were sacrificed and un-decalcified sections were obtained for histological analyses. For statistical analysis, the Kruskal-Wallis test was applied (P<0.05). Histomorphometric analysis showed an average area fraction of newly formed bone of 12.32±10.36% for the empty control, 17.47±6.42% for the xenogenic hydroxyapatite -based granules group, and 21.2±5.32% for the group treated with synthetic hydroxyapatite/silica oxide -based granules. Based on the middle section, newly formed bone bridged the defect to 38.33±37.55% in the empty control group, 54.33±22.12% in the xenogenic hydroxyapatite -based granules group, and to 79±13.31% in the synthetic hydroxyapatite/silica oxide -based granules group. The bone-to-bone substitute contact was 46.38±18.98% for the xenogenic and 59.86±14.92% for the synthetic hydroxyapatite/silica oxide-based granules group. No significant difference in terms of bone formation and defect bridging could be detected between the two bone substitute materials or the empty defect. There is evidence that the synthetic hydroxyapatite/silica oxide granules provide comparable results with a standard xenogenic bovine mineral in terms of bone formation and defect bridging in non-critical size

  20. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  1. Biocomposite Plasma-Sprayed Coatings Based on Zinc-Substituted Hydroxyapatite: Structure, Properties, and Prospects of Application

    NASA Astrophysics Data System (ADS)

    Lyasnikova, A. V.; Markelova, O. A.; Lyasnikov, V. N.; Dudareva, O. A.

    2016-01-01

    The method of synthesis of a zinc-substituted hydroxyapatite powder is presented, and the technology of creating coatings by its spraying is described. The results of studies on the morphological, physical, and chemical parameters of a zinc-substituted hydroxyapatite coating by using X-ray analysis, infrared spectroscopy, transmission electron microscopy, optical microscopy, SEM, and other methods are given.

  2. In vitro degradation of multisubstituted hydroxyapatite and fluorapatite in the physiological condition

    NASA Astrophysics Data System (ADS)

    Sumathi, Shanmugam; Gopal, Buvaneswari

    2015-07-01

    Structure of hydroxyapatite (HAP) is more flexible towards ionic substitutions. Properties such as solubility, antimicrobial property can be tailored by substitutions. Substituted hydroxyapatite and fluorapatite of formulae BiNaCa3(PO4)3OH, Bi0.5M0.5Ca4(PO4)3OH (M=K, Ag), Ca10-xCux(PO4)6(OH/F)2 d(x=0.05-0.25) and Bi0.5Na0.5Ca4(PO4)3F were synthesized and characterized by powder XRD, FT-IR, SEM-EDAX and TGA. In vitro solubility of the synthesized compounds was studied in the phosphate buffered medium of pH 7.4 at 37 °C. Based on the release of calcium and phosphorus ion concentration and pH, the solubility of these compounds is discussed. Bismuth and sodium co-substituted hydroxyapatite are found to be more soluble compared with other substituted apatite compounds and unsubstituted hydroxyapatite.

  3. Carbonate substitution in lead hydroxyapatite Pb5(PO4)3OH

    NASA Astrophysics Data System (ADS)

    Kwaśniak-Kominek, M.; Manecki, M.; Matusik, J.; Lempart, M.

    2017-11-01

    Synthetic carbonate lead hydroxyapatite Pb5(PO4,CO3)3(OH,CO3) was precipitated from aqueous solution and characterized. The maximum content of CO32- ion in lead apatites does not exceed 2.25 wt%. For precipitation from aqueous solutions this is even lower and controlled by the solubility of cerussite PbCO3. Carbonate substitution occurs simultaneously in two structural positions: at OH- sites (A-type substitution) and at PO43- sites (B-type substitution). This is the most pronounced in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 865 cm-1 and within the range of 1300-1500 cm-1. The substitution results in slight increase of the unit cell parameter a from 9.874 to 9.904 A. The presence of CO32- in two structural positions results in two stages of the release of CO2 upon heating: at 300-350 °C and at 400 °C. The presence of carbonates has little effect on thermal decomposition of lead hydroxyapatite which starts at about 450 °C resulting in the formation of lead pyrophosphate.

  4. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.

    PubMed

    Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William

    2005-12-01

    Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.

  5. Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions.

    PubMed

    Graeve, Olivia A; Kanakala, Raghunath; Madadi, Abhiram; Williams, Brandon C; Glass, Katelyn C

    2010-05-01

    We present a detailed analysis of the luminescence behavior of europium-doped hydroxyapatite (HAp) and calcium-deficient hydroxyapatite (Ca-D HAp) nanopowders. The results show that, while both powders are similar in crystallite size, particle size, and morphology, the luminescence behavior differs significantly. For the HAp:Eu powders, the emission is clearly from Eu(3+) ions and corresponds to typical (5)D(0) --> (7)F(J) emissions, whereas for the Ca-D HAp:Eu powders, we also see a broad emission with two peaks at 420 and 445 nm, corresponding to the 4f(6)5d(1) --> 4f(7) ((8)S(7/2)) transition of Eu(2+). The powders are weakly luminescent in the as-synthesized state, as expected for combustion-synthesized materials and have higher emission intensities as the heat treatment temperature is increased. Luminescence spectra obtained using an excitation wavelength of 254 nm are weak for all samples. Excitation wavelengths of 305, 337, and 359 nm, are better at promoting the Eu(3+) and Eu(2+) emissions in hydroxyapatites. We propose that fluorescence measurements are an excellent way of qualitatively determining the phase composition of europium-doped hydroxyapatite powders, since powders that exhibit a blue emission contain substantial amounts of Ca-D HAp, allowing the determination of the presence of this phase in mixed-phase hydroxyapatites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications.

    PubMed

    Zhong, Zhenyu; Ma, Jun

    2017-09-01

    Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.

  7. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite.

    PubMed

    Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna

    2016-05-01

    Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Substituted Hydroxyapatites with Antibacterial Properties

    PubMed Central

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  9. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    NASA Astrophysics Data System (ADS)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  10. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite

    NASA Astrophysics Data System (ADS)

    Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.

    2017-01-01

    In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.

  11. Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma.

    PubMed

    Yanhua, Wang; Hao, Hang; Li, Yan; Zhang, Shengmin

    2016-04-01

    Absence of curative treatment creates urgent need for new strategies for unresectable hepatoma. Novel selenium-substituted hydroxyapatite nanoparticles (SeHAN) were designed to serve as anticancer agent. The authors examined the nanoparticles by physicochemical techniques. The in vivo efficacy and toxicity of these nanoparticles were also investigated on a nude mice model of human hepatocellular carcinoma. The results showed that the selenite ions can be incorporated into the hydroxyapatite lattice facilely. They exhibited bundles of needles shape with a size of 160-200 nm. In the in vivo study, they showed better survival advantage. The overall survival rate of nude mice in the control, pure hydroxyapatite and SeHAN group were 50.00%, 76.92%, and 100.00% respectively. Blood biochemical studies showed that SeHAN group had significantly lower toxicities on the liver and kidney functions. Histopathological studies confirmed that massive tumor necrosis and calcium deposition were evident after SeHAN treatment. Moreover, immunohistochemistry and Western blot assay showed significantly reduced expression of the Ki-67, VEGF and MMP-9 protein in the SeHAN group. Taken together, these results suggest that the selenium-substituted hydroxyapatite nanoparticles could be a new type of promising anticancer agent to provide both survival advantage and lower toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones.

    PubMed

    Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan

    2013-02-01

    Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.

  13. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

    PubMed Central

    Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan

    2012-01-01

    Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835

  14. Formation of a sodium bicarbonate cluster in the structure of sodium-substituted hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. V.; Kamzin, A. S.

    2015-02-01

    Ceramic sodium-substituted carbonated hydroxyapatite has been synthesized using the method of the solid-phase reaction in the temperature range of 640-820°C in water vapor. It has been established that substitutions of Ca2+ ions in the cation and anion subsystems with Na+ ions and the PO{4/3-} and OH- groups with CO{3/2-} ions lead to a considerable acceleration of the shrinkage and synthesis of dense ceramics at substantially lower temperatures than in the case of unsubstituted hydroxyapatite. Sintering in water vapor leads to densification of carbonate groups in channel positions, which induces the appearance of orderings of A2 and B2 types (bands with wave numbers 867 and 865 cm-1 in IR spectra, respectively) as well as the protonation of carbonate groups both in A and B sites and the formation of sodium bicarbonate clusters (856 and 859 cm-1) in addition to carbonate ordering of A1 and B1 types (879 and 872 cm-1).

  15. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    PubMed

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  16. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    PubMed Central

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  17. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    PubMed

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    PubMed

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material

    NASA Astrophysics Data System (ADS)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were

  20. Lanthanum-silicon-substituted hydroxyapatite: Mechanochemical synthesis and prospects for medical applications

    NASA Astrophysics Data System (ADS)

    Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.

    2016-08-01

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.

  1. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.

    PubMed

    Baba Ismail, Yanny M; Wimpenny, Ian; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-06-01

    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO 3 ) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO 3 and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO 3 (2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO 3 and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017. © 2017 Wiley Periodicals, Inc.

  2. Synthesis, characterization and biological evaluation of strontium/magnesium-co-substituted hydroxyapatite.

    PubMed

    Geng, Zhen; Wang, Renfeng; Li, Zhaoyang; Cui, Zhenduo; Zhu, Shengli; Liang, Yanqin; Liu, Yunde; Huijing, Bao; Li, Xue; Huo, Qianyu; Liu, Zhili; Yang, Xianjin

    2016-07-01

    The present study aims to investigate the contribution of two biologically important cations, Mg(2+) and Sr(2+), when co-substituted into the structure of hydroxyapatite (Ca10(PO4)6(OH)2, HA). The substituted samples were synthesized by a hydrothermal method that involved the addition of Mg(2+) and Sr(2+) containing precursors to partially replace Ca(2+) in the apatite structure. Four co-substituted HA samples with different concentrations of Mg(2+) and Sr(2+) ((Mg + Sr)/(Mg + Sr + Ca) = 30%) were investigated, and they were compared with pure HA. Experimental results showed that only a limited amount of Mg (Mg/(Mg + Ca + Sr) < 14%) could successfully substitute for Ca in HA. In addition, Mg substitution resulted in reduced crystallinity, thermal stability and lattice parameters of HA. In contrast, Sr could fully substitute for Ca. Furthermore, the addition of Sr increased the lattice parameters of HA. Here, we obtained the cation leach liquor by immersing the prepared samples in a culture medium for cell experiments. The in vitro study showed that 10Mg20Sr promoted better MG63 cell attachment, proliferation and differentiation than HA. Thus, the presence of an appropriate proportion of Mg and Sr could play a significant role in the increased biocompatibility of HA. © The Author(s) 2016.

  3. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.

    PubMed

    Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric

    2017-06-06

    The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future

  4. Substitution effects of a carbonated hydroxyapatite biomaterial against intoxication chloride nickel-exposed rats.

    PubMed

    Boulila, Salha; Elfeki, Abdelfattah; Oudadesse, Hassane; Elfeki, Hafed

    2015-03-01

    This study aimed to investigate the potential effects of a synthetic apatite (carbonated hydroxyapatite) on the detoxification of a group of male "Wistar" rats exposed to nickel chloride. Toxicity was evaluated by rats' bioassay of nickel chloride. Wistar rats received this metal daily by gavage for seven days (4 mg/ml nickel chloride/200 g body weight, BW). To detoxify this organism, a subcutaneous implantation of the apatite is made. The results revealed that exposure to nickel induced oxidative stress, disorders in the balances of ferric phosphocalcic, renal failures, liver toxicity and significant increase in nickel rates in the bones of intoxicated rats. The application of the carbonated hydroxyapatite presented in this study restored those disorders back to normal. The synthetic apatite protected the rats against the toxic effects of nickel by lowering the levels of lipid peroxidation markers and improving the activities of defense enzymes. It also amended ferric and phosphocalcic equilibriums, protected liver and kidney functions and reduced the nickel rate in the bones of the rats. Overall, the results provided strong support for the protective role of carbonated hydroxyapatite in the detoxification of rats exposed to nickel. Those beneficial effects were further confirmed by physico-chemical characterization (X-ray diffraction and infrared spectroscopy), which revealed its property of anionic and cationic substitution, thus supporting its promising candidacy for future biomedical application. The hydroxyapatite is an effective biomaterial to solve health problems, particularly detoxification against metals (nickel).

  5. Consolidation of Hierarchy-Structured Nanopowder Agglomerates and Its Application to Net-Shaping Nanopowder Materials

    PubMed Central

    Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong

    2013-01-01

    This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317

  6. Hydrothermal Preparation and Characterization of Ultralong Strontium-Substituted Hydroxyapatite Whiskers Using Acetamide as Homogeneous Precipitation Reagent

    PubMed Central

    Xu, Jianqiang; Yang, Yaoqi; Wan, Rong; Zhang, Weibin

    2014-01-01

    The ultralong strontium- (Sr-) substituted hydroxyapatite (SrHAp) whiskers were successfully prepared using acetamide as homogeneous precipitation reagent. The effect of the Sr substitution amount on the lattice constants and proliferation of human osteoblast cells (MG-63) was further investigated. The results showed that the SrHAp whiskers with diameter of 0.2–12 μm and ultralong length up to 200 μm were obtained and the Sr substitution level could be facilely tailored by regulating the initial molar ratio of Sr/(Sr + Ca) in raw materials. The Sr2+ replaced part of Ca2+ and the lattice constants increased apparently with the increase of the Sr substitution amount. Compared with the pure HAp whiskers, the Sr substitution apparently stimulated the proliferation of MG-63 at certain extracted concentrations. Our study suggested that the obtained SrHAp whiskers might be used as bioactive and mechanical reinforcement materials for hard tissue regeneration applications. PMID:24592192

  7. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    PubMed

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  8. A post-market surveillance analysis of the safety of hydroxyapatite-derived products as bone graft extenders or substitutes for spine fusion.

    PubMed

    Barbanti Brodano, G; Griffoni, C; Zanotti, B; Gasbarrini, A; Bandiera, S; Ghermandi, R; Boriani, S

    2015-10-01

    Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion, because of its known osteoinductive and osteoconductive properties. Considering its autogenous origin, the use of ICBG has not been associated to an increase of intraoperative or postoperative complications directly related to the surgery. However, complications related to the harvesting procedure and to the donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. The family of ceramic-based bone grafts has been widely used and studied during the last years for spine surgical procedures in order to reduce the need for iliac crest bone grafting and the consequent morbidity associated to the harvesting procedures. We report here the results of a post-market surveillance analysis performed on four independent cohorts of patients (115 patients) to evaluate the safety of three different formulations of hydroxyapatite-derived products used as bone graft extenders/substitutes for lumbar arthrodesis. No intraoperative or post-operative complications related to the use of hydroxyapatite-derived products were detected, during medium and long follow up period (minimum 12 months-maximum 5 years). This post-market surveillance analysis evidenced the safety of ceramic products as bone graft extenders or substitutes for spine fusion. Moreover, the evidence of the safety of hydroxyapatite-derived products allows to perform clinical studies aimed at evaluating the fusion rates and the clinical outcomes of these materials as bone graft extenders/substitutes, in order to support their use as an alternative to ICBG for spine fusion.

  9. Clinical and radiographic evaluation of intrabony periodontal defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute.

    PubMed

    Pietruska, Małgorzata; Skurska, Anna; Pietruski, Jan; Dolińska, Ewa; Arweiler, Nicole; Milewski, Robert; Duraj, Ewa; Sculean, Anton

    2012-11-01

    The aim of this study has been to compare the clinical and radiographic outcome of periodontal intrabony defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute application. Thirty patients diagnosed with advanced periodontits were divided into two groups: the control group (OFD), in which an open flap debridement procedure was performed and the test group (OFD+NHA), in which defects were additionally filled with nanocrystalline hydroxyapatite bone substitute material. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR) and clinical attachment level (CAL) were measured prior to, then 6 and 12months following treatment. Radiographic depth and width of defects were also evaluated. There were no differences in any clinical and radiographic parameters between the examined groups prior to treatment. After treatment, BOP, GI, PD, CAL, radiographic depth and width parameter values improved statistically significantly in both groups. The PI value did not change, but the GR value increased significantly after treatment. There were no statistical differences in evaluated parameters between OFD and OFD+NHA groups 6 and 12months after treatment. Within the limits of the study, it can be concluded that the additional use of nanocrystalline hydroxyapatite bone substitute material after open flap procedure does not improve clinical and radiographic treatment outcome. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    NASA Astrophysics Data System (ADS)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  11. Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2010-03-01

    Hydroxyapatite (HA) is a good candidate for bone substitutes due to its chemical and structural similarity to bone mineral. Hydroxyapatite has been grown by the gel method using sodium fluoride (NaF) as additive. The growth was carried out at room temperature under the physiological pH of 7.4. The addition of NaF has significantly reduced growth rate and the yield was much less when compared to pure system. The samples of pure and fluoride doped HA were sintered at 600, 900 and 1200 °C in ambient atmosphere. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) were adopted to investigate the influence of NaF on the morphology, crystallinity, stability and phase purity of HA. EDAX and FTIR studies confirm that the fluoride is doped into the hydroxyapatite. Powder XRD and TGA results suggested that the incorporation of fluorine into the HA matrix improves the phase formation and crystallinity. SEM studies show that the microstructural morphology of HA changes from the fibers for pure to granular structure for the fluoride doped.

  12. Towards a safe non-invasive method for evaluating the carbonate substitution levels of hydroxyapatite (HAP) in micro-calcifications found in breast tissue.

    PubMed

    Kerssens, Marleen M; Matousek, Pavel; Rogers, Keith; Stone, Nicholas

    2010-12-01

    A new diagnostic concept based on deep Raman spectroscopy is proposed permitting the non-invasive determination of the level of carbonate substitution in type II calcifications (HAP). The carbonate substitution has shown to be directly associated with the pathology of the surrounding breast tissue and different pathology groups can therefore be separated using specific features in the Raman spectra of the calcifications. This study explores the principle of distinguishing between type II calcifications, found in proliferating lesions, by using the strongest Raman peak from calcium hydroxyapatites (the phosphate peak at 960 cm(-1)) to act as a surrogate marker for carbonate substitution levels. It is believed that carbonate ion substitution leads to a perturbation of the hydroxyapatite lattice which in turn affects the phosphate vibrational modes. By studying calcifications, with known carbonate content, buried in porcine tissue it has been possible to evaluate the feasibility of using the proposed approach to probe the composition of the calcifications in vivo and hence provide pathology specific information non-invasively, in real time. Using the proposed concept we were able to determine the level of carbonate substitutions through soft tissue phantom samples (total thickness of 5.6 mm). As the level of carbonate substitution has been previously correlated with mid-FTIR to the lesion type, i.e. whether benign or invasive or in situ carcinoma, the new findings provide a major step forward towards establishing a new capability for diagnosing benign and malignant lesions in breast tissue in a safe and non-invasive manner in vivo.

  13. Rheological behavior of oxide nanopowder suspensions

    NASA Astrophysics Data System (ADS)

    Cinar, Simge

    Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past. The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation. This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study. The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic

  14. On the assessment of hydroxyapatite fluoridation by means of Raman scattering

    NASA Astrophysics Data System (ADS)

    Campillo, M.; Lacharmoise, P. D.; Reparaz, J. S.; Goñi, A. R.; Valiente, M.

    2010-06-01

    Hydroxyapatite is the main mineral component of bones and teeth. Fluorapatite, a bioceramic that can be obtained from hydroxyapatite by chemical substitution of the hydroxide ions with fluoride, exhibits lower mineral solubility and larger mechanical strength. Despite the widespread use of fluoride against caries, a reliable technique for unambiguous assessment of fluoridation in in vitro tests is still lacking. Here we present a method to probe fluorapatite formation in fluoridated hydroxyapatite by combining Raman scattering with thermal annealing. In synthetic minerals, we found that effectively fluoride substituted hydroxyapatite transforms into fluorapatite only after heat treatment, due to the high activation energy for this first order phase transition.

  15. Ammonia sensing properties of V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazio, E.; Hjiri, M.; Dhahri, R.

    2015-03-15

    V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis and successive drying in ethanol under supercritical conditions. Characterization data of nanopowders annealed at 700 °C in air, revealed that they have the wurtzite structure. Raman features of V-doped ZnO:Ca samples were found to be substantially modified with respect to pure ZnO or binary ZnO:Ca samples, which indicate the substitution of vanadium ions in the ZnO lattice. The ammonia sensing properties of V-doped ZnO:Ca thick films were also investigated. The results obtained demonstrate the possibility of a fine tuning of the sensing characteristics of ZnO-based sensors by Camore » and V doping. In particular, their combined effect has brought to an enhanced response towards NH{sub 3} compared to bare ZnO and binary V-ZnO and Ca-ZnO samples. Raman investigation suggested that the presence of Ca play a key role in enhancing the sensor response in these ternary composite nanomaterials. - Graphical abstract: V-doped ZnO:Ca nanopowders prepared by sol–gel synthesis possess enhanced sensing characteristics towards NH{sub 3} compared to bare ZnO. - Highlights: • V-doped ZnO:Ca nanopowders with different V loading were prepared by sol–gel synthesis. • Raman features of V-doped ZnO:Ca samples indicate the substitution of V ions in the ZnO lattice. • Combined effects of dopants have brought to an enhanced response to NH{sub 3} compared to ZnO. • Ca play a key role in enhancing the sensor response of ternary V-doped ZnO:Ca composites.« less

  16. Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties.

    PubMed

    Aina, Valentina; Lusvardi, Gigliola; Annaz, Basil; Gibson, Iain R; Imrie, Flora E; Malavasi, Gianluca; Menabue, Ledi; Cerrato, Giuseppina; Martra, Gianmario

    2012-12-01

    The present study is aimed at investigating the contribution of two biologically important cations, Mg(2+) and Sr(2+), when substituted into the structure of hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2),HA). The substituted samples were synthesized by an aqueous precipitation method that involved the addition of Mg(2+)- and Sr(2+)-containing precursors to partially replace Ca(2+) ions in the apatite structure. Eight substituted HA samples with different concentrations of single (only Mg(2+)) or combined (Mg(2+) and Sr(2+)) substitution of cations have been investigated and the results compared with those of pure HA. The obtained materials were characterized by X-ray powder diffraction, specific surface area and porosity measurements (N(2) adsorption at 77 K), FT-IR and Raman spectroscopies and scanning electron microscopy. The results indicate that the co-substitution gives rise to the formation of HA and β-TCP structure types, with a variation of their cell parameters and of the crystallinity degree of HA with varying levels of substitution. An evaluation of the amount of substituents allows us to design and prepare BCP composite materials with a desired HA/β-TCP ratio.

  17. Sintering Effects on Morphology, Thermal Stability and Surface Area of Sol-Gel Derived Nano-Hydroxyapatite Powder

    NASA Astrophysics Data System (ADS)

    Kapoor, Seema; Batra, Uma; Kohli, Suchita

    2011-12-01

    Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting media for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 °C and sintered to different temperatures (200 °C, 400 °C, 600 °C, 800 °C, 1000 °C and 1200 °C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 °C to 1000 °C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 °C without any additional phase other than HAP, whereas peak of β-TCP (tricalcium phosphate) was observed at 1200 °C. Photomicrograph of

  18. A process for the development of strontium hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.

    2014-06-01

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.

  19. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties.

    PubMed

    Thian, E S; Konishi, T; Kawanobe, Y; Lim, P N; Choong, C; Ho, B; Aizawa, M

    2013-02-01

    Hydroxyapatite (HA) is a synthetic biomaterial and has been found to promote new bone formation when implanted in a bone defect site. However, its use is often limited due to its slow osteointegration rate and low antibacterial activity, particularly where HA has to be used for long term biomedical applications. This work will describe the synthesis and detailed characterization of zinc-substituted HA (ZnHA) as an alternative biomaterial to HA. ZnHA containing 1.6 wt% Zn was synthesized via a co-precipitation reaction between calcium hydroxide, orthophosphoric acid and zinc nitrate hexahydrate. Single-phase ZnHA particles with a rod-like morphology measuring ~50 nm in length and ~15 nm in width, were obtained and characterized using transmission electron microscopy and X-ray diffraction. The substitution of Zn into HA resulted in a decrease in both the a- and c-axes of the unit cell parameters, thereby causing the HA crystal structure to alter. In vitro cell culture work showed that ZnHA possessed enhanced bioactivity since an increase in the growth of human adipose-derived mesenchymal stem cells along with the bone cell differentiation markers, were observed. In addition, antibacterial work demonstrated that ZnHA exhibited antimicrobial capability since there was a significant decrease in the number of viable Staphylococcus aureus bacteria after in contact with ZnHA.

  20. Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Sroka-Bartnicka, Anna; Borkowski, Leszek; Ginalska, Grazyna; Ślósarczyk, Anna; Kazarian, Sergei G.

    2017-01-01

    Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30 days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32- content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated.

  1. Reaction of Si nanopowder with water investigated by FT-IR and XPS

    NASA Astrophysics Data System (ADS)

    Imamura, Kentaro; Kobayashi, Yuki; Matsuda, Shinsuke; Akai, Tomoki; Kobayashi, Hikaru

    2017-08-01

    The initial reaction of Si nanopowder with water to generate hydrogen is investigated using FT-IR and XPS measurements. Si nanopowder is fabricated using the simple beads milling method. For HF-etched Si nanopowder, strong peaks due to Si-H and Si-H2 stretching vibrational modes and a weak shoulder peak due to Si-H3 are observed. Although no peaks due to oxide is observed in the Si 2p XPS spectrum, weak vibrational peaks due to HSiO2 and HSiO3 species are observable. The hydrogen generation rate greatly increases with pH, indicating that the reacting species is hydroxide ions (OH- ions). After the reaction, the intensities of the peaks due to SiH and SiH2 species decrease while those for HSiO, HSiO2, and HSiO3 species increase. This result demonstrates that OH- ions attack Si back-bonds, with surface Si-H bonds remaining. After initial reaction of HF-etched Si nanopowder with heavy water, vibrational peaks for SiD, SiDH, and SiDH2 appear, and then, a peak due to DSiO3 species is observed, but no peaks due to DSiO2 and DSiO species are observable. This result indicates that SiD, SiDH, and SiDH2 species are formed by substitution reactions, followed by oxidation of back-bonds to form DSiO3 species. After immersion in D2O for a day, 37% H atoms on the surface are replaced to D atoms.

  2. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Nida; Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my; Nik Malek, Nik Ahmad Nazim

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W formore » 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.« less

  3. FTIRI Parameters describing Acid Phosphate Substitution in Biologic Hydroxyapatite

    PubMed Central

    Spevak, Lyudmila; Flach, Carol R.; Hunter, Tracey; Mendelsohn, Richard; Boskey, Adele

    2013-01-01

    Acid phosphate substitution into mineralized tissue is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier Transform Infrared Spectroscopic Imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 cm−1 and 1110 cm−1 correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm−1 found in stoichiometric apatite, were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127cm−1/1096cm−1 and 1112cm−1/1096cm−1 demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127 cm−1/1096 cm−1 parameter compared to the 1110 cm−1/1096 cm−1 parameter, and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice. PMID:23380987

  4. Removal of oxytetracycline from aqueous solutions by hydroxyapatite as a low-cost adsorbent

    NASA Astrophysics Data System (ADS)

    Harja, Maria; Ciobanu, Gabriela

    2017-11-01

    The present paper involved a study of the adsorption process of the oxytetracycline drug from aqueous medium by using the hydroxyapatite nanopowders as adsorbent materials. The batch adsorption experiments were performed by monitoring the solution pH, contact time, adsorbent dosage and drug solution concentration. At pH 8 and ambient temperature, high oxytetracycline removal rates of about 97.58% and 89.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicate that the oxytetracycline adsorption onto nanohydroxyapatite samples follows a pseudo-second order kinetic model. The maximum adsorption capacities of 291.32 mg/g and 278.27 mg/g for uncalcined and calcined nanohydroxyapatite samples, respectively, have been found. So, the conclusion can be drawn that the hydroxyapatite shows good adsorption ability towards oxytetracycline.

  5. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy.

    PubMed

    Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C

    2013-05-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Radiation stability of SiO2 micro- and nanopowders under electron and proton exposure

    NASA Astrophysics Data System (ADS)

    Li, Chundong; Mikhailov, M. M.; Neshchimenko, V. V.

    2014-01-01

    The effects of proton and electron (E = 100 keV, F = 5 × 1015 сm-2) exposure on the reflective spectra of SiO2 micro- and nanopowders in wavelength range from 250 to 2500 nm have been investigated. It has been established that the reflectance and radiation stability of nanopowders is less than that of micropowders. This effect is caused by the high concentration of radiation defects, which act as surface absorption centers (Es‧ centers) near the energies 5.47 and 4.45 eV, and peroxide silicon defects (tbnd Sisbnd Osbnd Osbnd Sitbnd) near the energy 3.84 eV.

  7. Recent advances in research applications of nanophase hydroxyapatite.

    PubMed

    Fox, Kate; Tran, Phong A; Tran, Nhiem

    2012-07-16

    Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    PubMed

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  9. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    PubMed Central

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  10. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    PubMed

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  11. Fugitive emissions from nanopowder manufacturing

    NASA Astrophysics Data System (ADS)

    Trompetter, W. J.; Ancelet, T.; Davy, P. K.; Kennedy, J.

    2016-07-01

    In response to health and safety questions and concerns regarding particulate matter emissions from equipment used for synthesizing NiFe and TiO2 nanopowders, a study was undertaken to assess their impact on the air quality inside and outside a laboratory where the manufacturing equipment is operated. Elemental concentrations determined by ion beam analysis (IBA) of air particulate matter (PM) samples collected hourly with a StreakerTM sampler were used to identify possible sources and estimate contributions from nanopowder production and other sources. The fugitive nanopowder emissions were the highest at the indoor sampling location when powders were being manufactured. Average fugitive emissions of 210 ng m-3 (1-h average) (maximum 2163 ng m-3 1-h average) represented 2 % (maximum 20 %) of the average PM collected (9359 ng m-3 1-h average). The measured NiFe alloy or TiO2 PM concentrations were much smaller than the 8-h time-weighted average (TWA) workplace exposure standards (WES) for these materials (≥1,000,000 ng m-3). Most PM was found to be from infiltrated outdoor ambient sources. This suggests that nanopowder production in the laboratory is not likely to have adverse health effects on individuals using the equipment, although further improvements can be made to further limit exposure.

  12. Thermal stability of a modified sol-gel derived hydroxyapatite nanopowders

    NASA Astrophysics Data System (ADS)

    Herradi, S.; El Bali, B.; Khaldi, M.; Lachkar, M.

    2017-03-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HA) powder was successfully synthesized by a modified sol-gel method using a solution of calcium nitrate in ethanol, along with a solution of diammonium hydrogen phosphate in water and NH4OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The powder was subjected to furnace and microwave heating to compare the decomposition of HA and study the crystallite sizes. It was found that microwave heated powders were pure HAP up to 230°C with absence of secondary phases. However, XRD patterns show that furnace heated powders convert completely to β-TCP when treated at 750°C and 1000°C. This result was confirmed by the absence of hydroxyl bands in the FT-IR spectra for these temperatures.

  13. [Epoxide acrylate maleic resin and hydroxyapatite composite material as a bone graft substitute in surgical correction of orbital reconstruction].

    PubMed

    Mu, X; Dong, J; Wang, W

    1995-11-01

    This paper illustrates the results of surgical correction in 11 cases with orbital deformities such as periorbital deficiency after orbitotomy for retinoblastoma and orbital malposition after facial trauma. EH composite material, mixture of hydroxyapatite and epoxide acrylate maleic resin in constant proportion, was used as a good bone graft substitute in all 11 cases. This material was easier to be molded during surgery, safe to human body, had no toxic effects, no irritation and no implant-related complications. The early results obtained in these patients are encouraging.

  14. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    PubMed

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors.

    PubMed

    Zhang, Na; Zhai, Dong; Chen, Lei; Zou, Zhaoyong; Lin, Kaili; Chang, Jiang

    2014-04-01

    In the absence of any organic surfactants and solvents, the silicon (Si) and strontium (Sr) co-substituted hydroxyapatite [Ca10(PO4)6(OH)2, Si/Sr-HAp] nanowires were synthesized via hydrothermal treatment of the Sr-containing calcium silicate (Sr-CS) powders as the precursors in trisodium phosphate (Na3PO4) aqueous solution. The morphology, phase, chemical compositions, lattice constants and the degradability of the products were characterized. The Si/Sr-HAp nanowires with diameter of about 60nm and up to 2μm in length were obtained after hydrothermal treatment of the Sr-CS precursors. The Sr and Si substitution amount of the HAp nanowires could be well regulated by facile tailoring the Sr substitution level of the precursors and the reaction ratio of the precursor/solution, respectively. The SiO4 tetrahedra and Sr(2+) ions occupied the crystal sites of the HAp, and the lattice constants increased apparently with the increase of the substitution amount. EDS mapping also suggested the uniform distribution of Si and Sr in the synthetic nanowires. Moreover, the Si/Sr-substitution apparently improved the degradability of the HAp materials. Our study suggested that the precursor transformation method provided a facile approach to synthesize the Si/Sr co-substituted HAp nanowires with controllable substitution amount, and the synthetic Si/Sr-HAp nanowires might be used as bioactive materials for hard tissue regeneration applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone

    PubMed Central

    Gupta, Anil Kumar; Kumar, Praganesh; Keshav, Kumar; Singh, Anant

    2015-01-01

    Background: Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs. Materials and Methods: Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001. Results: In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response. Conclusions: We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone. PMID:26806973

  17. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    PubMed

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  18. Sintering mechanism of the CaF2 on hydroxyapatite by a 10.6-l microm CO2 laser.

    PubMed

    Wu, Cheng-Chei; Roan, Rong-Tai; Chen, Jeng-Huey

    2002-01-01

    Laser has been reported as a heat source for melting and re-crystallization. Occurring at about 1100 degrees C, the melting of surface dental enamel along with re-crystallization might have an assistant role in the therapy of hypersensitive tooth, apical sealing of endodontic surgery in dentistry, preventive dentistry for pit and fissure sealing, and fluoridation. For laser to be accepted in clinical applications, it is desired that, studies must show the incorporation of CaF(2) into hydroxyapatite could reduce the sintering temperature for the sake of safety. In this study, the Sharplan 20XJ CO(2) laser with 10.6- microm wavelength was set under the following parameters: power, 5 W; repetitive mode, 0.1 second; beam, focused. Fluorite was added to hydroxyapatite as a synthetic compound to lower the sintering temperature. Human dental enamel without caries was used for in vitro sintering test. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transforming infrared spectroscopy (FTIR), and differential thermal analysis/thermogravimetric analysis (DAT/TGA) were used for the investigation of sintering mechanism of CaF(2). Fusion between hexagonal shape crystals and cubic shape crystals (CaF(2)) were observed under SEM study. Hexagonal shape crystals indicated the formation of fluorapatite under XRD analysis. Under FTIR study, we examined reductions of water (3445 cm(-1)) and hydroxyl bands (3567 and 627 cm(-1)) in irradiated compounds. From the DTA pattern of synthetic compound, it showed the endothermic reaction reaching its peak point around 1180 +/- 20 degrees C. It was attributed to the phase transformation and/or initial melting. In this study, we proposed the interrelationship of the eutectics between initiator (CaF(2)) and the reaction product (calcium hydroxide) that reduced the sintering temperature. It appeared that the co-eutectics interacted to reduce the sintering temperature of hydroxyapatite below 800 degrees C and that the key

  19. Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Si nanopowder is fabricated using the simple beads milling method. Fabricated Si nanopowder reacts with water in the neutral pH region between 7 and 9 to generate hydrogen. The hydrogen generation rate greatly increases with pH, while pH does not change after the hydrogen generation reaction. In the case of the reactions of Si nanopowder with strong alkaline solutions (eg pH13.9), 1600 mL hydrogen is generated from 1 g Si nanopowder in a short time (eg 15 min). When Si nanopowder is etched with HF solutions and immersed in ethanol, green photoluminescence (PL) is observed, and it is attributed to band-to-band transition of Si nanopowder. The Si nanopowder without HF etching in hexane shows blue PL. The PL spectra possess peaked structure, and it is attributed to vibronic bands of 9,10-dimethylantracene (DMA) in hexane solutions. The PL intensity is increased by more than 3,000 times by adsorption of DMA on Si nanopowder.

  20. Development of hydroxyapatite/polyvinyl alcohol bionanocomposite for prosthesis implants

    NASA Astrophysics Data System (ADS)

    Karthik, V.; Pabi, S. K.; Chowdhury, S. K. Roy

    2018-02-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) has similar structural and chemical properties of natural bone mineral and hence widely used as a bone replacement substitute. Natural bone consists of hydroxyapatite and collagen. For mimicking the natural, in the present work, a sintered porous hydroxyapatite component has been vacuum impregnated with Polyvinyl alcohol (PVA), which has better properties like biocompatibility, biodegradability and water- solubility. Hydroxyapatite powders have been made into nanosize to reduce the melting point and hence the sintering temperature. In the present investigation high energy ball mill is used to produce nano-hydroxyapatite powders in bulk quantity by optimizing the milling parameters using stainless steel grinding media. Pellets of 10 mm diameter have been produced from nano- hydroxyapatite powders under different uniaxial compaction pressures. The pellets have been sintered to form porous compacts. The vacuum impregnation of sintered pallets with PVA solution of different strength has been done to find the optimum impregnation condition. Microhardness, compressive strength, wear loss and haemocompatibility of hydroxyapatite ceramics have been studied before and after impregnation of PVA. The nano- hydroxyapatite/PVA composites have superior mechanical properties and reduced wear loss than the non-impregnated porous nano-hydroxyapatite ceramics.

  1. Effect of modification substrate on the microstructure of hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Realpe-Jaramillo, J.; Morales-Morales, J. A.; González-Sánchez, J. A.; Cabanzo, R.; Mejía-Ospino, E.; Rodríguez-Pereira, J.

    2017-01-01

    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.

  2. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility.

    PubMed

    Sun, Jianpeng; Zheng, Xiaoyan; Li, Hui; Fan, Daidi; Song, Zhanping; Ma, Haixia; Hua, Xiufu; Hui, Junfeng

    2017-04-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO 3 2- (SeHA) was successfully synthesized based on the liquid-solid-solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO 3 2- doping level of the Se/(P+Se) molar ratio of 0-0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P+Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Osteomyelitis Treatment with Nanometer-Sized Hydroxyapatite Particles as a Delivery Vehicle for a Ciprofloxacin- Bisphosphonate Conjugate; New Fluoroquinolone-Bisphosphonate Derivatives Show Similar Binding Affinity to Hydroxyapatite and Improved Antibacterial Activity Against Drug-Resistant Pathogens

    DTIC Science & Technology

    2008-12-01

    1 OSTEOMYELITIS TREATMENT WITH NANOMETER-SIZED HYDROXYAPATITE PARTICLES AS A DELIVERY VEHICLE FOR A CIPROFLOXACIN- BISPHOSPHONATE CONJUGATE; NEW...FLUOROQUINOLONE-BISPHOSPHONATE DERIVATIVES SHOW SIMILAR BINDING AFFINITY TO HYDROXYAPATITE AND IMPROVED ANTIBACTERIAL ACTIVITY AGAINST DRUG-RESISTANT...vivo OM model. Current studies contrast two CP homeostatic bone-substitute particles, nanometer-sized hydroxyapatite NanOss™ (Nan), and µ-sized

  4. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites.

    PubMed

    Lehmann, Giorgia; Cacciotti, Ilaria; Palmero, Paola; Montanaro, Laura; Bianco, Alessandra; Campagnolo, Luisa; Camaioni, Antonella

    2012-10-01

    Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.

  5. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method

    NASA Astrophysics Data System (ADS)

    Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.

    2018-01-01

    Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.

  6. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth.

    PubMed

    Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy

    2012-01-01

    Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

  7. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

    PubMed Central

    Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy

    2012-01-01

    Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony. PMID:22919390

  8. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    PubMed

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-07

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  9. Simultaneous X-ray and neutron diffraction Rietveld refinements of nanophase iron substituted hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kyriacou, Andreas

    The effect of Fe substitution on the crystal structure of hydroxyapatite (HAp) is studied by applying simultaneous Rietveld refinements of powder x-ray and neutron diffraction patterns. Fe is one of the trace elements replacing Ca in HAp, which is the major mineral phase in bones and teeth. The morphology and magnetic properties of the Fe-HAp system are also studied by transmission electron microscopy and magnetization measurements. Samples of Ca(5-x)Fex(PO4)3OH with 0 ≤ x ≤ 0.3 were prepared. Single phase HAp was identified in x-ray diffraction patterns (XRD) of samples with x < 0.1 inferring that the solubility limits are less than 0.1. Hematite (alpha-Fe2O3) is identified as a secondary phase for higher Fe content. The refined parameters show that Fe is incorporated in the HAp structure by replacing Ca in the two crystallographic sites with a preference at the Ca2 site. This preference explains the small effect of the Fe substitution on the lattice constants of HAp. The overall decrease of the lattice constants is explained by the ionic size difference of Ca and Fe. The increasing trend of the a-lattice constant with x in the Fe substituted samples is attributed to a lattice relaxation caused by the substitution of the 4- and 6-fold Fe at the 7- and 9-fold Ca1 and Ca2 sites. This Ca local geometry reduction is indicated by a slight increase of the Ca1-O3 and Ca2-O1 bond lengths. Above the solubility limit x = 0.05, the Fe is partitioned in and out of the HAp structure with increasing nominal Fe content x. The excess Fe is oxidized to hematite. The TEM analysis and magnetic measurements support the results of the simultaneous Rietveld refinements. The TEM images show no significant effect on the morphology and size of the HAp particles upon Fe incorporation. The particles are either spheres or short rods of dimensions 20--60 nm. Hematite particles are imaged in the samples with x exceeding the solubility limit. These particles are spheres, about 15 nm in

  10. Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate.

    PubMed

    Fuh, Lih-Jyh; Huang, Ya-Jing; Chen, Wen-Cheng; Lin, Dan-Jae

    2017-06-01

    Dimensional instability caused by sintering shrinkage is an inevitable drawback for conventional processing of hydroxyapatite (HA). A new preparation method for biphasic calcium phosphates was developed to increase micro pores and biodegradation without significant dimensional change. Powder pressed HA discs, under 100MPa, were immersed in a colloidal mixture of tetraethoxysilane (TEOS) and ammonium hydroxide for 10min, followed by drying, and then were sintered at 900°C, 1050°C, and 1200°C, respectively. Comparing with pure HA discs, the newly prepared product sintered up to 1200°C contained silicon substituted HA, beta-tricalcium phosphate, and calcium silicate with better micro-porosity, high specific surface area, less sintering shrinkage and the strength maintained. The cytocompatibility test demonstrated a better viability for D1 mice stem cells cultured on TEOS treated HA for 14days compared to the pure HA. This simple TEOS sol-gel pretreatment has the potential to be applied to any existing manufacturing process of HA scaffold for better control of sintering shrinkage, create micropores, and increase biodegradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method

    NASA Astrophysics Data System (ADS)

    Azis, Y.; Adrian, M.; Alfarisi, C. D.; Khairat; Sri, R. M.

    2018-04-01

    Hydroxyapatite, [Ca10(PO4)6(OH)2, (HAp)] is widely used in medical fields especially as a bone and teeth substitute. Hydroxyapatite nanoparticles have been succesfully synthesized from egg shells as a source of calcium by using sol-gel method. The egg shells were calcined, hydrated (slaking) and undergone carbonation to form Precipitated Calcium Carbonate (PCC).Then the PCC was added (NH4)2HPO4 to form HAp with variation the mole ratio Ca and P (1.57; 1.67 and 1.77), aging time (24, 48, and 72 hr) and under basic condition pH (9, 10 and 11). The formation of hydroxyapatite biomaterial was characterized using XRD, FTIR, SEM-EDX. The XRD patterns showed that the products were hydroxyapatite crystals. The best result was obtained at 24 hr aging time, pH 9 with hexagonal structure of hydroxyapatite. Particle size of HAp was 35-54 nm and the morphology of hydroxyapatite observed using SEM, it showed that the uniformity crystal of hydroxyapatite.

  12. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.

    PubMed

    Nilsson, M; Wang, J S; Wielanek, L; Tanner, K E; Lidgren, L

    2004-01-01

    An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.

  13. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Surendiran, M; Kavitha, L

    2014-02-01

    The present study deals with the successful development of bilayer coatings by electropolymerisation of poly(3,4-ethylenedioxythiophene) (PEDOT) on surgical grade stainless steel (316L SS) followed by the electrodeposition of strontium (Sr) and magnesium (Mg) substituted porous hydroxyapatite (Sr, Mg-HA). The bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM). Corrosion resistance of the obtained coatings was investigated in Ringer's solution by electrochemical techniques and the results were in good agreement with those obtained from chemical analysis, namely inductively coupled plasma atomic emission spectrometry (ICP-AES). Also, the mechanical and biological properties of the bilayer coatings were analyzed. From the obtained results it was evident that the PEDOT/Sr, Mg-HA bilayer exhibited greater adhesion strength than the Sr, Mg-HA coated 316L SS. In vitro cell adhesion test of the Sr, Mg-HA coating on PEDOT coated specimen is found to be more bioactive compared to that of the single substituted hydroxyapatite (Sr or Mg-HA) on the PEDOT coated 316L SS. Thus, the PEDOT/Sr, Mg-HA bilayer coated 316L SS can serve as a prospective implant material for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Synthesis, structure and temperature dependent luminescence of Eu3+ doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Luo, Xiaobing; Luo, Xiaoxia; Wang, Hongwei; Deng, Yue; Yang, Peixin; Tian, Yili

    2018-01-01

    A series of Eu3+ substituted hydroxyapatite (HA) were prepared by co-precipitation reactions. The phase, fluorescence and temperature dependent luminescence of the phosphors were investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that the doped Eu3+ ions have entered the hexagonal lattice with no obvious secondary phase were detected by XRD. The 5D0 → 7F0 transition was clearly split into two even at room temperature. The predominate 573 nm peak illustrates Eu3+ ions occupy more Ca(II) sites. The temperature dependent luminescent results show HA:xEu might be applied as one potential optical thermometry material.

  15. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    PubMed

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  16. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    PubMed Central

    Shi, Xinchang

    2017-01-01

    Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178

  17. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats.

    PubMed

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  18. Hydrogen generation by reaction of Si nanopowder with neutral water

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Matsuda, Shinsuke; Imamura, Kentaro; Kobayashi, Hikaru

    2017-05-01

    Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7.0 and 8.6. The hydrogen generation rate strongly depends on pH and in the case of pH 8.0, ˜55 ml/g hydrogen which corresponds to that contained in approximately 3 L saturated hydrogen-rich water is generated in 1 h. The reaction rate for hydrogen generation greatly increases with pH, indicating that the reacting species is hydroxide ions. The change of pH after the hydrogen generation reaction is negligibly low compared with that estimated assuming that hydroxide ions are consumed by the reaction. From these results, we conclude the following reaction mechanism: Si nanopowder reacts with hydroxide ions in the rate-determining reaction to form hydrogen molecules, SiO2, and electrons in the conduction band. Then, generated electrons are accepted by water molecules, resulting in production of hydrogen molecules and hydroxide ions. The hydrogen generation rate strongly depends on the crystallite size of Si nanopowder, but not on the size of aggregates of Si nanopowder. The present study shows a possibility to use Si nanopowder for hydrogen generation in the body in order to eliminate hydroxyl radicals which cause various diseases.

  19. Effect of the substitution of F on the photoswitching behavior in single molecular device

    NASA Astrophysics Data System (ADS)

    Bian, Baoan; Zheng, Yapeng; Yuan, Peipei; Liao, Bin; Chen, Wei; An, Xiuhua; Mo, Xiaotong; Ding, Yuqiang

    2017-09-01

    We carry out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a 5-arylidenehydantoin molecule sandwiched between two Au electrodes. A reversible switching behavior between E and Z isomerization can be observed in the device through light irradiation, and their currents display different characteristic. Furthermore, it is found that the substitution of F in the molecule enlarges the switching ratio of device. The different characteristics of currents for E/Z forms and E/Z with the substitution of F are discussed by the transmission spectra and the molecular projected self-consistent Hamiltonian states. We discuss the change of Fermi level alignment due to the substitution of F, and the polarization effect under bias. We find the negative differential resistance effect in the E form with the substitution of F, which is explained by change of molecule-electrode coupling with the varied bias. The results suggest that the 5-arylidenehydantoin molecule with the substitution of F that improves the performance of device, becoming one of the methods for improving single molecular photoswitching performance in the future.

  20. Antibacterial activity evaluation of bioactive glass and biphasic calcium phosphate nanopowders mixtures

    NASA Astrophysics Data System (ADS)

    Nazemi, Zahra; Mehdikhani-Nahrkhalaji, Mehdi; Haghbin-Nazarpak, Masoumeh; Staji, Hamid; Kalani, Mohammad Mehdi

    2016-12-01

    The aim of this work was to evaluate the antibacterial activity of bioactive glass (BG) and biphasic calcium phosphate (BCP) nanopowders mixtures for the first time. 37S BG and BCP (50% HA-50% β-TCP) nanopowders were prepared via sol-gel technique. Characterization techniques such as X-ray diffraction, scanning electron microscopy, transition electron microscopy, and X-ray fluorescent. The antibacterial activity was studied using Escherichia coli and Salmonella typhi as gram-negative, and Staphylococcus aureus as gram-positive bacteria. The antibacterial effect of BG, BCP nanopowders, and their mixtures was evaluated at different concentrations. The 37S BG nanopowders showed minimum bactericidal concentration at 25 mg/ml. At broth concentrations below 300 mg/ml, BCP showed no antibacterial activity. BCP and BG nanopowders mixture (M2) with 60/40 ratio of BCP/BG showed noticeable antibacterial effect. It was concluded that BCP and 37S BG nanopowders mixture could be used as a good candidate for dental and orthopedic applications.

  1. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    NASA Astrophysics Data System (ADS)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  2. Physico-chemical characteristics and antimicrobial studies of silver doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Predoi, D.; Predoi, M. V.; Kettani, Moncef Ech Cherif El; Leduc, Damien; Iconaru, S. L.; Ciobanu, C. S.; Buton, N.; Petre, C. C.; Prodan, A. M.

    2018-02-01

    The present research is focused on the synthesis, structural and morphological characterization and antimicrobial evaluation of silver doped hydroxyapatite (AgHAp) in water. The preliminary ultrasonic characterizations of the AgHAp in water synthesized by an adapted co-precipitation method are also presented. X-ray diffraction result showed that silver ions were substituted in the hydroxyapatite structure. The lattice parameters increased when the silver substitution increased. The morphology of AgHAp were evaluated by Scanning Electron Microscopy (SEM). By EDX analysis the constituents elements of hydroxyapatite were detected in all analyzed samples. The silver was also found in the samples with xAg = 0.5 and 0.2. The colloidal properties of the resulted AgHAp (xAg = 0.0, 0.05 and 0.2) in water were analyzed by Dynamic Light Scattering (DLS) and zeta potential. On the other hand, the novelty of our research consists of preliminary ultrasonic measurements (US) conducted on AgHAp in water. Furthermore, the antimicrobial activity of AgHAp was evaluated and a decrease in the number of surviving cells was established.

  3. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  4. Electrophoretic deposition of silicon substituted hydroxyapatite coatings from n-butanol-chloroform mixture.

    PubMed

    Xiao, Xiu Feng; Liu, Rong Fang; Tang, Xiao Lian

    2008-01-01

    Silicon Substituted Hydroxyapatite (Si-HA) coatings were prepared on titanium substrates by electrophoretic deposition (EPD). The stability of Si-HA suspension in n-butanol and chloroform mixture has been studied by electricity conductivity and sedimentation test. The microstructure, shear strength and bioactivity in vitro has been tested. The stability of Si-HA suspension containing n-butanol and chloroform mixture as medium is better than that of pure n-butanol as medium. The good adhesion of the particles with the substrate and good cohesion between the particles were obtained in n-butanol and chloroform mixture. Adding triethanolamine (TEA) as additive into the suspension is in favor of the formation of uniform and compact Si-HA coatings on the titanium substrates by EPD. The shear strength of the coatings can reach 20.43 MPa after sintering at 700 degrees C for 2 h, when the volume ratio of n-butanol: chloroform is 2:1 and the concentration of TEA is 15 ml/L. Titanium substrates etched in H(2)O(2)/NH(3) solution help to improve the shear strength of the coatings. After immersion in simulated body fluid for 7 days, Si-HA coatings have the ability to induce the bone-like apatite formation.

  5. Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite.

    PubMed

    Spevak, Lyudmila; Flach, Carol R; Hunter, Tracey; Mendelsohn, Richard; Boskey, Adele

    2013-05-01

    Acid phosphate substitution into mineralized tissues is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier transform infrared spectroscopic imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 and 1110 cm(-1) correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm(-1) found in stoichiometric apatite were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127/1096 and 1112/1096 cm(-1) demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, the areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127/1096 cm(-1) parameter compared to the 1110/1096 cm(-1) parameter and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice.

  6. Hydrogen generation from water using Mg nanopowder produced by arc plasma method.

    PubMed

    Uda, Masahiro; Okuyama, Hideo; Suzuki, Tohru S; Sakka, Yoshio

    2012-04-01

    We report that hydrogen gas can be easily produced from water at room temperature using a Mg nanopowder (30-1000 nm particles, average diameter 265 nm). The Mg nanopowder was produced by dc arc melting of a Mg ingot in a chamber with mixed-gas atmosphere (20% N 2 -80% Ar) at 0.1 MPa using custom-built nanopowder production equipment. The Mg nanopowder was passivated with a gas mixture of 1% O 2 in Ar for 12 h in the final step of the synthesis, after which the nanopowder could be safely handled in ambient air. The nanopowder vigorously reacted with water at room temperature, producing 110 ml of hydrogen gas per 1 g of powder in 600 s. This amount corresponds to 11% of the hydrogen that could be generated by the stoichiometric reaction between Mg and water. Mg(OH) 2 flakes formed on the surface of the Mg particles as a result of this reaction. They easily peeled off, and the generation of hydrogen continued until all the Mg was consumed.

  7. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

    PubMed Central

    2011-01-01

    Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10-xAgx(PO4)6(OH)2 (x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp (x = 0) and Ag:HAp (x = 0.2). The Ag:Hap nanopowder showed higher inhibition. PMID:22136671

  8. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

    NASA Astrophysics Data System (ADS)

    Ciobanu, Carmen Steluta; Massuyeau, Florian; Constantin, Liliana Violeta; Predoi, Daniela

    2011-12-01

    Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.

  9. Pulsed wire discharge apparatus for mass production of copper nanopowders.

    PubMed

    Suematsu, H; Nishimura, S; Murai, K; Hayashi, Y; Suzuki, T; Nakayama, T; Jiang, W; Yamazaki, A; Seki, K; Niihara, K

    2007-05-01

    A pulsed wire discharge (PWD) apparatus for the mass production of nanopowders has been developed. The apparatus has a continuous wire feeder, which is operated in synchronization with a discharging circuit. The apparatus is designed for operation at a maximum repetition rate of 1.4 Hz at a stored energy of 160 J. In the present study, Cu nanopowder was synthesized using the PWD apparatus and the performance of the apparatus was examined. Cu nanopowder of 2.0 g quantity was prepared in N(2) gas at 100 kPa for 90 s. The particle size distribution of the Cu nanopowder was analyzed by transmission electron microscopy and the mean surface diameter was determined to be 65 nm. The ratio of the production mass of the powder to input energy was 362 g/kW h.

  10. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite.

    PubMed

    Bornapour, M; Muja, N; Shum-Tim, D; Cerruti, M; Pekguleryuz, M

    2013-02-01

    Magnesium is an attractive material for use in biodegradable implants due to its low density, non-toxicity and mechanical properties similar to those of human tissue such as bone. Its biocompatibility makes it amenable for use in a wide range of applications from bone to cardiovascular implants. Here we investigated the corrosion rate in simulated body fluid (SBF) of a series of Mg-Sr alloys, with Sr in the range of 0.3-2.5%, and found that the Mg-0.5 Sr alloy showed the slowest corrosion rate. The degradation rate from this alloy indicated that the daily Sr intake from a typical stent would be 0.01-0.02 mg day⁻¹, which is well below the maximum daily Sr intake levels of 4 mg day⁻¹. Indirect cytotoxicity assays using human umbilical vascular endothelial cells indicated that Mg-0.5 Sr extraction medium did not cause any toxicity or detrimental effect on the viability of the cells. Finally, a tubular Mg-0.5 Sr stent sample, along with a WE43 control stent, was implanted into the right and left dog femoral artery. No thrombosis effect was observed in the Mg-0.5 Sr stent after 3 weeks of implantation while the WE43 stent thrombosed. X-ray diffraction demonstrated the formation of hydroxyapatite and Mg(OH)₂ as a result of the degradation of Mg-0.5 Sr alloy after 3 days in SBF. X-ray photoelectron spectroscopy further showed the possibility of the formation of a hydroxyapatite Sr-substituted layer that presents as a thin layer at the interface between the Mg-0.5 Sr alloy and the corrosion products. We believe that this interfacial layer stabilizes the surface of the Mg-0.5 Sr alloy, and slows down its degradation rate over time. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Excitation of luminescence of the nanoporous bioactive nanocrystalline carbonate-substituted hydroxyapatite for early tooth disease detection

    NASA Astrophysics Data System (ADS)

    Goloshchapov, D. L.; Minakov, D. A.; Domashevskaya, E. P.; Seredin, P. V.

    This paper deals with the luminescence characteristics of an analogue of the mineral component of dental enamel of the nanocrystalline B-type carbonate-substituted hydroxyapatite (CHAP) with 3D defects (i.e. nanopores of ∼2-5 nm) on the nanocrystalline surface. The laser-induced luminescence (LIL) of the synthesized CHAP samples was in the range of ∼515 nm (∼2.4 eV) and is due to CO3 groups replacing the PO4 group. It was found that the intensity of the luminescence of the CHAP is caused by structurally incorporated CO3 groups in the HAP structure. Furthermore, the intensity of the luminescence also decreases as the number of the above intracentre defects (CO3) in the apatite structure declines. These results are potentially promising for developing the foundations for precise methods for the early detection of caries in human solid dental tissue.

  12. Effect of aging temperature on formation of sol-gel derived fluor-hydroxyapatite nanoparticles.

    PubMed

    Joughehdoust, S; Behnamghader, A; Jahandideh, R; Manafi, S

    2010-04-01

    Synthetic hydroxyapatite (HA) has been recognized as one of the most important bone substitute materials in orthopaedics and dentistry over past few decades because of its chemical and biological similarity to the mineral phase of human bone. One solution for reduction the solubility of HA in biological environments is replacing F- by OH in HA structure and forming fluor-hydroxyapatite (FHA) solid solution. In this paper, FHA nanoparticles were successfully synthesized by a sol-gel method. Also, the influence of aging temperature on formation of FHA powder was studied. Equimolar solutions of calcium nitrate tetrahydrate, triethyl phosphite and ammonium fluoride in ethanol were used as Ca, P and F precursors. After aging at different temperatures, the synthesized powders were heat treated at 550 degrees C. The powders were investigated with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED), energy dispersive analysis of X-ray (EDAX) and zetasizer measurement. The results of XRD proved the presence of fluorapatite (FA) and HA in all samples. In addition, the formation of FHA was confirmed by FT-IR results. XRD studies also showed that the crystallites were in nanometric scale. At the same time, this result was in good agreement with the result of zetasizer analysis.

  13. Production and properties of electrosprayed sericin nanopowder

    NASA Astrophysics Data System (ADS)

    Hazeri, Najmeh; Tavanai, Hossein; Moradi, Ali Reza

    2012-06-01

    Sericin is a proteinous substrate that envelops fibroin (silk) fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance.

  14. Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions

    NASA Astrophysics Data System (ADS)

    Liu, Yonghui; Ma, Jun; Zhang, Shengmin

    2015-12-01

    Selenium (Se) plays a specific role in human health, especially for its antitumor effect. Incorporation of selenium into biocompatible hydroxyapatite (HAP) may endow the materials with novel characteristics. In the current work, a series of seleniumdoped hydroxyapatite (Se-HAP) nanoparticles with different Se/P ratios were synthesized by a modified chemical precipitation. It was revealed that the powders with/without heattreatment were nano-sized needle-like HAP while the heat-treated samples have high crystallinity. The addition of selenium decreases the crystallinity of the synthesized apatite, and also takes a negative effect on the thermal stability of the as-prepared powders. The Se-HAP nanoparticles with Se/P molar ratio not more than 5% sintered at 900°C can achieve good crystallinity and thermal stability.

  15. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  16. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  17. Effect of trimetaphosphate and fluoride association on hydroxyapatite dissolution and precipitation in vitro.

    PubMed

    Delbem, Alberto Carlos Botazzo; Souza, José Antonio Santos; Zaze, Ana Carolina Soares Fraga; Takeshita, Eliana Mitsue; Sassaki, Kikue Takebayashi; Moraes, João Carlos Silos

    2014-01-01

    The present study analyzed the action of sodium trimetaphosphate (TMP) and/or fluoride on hydroxyapatite. Hydroxyapatite powder was suspended in different solutions: deionized water, 500 µg F/mL, 1,100 µg F/mL, 1%TMP, 3%TMP, 500 µg F/mL plus 1%TMP and 500 µg F/mL plus 3%TMP. The pH value of the solutions was reduced to 4.0 and after 30 min, raised to 7.0 (three times). After pH-cycling, the samples were analyzed by X-ray diffraction and infrared spectroscopy. The concentrations of calcium fluoride, fluoride, calcium and phosphorus were also determined. Adding 1% or 3% TMP to the solution containing 500 µg F/mL produced a higher quantity of calcium fluoride compared to samples prepared in a 1,100 µg F/mL solution. Regarding the calcium concentration, samples prepared in solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP were statistically similar and showed higher values. Using solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP resulted in a calcium/phosphorus ratio close to that of hydroxyapatite. It is concluded that the association of TMP and fluoride favored the precipitation of a more stable hydroxyapatite.

  18. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  19. XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Goloshchapov, D. L.; Gushchin, M. S.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Khmelevsky, N. O.; Aksenenko, A. Yu.

    2018-06-01

    The paper presents an investigation of the local atomic structure of nanocrystalline carbonate-substituted hydroxyapatite (CHAP) contained in biomimetic composites - analogues of intact human tooth tissues. Using the XPS technique, the presence of impurity Mg and F atoms and structurally bound carbon in CHAP, at the concentrations typical of apatite enamel and dentine was determined. The XANES method was used to study the changes occurring in P L2,3 spectra of biocomposites with CHAP, depending on the percentage of the amino acid matrix. The appearance of maxima in the spectra of XANES P L2,3 near 135.7 eV for the samples with the composition of amino acid complex/hydroxyapatite - 5/95, 25/75 and the splitting of a broad peak of 146.9 eV in the spectrum of a biocomposite with a composition of 40/60 indicates at the interaction of molecular complex of amino acids with atomic environment of phosphorus. This fact can be used in the fundamental medicine for synthesizing of new biomaterials in dentistry.

  20. Wetting of water on graphene nanopowders of different thicknesses

    NASA Astrophysics Data System (ADS)

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Grégory F.; Bonn, Daniel

    2018-04-01

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. "Liquid marble" tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated "wetting transparency" of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  1. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C

    2014-01-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.

  2. Synthesis and Characterization of Zirconium Substituted Cobalt Ferrite Nanopowders

    DOE PAGES

    Rus, S. F.; Vlazan, P.; Herklotz, A.

    2016-01-01

    Nanocrystalline ferrites; CoFe 2O 4 (CFO) and CoFe 1.9Zr 0.1O 4 (CFZO) have been synthesized through chemical coprecipitation method. Moreover, the role played by the zirconium ions in improving the magnetic and structural properties is analyzed. X-ray diffraction revealed a single-phase cubic spinel structure for both materials, where the crystallite size increases and the lattice parameter decreases with substitution of Zr. The average sizes of the nanoparticles are estimated to be 16-19 nm. These sizes are small enough to achieve the suitable signal to noise ratio in the high density recording media. An increase in the saturation magnetization with themore » substitution of Zr suggests the preferential occupation of Zr 4+ ions in the tetrahedral sites. A decrease in the coercivity values indicates the reduction of magneto-crystalline anisotropy. We investigated spinel ferrites can be used also in recoding media due to the large value of coercivity 1000 Oe which is comparable to those of hard magnetic materials.« less

  3. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  4. Micro-oxidation treatment to improve bonding strength of Sr and Na co-substituted hydroxyapatite coatings for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Yulei; Liu, Shoujie; Guo, Qian; Li, Shaoxian

    2016-08-01

    To improve the bonding strength of Sr and Na co-substituted hydroxyapatite (SNH) coatings for carbon/carbon composites, carbon/carbon composites are surface modified by micro-oxidation treatment. The micro-oxidation treatment could generate large number of pores containing oxygenic functional groups on the surface of carbon/carbon composites. SNH is nucleated on the inwall of the pores and form a flaky shape coating with 10-50 nm in thickness and 200-900 nm in width. The bonding strength between SNH coating and carbon/carbon composites increases from 4.27 ± 0.26 MPa to 10.57 ± 0.38 MPa after the micro-oxidation treatment. The promotion of bonding strength is mainly attributed to the pinning effect caused by the pores and chemical bonding generated by the oxygenic functional groups.

  5. Influence of long-term storage on fire hazard properties of metal nanopowders

    NASA Astrophysics Data System (ADS)

    Kyrmakova, O. S.; Sechin, A. I.; Nazarenko, O. B.

    2017-08-01

    The production and application of nanomaterials is rapidly expanding. Therefore the problem of their properties change during long-term storage becomes essential. The properties of metal nanopowders after long-term storage under ambient conditions were studied and the results are presented in this work. The aluminum, iron, zinc, and copper nanopowders produced by the method of electrical explosion of wires were investigated in this work. The investigation was carried out by X-ray and thermal analysis. The estimation of the flame propagation velocity in the bulk layer of nanopowders was carried out. The characteristics of the nanopowders of nanometals studied are given in terms of their fire hazard. The results can be used for diagnostic of fire hazard of nanomaterials and protection of the enterprises against fire and explosion.

  6. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marisa, Mary E.; Zhou, Shiliang; Melot, Brent C.

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in thesemore » materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.« less

  7. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.

    PubMed

    Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R

    2016-12-05

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.

  8. Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: From synthesis to in vivo studies.

    PubMed

    Ahmadzadeh, Elham; Talebnia, Farid; Tabatabaei, Meisam; Ahmadzadeh, Hossein; Mostaghaci, Babak

    2016-07-01

    To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    NASA Astrophysics Data System (ADS)

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  10. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method. Optimisation, characterisation and rheology.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Georgiou, George; Shin, Song-Hee; Kim, Hae-Won; Knowles, Jonathan C

    2013-02-01

    Currently, most titanium implant coatings are made using hydroxyapatite and a plasma spraying technique. There are however limitations associated with plasma spraying processes including poor adherence, high porosity and cost. An alternative method utilising the sol-gel technique offers many potential advantages but is currently lacking research data for this application. It was the objective of this study to characterise and optimise the production of Hydroxyapatite (HA), fluorhydroxyapatite (FHA) and fluorapatite (FA) using a sol-gel technique and assess the rheological properties of these materials. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethylphosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the sol-gel derived FHA and FA. Optimisation of the chemistry and subsequent characterisation of the sol-gel derived materials was carried out using X-ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Rheology of the sol-gels was investigated using a viscometer and contact angle measurement. A protocol was established that allowed synthesis of HA, FHA and FA that were at least 99% phase pure. The more fluoride incorporated into the apatite structure; the lower the crystallisation temperature, the smaller the unit cell size (changes in the a-axis), the higher the viscosity and contact angle of the sol-gel derived apatite. A technique has been developed for the production of HA, FHA and FA by the sol-gel technique. Increasing fluoride substitution in the apatite structure alters the potential coating properties. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. [Nano-hydroxyapatite/collagen composite for bone repair].

    PubMed

    Feng, Qing-ling; Cui, Fu-zhai; Zhang, Wei

    2002-04-01

    To develop nano-hydroxyapatite/collagen (NHAC) composite and test its ability in bone repairing. NHAC composite was developed by biomimetic method. The composite showed some features of natural bone in both composition and microstructure. The minerals could contribute to 50% by weight of the composites in sheet form. The inorganic phase in the composite was carbonate-substituted hydroxyapatite (HA) with low crystallinity and nanometer size. HA precipitates were uniformly distributed on the type I collagen matrix without preferential orientation. The composite exhibited an isotropic mechanical behavior. However, the resistance of the composite to localized pressure could reach the lower limit of that of femur compacta. The tissue response to the NHAC composite implanted in marrow cavity was investigated. Knoop micro-hardness test was performed to compare the mechanical behavior of the composite and bone. At the interface of the implant and marrow tissue, solution-mediated dissolution and macrophage-mediated resorption led to the degradation of the composite, followed by interfacial bone formation by osteoblasts. The process of implant degradation and bone substitution was reminiscent of bone remodeling. The composite can be incorporated into bone metabolism instead of being a permanent implant.

  12. Influence of SrO substitution for CaO on the properties of bioactive glass S53P4.

    PubMed

    Massera, Jonathan; Hupa, Leena

    2014-03-01

    Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer.

  13. Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application

    NASA Astrophysics Data System (ADS)

    Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.

    2016-07-01

    In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.

  14. Comprehensive studies of structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radisavljević, Ivana, E-mail: iva@vin.bg.ac.rs; Novaković, Nikola; Matović, Branko

    2016-02-15

    Highlights: • Zn{sub 0.95}Co{sub 0.05}O nanopowders are characterized by high structural order. • Co atoms show no tendency for Co–Co clustering and Co–Ov complexes formation. • Co–O–Co clustering along the c-axis has not lead to ferromagnetic order. • XMCD provides no evidence of magnetic polarization of O 2p and Co 3d states. - Abstract: X-ray absorption (XANES, EXAFS, XMCD) and photoelectron (XPS) spectroscopic techniques were employed to study local structural, electronic and magnetic properties of Zn{sub 0.95}Co{sub 0.05}O nanopowders. The substitutional Co{sup 2+} ions are incorporated in ZnO lattice at regular Zn sites and the sample is characterized by highmore » structural order. There was no sign of ferromagnetic ordering of Co magnetic moments and the sample is in paramagnetic state at all temperatures down to 5 K. The possible connection of the structural defects with the absence of ferromagnetism is discussed on the basis of theoretical calculations of the O K-edge absorption spectra.« less

  15. Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite.

    PubMed

    Kilian, Olaf; Wenisch, Sabine; Karnati, Srikanth; Baumgart-Vogt, Eveline; Hild, Anne; Fuhrmann, Rosemarie; Jonuleit, Tarja; Dingeldein, Elvira; Schnettler, Reinhard; Franke, Ralf-Peter

    2008-01-01

    The microvascularization of metaphyseal bone defects filled with nanoparticulate, biodegradable hydroxyapatite biomaterial with and without platelet factors enrichment was investigated in a minipig model. Results from morphological analysis and PECAM-1 immunohistochemistry showed the formation of new blood vessels into the bone defects by sprouting and intussusception of pre-existing ones. However, no significant differences were observed in the microvascularization of the different biomaterials applied (pure versus platelet factors-enriched hydroxyapatite), concerning the number of vessels and their morphological structure at day 20 after operation. The appearance of VEGFR-2 positive endothelial progenitor cells in the connective tissue between hydroxyapatite particles was also found to be independent from platelet factors enrichment of the hydroxyapatite bone substitute. In both groups formation of lymphatic vessels was detected with a podoplanin antibody. No differences were noted between HA/PLF- and HA/PLF+ implants with respect to the podoplanin expression level, the staining pattern or number of lymphatic vessels. In conclusion, the present study demonstrates different mechanisms of blood and lymphatic vessel formation in hydroxyapatite implants in minipigs.

  16. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells.

    PubMed

    Meshkini, Azadeh; Oveisi, Hamid

    2017-10-01

    The resistance of cancer cells to chemotherapeutic agents and the poor selectivity of drugs toward tumor cells are regarded as the main impediments in successful cancer therapy. Currently, the design and fabrication of stimulus-responsive drug delivery systems with high specificity toward cancer cells are gaining increasing attention and they show a promising potential for clinical applications. In this study, mesoporous zinc-substituted hydroxyapatite has been synthesized and served as a drug delivery vehicle owing to its biocompatibility and high drug loading capacity. The mesoporous nanoparticles were decorated with F127 and subsequently conjugated with methotrexate (MTX) through a stable amide linkage. Since folate receptors are overexpressed on many tumor cell surfaces, MTX on the nanocarrier system plays a dual role as a targeting molecule and a chemotherapeutic drug. The evaluation of the drug release profile revealed that MTX was cleaved from the nanoparticles by a certain type of enzyme under low pH conditions that are meant to simulate the intracellular conditions in the lysosome. Cell viability studies on primary osteosarcoma cells (Saos-2) and MTX-resistance cell lines (RSaos-2/MTX) revealed that the drug-loaded nanoparticles possess high antitumor efficacy on both of the cell lines relative to free MTX. It was also found that the inhibition of P-glycoproteins by F127 and the release of Zn 2+ ions from the nanoparticles in an acidic environment effectively potentiate the antitumor efficacy of the drug-loaded nanoparticles, leading to caspase-mediated cell death. Based on these data, MTX-F127@ZnHAP nanoparticles are pH-responsive nanocarriers with precise controlled drug release and targeting effect. Therefore, they are considered to be promising candidates capable of overcoming resistance in osteosarcoma cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect

    PubMed Central

    Grigolato, Roberto; Pizzi, Natalia; Brotto, Maria C; Corrocher, Giovanni; Desando, Giovanna; Grigolo, Brunella

    2015-01-01

    The aim of this study was to evaluate the clinical performance of a magnesium-enriched hydroxyapatite biomaterial used as bone substitute in a case of mandibular ameloblastoma treated with conservative surgery. A 63 year old male patient was treated for an ameloblastoma in the anterior mandibular profile. After tissue excision, the bone defect was filled with a synthetic hydroxyapatite biomaterial enriched with magnesium ions, in order to promote bone tissue regeneration and obtain a good aesthetic result. Twenty-five months after surgery, due to ameloblastoma recurrence in an area adjacent to the previously treated one, the patient underwent to a further surgery. In that occasion the surgeon performed a biopsy in the initially treated area, in order to investigate the nature of the newly-formed tissue and to evaluate the bone regenerative potential of this biomaterial by clinical, radiographic and histological analyses. The clinical, radiographic and histological evaluations showed various characteristics of bone remodeling stage with an ongoing osteogenic formation and a good osteo-integration. In conclusion, magnesium-enriched hydroxyapatite used as bone substitute in a mandibular defect due to ameloblastoma excision showed an effective bone regeneration at 25 months follow-up, demonstrating an excellent biocompatibility and a high osteo-integration property. PMID:25784998

  18. In vitro and in vivo evaluation of silicated hydroxyapatite and impact of insulin adsorption.

    PubMed

    Lasgorceix, M; Costa, A M; Mavropoulos, E; Sader, M; Calasans, M; Tanaka, M N; Rossi, A; Damia, C; Chotard-Ghodsnia, R; Champion, E

    2014-10-01

    This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.

  19. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    PubMed

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  20. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    PubMed Central

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957

  1. Iron inhibits hydroxyapatite crystal growth in vitro.

    PubMed

    Guggenbuhl, Pascal; Filmon, Robert; Mabilleau, Guillaume; Baslé, Michel F; Chappard, Daniel

    2008-07-01

    Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.

  2. Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis.

    PubMed

    Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval

    2015-03-05

    ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    PubMed Central

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024

  4. Pulsed plasma chemical synthesis of SixCyOz composite nanopowder

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2017-05-01

    SixCyOz composite nanopowder with an average size of particles about 10-50 nm was produced using the pulsed plasma chemical method. The experiments on the synthesis of nanosized composite were carried out using a TEA-500 pulsed electron accelerator. To produce a composite, SiCl4, O2, and CH4 were used. The major part of experiments was conducted using a plasma chemical reactor (quartz, 140 mm diameter, 6 l volume). The initial reagents were injected into the reactor, then a pulsed electron beam was injected which initiated the chemical reactions whose products were the SixCyOz composite nanopowder. To define the morphology of the particles, the JEOL-II-100 transmission electron microscope (TEM) with an accelerating voltage of 100 kV was used. The substances in the composition of the composite nanopowder were identified using the infrared absorption optical spectrum. To conduct this analysis, the Nicolet 5700 FT-IR spectrometer was used.

  5. Effect of Saturation Pressure Difference on Metal-Silicide Nanopowder Formation in Thermal Plasma Fabrication.

    PubMed

    Shigeta, Masaya; Watanabe, Takayuki

    2016-03-07

    A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size-composition distribution for a metal-silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal-silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder.

  6. Trace impurities analysis of aluminum nanopowder and its air combustion product

    NASA Astrophysics Data System (ADS)

    Kabanov, Denis V.; Merkulov, Viktor G.; Mostovshchikov, Andrey V.; Ilyin, Alexander P.

    2018-03-01

    Neutron activation analysis (NAA) allows estimating micro-concentrations of chemicals and analyzes tens of elements at one measurement. In this paper we have used NAA to examine metal impurities in the electroexplosive aluminum nanopowder (ANP) and its air-combustion products produced by burning in crucibles in an electric and magnetic field and without application of fields. It has been revealed that in the air-combustion products impurities content is reduced. The presence of impurities in the ANP is associated with electric explosion technology (erosion of electrode and chamber materials) and with the previous development of various nanopowders in the composition of this electric explosive device. NAA is characterized by a high sensitivity and reproducibility to elements content and low metering error. According to the obtained results it has been concluded that NAA metering error does not exceed 10% in the wide concentration range, from 0.01 to 2100 ppm, particularly. Besides, there is high reproducibility of the method that has been proved on macro-elements of Ca (>1000 ppm), Fe (>2000 ppm), and micro-elements as Sm, U, Ce, Sb, Th, etc. (<0.9 ppm). It is recommended to use an individual unit for the production of pure metal powders for electric explosion and production of nanopowders, which is possible with mass production of nanopowders.

  7. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.

    PubMed

    Ben-Arfa, Basam A E; Salvado, Isabel M Miranda; Ferreira, José M F; Pullar, Robert C

    2017-01-01

    We have developed an innovative, rapid sol-gel method of producing hydroxyapatite nanopowders that avoids the conventional lengthy ageing and drying processes (over a week), being 200 times quicker in comparison to conventional aqueous sol-gel preparation, and 50 times quicker than ethanol based sol-gel synthesis. Two different sets of experimental conditions, in terms of pH value (5.5 and 7.5), synthesis temperature (45 and 90°C), drying temperature (60 and 80°C) and calcination temperature (400 and 700°C) were explored. The products were characterised by X-ray diffraction (XRD) Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and specific surface area (SSA) measurements. Pure hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) was obtained for the powders synthesised at pH7.5 and calcined at 400°C, while biphasic mixtures of HAp/β-tricalcium phosphate (β-Ca 3 (PO 4 ) 2 , TCP) were produced at pH5.5 and (pH7.5 at elevated temperature). The novel rapid drying was up to 200 times faster than conventional drying, only needing 1h with no prior ageing step, and favoured the formation of smaller/finer nanopowders, while producing pure HAp or phase mixtures virtually identical to those obtained from the slow conventional drying method, despite the absence of a slow ageing process. The products of this novel rapid process were actually shown to have smaller crystallite sizes and larger SSA, which should result in increased bioactivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep.

    PubMed

    Ding, Ming; Andreasen, Christina M; Dencker, Mads L; Jensen, Anders E; Theilgaard, Naseem; Overgaard, Søren

    2015-04-01

    Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices. © 2014 Wiley Periodicals, Inc.

  9. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite.

    PubMed

    Carmo, André Boziki Xavier do; Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Granjeiro, José Mauro; Miguel, Fúlvio Borges; Calasans-Maia, Jose; Calasans-Maia, Monica Diuana

    2018-01-18

    This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials. Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups. The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.

  10. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite

    PubMed Central

    do Carmo, André Boziki Xavier; Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Granjeiro, José Mauro; Miguel, Fúlvio Borges; Calasans-Maia, Jose; Calasans-Maia, Monica Diuana

    2018-01-01

    ABSTRACT Objective This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA) and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA) as bone substitute materials. Methods Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group). After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. Results The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05). We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039) in both groups. Conclusion The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes. PMID:29364342

  11. Simulation of nanopowder compaction in terms of granular dynamics

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Volkov, N. B.

    2011-07-01

    The uniaxial compaction of nanopowders is simulated using the granular dynamics in the 2D geometry. The initial arrangement of particles is represented by (i) a layer of particles executing Brownian motion (isotropic structures) and (ii) particles falling in the gravity field (anisotropic structures). The influence of size effects and the size of a model cell on the properties of the structures are studied. The compaction of the model cell is simulated with regard to Hertz elastic forces between particles, Cattaneo-Mindlin-Deresiewicz shear friction forces, and van der Waals-Hamaker dispersion forces of attraction. Computation is performed for monodisperse powders with particle sizes ranging from 10 to 400 nm and for "cohesionless" powder, in which attractive forces are absent. It is shown that taking into account dispersion forces makes it possible to simulate the size effect in the nanopowder compaction: the compressibility of the nanopowder drops as the particles get finer. The mean coordination number and the axial and lateral pressures in the powder systems are found, and the effect of the density and isotropy of the initial structure on the compressibility is analyzed. The applicability of well-known Rumpf's formula for the size effect is discussed.

  12. Effect of Saturation Pressure Difference on Metal–Silicide Nanopowder Formation in Thermal Plasma Fabrication

    PubMed Central

    Shigeta, Masaya; Watanabe, Takayuki

    2016-01-01

    A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size–composition distribution for a metal–silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal–silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder. PMID:28344300

  13. Effect of processing temperature on the properties of Fe-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kathriarachchi, Vindu; Leventouri, Theodora; Rondinone, Adam; Sorge, Korey

    2015-03-01

    Multi-substituted Hydroxyapatite (HAp), Ca5(PO4)3OH, is the main mineral phase in physiological apatite. Fe is a minor substitution element in bone and enamel substituting Ca in the HAp structure. Crystal structure, magnetic and microstructure properties of Ca5-xFex(PO4)3OH depend on processing parameters. We present results from our research on the Ca5-xFex(PO4)3OH system (x = 0.0, 0.05, 0.1, 0.2 and 0.3) prepared at 37° C, and 80° C. Hydroxyapatite single-phase was detected for x <0.1 in both sets of samples, while hematite and/or maghemite develops starting at x = 0.1. Rietveld refinements of XRD and NPD patterns show that the a and c lattice constants decrease with increasing Fe concentration for both sets of samples. Pure HAp is diamagnetic but as x increases, Fe-HAp transitions from paramagnetic to weak ferromagnetic behavior. TEM images show spherical particles in samples prepared at 37° C, and elongated particles in samples prepared at 80° C. XRF studies confirm the iron substitution and show that the Ca/P stoichiometric ratio of 1.67 decreases with increasing the Fe concentration. Further, the Fe/Ca +Fe atomic ratios of samples prepared at 37° C are greater than those prepared at 80° C. TEM and XRF data were collected at the Center for Nanophase Materials Sciences which is a DOE Office of Science User Facility. NPD data were collected at the SNS of the ORNL.

  14. LIBS analysis of hydroxyapatite extracted from bovine bone for Ca/P ratio measurements

    NASA Astrophysics Data System (ADS)

    Tariq, Usman; Haider, Zuhaib; Hussain, Rafaqat; Tufail, Kashif; Ali, Jalil

    2017-03-01

    Hydroxyapatite has been extensively used as a potential biocompatible ceramic in many orhtopedic applications. Hydroxyapatite is one of the members of calcium phosphate family and been used extensively as a bone substitute. The mechanical properties of hydroxyapatite itself, ceramics and bone cements prepared from hydroxyapatite vary greatly with slight variation in its Ca/P ratio. At present EDX, XRD, XRF and ICP-OES are being used for the determination of Ca/P ratio in hydroxyapatite. These techniques require special sample preparation, may also use toxic chemicals and usually are not very fast in giving the measurements. We report LIBS as a rapid alternative technique for calculation of Ca/P ratio in hydroxyapatite extracted from bovine bone (BHA). Ca/P ratio in laboratory prepared HA is calculated using LIBS and the results are validated against EDX results Ca/P ratio of the hydroxyapatite was calculated as 1.54±0.19 using LIBS while 1.63±0.03 using EDX. Ca/P ratio calculated by LIBS and EDX and showed comparable results with a difference of 5.5%. Moreover, plasma temperature and the ratio of the calcium (ion) line to calcium (atomic) line did not show significant variation in plasma conditions during measurements. The present study has demonstrated that LIBS can also be used for the determination of Ca/P ratio of hydroxyapatite and other calcium phosphates. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.

  15. Biogenic Hydroxyapatite: A New Material for the Preservation and Restoration of the Built Environment.

    PubMed

    Turner, Ronald J; Renshaw, Joanna C; Hamilton, Andrea

    2017-09-20

    Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure. Hydroxyapatites with such a structure are known to be mechanically stronger and more biocompatible than synthetic or biomimetic hydroxyapatites. The formation of this biogenic hydroxyapatite coating therefore has significance in a range of contexts. In medicine, hydroxyapatite coatings are linked to improved biocompatibility of ceramic implant materials. In the built environment, hydroxyapatite coatings have been proposed for the consolidation and protection of sculptural materials such as marble and limestone, with biogenic hydroxyapatites having reduced solubility compared to synthetic apatites. Hydroxyapatites have also been established as effective for the adsorption and remediation of environmental contaminants such as radionuclides and heavy metals. We identify that in addition to providing a biofilm scaffold for nucleation, the metabolic activity of Pseudomonas fluorescens increases the pH of the growth medium to a suitable level for hydroxyapatite formation. The generated ammonia reacts with phosphate in the growth medium, producing ammonium phosphates which are a precursor to the formation of hydroxyapatite under conditions of ambient temperature and pressure. Subsequently, this biogenic deposition process takes place in a simple reaction system under mild chemical conditions and is cheap and easy to apply to fragile biological or architectural surfaces.

  16. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation.

    PubMed

    Ghanaati, Shahram; Udeabor, Samuel E; Barbeck, Mike; Willershausen, Ines; Kuenzel, Oliver; Sader, Robert A; Kirkpatrick, C James

    2013-01-04

    Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  17. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    PubMed

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  18. Bio-ecological consequences of crop seeds treatment with metal nano-powders

    NASA Astrophysics Data System (ADS)

    Churilov, G.

    2015-11-01

    As a result of our investigations we have determined the optimal concentrations of ferrum, cobalt and cuprum nano-powders recommended to be used as micro-fertilizers increasing the yield and feed value of crops at the expense of accumulating biologically active combinations by 25-35%. In unfavorable climate conditions, for example in a case of excess moisture or heat and drought, the plants development and ripening suffer. Our investigations have shown that the stimulating effect of nano-powders has lowered the effect of stress situations on plants development and simultaneously increased the rape seeds yield and quality. Treating the seeds with the drugs being studied has provided the high crop protection. If consider that the maximum efficiency of protectants Chinuk, SK (20 kg/t of seeds) and Cruiser, KS (10 kg/t of seeds) then for the same effect one needs nano-powders 0.1 g per hectare norm of seeds planting.

  19. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  20. Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings

    PubMed Central

    Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.

    2008-01-01

    The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207

  1. Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites

    NASA Astrophysics Data System (ADS)

    Bowen, C. R.; Gittings, J.; Turner, I. G.; Baxter, F.; Chaudhuri, J. B.

    2006-09-01

    This letter describes the relationships between the composition and the dielectric and piezoelectric properties of hydroxyapatite-barium titanate composites for polarized bone substitutes. The ac conductivity and permittivity were characterized from 0.1Hzto1MHz, along with measurements of the d33 piezoelectric charge coefficient. The addition of BaTiO3 led to an increase in permittivity and ac conductivity of the material. The increase in both properties was attributed to the presence of the high permittivity ferroelectric phase. The d33 and g33 coefficients decreased rapidly as hydroxyapatite was introduced into BaTiO3 material. Composites below 80% by volume of BaTiO3 exhibited no net piezoelectric effect.

  2. CAD-CAM-generated hydroxyapatite scaffold to replace the mandibular condyle in sheep: preliminary results.

    PubMed

    Ciocca, Leonardo; Donati, Davide; Fantini, Massimiliano; Landi, Elena; Piattelli, Adriano; Iezzi, Giovanna; Tampieri, Anna; Spadari, Alessandro; Romagnoli, Noemi; Scotti, Roberto

    2013-08-01

    In this study, rapid CAD-CAM prototyping of pure hydroxyapatite to replace temporomandibular joint condyles was tested in sheep. Three adult animals were implanted with CAD-CAM-designed porous hydroxyapatite scaffolds as condyle substitutes. The desired scaffold shape was achieved by subtractive automated milling machining (block reduction). Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Using the same technique, fixation plates were created and applied to the scaffold pre-operatively to firmly secure the condyles to the bone and to assure primary stability of the hydroxyapatite scaffolds during masticatory function. Four months post-surgery, the sheep were sacrificed. The hydroxyapatite scaffolds were explanted, and histological specimens were prepared. Different histological tissues penetrating the scaffold macropores, the sequence of bone remodeling, new apposition of bone and/or cartilage as a consequence of the different functional anatomic role, and osseointegration at the interface between the scaffold and bone were documented. This animal model was found to be appropriate for testing CAD-CAM customization and the biomechanical properties of porous, pure hydroxyapatite scaffolds used as joint prostheses.

  3. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite.

    PubMed

    Igeta, Kazuki; Kuwamura, Yuta; Horiuchi, Naohiro; Nozaki, Kosuke; Shiraishi, Daichi; Aizawa, Mamoru; Hashimoto, Kazuaki; Yamashita, Kimihiro; Nagai, Akiko

    2017-04-01

    Synthetic hydroxyapatite (HAp) is used clinically as a material for bone prostheses owing to its good bone-bonding ability; however, it does not contribute to bone remodeling. Carbonate-substituted hydroxyapatite (CAp) has greater bioresorption capacity than HAp while having similar bone-bonding potential, and is therefore considered as a next promising material for bone prostheses. However, the effects of the CAp instability on inflammatory and immune responses are unknown in detail. Here, we show that the surface layer of CAp is more hydrated than that of HAp and induces changes in the shape and function of macrophage-like cells. HAp and CAp were synthesized by wet method and molded into disks. The carbonate content of CAp disks was 6.2% as determined by Fourier transform (FT) infrared spectral analysis. Diffuse reflectance infrared FT analysis confirmed that physisorbed water and surface hydroxyl groups (OH - ) were increased whereas structural OH - was decreased on the CAp as compared to the HAp surface. The degree of hydroxylation in CAp was comparable to that in bone-apatite structures, and the CAp surface exhibited greater hydrophilicity and solubility than HAp. We investigated immune responses to these materials by culturing RAW264 cells (macrophage precursors) on their surfaces. Cell spreading on the CAp disk was suppressed and the secretion level of inflammatory cytokines was reduced as compared to cells grown on HAp. These results indicate that the greater surface hydration of CAp surface can attenuate adverse inflammatory responses to implanted bone prostheses composed of this material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1063-1070, 2017. © 2017 Wiley Periodicals, Inc.

  4. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    PubMed Central

    Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru

    2013-01-01

    This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669

  5. Poly(ε-caprolactone)/nano fluoridated hydroxyapatite scaffolds for bone tissue engineering: in vitro degradation and biocompatibility study.

    PubMed

    Johari, N; Fathi, M H; Golozar, M A; Erfani, E; Samadikuchaksaraei, A

    2012-03-01

    In this study, biodegradation and biocompatibility of novel poly(ε-caparolactone)/nano fluoridated hydroxyapatite (PCL-FHA) scaffolds were investigated. The FHA nanopowders were prepared via mechanical alloying method and had a chemical composition of Ca(10)(PO(4))(6)OH(2-x )F(x) (where x values were selected equal to 0.5 and 2.0). In order to fabricate PCL-FHA scaffolds, 10, 20, 30 and 40 wt% of the FHA were added to the PCL. The PCL-FHA scaffolds were produced by the solvent casting/particulate leaching using sodium chloride particles (with diameters of 300-500 μm) as the porogen. The phase structure, microstructure and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques. Porosity of the scaffolds was measured using the Archimedes' Principle. In vitro degradation of PCL-FHA scaffolds was studied by incubating the samples in phosphate buffered saline at 37°C and pH 7.4 for 30 days. Moreover, biocompatibility was evaluated by MTT assay after seeding and culture of osteoblast-like cells on the scaffolds. Results showed that the osteoblast-like cells attached to and proliferated on PCL-FHA and increasing the porosity of the scaffolds increased the cell viability. Also, degradation rate of scaffolds were increased with increasing the fluorine content in scaffolds composition.

  6. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  7. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids.

    PubMed

    Hussain, Dilshad; Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Ashiq, Muhammad N; Athar, Muhammad; Rainer, Matthias; Huck, Christian W; Bonn, Guenther K

    2013-05-02

    Diamond is known for its high affinity and biocompatibility towards biomolecules and is used exclusively in separation sciences and life science research. In present study, diamond nanopowder is derivatized as Immobilized Metal Ion Affinity Chromatographic (IMAC) material for the phosphopeptides enrichment and as Reversed Phase (C-18) media for the desalting of complex mixtures and human serum profiling through MALDI-TOF-MS. Functionalized diamond nanopowder is characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Diamond-IMAC is applied to the standard protein (β-casein), spiked human serum, egg yolk and non-fat milk for the phosphopeptides enrichment. Results show the selectivity of synthesized IMAC-diamond immobilized with Fe(3+) and La(3+) ions. To comprehend the elaborated use, diamond-IMAC is also applied to the serum samples from gall bladder carcinoma for the potential biomarkers. Database search is carried out by the Mascot program (www.matrixscience.com) for the assignment of phosphorylation sites. Diamond nanopowder is thus a separation media with multifunctional use and can be applied to cancer protein profiling for the diagnosis and biomarker identification. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Optical Properties of Nanocrystal Interfaces in Compressed MgO Nanopowders

    PubMed Central

    2011-01-01

    The optical properties and charge trapping phenomena observed on oxide nanocrystal ensembles can be strongly influenced by the presence of nanocrystal interfaces. MgO powders represent a convenient system to study these effects due to the well-defined shape and controllable size distributions of MgO nanocrystals. The spectroscopic properties of nanocrystal interfaces are investigated by monitoring the dependence of absorption characteristics on the concentration of the interfaces in the nanopowders. The presence of interfaces is found to affect the absorption spectra of nanopowders more significantly than changing the size of the constituent nanocrystals and, thus, leading to the variation of the relative abundance of light-absorbing surface structures. We find a strong absorption band in the 4.0−5.5 eV energy range, which was previously attributed to surface features of individual nanocrystals, such as corners and edges. These findings are supported by complementary first-principles calculations. The possibility to directly address such interfaces by tuning the energy of excitation may provide new means for functionalization and chemical activation of nanostructures and can help improve performance and reliability for many nanopowder applications. PMID:21443262

  9. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    NASA Astrophysics Data System (ADS)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  10. Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations

    PubMed Central

    Montazeri, N; Jahandideh, R; Biazar, Esmaeil

    2011-01-01

    In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca10(PO4)6F2) and hydroxyapatite (HA; Ca10(PO4)6(OH)2), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatibile and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering. PMID:21499417

  11. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    PubMed Central

    2013-01-01

    Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting. PMID:23286366

  12. Cell death induced by hydroxyapatite on L929 fibroblast cells.

    PubMed

    Inayat-Hussain, S H; Rajab, N F; Roslie, H; Hussin, A A; Ali, A M; Annuar, B O

    2004-05-01

    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.

  13. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery.

    PubMed

    Rahimi, F; Maurer, B T; Enzweiler, M G

    1997-01-01

    The use of coralline hydroxyapatite has become a viable bone grafting alternative. Its efficacy has been well established through multiple human and animal studies. Coralline hydroxyapatite enhances osteogenesis by providing a biocompatible lattice for the passage and assembly of vascular, fibroblastic, and osteoblastic tissues. It also provides support for surrounding osseous structures. The uses of this material are expanding into the realm of foot and ankle surgery. Its consideration as an appropriate bone graft substitute as well as multiple case studies demonstrating its surgical applicability are discussed. The implants utilized at Thorek Hospital and Medical Center over the past eight years, with an average follow-up of three and one-half years, have proven to be a valuable resource for augmentation where an osseous defect has occurred.

  14. Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.

    PubMed

    Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P

    2008-05-01

    To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p < 0.001). When the nature of failure was assessed with the ARI Index, 83 per cent of the enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.

  15. Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.

    PubMed

    Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela

    2017-04-09

    The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.

  16. Study of micropart fabrication via 17-4 PH stainless nanopowder injection molding.

    PubMed

    Tirta, Andy; Prasetyo, Yus; Baek, Eung-Ryul; Choi, Chul-Jin

    2011-01-01

    Micropart fabrication via 17-4 PH stainless nanopowder injection molding was investigated. The nanopowder was mixed with a binder that was based on wax to produce a feedstock composed of 45% powder and binder (the powder load). Initially, the fit and proper test was done before the micropart was made by making some bars of green samples, which the properties were examined after the sintering process. The examination involved the mechanical properties such as the porosity, hardness, and some of metallurgical aspects, such as the second-phase formation and the final compound after the sintering. The results showed that utilizing 17-4 PH stainless nanopowder is promising for micropart fabrication since it can form a nearly full-density sintered sample with a low porosity and good toughness, and can provide a smooth surface finish. After this, the investigations followed with the injection of the feedstock into the PDMS micromold that was formed by the nickel pattern from the X-Ray LIGA process. The green samples successfully produced a high-aspect-ratio sample with a thickness of up to 1 mm and an aspect ratio of 15 in the microchannel part. Then the green samples were sintered at 1,300 degrees C for 2 h, since from the initial test, they showed optimum parameters with nearly full density, low porosity, and a high degree of hardness. The research shows the excellent results of the application of the 17-4 PH stainless nanopowder to micropart fabrication.

  17. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].

    PubMed

    Liao, Jian-Guo; Li, Yan-Qun; Duan, Xing-Ze; Liu, Qiong

    2014-11-01

    CO3(2-) doping is an effective method to increase the biological activity of nano-hydroxyapatite (n-HA). In the present study, calcium nitrate and trisodium phosphate were chosen as raw materials, with a certain amount of Na2CO3 as a source of CO-3(2-) ions, to synthesize nano-carbonate hydroxyapatite (n-CHA) slurry by solution precipitation method. The structure and micro-morphology of n-CHA were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR) and Raman spectroscopy (RS). The results revealed that the synthetic n-HA crystals are acicular in nanometer scale and have a crystal size of 20-30 nm in diameter and 60-80 nm in length, which are similar to natural bone apatite. And the crystallinity of n-CHA crystals decreases to the increment of CO3(2-). Samples with more CO3(2) have composition and structure more similar to the bone apatite. The value of lattice parameters a decreases, value of c increases, and c/a value increases with the increase in the amount of CO3(2-), in accordance with crystal cell parameters change rule of type B replacement. In the AB mixed type (substitution OH- and PO4(3-)) CHA, IR characteristic peak of CO3(2-) out-of-plane bending vibration appears at 872 cm(-1), meanwhile, the asymmetry flexible vibration band is split into band at 1 454 cm(-1) and band at 1 420 cm(-1), while weak CO3(2)-peak appears at 1 540 cm(-1). CO3(2-) Raman peak of symmetric stretching vibration appears at 1 122 cm(-1). CO3(2-) B-type (substitution PO4(3-)) peak appeared at 1 071 cm(-1). Through the calculation of integral area ratio of PO4(3-)/ CO3(2-), OH-/CO3(2-), and PO4(3-)/OH-, low quantity CO3(2-) is B-type and high quantity CO3(2-) is A-type (substitution OH-). The results show that the synthesized apatite crystals are AB hybrid substitued nano-carbonate hydroxyapatite, however B-type replacement is the main substitute mode. Due to similarity inthe shape, size, crystal structure

  18. Bimodal metal micro-nanopowders for powder injection molding

    NASA Astrophysics Data System (ADS)

    Pervikov, Aleksandr; Rodkevich, Nikolay; Glazkova, Elena; Lerner, Marat

    2017-12-01

    The paper studies a bimodal metal powder composition designed to prepare feedstock for powder injection molding, as well as microstructure and porosity of sintered pats. Two kinds of metal powder compositions are used, in particular, a mixture of micro- and nanopowders and a bimodal powder prepared with dispersion of steel wire. The feedstock is prepared by mixing a bimodal metal powder composition with acetylacetone and paraffin wax. The microstructure of the debound parts is observed by scanning electron microscopy. The sintered parts are characterized by density measurements and metallographic analysis. The technique of the metal powder composition proves to affect the characteristics of sintered parts. Nanoparticles are shown in the interstitial spaces among the microparticles upon mixing micro- and nanopowders, but the regular distribution of nanoparticles on the surface of microparticles is observed in the bimodal powder providing the reduction of the porosity of sintered parts and increasing the density to the proper density of steel.

  19. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    PubMed

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Nanocrystalline hydroxyapatite doped with selenium oxyanions: a new material for potential biomedical applications.

    PubMed

    Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz

    2014-06-01

    Selenium-substituted hydroxyapatites containing selenate SeO4(2-) or selenite SeO3(2-) ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite.

    PubMed

    Bahrami, M; Fathi, M H; Ahmadian, M

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co-Cr-Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co-Cr-Mo alloy to bioactive type by adding 10, 15, and 20wt.% HA which have lower modulus elasticity and higher microhardness. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.

    2016-01-01

    Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5.

  3. Hydroxyapatite formation from cuttlefish bones: kinetics.

    PubMed

    Ivankovic, H; Tkalcec, E; Orlic, S; Ferrer, G Gallego; Schauperl, Z

    2010-10-01

    Highly porous hydroxyapatite (Ca(10)(PO(4))(6)·(OH)(2), HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (Sepia officinalis L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson-Mehl-Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the a-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO(3) (2-) groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200-300 nm and an average length of about 8-10 μm.

  4. A multi-material coating containing chemically-modified apatites for combined enhanced bioactivity and reduced infection via a drop-on-demand micro-dispensing technique.

    PubMed

    Lim, Poon Nian; Wang, Zuyong; Chang, Lei; Konishi, Toshiisa; Choong, Cleo; Ho, Bow; Thian, Eng San

    2017-01-01

    Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings. Despite containing reduced amounts of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets over the coated area than silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite coatings, silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating exhibited effective antibacterial property with enhanced bioactivity. By exhibiting good controllability of distributing silicon-substituted hydroxyapatite, silver-substituted hydroxyapatite and hydroxyapatite micro-droplets, it was demonstrated that drop-on-demand micro-dispensing technique was capable in harnessing the advantages of silver-substituted hydroxyapatite, silicon-substituted hydroxyapatite and hydroxyapatite to produce a multi-material coating along with enhanced bioactivity and reduced infection.

  5. Experimental and numerical measurements of adhesion energies between PHEMA and PGLYMA with hydroxyapatite crystal.

    PubMed

    Youssefian, Sina; Liu, Pingsheng; Askarinejad, Sina; Shalchy, Faezeh; Song, Jie; Rahbar, Nima

    2015-07-16

    Synthetic orthopaedic materials consisting of a single bioinert polymeric material do not meet the complex biological and physical requirements of scaffold-guided bone tissue repair and regeneration. Of particular interest is the design of biocompatible hydrogel-hydroxyapatite composite bone substitutes with outstanding interfacial adhesion that would warranty the ability for the composite to withstand functional loadings without exhibiting brittle fractures during the dynamic guided tissue regeneration. For this purpose, the hydroxylated side chain of chemically cross-linked poly (2-hydroxyethyl methacrylate) (pHEMA) is substitute with a carboxylated side chain to make poly (glycerol methacrylate) (pGLYMA). Here, we carry out atomistic simulations and atomic force microscopy to predict and experimentally determine the interfacial adhesion energies of pHEMA and pGLYMA with the surface of single-crystalline hydroxyapatite (HA) whiskers. Both experimental and numerical results showed that pGLYMA has stronger adhesion forces with HA and may be used for preparing a high-affinity polymer-HA composite. The high adhesive interactions between pGLYMA and HA were found to be due to strong electrostatic energies.

  6. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different

  7. Influence of particle size distribution on nanopowder cold compaction processes

    NASA Astrophysics Data System (ADS)

    Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.

    2017-06-01

    Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.

  8. Textural, Structural and Biological Evaluation of Hydroxyapatite Doped with Zinc at Low Concentrations

    PubMed Central

    Predoi, Daniela; Iconaru, Simona Liliana; Deniaud, Aurélien; Chevallet, Mireille; Michaud-Soret, Isabelle; Buton, Nicolas; Prodan, Alina Mihaela

    2017-01-01

    The present work was focused on the synthesis and characterization of hydroxyapatite doped with low concentrations of zinc (Zn:HAp) (0.01 < xZn < 0.05). The incorporation of low concentrations of Zn2+ ions in the hydroxyapatite (HAp) structure was achieved by co-precipitation method. The physico-chemical properties of the samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), zeta-potential, and DLS and N2-BET measurements. The results obtained by XRD and FTIR studies demonstrated that doping hydroxyapatite with low concentrations of zinc leads to the formation of a hexagonal structure with lattice parameters characteristic to hydroxyapatite. The XRD studies have also shown that the crystallite size and lattice parameters of the unit cell depend on the substitutions of Ca2+ with Zn2+ in the apatitic structure. Moreover, the FTIR analysis revealed that the water content increases with the increase of zinc concentration. Furthermore, the Energy Dispersive X-ray Analysis (EDAX) and XPS analyses showed that the elements Ca, P, O, and Zn were found in all the Zn:HAp samples suggesting that the synthesized materials were zinc doped hydroxyapatite, Ca10−xZnx(PO4)6(OH), with 0.01 ≤ xZn ≤ 0.05. Antimicrobial assays on Staphylococcus aureus and Escherichia coli bacterial strains and HepG2 cell viability assay were carried out. PMID:28772589

  9. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.

    PubMed

    Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th

    2006-02-01

    A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.

  10. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  11. Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model

    PubMed Central

    Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-01-01

    Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p < 0.05). On comparing the change of bone mineral density the bone ingrowth surface area among the 4 groups, there were no statistically significant differences among the groups found for any period (p > 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite

  12. Structural, morphological, and optical study of titania-based nanopowders suitable for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Šćepanović, M.; Grujić-Brojčin, M.; Abramović, B.; Golubović, A.

    2017-01-01

    Systematic investigation of the relationship between structural, morphological, optical and photocatalytic properties of the titania-based nanopowders is presented. A series of pure and doped titania catalysts with various (anatase and brookite) phase compositions have been prepared by sol-gel or hydrothermal route. The crystal structure and composition of the synthesized samples have been extensively characterised by XRD and Raman scattering measurements. The nanopowder morphology has been studied using microscopic methods (SEM, AFM, and STM), whereas the porous structure has been revealed by the analysis of nitrogen sorption data. The optical and electronic properties have been studied by spectroscopic ellipsometry. All investigated properties have been correlated to photocatalytic activity, tested in degradation of the pharmaceutically active substances (such as metoprolol and alprazolam) induced by UVA or visible radiation. Based on this correlation, the physical properties which contribute most to the increase in photocatalytic activity of synthesized nanopowders have been determined, in order to optimize the synthesis conditions which could lead to the maximal efficiency in degradation of particular pollutant.

  13. Substitution of strontium and boron into hydroxyapatite crystals: Effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells.

    PubMed

    Kolmas, Joanna; Velard, Frédéric; Jaguszewska, Aneta; Lemaire, Flora; Kerdjoudj, Halima; Gangloff, Sophie C; Kaflak, Agnieszka

    2017-10-01

    Hydroxyapatite (HA) enriched with strontium and boron ions was synthesized using two different methods: the precipitation method (Sr,B-HAw) and the dry method (Sr,B-HAd). Additionally, for the sake of comparison, the "pure" unsubstituted HA was prepared together with HAs substituted only with one type of a foreign ion. The obtained materials were subjected to physicochemical analysis with the use of various analytical methods, such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP-OES), Fourier transform infrared spectroscopy (FT-IR) and solid-state proton nuclear magnetic resonance ( 1 H ssNMR). All the obtained materials were also biologically tested for their potential cytotoxicity. The obtained materials (Sr,B-HAw and Sr,B-HAd) were homogeneous and respectively showed nano- and microcrystal apatitic structures. The simultaneous introduction of Sr 2+ and BO 3 3- ions turned out to be more effective in respect of the dry method. Of importance, doped materials obtained using both synthesis routes have been demonstrated to be biocompatible, opening the way for medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hydroxyapatite reinforced with multi-walled carbon nanotubes and bovine serum albumin for bone substitute applications

    NASA Astrophysics Data System (ADS)

    Gholami, Fatemeh; Noor, Ahmad-Fauzi Mohd

    2016-12-01

    The similarity of the chemical composition of HA to the mineral phase of bone and its excellent biocompatibility meets the requirement of materials designed for bone substitute purpose. The application of HA in load bearing devices is limited by its poor mechanical properties. CNTs with outstanding stiffness, strength, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. This work aims to develop the Hydroxyapatite/Multi-walled Carbon Nanotubes/Bovine Serum Albumin (HA/MWCNTs/BSA) composites with different types of MWCNTs including hydroxylated and carboxylated MWCNTs (MWCNTs-OH, MWCNTs-COOH), and evaluation of mechanical strength and in vitro cellular response of developed composites. HA powder was mixed with de-ionized water, 15 wt.% BSA, and 0.5 wt.% of different MWCNTs* (> 95%), MWCNTs (> 99.9%), MWCNTs-OH (> 99.9%), MWCNTs-COOH (> 99.9%) to produce composites. Among all developed composites, the HA/MWCNTs-COOH/BSA shows the highest compressive strength (29.57 MPa). The cytotoxic effect of HA/MWCNTs-COOH/BSA with different concentrations (6.25 to 200 µg/ml) was evaluated by MTT assay against normal human colon fibroblast (CCD-18Co cell line). At low concentration, all developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and did not elicit cytotoxic effects on cell proliferation and the highest values of cell viability (283%) for the HA/MWCNTs-COOH/BSA composites obtained; whereas when the concentration was increased, the reduction in cell viability was observed. The novel composites showed favorable cytocompatibility with improved compressive strength which make it applicable to use in range of trabecular bone.

  15. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics.

    PubMed

    Khan, Nida Iqbal; Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat; Anis-Ur-Rehman; Darr, Jawwad A; Ihtesham-Ur-Rehman; Chaudhry, Aqif A

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study.

    PubMed

    Kose, Nusret; Çaylak, Remzi; Pekşen, Ceren; Kiremitçi, Abdurrahman; Burukoglu, Dilek; Koparal, Savaş; Doğan, Aydın

    2016-02-01

    Despite improvement in operative techniques and antibiotic therapy, septic complications still occur in open fractures. We developed silver ion containing ceramic nano powder for implant coating to provide not only biocompatibility but also antibacterial activity to the orthopaedic implants. We hypothesised silver ion doped calcium phosphate based ceramic nano-powder coated titanium nails may prevents bacterial colonisation and infection in open fractures as compared with uncoated nails. 33 rabbits divided into three groups. In the first group uncoated, in the second group hydroxyapatite coated, and in the third group silver doped hydroxyapatite coated titanium nails were inserted left femurs of animals from knee regions with retrograde fashion. Before implantation of nails 50 μl solution containing 10(6)CFU/ml methicillin resistance Staphylococcus aureus (MRSA) injected intramedullary canal. Rabbits were monitored for 10 weeks. Blood was taken from rabbits before surgery and on 2nd, 6th and 10th weeks. Blood was analysed for biochemical parameters, blood count, C-reactive protein and silver levels. At the end of the 10 weeks animals were sacrificed and rods were extracted in a sterile fashion. Swab cultures were taken from intramedullary canal. Bacteria on titanium rods were counted. Liver, heart, spleen, kidney and central nervous tissues samples were taken for determining silver levels. Histopathological evaluation of bone surrounding implants was also performed. No significant difference was detected between the groups from hematologic, biochemical, and toxicological aspect. Microbiological results showed that less bacterial growth was detected with the use of silver doped ceramic coated implants compared to the other two groups (p=0.003). Accumulation of silver was not detected. No cellular inflammation was observed around the silver coated prostheses. No toxic effect of silver on bone cells was seen. Silver ion doped calcium phosphate based ceramic nano

  17. Spectroscopic characterization of nanohydroxyapatite synthesized by molten salt method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Kannan, S; Ferreira, J M F

    2010-10-01

    Hydroxyapatite (HAP) nanopowders were synthesized by molten salt method at 260 degrees C. The as-prepared powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo gravimetric analysis (TGA). With the aid of the obtained results the effect of calcining time on the crystallinity, size and morphology of HAP nanopowders is presented. The HAP nanopowders synthesized by molten salt method consist of pure phase of HAP without any impurities and showed the rod-like morphology without detectable decomposition up to 1100 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Fractionated-combustion analysis of carbonate-containing phases in composite materials of the hydroxyapatite-calcium carbonate system

    NASA Astrophysics Data System (ADS)

    Goldberg, M. A.; Shibaeva, T. V.; Smirnov, V. V.; Kutsev, S. V.; Barinov, S. M.; Grigorovich, K. V.

    2012-12-01

    Materials in the hydroxyapatite (HA)-calcium carbonate (CC) system were synthesized by a precipitation method from aqueous solutions. According to the data of X-ray phase analysis and IR spectroscopy, the powders consisted of CC and AB-type carbonate-substituted HA (CHA). In order to determine the content of carbonate-containing phases in materials, the temperature-temporal mode of fractionated-combustion analysis of carbon was developed. The quantitative phase ratios and the degree of substitution of carbonate groups in CHA were determined. It was shown that the degree of substitution of carbonate groups in CHA increased from 2.47 to 5.31 wt % as the CC content increased from 13.50 to 88.33 wt %.

  19. Preparation and characterization of functionalized single walled carbon nanotubes (fSWCNT)/ Hydroxyapatite (HAp)-Nylon hybridized composite biomaterial to study the mechanical properties

    NASA Astrophysics Data System (ADS)

    Khanal, Suraj; Leventouri, Theodora; Mahfuz, Hassan; Rondinone, Adam

    2014-03-01

    Synthetic hydroxyapatite (HAp) bears poor mechanical properties that limit its applicability in orthopedics. We study the possibility of overcoming such limitations by incorporating functionalized single walled carbon nanotubes (fSWCNT) in a biocompatible/bioactive nano-composite. We present results from synthesis and characterization of samples prepared under different processing parameters. Ultra sonication method was to disperse functionalized single walled carbon nanotubes (fSWCNT) in HAp followed by a simple hot assorting method to incorporate with polymerized ɛ-caprolactam. The fracture toughness of the composite materials was tested in compliance with the ASTM D-5045 standard. We have found that while the fracture toughness strongly depends on the processing parameters, a value comparable to the one for cortical bone is achieved. Mechanical properties, electron microscopy and crystal structure properties of the composite materials will be discussed.

  20. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    PubMed

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Biocompatible inorganic nanoparticles for [18F]-fluoride binding with applications in PET imaging

    PubMed Central

    Jauregui-Osoro, Maite; Williamson, Peter A.; Glaria, Arnaud; Sunassee, Kavitha; Charoenphun, Putthiporn; Green, Mark A.; Mullen, Gregory E. D.; Blower, Philip J.

    2014-01-01

    A wide selection of insoluble nanoparticulate metal salts was screened for avid binding of [18F]-fluoride. Hydroxyapatite and aluminium hydroxide nanoparticles showed particularly avid and stable binding of [18F]-fluoride in various biological media. The in vivo behaviour of the [18F]-labelled hydroxyapatite and aluminium hydroxide particles was determined by PET-CT imaging in mice. [18F]-labelled hydroxyapatite was stable in circulation and when trapped in various tissues (lung embolisation, subcutaneous and intramuscular), but accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of [18F]-fluoride (over a period of 4 h) which accumulated in bone. [18F]-labelled aluminium hydroxide was also cleared to liver and spleen but degraded slightly even without liver uptake (subcutanenous and intramuscular). Both materials have properties that are an attractive basis for the design of molecular targeted PET imaging agents labelled with 18F. PMID:21394352

  2. In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite

    PubMed Central

    Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; De Angelis, Maria Gabriella Cusella; Magenes, Giovanni; Benazzo, Francesco

    2009-01-01

    One of the key challenges in reconstructive bone surgery is to provide living constructs that possess the ability to integrate in the surrounding tissue. Bone graft substitutes, such as autografts, allografts, xenografts, and biomaterials have been widely used to heal critical-size long bone defects due to trauma, tumor resection, congenital deformity, and tissue degeneration. In particular, porous hydroxyapatite is widely used in reconstructive bone surgery owing to its biocompatibility. In addition, the in vitro modification of hydroxyapatite with osteogenic signals enhances the tissue regeneration in vivo, suggesting that the biomaterial modification could play an important role in tissue engineering. In this study we have followed a biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix inside a porous hydroxyapatite scaffold. The electromagnetic stimulus had the following parameters: intensity of the magnetic field equal to 2 mT, amplitude of the induced electric tension equal to 5 mV, frequency of 75 Hz, and pulse duration of 1.3 ms. In comparison with control conditions, the electromagnetic stimulus increased the cell proliferation and the surface coating with bone proteins (decorin, osteocalcin, osteopontin, type-I collagen, and type-III collagen). The physical stimulus aimed at obtaining a better modification of the biomaterial internal surface in terms of cell colonization and coating with bone matrix. PMID:19827111

  3. The Study of Complex (Ti, Zr, Cs) Nanopowder Influencing the Effective Ionization Potential of Arc Discharge When Mma Welding

    NASA Astrophysics Data System (ADS)

    Sapozhkov, S. B.; Burakova, E. M.

    2016-08-01

    Strength is one of the most important characteristics of a weld joint. Mechanical properties of a weld metal can be improved in a variety of ways. One of the possibilities is to add a nanopowder to the weld metal. Authors of the paper suggest changing the production process of MMA welding electrodes via adding nanopowder Ti, Zr, Cs to electrode components through liquid glass. Theoretical research into the nanopowder influence on the effective ionization potential (Ueff) of welding arc discharge is also necessitated. These measures support arcing stability, improve strength of a weld joint, as the consequence, ensure quality enhancing of a weld joint and the structure on the whole.

  4. Synthesis of the thermoelectric nanopowder recovered from the used thermoelectric modules.

    PubMed

    Lee, Kun-Jae; Jin, Yun-Ho; Kong, Man-Sik

    2014-10-01

    We fabricated the thermoelectric powder using the used thermoelectric modules in a vehicle. As a starting material, the used thermoelectric modules were collected and separated to substrate, electrode, solder, and thermoelectric parts by a thermal process. The separation process was performed in a wet process at the critical temperature. The solder in the module was the neighbor part of the thermoelectric material with the lowest melting temperature in the module. We focused on the thermal property of the solder to separate the thermoelectric chips in the module. After the separation process, we prepared the pure thermoelectric material by the chemical etching for an impurity removal. Also the thermoelectric nanopowder was fabricated by a chemical reduction reaction using the recycled thermoelectric materials. The recovered nanopowder was confirmed to the phase of bismuth telluride (Bi2Te3) with the particle size of -15 nm.

  5. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  6. Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging.

    PubMed

    Liu, Min; Liu, Hui; Sun, Shufen; Li, Xuejiao; Zhou, Yanmin; Hou, Zhiyao; Lin, Jun

    2014-02-04

    Porous hydroxyapatite (HAp) composite fibers functionalized with up-conversion (UC) luminescent and magnetic Na(Y/Gd)F4:Yb(3+),Er(3+) nanocrystals (NCs) have been fabricated via electrospinning. After transferring hydrophobic oleic acid-capped Na(Y/Gd)F4:Yb(3+),Er(3+) NCs into aqueous solution, these water-dispersible NCs were dispersed into precursor electrospun solution containing CTAB. Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers were fabricated by the high temperature treatment of the electrospun Na(Y/Gd)F4:Yb(3+),Er(3+) NCs decorated precursor fibers. The biocompatibility test on MC 3T3-E1 cells using MTT assay shows that the HAp composite fibers have negligible cytotoxity, which reveals the HAp composite fibers could be a drug carrier for drug delivery. Because the contrast brightening is enhanced at increased concentrations of Gd(3+), the HAp composite fibers can serve as T1 magnetic resonance imaging contrast agents. In addition, the composites uptaken by MC 3T3-E1 cells present the UC luminescent emission of Er(3+) under the excitation of a 980 nm near-infrared laser. The above findings reveal Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers have potential applications in drug storage/release and magnetic resonance/UC luminescence imaging.

  7. Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model.

    PubMed

    Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric

    2016-07-01

    The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted

  8. Method for forming energetic nanopowders

    DOEpatents

    Lee, Kien-Yin; Asay, Blaine W.; Kennedy, James E.

    2013-10-15

    A method for the preparation of neat energetic powders, having nanometer dimensions, is described herein. For these neat powder, a solution of a chosen energetic material is prepared in an aprotic solvent and later combined with liquid hexane that is miscible with such solvent. The energetic material chosen is less soluble in the liquid hexane than in the aprotic solvent and the liquid hexane is cooled to a temperature that is below that of the solvent solution. In order to form a precipitate of said neat powders, the solvent solution is rapidly combined with the liquid hexane. When the resulting precipitate is collected, it may be dried and filtered to yield an energetic nanopowder material.

  9. Polyphosphazene/Nano-Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering

    PubMed Central

    Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Brown, Justin L.; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Nair, Lakshmi S.; Allcock, Harry R; Laurencin, Cato T.

    2009-01-01

    The non-toxic, neutral degradation products of amino acid ester polyphosphazenes make them ideal candidates for in vivo orthopaedic applications. The quest for new osteocompatible materials for load bearing tissue engineering applications has led us to investigate mechanically competent amino acid ester substituted polyphosphazenes. In this study, we have synthesized three biodegradable polyphosphazenes substituted with side groups namely leucine, valine and phenylalanine ethyl esters. Of these polymers, the phenylalanine ethyl ester substituted polyphosphazene showed the highest glass transition temperature (41.6 °C) and hence was chosen as a candidate material for forming composite microspheres with 100 nm sized hydroxyapatite (nHAp). The fabricated composite microspheres were sintered into a three-dimensional (3-D) porous scaffold by adopting a dynamic solvent sintering approach. The composite microsphere scaffolds showed compressive moduli of 46–81 MPa with mean pore diameters in the range of 86–145 µm. The three-dimensional polyphosphazene-nHAp composite microsphere scaffolds showed good osteoblast cell adhesion, proliferation and alkaline phosphatase expression, and are potential suitors for bone tissue engineering applications. PMID:18517248

  10. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders.

    PubMed

    Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin

    2010-08-01

    Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.

  11. An Injectable Method for Posterior Lateral Spine Fusion

    DTIC Science & Technology

    2013-09-01

    any problems that would prevent us from reaching our proposed goals. We have begun to establish optimal parameters for encapsulation of the MSCs...783–799 (2009). 3. U. Heise, J. F. Osborn, and F. Duwe, “ Hydroxyapatite ceramic as a bone substitute,” Int. Orthop. 14(3), 329–338 (1990). 4. H...gel and porous hydroxyapatite for posterolateral lumbar spine fusion,” Spine 30(10), 1134–1138 (2005). 9. M. R. Urist, “Bone: formation by

  12. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    PubMed

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications.

    PubMed

    Govindaraj, Dharman; Rajan, Mariappan; Munusamy, Murugan A; Alarfaj, Abdullah A; Sadasivuni, Kishor Kumar; Kumar, S Suresh

    2017-11-01

    Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Synthesis, characterization and cell behavior of fluoridated hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Qu, Haibo

    Fluorine-containing hydroxyapatite (Ca5(PO4) 3(OH)1-xFx FHA), where F- partially replaces OH- in hydroxyapatite (HA), is recognized as a possible biomaterial for bone and tooth implants and gaining attention in the last several years as a possible alternative to HA. In this study, FHA powders were synthesized through a pH-cycling method. It was discovered that fluorine incorporation increased with the fluorine content in the initial solution and the number of pH cycles employed. A relatively low fluorine incorporation efficiency, ˜60%, was attained for most of the FHA samples. The short time of stay at each pH cycle and the limited number of cycles used are believed to be the main reasons of the low fluorine incorporation into the apatite structure. It was also revealed that the FHA particles produced by the pH-cycling method were inhomogeneous. They were a mixture of hydroxyapatite and F-rich apatite (or FA) particles. The mechanisms of incorporation of fluorine ions into hydroxyapatite by a pH cyclicing method were studied using TEM, XRD and fluorine measurement. Instead of forming laminated structures as reported by other research groups, a mixture of nano-sized F-rich apatite (FHA) and hydroxyapatite (HA) particles were obtained using the pH-cyclicing method. After calcination, these FHA particles were homogenized and became single phased FHA. The effect of fluorine content, preparing method, and sintering temperature on both the bulk density and biaxial flexural strength of sintered FHA was studied. Both uniaxially pressed un-milled (UPU) and cold isostatically pressed milled (IPM) FHA discs were sintered at temperatures between 1200˜400°C at an interval of 100°C. It was found that the fluorine content had a significant impact on the sintering behavior, densification, and mechanical properties of FHA discs. A close correlation between the sintered density and biaxial flexural strength of the specimens was revealed, where the biaxial flexural strength

  15. F199E substitution reduced toxicity of Clostridium perfringens epsilon toxin by depriving the receptor binding capability.

    PubMed

    Kang, Jingjing; Gao, Jie; Yao, Wenwu; Kang, Lin; Gao, Shan; Yang, Hao; Ji, Bin; Li, Ping; Liu, Jing; Yao, Jiahao; Xin, Wenwen; Zhao, Baohua; Wang, Jinglin

    2017-07-03

    Epsilon toxin (ETX), a potent toxin, is produced by types B and D strains of Clostridium perfringens, which could cause severe diseases in humans and domestic animals. Mutant rETX F199E was previously demonstrated to be a good vaccine candidate. However, the mechanism concerned remains unknown. To clarify how F199E substitution reduced ETX toxicity, we performed a series of experiments. The results showed that the cell-binding and pore-forming ability of rETX F199E was almost abolished. We speculated that F199E substitution reduced toxicity by depriving the receptor binding capability of ETX, which contributed to the hypothesis that domain I of ETX is responsible for cell binding. In addition, our data suggested that ETX could cause Ca 2+ release from intracellular Ca 2+ stores, which may underlie an alternate pathway leading to cell death. Furthermore, ETX induced crenation of the MDCK cells was observed, with sags and crests first appearing on the surface of condensed MDCK cells, according to scanning electron microscopy. The data also demonstrated the safety and potentiality of rETX F199E as a vaccine candidate for humans. In summary, findings of this work potentially contribute to a better understanding of the pathogenic mechanism of ETX and the development of vaccine against diseases caused by ETX, using mutant proteins.

  16. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  17. Development of a new carbon nanotube–alginate–hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering

    PubMed Central

    Rajesh, Rajendiran; Dominic Ravichandran, Y

    2015-01-01

    In recent times, tricomponent scaffolds prepared from naturally occurring polysaccharides, hydroxyapatite, and reinforcing materials have been gaining increased attention in the field of bone tissue engineering. In the current work, a tricomponent scaffold with an oxidized multiwalled carbon nanotube (fMWCNT)–alginate–hydroxyapatite with the required porosity was prepared for the first time by a freeze-drying method and characterized using analytical techniques. The hydroxyapatite for the scaffold was isolated from chicken bones by thermal calcination at 800°C. The Fourier transform infrared spectra and X-ray diffraction data confirmed ionic interactions and formation of the fMWCNT–alginate–hydroxyapatite scaffold. Interconnected porosity with a pore size of 130–170 µm was evident from field emission scanning electron microscopy. The total porosity calculated using the liquid displacement method was found to be 93.85%. In vitro biocompatibility and cell proliferation on the scaffold was checked using an MG-63 cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell attachment by Hoechst stain assay. In vitro studies showed better cell proliferation, cell differentiation, and cell attachment on the prepared scaffold. These results indicate that this scaffold could be a promising candidate for bone tissue engineering. PMID:26491303

  18. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    PubMed

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  19. Synthesis of Spongy-Like Mesoporous Hydroxyapatite from Raw Waste Eggshells for Enhanced Dissolution of Ibuprofen Loaded via Supercritical CO2

    PubMed Central

    Ibrahim, Abdul-Rauf; Li, Xiangyun; Zhou, Yulan; Huang, Yan; Chen, Wenwen; Wang, Hongtao; Li, Jun

    2015-01-01

    The use of cheaper and recyclable biomaterials (like eggshells) to synthesize high purity hydroxyapatite (HAp) with better properties (small particle size, large surface area and pore volume) for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems) is vital since high-purity synthetic calcium sources are expensive. In this work, pure and mesoporous HAp nanopowder with large pore volume (1.4 cm3/g) and surface area (284.1 m2/g) was produced from raw eggshells at room temperature using a simple two-step procedure. The control of precursor droplets could stabilize the pH value of the reaction solution, because of the size of the needle (of the syringe pump used for precursor additions) leading to production of HAp with high surface area and pore size. The as-produced HAp revealed high ibuprofen (as a model drug) loading (1.38 g/g HAp), enhanced dissolution and controllable release of the drug via solute-saturated supercritical carbon dioxide. PMID:25860950

  20. Mechanochemical Synthesis of Hydroxyapatite and Its Modifications: Composition, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Chaikina, M. V.; Bulina, N. V.; Ishchenko, A. V.; Prosanov, I. Yu.

    2014-02-01

    The mechanochemical method is used to synthesize samples of hydroxyapatite (HA) with substitution of the phosphate ion by silicate and zirconate ions, and substitution of calcium ions by copper ions. In the process of mechanochemical synthesis, carbonate ions and water molecules are incorporated into the structure of HA due to interaction of components of the reaction mixture with air. Intrusion of carbonate into the structure of HA is a competing process with modification of apatite by silicate and zirconate anions; therefore, the composition of the product during synthesis differs from the prescribed one. After annealing of the samples, the composition of the anion-modified HA can be described by the formula Са10(РО4)6- х (АО4) х (ОН)2- х , where (АО4)4- is the modifying anion. Substitution of calcium by copper ions localized at the Са1 position has been detected. Silver ions are not incorporated into the structure of HA, but are distributed in the apatite matrix in the form of nanocrystals of metallic silver.

  1. Resorption kinetics of four hydroxyapatite-based ceramics by particle induced X-ray emission and neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Jallot, E.; Irigaray, J. L.; Oudadesse, H.; Brun, V.; Weber, G.; Frayssinet, P.

    1999-05-01

    From the viewpoint of hard tissue response to implant materials, calcium phosphates are probably the most compatible materials presently known. During the last few years, much attention has been paid to hydroxyapatite and β-tricalcium phosphate as potential biomaterials for bone substitute. A good implantation of biomaterials in the skeleton is to reach full integration of non-living implant with living bone. The aim of this study is to compare the resorption kinetics of four kinds of calcium phosphate ceramics: hydroxyapatite (Ca{10}(PO4)6(OH)2), hydroxyapatite doped with manganese or zinc and a composite material of 75% hydroxyapatite and 25% β-tricalcium phosphate (Ca3(PO4)2). Cylinders (5 6 mm in diameter) of these ceramics were packed into holes made in the femur diaphysis of mature ovine. At 2, 4, 8, 12, 16, 20, 28, 36 and 48 weeks after the operation, bone/implant interface was embedded in polymethylmethacrylate. We used the PIXE method (particle induced X-ray emission) to measure the distribution of mineral elements (Ca, P, Sr, Zn, Mn and Fe) at the bone/implant interface. At 4, 8, 16, 28 and 48 weeks after implantation we studied a biopsy of the ceramics by neutron activation method. Then, we have a global measurement of mineral elements in the biomaterial. The results showed that the resorption kinetics of hydroxyapatite doped with zinc was faster than that of the three other bioceramics.

  2. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite.

    PubMed Central

    Culbert, A A; Lowe, M P; Atkinson, M; Byers, P H; Wallis, G A; Kadler, K E

    1995-01-01

    We identified two infants with lethal (type II) osteogenesis imperfecta (OI) who were heterozygous for mutations in the COL1A1 gene that resulted in substitutions of aspartic acid for glycine at position 220 and arginine for glycine at position 664 in the product of one COL1A1 allele in each individual. In normal age- and site-matched bone, approximately 70% (by number) of the collagen fibrils were encrusted with plate-like crystallites of hydroxyapatite. In contrast, approximately 5% (by number) of the collagen fibrils in the probands' bone contained crystallites. In contrast with normal bone, the c-axes of hydroxyapatite crystallites were sometimes poorly aligned with the long axis of fibrils obtained from OI bone. Chemical analysis showed that the OI samples contained normal amounts of calcium. The probands' bone samples contained type I collagen, overmodified type I collagen and elevated levels of type III and V collagens. On the basis of biochemical and morphological data, the fibrils in the OI samples were co-polymers of normal and mutant collagen. The results are consistent with a model of fibril mineralization in which the presence of abnormal type I collagen prevents normal collagen in the same fibril from incorporating hydroxyapatite crystallites. Images Figure 1 Figure 2 Figure 3 PMID:7487936

  3. Ionic Substitutions in Non-Apatitic Calcium Phosphates

    PubMed Central

    Laskus, Aleksandra; Kolmas, Joanna

    2017-01-01

    Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and β crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and “additives” such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs. PMID:29186932

  4. Synthesis and characterization of NiO nanopowder by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ningsih, Sherly Kasuma Warda

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms weremore » produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.« less

  5. Hydroxyapatite/collagen bone-like nanocomposite.

    PubMed

    Kikuchi, Masanori

    2013-01-01

    Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.

  6. Synthesis of bismuth titanate (BTO) nanopowder and fabrication of microstrip rectangular patch antenna

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sharma, Sanjeev K.; Sankar, S.; Sankar Ganesh, R.; Marikani, A.; Kim, Deuk Young

    2016-12-01

    The bismuth titanate (Bi4Ti3O12) or BTO nanopowder was synthesized from the combustion method and fabricated a microstrip rectangular patch antenna (MPA). The crystal structure and lattice spacing of BTO were evaluated from XRD, TEM, and SAED analysis. The crystal structure of BTO (annealed at 900 °C) was observed to be the orthorhombic phase with fcc lattice. The microstructure of BTO nanoparticles was confirmed the spherical and hexagonal shapes, which were slightly agglomerated due to the lack of stabilizing surfactants. The presence of weak and wide bands in Raman spectrum quantified the mechanical compressions to the uniform directions of elongated lattice constants and tensions to the lattice constriction of crystalline bismuth titanate. To fabricate the MPA, pellets of BTO nanopowder were prepared by applying the uniaxial pressure in the dimension of 1.5 mm thickness and 8 mm diameter. These pellets were formed a densely packed structure close to the theoretical density. The coercivity and remanence polarization of BTO ceramics increased as the applied field increased. The inexpensive combustion synthesis method of BTO nanopowder showed the high dielectric constant (ɛ' = 450) and low dielectric loss (tan δ = 0.98), which has a potential implication of the cost-effectiveness in the field of miniaturized microelectronics. The synthesis and measurements of BTO ceramics are found to be suitable for wireless communication systems.

  7. [Cytocompatibility of nanophase hydroxyapatite ceramics].

    PubMed

    Wen, Bo; Chen, Zhi-qing; Jiang, Yin-shan; Yang, Zheng-wen; Xu, Yong-zhong

    2004-12-01

    To evaluate the cytocompatibility of nanophase hydroxyapatite ceramics in vitro. Hydroxyapatite (HA) was prepared via wet method. The grain size of the hydroxyapatite in the study was determined by scanning electron microscope and atomic force microscope with image analysis software. Primary osteoblast culture was established from rat calvaria. Cell adherence and proliferation on nanophase hydroxyapatite ceramics and conventional hydroxyapatite ceramics were examined at 1, 3, 5, 7 days. Morphology of the cells was observed by microscope. The average grain size of the nanophase and conventional HA was 55 nm and 780 nm, respectively. Throughout 7 days period, osteoblast proliferation on the HA was similar to that on tissue culture borosilicate glass controls, osteoblasts could attach, spread and proliferate on HA. However, compared to conventional ceramics, osteoblast proliferation on nanophase HA was significantly better after 1, 3, 5 and 7 days. Cytocompatibility of nanophase HA was significantly better than conventional ceramics.

  8. Influence of nanopowders sedimentation on characteristics of Yb-doped Y2O3 transparent ceramics

    NASA Astrophysics Data System (ADS)

    Aleksandrov, E. O.; Shitov, V. A.; Maksimov, R. N.; Basyrova, L. R.

    2017-09-01

    In this work we report on the effects induced by different conditions of nanopowders sedimentation on the microstructure features and optical properties of ytterbium-doped yttrium oxide (Yb:Y2O3) transparent ceramics sintered at 1780 °C for 20 h under a vacuum. The nanopowder of (Yb0.005Y0.995)2O3 co-doped with 5 at % ZrO2 was synthesized by laser ablation and used as the starting material for the fabrication of ceramics. The obtained nanoparticles were annealed at 1100 °C for 3 h in air in order to transform a metastable monoclinic phase into a main cubic phase. After sedimentation for 24 h in isopropyl alcohol the useful suspension was dried using a rotary evaporator operating at different temperatures and pressures. The use of lower evaporation temperature (37 °C) and higher vacuum level (10 mbar) lead to complete removal of organic species from the nanopowder and promote homogeneous densification of the powder compact. Under optimal treatment conditions the optical transmittance and the average content of the scattering centers were measured to be 77 % at a wavelength of 1080 nm and 0.25 ppm, respectively.

  9. New Coll-HA/BT composite materials for hard tissue engineering.

    PubMed

    Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Rheological Characterization of Liquid Polymers Containing Ceramic Nanopowders for Use in Thermoelectric Devices.

    PubMed

    Brostow, Witold; Chang, Jack; Lobland, Haley E Hagg; Perez, Jose M; Shipley, Shannon; Wahrmund, Joshua; White, John B

    2015-09-01

    We have determined shear viscosities as a function of temperature for several liquid high temperature polymers (HTPs) as potential coatings for solid state thermoelectric generators (TEGs) as well as for TE coolers (TECs). To each HTP we added in turn several ceramic nanopowders: alumina, silica and multi-wall carbon nanotubes (MWCNTs). The shear rate applied range is from 0.0002 to 60 s(-1). The results are compared to those for neat HTPs. For a given HTP, we obtain for some nanopowders significant lowering of viscosity, or else a significant increase, or else a small effect only. Possible reasons for such differences in behavior are discussed in terms of the spatial structures of CNTs (random orientations at low temperatures), and the interactions between functional groups on HTPs and atoms in the nanoceramics.

  11. Comparative evaluation of bovine derived hydroxyapatite and synthetic hydroxyapatite graft in bone regeneration of human maxillary cystic defects: a clinico-radiological study.

    PubMed

    Kattimani, Vivekanand S; Chakravarthi, Srinivas P; Neelima Devi, K Naga; Sridhar, Meka S; Prasad, L Krishna

    2014-01-01

    Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The aim of this study was to evaluate and compare bovine derived hydroxyapatite (BHA) and synthetic hydroxyapatite (SHA) graft material as bone graft substitute in maxillary cystic bony defects. Patients were analyzed by computerized densitometric study and digital radiography. In this study, 12 patients in each group were included randomly after clinical and radiological evaluation. The integration of hydroxyapatite was assessed with mean bone density, surgical site margin, and radiological bone formation characteristics, of the successful graft cases using computer densitometry and radio-visiograph. Statistical analysis was carried out using Mann-Whitney U-test, Wilcoxon matched pairs test and paired t-test. By the end of 24 th week, the grafted defects radiologically and statistically showed similar volumes of bone formation. However, the significant changes observed in the formation of bone and merging of material and surgical site margin at 1 st week to 1 st month. The results were significant and correlating with all the parameters showing the necessity of the grafting for early bone formation. However, the bone formation pattern is different in both BHA and SHA group at 3 rd month interval with significant P value. Both BHA and SHA graft materials are biocompatible for filling bone defects, showing less resorption and enhanced bone formation with similar efficacy. Our study showed maximum bone healing within 12 weeks of grafting of defects. The BHA is economical; however, price difference between the two is very nominal.

  12. Mimix hydroxyapatite cement use in the reconstruction of the craniofacial skeleton.

    PubMed

    Mann, Robert J; Blount, Andrew L; Neaman, Keith C; Korepta, Lindsey

    2011-11-01

    Reconstruction of the craniofacial skeleton has undergone a significant evolution during the past century. Initially, the use of autogenous bone grafts from various sites was the criterion standard. However, owing to donor site morbidity and lack of sufficient bone for large defects, surgeons have relied on various bone substitutes. Hydroxyapatite (HA) has served as an alternative to autogenous grafts, but questions regarding biocompatibility, risk of infection, and slow set times have hampered its acceptance. This article serves as a review of a single surgeon's experience using HA in the craniofacial skeleton. Eighteen patients receiving HA between March 2000 and November 2006 were observed. Sixteen underwent recontouring of skull-based bone defects, and 2 underwent recontouring for nasal and alveolar defects. The mean amount of HA used in each patient was 30.2 g. For large contour irregularities, the maximum thickness of HA used was 8 mm. The size of bone defects ameliorated averaged 4.8 cm(2). Complications occurred in 3 (16.7%) of 18 patients and included scalp hematoma and superficial cellulitis. In addition, 1 patient developed a facial abscess after placement along the alveolar floor, which necessitated removal. Hydroxyapatite represents a viable alternative to autogenous bone grafts when used in the correct manner. Hydroxyapatite should be used only for smaller defects or used in conjunction with absorbable plates when attempting to fill larger defects. Use of HA for nasal piriform augmentation or alveolar bone grafting should not be considered owing to problems with late infections.

  13. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong

    2009-04-01

    Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.

  14. Advantages of TOF-SIMS analysis of hydroxyapatite and fluorapatite in comparison with XRD, HR-TEM and FT-IR.

    PubMed

    Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo

    2005-12-01

    The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.

  15. Hydroxyapatite synthesis using EDTA

    PubMed Central

    Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung

    2013-01-01

    Bone comprises structure of body and is consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite(Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite, however economical cost and time consuming make the production difficult. In this study we synthesized the hydroxyapatite with Ethyenediamine tetraacetic acid. Freeze Dried Bone Allograft(Hans Biomed) was used to be a control group. Synthesized hydroxyapatite was a rod shape, white powdery type substance with 2 ~ 5 μm length and 0.5 ~ 1 μm width. X-ray diffraction showed the highest sharp peak at 32° and high peaks at 25.8°, 39.8°, 46.8°, 49.5°, and 64.0° indicating a similar substance to the freeze Dried Bone Allograft. 3 days after the cell growth of synthesized hydroxyapatite showed 1.5 fold more than the Bone Allograft. Cellular and media alkaline phosphate activity increased similar to the bone alloagraft. In this study we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also the the product can be manufactured in large quantity. It can be also transformed into scaffold structure which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products. PMID:23714942

  16. Hydroxyapatite synthesis using EDTA.

    PubMed

    Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung

    2013-05-01

    Bone comprises structure of the body and consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self-healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite (Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite; however, economical cost and being time consuming make the production difficult. In this study, we synthesized hydroxyapatite with EDTA. Freeze-dried bone allograft (Hans Biomed) was used as the control group. Synthesized hydroxyapatite was a rod-shaped, white powdery substance with 2- to 5-μm length and 0.5- to 1-μm width. X-ray diffraction showed the highest sharp peak at 32°C and high peaks at 25.8°C, 39.8°C, 46.8°C, 49.5°C, and 64.0°C, indicating a similar substance to the freeze-dried bone allograft. After 3 days, the cell growth of synthesized hydroxyapatite showed 1.5-fold more than did the bone allograft. Cellular and media alkaline phosphate activity increased similar to the bone allograft. In this study, we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also, the product can be manufactured in large quantity. It can be also transformed into scaffold structure, which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products.

  17. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha

    2016-08-01

    Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.

  18. Characterization of Mg-containing hydroxyapatites synthesized by combustion method

    NASA Astrophysics Data System (ADS)

    Kaygili, Omer; Keser, Serhat; Bulut, Niyazi; Ates, Tankut

    2018-05-01

    In the present paper, Mg-substituted hydroxyapatites with the morphology, composed of the stacked plate- and rod-like structures, were prepared at the temperature of 600 °C by combustion method using glycerine as a fuel. A significant decrease in the crystallite size values calculated for both Scherrer and Williamson-Hall methods is found. The crystallinity, lattice parameter of a, stress and anisotropic energy density values decreased by adding of Mg, whereas the lattice strain increased. The amount of HAp phase decreases with increasing amount of Mg and the β-tricalcium phosphate content increases. Mg incorporation the apatitic structure was detected. Depending on the increase in Mg content, Ca-deficiency was observed.

  19. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    PubMed Central

    Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael

    2012-01-01

    Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545

  20. No-carrier-added (NCA) aryl ([sup 18]F) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Yushin Ding; Fowler, J.S.; Wolf, A.P.

    1993-10-19

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  1. Ion-doping as a strategy to modulate hydroxyapatite nanoparticle internalization

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Espanol, M.; Guillem-Marti, J.; Kempf, D.; Diez-Escudero, A.; Ginebra, M.-P.

    2016-01-01

    Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co-addition. We synthesized NPs under similar conditions to allow comparison of results and different aspects in addition to assessing the effect of the doping ion(s) were investigated: (1) the effect of performing the cell culture study on citrate-dispersed NPs and on agglomerated NPs, (2) the effect of adding/excluding 10% of foetal bovine serum (FBS) in the cell culture media and (3) the type of cell, i.e. MG-63 versus rat mesenchymal stem cells (rMSCs). The results clearly demonstrated that Mg-doping had a major effect on MG-63 cells with high cytotoxicity but not to rMSCs. This was a very important finding because it proved that doping could be a tool to modify NP internalization. The results also suggest that NP surface charge had a large impact on MG-63 cells and prevents their internalization if it is too negative--this effect was less critical for rMSCs.Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co

  2. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  3. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.

    PubMed

    Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María

    2016-11-01

    The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca 10 (PO 4 ) 5.7 (SiO 4 ) 0.3 (OH) 1.7 h 0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SN A 15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier

  4. In situ observation of fluoride-ion-induced hydroxyapatite collagen detachment on bone fracture surfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kindt, J. H.; Thurner, P. J.; Lauer, M. E.; Bosma, B. L.; Schitter, G.; Fantner, G. E.; Izumi, M.; Weaver, J. C.; Morse, D. E.; Hansma, P. K.

    2007-04-01

    The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ~70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ~10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein-hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder.

  5. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    PubMed

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  6. Substitution and addition reactions of •OH with p-substituted-phenols

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Galicia-Jiménez, Eduardo; Mendoza, Edith; Schuler, Robert H.

    2017-04-01

    The directing effect of a hydroxyl group on the substitution and addition reactions of •OH to the substituted and free positions in aromatic rings of p-substituted-phenols were studied in aqueous solutions containing either K3Fe(CN)6 as an oxidant of the substituted hydroxycyclohexadienyl radical initially formed or using ascorbic acid. The results showed that the attack of the •OH to the substituted position (ipso position) was followed by elimination of the substituent producing hydroquinone. The addition reaction of the •OH to the free position on the ring produced 4-substituent-catechol and 4-substituent-resorcinol derivatives. Identification and quantification of the radiolytic products were carried out using high performance liquid chromatography. The results of the yields are given for the p-halogen-phenols (p-X-Ph) p-F-Ph, p-Cl-Ph, p-Br-Ph and p-I-Ph. Other compounds, p-nitro-Ph, p-OH-benzoic acid, p-OH-benzonitrile, p-OH-benzaldehyde, p-OH-anisole and p-OH-benzyl alcohol (represented as p-Z-Ph), were only studied using K3Fe(CN)6 as the oxidant. The results show that the p-X-Ph are attacked by the •OH at the ipso position to the halogen in the proportion 1:0.53:0.46:0.11 for F>Cl>Br>I. The •OH attacked at the ipso position to the p-Z-Phs through a substitution reaction, which depended on the substituent group. Thus, the strongly deactivating groups produced less hydroquinone, indicating less substitution reaction than the strongly activating groups.

  7. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    NASA Astrophysics Data System (ADS)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  8. Structural and magnetic properties of Gd3+ ion substituted magnesium ferrite nanopowders

    NASA Astrophysics Data System (ADS)

    Elkady, Ashraf S.; Hussein, Shaban I.; Rashad, Mohamed M.

    2015-07-01

    Nanocrystalline MgGdxFe2-xO4 powders (where x=0, 0.05, 0.1, 0.2, 0.25, 0.3) have been synthesized by the ethylene diamine tetraacetic acid (EDTA)-based sol-gel combustion method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) were applied in order to study the effect of variation of Gd3+ ion substitution and its impact on crystal structure, crystallite size, lattice parameters, nanostructure and magnetic properties of the formed powders. XRD indicated that, after doping and calcination at 400 °C for 2 h, all samples have two spinel ferrite structures namely cubic and tetragonal phases, which are dependent on Gd3+ ion concentration. The cubic phase is found to increase with increasing the Gd3+ ion molar ratio up to 0.1, compared to pure MgFe2O4 and higher Gd3+ content samples. Indeed, with increasing Gd3+ ion, the crystallite size was almost unchanged whereas the lattice parameter was found to increase. FT-IR spectrum showed broadening of the ν2 band and the presence of another band in the range (465-470 cm-1) upon adding Gd3+ ion, which confirm the presence of Gd3+ ion in addition to Fe3+ ion at octahedral site. Besides, these bands were assigned to the formation of (Gd3+-O2-) complexes at B-sites. HRTEM images showed that the studied samples consist of nanocrystallites having average particle sizes around 9 nm for pure MgFe2O4 up to 27 and 42 nm for the Gd3+ ion substituted MgFe2O4 of molar ratio 0.05 and 0.30, respectively. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Gd concentration incorporation up to x=0.1, as a result of the change of cubic and tetragonal spinel ratio and lattice parameters. Meanwhile, the formed powders exhibited superparamagnetic characteristics. Therefore, such newly synthesized superparamagnetic nanoparticles, containing Gd3+ ion can be considered as a

  9. Incorporation of chromium into TiO{sub 2} nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollbek, Kamila, E-mail: biernack@agh.edu.pl; AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow; Sikora, Marcin

    2015-04-15

    Highlights: • Nanopowders of TiO{sub 2}:Cr with different amount of Cr dopant were obtained by flame spray synthesis, FSS. • Increase in the optical absorption and a shift of the absorption edge were observed upon Cr doping. • HERFD-XANES measurements indicated that the average valence state of titanium ions was preserved. • Increasing magnetic susceptibility of a paramagnetic character was observed upon Cr doping. - Abstract: The paper reports on the results of a study of optical, electronic and magnetic properties of TiO{sub 2} nanopowders doped with Cr ions. Diffused reflectance spectra reveal an increase in the optical absorption andmore » a shift of the absorption edge towards lower energies upon Cr doping. Direct information on the Ti electronic state and the symmetry of its nearest environment is obtained from XANES Ti K-edge spectra. Magnetic behaviour is probed by means of the temperature dependence of DC magnetic susceptibility. Increasing magnetic susceptibility of a paramagnetic character is observed upon increasing chromium doping. The Curie constant of TiO{sub 2}:10 at.% Cr sample (0.12 emu K/mol Oe) is lower than that expected for Cr{sup 3+} (0.1875 emu K/mol Oe) possibly due to the appearance of Cr{sup 4+} or the presence of the orbital contribution to the magnetic moment.« less

  10. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.

    PubMed

    Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan

    2016-07-01

    Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in

  11. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals

    PubMed Central

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-01-01

    Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0). PMID:28256557

  12. Studies of surface states in zinc oxide nanopowders

    NASA Astrophysics Data System (ADS)

    Peters, Raul Mugabe

    The surface of ZnO semiconductor nanosystems is a key performance-defining factor in numerous applications. In this work we present experimental results for the surface defect-related properties of ZnO nanoscale systems. Surface photovoltage spectroscopy was used to determine the defect level energies within the band gap, the conduction vs. valence band nature of the defect-related transitions, and to probe key dynamic parameters of the surface on a number of commercially available ZnO nanopowders. In our experimental setup, surface photovoltage characterization is conducted in high vacuum in tandem with in situ oxygen remote plasma treatments. Surface photovoltage investigations of the as-received and plasma-processed samples revealed a number of common spectral features related to surface states. Furthermore, we observed significant plasma-induced changes in the surface defect properties. Ex situ positron annihilation and photoluminescence measurements were performed on the studied samples and correlated with surface photovoltage results. The average positron lifetimes were found to be substantially longer than in a bulk single crystalline sample, which is consistent with the model of grains with defect-rich surface and subsurface layers. Compression of the powders into pellets yielded reduction of the average positron lifetimes. Surface photovoltage, positron annihilation, and photoluminescence spectra consistently showed sample-to-sample differences due to the variation in the overall quality of the nanopowders, which partially obscures observation of the scaling effects. However, the results demonstrated that our approach is efficient in detecting specific surface states in nanoscale ZnO specimens and in elucidating their nature.

  13. ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays

    NASA Astrophysics Data System (ADS)

    Meško, Marcel; Ou, Qiongrong; Matsuda, Takafumi; Ishikawa, Tomokazu; Veis, Martin; Antoš, Roman; Ogino, Akihisa; Nagatsu, Masaaki

    2009-06-01

    We report on ZnO nanopowder induced light scattering for improved visualization of emission sites in carbon nanotube films and arrays. We observed a significant reduction of the internal multiple light scattering phenomena, which are characteristic for ZnO micropowders. The microsized grains of the commercially available ZnO:Zn (P 15) were reduced to the nanometre scale by pulsed laser ablation at an oxygen ambient pressure of 10 kPa. Our investigations show no crystalline change and no shift of the broad green emission peak at 500 nm for the ZnO nanopowder. For the application in field emission displays, we demonstrate the possibility of achieving cathodoluminescence with a fine pitch size of 100 µm of the patterned pixels without requiring additional electron beam focusing and without a black matrix. Moreover, the presented results show the feasibility of employing ZnO nanopowder as a detection material for the phosphorus screen method, which is able to localize emission sites of carbon nanotube films and arrays with an accuracy comparable to scanning anode field emission microscopy.

  14. Facial skeletal augmentation using hydroxyapatite cement.

    PubMed

    Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C

    1993-02-01

    This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.

  15. An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.

    PubMed

    Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B

    2009-08-01

    Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.

  16. Green synthesis and characterization of ANbO3 (A = Na, K) nanopowders fabricated using a biopolymer

    NASA Astrophysics Data System (ADS)

    Khorrami, Gh. H.; Mousavi, M.; Khayatian, S. A.; Kompany, A.; Khorsand Zak, A.

    2017-10-01

    Lead-free sodium niobate (NaNbO3, NN) and potassium niobate (KNbO3, KN) nanopowders were successfully synthesized by a simple and green synthesis process in gelatin media. Gelatin, which is a biopolymer, was used as stabilizer. In order to determine the lowest calcination temperature needed to obtain pure NN and KN nanopowders, the produced gels were analyzed by thermogravometric analyzer (TGA). The produced gels were calcined at 500∘C and 600∘C. The structural and optical properties of the prepared powders were examined using X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), and UV-Vis spectroscopy. The XRD results revealed that pure phase NN and KN nanopowders were formed at low temperature calcination of 500∘C and 600∘C, respectively. The Scherrer formula and size-strain plot (SSP) method were employed to estimate crystallite size and lattice strain of the samples. The TEM images show that the NN and KN samples calcined at 600∘C have cubic shape with an average particle size of 60.95 and 39.29 nm, respectively. The optical bandgap energy of the samples was calculated using UV-Vis diffused reflectance spectra of the samples and Kubelka-Munck relation.

  17. Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2012-11-01

    Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.

  18. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  19. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  20. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tantawy, Hesham Ramzy; Aston, D. Eric, E-mail: aston@uidaho.edu; Kengne, Blaise-Alexis F.

    2015-11-07

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested.more » They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)« less

  1. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Wang, Jiecheng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H 3PO 4) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  2. Effect of solution combusted TiO2 nanopowder within commercial BaTiO3 dielectric layer on the photoelectric properties for AC powder electroluminescence devices.

    PubMed

    Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon

    2013-05-01

    A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.

  3. Spectral analysis of allogeneic hydroxyapatite powders

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.

  4. The fabrication of well-interconnected polycaprolactone/hydroxyapatite composite scaffolds, enhancing the exposure of hydroxyapatite using the wire-network molding technique.

    PubMed

    Cho, Yong Sang; Hong, Myoung Wha; Jeong, Hoon-Jin; Lee, Seung-Jae; Kim, Young Yul; Cho, Young-Sam

    2017-11-01

    In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017. © 2016 Wiley Periodicals, Inc.

  5. Valorization of Bone Waste of Saudi Arabia by Synthesizing Hydroxyapatite.

    PubMed

    Amna, Touseef

    2018-05-09

    At present, hydroxyapatite is being frequently used for diverse biomedical applications as it possesses excellent biocompatibility, osteoconductivity, and non-immunogenic characteristics. The aim of the present work was to recycle bone waste for synthesis of hydroxyapatite nanoparticles to be used as bone extracellular matrix. For this reason, we for the first time utilized bio-waste of cow bones of Albaha city. The residual bones were utilized for the extraction of natural bone precursor hydroxyapatite. A facile scientific technique has been used to synthesize hydroxyapatite nanoparticles through calcinations of wasted cow bones without further supplementation of chemicals/compounds. The obtained hydroxyapatite powder was ascertained using physicochemical techniques such as XRD, SEM, FTIR, and EDX. These analyses clearly show that hydroxyapatite from native cow bone wastes is biologically and physicochemically comparable to standard hydroxyapatite, commonly used for biomedical functions. The cell viability and proliferation over the prepared hydroxyapatite was confirmed with CCk-8 colorimetric assay. The morphology of the cells growing over the nano-hydroxyapatite shows that natural hydroxyapatite promotes cellular attachment and proliferation. Hence, the as-prepared nano-hydroxyapatite can be considered as cost-effective source of bone precursor hydroxyapatite for bone tissue engineering. Taking into account the projected demand for reliable bone implants, the present research work suggested using environment friendly methods to convert waste of Albaha city into nano-hydroxyapatite scaffolds. Therefore, besides being an initial step towards accomplishment of projected demands of bone implants in Saudi Arabia, our study will also help in reducing the environmental burden by recycling of bone wastes of Albaha city.

  6. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, Ping

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.

  7. Methods of synthesizing hydroxyapatite powders and bulk materials

    DOEpatents

    Luo, P.

    1999-01-12

    Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.

  8. Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.

    PubMed

    Enax, Joachim; Epple, Matthias

    Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.

  9. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    PubMed Central

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  10. Impact of concomitant Y and Mn substitution on superconductivity in La1 -yYyFe1 -xMnxAsO0.89F0.11

    NASA Astrophysics Data System (ADS)

    Kappenberger, Rhea; Hammerath, Franziska; Rousse, Pierre; Afrassa, Mesfin Asfaw; Haghighi, M. Hossein; Kamusella, Sirko; Prando, Giacomo; Lamura, Gianrico; Wolter, Anja U. B.; Moroni, Matteo; Sanna, Samuele; Carretta, Pietro; Hess, Christian; Grafe, Hans-Joachim; Klauss, Hans-Henning; Wurmehl, Sabine; Büchner, Bernd

    2018-02-01

    We discuss the impact of concomitant substitution of Fe by Mn and La by Y in optimally F-doped LaFeAsO0.89F0.11 . Mn has a known poisoning effect on superconductivity which is particularly strong in the La1111 system, where 0.2% of Mn were reported to completely suppress superconductivity. Through isovalent substitution of La by the much smaller Y we are able to inflict chemical pressure on the structure, which we show is stabilizing the superconducting state, resulting in a drastically larger amount of Mn needed to completely quench superconductivity. Interestingly, we find that the lattice parameter c changes significantly even for small amounts of Mn substitution within a series, which is unexpected taking only the differences between ionic radii into account. We discuss our findings in the light of electron localization caused by small amounts of paramagnetic Mn impurities in La1 -yYyFe1 -xMnxAsO0.89F0.11 also indicated by resistivity and Mößbauer measurements.

  11. Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.

    PubMed

    Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V

    2016-10-01

    The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of Ga3+ and Gd3+ ions substitution on the structural and optical properties of Ce3+ -doped yttrium aluminium garnet phosphor nanopowders.

    PubMed

    Wako, A H; Dejene, F B; Swart, H C

    2016-11-01

    The structural and optical properties of commercially obtained Y 3 Al 5 O 12 :Ce 3 + phosphor were investigated by replacing Al 3 + with Ga 3 + and Y 3 + with Gd 3 + in the Y 3 Al 5 O 12 :Ce 3 + structure to form Y 3 (Al,Ga) 5 O 12 :Ce 3 + and (Y,Gd) 3 Al 5 O 12 :Ce 3 + . X-Ray diffraction (XRD) results showed slight 2-theta peak shifts to lower angles when Ga 3 + was used and to higher angles when Gd 3 + was used, with respect to peaks from Y 3 Al 5 O 12 :Ce 3 + and JCPDS card no. 73-1370. This could be attributed to induced crystal-field effects due to the different ionic sizes of Ga 3 + and Gd 3 + compared with Al 3 + and Y 3 + . The photoluminescence (PL) spectra showed broad excitation from 350 to 550 nm with a maximum at 472 nm, and broad emission bands from 500 to 650 nm, centred at 578 nm for Y 3 Al 5 O 12 :Ce 3 + arising from the 5d → 4f transition of Ce 3 + . PL revealed a blue shift for Ga 3 + substitution and a red shift for Gd 3 + substitution. UV-Vis showed two absorption peaks at 357 and 457 nm for Y 3 Al 5 O 12 :Ce 3 + , with peaks shifting to 432 nm for Ga 3 + and 460 nm for Gd 3 + substitutions. Changes in the trap levels or in the depth and number of traps due to Ce 3 + were analysed using thermoluminescence (TL) spectroscopy. This revealed the existence of shallow and deep traps. It was observed that Ga 3 + substitution contributes to the shallowest traps at 74 °C and fewer deep traps at 163 °C, followed by Gd 3 + with shallow traps at 87 °C and deep traps at 146 °C. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method.

    PubMed

    Boltachev, G Sh; Lukyashin, K E; Shitov, V A; Volkov, N B

    2013-07-01

    In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of "friction" (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.

  14. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Lukyashin, K. E.; Shitov, V. A.; Volkov, N. B.

    2013-07-01

    In order to describe and to study the processes of cold compaction within the discrete element method a three-dimensional model of nanosized powder is developed. The elastic forces of repulsion, the tangential forces of “friction” (Cattaneo-Mindlin), and the dispersion forces of attraction (van der Waals-Hamaker), as well as the formation and destruction of hard bonds between the individual particles are taken into account. The monosized powders with the size of particles in the range 10-40 nm are simulated. The simulation results are compared to the experimental data of the alumina nanopowders compaction. It is shown that the model allows us to reproduce experimental data reliably and, in particular, describes the size effect in the compaction processes. A number of different external loading conditions is used in order to perform the theoretical and experimental researches. The uniaxial compaction (the closed-die compaction), the biaxial (radial) compaction, and the isotropic compaction (the cold isostatic pressing) are studied. The real and computed results are in a good agreement with each other. They reveal a weak sensitivity of the oxide nanopowders to the loading condition (compaction geometry). The application of the continuum theory of the plastically hardening porous body, which is usually used for the description of powders, is discussed.

  15. Effect of F ions on physical and optical properties of fluorine substituted zinc arsenic tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kareem Ahmmad, Shaik; kondaul, Edu; Rahman, Syed

    2015-02-01

    The effect of substitution of fluoride ions for oxide ions on the physical and optical properties of glass system (20-x) ZnO-xZnF2-40As2O3-40TeO2 where x = 0, 4, 8,12,16,20 mole % were investigated. The samples prepared by melt quenching method under controlled condition. The amorphous nature of these glasses was checked by X-ray diffraction technique. The density was measured according to Archimedes principle. The room temperature absorption spectra of all glass samples were determined using UV-Vis-NIR spectrometer. The thermal behaviour, glass transition temperature and stability of glass samples were studied by a differential scanning calorimetric (DSC). The density reduction of present glasses with ZnF2 concentrations may be due to the low density of ZnF2 compared with that of ZnO. Breaking the oxide network, the cross linking degree of the glass former could be reduced which results in decrease of both Tg and Tx. In the present glass system when F ions replaced by oxygen ions UV-Vis absorption cut-off wavelength decreases. This resulted form the conversion of structural unit in the glass from TeO4 to Te(O,F)4 and then to Te(O, F)3.

  16. Correlation Between Optoelectronic and Positron Lifetime Properties in As-received and Plasma-treated ZnO Nanopowders

    NASA Astrophysics Data System (ADS)

    Peters, R. M.; Paramo, J. A.; Quarles, C. A.; Strzhemechny, Y. M.

    2009-03-01

    We employed photoluminescence and positron lifetime measurements on a number of commercially available ZnO nanopowders. The experiments were performed before and after processing of these samples in remote N and O/He plasma. In all the nanopowders, the average lifetime component is substantially longer than in a single-crystalline sample, consistent with the model of grains with defect-rich surface and subsurface layers. However, the sample-to-sample differences in the quality of the powders, as detected by the photoluminescence spectroscopy, obscure observation of possible size effects. Compression of the powders into pellets yields reductions of the average positron lifetimes. Plasma-induced modifications are most visible in the low-temperature photoluminescence spectra of the smallest nanocrystals, indicative of a surface-specific nature of the chosen treatment procedure.

  17. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  18. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  19. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.

    PubMed

    Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J

    2016-08-01

    A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. © IMechE 2016.

  20. Biomedical properties of laser prepared silver-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jelínek, M.; Weiserová, M.; Kocourek, T.; Zezulová, M.; Strnad, J.

    2011-07-01

    Thin films of hydroxyapatite (HA) and silver-doped HA were synthesized using KrF excimer laser deposition. Material was ablated from one target composed from silver and HA segments. Layers properties as silver content, structure, color, FTIR spectra and antibacterial properties (Gram-positive Bacillus subtilis) were measured. Silver concentration in HA layers of 0.06, 0.3, 1.2, 4.4, 8.3, and 13.7 at % was detected. The antibacterial efficacy changed with silver dopation from 71.0 to 99.9%. The focus is on investigation of minimum Ag concentration needed to reach a high antibacterial efficacy.

  1. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells.

    PubMed

    Nair, Manitha B; Bernhardt, Anne; Lode, Anja; Heinemann, Christiane; Thieme, Sebastian; Hanke, Thomas; Varma, Harikrishna; Gelinsky, Michael; John, Annie

    2009-08-01

    Hydroxyapatite (HA) ceramics are widely used as bone graft substitutes because of their biocompatibility and osteoconductivity. However, to enhance the success of therapeutic application, many efforts are undertaken to improve the bioactivity of HA. We have developed a triphasic, silica-containing ceramic-coated hydroxyapatite (HASi) and evaluated its performance as a scaffold for cell-based tissue engineering applications. Human bone marrow stromal cells (hBMSCs) were seeded on both HASi and HA scaffolds and cultured with and without osteogenic supplements for a period of 4 weeks. Cellular responses were determined in vitro in terms of cell adhesion, viability, proliferation, and osteogenic differentiation, where both materials exhibited excellent cytocompatibility. Nevertheless, an enhanced rate of cell proliferation and higher levels of both alkaline phosphatase expression and activity were observed for cells cultured on HASi with osteogenic supplements. These findings indicate that the bioactivity of HA endowed with a silica-containing coating has definitely influenced the cellular activity, projecting HASi as a suitable candidate material for bone regenerative therapy.

  2. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    PubMed

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.

  3. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    NASA Astrophysics Data System (ADS)

    Petchsang, N.; Pon-On, W.; Hodak, J. H.; Tang, I. M.

    2009-07-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3xFe 2xCo x(PO 4) 6(OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2O 4. Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+/Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe 2O 4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped ( x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2O 3 impurity phase seen in the XRD patterns.

  4. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.

    PubMed

    Shi, Pujie; Wang, Qun; Yu, Cuiping; Fan, Fengjiao; Liu, Meng; Tu, Maolin; Lu, Weihong; Du, Ming

    2017-07-01

    Lactoferrin (LF) has been recently recognized as a promising new novel bone growth factor for the beneficial effects on bone cells and promotion of bone growth. Currently, it has been attracted wide attention in bone regeneration as functional food additives or a potential bioactive protein in bone tissue engineering. The present study investigated the possibility that hydroxyapatite (HAP) particles, a widely used bone substitute material for high biocompatibility and osteoconductivity, functionalized with lactoferrin as a composite material are applied to bone tissue engineering. Two kinds of hydroxyapatite samples with different sizes, including nanorods and microspheres particles, were functionalized with lactoferrin molecules, respectively. A detailed characterization of as-prepared HAP-LF complex is presented, combining thermal gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). Zeta potential and the analysis of electrostatic surface potential of lactoferrin were carried to reveal the mechanism of adsorption. The effects of HAP-LF complex on MC3T3-E1 osteoblast proliferation and morphology were systematically evaluated at different culture time. Interestingly, results showed that cell viability of HAP-LF group was significantly higher than HAP group indicating that the HAP-LF can improve the biocompatibility of HAP, which mainly originated from a combination of HAP-LF interaction. These results indicated that hydroxyapatite particles can work as a controlled releasing carrier of lactoferrin successfully, and lactoferrin showed better potentiality on using in the field of bone regeneration by coupling with hydroxyapatite. This study would provide a new biomaterial and might offer a new insight for enhancement of bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    PubMed

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Cytotoxic evaluation of hydroxyapatite-filled and silica/hydroxyapatite-filled acrylate-based restorative composite resins: An in vitro study.

    PubMed

    Chadda, Harshita; Naveen, Sangeetha Vasudevaraj; Mohan, Saktiswaren; Satapathy, Bhabani K; Ray, Alok R; Kamarul, Tunku

    2016-07-01

    Although the physical and mechanical properties of hydroxyapatite-filled dental restorative composite resins have been examined, the biocompatibility of these materials has not been studied in detail. The purpose of this in vitro study was to analyze the toxicity of acrylate-based restorative composite resins filled with hydroxyapatite and a silica/hydroxyapatite combination. Five different restorative materials based on bisphenol A-glycidyl methacrylate (bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) were developed: unfilled (H0), hydroxyapatite-filled (H30, H50), and silica/hydroxyapatite-filled (SH30, SH50) composite resins. These were tested for in vitro cytotoxicity by using human bone marrow mesenchymal stromal cells. Surface morphology, elemental composition, and functional groups were determined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The spectra normalization, baseline corrections, and peak integration were carried out by OPUS v4.0 software. Both in vitro cytotoxicity results and SEM analysis indicated that the composite resins developed were nontoxic and supported cell adherence. Elemental analysis with EDX revealed the presence of carbon, oxygen, calcium, silicon, and gold, while the presence of methacrylate, hydroxyl, and methylene functional groups was confirmed through FTIR analysis. The characterization and compatibility studies showed that these hydroxyapatite-filled and silica/hydroxyapatite-filled bis-GMA/TEGDMA-based restorative composite resins are nontoxic to human bone marrow mesenchymal stromal cells and show a favorable biologic response, making them potential biomaterials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Simple route for nano-hydroxyapatite properties expansion.

    PubMed

    Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L

    2015-10-20

    Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.

  8. Development of hydroxyapatite derived from Indian coral.

    PubMed

    Sivakumar, M; Kumar, T S; Shantha, K L; Rao, K P

    1996-09-01

    A simple method of converting the calcium carbonate skeleton of the corals available in the Indian coast into hydroxyapatite granules has been developed. By heating the coral to 900 degrees C, the organic materials were eliminated. Powder X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were employed to characterize the coral and to optimize the processing parameters as well as to confirm the hydroxyapatite formation. The coral used exhibits the presence of both aragonite and calcite phases (dimorphism). At a temperature of 900 degrees C the coral was found to decompose all the carbonate phases. The pre-heated coral is converted into hydroxyapatite by a chemical exchange reaction with di-ammonium phosphate under hydrothermal conditions. The hydroxyapatite obtained was in powder form and does not contain any impurities. The in vitro solubility test of the apatite granules performed in Gomoris, Michalelis, Sorensens, Ringer's and phosphate buffer of pH 7.2 and de-ionized water indicated the stability of the coralline hydroxyapatite.

  9. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution

    NASA Astrophysics Data System (ADS)

    Ruan, Zhongyuan; Tian, Yaxi; Ruan, Jifu; Cui, Guijia; Iqbal, Kanwal; Iqbal, Anam; Ye, Herui; Yang, Zhangzhong; Yan, Shiqiang

    2017-08-01

    A novel composite material, hydroxyapatite (HA)-multi-walled carbon nanotubes (MWCNTs), was prepared using a simple in-situ sol-gel method, and was used for the first time to remove fluoride from water. The novel HA-MWCNTs were characterized using TEM, FT-IR, BET and XRD analysis. The TEM and SAED results revealed that the MWCNTs were uniformly encapsulated by hydroxyapatite nanoparticles. The synthesized HA-MWCNTs had a high specific surface area (180.504 m2 g-1), with an average pore width (14.607 nm) and pore volume (0.774 cm3 g-1), which produced a defluoridation capacity (DC) of 30.22 mgF- g-1. This value was greater than unmodified hydroxyapatite (HA), which exhibited a larger specific surface area (172.233 m2 g-1) and an excellent DC of 17.80 mgF- g-1. A number of pertinent parameters that could affect the defluoridation performance of the HA/MWCNTs including weight ratios of the two key materials, solution pH and competing anions were carefully and comprehensively examined. It was found that the adsorption results followed the Langmuir and Freundlich isotherm model, and the sorption kinetics of the F- appeared to exhibit a pseudo second order. Moreover, the adsorption reaction was spontaneous and endothermic and appeared to exhibit a higher initial adsorption rate. This reaction appeared to occur result from both anion exchange and electrostatic interactions. When the HA-MWCNTs (MH6) were at an adsorbent dose of 2.0 g L-1, they were able to decrease the fluoride concentration of actual nuclear industry wastewater from 8.79 mg L-1 to about 0.25 mg L-1 (97.15% removal efficiency). The experimental results of this study showed that the HA-MWCNTs composites have application potential for the removal of fluoride ions from wastewater.

  10. Preparation and bioactive properties of nanocrystalline hydroxyapatite thin films obtained by conversion of atomic layer deposited calcium carbonate.

    PubMed

    Holopainen, Jani; Kauppinen, Kyösti; Mizohata, Kenichiro; Santala, Eero; Mikkola, Esa; Heikkilä, Mikko; Kokkonen, Hanna; Leskelä, Markku; Lehenkari, Petri; Tuukkanen, Juha; Ritala, Mikko

    2014-09-01

    Nanocrystalline hydroxyapatite thin films were fabricated on silicon and titanium by atomic layer deposition (ALD) of CaCO3 and its subsequent conversion to hydroxyapatite by diammonium hydrogen phosphate (DAP) solution. The effects of conversion process parameters to crystallinity and morphology of the films were examined. DAP concentration was found to be critical in controlling the crystal size and homogeneity of the films. The hydroxyapatite phase was identified by XRD. ToF-elastic recoil detection analysis studies revealed that the films are calcium deficient in relation to hydroxyapatite with a Ca/P ratio of 1.39 for films converted with 0.2 M DAP at 95 °C. The coatings prepared on titanium conformally follow the rough surface topography of the substrate, verifying that the good step coverage of the ALD method was maintained in the conversion process. The dissolution tests revealed that the coating was nondissolvable in the cell culture medium. Annealing the coated sample at 700 °C for 1 h seemed to enhance its bonding properties to the substrate. Also, the biocompatibility of the coatings was confirmed by human bone marrow derived cells in vitro. The developed method provides a new possibility to produce thin film coatings on titanium implants with bone-type hydroxyapatite that is biocompatible with human osteoblasts and osteoclasts.

  11. The GP(Y/F) domain of TF1 integrase multimerizes when present in a fragment, and substitutions in this domain reduce enzymatic activity of the full-length protein.

    PubMed

    Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L; Levin, Henry L

    2008-06-06

    Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.

  12. F{sup −}/OH{sup −} substitution in [H{sub 4}tren]{sup 4+} and [H{sub 3}tren]{sup 3+} hydroxyfluorotitanates(IV) and classification of tren cation configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lhoste, Jérôme, E-mail: jerome.lhoste@univ-lemans.fr; Body, Monique, E-mail: monique.body@univ-lemans.fr; Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr

    2014-09-15

    Three [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxyfluorotitanates(IV) are solvothermally synthesized from TiO{sub 2}, tren amine, 40% HF aqueous solution and ethanol under microwave heating at 120 °C and 190 °C. [H{sub 4}tren]·(TiF{sub 4.6}(OH){sub 1.4}){sub 2}·2.7H{sub 2}O (I) and β-[H{sub 3}tren]·(TiF{sub 4.5}(OH){sub 1.5})·(F) (II) are described for the first time. The third compound, α-[H{sub 3}tren]·(TiF{sub 4.7}(OH){sub 1.3})·(F) (III), was previously reported as a pure fluorotitanate. The structure determinations are performed from single crystal (I) and powder (II) X-ray diffraction data. The F{sup −}/OH{sup −} substitution, expected from the presence of water in the reaction medium, is characterized by chemicalmore » analyses and {sup 19}F MAS solid state NMR experiments: all three structures are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” fluoride ions or water molecules. “Free” fluoride ions are not affected by F{sup −}/OH{sup −} substitution. The electroneutrality is ensured by triprotonated or tetraprotonated tren amines which adopt specific configurations. Additionally, based on the analysis of [H{sub 3}tren]{sup 3+} or [H{sub 4}tren]{sup 4+} hydroxo/oxo/fluorometalates, a classification of the configurations of tren cations is proposed. - Graphical abstract: The ratio of the relative intensities of the {sup 19}F NMR lines assigned to F atoms belonging to isolated TiF{sub 6−x}(OH){sub x} octahedra and to “free” fluoride ions shows that the F{sup −}/OH{sup −} substitution concerns only F atoms bonded to titanium. - Highlights: • Three tren templated hydroxyfluorotitanates(IV) have been solvothermally synthesized. • They are built up from Ti(F,OH){sub 6}{sup 2−} octahedra and “free” F{sup −} ions or H{sub 2}O molecules. • F{sup −}/OH{sup −} substitution does not affect “free” F{sup −} sites. • [H{sub 4}tren]{sup 4+} and [H{sub 3}tren]{sup 3+} cations adopt

  13. Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, D. W.

    2005-01-01

    Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.

  14. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    PubMed Central

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  15. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  16. Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon.

    PubMed

    Lang, S B; Tofail, S A M; Kholkin, A L; Wojtaś, M; Gregor, M; Gandhi, A A; Wang, Y; Bauer, S; Krause, M; Plecenik, A

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone--a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  17. Synthesis and characterization of InNbO₄ nanopowder for gas sensors.

    PubMed

    Balamurugan, C; Vijayakumar, E; Subramania, A

    2012-01-15

    Indium niobate (InNbO(4)) nanopowder was prepared by a comparatively low temperature niobium citrate complex process. The prepared InNbO(4) was characterized by thermal analysis, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, diffuse reflectance spectroscopy (DRS), and impedance studies. It revealed that the well crystalline monoclinic InNbO(4) nanopowder was obtained at the calcination temperature of 600°C. The average particle diameter was 22nm. The optical band gap was found to be 2.66eV. The temperature dependent conductivity obeyed Arrhenius relation. The activation energy of the conductivity process was calculated to be 0.43eV. The gas sensing behaviour of the prepared InNbO(4) was studied by measuring the change in resistance of the sensor material as a function of various concentrations of the test gases such as liquid petroleum gas (LPG), ammonia (NH(3)) and ethanol (C(2)H(5)OH) at their optimized operating temperature. InNbO(4) had a better sensitivity to LPG (0.97) and NH(3) (0.70) gas than ethanol (0.46). The sensor responses of InNbO(4) as a function of gas concentrations and with recovery time were also studied in detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model.

    PubMed

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects - one per animal - were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone

  19. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    PubMed Central

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    Purpose The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Materials and methods Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher

  20. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    NASA Astrophysics Data System (ADS)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  1. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  2. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes

    PubMed Central

    Bolden, Ashley L.

    2015-01-01

    Background Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled “BPA-free.” Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes. Objectives This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA. Methods We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol. Results We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression. Conclusions Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects. Citation Rochester JR, Bolden AL. 2015. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123:643–650; http://dx.doi.org/10.1289/ehp.1408989 PMID:25775505

  3. Preparation and characterization of collagen-hydroxyapatite/pectin composite.

    PubMed

    Wenpo, Feng; Gaofeng, Liang; Shuying, Feng; Yuanming, Qi; Keyong, Tang

    2015-03-01

    Pectin, a kind of plant polysaccharide, was introduced into collagen-hydroxyapatite composite system, and prepared collagen-hydroxyapatite/pectin (Col-HA/pectin) composite in situ. The structure of the composite was investigated by XRD, SEM, and FT-IR. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity of the composite were investigated as well. The results show that the inorganic substance in the composite materials is hydroxyapatite in relatively low crystallinity. A new interface appeared by the interaction among hydroxyapatite and collagen-pectin, and formed smooth fine particles. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity indicate a potential use in bone replacement for the new composite. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bulk synthesis of monodisperse magnetic FeNi3 nanopowders by flow levitation method.

    PubMed

    Chen, Shanjun; Chen, Yan; Kang, Xiaoli; Li, Song; Tian, Yonghong; Wu, Weidong; Tang, Yongjian

    2013-10-01

    In this work, a novel bulk synthesis method for monodisperse FeNi3 nanoparticles was developed by flow levitation method (FL). The Fe and Ni vapours ascending from the high temperature levitated droplet was condensed by cryogenic Ar gas under atmospheric pressure. X-ray diffraction was used to identify and characterize the crystal phase of prepared powders exhibiting a FeNi3 phase. The morphology and size of nanopowders were observed by transmission electron microscopy (TEM). The chemical composition of the nanoparticles was determined with energy dispersive spectrometer (EDS). The results indicated that the FeNi3 permalloy powders are nearly spherical-shaped with diameter about 50-200 nm. Measurement of the magnetic property of nanopowders by a superconducting quantum interference device (SQUID, Quantum Design MPMS-7) showed a symmetric hysteresis loop of ferromagnetic behavior with coercivity of 220 Oe and saturation magnetization of 107.17 emu/g, at 293 K. At 5 K, the obtained saturation magnetization of the sample was 102.16 emu/g. The production rate of FeNi3 nanoparticles was estimated to be about 6 g/h. This method has great potential in mass production of FeNi3 nannoparticles.

  5. The GP(Y/F) Domain of TF1 Integrase Multimerizes when Present in a Fragment, and Substitutions in This Domain Reduce Enzymatic Activity of the Full-length Protein*S⃞

    PubMed Central

    Ebina, Hirotaka; Chatterjee, Atreyi Ghatak; Judson, Robert L.; Levin, Henry L.

    2008-01-01

    Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the γ-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining. PMID:18397885

  6. Preparation of hydroxyapatite from animal bones.

    PubMed

    Sobczak, Agnieszka; Kowalski, Zygmunt; Wzorek, Zbigniew

    2009-01-01

    This paper presents the method of obtaining hydroxyapatite from animal bones. Bone sludge and calcined products were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Calcium concentration was determined with titration, and phosphorus--spectrophotometrically. Making use of the AAS and ICP methods the content of microelements was determined. In all the products, hydroxyapatite was the only crystalline phase indicated. The FT-IR spectra confirmed that calcination removed the total of organic substances. Calcium and phosphorus contents were 38% and 18%, respectively, which corresponded to the Ca/P molar ratio of nonstoichiometric hydroxyapatite. The specific surfaces of products were measured by BET method. The volume of micro- and mesopores was determined.

  7. Hemoglobin istanbul: substitution of glutamine for histidine in a proximal histidine (F8(92)β)

    PubMed Central

    Aksoy, M.; Erdem, S.; Efremov, G. D.; Wilson, J. B.; Huisman, T. H. J.; Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Ulitin, O. N.; Müftüoğlu, A.

    1972-01-01

    A presumably spontaneous mutation has resulted in the formation of Hemoglobin (Hb) Istanbul in which glutamine is substituted for histidine in the proximal position of the β-chain (F8(92)). The anemia and other physiological effects that occur in the presence of Hb Istanbul were much ameliorated by splenectomy. Hb Istanbul is a relatively unstable molecule which produces a rather moderate case of “unstable hemoglobin hemolytic anemia.” In the determination of structure, a method of preferential cleavage of an aspartyl-proline bond at residues 99-100 of the β-chain was used. Images PMID:4639022

  8. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Budhendra, E-mail: bksingh@ua.pt; Kaushal, Ajay, E-mail: ajay.kaushal@ua.pt; Bdikin, Igor

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM).more » A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.« less

  9. Investigation of porous silicon nanopowders functionalized by antibiotic Kanamycin, fluorophore Indocyanine Green

    NASA Astrophysics Data System (ADS)

    Bespalova, K.; Somov, P. A.; Spivak, Yu M.

    2017-11-01

    Porous silicon nanopowders for target drug delivery were obtained by electrochemical anodic etching in a hydrofluoric acid solution using the monocrystalline silicon n-type conductivity. Porous silicon powders were obtained by sonification of porous silicon layers. The powders were functionalized by antibiotic Kanamycin and fluorophore Indocyanine Green by the passive adsorption method. The peculiarities of absorption spectra in 190-600 nm region were revealed for functionalized porous silicon powders dispersions in water.

  10. Caries-preventive effect of anti-erosive and nano-hydroxyapatite-containing toothpastes in vitro.

    PubMed

    Esteves-Oliveira, M; Santos, N M; Meyer-Lueckel, H; Wierichs, R J; Rodrigues, J A

    2017-01-01

    The aim of the study was to investigate the caries-preventive effect of newly developed fluoride and fluoride-free toothpastes specially designed for erosion prevention. The hypothesis was that these products might also show superior caries-inhibiting effect than regular fluoride toothpastes, since they were designed for stronger erosive acid challenges. Enamel specimens were obtained from bovine teeth and pre-demineralized (pH = 4.95/21 days) to create artificial caries lesions. Baseline mineral loss (ΔZ B ) and lesion depth (LD B ) were determined using transversal microradiography (TMR). Ninety specimens with a median ΔZ B (SD) of 6027 ± 1546 vol% × μm were selected and randomly allocated to five groups (n = 18). Treatments during pH-cycling (14 days, 4 × 60 min demineralization/day) were brushing 2×/day with AmF (1400 ppm F - , anti-caries [AC]); AmF/NaF/SnCl 2 /Chitosan (700 ppm F - /700 ppm F - /3500 ppm Sn 2+ , anti-erosion [AE1]); NaF/KNO 3 (1400 ppm F - , anti-erosion [AE2]); nano-hydroxyapatite-containing (0 ppm F - , [nHA]); and fluoride-free toothpastes (0 ppm F - , negative control [NC]). Toothpaste slurries were prepared with mineral salt solution (1:3 wt/wt). After pH-cycling specimens presenting lesion, surface loss (mainly by NC and nHA) were discarded. For the remaining 77 specimens, new TMR analyses (ΔZ E /LD E ) were performed. Changes in mineral loss (ΔΔZ = ΔZ B  - ΔZ E ) and lesion depth (ΔLD = LD B  - LD E ) were calculated. All toothpastes caused significantly less demineralization (lower ΔΔZ) than NC (p < 0.05, ANOVA) except for nHA. The fluoride toothpastes did not differ significantly regarding ΔΔZ and ΔLD (p > 0.05, ANOVA). While both anti-erosive and anti-caries toothpastes reduced mineral loss to a similar extent, the fluoride-free nano-hydroxyapatite-containing toothpaste seemed not to be suitable for inhibition of caries demineralization in vitro.

  11. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  12. Detection of hydroxyapatite in calcified cardiovascular tissues.

    PubMed

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Detection of Hydroxyapatite in Calcified Cardiovascular Tissues

    PubMed Central

    Lee, Jae Sam; Morrisett, Joel D.; Tung, Ching-Hsuan

    2012-01-01

    Objective The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. Methods A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Results Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Conclusion Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. PMID:22877867

  14. F199E substitution reduced toxicity of Clostridium perfringens epsilon toxin by depriving the receptor binding capability

    PubMed Central

    Kang, Jingjing; Gao, Jie; Yao, Wenwu; Kang, Lin; Gao, Shan; Yang, Hao; Ji, Bin; Li, Ping; Liu, Jing; Yao, Jiahao; Xin, Wenwen; Zhao, Baohua; Wang, Jinglin

    2017-01-01

    ABSTRACT Epsilon toxin (ETX), a potent toxin, is produced by types B and D strains of Clostridium perfringens, which could cause severe diseases in humans and domestic animals. Mutant rETXF199E was previously demonstrated to be a good vaccine candidate. However, the mechanism concerned remains unknown. To clarify how F199E substitution reduced ETX toxicity, we performed a series of experiments. The results showed that the cell-binding and pore-forming ability of rETXF199E was almost abolished. We speculated that F199E substitution reduced toxicity by depriving the receptor binding capability of ETX, which contributed to the hypothesis that domain I of ETX is responsible for cell binding. In addition, our data suggested that ETX could cause Ca2+ release from intracellular Ca2+ stores, which may underlie an alternate pathway leading to cell death. Furthermore, ETX induced crenation of the MDCK cells was observed, with sags and crests first appearing on the surface of condensed MDCK cells, according to scanning electron microscopy. The data also demonstrated the safety and potentiality of rETXF199E as a vaccine candidate for humans. In summary, findings of this work potentially contribute to a better understanding of the pathogenic mechanism of ETX and the development of vaccine against diseases caused by ETX, using mutant proteins. PMID:28304231

  15. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities.

    PubMed

    Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V

    2016-09-01

    Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. 40 CFR Appendix A to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Substitute Decision Comments Electronics cleaning w/CFC-113, MCF Perfluoro-carbons (C5F12, C6F12, C6F14... date); as of January 1, 1996, for uses in existing equipment. Electronics cleaning w/CFC-113 HCFC 141b... listings for CFC-113 past the effective date of the prohibition. Electronics cleaning w/MCF HCFC 141b and...

  17. Raman spectroscopy and electron-phonon coupling in Eu3+ doped Gd2Zr2O7 nanopowders

    NASA Astrophysics Data System (ADS)

    Krizan, G.; Gilic, M.; Ristic-Djurovic, J. L.; Trajic, J.; Romcevic, M.; Krizan, J.; Hadzic, B.; Vasic, B.; Romcevic, N.

    2017-11-01

    The Raman spectra of Eu3+ doped Gd2Zr2O7 nanopowders were measured. We registered three phonons at 177 cm-1, 268 cm-1, and 592 cm-1, as well as their overtones at 354 cm-1, 445 cm-1, 708 cm-1, 1062 cm-1, 1184 cm-1, ∼1530 cm-1, and ∼1720 cm-1. The phonon at 592 cm-1 is known to be characteristic for Gd2Zr2O7 fluorite-type structure; however, the other two have not been registered so far. We found that the position of the newly detected phonons agrees well with the observed electron-phonon interaction. On the other hand, the registered multiphonon processes were a consequence of miniaturization that further induced changes in electronic structure of Eu3+ doped Gd2Zr2O7 nanopowders.

  18. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    PubMed

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  19. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    PubMed

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  20. Protein Adsorption and Subsequent Fibroblasts Adhesion on Hydroxyapatite Nanocrystals

    NASA Astrophysics Data System (ADS)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Takemura, Taro; Hanagata, Nobutaka; Yoshioka, Tomohiko; Tanaka, Junzo

    2011-10-01

    Quartz crystal microbalance with dissipation (QCM-D) technique was employed for protein adsorption and subsequent fibroblast adhesion on hydroxyapatite (HAp) nanocrystals. The pre-adsorption of three proteins (albumin (BSA) or fibronectin (Fn) or collagen (Col)) and subsequent adsorption of fetal bovine serum (FBS), and the adhesion of fibroblasts on the surface were in situ monitored, and evaluated with the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic change as ΔD-Δf plot. The Col adsorption showed larger Δf and ΔD values compared with BSA or Fn adsorption, and the subsequent FBS adsorption depended on the pre-adsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed the different behaviour on the surfaces, indicating the process affected by cell-protein interactions. The confocal laser scanning microscope images of adherent cells showed the different morphology and pseudopod on the surfaces. The cells adhered on the surfaces modified with Fn and Col had the uniaxially expanded shape with fibrous pseudopods, while those modified with BSA had round shape. The different cell-protein interaction would cause the arrangement of extracellular matrix and cytoskeleton changes at the interfaces.

  1. Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.

    2013-11-01

    Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

  2. Hydroxyapatites and europium(III) doped hydroxyapatites as a carrier of silver nanoparticles and their antimicrobial activity.

    PubMed

    Wiglusz, Rafal J; Kedziora, Anna; Lukowiak, Anna; Doroszkiewicz, Wlodzimierz; Strek, Wieslaw

    2012-08-01

    Hydroxyapatites (Ca10(PO4)6(OH)2 and Eu3+:Ca10(PO4)6(OH)2) were synthesized by aqueous synthesis route. Hydroxyapatites were impregnated with silver ions that were subsequently reduced. XRD, TEM, and SAED measurements were used in order to determine the crystal structure and morphology of the final products. The results showed the well crystallized hydroxyapatite grains with diameter of about 35 nm and with silver nanoparticles on their surface. The antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 6538 as model of the Gram-positive bacteria, Escherichia coli ATCC 11229, and Klebsiella pneumoniae ATCC 4352 as model of Gram-negative bacteria, were shown with the best activity against K. pneumoniae. These nanocomposite powders can be a promising antimicrobial agent and a fluorescent material for biodetection due to their optical and bioactive properties.

  3. Nucleation of hydroxyapatite by bone sialoprotein.

    PubMed Central

    Hunter, G K; Goldberg, H A

    1993-01-01

    Bone sialoprotein (BSP) and osteopontin, the major phosphorylated proteins of mammalian bone, have been proposed to function in the initiation of mineralization. To test this hypothesis, the effects of BSP and osteopontin on hydroxyapatite crystal formation were determined by using a steady-state agarose gel system. At low calcium phosphate concentrations, no accumulation of calcium and phosphate occurred in control gels or gels containing osteopontin. Gels containing BSP at 1-5 micrograms/ml, however, exhibited a visible precipitation band and significantly elevated Ca + PO4 contents. By powder x-ray diffraction, the precipitate formed in the presence of BSP was shown to be hydroxyapatite. These findings suggest that bone sialoprotein may be involved in the nucleation of hydroxyapatite at the mineralization front of bone. Images Fig. 4 PMID:8397409

  4. Dependence of viscosity of suspensions of ceramic nanopowders in ethyl alcohol on concentration and temperature

    PubMed Central

    2012-01-01

    This work presents results of measurements of viscosity of suspensions including yttrium oxide (Y2O3), yttrium aluminum garnet (Y3Al5O12) and magnesium aluminum spinel (MgAl2O4) nanopowders in ethanol. Nanoparticles used in our research were either commercially available (Baikowski) or nanopowders newly developed in the Institute of Ceramics and Building Materials in Warsaw, Poland. The study was conducted in a wide range of shear rates (0.01 to 2,000 s−1) and temperature interval from -15°C to 20°C. A Haake Mars 2 rheometer from Thermo Fisher, Germany, was used in the Biophysics Laboratory at Rzeszów University of Technology. Most of the samples show a non-Newtonian behaviour. It was confirmed with a Rheo-NMR system from Bruker that 10% by weight of Y2O3 suspension is a non-Newtonian fluid. In this work, we also report an unexpected behaviour of the viscosity of some samples (Y2O3 and Y3Al5O12) due to sedimentation effect. PMID:22824064

  5. Development of lattice-inserted 5-Fluorouracil-hydroxyapatite nanoparticles as a chemotherapeutic delivery system.

    PubMed

    Tseng, Ching-Li; Chen, Jung-Chih; Wu, Yu-Chun; Fang, Hsu-Wei; Lin, Feng-Huei; Tang, Tzu-Piao

    2015-10-01

    Developing an effective vehicle for cancer treatment, hydroxyapatite nanoparticles were fabricated for drug delivery. When 5-Fluorouracil, a major chemoagent, is combined with hydroxyapatite nanocarriers by interclay insertion, the modified hydroxyapatite nanoparticles have superior lysosomal degradation profiles, which could be leveraged as controlled drug release. The decomposition of the hydroxyapatite nanocarriers facilitates the release of 5-Fluorouracil into the cytoplasm causing cell death. Hydroxyapatite nanoparticles with/without 5-Fluorouracil were synthesized and analyzed in this study. Their crystallization properties and chemical composition were examined by X-ray diffraction and Fourier transforms infrared spectroscopy. The 5-Fluorouracil release rate was determined by UV spectroscopy. The biocompatibility of hydroxyapatite-5-Fluorouracil extraction solution was assessed using 3T3 cells via a WST-8 assay. The effect of hydroxyapatite-5-Fluorouracil particles which directly work on the human lung adenocarcinoma (A549) cells was evaluated by a lactate dehydrogenase assay via contact cultivation. A 5-Fluorouracil-absorbed hydroxyapatite particles were also tested. Overall, hydroxyapatite-5-Fluorouracils were prepared using a co-precipitation method wherein 5-Fluorouracil was intercalated in the hydroxyapatite lattice as determined by X-ray diffraction. Energy dispersive scanning examination showed the 5-Fluorouracil content was higher in hydroxyapatite-5-Fluorouracil than in a prepared absorption formulation. With 5-Fluorouracil insertion in the lattice, the widths of the a and c axial constants of the hydroxyapatite crystal increased. The extraction solution of hydroxyapatite-5-Fluorouracil was nontoxic to 3T3 cells, in which 5-Fluorouracil was not released in a neutral phosphate buffer solution. In contrast, at a lower pH value (2.5), 5-Fluorouracil was released by the acidic decomposition of hydroxyapatite. Finally, the results of the lactate

  6. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management

    PubMed Central

    Fernandez de Grado, Gabriel; Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Bornert, Fabien; Offner, Damien

    2018-01-01

    Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research. PMID:29899969

  7. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities

    NASA Astrophysics Data System (ADS)

    Suresh, D.; Udayabhanu; Nethravathi, P. C.; Lingaraju, K.; Rajanaika, H.; Sharma, S. C.; Nagabhushana, H.

    2015-02-01

    Zinc oxide nanopowders were synthesized by solution combustion method using Epigallocatechin gallate (EGCG) a tea catechin as fuel. The structure and morphology of the product was characterized by Powder X-ray Diffraction, Scanning Electron Microscopy, photoluminescence and UV-Visible spectroscopy. The nanopowders (Nps) were subjected to photocatalytic and biological activities such as antimicrobial and antioxidant studies. PXRD patterns demonstrate that the formed product belongs to hexagonal wurtzite system. SEM images show that the particles are agglomerated to form sponge like structure and the average crystallite sizes were found to be ∼10-20 nm. PL spectra exhibit broad and strong peak at 590 nm due to the Zn-vacancies, and O-vacancies. The prepared ZnO Nps exhibit excellent photocatalytic activity for the photodegradation of malachite green (MG) and methylene blue (MB) indicating that the ZnO NPs are potential photocatalytic semiconductor materials. ZnO NPs exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus using the agar well diffusion method. Furthermore, the ZnO nano powders show good antioxidant activity by potentially scavenging DPPH radicals. The study successfully demonstrates synthesis of ZnO NPs by simple ecofriendly route employing EGCG as fuel that exhibit superior photodegradative, antibacterial and antioxidant activities.

  8. Effect of pH value on structural and photoluminescence properties of Tb3+ -doped Lu2O3 nanopowders synthesized by sol-gel route

    NASA Astrophysics Data System (ADS)

    Mendoud, A.; Guerbous, L.; Boukerika, A.; Boudine, B.; Benrekaa, N.

    2018-01-01

    Tb3+-doped Lu2O3 nanophosphors were prepared via simple sol-gel method, at different pH value of solution (2, 5, 8 and 11), using diethanolamine (DEA) as polymerization agent. The nanopowder samples were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, room temperature steady and time resolved photoluminescence spectroscopy. The structural analysis reveals that all samples mainely crystallized in the cubic bixbyite structure with Ia3 space group. Also, it was found that the pH value of solution strongly influences the crystallite size, the vibrational frequency modes and the surface morphology of Lu2O3:Tb3+ nanocrystals. All samples show blue-greenish emissions, corresponding to 5D4 → 7FJ (J = 3, 4, 5 and 6) intraconfigurationnelles transitions. The intense green emission peak situated at 542 nm is assigned to 5D4 → 7F5 transition. The 4f8 → 4f75d1 spin-allowed and forbidden transitions, the charge transfer band (CTB) O2- → Tb3+ and the host absorption bands were observed and their dependence on pH value is discussed.

  9. C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer

    NASA Astrophysics Data System (ADS)

    Sakoishi, Yasuhiro; Iguchi, Ryo; Nishikawa, Hiroaki; Hontsu, Shigeki; Hayami, Takashi; Kusunoki, Masanobu

    2013-11-01

    A method of fabricating c-axis-oriented hydroxyapatite film on a quartz crystal microbalance (QCM) sensor was investigated. ZnO was used as a template to obtain a hexagonal hydroxyapatite crystal of uniaxial orientation. The ZnO was grown as a c-axis film on a Au/quartz with the surface structure of a QCM sensor. Under optimized conditions, hydroxyapatite was deposited by pulsed laser deposition. X-ray diffraction showed the hydroxyapatite film to be oriented along the c-axis. Because Au and ZnO are applied to many devices, the anisotropic properties of hydroxyapatite may be incorporated into these devices as well as QCM sensors.

  10. The hydroxyapatite-binding regions of a rat salivary glycoprotein.

    PubMed

    Embery, G; Green, D R

    1989-09-01

    The regions of a salivary sulphated glycoprotein which are involved in its attachment to hydroxyapatite (Biogel HTP) have been characterised. The sulphated glycoprotein, a 35S-labelled preparation from mixed palatal and buccal minor gland secretions of the rat was bound onto hydroxyapatite and the resultant glycoprotein-hydroxyapatite complex was sequentially digested with pronase E and alpha-L-fucosidase, a treatment which released 86.8% +/- 1.7% of the radioactivity of the initially bound glycoprotein. The fragments which remained attached to the hydroxyapatite after enzymic digestion were fractionated on Sephadex G-25 and analysed for carbohydrate and amino acid components. A range of amino acids were detected which could reflect both glycosylated and non-glycosylated-binding regions. Sialic acid, although considered to be involved in the attachment process was not detected in any of the fragments remaining after enzymic digestion, a finding which provides indirect evidence that the enzymically liberated products do not subsequently re-attach to the hydroxyapatite surface. The notable feature of the fractions with average Mr estimated at 1000 or less is the high proportion of N-acetylhexosamine and N-acetylgalactosamine. It is apparent that the hexosamine residues, which normally bear the ester sulphate moieties of sulphated glycoproteins, play an important role in the attachment of sulphated glycoproteins to hydroxyapatite.

  11. Evaluation of the interaction between hydroxyapatite and bisphosphonate by nonlinear capillary electrochromatography.

    PubMed

    Kong, Deying; Chen, Zilin

    2017-05-01

    Bisphosphonates are a class of chemical compounds used to treat diseases caused by increased bone resorption. Zoledronate is a third-generation bisphosphonate drug. Hydroxyapatite is main mineral constituent of bones, which can be bound by bisphosphonates in vivo. In this work, we report a method of nonlinear capillary electrochromatography for study on the interaction between hydroxyapatite and bisphosphonate. Hydroxyapatite was modified on the inner wall of capillary by a biomimetic-mineralization method. Then nonlinear chromatography was used to fit and analyze the interaction between zoledronate and hydroxyapatite. The association rate constants of zoledronate in hydroxyapatite-modified capillary and bare capillary are 642.3 and 195/M/min, respectively. This indicates that there is strong binding interactions and affinity between zoledronate and hydroxyapatite. Besides, the interaction between zoledronate and hydroxyapatite was confirmed further by ultraviolet spectroscopy. The method of nonlinear capillary electrochromatography provides a fast and effect approach for studying of bone metabolism disease by evaluation of interaction between hydroxyapatite and bisphosphonates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Joshi, Mihir; Vaidya, Ashok

    2008-04-01

    Hydroxyapatite is very useful for various biomedical applications, due to its chemical similarity with mineralized bone of human. Hydroxyapatite is also responsible for arthropathy (joint disease). In the present study, the growth of hydroxyapatite crystals was carried out by using single-diffusion gel growth technique in silica hydro gel media, at physiological temperature. The growth of hydroxyapatite crystals under slow and controlled environment in gel medium can be simulated in a simple manner to the growth in human body. The crystals, formed in the Liesegang rings, were characterized by powder XRD, FTIR and dielectric study. The diffusion study is also carried out for the hydroxyapatite crystals using the moving boundary model. The inhibitive influence of various Ayurvedic medicinal plant extracts such as Boswellia serrata gum resin , Tribulus terrestris fruits, Rotula aquatica roots, Boerhaavia diffusa roots and Commiphora wightii, on the growth of hydroxyapatite was studied. Roots of R. aquatica and B. diffusa show some inhibition of the hydroxyapatite crystals in vitro. This preclinical study will be helpful to design the therapy for prevention of hydroxyapatite-based ailments.

  13. Electrospun Hydroxyapatite-Containing Chitosan Nanofibers Crosslinked with Genipin for Bone Tissue Engineering

    PubMed Central

    Frohbergh, Michael E.; Katsman, Anna; Botta, Gregory P.; Lazarovici, Phillip; Schauer, Caroline L.; Wegst, Ulrike G. K.; Lelkes, Peter I.

    2012-01-01

    Reconstruction of large bone defects remains problematic in orthopedic and craniofacial clinical practice. Autografts are limited in supply and are associated with donor site morbidity while other materials show poor integration with the host’s own bone. This lack of integration is often due to the absence of periosteum, the outer layer of bone that contains osteoprogenitor cells and is critical for the growth and remodeling of bone tissue. In this study we developed a one-step platform to electrospin nanofibrous scaffolds from chitosan, which also contain hydroxyapatite nanoparticles and are crosslinked with genipin. We hypothesized that the resulting composite scaffolds represent a microenvironment that emulates the physical, mineralized structure and mechanical properties of non-weight bearing bone extracellular matrix while promoting osteoblast differentiation and maturation similar to the periosteum. The ultrastructure and physicochemical properties of the scaffolds were studied using scanning electron microscopy and spectroscopic techniques. The average fiber diameters of the electrospun scaffolds were 227±154 nm as spun, and increased to 335±119 nm after crosslinking with genipin. Analysis by X-ray diffraction, Fourier transformed infrared spectroscopy and energy dispersive spectroscopy confirmed the presence of characteristic features of hydroxyapatite in the composite chitosan fibers. The Young’s modulus of the composite fibrous scaffolds was 142±13 MPa, which is similar to that of the natural periosteum. Both pure chitosan scaffolds and composite hydroxyapatite-containing chitosan scaffolds supported adhesion, proliferation and osteogenic differentiation of mouse 7F2 osteoblast-like cells. Expression and enzymatic activity of alkaline phosphatase, an early osteogenic marker, were higher in cells cultured on the composite scaffolds as compared to pure chitosan scaffolds, reaching a significant, 2.4 fold, difference by day 14 (p<0.05). Similarly

  14. Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.

    PubMed

    Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook

    2010-05-01

    Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.

  15. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits.

    PubMed

    Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D

    2012-06-01

    Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.

  16. Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate.

    PubMed

    Kim, Hae-Won; Kong, Young-Min; Bae, Chang-Jun; Noh, Yoon-Jung; Kim, Hyoun-Ee

    2004-07-01

    Fluor-hydroxyapatite (FHA) film was coated on a zirconia (ZrO(2)) substrate by a sol-gel method. An appropriate amount of F ions was incorporated into the hydroxyapatite (HA) during the preparation of the sols. The apatite phase began to crystallize after heat treatment at 400 degrees C, and increased in intensity above 500 degrees C. No decomposition was detected by X-ray diffraction analyses up to 800 degrees C, which illustrates the high thermal stability of the FHA films. The films showed a uniform and dense morphology with a thickness of approximately 1 microm after a precisely controlled heat treatment process. These FHA films adhered firmly to the zirconia substrate, representing notable adhesion strengths of approximately 70 MPa after heat treatment above 500 degrees C. The dissolution rate of the FHA coating layer varied according to the heat treatment temperature, which was closely related to the film crystallinity. The dissolution rate of the FHA film was lower than that of the HA film, suggesting the possibility of a functional gradient coating of HA and FHA. The MG63 cells seeded onto the FHA films proliferated in a similar manner to those seeded onto pure HA ceramic and a plastic control.

  17. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  18. Fat substitutes in processing of sausages using piramutaba waste.

    PubMed

    de Fátima Henriques Lourenço, Lúcia; Dos Santos Galvão, Giane Célia; da Conceição Amaral Ribeiro, Suezilde; de Fátima Amaral Ribeiro, Carmelita; Park, Kil Jin

    2014-07-01

    The aim of this study was to evaluate fat substitute in processing of sausages prepared with surimi of waste from piramutaba filleting. The formulation ingredients were mixed with the fat substitutes added according to a fractional planning 2(4-1), where the independent variables, manioc starch (Ms), hydrogenated soy fat (F), texturized soybean protein (Tsp) and carrageenan (Cg) were evaluated on the responses of pH, texture (Tx), raw batter stability (RBS) and water holding capacity (WHC) of the sausage. Fat substitutes were evaluated in 11 formulations and the results showed that the greatest effects on the responses were found to Ms, F and Cg, being eliminated from the formulation Tsp. To find the best formulation for processing piramutaba sausage was made a complete factorial planning of 2(3) to evaluate the concentrations of fat substitutes in an enlarged range. The optimum condition found for fat substitutes in the sausages formulation were carrageenan (0.51%), manioc starch (1.45%) and fat (1.2%).

  19. Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin

    PubMed Central

    Takeuchi, Akari; Ohtsuki, Chikara; Miyazaki, Toshiki; Kamitakahara, Masanobu; Ogata, Shin-ichi; Yamazaki, Masao; Furutani, Yoshiaki; Kinoshita, Hisao; Tanihara, Masao

    2005-01-01

    Acidic proteins play an important role during mineral formation in biological systems, but the mechanism of mineral formation is far from understood. In this paper, we report on the relationship between the structure of a protein and hydroxyapatite deposition under biomimetic conditions. Sericin, a type of silk protein, was adopted as a suitable protein for studying structural effect on hydroxyapatite deposition, since it forms a hydroxyapatite layer on its surface in a metastable calcium phosphate solution, and its structure has been reported. Sericin effectively induced hydroxyapatite nucleation when it has high molecular weight and a β sheet structure. This indicates that the specific structure of a protein can effectively induce heterogeneous nucleation of hydroxyapatite in a biomimetic solution, i.e. a metastable calcium phosphate solution. This finding is useful in understanding biomineralization, as well as for the design of organic polymers that can effectively induce hydroxyapatite nucleation. PMID:16849195

  20. Effect of chitosan addition to characteristic and antimicrobial activity of zinc doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Rasyida, A.; Wicaksono, S. T.; Pradita, N. N.; Ardhyananta, H.; Purnomo, A.

    2017-07-01

    Hydroxyapatite (HAp) doping with zinc was prepared using sol gel method; different chitosan content were further added to prepare the composite, namely 10, 15 and 20% wt. The samples were characterized using FTIR, XRD, SEM-EDX, and AAS. In vitro antimicrobial activities of the composite were evaluated against gram positive and negative bacteria. FTIR results revealed that there were no important changes in the structure of composite, while 10% wt of chitosan in composite shows the highest inhibition zone against Escherichia coli after 24 h incubation. In addition, after 7 days of immersion in simulated body fluid, there were apatite formations in the surface of the composite. These might indicate that this composite could be used as a material candidate for bone substitute applications.

  1. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. © International & American Associations for Dental Research 2015.

  2. Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives.

    PubMed

    Agathopoulos, S; Tulyaganov, D U; Ventura, J M G; Kannan, S; Karakassides, M A; Ferreira, J M F

    2006-03-01

    New bioactive glasses with compositions based on the CaO-MgO-SiO(2) system and additives of B(2)O(3), P(2)O(5), Na(2)O, and CaF(2) were prepared. The in vitro mineralization behaviour was tested by immersion of powders or bulk glasses in simulated body fluid (SBF). Monitoring of ionic concentrations in SBF and scanning electron microscopy (SEM) observations at the surface of the glasses were conducted over immersion time. Raman and infrared (IR) spectroscopy shed light on the structural evolution occurring at the surface of the glasses that leads to formation of hydroxyapatite.

  3. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer

    PubMed Central

    Li, Hong; Gong, Min; Yang, Aiping; Ma, Jian; Li, Xiangde; Yan, Yonggang

    2012-01-01

    Background and methods A nano calcium-deficient hydroxyapatite (n-CDHA)-multi(amino acid) copolymer (MAC) composite bone substitute biomaterial was prepared using an in situ polymerization method. The composition, structure, and compressive strength of the composite was characterized, and the in vitro degradability in phosphate-buffered solution and preliminary cell responses to the composite were investigated. Results The composite comprised n-CDHA and an amide linkage copolymer. The compressive strength of the composite was in the range of 88–129 MPa, varying with the amount of n-CDHA in the MAC (ranging from 10 wt% to 50 wt%). Weight loss from the composite increased (from 32.2 wt% to 44.3 wt%) with increasing n-CDHA content (from 10 wt% to 40 wt%) in the MAC after the composite was soaked in phosphate-buffered solution for 12 weeks. The pH of the soaking medium varied from 6.9 to 7.5. MG-63 cells with an osteogenic phenotype were well adhered and spread on the composite surface. Viability and differentiation increased with time, indicating that the composite had no negative effects on MG-63 cells. Conclusion The n-CDHA-MAC composite had good cytocompatibility and has potential to be used as a bone substitute. PMID:22457591

  4. Topography, wetting, and corrosion responses of electrodeposited hydroxyapatite and fluoridated hydroxyapatite on magnesium.

    PubMed

    Assadian, Mahtab; Jafari, Hassan; Ghaffari Shahri, Seyed Morteza; Idris, Mohd Hasbullah; Almasi, Davood

    2016-08-12

    In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers.

  5. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    PubMed

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  6. Morphology and electronic structure of nanoscale powders of calcium hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kurgan, Nataly; Karbivskyy, Volodymyr; Kasyanenko, Vasyl

    2015-02-01

    Atomic force microscopy, infrared spectroscopy and NMR studied morphological and physicochemical properties of calcium hydroxyapatite powders produced by changing the temperature parameters of synthesis. Features of morphology formation of calcium hydroxyapatite nanoparticles with an annealing temperature within 200°C to 1,100°C were determined. It is shown that the particle size of the apatite obtained that annealed 700°C is 40 nm corresponding to the particle size of apatite in native bone. The effect of dimension factor on structural parameters of calcium hydroxyapatite is manifested in a more local symmetry of the PO4 3- tetrahedra at nanodispersed calcium hydroxyapatite.

  7. Identification of glycosaminoglycans using high-performance liquid chromatography on a hydroxyapatite column.

    PubMed

    Narita, H; Takeda, Y; Takagaki, K; Nakamura, T; Harata, S; Endo, M

    1995-11-20

    Glycosaminoglycans (heparin, heparan sulfate, dermatan sulfate, chondroitin sulfate, and hyaluronic acid) were labeled with a fluorescent reagent, 2-aminopyridine. The fluoro-labeled glycosaminoglycans were subjected to high-performance liquid chromatography on a hydroxyapatite column. The binding property of each glycosaminoglycan to hydroxyapatite was different. The structural properties of glycosaminoglycans bound to hydroxyapatite were then investigated using chemical desulfated or enzymic depolymerized glycosaminoglycans. This revealed that the sulfate content and molecular weight of the glycosaminoglycans correlated with their binding properties to hydroxyapatite. Desulfated dermatan sulfate but not desulfated chondroitin 6-sulfate bound to the hydroxyapatite. These data indicate that iduronic acid residues of glycosaminoglycans are important for the binding property. The method described which uses hydroxyapatite columns facilitates rapid separation and microanalysis of the glycosaminoglycans, especially dermatan sulfate and chondroitin sulfate.

  8. Mechanical, dielectric and surface analysis of hydroxyapatite doped anions for implantations

    NASA Astrophysics Data System (ADS)

    Helen, S.; Kumar, A. Ruban

    2018-04-01

    Calcium Phosphate has broad applications in field of medicine and in tissue engineering. In that hydroxyapatite is one of the calcium phosphate similar to bone and teeth mineral phase. The aim of this paper is to improve mechanical property of hydroxyapatite which has less mechanical strength by doping of ions. The ions increase its strength which can be used in various medical applications. Surface property of hydroxyapatite and electrical property of ion doped hydroxyapatite analyzed and shown that it can be used in implantations, coatings.

  9. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.

    PubMed

    Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung

    2015-04-01

    This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis and application of hydroxyapatite and fluoroapatite to scorodite encapsulation

    NASA Astrophysics Data System (ADS)

    Katsarou, Lydia

    Recent research has investigated the precipitation of crystalline scorodite (FeAsO4˙2H2O) as a method to stabilise arsenic for disposal due to its good stability performance according to EPA's TCLP test. It has been determined, however, that scorodite releases arsenic in significant concentrations under alkaline pH or under anoxic conditions. With the objective of enhancing the stability of scorodite, its encapsulation with minerals inert to pH and redox potential variations is considered in this work. Such encapsulation materials are hydroxyapatite (HAP-Ca5(PO4)3OH) and fluoroapatite (FAP-Ca5(PO4)3F), the two most stable of the calcium phosphates. The work described in this thesis includes: 1) the preparation of hydroxyapatite and fluoroapatite powders and their characterisation, 2) the synthesis of crystalline scorodite under atmospheric conditions and its characterisation, 3) the encapsulation of scorodite with hydroxyapatite and fluoroapatite, and 4) the long term stability testing of the encapsulated solids. Hydroxyapatite and fluoroapatite were prepared first by homogeneous precipitation from a metastable solution, to which "Ca" and "PO4" source reagents of different concentrations were added at variable rates. The crystallinity of the produced materials was found to increase with temperature. Crystalline scorodite was produced by seeded crystallisation in ambient pressure. For the encapsulation of the scorodite particles various methods of direct precipitation by controlled supersaturation were attempted, by adjusting the pH and adding/mixing feed solutions of individual calcium and phosphate source reagents. Heterogeneous deposition of HAP on scorodite proved rather difficult. Optimum results were obtained via prior conditioning of the scorodite substrate in a calcium solution and employment of low agitation regime and high (37 °C rather than 22°C) temperature. The stability tests were done in oxic and anoxic environments and their results demonstrated

  11. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Pramatarova, L.; Pecheva, E.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Hikov, T.; Fingarova, D.; Mitev, D.

    2010-01-01

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  12. Is hydroxyapatite a reliable fixation option in unicompartmental knee arthroplasty? A 5- to 13-year experience with the hydroxyapatite-coated unix prosthesis.

    PubMed

    Epinette, Jean-Alain; Manley, Michael T

    2008-10-01

    Hydroxyapatite-coated unicompartmental knee arthroplasty (UKA) is a debatable approach to unicompartmental knee arthritis because UKA isoften viewed as a short-term solution, at best, fora condition that will eventually require a total knee arthroplasty (TKA). Unicompartmental knee arthroplasty is a more technically demanding procedure than TKA, and appropriate patient selection, careful surgical technique, and correct choice of implant geometry are all critical components to its success. A fundamental issue surrounding UKA is whether hydroxyapatite-coated unicompartmental components can provide a long-term solution to unicondylar arthritis. We address this issue in the current study, which is based on a prospective series of 125 hydroxyapatite-coated Unix knee prostheses implanted consecutively between 1994 and 2002, with a 5-year minimum follow-up and a 13-year maximum follow-up. The results of our study indicate that uncemented hydroxyapatite-coated UKA can be successful in the long term.

  13. Template-directed synthesis and selective adsorption of oligoadenylates in hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Gibbs, D.; Lohrmann, R.; Orgel, L. E.

    1980-01-01

    Polyuridylic acid is adsorbed completely from aqueous solution by hydroxyapatite under conditions that permit template-directed synthesis of oligoadenylates in free solution. The yield of oligoadenylates is enhanced to almost the same extent by poly(U) in the presence or the absence of hydroxyapatite. Under very similar conditions small quantities of hydroxyapatite adsorb higher-molecular-weight oligoadenylates selectively from a mixture of oligomers. On the basis of these results a mechanism for prebiotic oligonucleotide formation is proposed in which selective adsorption on hydroxyapatite or some other immobilized anion-exchanging material plays a major role. Monomers are released from the surface for reactivation, while oligomers are retained in a protected environment by adsorption to the apatite surface.

  14. Bio resorbability of the modified hydroxyapatite in Tris-HCL buffer

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Izmailov, R. R.; Ghyngazov, S. A.

    2016-02-01

    The solubility of carbonated hydroxyapatite powders and granulated carbonated hydroxyapatite produced from the synovial biofluid model solution has been studied. The kinetic characteristics of dissolution were determined. It was found that the solubility of carbonated hydroxyapatite is higher as compared to that of hydroxyapatite. The impact of the organic matrix on the rate of sample dissolution was revealed. For HA-gelatin composites, as the gelatin concentration grows, the dissolution rate becomes greater, and a sample of 6.0 g / L concentration has higher resorbability. The results of the research can be used to study the kinetics of dissolution and the biocompatibility of ceramic materials for medicine, namely for reconstructive surgery, dentistry, and development of drug delivery systems.

  15. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study.

    PubMed

    Shakibaie-M, Behnam

    2013-01-01

    The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.

  17. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    PubMed

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  18. Adsorption of benzoxaboroles on hydroxyapatite phases.

    PubMed

    Pizzoccaro, Marie-Alix; Nikel, Ondrej; Sene, Saad; Philippe, Coralie; Mutin, P Hubert; Bégu, Sylvie; Vashishth, Deepak; Laurencin, Danielle

    2016-09-01

    Benzoxaboroles are a family of molecules that are finding an increasing number of applications in the biomedical field, particularly as a "privileged scaffold" for the design of new drugs. Here, for the first time, we determine the interaction of these molecules with hydroxyapatites, in view of establishing (i) how benzoxaborole drugs may adsorb onto biological apatites, as this could impact on their bioavailability, and (ii) how apatite-based materials can be used for their formulation. Studies on the adsorption of the benzoxaborole motif (C7H7BO2, referred to as BBzx) on two different apatite phases were thus performed, using a ceramic hydroxyapatite (HAceram) and a nanocrystalline hydroxyapatite (HAnano), the latter having a structure and composition more similar to the one found in bone mineral. In both cases, the grafting kinetics and mechanism were studied, and demonstration of the surface attachment of the benzoxaborole under the form of a tetrahedral benzoxaborolate anion was established using (11)B solid state NMR (including (11)B-(31)P correlation experiments). Irrespective of the apatite used, the grafting density of the benzoxaborolates was found to be low, and more generally, these anions demonstrated a poor affinity for apatite surfaces, notably in comparison with other anions commonly found in biological media, such as carboxylates and (organo)phosphates. The study was then extended to the adsorption of a molecule with antimicrobial and antifungal properties (3-piperazine-bis(benzoxaborole)), showing, on a more general perspective, how hydroxyapatites can be used for the development of novel formulations of benzoxaborole drugs. Benzoxaboroles are an emerging family of molecules which have attracted much attention in the biomedical field, notably for the design of new drugs. However, the way in which these molecules, once introduced in the body, may interact with bone mineral is still unknown, and the possibility of associating benzoxaboroles to

  19. In situ synthesis of magnesium-substituted biphasic calcium phosphate and in vitro biodegradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Wan; Lee, Hyeong-Shin; Kim, Dong-Hyun

    Highlights: ► Mg–BCP were successfully prepared through in situ aqueous co-precipitation method. ► The amount of β-TCP phase was changed with the magnesium substitution level. ► The substitution of magnesium led to a decrease in the unit cell volume. ► Mg–BCP could be able to develop a new apatite phase on the surface faster than BCP. -- Abstract: In situ preparation of magnesium (Mg) substituted biphasic calcium phosphate (BCP) of hydroxyapatite (HAp)/β-tricalcium phosphate (β-TCP) were carried out through aqueous co-precipitation method. The concentrations of added magnesium were varied with the calcium in order to obtain constant (Ca + Mg)/P ratiosmore » of 1.602. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized magnesium substituted BCP powders. The results have shown that substitution of magnesium in the calcium deficient apatites revealed the formation of biphasic mixtures of different HAp/β-TCP ratios after heating at 1000 °C. The ratios of the formation of phase mixtures were dependent on the content of magnesium. After immersing in Hanks’ balanced salt solution (HBSS) for 1 week, 1 wt% magnesium substituted BCP powders were degraded and precipitation started to be formed with small granules consisting of number of flake-like crystal onto the surface of synthesized powders. On the other hand, in the case of pure BCP powders, the formation of new precipitates was detected after immersion in HBSS for 2 weeks. On the basis of these results, magnesium substituted BCP could be able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. In addition, the retention time to produce the new apatite phase in implantation operation for the BCP powder could be controlled by the amount of magnesium substitution.« less

  20. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  1. Cemented tibial component fixation performs better than cementless fixation: a randomized radiostereometric study comparing porous-coated, hydroxyapatite-coated and cemented tibial components over 5 years.

    PubMed

    Carlsson, Ake; Björkman, Anders; Besjakov, Jack; Onsten, Ingemar

    2005-06-01

    The question whether the tibial component of a total knee arthroplasty should be fixed to bone with or without bone cement has not yet been definitely answered. We studied movements between the tibial component and bone by radiostereometry (RSA) in total knee replacement (TKR) for 3 different types of fixation: cemented fixation (C-F), uncemented porous fixation (UC-F) and uncemented porous hydroxyapatite fixation (UCHA-F). 116 patients with osteoarthrosis, who had 146 TKRs, were included in 2 randomized series. The first series included 86 unilateral TKRs stratified into 1 of the 3 types of fixation. The second series included 30 patients who had simultaneous bilateral TKR surgery, and who were stratified into 3 subgroups of pairwise comparisons of the 3 types of fixation. After 5 years 2 knees had been revised, neither of which were due to loosening. 1 UCHA-F knee in the unilateral series showed a large and continuous migration and a poor clinical result, and is a pending failure. The C-F knees rotated and migrated less than UC-F and UCHA-F knees over 5 years. UCHA-F migrated less than UC-F after 1 year. Cementing of the tibial component offers more stable bone-implant contact for 5 years compared to uncemented fixation. When using uncemented components, however, there is evidence that augmenting a porous surface with hydroxyapatite may mean less motion between implant and bone after the initial postoperative year.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Seema; Batra, Uma; Kohli, Suchita

    Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting mediamore » for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 deg. C and sintered to different temperatures (200 deg. C, 400 deg. C, 600 deg. C, 800 deg. C, 1000 deg. C and 1200 deg. C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 deg. C to 1000 deg. C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 deg. C without any additional phase other than HAP, whereas peak of {beta}-TCP (tricalcium phosphate) was

  3. Synthesis and antibacterial evaluation of calcinated Ag-doped nano-hydroxyapatite with dispersibility.

    PubMed

    Furuzono, Tsutomu; Motaharul, Mazumder; Kogai, Yasumichi; Azuma, Yoshinao; Sawa, Yoshiki

    2015-05-01

    Dispersible hydroxyapatite (HAp) nanoparticles are very useful for applying a monolayer to implantable medical devices using the nano-coating technique. To improve tolerance to infection on implanted medical devices, silver-doped HAp (Ag-HAp) nanoparticles with dispersiblity and crystallinity were synthesized, avoiding calcination-induced sintering, and evaluated for antibacterial activity. The Ca10-xAgx(PO4)6(OH)2 with x = 0 and 0.2 were prepared by wet chemical processing at 100°C. Before calcination at 700°C for 2 h, two kinds of anti-sintering agents, namely a Ca(NO3)2 (Ca salt) and a polyacrylic acid/Ca salt mixture (PAA-Ca), were used. Escherichia coli was used to evaluate the antibacterial activity of the nanopowder. When PAA-Ca was used as an anti-sintering agent in calcination to prepare the dispersible nanoparticles, strong metallic Ag peaks were observed at 38.1° and 44.3° (2θ) in the X-ray diffraction (XRD) profile. However, the Ag peak was barely observed when Ca salt was used alone as the anti-sintering agent. Thus, using Ca salt alone was more effective for preparation of dispersible Ag-HAp than PAA-Ca. The particle average size of Ag-HAp with 0.5 mol% of Ag content was found to be 325 ± 70 nm when the formation of large particleaggregations was prevented, as determined by dynamic light scattering instrument. The antibacterial activity of the Ag-HAp nanoparticles possessing 0.5 mol% against E. coli was greater than 90.0%. Dispersible and crystalline nano Ag-HAp can be obtained by using Ca salt alone as an anti-sintering agent. The nanoparticles showed antibacterial activity.

  4. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    PubMed

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions.

    PubMed

    Baba Ismail, Yanny Marliana; Ferreira, Ana Marina; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-11-01

    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    'Energy-rich' thioesters are shown to act as condensing agents in the formation of pyrophosphate on hydroxyapatite in the presence of water at ambient temperature. The yield of pyrophosphate based on thioester ranges from 2.5% to 11.4% and depends upon the pH and concentration of reactants. Reaction of 0.130 M hydroxyapatite suspended in a solution of 0.08 M sodium phosphate and 0.20 M imidazole hydrochloride (pH 7.0) with 0.10 M N,S-diacetylcysteamine for 6 days gives the highest yield of pyrophosphate (11.4%). Pyrophosphate formation requires the presence of hydroxyapatite, sodium phosphate and the thioester, N,S-diacetylcysteamine. The related thioester, N,S-diacetylcysteine, also yields pyrophosphate in reactions on hydroxyapatite.

  7. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods.

    PubMed

    Curran, Declan J; Fleming, Thomas J; Towler, Mark R; Hampshire, Stuart

    2011-11-01

    The effects of ion substitution in hydroxyapatite (HA) on crystal structure and lattice stability is investigated in the green state and post sintering. The effects of ion incorporation on the biaxial flexural strength and hardness are also investigated. Sintering is carried out at 1200 °C using comparative conventional and microwave regimes. Post sintering, the effects of ion incorporation manifest as an increase in the lattice d-spacings and a reduction of the crystallite size. Some HA decomposition occurs with β-TCP stabilisation in conventional sintering (CS), but this phase is destabilised during microwave sintering (MS), generating α-TCP. Conventional sintering (CS) allows higher densification in the undoped samples. Overall, for the Sr-doped compositions, the MS samples retain higher amounts of HA and experience higher density levels compared to the CS samples. Published by Elsevier Ltd.

  9. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    PubMed Central

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  10. Electroactive Mg2+-Hydroxyapatite Nanostructured Networks against Drug-Resistant Bone Infection Strains.

    PubMed

    Andrés, Nancy C; Sieben, Juan M; Baldini, Mónica; Rodríguez, Carlos H; Famiglietti, Ángela; Messina, Paula V

    2018-06-13

    Surface colonization competition between bacteria and host cells is one of the critical factors involved in tissue/implant integration. Current biomaterials are evaluated for their ability both of withstanding favorable responses of host tissue cells and of resisting bacterial contamination. In this work, the antibacterial ability of biocompatible Mg 2+ -substituted nanostructured hydroxyapatite (HA) was investigated. The densities of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli strains were significantly decreased after culture in the presence of Mg-substituted HA materials in direct correlation with Mg 2+ -Ca 2+ switch in the HA lattice. It was noticed that this decrease was accompanied by a minimal alteration of bacterial environments; therefore, the Mg 2+ -HA antibacterial effect was associated with the material surface topography and it electroactive behavior. It was observed that 2.23 wt % Mg 2+ -HA samples exhibited the best antibacterial performance; it decreased 2-fold the initial population of E. coli, P. aeruginosa, and S. aureus at the intermediate concentration (50 mg mL -1 of broth). Our results reinforce the potential of Mg-HA nanostructured materials to be used in antibacterial coatings for implantable devices and/or medicinal materials to prevent bone infection and to promote wound healing.

  11. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    PubMed Central

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic

  12. Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin

    2013-12-01

    To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.

  13. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    PubMed

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (<24%) and high (70%) crystallinity was ≈3.5GPa and ≈4.5GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.

  14. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  15. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  16. CHARACTERISTICS OF THERMOLUMINESCENCE LiF:Mg,Cu,Ag NANOPHOSPHOR.

    PubMed

    Yahyaabadi, A; Torkzadeh, F; Rezaei-Ochbelagh, D

    2018-04-23

    A nanophosphor of LiF:Mg,Cu,Ag was prepared by planetary ball milling for the first time in the laboratory. The size and shape of the nanophosphor were confirmed by XRD and SEM, which showed that it was cubic in shape and ~53 nm in size. The thermoluminescence (TL) characteristics of this nanophosphor were then investigated. It was found that the optimum annealing condition was 250°C for 10 min. The TL sensitivity of the prepared nanopowder was less than that of its micropowder counterpart and the TL glow curve structure exhibited several peaks. The LiF:Mg,Cu,Ag nanophosphor exhibited a linear response over a range of doses from 1 Gy to ~10 kGy. From this study, it appears that LiF:Mg,Cu,Ag nanophosphor is a good candidate for dosimetry because of its linearity over a range of doses, low tendency to fade, good repeatability and simple glow curve structure.

  17. Paramagnetic 19F NMR and Electrospray Ionization Mass Spectrometric Studies of Substituted Pyridine Complexes of Chromium(III): Models for Potential Use of 19F NMR to Probe Cr(III)-Nucleotide Interaction1

    PubMed Central

    Rhodes, Nicholas R.; Belmore, Ken; Cassady, Carolyn J.; Vincent, John B.

    2013-01-01

    The synthesis and characterization of chromium basic carboxylate complexes, [Cr3(O2CR)6L3]+, containing trifluoroacetate, 3-fluoropyridine, 3-trifluoromethylpyridine, and 4-trifluoromethylpyridine are described. The substituted pyridine ligands are used as models of DNA bases to determine whether 19F NMR would be a potentially useful probe of the binding of Cr3+ to DNA. The 19F NMR resonances of the coordinated ligands, while broadened by delocalization of unpaired electron density from the S=3/2 chromic centers, are readily discernable, and the contact shifts are of sufficient magnitude that the signals from coordinated and free ligands can easily be differentiated. Thus, 19F NMR appears to be a potentially useful probe of the binding of Cr3+ to DNA containing F-labeled bases. Additionally, electrospray MS is shown to be a convenient method to establish the identity of chromium basic carboxylate assemblies. PMID:24222929

  18. Preparation and flash sintering of MgTiO3 nanopowders obtained by the polyacrylamide gel method

    NASA Astrophysics Data System (ADS)

    Su, Xinghua; Bai, Ge; Zhang, Jing; Zhou, Jie; Jia, Yongjie

    2018-06-01

    Using a polyacrylamide gel method, phase pure and well-dispersed MgTiO3 nanopowders were prepared at 800 °C for 2 h. It was found that a high mole ratio of monomers to precursors resulted in low formation temperature of MgTiO3, due to the highly mixing homogeneity and smaller particle sizes of precursors. Sintering behaviors of MgTiO3 nanopowders under DC electric field from 500 to 800 V/cm were investigated. Nearly full dense MgTiO3 ceramics can be prepared in 30 s. An abrupt and simultaneous increase in current density and power dissipation were observed in sintering process, which are characteristics of flash sintering. The power dissipation for the flash sintering was found to be 82 mW/mm3. The densities and average grain sizes of samples increase with the increase of the electrical field strength. It was suggested that Joule heating was the main mechanism of flash sintering of MgTiO3 ceramics. Our work provides a useful route for the fabrication of dense MgTiO3 ceramics at low temperature in short time.

  19. Synthesis of TiO2 nano-powders prepared from purified sulphate leach liquor of red mud.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Perraki, M; Agatzini-Leonardou, S

    2011-10-30

    The research work presented in this paper is focused on the development of a purification process of red mud sulphate leach liquor for the recovery of titanium oxide (TiO(2)) nano-powders in the form of anatase. Initially, titanium was extracted over iron and aluminium from the leach liquor by solvent extraction using Cyanex 272 in toluene, at pH: 0.3 and T: 25°C, with 40% extractant concentration. Stripping of the loaded, with titanium, organic phase was carried out by diluted HCl (3 mol/L) at ambient temperature. Finally, the recovery of titanium nano-powder, in the form of anatase, was performed by chemical precipitation at pH: 6 and T: 95°C, using 10 wt% MgO pulp as neutralizing agent. The produced precipitates were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Their morphological characteristics and microstructure were studied by scanning electron microscopy (SEM). High grade titanium white precipitate, in the form of anatase, was obtained. Iron concentration in the precipitate did not exceed 0.3%, whereas no aluminium was detected. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization.

    PubMed

    Salama, Ahmed; El-Sakhawy, Mohamed

    2016-11-01

    The current article investigates the effect of bioactive cellulose/wool blend on calcium phosphate biomimetic mineralization. Regenerated cellulose/wool blend was prepared by dissolution-regeneration of neat cellulose and natural wool in 1-butyl-3-methyl imidazolium chloride [Bmim][Cl], as a solvent for the two polymers. Crystalline hydroxyapatite nanofibers with a uniform size, shape and dimension were formed after immersing the bioactive blend in simulated body fluid. The cytotoxicity of cellulose/wool/hydroxyapatite was studied using animal fibroblast baby hamster kidney cells (BHK-21) and the result displayed good cytocompatability. This research work presents a green processing method for the development of novel cellulose/wool/hydroxyapatite hybrid materials for tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Shock induced reaction of Ni/Al nanopowder mixture.

    PubMed

    Meng, C M; Wei, J J; Chen, Q Y

    2012-11-01

    Nanopowder Ni/Al mixture (mixed in Al:Ni = 2:1 stoichiometry) was shock compressed by employing single and two-stage light gas gun. The particle size of Al and Ni are 100-200 nm and 50-70 nm respectively, morphologies of Al and Ni are sphere like either. Recovered product was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. According to the XRD spectrum, the mixed powder undergo complete reaction under shock compression, reaction product consist of Ni2Al3, NiAl and corundum structure Al2O3 compound. Grain size of Ni-Al compound is less than 100 nm. With the shock pressure increasing, the ratio of Ni2Al3 decreased obviously. The corundum crystal size is 400-500 nm according to the SEM observation. The results of shock recovery experiments and analysis show that the threshold pressure for reaction of nano size powder Ni/Al mixture is much less than that of micro size powder.

  2. Study the Synthesis, Characterization and Immersion of Dense and Porous Bovine Hydroxyapatite Structures in Hank's Balanced Salt Solution

    NASA Astrophysics Data System (ADS)

    Eslami, N.; Mahmoodian, R.; Hamdi, M.; Khatir, Nadia Mahmoudi; Herliansyah, M. K.; Rafieerad, Ali Reza

    2017-04-01

    The bone-bonding potential of biomaterials is evaluated in vitro through examining the surface apatite formation in Hank's media to enhance biocompatibility, which is also applicable to facilitate in vivo osseointegration of implantable devices. Hence, bovine hydroxyapatite (BHA) bioceramic structures have been used in various biomedical applications such as orthopedic implants. In this article, the microstructure, in vitro bioactivity, and nanomechanical properties of the synthesized dense and porous BHA are investigated via scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and nanoindentation analysis. From the obtained results, porous BHA mostly possesses adequate requirements for substitution as implants in the human body.

  3. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    PubMed

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model.

    PubMed

    Chandran, Sunitha; Babu S, Suresh; Vs, Hari Krishnan; Varma, H K; John, Annie

    2016-10-01

    Excessive demineralization in osteoporotic bones impairs its self-regeneration potential following a defect/fracture and is of great concern among the aged population. In this context, implants with inherent osteogenic ability loaded with therapeutic ions like Strontium (Sr 2+ ) may bring forth promising outcomes. Micro-granular Strontium incorporated Hydroxyapatite scaffolds have been synthesized and in vivo osteogenic efficacy was evaluated in a long-term osteoporosis-induced aged (LOA) rat model. Micro-granules with improved surface area are anticipated to resorb faster and together with the inherent bioactive properties of Hydroxyapatite with the leaching of Strontium ions from the scaffold, osteoporotic bone healing may be promoted. Long-term osteoporosis-induced aged rat model was chosen to extrapolate the results to clinical osteoporotic condition in the aged. Micro-granular 10% Strontium incorporated Hydroxyapatite synthesized by wet precipitation method exhibited increased in vitro dissolution rate and inductively coupled plasma studies confirmed Strontium ion release of 0.01 mM, proving its therapeutic potential for osteoporotic applications. Wistar rats were induced to long-term osteoporosis-induced aged model by ovariectomy along with a prolonged induction period of 10 months. Thereafter, osteogenic efficacy of Strontium incorporated Hydroxyapatite micro-granules was evaluated in femoral bone defects in the long-term osteoporosis-induced aged model. Post eight weeks of implantation in vivo regeneration efficacy ratio was highest in the Strontium incorporated Hydroxyapatite implanted group (0.92 ± 0.04) compared to sham and Hydroxyapatite implanted group. Micro CT evaluation further substantiated the improved osteointegration of Strontium incorporated Hydroxyapatite implants from the density histograms. Thus, the therapeutical potential of micro-granular Strontium incorporated Hydroxyapatite scaffolds becomes relevant, especially as bone void

  5. Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tan, Meng Lu; Cheang, Philip; Khor, K. A.

    2009-03-01

    The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.

  6. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Hydroxyapatite Based 99Mo - 99Tc and 188W - 188Re Generator Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp Jr, Russ F; Monroy-Guzman, F.; Badillo, V. E.

    2006-01-01

    This paper describes studies evaluating the use of hydroxyapatite as the adsorbent material for both {sup 99}Mo-{sup 99m}Tc and {sup 188}W-{sup 188}Re generator systems. Hydroxyapatite is an insoluble solid with anion exchange properties. A study of the sorption behaviour of {sup 99}Mo, {sup 99m}Tc, {sup 188}W and {sup 188}Re on hydroxyapatite in NaCl medium was evaluated by batch experiments. The results demonstrated that while {sup 99}Mo, {sup 99m}Tc and {sup 188}Re are not adsorbed by the hydroxyapatite in NaCl solutions (Kd <5), {sup 188}W is strongly adsorbed (Kd >500). On the basis of these measurements, hydroxyapatite {sup 188}W-{sup 188}Re generatormore » systems were then constructed and eluted in NaCl solutions. The hydroxyapatite based {sup 188}W-{sup 188}Re generator performances are presented.« less

  8. Hydroxyapatite granules used in the obliteration of mastoid cavities in rats.

    PubMed

    Hamerschmidt, Rogério; Santos, Rafael Francisco dos; Araújo, João Cândido; Stahlke, Henrique Jorge; Agulham, Miguel Angelo; Moreira, Ana Tereza Ramos; Mocellin, Marcos

    2011-06-01

    Prospective experimental study in which we created a bony defect in the mastoids of rats and filled it up with hydroxyapatite to evaluate bone regeneration, to solve the problems of open cavities after mastoidectomies that frequently present with otorrhea, infection, granulation tissue and hearing loss. The aim was to evaluate bone regeneration in defects created in the mastoids of rats, using hydroxyapatite, to see how much of the cavity we could reduce. Twelve rats Wistar-Furth were used. A 0.5 x 0.5 cm bone defect was created in both temporal bones of the rats, and filled with 15 micrograms of hydroxyapatite. The left side was used as control. The animals were slaughtered 40 days afterwards and histology analyses were carried out. In the hydroxyapatite group, the new bone growth involved an area of 68.53% of the total; and in the control group it was only of 15.97%. It was observed a very good hydroxyapatite integration to the temporal bone in this experimental model. The microscopic results were superior with the use of hydroxyapatite when compared to the control group. It is a safe method and easy to apply to solve the problems of open cavities with chronic discharge and difficult to clean.

  9. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei

    2018-04-01

    Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.

  10. NaF-assisted combustion synthesis of MoSi2 nanoparticles and their densification behavior

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hayk H.; Lee, Tae Hyuk; Ri, Vladislav; Lee, Jong Hyeon; Suh, Hoyoung; Kim, Jin-Gyu; Son, Hyeon Taek; Kim, Yong-Ho

    2017-03-01

    The exothermic reduction of oxides mixture (MoO3+2SiO2) by magnesium in NaF melt enables the synthesis of nanocrystalline MoSi2 powders in near-quantitative yields. The combustion wave with temperature of about 1000-1200 °C was recorded in highly diluted by NaF starting mixtures. The by-products of combustion reaction (NaF and MgO) were subsequently removed by leaching with acid and washing with water. The as-prepared MoSi2 nanopowder composed of spherical and dendritic shape particles was consolidated using the spark plasma sintering method at 1200-1500 °C and 50 MPa for 10 min. The result was dense compacts (98.6% theoretical density) possessing submicron grains and exhibiting hardness of 8.74-12.92 GPa.

  11. Nanostructured Ag+-substituted fluorhydroxyapatite-TiO2 coatings for enhanced bactericidal effects and osteoinductivity of Ti for biomedical applications

    PubMed Central

    Chang, Xiaotong; Wang, Zhenhui; Zhang, Xuejiao; Han, Shuguang; Su, Zhuobin; Yang, Hejie; Yang, Dongdong; Zhang, Xiaojun

    2018-01-01

    Background Poor mechanical properties, undesirable fast dissolution rate, and lack of antibacterial activity limit the application of hydroxyapatite (HA) as an implant coating material. To overcome these limitations, a hybrid coating of Ag+-substituted fluorhydroxyapatite and titania nanotube (TNT) was prepared. Methods The incorporation of silver into the HA-TiO2 hybrid coating improves its antimicrobial properties. The addition of F as a second binary element increases the structural stability of the coating. The TNT/F-and-Ag-substituted HA (FAgHA) bilayer coating on the Ti substrate was confirmed by X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). Results The results indicate that the FAgHA/TNT nanocomposite coating has a dense and uniform morphology with a nano-rod-like structure. The solubility measurement result shows that the substitution of F− ions into the AgHA structure has a positive effect on the dissolution resistance of HA. The adhesion strength of FAgHA/TNT has significantly increased because of the interlocking of the roughened surface with nano-rod-like particles that entered into the voids of the TiO2 nanotubes. Compared with that of the bare Ti, the corrosion current density of FAgHA/TNT-coated Ti substrate decreased from 3.71 to 0.18 μA, and its corrosion resistance increased by almost two orders of magnitude. Moreover, despite pure HA, the FAgHA killed all viable Staphylococcus aureus after 24 hours of incubation. Although the fabricated FAgHA/TNT coating is hydrophobic, it induced deposition of the typical spherical apatite when immersed in a simulated body fluid (SBF); the osteoblasts spread very well on the surface of the coating. In addition, in vitro cell culture tests demonstrated cell viability and alkaline phosphatase (ALP) similar to pure HA, which indicated good cytocompatibility. Interestingly, compared with bare Ti, FAgHA/TNT-coated Ti surface

  12. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    PubMed

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

  13. C sbnd H…F hydrogen bonds as the organising force in F-substituted α-phenyl cinnamic acid aggregates studied by the combination of FTIR spectroscopy and computations

    NASA Astrophysics Data System (ADS)

    Tolnai, B.; Kiss, J. T.; Felföldi, K.; Pálinkó, I.

    2009-04-01

    Various F-substituted E-2,3-diphenyl propenoic acid molecules were synthesised and their aggregation behaviour was studied by experimental (FT-IR spectroscopy) and computational (semiempirical and DFT) methods. Experimental approach embraced the identification of potential hydrogen bonding sites through finding the relevant IR bands and monitoring their shifts upon increasing the acid concentration and on going to the solid state. It was found that fluorine engaged in C sbnd H…F hydrogen bonding easily, where the carbon atom could be of any kind available in the molecule (aromatic, aliphatic or olefinic). Shifts were found even in moderately concentrated solutions and in the solid state too. Hydrogen bonding sites could be assigned and relevant aggregate models could be built. Molecular modelling allowed obtaining good estimates for hydrogen bond lengths and angles and visualisation of the geometric arrangements even of extended networks also became feasible.

  14. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons.

    PubMed

    Hajizadeh, Yaghoub; Onwudili, Jude A; Williams, Paul T

    2011-06-01

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275°C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 μg I-TEQ kg(-1) toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 μg I-TEQ kg(-1) in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use

    NASA Astrophysics Data System (ADS)

    Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick

    2017-08-01

    Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).

  16. Iron, Manganese and Copper Release from Synthetic Hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, Douglas W.

    1999-01-01

    Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

  17. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  18. Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings

    PubMed Central

    Vilardell, A. M.; Cinca, N.; Jokinen, A.; Garcia-Giralt, N.; Dosta, S.; Cano, I. G.; Guilemany, J. M.

    2016-01-01

    Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule–molecule interactions but also molecule–material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time. PMID:27618911

  19. Comparison of characteristics of hydroxyapatite powders synthesized from cuttlefish bone via precipitation and ball milling techniques

    NASA Astrophysics Data System (ADS)

    Faksawat, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K.

    2017-09-01

    The aim of this work was to compare characteristics of hydroxyapatite synthesized by precipitation and ball milling techniques. The cuttlefish bone powder was a precursor in calcium source and the di ammonium hydrogen orthophosphate powders was a precursor in phosphate source. The hydroxyapatite was synthesized by the both techniques such as precipitation and ball milling techniques. The phase formation, chemical structure and morphology of the both hydroxyapatite powders have been examined by X-ray diffractometer (XRD), Fourier transform infrared spectroscope (FTIR) and field emission scanning electron microscope (FESEM), respectively. The results show that the hydroxyapatite synthesized by precipitation technique formed hydroxyapatite phase slower than the hydroxyapatite synthesized by ball milling technique. The FTIR results show the chemical structures of sample in both techniques are similar. The morphology of the hydroxyapatite from the both techniques were sphere like shapes and particle size was about in nano scale. The average particle size of the hydroxyapatite by ball milling technique was less than those synthesized by precipitation technique. This experiment indicated that the ball milling technique take time less than the precipitation technique in hydroxyapatite synthesis.

  20. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method.

    PubMed

    Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6±20.4nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity.

    PubMed

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Premalal, E V A; Herath, H M T U; Mahalingam, S; Edirisinghe, M; Rajapakse, R P V J; Rajapakse, R M G

    2014-09-01

    Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10°C to 95°C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3h, at 700°C. The as-prepared products, after 2h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang).

    PubMed

    Eichenseer, Christiane; Will, Julia; Rampf, Markus; Wend, Süsen; Greil, Peter

    2010-01-01

    The three-dimensional, highly oriented pore channel anatomy of native rattan (Calamus rotang) was used as a template to fabricate biomorphous hydroxyapatite (Ca(5)(PO(4))(3)OH) ceramics designed for bone regeneration scaffolds. A low viscous hydroxyapatite-sol was prepared from triethyl phosphite and calcium nitrate tetrahydrate and repeatedly vacuum infiltrated into the native template. The template was subsequently pyrolysed at 800 degrees C to form a biocarbon replica of the native tissue. Heat treatment at 1,300 degrees C in air atmosphere caused oxidation of the carbon skeleton and sintering of the hydroxyapatite. SEM analysis confirmed detailed replication of rattan anatomy. Porosity of the samples measured by mercury porosimetry showed a multimodal pore size distribution in the range of 300 nm to 300 microm. Phase composition was determined by XRD and FT-IR revealing hydroxyapatite as the dominant phase with minimum fractions of CaO and Ca(3)(PO(4))(2). The biomorphous scaffolds with a total porosity of 70-80% obtained a compressive strength of 3-5 MPa in axial direction and 1-2 MPa in radial direction of the pore channel orientation. Bending strength was determined in a coaxial double ring test resulting in a maximum bending strength of approximately 2 MPa.

  3. The electrolysis time on electrosynthesis of hydroxyapatite with bipolar membrane

    NASA Astrophysics Data System (ADS)

    Nur, Adrian; Jumari, Arif; Budiman, Anatta Wahyu; Puspitaningtyas, Stella Febianti; Cahyaningrum, Suci; Nazriati, Nazriati; Fajaroh, Fauziatul

    2018-02-01

    The electrochemical method with bipolar membrane has been successfully used for the synthesis of hydroxyapatite. In this work, we have developed 2 chambers electrolysis system separated by a bipolar membrane. The membrane was used to separate cations (H+ ions produced by the oxidation of water at the anode) and anions (OH- ions produced by the reduction of water at the cathode). With this system, we have designed that OH- ions still stay in the anions chamber because OH- ions was very substantial in the hydroxyapatite particles formation. The aim of this paper was to compare the electrolysis time on electrosynthesis of hydroxyapatite with and without the bipolar membrane. The electrosynthesis was performed at 500 mA/cm2 for 0.5 to 2 hours at room temperature and under ultrasonic cleaner to void agglomeration with and without the bipolar membrane. The electrosynthesis of hydroxyapatite with the bipolar membrane more effective than without the bipolar membrane. The hydroxyapatite has been appeared at 0.5 h of the electrolysis time with the bipolar membrane (at the cathode chamber) while it hasn't been seen without the bipolar membrane. The bipolar membrane prevents OH- ions migrate to the cation chamber. The formation of HA becomes more effective because OH- ions just formed HA particle.

  4. Green approach for the synthesis and characterization of ZrSnO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Athar, Taimur; Vishwakarma, Sandeep Kumar; Bardia, Avinash; Alabass, Razzaq; Alqarlosy, Ahmed; Khan, Aleem Ahmed

    2016-06-01

    Well-defined structural framework of ZrSnO4 nanopowder has been synthesized for the fabrications of cost-effective and sensitive devices which give final reproducible result with reliability under ideal conditions. The synthesis was carried out at moderate temperature and then finally dried in the laboratory oven and then followed with calcination at 1000 °C for 4 h to get phase selective product. It was observed that gelation time depends on the concentration of reactants and temperature. The characterization of ZrSnO4 was carried out with XRD, SEM, TEM, UV, thermal analysis, DLS and FT-IR techniques. With adjustment of reaction parameters, the systematic tuning of the particle size, shape and functional properties can be controlled. It was concluded that self-assembly is an integral part for the synthesis and opens a new exciting opportunity for better understanding the formation of nanostructure framework from micro- to nanoscale along with mechanistic via wet chemical approach. ZrSnO4 has vital role in identifying its potential cytotoxicity in the biological systems. The cytotoxicity effects of ZrSnO4 nanopowder in vitro were evaluated in three different human cell types (hepatocytes, mesenchymal stem cells and neuronal cells). Acute exposure of nanoparticles was found to have greater cytotoxic effect at higher concentration (30 µg/ml). However, partial detoxification was observed during nanoparticles exposure at day 6. The study concluded that an initial stress from nanoparticles incorporates sealing or detoxification of nanoparticles which may help to recover cell viability.

  5. Synthesis of alginate bioencapsulated nano-hydroxyapatite composite for selective fluoride sorption.

    PubMed

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2014-11-04

    This article focuses on the development of eco-friendly adsorbent by alginate (Alg) bioencapsulating nano-hydroxyapatite (n-HAp) namely n-HApAlg composite for defluoridation studies in batch mode. n-HAp powder utilized as a promising defluoridating material, but it causes a significant pressure drop during field applications. To overcome such technological bottlenecks, n-HApAlg composite was synthesized. The defluoridation capacity (DC) of synthesized n-HApAlg composite possesses an enhanced DC of 3870 mg F(-)/kg when compared to n-HAp and calcium alginate (CaAlg) composite which possess DC of 1296 and 680 mg F(-)/kg, respectively. The biocomposite features were characterized using FTIR and SEM with EDAX analysis. The various adsorption influencing parameters like contact time, pH, co-anions, initial fluoride concentration and temperature were optimized. The adsorption process was enlightened by various isotherms and kinetic models. The suitability of the biocomposite at field conditions was also tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives.

    PubMed

    Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch

    2013-10-01

    The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Fabrication of hydroxyapatite from fish bones waste using reflux method

    NASA Astrophysics Data System (ADS)

    Cahyanto, A.; Kosasih, E.; Aripin, D.; Hasratiningsih, Z.

    2017-02-01

    The aim of this present study was to investigate the fabrication of hydroxyapatites, which were synthesized from fish bone wastes using reflux method. The fish bone wastes collected from the restaurant were brushed and boiled at 100°C for 10 minutes to remove debris and fat. After drying, the fish bones were crushed, and ball milled into a fine powder. The fish bone wastes were then processed by refluxing using KOH and H3PO4 solutions. The samples were calcined at 900°C and characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The XRD pattern of samples after treatment revealed that the peak of hydroxyapatite was observed and the bands of OH- and PO4 3- were observed by FT-IR. The scanning electron microscope evaluation of sample showed the entangled crystal and porous structure of hydroxyapatite. In conclusion, the hydroxyapatite was successfully synthesized from fish bone wastes using reflux method.

  8. Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites.

    PubMed

    Munarin, F; Petrini, P; Gentilini, R; Pillai, R S; Dirè, S; Tanzi, M C; Sglavo, V M

    2015-01-01

    Pectin-based biocomposite hydrogels were produced by internal gelation, using different hydroxyapatite (HA) powders from commercial source or synthesized by the wet chemical method. HA possesses the double functionality of cross-linking agent and inorganic reinforcement. The mineralogical composition, grain size, specific surface area and microstructure of the hydroxyapatite powders are shown to strongly influence the properties of the biocomposites. Specifically, the grain size and specific surface area of the HA powders are strictly correlated to the gelling time and rheological properties of the hydrogels at room temperature. Pectin pH is also significant for the formation of ionic cross-links and therefore for the hydrogels stability at higher temperatures. The obtained results point out that micrometric-size hydroxyapatite can be proposed for applications which require rapid gelling kinetics and improved mechanical properties; conversely the nanometric hydroxyapatite synthesized in the present work seems the best choice to obtain homogeneous hydrogels with more easily controlled gelling kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. In-vitro efficacy of different morphology zinc oxide nanopowders on Streptococcus sobrinus and Streptococcus mutans.

    PubMed

    Mohd Bakhori, Siti Khadijah; Mahmud, Shahrom; Ling, Chuo Ann; Sirelkhatim, Amna Hassan; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Abd Rahman, Rosliza

    2017-09-01

    ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    PubMed Central

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  11. Substitutional alloy of Ce and Al

    PubMed Central

    Zeng, Qiao-Shi; Ding, Yang; Mao, Wendy L.; Luo, Wei; Blomqvist, Andreas; Ahuja, Rajeev; Yang, Wenge; Shu, Jinfu; Sinogeikin, Stas V.; Meng, Yue; Brewe, Dale L.; Jiang, Jian-Zhong; Mao, Ho-kwang

    2009-01-01

    The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce3Al intermetallic compound >15 GPa or the Ce3Al metallic glass >25 GPa. Synchrotron X-ray diffraction, Ce L3-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions. PMID:19188608

  12. A study on the production of titanium carbide nano-powder in the nanostate and its properties

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Rudneva, S. V.; Galevsky, G. V.; Garbuzova, A. K.

    2016-09-01

    The plasma synthesis of titanium carbide nano-powder in the conditions close to industrial was studied. Titanium carbide TiC is a wear- and corrosion-resistant, hard, chemically inert material, demanded in various fields for the production of hard alloys, metal- ceramic tools, heat-resistant products, protective metal coatings. New perspectives for application titanium carbide in the nanostate can be found in the field of alloys modification with different composition and destination.

  13. Biocompatability of hydroxyapatite composite as a local drug delivery system.

    PubMed

    Krisanapiboon, A; Buranapanitkit, B; Oungbho, K

    2006-12-01

    To investigate the biocompatibility of hydroxyapatite composite (hydroxyapatite, plaster of Paris, and chitosan) impregnated with gentamicin, fosfomycin, imipenem, or amphotericin B. The interactions of the extract from each drug against osteoblast were tested using the methylthiotetrazole test. Extracts from all drugs showed good biocompatibility at concentrations varying from 10 microgram/ml to 1000 microgram/ml. Imipenem and amphotericin B at a concentration of 1000 microgram/ml had a significantly higher percentage of cell viability than the control group. No morphological change of osteoblast was observed in all drug tests at any concentrations. The hydroxyapatite composite had a good biocompatibility for carrying gentamicin, fosfomycin, imipenem, or amphotericin B.

  14. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6.

    PubMed

    Get'man, Evgeni I; Loboda, Stanislav N; Ignatov, Alexey V; Prisedsky, Vadim V; Abdul Jabar, Mohammed A B; Ardanova, Lyudmyla I

    2016-03-07

    The substitution of rare-earth elements (REEs) for Pb in the lacunary apatite Pb8Na2(PO4)6 with void structural channels was studied by means of powder X-ray diffraction (including the Rietveld refinement), scanning electron microscopy, energy-dispersive X-ray microanalysis, and IR spectroscopy and also measurements of the electrical conductivity. The substitution limits (xmax in Pb8-xLnxNa2(PO4)6Ox/2) at 800 °C were found to decrease with the atomic number of the REE from 1.40 for La to 0.12 for Yb with a rapid drop from light to heavy lanthanides (between Gd and Tb). The REE atoms substitute for Pb predominantly at Pb2 sites of the apatite structure according to the scheme 2Pb(2+) + □ → 2Ln(3+) + O(2-), where □ is a vacancy in the structural channel. The substitution in lacunary apatite produces quite different changes in the structural parameters compared with broadly studied alkaline-earth hydroxyapatites. In spite of the much lower ionic radii of REE than that of Pb(2+), the mean distances ⟨Pb1-O⟩ somewhat increase, whereas the distances ⟨Pb2-Pb2⟩ and ⟨Pb2-O4⟩ do not change considerably with the degree of substitution. This implies control of the substitution by not only spatial and charge accommodation of REE ions but also the availability of a stereochemically active 6s(2) electron pair on Pb(2+). The high-temperature electrical conductivity shows dependence on the degree of substitution with a minimum at x = 0.2 indicative of a possible change of the type of conductivity.

  15. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

    PubMed

    Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok

    2011-12-15

    This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.

  16. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    PubMed

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    PubMed

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd

  18. Shape tailored green synthesis of CeO2:Ho3+ nanopowders, its structural, photoluminescence and gamma radiation sensing properties

    NASA Astrophysics Data System (ADS)

    Malleshappa, J.; Nagabhushana, H.; Kavyashree, D.; Prashantha, S. C.; Sharma, S. C.; Premkumar, H. B.; Shivakumara, C.

    2015-06-01

    CeO2:Ho3+ (1-9 mol%) nanopowders have been prepared by efficient and environmental friendly green combustion method using Aloe vera gel as fuel for the first time. The final products are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR). Bell, urchin, core shell and flower like morphologies are observed with different concentrations of the A. vera gel. It is apparent that by adjusting the concentration of the gel, considerable changes in the formation of CeO2:Ho3+ nano structures can be achieved. Photoluminescence (PL) studies show green (543, 548 nm) and red (645, 732 nm) emissions upon excited at 400 nm wavelength. The emission peaks at ∼526, 548, 655 and 732 nm are associated with the transitions of 5F3 → 5I8, 5S2 → 5I8, 5F5 → 5I8 and 5S2 → 5I7, respectively. Three TL glow peaks are observed at 118, 267 and 204 °C for all the γ irradiated samples which specify the surface and deeper traps. Linear TL response in the range 0.1-2 kGy shows that phosphor is fairly useful as γ radiation dosimeter. Kinetic parameters associated with the glow peaks are estimated using Chen's half width method. The CIE coordinate values show that phosphor is quite useful for the possible applications in WLEDs as orange red phosphor.

  19. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.

    PubMed

    Aina, Valentina; Bergandi, Loredana; Lusvardi, Gigliola; Malavasi, Gianluca; Imrie, Flora E; Gibson, Iain R; Cerrato, Giuseppina; Ghigo, Dario

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca(10-x)Srx(PO4)6(OH)2, where x=2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl2, in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in HA has a positive effect on MG-63 cells

  20. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    PubMed

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  1. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro.

    PubMed

    Seebach, Caroline; Schultheiss, Judith; Wilhelm, Kerstin; Frank, Johannes; Henrich, Dirk

    2010-07-01

    Various synthetic bone-graft substitutes are used commercially as osteoconductive scaffolds in the treatment of bone defects and fractures. The role of bone-graft substitutes is changing from osteoconductive conduits for growth to an delivery system for biologic fracture treatments. Achieving optimal bone regeneration requires biologics (e.g. MSC) and using the correct scaffold incorporated into a local environment for bone regeneration. The need for an unlimited supply with high quality bone-graft substitutes continue to find alternatives for bone replacement surgery. This in vitro study investigates cell seeding efficiency, metabolism, gene expression and growth behaviour of MSC sown on six commercially clinical available bone-graft substitutes in order to define their biological properties: synthetic silicate-substituted porous hydroxyapatite (Actifuse ABX), synthetic alpha-TCP (Biobase), synthetic beta-TCP (Vitoss), synthetic beta-TCP (Chronos), processed human cancellous allograft (Tutoplast) and processed bovines hydroxyapatite ceramic (Cerabone). 250,000 MSC derived from human bone marrow (n=4) were seeded onto the scaffolds, respectively. On days 2, 6 and 10 the adherence of MSC (fluorescence microscopy) and cellular activity (MTT assay) were analysed. Osteogenic gene expression (cbfa-1) was analysed by RT-PCR and scanning electron microscopy was performed. The highest number of adhering cells was found on Tutoplast (e.g. day 6: 110.0+/-24.0 cells/microscopic field; p<0.05) followed by Chronos (47.5+/-19.5, p<0.05), Actifuse ABX (19.1+/-4.4), Biobase (15.7+/-9.9), Vitoss (8.8+/-8.7) and Cerabone (8.1+/-2.2). MSC seeded onto Tutoplast showed highest metabolic activity and gene expression of cbfa-1. These data are confirmed by scanning electron microscopy. The cell shapes varied from round-shaped cells to wide spread cells and cell clusters, depending on the bone-graft substitutes. Processed human cancellous allograft is a well-structured and biocompatible

  2. Influence of Starting Powders on Hydroxyapatite Coatings Fabricated by Room Temperature Spraying Method.

    PubMed

    Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong; Hahn, Byung Dong; Yoon, Seog Young

    2015-08-01

    Three types of raw materials were used for the fabrication of hydroxyapatite coatings by using the room temperature spraying method and their influence on the microstructure and in vitro characteristics were investigated. Starting hydroxyapatite powders for coatings on titanium substrate were prepared by a heat treatment at 1100 °C for 2 h of bovine bone, bone ash, and commercial hydroxyapatite powders. The phase compositions and Ca/P ratios of the three hydroxyapatite coatings were similar to those of the raw materials without decomposition or formation of a new phase. All hydroxyapatite coatings showed a honeycomb structure, but their surface microstructures revealed different features in regards to surface morphology and roughness, based on the staring materials. All coatings consisted of nano-sized grains and had dense microstructure. Inferred from in vitro experiments in pure water, all coatings have a good dissolution-resistance and biostability in water.

  3. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF2 or MgO for implants functionalization.

    PubMed

    Mihailescu, Natalia; Stan, G E; Duta, L; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M; Luculescu, C; Oktar, F N; Mihailescu, I N

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF2 (2wt.%) or MgO (5wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ=248nm, τFWHM≤25ns) excimer laser source was used. The deposited structures were characterized from a physical-chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Kolmas, Joanna; Groszyk, Ewa; Piotrowska, Urszula

    2015-07-01

    In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81

  5. An efficient method to prepare magnetic hydroxyapatite-functionalized multi-walled carbon nanotubes nanocomposite for bone defects.

    PubMed

    Afroze, J D; Abden, M J; Islam, M A

    2018-05-01

    Hydroxyapatite-functionalized multi-walled carbon nanotube (HA-fMWCNT) magnetic nanocomposite was successfully prepared using a novel slurry-compounding method. The prepared HA-fMWCNT nanocomposite with the addition of small amount (0.5 wt%) of fMWCNT exhibited much greater improvement in mechanical properties due to strong interfacial adhesion between acid-treated MWCNTs fillers and HA matrix, thus efficient stress transfer to nanotubes from the matrix. The nanocomposite exhibited excellent haemocompatibility. Fractographic analysis was performed in order to understand the fracture behavior and toughening mechanisms. The fracture mechanisms and micro-deformation were examined by studying the microstructure of arrested crack tips using field emission scanning electron microscopy (FESEM). The origination and formation of micro-cracks are the dominant fracture mechanisms and micro-deformation in the HA-fMWCNTs nanocomposite. The developed new method enables to the fabrication of magnetic HA-fMWCNTs nanocomposite with superior mechanical performance may be potential for application as high load-bearing bone implants in the biomedical field. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    PubMed

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  7. Tuning of Terahertz Resonances of Pyridyl Benzamide Derivatives by Electronegative Atom Substitution

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Devi, Nirmala; Basutkar, Nitin; Gonnade, Rajesh G.; Ambade, Ashootosh V.; Pesala, Bala

    2018-05-01

    N-(pyridin-2-yl) benzamide (Ph2AP)-based organic molecules with prominent terahertz (THz) signatures (less than 5 THz) have been synthesized. The THz resonances are tuned by substituting the most electronegative atom, fluorine, at ortho (2F-Ph2AP), meta (3F-Ph2AP), and para (4F-Ph2AP) positions in a Ph2AP molecule. Substitution of fluorine helps in varying the charge distribution of the atoms forming hydrogen bond and hence strength of the hydrogen bond is varied which helps in tuning the THz resonances. The tuning of lower THz resonances of 2F-Ph2AP, 3F-Ph2AP, and 4F-Ph2AP has been explained in terms of compliance constant (relaxed force constant). Four-molecule cluster simulations have been carried out using Gaussian09 software to calculate the compliance constant of the hydrogen bonds. Crystal structure simulations of the above molecules using CRYSTAL14 software have been carried out to understand the origin of THz resonances. It has been observed that THz resonances are shifted to higher frequencies with stronger hydrogen bonds. The study shows that 3F-Ph2AP and 4F-Ph2AP have higher hydrogen bond strength and hence the THz resonances originating due to stretching of intermolecular hydrogen bonds have been shifted to higher frequencies compared to 2F-Ph2AP. The methodology presented here will help in designing novel organic molecules by substituting various electronegative atoms in order to achieve prominent THz resonances.

  8. Amino acid substitutions in the heptad repeat A and C regions of the F protein responsible for neurovirulence of measles virus Osaka-1 strain from a patient with subacute sclerosing panencephalitis.

    PubMed

    Ayata, Minoru; Tanaka, Miyuu; Kameoka, Kazuo; Kuwamura, Mitsuru; Takeuchi, Kaoru; Takeda, Makoto; Kanou, Kazuhiko; Ogura, Hisashi

    2016-01-01

    Measles virus (MV) is the causative agent of subacute sclerosing panencephalitis (SSPE). We previously reported that the F gene of the SSPE Osaka-2 strain is the major determinant of MV neurovirulence. Because the sites and extents of mutations differ among SSPE strains, it is necessary to determine the mutations responsible for the SSPE-specific phenotypes of individual viral strain. In this study, recombinant viruses containing the envelope-associated genes from the SSPE Osaka-1 strain were generated in the IC323 wild-type MV background. Hamsters inoculated with MV containing the H gene of the Osaka-1 strain displayed hyperactivity and seizures, but usually recovered and survived. Hamsters inoculated with MV containing the F gene of the Osaka-1 strain displayed severe neurologic signs and died. Amino acid substitutions in the heptad repeat A and C regions of the F protein, including a methionine-to-valine substitution at amino acid 94, play major roles in neurovirulence. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. FORMATION OF CHLOROPYROMORPHITE IN A LEAD-CONTAMINATED SOIL AMENDED WITH HYDROXYAPATITE

    EPA Science Inventory

    To evaluate conversion of soil Pb to pyromorphite, a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in a traditional incubation experiment and in a dialysis system in which the soil and hydroxyapatite solids were separated by a dia...

  10. Tailoring the Microstructure of Sol–Gel Derived Hydroxyapatite/Zirconia Nanocrystalline Composites

    PubMed Central

    2011-01-01

    In this study, we tailor the microstructure of hydroxyapatite/zirconia nanocrystalline composites by optimizing processing parameters, namely, introducing an atmosphere of water vapor during sintering in order to control the thermal stability of hydroxyapatite, and a modified sol–gel process that yields to an excellent intergranular distribution of zirconia phase dispersed intergranularly within the hydroxyapatite matrix. In terms of mechanical behavior, SEM images of fissure deflection and the presence of monoclinic ZrO2 content on cracked surface indicate that both toughening mechanisms, stress-induced tetragonal to monoclinic phase transformation and deflection, are active for toughness enhancement. PMID:24764458

  11. Validation of a Real-Time ISE Methodology to Quantify the Influence of Inhibitors of Demineralization Kinetics in vitro Using a Hydroxyapatite Model System.

    PubMed

    Huang, Wei-Te; Shahid, Saroash; Anderson, Paul

    2018-05-25

    The aim was to validate a novel protocol to measure the cariostatic efficacies of demineralization inhibitors by repeating previous SMR (scanning microradiography) studies investigating the dose response of Zn2+ and F- on demineralization kinetics in vitro using real-time Ca2+ ion selective electrodes (ISEs). In this study, Ca2+ release was used as a proxy for the extent of demineralization. Forty-eight hydroxyapatite (HAP) discs were allocated into 16 groups (n = 3) and adding either increasing [Zn2+], or [F-], similar to those used in the previous SMR studies. Each HAP disc was immersed in 50 mL, pH 4.0, buffered acetic acid for 1 h, and real-time ISE methodology was used to monitor the rate of increase in [Ca2+] in the demineralization solution. Next, either zinc acetate or sodium fluoride was added into each demineralization solution accordingly. Then after each [Zn2+] or [F-] addition, the HAP disc was further demineralized for 1 h, and ISE measurements were continued. The percentage reduction in the rate of calcium loss from hydroxyapatite (PRCLHAP) at each [Zn2+] or [F-] was calculated from the decrease in Ca2+ release rate, similar to that used in the previous SMR studies. A log-linear relationship between mean PRCLHAP and inhibitor concentration was found for both Zn2+ and F-, similar to that reported for each ion in the previous SMR studies. In conclusion, real-time Ca2+ ISE systems can be used to measure the cariostatic efficacies of demineralization inhibitors. © 2018 S. Karger AG, Basel.

  12. Alternate Spray-coating for the Direct Fabrication of Hydroxyapatite Films without Crystal Growth Step in Solution.

    PubMed

    Watanabe, Satoshi; Kashiwagi, Rei; Matsumoto, Mutsuyoshi

    2017-03-01

    We discuss an alternate spray-coating technique for the direct fabrication of hydroxyapatite films using metal masks, suction-type spray nozzles and two calcification solutions of calcium hydroxide and phosphoric acid aqueous solutions. Hydroxyapatite films were formed only on the hydrophobic surface of the substrates. Scanning electron microscopy and energy dispersive X-ray spectroscopy showed that the spray-coated films consisted of hydroxyapatite nanoparticles. The Ca/P ratio was estimated to be about 1.26. X-ray diffraction patterns of the spray-coated films almost coincided with those of the hydroxyapatite powders, showing that the spray-coated films consisted of hydroxyapatite nanoparticles. Dot arrays of hydroxyapatite films at a diameter of 100 μm were formed by tuning the concentrations of calcium hydroxide and phosphoric acid aqueous solutions. This technique allows for the direct fabrication of the hydroxyapatite films without crystal growth process in hydroxyapatite precursors, the scaffolds of crystal growth such as biocompatibility SiO 2 -CaO glasses, or electrophoresis processes. By using this technique, large-area ceramic films with biocompatibility will be micropatterned with minimized material consumption, short fabrication time, and reduced equipment investments.

  13. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.

    2017-02-01

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.

  14. Fabrication and Microstructure of Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process.

    PubMed

    Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook

    2015-08-01

    Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.

  15. Titanium-hydroxyapatite composites sintered at low temperature for tissue engineering: in vitro cell support and biocompatibility.

    PubMed

    Comín, Romina; Cid, Mariana P; Grinschpun, Luciano; Oldani, Carlos; Salvatierra, Nancy A

    2017-04-26

    In clinical orthopedics, a critical problem is the bone tissue loss produced by a disease or injury. The use of composites from titanium and hydroxyapatite for biomedical applications has increased due to the resulting advantageous combination of hydroxyapatite bioactivity and favorable mechanical properties of titanium. Powder metallurgy is a simple and lower-cost method that uses powder from titanium and hydroxyapatite to obtain composites having hydroxyapatite phases in a metallic matrix. However, this method has certain limitations arising from thermal decomposition of hydroxyapatite in the titanium-hydroxyapatite system above 800°C. We obtained a composite from titanium and bovine hydroxyapatite powders sintered at 800°C and evaluated its bioactivity and cytocompatibility according to the ISO 10993 standard. Surface analysis and bioactivity of the composite was evaluated by X-ray diffraction and SEM. MTT assay was carried out to assess cytotoxicity on Vero and NIH3T3 cells. Cell morphology and cell adhesion on the composite surface were analyzed using fluorescence and SEM. We obtained a porous composite with hydroxyapatite particles well integrated in titanium matrix which presented excellent bioactivity. Our data did not reveal any toxicity of titanium-hydroxyapatite composite on Vero or NIH3T3 cells. Moreover, extracts from composite did not affect cell morphology or density. Finally, NIH3T3 cells were capable of adhering to and proliferating on the composite surface. The composite obtained displayed promising biomedical applications through the simple method of powder metallurgy. Additionally, these findings provide an in vitro proof for adequate biocompatibility of titanium-hydroxyapatite composite sintered at 800°C.

  16. Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications.

    PubMed

    Baştan, Fatih E; Atiq Ur Rehman, Muhammad; Avcu, Yasemin Yıldıran; Avcu, Egemen; Üstel, Fatih; Boccaccini, Aldo R

    2018-05-03

    This study focuses on the optimization of electrophoretic deposition (EPD) and suspension parameters for producing PEEK-hydroxyapatite (HA) coatings with feasible microstructure, adhesion strength, and in-vitro bioactivity. Nanostructured hydroxyapatite (HA) micro-granules were incorporated with PEEK to form PEEK-hydroxyapatite composite coatings via EPD. After EPD, a heat-treatment at 375 °C was applied for densification of the coatings and for enhancing the adhesion between the coatings and the substrates. It was found that both adhesion strength and in-vitro bioactivity of the coatings were dependent on the PEEK and HA relative contents. Thus, increasing the amount of HA improved the bioactivity while decreased the adhesion strength of the coatings. Apatite-like layer formation was observed on coatings with high HA content after incubation for three days in simulated body fluid (SBF). Finally, a deposition mechanism was proposed for the EPD of the PEEK-hydroxyapatite composite system. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Thermodynamic assessment of the LiF-ThF4-PuF3-UF4 system

    NASA Astrophysics Data System (ADS)

    Capelli, E.; Beneš, O.; Konings, R. J. M.

    2015-07-01

    The LiF-ThF4-PuF3-UF4 system is the reference salt mixture considered for the Molten Salt Fast Reactor (MSFR) concept started with PuF3. In order to obtain the complete thermodynamic description of this quaternary system, two binary systems (ThF4-PuF3 and UF4-PuF3) and two ternary systems (LiF-ThF4-PuF3 and LiF-UF4-PuF3) have been assessed for the first time. The similarities between CeF3/PuF3 and ThF4/UF4 compounds have been taken into account for the presented optimization as well as in the experimental measurements performed, which have confirmed the temperatures predicted by the model. Moreover, the experimental results and the thermodynamic database developed have been used to identify potential compositions for the MSFR fuel and to evaluate the influence of partial substitution of ThF4 by UF4 in the salt.

  18. [Study on the antibacterial activity of four kinds of nano-hydroxyapatite composites against Enterococcus faecalis].

    PubMed

    Liu, Yi; Zhou, Rongjing; Wu, Hongkun

    2015-06-01

    This study aims to compare and determine a kind of nano-hydroxyapatite composite material with good antibacterial efficacy on Enterococcusfaecalis (E. faecalis) in vitro. We investigated the antimicrobial activity of four kinds of nano-hydroxyapatite composites, namely, silver/hydroxyapatite composite nanoparticles (Ag/nHA), yttrium/hydroxyapatite composite nanoparticles (Yi/nHA), cerium/hydroxyapatite composite nanoparticles (Ce/nHA), and hydroxyapatite nanoparticles (nHA), against E. faecalis in vitro using the agar diffusion and broth dilution method by measuring the growth inhibition zone and the minimum inhibitory concentration (MIC), respectively. The agar diffusion test results showed that Ag/nHA displayed an obvious growth inhibition zone, whereas Yi/nHA, Ce/nHA, and nHA showed no influence on E. faecalis. The MIC value of Ag/nHA was 1.0 g.L-1, and the three other materials had no effect on E.faecalis even at the high concentration of 32.0 g.L-1. Ag/nHA display a potential antimicrobial efficacy to planktonic E.faecalis. Whereas, the three other kinds of nano-hydroxyapatite composites (Yi/nHA, Ce/nHA, nHA) show no influence.

  19. Ammonium iron(III) phosphate(V) fluoride, (NH4)0.5[(NH4)0.375K0.125]FePO4F, with ammonium partially substituted by potassium

    PubMed Central

    Wang, Lei; Zhou, Yan; Huang, Ya-Xi; Mi, Jin-Xiao

    2009-01-01

    The title compound, ammonium potassium iron(III) phosphate fluoride, (NH4)0.875K0.125FePO4F, is built from zigzag chains ∞ 1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [01] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octa­hedra via shared F-atom corners, and are linked by PO4 tetra­hedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H⋯O and two N—H⋯F). PMID:21581466

  20. Preparation and Thermoelectric Properties of Cu2Se Hot-Pressed from Hydrothermal Synthesis Nanopowders

    NASA Astrophysics Data System (ADS)

    Gao, F.; Leng, S. L.; Zhu, Z.; Li, X. J.; Hu, X.; Song, H. Z.

    2018-04-01

    The nanopowders of Cu2Se were synthesized by the hydrothermal method, and then were hot-pressed into bulk pellets. The effects of different preparation conditions on the structure and thermoelectric properties of Cu2Se nanocrystalline bulk alloys were investigated. The resistivity and Seebeck coefficients increase with the increment of hot-pressing temperatures, while they decrease with the increment of hot-pressing time, except for the Seebeck coefficients of the sample hot-pressed for 30 min. Based on the power factors and dimensionless thermoelectric figure-of-merit ( ZT) values, the optimum hot-pressing parameters are 700°C and 30 min.

  1. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds.

    PubMed

    Cordell, Jacqueline M; Vogl, Michelle L; Wagoner Johnson, Amy J

    2009-10-01

    While recognized as a promising bone substitute material, hydroxyapatite (HA) has had limited use in clinical settings because of its inherent brittle behavior. It is well established that macropores ( approximately 100 microm) in a HA implant, or scaffold, are required for bone ingrowth, but recent research has shown that ingrowth is enhanced when scaffolds also contain microporosity. HA is sensitive to synthesis and processing parameters and therefore characterization for specific applications is necessary for transition to the clinic. To that end, the mechanical behavior of bulk microporous HA and HA scaffolds with multi-scale porosity (macropores between rods in the range of 250-350 microm and micropores within the rods with average size of either 5.96 microm or 16.2 microm) was investigated in order to determine how strength and reliability were affected by micropore size (5.96 microm versus 16.2 microm). For the bulk microporous HA, strength increased with decreasing micropore size in both bending (19 MPa to 22 MPa) and compression (71 MPa to 110 MPa). To determine strength reliability, the Weibull moduli for the bulk microporous HA were determined. The Weibull moduli for bending increased (became more reliable) with decreasing pore size (7 to 10) while the Weibull moduli for compression decreased (became less reliable) with decreasing pore size (9 to 6). Furthermore, the elastic properties of the bulk microporous HA (elastic modulus of 30 GPa) and the compressive strengths of the HA scaffolds with multi-scale porosity (8 MPa) did not vary with pore size. The mechanisms responsible for the trends observed were discussed.

  2. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  3. Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Refaat, Ahmed; Youness, Rasha A.; Taha, Mohammed A.; Ibrahim, Medhat

    2017-11-01

    Zinc oxide (ZnO)-doped carbonate substituted hydroxyapatite (CHA) was successfully prepared with different ZnO contents up to 3 wt% and then samples were subjected to study with Fourier transform infrared (FTIR) spectroscopy. FTIR indicated that the interaction is physical and consequently molecular modeling was consulted to understand the effect of ZnO upon CHA. A model molecule of Ca10(PO4)6(OH)2·14H2O was built then interacted with Zn with different schemes through 4 active sites namely O of (PO4); O of OH; Ca of Ca(OH)2 and P of (PO4). For each interaction, two possibilities were tried; one through oxygen and the other through zinc of ZnO. The interaction of ZnO with CHA resulted in changes in the physical properties such as the final heat of formation, ionization potential, and even molecular dimensions. This may be due to the change in the electronic distribution which in turn changes the total dipole moment and hence the reactivity that could also affect the physical properties.

  4. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Lijie; Rodriguez, Jose; Raez, Jose; Myles, Andrew J.; Fenniri, Hicham; Webster, Thomas J.

    2009-04-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml-1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  5. A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement.

    PubMed

    Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric

    2005-07-01

    Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N

  6. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses.

    PubMed

    Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei

    2010-12-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  7. Influence of a TiN interlayer on the microstructure and mechanical properties of hydroxyapatite films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nelea, Valentin D.; Ristoscu, Carmen; Colis, Silviu; Arens, Simona; Pelletier, Herve; Mihailescu, Ion N.; Mille, Pierre

    2001-04-01

    Crystalline hydroxyapatite (HA) thin films grown on metallic substrates is the best choice for bone restoration. This is due to the good biological compatibility of the hydroxyapatite material combined with the good mechanical characteristics of the substrates. We deposit HA thin films by Pulsed Laser Deposition (PLD) in vacuum at room temperature using a KrF* excimer laser ((lambda) equals 248 nm, (tau) FWHM >= 20 ns). The depositions were performed directly on Ti-5Al-2.5Fe or on substrates previously coated with a TiN buffer layer. The HA deposited structures were characterized by complementary techniques: GIXRD, SEM, TEM, SAED, EDS and nanoindentation. Properties of the HA films grown with and without the TiN buffer were discussed in term of microstructure and mechanical behavior. The films with interlayer preserve the stoichiometry, are completely recrystallized and present better mechanical characteristics as compared with those without buffer.

  8. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...

  9. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...

  10. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...

  11. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...

  12. Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites.

    PubMed

    Sutter, B; Ming, D W; Clearfield, A; Hossner, L R

    2003-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.

  13. Mineralogical and chemical characterization of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Clearfield, A.; Hossner, L. R.

    2003-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.

  14. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    NASA Astrophysics Data System (ADS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-05-01

    A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  15. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites.

    PubMed

    Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).

  16. Geloina coaxans shell as calcium source on synthesis hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Yanti, P. H.; Kamiah, A.

    2018-04-01

    Geloina coaxans shell (GCS) is one of mullusc shell mainly composed by calcium carbonate. In this work, calcium carbonate has been converted to calcium oxide by calcination at 1000°C for 12 hours. The calcined of geloina coaxans shell were treated with HNO3 to produce Ca(NO3)2 as calcium source on synthesis hydroxyapatite. Orthophosphoric acid (H3PO4) was used as phosphate donor. Reaction of Ca/P has been done by precipitation method at molar ratio of precursors of 1.67 and pH adjusted at 10 using NH4OH. The XRD result revealed that hydoxyapatite can be prepared at 3 M of HNO3 and stirring time for 240 minutes. Specific band of hydroxyapatite such as PO4 and OH observed using FTIR instrument. Analysis of crystal size using Schererr equation proved nanosize of powder hydroxyapatite can be produced.

  17. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.

    PubMed

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  18. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    PubMed

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  19. Trifluoromethyl-substituted polymers

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Current work sponsored by the grant at Southwest Texas State University is directed toward the synthesis and characterization of: (1) N-alkylated polyamides derived from o-fluorinated diacids; (2) highly fluorinated polyethers; (3) polyesters derived from 2-hydroxy-2-propyl substituted arenes and/or 2,5-difluoroterephthalic acid; and (4) silicon-containing fluoropolymers. Work during the period from 1 July to 31 Dec. 1993 focused primarily on items 3 and 4 and on the development of a phosphorus containing modification of '12F-PEK.'

  20. Cementless Hydroxyapatite Coated Hip Prostheses

    PubMed Central

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  1. The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins.

    PubMed

    Bennick, A; Cannon, M; Madapallimattam, G

    1979-10-01

    Protein A and C, which are major components of the acidic proline-rich proteins in human saliva, were digested, before or after adsorption to hydroxyapatite, with alkaline phosphatase, trypsin, thermolysin and a proteinase preparation from salivary sediment. The results demonstrate that the binding site is located in the proline-poor N-terminal part of the protein, possibly between residues 3 and 25. Phosphoserine is necessary for maximal adsorption of the proteins to hydroxyapatite. When proteins A and C are adsorbed to hydroxyapatite before proteolytic digestion there is a protection of some of the susceptible bonds in the N-terminal part of the proteins and a gradual removal of the proline-rich C-terminal part. Thermolysin can cleave susceptible bonds in the part of the protein that remains bound to hydroxyapatite, but at least some of the resulting peptides are retained on the mineral. Since the ability of the proteins to inhibit hydroxyapatite formation and to bind calcium is located in the N-terminal proline-poor part, it is possible that these activities are retained after proteolytic digestion of the adsorbed proteins.

  2. Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells.

    PubMed

    López-Alvarez, M; Solla, E L; González, P; Serra, J; León, B; Marques, A P; Reis, R L

    2009-05-01

    The aim of this study consisted on investigating the influence of silicon substituted hydroxyapatite (Si-HA) coatings over the human osteoblast-like cell line (SaOS-2) behaviour. Diatomaceous earth and silica, together with commercial hydroxyapatite were respectively the silicon and HA sources used to produce the Si-HA coatings. HA coatings with 0 wt% of silicon were used as control of the experiment. Pulsed laser deposition (PLD) was the selected technique to deposit the coatings. The Si-HA thin films were characterized by Fourier Transformed Infrared Spectroscopy (FTIR) demonstrating the efficient transfer of Si to the HA structure. The in vitro cell culture was established to assess the cell attachment, proliferation and osteoblastic activity respectively by, Scanning Electron Microscopy (SEM), DNA and alkaline phosphatase (ALP) quantification. The SEM analysis demonstrated a similar adhesion behaviour of the cells on the tested materials and the maintenance of the typical osteoblastic morphology along the time of culture. The Si-HA coatings did not evidence any type of cytotoxic behaviour when compared with HA coatings. Moreover, both the proliferation rate and osteoblastic activity results showed a slightly better performance on the Si-HA coatings from diatoms than on the Si-HA from silica.

  3. Graphene oxide/oxidized carbon nanofiber/mineralized hydroxyapatite based hybrid composite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Murugan, N.; Sundaramurthy, Anandhakumar; Chen, Shen-Ming; Sundramoorthy, Ashok K.

    2017-12-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP), a multi-mineral substituted calcium phosphate is the main mineral component of tooth enamel and bone, has become an important biomaterial for biomedical applications. However, as-synthesized HAP has poor mechanical properties and inferior wear resistance, so it is not suitable to use in bone tissue engineering applications. We report the successful incorporation of oxidized carbon nanofibers (O-CNF) and graphene oxide (GO) into the mineralized hydroxyapatite (M-HAP) which showed excellent mechanical and biological properties. GO improved the high mechanical strength and corrosion protection of the substrate in simulated body fluid (SBF) solution and promoted the viability of osteoblasts MG63 cells. As-prepared M-HAP/O-CNF/GO composite showed materials characteristics that similar to natural bone (M-HAP) with high mechanical strength. The resultant M-HAP/O-CNF/GO composite was characterized out by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR), respectively. The mechanical strength of the material was determined by Vicker’s micro-hardness method and it was found that M-HAP/O-CNF/GO (468  ±  4 Hv) composite has superior mechanical properties than M-HAP (330  ±  3 Hv) and M-HAP/GO (425  ±  5 Hv) samples. In addition, antibacterial activity of the composite was studied against Staphylococcus aureus and Escherichia coli. Furthermore, the cell viability of the composite was observed in vitro against osteoblast cells. All these studies confirmed that the M-HAP/O-CNF/GO composite can be considered as potential candidate for dental and orthopedic applications.

  4. Solubility and Cation Exchange Properties of Synthetic Hydroxyapatite and Clinoptilolite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, Raymond E.; Ming, Douglas W.

    2003-01-01

    A zeoponic plant growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component. These systems: 1) can serve as a controllable and renewable fertilization system to provide plant growth nutrients; 2) can mitigate the adverse effects of contamination due to leaching of highly soluble and concentrated fertilizers; and 3) are being considered as substrates for plant growth in regenerative life-support systems for long-duration space missions. Batch-equilibrium studies of the dissolution and ion-exchange properties of mixtures of naturally-occurring Wyoming clinoptilolite (a zeolite) exchanged with K(+) or NH4(+); and synthetic hydroxyapatite were conducted to determine: 1) the plant availability of the macro-nutrients NH4-N, P, K, Ca, and Mg and 2) the effects of varying the clinoptilolite to hydroxyapatite ratio and the ratio of exchangeable cations (K(+) vs. NH4(+)) on clinoptilolite extraframework sites. The nutrients NH4-N (19.7 to 73.6 mg L(sup -1), P (0.57 to 14.99 mg L(sup- 1), K (14.8 to 104.9 mg L(sup -1), and Mg (0.11 to 6.68mg L(sup -1) are available to plants at sufficient levels. Solution Ca concentrations (0.47 to 3.40 mg L(sup -1) are less than optimal. Solution concentrations of NH4(+), K(+), Ca(2+), and Mg(2+) all decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. Solution concentrations of phosphorous initially increased, reached a maximum value and then decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. The NH4(+) -exchanged clinoptilolite is more efficient in dissolving synthetic hydroxyapatite than the K(+) -exchanged clinoptilolite. This suggests that NH4(+), which is less selective at clinoptilolite extraframework sites than K(+) is exchanged more readily by Ca(2+) and thereby enhances the dissolution of the synthetic hydroxyapatite.

  5. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells.

    PubMed

    Jiang, Jia; Hao, Wei; Li, Yuzhuo; Yao, Jinrong; Shao, Zhengzhong; Li, Hong; Yang, Jianjun; Chen, Shiyi

    2013-04-01

    A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.

  6. Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing.

    PubMed

    Chen, Xiaohu; Jin, Xiaoying; Tan, Junjun; Li, Wei; Chen, Minfang; Yao, Lan; Yang, Haitao

    2016-04-15

    Luminescent hydroxyapatite nanoparticles, which have excellent biocompatibility, excellent photostability, and strong fluorescence, have received increasing attention as bioprobes in cell imaging. However, they are also excellent candidates for use in ink-jet security printing. Successful products for related applications usually require highly crystalline, mono-dispersible hydroxyapatite nanorods with good colloidal stability and high fluorescence in aqueous media. These requirements are hard to simultaneously satisfy using most synthetic methods. In this paper, we report a simple and versatile hydrothermal method that incorporates the use of sodium citrate to prepare water-dispersible Eu(3+)-doped hydroxyapatite nanorods. The hydroxyapatite nanorods obtained using this method are highly crystalline rod-shaped particles with an average length of 50-80 nm and an average diameter of 15-30 nm. Dispersions of these hydroxyapatite nanorods, which are transparent with a slightly milky color under natural light and a bright red color when excited with 241 nm UV light, display zeta potentials of -35 mV and hydrodynamic diameters of 120 nm. These dispersions remain colloidally stable for a few months. Dispersions with these properties could be easily applied to security printing for confidential information storage and anti-counterfeiting technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Scaled-Up Synthesis of Nanostructured Ultra-High-Temperature Ceramics and Resistance Sintering of Tantalum Carbide Nanopowders and Composites

    NASA Astrophysics Data System (ADS)

    Kelly, James P.

    Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution

  8. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    PubMed Central

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  9. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  10. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    PubMed Central

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  11. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites.

    PubMed

    Bareiro, O; Santos, L A

    2014-03-01

    Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Laser ablation ICP-MS analysis on nano-powder pellets and applications to granite bulk rock analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shitou; Karius, Volker; Wörner, Gerhard

    2017-04-01

    Granites are a ubiquitous component of the continental crust and knowing their precise trace element signatures is essential in understanding the origins and evolution of the continental crust. ICP-MS bulk analysis of granite is generally conducted on solution after acid-digestion. However this technique has several deficiencies related to the difficulty of completely dissolving accessary minerals such as zircon and the instability/adsorption of high valence trace elements (Nb, Ta et al.) in acid solutions. The development of a nano-powder pellet technique by using wet milling procedure, and its combination with laser ablation ICP-MS has been proposed to overcome these problems. In this study, we produced nano-powders from a series of granite rock standards by wet milling in agate using a high power planetary ball mill instrument. The procedure was tested and optimized by modifying parameters (ball to powder ratio, water to powder ratio, milling power etc.). Characterization of nano-powders was conducted by various techniques including electron microprobe (EMP), secondary electron imaging, polarizing microscope, and laser particle size analyzer (LPSA) and laser scanning confocal microscope (LSCM). Particle sizes range from a few nm to 5 μm with a small secondary mode at around 10 to 20 μm that probably represent particle aggregates rather than remaining crystal grains after milling. Pellets of 5 mm in diameter were pressed into molds of cellulose at 1.75 *103 N/cm2. Surface roughness of the pellets was measured by LSCM and gave a Ra of 0.494 μm, which is an order higher than the surface of polished ATGH-G reference glass surface (Ra: 0.048 μm), but sufficient for laser ablation. Sources of contamination either from abrading agate balls or from ultrapure water were evaluated and quantified. The homogeneity of powder pellets down to less than 5 μm size was documented based on EMPA element mapping and statistical analyses of LA-ICP-MS in discrete spot and line

  13. In vitro fabrication of dental filling nanopowder by green route and its antibacterial activity against dental pathogens.

    PubMed

    Lee, Jeong-Ho; Velmurugan, Palanivel; Park, Jung-Hee; Lee, Kui-Jae; Jin, Jong-Sik; Park, Yool-Jin; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-06-01

    The aim of this study was to introduce novel Sn, Cu, Hg, and Ag nanopowders (NPs) and a composite nanopowder (NP) synthesized using Salvia miltiorrhiza Bunge (SM) root extract as a reducing and capping agent to improve the antibacterial property of dental filling materials. All of the NPs obtained were characterized using a scanning transmission electron microscope (STEM), and energy dispersive X-ray (EDX) spectrum imaging was performed to map the elemental distributions of the NP composite. Fourier transform infrared (FTIR) spectroscopy was performed to identify the role of various functional groups in all of the obtained NPs and the phyto-compound responsible for the reduction of various metal ions. The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized NP. The antibacterial properties of the synthesized Sn, Cu, Hg, Ag, composite NP, SM root extract, and commercial amalgam powder were evaluated. The Cu, composite NP, SM root extract and Ag NP displayed excellent antibacterial activity against dental bacteria Streptococcus mutans and Lactobacillus acidophilus. The results of this study require further evaluation for signs of metal toxicity in appropriate animal models. However, the results are encouraging for the application of metal NPs as suitable alternatives for antibiotics and disinfectants, especially in dental filling materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications

    PubMed Central

    Wilcock, Caroline J.; Gentile, Piergiorgio; Hatton, Paul V.; Miller, Cheryl A.

    2017-01-01

    Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health

  15. Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications.

    PubMed

    Wilcock, Caroline J; Gentile, Piergiorgio; Hatton, Paul V; Miller, Cheryl A

    2017-02-23

    Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health

  16. The addition of nanostructured hydroxyapatite to an experimental adhesive resin.

    PubMed

    Leitune, Vicente Castelo Branco; Collares, Fabrício Mezzomo; Trommer, Rafael Mello; Andrioli, Daniela Guerra; Bergmann, Carlos Pérez; Samuel, Susana Maria Werner

    2013-04-01

    Was produced nanostructured hydroxyapatite (HAnano) and evaluated the influence of its incorporation in an adhesive resin. HAnano was produced by a flame-based process and was characterized by scanning electron microscopy. The surface area, particle size, micro-Raman and cytotoxicity were evaluated. The organic phase was formulated by mixing 50 wt.% Bis-GMA, 25 wt.% TEGDMA, and 25 wt.% HEMA. HAnano was added at seven different concentrations: 0; 0.5; 1; 2; 5; 10 and 20 wt.%. Adhesive resins with hydroxyapatite incorporation were evaluated for their radiopacity, degree of conversion, flexural strength, softening in solvent and microshear bond strength. The data were analyzed by one-way ANOVA and Tukey's post hoc test (α=0.05), except for softening in solvent (paired t-test) and cytotoxicity (two-way ANOVA and Bonferroni). HAnano presented 15.096 m(2)/g of specific surface area and a mean size of 26.7 nm. The radiopacity values were not different from those of 1-mm aluminium. The degree of conversion ranged from 52.2 to 63.8%. The incorporation of HAnano did not influence the flexural strength, which ranged from 123.3 to 143.4MPa. The percentage of reduction of the microhardness after immersion in the solvent became lower as the HAnano concentration increased. The addition of 2% nanostructured hydroxyapatite resulted in a higher value of microshear bond strength than the control group (p<0.05). The incorporation of 2% of nanostructured hydroxyapatite into an adhesive resin presented the best results. The incorporation of nanostructured hydroxyapatite increases the adhesive properties and may be a promising filler for adhesive resin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Hydroxyapatite ocular implant and non-integrated implants in eviscerated patients

    PubMed Central

    Gradinaru, S; Popescu, V; Leasu, C; Pricopie, S; Yasin, S; Ciuluvica, R; Ungureanu, E

    2015-01-01

    Introduction: This study compares the outcomes and complications of hydroxyapatite ocular implant and non-integrated ocular implants following evisceration. Materials and Methods: This is a retrospective study of 90 patients who underwent evisceration for different ocular affections, in the Ophthalmology Department of the University Emergency Hospital Bucharest, between January 2009 and December 2013. The outcomes measured were conjunctival dehiscence, socket infection, implant exposure and extrusion rate. Results: Forty-three patients had the hydroxyapatite implant (coralline–Integrated Ocular Implants, USA or synthetic–FCI, France) and forty-seven received non-integrated ocular implants (24 acrylic and 23 silicone). Five cases of socket infection, thirteen cases of extrusion and two cases of conjunctival dehiscence were encountered. Conclusions: There was a higher rate of conjunctival dehiscence with hydroxyapatite ocular implant, but implant extrusion and socket infection were found in non-integrated ocular implants. PMID:25914747

  18. Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: Through molecular control of interfaces

    NASA Astrophysics Data System (ADS)

    Verma, Devendra

    In this dissertation, novel biomaterials are designed for bone biomaterials and bone tissue engineering applications. Novel biomaterials of hydroxyapatite with synthetic and natural polymers have been fabricated using a combination of processing routes. Initially, we investigated hydroxyapatite-polycaprolactone-polyacrylic acid composites and observed that minimal interfacial interactions between polymer and mineral led to inadequate improvement in the mechanical properties. Bioactivity experiments on these composites showed that the presence of functional groups, such as carboxylate groups, influence bioactivity of the composites. We have developed and investigated composites of hydroxyapatite with chitosan and polygalacturonic acid (PgA). Chitosan and PgA are biocompatible, biodegradable, and also electrostatically complementary to each other. This strategy led to significant improvement in mechanical properties of new composites. The nanostructure analysis using atomic force microscopy revealed a multilevel organization in these composites. Enhancement in mechanical response was attributed to stronger interfaces due to strong electrostatic interaction between oppositely charged chitosan and PgA. Further analysis using the Rietveld method showed that biopolymers have marked impact on hydroxyapatite crystal growth and also on its crystal structure. Significant changes were observed in the lattice parameters of hydroxyapatite synthesized by following biomineralization method (organics mediated mineralization). For scaffold preparation, chitosan and PgA were mixed first, and then, nano-hydroxyapatite was added. Oppositely charged polyelectrolytes, such as chitosan and PgA, spontaneously form complex upon mixing. The poly-electrolyte complex exists as nano-sized particles. Chitosan/PgA scaffolds with and without hydroxyapatite were prepared by the freeze drying method. By controlling the rate of cooling and concentration, we have produced both fibrous and sheet

  19. Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pan, Yusong; Xiong, Dangsheng

    2010-10-01

    Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.

  20. Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets

    PubMed Central

    JANG, SEOK JIN; KIM, SE EUN; HAN, TAE SUNG; SON, JUN SIK; KANG, SEONG SOO; CHOI, SEOK HWA

    2017-01-01

    This study was undertaken to assess bone regeneration using hydroxyapatite (HA). The primary focus was comparison of bone regeneration between granular HA (gHA) forms and porous HA (pHA) scaffold. The extracted canine alveolar sockets were divided with three groups: control, gHA and pHA. Osteogenic effect in the gHA and pHA groups showed bone-specific surface and bone mineral density to be significantly higher than that of the control group (p<0.01). Bone volume fraction, bone mineral density, and amount of connective tissue related to disturbing osseointegration of the gHA group was higher than in the pHA group. Quantity of new bone formation of the pHA group was higher than that of the gHA group. This study demonstrated that gHA and pHA are potentially good bone substitutes for alveolar socket healing. For new bone formation during 8 weeks' post-implantation, HA with porous scaffold was superior to the granular form of HA. PMID:28438860

  1. Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Qian, Yitai; Xu, Liqiang

    2009-03-01

    In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.

  2. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    PubMed

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  3. Sintering and microstructure property relationships of porous hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zakaria, Fadzil Ayad

    2000-09-01

    The use of ceramics inside the body, as implant materials, is a relatively new technology, the first instance having been reported just 20 years ago. The ceramics used for the repair and reconstruction of diseased, damaged or 'worn out' parts of the body are referred to as bioceramics, and such a material is hydroxyapatite. The use of calcium phosphate to repair bone defects has been based on the rationale that calcium phosphate resembles vertebrate tooth and bone mineral, and is biologically compatible with these and surrounding tissues. The concept of preparing porous hydroxyapatite was developed to prevent loosening of implants by enhancing the ingrowth of tissue into the pores (biological fixation). A structural limitation of this type of implant is the requirement to have a minimal pore size between 80- 100 m in diameter to allow bone to grow into the pores. The presence of such porosity would lead to a lower strength of the bioceramic component, but this is offset by the advantages of biocompatibility. It is well known that hydroxyapatite is a brittle material and making it porous would reduce the existing mechanical properties. This study was carried out to optimise the mechanical properties by investigating the processing conditions and methods of preparation. The effect of forming method, pore geometry, pore size, sintering cycle, sintering atmosphere and types of spherical polymers on the microstructure and mechanical properties were studied. As a consequence of the experiments, it was observed that porous hydroxyapatite is formed using an isostatic pressing technique, with 53 vol. % of HMWPVC as the porosifier. Sintering in air, with a heating rate of 50C/h, held for 1h at 600C in the first stage, and a heating rate of 100C/h, held for 4h at between 1200 and 1250C, generated a spherical pore geometry which gave the best combination of properties. This fabrication route resulted in an interconnected porous hydroxyapatite with a pore size ~90 m, the volume

  4. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy.

    PubMed

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.

  5. Fabrication and Characterization of Carbon Fiber-Reinforced Nano-Hydroxyapatite/Polyamide46 Biocomposite for Bone Substitute.

    PubMed

    Deng, Zhennan; Han, Hongjuan; Yang, Jingyuan; Li, Yuanyuan; Du, Shengnan; Ma, Jianfeng

    2017-05-24

    BACKGROUND Ideal bone repair material should be of good biocompatibility and high bioactivity. Besides, their mechanical properties should be equivalent to those of natural bone. The objective of this study was to fabricate a novel biocomposite suitable for load-bearing bone defect repair. MATERIAL AND METHODS A novel biocomposite composed of carbon fiber, hydroxyapatite and polyamide46 (CF/HA/PA46) was fabricated, and its mechanical performances and preliminary cell responses were evaluated to explore its feasibility for load-bearing bone defect repair. RESULTS The resultant CF/HA/PA46 biocomposite showed a bending strength of 159-223 MPa, a tensile strength of 127-199 MPa and a tensile modulus of 7.7-10.8 GPa, when the CF content was 5-20% (mass fraction) in biocomposite. The MG63 cells, showing an osteogenic phenotype, were well adhered and spread on the surface of the CF/HA/PA46 biocomposite. Moreover, the cells vitality and differentiation on the CF/HA/PA46 biocomposite surface were obviously increased during the culture time and there was no significant difference between the CF/HA/PA46 biocomposite and HA/PA (as control) at all the experimental time (P>0.05). CONCLUSIONS The addition of CF into HA/PA46 composite manifest improved the mechanical performances and showed favorable effects on biocompatibility of MG63 cells. The obtained biocomposite has high potential for bone repair in load-bearing sites.

  6. Fabrication and Characterization of Carbon Fiber-Reinforced Nano-Hydroxyapatite/Polyamide46 Biocomposite for Bone Substitute

    PubMed Central

    Deng, Zhennan; Han, Hongjuan; Yang, Jingyuan; Li, Yuanyuan; Du, Shengnan; Ma, Jianfeng

    2017-01-01

    Background Ideal bone repair material should be of good biocompatibility and high bioactivity. Besides, their mechanical properties should be equivalent to those of natural bone. The objective of this study was to fabricate a novel biocomposite suitable for load-bearing bone defect repair. Material/Methods A novel biocomposite composed of carbon fiber, hydroxyapatite and polyamide46 (CF/HA/PA46) was fabricated, and its mechanical performances and preliminary cell responses were evaluated to explore its feasibility for load-bearing bone defect repair. Results The resultant CF/HA/PA46 biocomposite showed a bending strength of 159–223 MPa, a tensile strength of 127–199 MPa and a tensile modulus of 7.7–10.8 GPa, when the CF content was 5–20% (mass fraction) in biocomposite. The MG63 cells, showing an osteogenic phenotype, were well adhered and spread on the surface of the CF/HA/PA46 biocomposite. Moreover, the cells vitality and differentiation on the CF/HA/PA46 biocomposite surface were obviously increased during the culture time and there was no significant difference between the CF/HA/PA46 biocomposite and HA/PA (as control) at all the experimental time (P>0.05). Conclusions The addition of CF into HA/PA46 composite manifest improved the mechanical performances and showed favorable effects on biocompatibility of MG63 cells. The obtained biocomposite has high potential for bone repair in load-bearing sites. PMID:28536416

  7. Effect of Reaction Period on Stoichiometry, Phase Purity, and Morphology of Hydrothermally Synthesized Cu2NiSnS4 Nanopowder

    NASA Astrophysics Data System (ADS)

    Babu, G. Sahaya Dennish; Shajan, X. Sahaya; Alwin, S.; Ramasubbu, V.; Balerao, Gopal M.

    2018-01-01

    The effect of reaction period on the phase purity, morphology, and stoichiometry of Cu2NiSnS4 (CNTS) nanopowder prepared by hydrothermal method has been investigated. Polyvinylpyrrolidone (PVP) and thioglycolic acid were used as capping agent and sulfur source, respectively. The presence of cubic stannite crystal structure and its phase purity were confirmed by powder x-ray diffraction analysis and Raman spectroscopy. Furthermore, the morphological, crystallographic, and optical features of the prepared CNTS nanopowder were characterized by field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible (UV-Vis) spectrophotometry. The elemental ratios of Cu/(Ni + Sn) and Ni/Sn showed that the stoichiometry of CNTS was maintained for the compounds synthesized at 230°C with reaction period of 24 h. The occurrence of Cu+, Ni2+, Sn4+, and S2- was evaluated by x-ray photoelectron spectroscopy. The prepared material was used as counter electrode in a dye-sensitized solar cell (DSSC) as an alternative to platinum (Pt), resulting in conversion efficiency of 0.92%. These results indicate that CNTS is a prospective material to replace conventional Pt-based counter electrodes in DSSCs.

  8. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes.

    PubMed

    Ionita, Daniela; Bajenaru-Georgescu, Daniela; Totea, Georgeta; Mazare, Anca; Schmuki, Patrik; Demetrescu, Ioana

    2017-01-30

    Herein we investigate the efficiency of various biomimetic coatings for localized drug delivery, using vancomycin as key therapeutic drug, which is a widely used antibiotic for the treatment of strong infections caused by positive Gram bacteria. We evaluate classical hydroxyapatite and biomimetic hydroxyapatite-collagen coatings obtained by electrochemical deposition as well as TiO 2 nanotubes arrays obtained by electrochemical anodization. Surface morphology, compositional and structural data confirm the incorporation of vancomycin into the layers and drug release profiles for vancomycin evaluate their release ability. Namely, hydroxyapatite coatings lead to a ≈92% vancomycin release after 30h and hydroxyapatite-collagen to 85%, while the TiO 2 nanotubes layers lead to 78% release. The antibacterial effect of such drug loaded coatings is evaluated against S. aureus (Gram-positive bacteria). Our study shows that the vancomycin incorporated hydroxyapatite coatings lead to a faster release, while the nanotubular coatings may lead to longer time release and additionally both types of coatings ensure a good antibacterial inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials.

    PubMed

    Yokoyama, Atsuro; Yamamoto, Satoru; Kawasaki, Takao; Kohgo, Takao; Nakasu, Masanori

    2002-02-01

    We developed a calcium phosphate cement that could be molded into any desired shape due to its chewing-gum-like consistency after mixing. The powder component of the cement consists of alpha-tricalcium phosphate and tetracalcium phosphate, which were made by decomposition of hydroxyapatite ceramic blocks. The liquid component consists of citric acid, chitosan and glucose solution. In this study, we used 20% citric acid (group 20) and 45% citric acid (group 45). The mechanical properties and biocompatibility of this new cement were investigated. The setting times of cements were 5.5 min, in group 20 and 6.4 min, in group 45. When incubated in physiological saline, the cements were transformed to hydroxyapatite at 3, and 6 weeks, the compressive strengths were 15.6 and 20.7 MPa, in group 45 and group 20, respectively. The inflammatory response around the cement implanted on the bone and in the subcutaneous tissue in rats was more prominent in group 45 than in group 20 at 1 week after surgery. After 4 weeks, the inflammation disappeared and the cement had bound to bone in both groups. These results indicate that this new calcium phosphate cement is a suitable bone substitute material and that the concentration of citric acid in the liquid component affects its mechanical properties and biocompatibility.

  10. Solid state solubility of copper oxides in hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  11. Copper Causes Regiospecific Formation of C4F8-Containing Six-Membered Rings and their Defluorination/Aromatization to C4F4-Containing Rings in Triphenylene/1,4-C4F8I2 Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rippy, Kerry C.; Bukovsky, Eric V.; Clikeman, Tyler T.

    The presence of Cu in reactions of triphenylene (TRPH) and 1,4-C4F8I2 at 360 °C led to regiospecific substitution of TRPH ortho C(β) atoms to form C4F8-containing rings, completely suppressing substitution on C(α) atoms. In addition, Cu caused selective reductive-defluorination/aromatization (RD/A) to form C4F4- containing aromatic rings. Without Cu, the reactions of TRPH and 1,4- C4F8I2 were not regiospecific and no RD/A was observed. These results, supported by DFT calculations, are the first examples of Cupromoted (i) regiospecific perfluoroannulation, (ii) preparative C–F activation, and (iii) RD/A. HPLC-purified products were characterized by X-ray diffraction, low-temperature PES, and 1H/19F NMR.

  12. Effect of nanocrystalline hydroxyapatite socket preservation on orthodontically induced inflammatory root resorption.

    PubMed

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10(-4)mm(2) in the maxilla and 21.41 ± 11.25×10(-4)mm(2) in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®.

  13. Effect of small peptide (P-15) on HJMSCs adhesion to hydroxyap-atite

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Tong, Xin; Hu, QinGang; Mou, YongBin; Qin, HaiYan

    2016-02-01

    P-15, a synthetic peptide of 15-amino acids, has been tested in clinical trials to enhance cell adhesion and promote osseointe- gration. This feature of P-15 has also inspired the development of designing new bone substitute materials. Despite the increasing applications of P-15 in bone graft alternatives, few studies focus on the mechanism of cell adhesion promoted by P-15 and the mechanical property changes of the cells interacting with P-15. In this article, we used atomic force microscope (AFM) based single cell indentation force spectroscopy to study the impact of P-15 on the stiffness and the adhesion ability of human jaw bone mesenchymal stem cells (HJMSCs) to hydroxyapatite (HA). We found that the stiffness of HJMSCs increases as the concentration of P-15 grows in short culture intervals and that the adhesion forces between HJMSCs and HA particles in both the presence and absence of P-15 are all around 30pN. Moreover, by calculating the binding energy of HJMSCs to HA particles mixed with and without P-15, we proved that P-15 could increase the adhesion energy by nearly four times. Scanning electron microscope (SEM) was also exploited to study the morphology of HJMSCs cultured in the presence and absence of P-15 on HA disc surface for a short term. Apparent morphological differences were observed between the cells cultured with and without P-15. These results explain the probable underlying adhesion mechanism of HJMSC promoted by P-15 and can serve as the bases for the design of bone graft substitute materials.

  14. Effect of Nanocrystalline Hydroxyapatite Socket Preservation on Orthodontically Induced Inflammatory Root Resorption

    PubMed Central

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742

  15. Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride

    NASA Astrophysics Data System (ADS)

    Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette

    2014-06-01

    The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.

  16. Evaluation of the Antimicrobial Activity of Different Antibiotics Enhanced with Silver-Doped Hydroxyapatite Thin Films

    PubMed Central

    Predoi, Daniela; Popa, Cristina Liana; Chapon, Patrick; Groza, Andreea; Iconaru, Simona Liliana

    2016-01-01

    The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp), silver-doped hydroxyapatite (Ag:HAp) and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp) or ciprofloxacin (C-HAp and C-Ag:HAp) have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM). In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX) and glow discharge optical emission spectroscopy (GDOES) measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO4)6(OH)2 with xAg = 0 (HAp) and xAg = 0.2 (Ag:HAp). On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers. PMID:28773899

  17. Preparation and Characterization of Fine-Particle NTO and Its Formulation with Al Nanopowders

    NASA Astrophysics Data System (ADS)

    Lee, K.-Y.; Kennedy, J. E.; Asay, B. W.; Son, S. F.; Martin, E. S.

    2004-07-01

    We have initiated study of the effect of nano-aluminum on the detonation performance of NTO. A novel method for the preparation of both fine-particle NTO (UF-NTO) and its formulation with Al nanopowder has been developed. Results from small-scale sensitivity tests on both the UF-NTO and aluminized NTO composite indicated that they are insensitive to impact, friction and HESD. The performance of both UF-NTO and NTO/Al mix was evaluated by detonation-spreading floret tests. At the same pressed density, it was found that, when initiated by a 3-mm-diameter flyer plate, the aluminized NTO composite produced a shallower dent on a copper witness plate than neat UF-NTO and thus was inferior to UF-NTO in detonation spreading.

  18. Properties of Basil and Lavender Essential Oils Adsorbed on the Surface of Hydroxyapatite.

    PubMed

    Predoi, Daniela; Groza, Andreea; Iconaru, Simona Liliana; Predoi, Gabriel; Barbuceanu, Florica; Guegan, Regis; Motelica-Heino, Mikael Stefan; Cimpeanu, Carmen

    2018-04-24

    The research conducted in this study presented for the first time results of physico-chemical properties and in vitro antimicrobial activity of hydroxyapatite plant essential oil against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus 0364) and Gram-negative bacteria ( Escherichia coli ATCC 25922). The samples were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy to determine the morphology and structure of the nanocomposites of hydroxyapatite coated with basil (HAp-B) and lavender (HAp-L) essential oils (EOs). The values of the BET specific surface area (S BET ), total pore volume (V P ) and pore size (D P ) were determined. The results for the physico-chemical properties of HAp-L and HAp-B revealed that lavender EOs were well adsorbed on the surface of hydroxyapatite, whereas basil EOs showed a poor adsorption on the surface of hydroxyapatite. We found that the lavender EOs hydroxyapatite (HAp-L) exhibited a very good inhibitory growth activity. The value of the minimum inhibitory concentration (MIC) related to growth bacteria was 0.039 mg/mL for MRSA, 0.02 mg/mL for S. aureus and 0.039 mg/mL E. coli ATCC 25922. The basil EO hydroxyapatite (HAp-B) showed poor inhibition of bacterial cell growth. The MIC value was 0.625 mg/mL for the HAp-B sample in the presence of the MRSA bacteria, 0.313 mg/mL in the presence of S. aureus and 0.078 mg/mL for E. coli ATCC 25922.

  19. Microleakage and antibacterial properties of ZnO and ZnO:Ag nanopowders prepared via a sol-gel method for endodontic sealer application

    NASA Astrophysics Data System (ADS)

    Shayani Rad, M.; Kompany, A.; Khorsand Zak, A.; Javidi, M.; Mortazavi, S. M.

    2013-09-01

    One of the most important problems in dentistry is the microleakage, whether apical or coronal, which may cause failure of root canal therapy. The aim of this study is to prepare suitable sealer to decrease the microleakage of the root canals as well as having good antibacterial property. Pure ZnO and ZnO:Ag nanopowders were synthesized via sol gel method using gelatin as polymerization agent calcined at different temperatures of 500, 600, and 700 °C for 8 h. The prepared samples were characterized using X-ray diffraction and transition electron microscopy. The microleakage and antibacterial properties of the prepared samples were investigated and compared with zinc oxide eugenol (ZOE) and epoxy resin sealer (AH26), which are commonly used in dentistry as sealers. The results showed that the synthesized pure ZnO and ZnO:Ag nanopowders exhibit better microleakage and antibacterial properties in comparison with ZOE and AH26 sealers, and therefore are more suitable filling materials to be used as sealer in root canal treatment.

  20. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.