Sample records for f-t catalysts suitable

  1. Attrition Resistant Iron-Based Catalysts For F-T SBCRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2006-01-31

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+ H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-(FE) based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment; makes the separation of catalyst from the oil/wax product very difficult, if not impossible; and results in a steady loss of catalyst from the reactor. Under a previous Department of Energy (DOE)/University Research Grant (UCR) grant, Hampton University reported, for the first time, the development of demonstrably attrition-resistant Fe F-T synthesis catalysts having good activity, selectivity, and attrition resistance. These catalysts were prepared by spray drying Fe catalysts with potassium (K), copper (Cu), and silica (SiO{sub 2}) as promoters. SiO{sub 2} was also used as a binder for spray drying. These catalysts were tested for activity and selectivity in a laboratory-scale fixed-bed reactor. Fundamental understanding of attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried HPR-43 catalyst having average particle size (aps) of 70 {micro}m with high attrition resistance. This HPR-43 attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5+} selectivity of >78% and methane selectivity of less than 5% at

  2. Technology development for cobalt F-T catalysts. Quarterly technical progress report number 10, January 1--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, A.H.

    1995-06-28

    The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less

  3. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.

    1997-09-22

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a seriousmore » problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  4. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.G.; Spivey, J.J.

    1997-03-26

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  5. Attrition resistant catalysts for slurry-phase Fischer-Tropsch process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Jothimurugesan

    1999-11-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process lowmore » H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.« less

  6. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JAMES G. GOODWIN, JR.; JAMES J. SPIVEY; K. JOTHIMURUGESAN

    1998-09-17

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and

  7. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with themore » use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a

  8. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  9. Fischer-Tropsch Catalysts

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Taylor, Jesse W. (Inventor)

    2008-01-01

    Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.

  10. Development of attrition resistant iron-based Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-20

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.« less

  11. F-T process using an iron on mixed zirconia-titania supported catalyst

    DOEpatents

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1987-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  12. Visible light-induced degradation of acetone over SO42-/MoOx/MgF2 catalysts.

    PubMed

    He, Yiming; Sheng, Tianlu; Wu, Ying; Chen, Jianshan; Fu, Ruibiao; Hu, Shengming; Wu, Xintao

    2009-08-30

    A visible light active photodegration catalyst was prepared by doping MoO(3) into MgF(2) matrix. The addition of SO(4)(2-) into MoO(x)/MgF(2) could improve the catalytic activity greatly and an acetone conversion of 96.1% under visible light was obtained on the SO(4)(2-)/5%MoO(x)/MgF(2) (SMM) catalyst. By BET, XRD, Raman, FT-IR, XPS, UV-vis technology the specific area, structure and photoadsorption ability of the catalysts were characterized. The high photocatlaytic activity of the SMM catalyst is attributed to its large specific area, the high dispersal of MoO(3) domains in MgF(2) and the inhibiting effect of MgF(2) matrix on the electron-hole pair recombination.

  13. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditionsmore » as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).« less

  14. Fischer-Tropsch Cobalt Catalyst Activation and Handling Through Wax Enclosure Methods

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer L. S.; Yen, Chia H.; Nakley, Leah M.; Surgenor, Angela D.

    2016-01-01

    Fischer-Tropsch (F-T) synthesis is considered a gas to liquid process which converts syn-gas, a gaseous mixture of hydrogen and carbon monoxide, into liquids of various hydrocarbon chain length and product distributions. Cobalt based catalysts are used in F-T synthesis and are the focus of this paper. One key concern with handling cobalt based catalysts is that the active form of catalyst is in a reduced state, metallic cobalt, which oxidizes readily in air. In laboratory experiments, the precursor cobalt oxide catalyst is activated in a fixed bed at 350 ?C then transferred into a continuous stirred tank reactor (CSTR) with inert gas. NASA has developed a process which involves the enclosure of active cobalt catalyst in a wax mold to prevent oxidation during storage and handling. This improved method allows for precise catalyst loading and delivery into a CSTR. Preliminary results indicate similar activity levels in the F-T reaction in comparison to the direct injection method. The work in this paper was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  15. Thermodynamics and cosmological reconstruction in f(T , B) gravity

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Zubair, M.; Abbas, G.

    2018-03-01

    Recently, it was formulated a teleparallel theory called f(T , B) gravity which connects both f(T) and f(R) under suitable limits. In this theory, the function in the action is assumed to depend on the torsion scalar T and also on a boundary term related with the divergence of torsion, B = 2∇μTμ. In this work, we study different features of a flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in this theory. First, we show that the FLRW equations can be transformed to the form of Clausius relation TˆhSeff = - dE + WdV, where Tˆh is the horizon temperature and Seff is the entropy which contains contributions both from horizon entropy and an additional entropy term introduced due to the non-equilibrium. We also formulate the constraint for the validity of the generalised second law of thermodynamics (GSLT). Additionally, using a cosmological reconstruction technique, we show that both f(T , B) and - T + F(B) gravity can mimic power-law, de-Sitter and ΛCDM models. Finally, we formulate the perturbed evolution equations and analyse the stability of some important cosmological solutions.

  16. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  17. Cosmological reconstruction and stability in F(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    This study investigates the reconstruction scheme and stability of some well-known cosmological models in F(T,TG) gravity, where T and TG represent the torsion scalar and Gauss-Bonnet invariant torsion term, respectively. For this purpose, we consider isotropic homogeneous universe model and develop the corresponding field equations. It is found that we can reproduce cosmological evolution for power-law, de Sitter solutions, phantom/nonphantom era and Λ cold dark matter by applying reconstruction scheme in this gravity. Finally, we discuss stability of the reconstructed power-law and de Sitter solutions as well as two well-known F(T,TG) models. It is concluded that all these models provide stable solutions for suitable choices of the constants except power-law solutions.

  18. LRS Bianchi Type-I Bulk Viscous Cosmological Models in f( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Sahoo, P.; Reddy, R.

    2018-03-01

    We have studied the locally rotationally symmetric (LRS) Bianchi type-I cosmological model in f ( R, T) gravity (R is the Ricci scalar and T is the trace of the stress energy tensor) with bulk viscous fluid as matter content. The model is constructed for the linear form f ( R, T) = R + 2 f ( T). The exact solution of the field equations is obtained by using a time varying deceleration parameter q for a suitable choice of the function f ( T). In this case, the bulk viscous pressure \\overline{p} is found to be negative and the energy density ρ is found to be positive. The obtained model is anisotropic, accelerating, and compatible with the results of astronomical observations. Also, some important features of physical parameters of this model have been discussed.

  19. Demetallation and hydrocracking of Arab heavy 650{degrees}F{sup +} resid over CoMo/carbon supported catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankel, L.A.

    1993-12-31

    Arab Heavy 650{degrees}F{sup +} atmospheric resid has been hydroprocessed over different CoMo/activated carbon catalysts and the results compared to processing with a conventional CoMo/alumina catalyst. Demetallation activity for the activated carbon catalysts depends on the activated carbon chosen as well as the way the Co and Mo metals are applied to the carbon. Hydroprocessing Arab Heavy 650{degrees}F{sup +} resid at 1500 psig showed that 87% demetallation over CoMo/Darco activated carbon was produced vs {approximately}73% demetallation over CoMo/alumina at about the same 1000{degrees}F conversion with 200-400 SCF/BBL less H-consumption. Desulfurization activity and CCR conversion were 10-20% higher for CoMo/alumina vs CoMo/Darcomore » activated carbon, consistent with higher H-consumption. Potential advantages for resid processing over carbon supported catalysts induce high levels of demetallation, reduced costs for carbon vs alumina, and easy recovery of metals by catalysts combustion.« less

  20. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  1. f(T,T) gravity and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harko, Tiberiu; Lobo, Francisco S.N.; Otalora, G.

    2014-12-01

    We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor T. The resulting f(T,T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-dividemore » crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.« less

  2. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  3. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2003-12-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away frommore » fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2

  4. Attrition of precipitated iron Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datye, A.K.; Reardon, J.; Hanprasopwattana, A.

    1996-12-31

    Precipitated Iron catalysts used in slurry phase bubble column reactors are known to undergo attrition during use. The attrition reduces the lifetime of the catalyst as well as causing problems in separating the product liquids from the catalyst. In this study, the authors have investigated the underlying mechanisms that lead to attrition in precipitated iron catalysts. They have discovered that attrition takes place on two length scales. On the macro scale, attrition is caused by the break-up of the weak agglomerates that constitute this catalyst into individual crystallites. Addition of binders such as kaolin does not help significantly in strengtheningmore » the catalyst particles. In addition, there is a second process leading to nanoscale attrition that is caused by the break-up of individual iron oxide crystallites into nano particles of iron carbide as the catalyst is activated for reaction. Design of attrition resistant F-T catalysts must consider these two modes of catalyst attrition. Preliminary work in the laboratory directed at improving the attrition resistance of precipitated iron catalysts will also be described in this paper.« less

  5. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    DOEpatents

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  6. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2001-09-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5}{sup +} selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition

  7. Suitability of eastern pines for oviposition and survival of Sirex noctilio F.

    PubMed

    Haavik, Laurel J; Dodds, Kevin J; Allison, Jeremy D

    2017-01-01

    The European woodwasp, Sirex noctilio F., is a pest of pines in many areas around the world. Since its introduction to North America, the distribution of S. noctilio overlaps with a known host (Pinus sylvestris) and hosts native to North America. Direct comparisons of suitability for oviposition and larval survival among these pines have not been made. We tested the relative suitability of four common pine species in northeastern North America (P. sylvestris, P. resinosa, P. banksiana, and P. strobus) as hosts for S. noctilio in a controlled, but in situ experiment. In a mixed pine forest in northern Ontario, we caged S. noctilio mating pairs on 10 freshly cut pine logs of each species, and estimated oviposition, counted adult S. noctilio (F1 generation) that emerged from logs, and calculated survivorship from egg to adult. Pinus sylvestris and P. resinosa were optimal hosts according to all three metrics of S. noctilio performance. Pinus strobus was a suitable larval host, but was not perceived as such by females, as evidenced by lower oviposition. Pinus banksiana was perceived as a suitable host by females, but was the least suitable larval host. Our results suggest that P. sylvestris and P. resinosa are more suitable hosts, at least in cut logs, than P. strobus and P. banksiana for S. noctilio in eastern North America.

  8. Kaluza-Klein cosmological model in f(R, T) gravity with Λ(T)

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Mishra, B.; Tripathy, S. K.

    2016-04-01

    A class of Kaluza-Klein cosmological models in $f(R,T)$ theory of gravity have been investigated. In the work, we have considered the functional $f(R,T)$ to be in the form $f(R,T)=f(R)+f(T)$ with $f(R)=\\lambda R$ and $f(T)=\\lambda T$. Such a choice of the functional $f(R,T)$ leads to an evolving effective cosmological constant $\\Lambda$ which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads two different aspects of the volumetric expansion namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair we found that the model with exponential volumetric expansion behaves more like a $\\Lambda$CDM model.

  9. Constraining f(T) teleparallel gravity by big bang nucleosynthesis: f(T) cosmology and BBN.

    PubMed

    Capozziello, S; Lambiase, G; Saridakis, E N

    2017-01-01

    We use Big Bang Nucleosynthesis (BBN) observational data on the primordial abundance of light elements to constrain f ( T ) gravity. The three most studied viable f ( T ) models, namely the power law, the exponential and the square-root exponential are considered, and the BBN bounds are adopted in order to extract constraints on their free parameters. For the power-law model, we find that the constraints are in agreement with those obtained using late-time cosmological data. For the exponential and the square-root exponential models, we show that for reliable regions of parameters space they always satisfy the BBN bounds. We conclude that viable f ( T ) models can successfully satisfy the BBN constraints.

  10. PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon.

    PubMed

    Chang, Shu Hao; Yeh, Jhy Wei; Chein, Hung Min; Hsu, Li Yeh; Chi, Kai Hsien; Chang, Moo Been

    2008-08-01

    Catalytic destruction has been applied to control polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from different facilities. The cost of carbon-based catalysts is considerably lower than that of the metal oxide or zeolite-based catalysts used in the selective catalytic reduction (SCR) system. In this study, destruction and adsorption efficiencies of PCDD/Fs achieved with Cu/C and Fe/C catalysts from flue gas streams of a metal smelting plant (MSP) and a large-scale municipal waste incinerator (MWI), respectively, are evaluated via the pilot-scale catalytic reactor system (PCRS). The results indicate that Cu and Fe catalysts supported on carbon surface are capable of decomposing and adsorbing PCDD/ Fs from gas streams. In the testing sources of MSP and MWI, the PCDD/F removal efficiencies achieved with Cu/C catalyst at 250 degrees C reach 96%, however, the destruction efficiencies are negative (-1,390% and -112%, respectively) due to significant PCDD/F formation on catalyst promoted by copper. In addition, Fe/C catalyst is of higher removal and destruction efficiencies compared with Cu/C catalyst in both testing sources. The removal efficiencies of PCDD/Fs achieved with Fe/C catalyst are 97 and 94% for MSP and MWI, respectively, whereas the destruction efficiencies are both higher than 70%. Decrease of PCDD/F destruction efficiency and increase of adsorption efficiency with increasing chlorination of dioxin congeners is also observed in the test via three-layer Fe/C catalyst. Furthermore, the mass of 2,3,7,8-PCDD/Fs retained on catalyst decreases on the order of first to third layer of catalyst. Each gram Fe/C catalyst in first layer adsorbs 10.9, 6.91, and 3.04 ng 2,3,7,8-PCDD/Fs in 100 min testing duration as the operating temperature is controlled at 150, 200, and 250 degrees C, respectively.

  11. Strange stars in f(R,Script T) gravity

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Rahaman, Farook; Ray, Saibal; Guha, B. K.

    2018-03-01

    In this article we try to present spherically symmetric isotropic strange star model under the framework of f(R,Script T) theory of gravity. To this end, we consider that the Lagrangian density is a linear function of the Ricci scalar R and the trace of the energy momentum tensor Script T given as f(R,Script T)=R+2χ Script T. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as p=1/3(ρ‑4B), where B is the bag constant. We have obtained an exact solution of the modified form of the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f(R,Script T) gravity theory and have studied the dependence of different physical properties, viz., the total mass, radius, energy density and pressure for the chosen values of χ. Further, to examine physical acceptability of the proposed stellar model, we have conducted different tests in detail, viz., the energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the bag constant, we have predicted numerical values of the different physical parameters in tabular form for the different strange star candidates. It is found that as the factor χ decreases the strange star candidates become gradually massive and larger in size with less dense stellar configuration. However, when χ increases the stars shrink gradually and become less massive to turn into a more compact stellar system. Hence for χ>0 our proposed model is suitable to explain the ultra-dense compact stars well within the observational limits and for χ<0 case allows to represent the recent massive pulsars and super-Chandrasekhar stars. For χ=0 we retrieve as usual the standard results of the general relativity (GR).

  12. Logamediate Inflation in f(T) Teleparallel Gravity

    NASA Astrophysics Data System (ADS)

    Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars

    2017-02-01

    We study logamediate inflation in the context of f(T) teleparallel gravity. f(T)-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f(T)-gravity model which is sourced by a canonical scalar field. Assuming a power-law f(T) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f(T)-gravity.

  13. Transition metal-free olefin polymerization catalyst

    DOEpatents

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng

    2001-01-01

    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  14. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  15. Cosmological applications of F (T ,TG) gravity

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Saridakis, Emmanuel N.

    2014-10-01

    We investigate the cosmological applications of F (T ,TG) gravity, which is a novel modified gravitational theory based on the torsion invariant T and the teleparallel equivalent of the Gauss-Bonnet term TG. F (T ,TG) gravity differs from both F (T ) theories as well as from F (R ,G ) class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantomlike, or experience the phantom-divide crossing, depending on the parameters of the model.

  16. Dynamical behavior in f (T, TG) cosmology

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Leon, Genly; Saridakis, Emmanuel N.

    2014-09-01

    The f(T,{{T}_{G}}) class of gravitational modification, based on the quadratic torsion scalar T as well as on the new quartic torsion scalar TG, which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both f (T) and f(R,G) ones. We perform a detailed dynamical analysis of a spatially flat universe governed by the simplest non-trivial model of f(T,{{T}_{G}}) gravity which does not introduce a new mass scale. We find that the universe can result in dark-energy dominated, quintessence-like, cosmological-constant-like, or phantom-like solutions, according to the parameter choices. Additionally, it may result in a dark energy-dark matter scaling solution; thus it can alleviate the coincidence problem. Finally, the analysis ‘at infinity’ reveals that the universe may exhibit future, past, or intermediate singularities, depending on the parameters.

  17. Technology development for iron Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Brien, R.J.; Raje, A.; Keogh, R.A.

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alphamore » iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.« less

  18. Reconstruction, thermodynamics and stability of the ΛCDM model in f(T,{ T }) gravity

    NASA Astrophysics Data System (ADS)

    Junior, Ednaldo L. B.; Rodrigues, Manuel E.; Salako, Ines G.; Houndjo, Mahouton J. S.

    2016-06-01

    We reconstruct the ΛCDM model for f(T,{ T }) theory, where T is the torsion scalar and { T } the trace of the energy-momentum tensor. The result shows that the action of ΛCDM is a combination of a linear term, a constant (-2{{Λ }}) and a nonlinear term given by the product \\sqrt{-T}{F}g[({T}1/3/16π G) (16π G{ T }+T+8{{Λ }})], with F g being a generic function. We show that to maintain conservation of the energy-momentum tensor, we should impose that {F}g[y] must be linear on the trace { T }. This reconstruction decays in f (T) theory for {F}g\\equiv Q, with Q a constant. Our reconstruction describes the cosmological eras to the present time. The model present stability within the geometric and matter perturbations for the choice {F}g=y, where y=({T}1/3/16π G)(16π G{ T }+T+8{{Λ }}), except for the geometric part in the de Sitter model. We impose the first and second laws of thermodynamics to ΛCDM and find the condition where they are satisfied, that is, {T}A,{G}{{eff}}\\gt 0, however where this is not possible in the cases that we choose, this leads to a breakdown of positive entropy and Misner-Sharp energy.

  19. f(T,R) theory of gravity

    NASA Astrophysics Data System (ADS)

    Salti, Mustafa; Korunur, Murat; Acikgoz, Irfan; Pirinccioglu, Nurettin; Binbay, Figen

    We mainly focus on the idea that the dynamics of the whole universe may be understood by making use of torsion T and curvature R at the same time. The f(T,R)-gravity can be considered as a fundamental gravitational theory describing the evolution of the universe. The model can produce the unification of the general relativity (GR), teleparallel gravity (TPG), f(R)-gravity and f(T)-gravity theories. For this purpose, the corresponding Lagrangian density is written in terms of an arbitrary function of the torsion and curvature scalars. Furthermore, we use the absence/existence puzzle of relativistic neutron stars and thermodynamical laws as constraining tools for the new proposal.

  20. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts.

    PubMed

    Yang, Chia Cheng; Chang, Shu Hao; Hong, Bao Zhen; Chi, Kai Hsien; Chang, Moo Been

    2008-10-01

    Development of effective PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran) control technologies is essential for environmental engineers and researchers. In this study, a PCDD/F-containing gas stream generating system was developed to investigate the efficiency and effectiveness of innovative PCDD/F control technologies. The system designed and constructed can stably generate the gas stream with the PCDD/F concentration ranging from 1.0 to 100ng TEQ Nm(-3) while reproducibility test indicates that the PCDD/F recovery efficiencies are between 93% and 112%. This new PCDD/F-containing gas stream generating device is first applied in the investigation of the catalytic PCDD/F control technology. The catalytic decomposition of PCDD/Fs was evaluated with two types of commercial V(2)O(5)-WO(3)/TiO(2)-based catalysts (catalyst A and catalyst B) at controlled temperature, water vapor content, and space velocity. 84% and 91% PCDD/F destruction efficiencies are achieved with catalysts A and B, respectively, at 280 degrees C with the space velocity of 5000h(-1). The results also indicate that the presence of water vapor inhibits PCDD/F decomposition due to its competition with PCDD/F molecules for adsorption on the active vanadia sites for both catalysts. In addition, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF decomposition. The activation energies of OCDD and OCDF decomposition via catalysis are calculated as 24.8kJmol(-1) and 25.2kJmol(-1), respectively.

  1. Phase portraits of general f(T) cosmology

    NASA Astrophysics Data System (ADS)

    Awad, A.; El Hanafy, W.; Nashed, G. G. L.; Saridakis, Emmanuel N.

    2018-02-01

    We use dynamical system methods to explore the general behaviour of f(T) cosmology. In contrast to the standard applications of dynamical analysis, we present a way to transform the equations into a one-dimensional autonomous system, taking advantage of the crucial property that the torsion scalar in flat FRW geometry is just a function of the Hubble function, thus the field equations include only up to first derivatives of it, and therefore in a general f(T) cosmological scenario every quantity is expressed only in terms of the Hubble function. The great advantage is that for one-dimensional systems it is easy to construct the phase space portraits, and thus extract information and explore in detail the features and possible behaviours of f(T) cosmology. We utilize the phase space portraits and we show that f(T) cosmology can describe the universe evolution in agreement with observations, namely starting from a Big Bang singularity, evolving into the subsequent thermal history and the matter domination, entering into a late-time accelerated expansion, and resulting to the de Sitter phase in the far future. Nevertheless, f(T) cosmology can present a rich class of more exotic behaviours, such as the cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake and the Big Crunch, and it may exhibit various singularities, including the non-harmful ones of type II and type IV. We study the phase space of three specific viable f(T) models offering a complete picture. Moreover, we present a new model of f(T) gravity that can lead to a universe in agreement with observations, free of perturbative instabilities, and applying the Om(z) diagnostic test we confirm that it is in agreement with the combination of SNIa, BAO and CMB data at 1σ confidence level.

  2. Hamiltonian formalism for f (T ) gravity

    NASA Astrophysics Data System (ADS)

    Ferraro, Rafael; Guzmán, María José

    2018-05-01

    We present the Hamiltonian formalism for f (T ) gravity, and prove that the theory has n/(n -3 ) 2 +1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalar field minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the super-Hamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n/(n -1 ) 2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n/(n -1 ) 2 -1 first-class constraints, while one of them becomes second class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈0 to remove one d.o.f. from the n2+1 pairs of canonical variables. The remaining n/(n -1 ) 2 +2 n -1 primary constraints remove the same number of d.o.f., leaving the theory with n/(n -3 ) 2 +1 d.o.f. This means that f (T ) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.

  3. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    PubMed

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  4. No further gravitational wave modes in F(T) gravity

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego

    2013-11-01

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar-tensor representation of F(T) gravity.

  5. Energy conditions in f (T, TG) gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul

    2015-05-01

    This paper is devoted to study the energy conditions in f( T, T G ) gravity for the FRW universe with perfect fluid, where T is the torsion scalar and T G is the quartic torsion scalar. We construct the energy conditions in this theory and discuss them for two specific f( T, T G ) models. These models are and , which represent viability through some cosmological scenarios. We consider cosmographic parameters to simplify the energy condition expressions. The present-day values of these parameters are assumed to check the constraints on model parameters through energy condition inequalities.

  6. Noether symmetry approach in f(T, B) teleparallel cosmology.

    PubMed

    Bahamonde, Sebastian; Capozziello, Salvatore

    2017-01-01

    We consider the cosmology derived from f ( T ,  B ) gravity where T is the torsion scalar and [Formula: see text] a boundary term. In particular we discuss how it is possible to recover, under the same standard, the teleparallel f ( T ) gravity, the curvature f ( R ) gravity, and the teleparallel-curvature f ( R ,  T ) gravity, which are particular cases of f ( T ,  B ). We adopt the Noether Symmetry Approach to study the related dynamical systems and to find cosmological solutions.

  7. Noether symmetry approach in f(G,T) gravity

    NASA Astrophysics Data System (ADS)

    Shamir, M. Farasat; Ahmad, Mushtaq

    2017-01-01

    We explore the recently introduced modified Gauss-Bonnet gravity (Sharif and Ikram in Eur Phys J C 76:640, 2016), f(G,T) pragmatic with G, the Gauss-Bonnet term, and T, the trace of the energy-momentum tensor. Noether symmetry approach has been used to develop some cosmologically viable f(G,T) gravity models. The Noether equations of modified gravity are reported for flat FRW universe. Two specific models have been studied to determine the conserved quantities and exact solutions. In particular, the well known deSitter solution is reconstructed for some specific choice of f(G,T) gravity model.

  8. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  9. Cosmic acceleration in non-flat f( T) cosmology

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Luongo, Orlando; Pincak, Richard; Ravanpak, Arvin

    2018-05-01

    We study f( T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f( T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f( T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-σ confidence level, emphasizing the fact that Ω _{k0} turns out to be non-compatible with zero at least at 1σ . Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the Λ CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f( T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f( T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f( T) approach provides an effective de-Sitter phase, whereas the second f( T) framework shows analogous results compared with the Λ CDM predictions.

  10. Bianchi type I in f(T) gravitational theories

    NASA Astrophysics Data System (ADS)

    M, I. Wanas; G, G. L. Nashed; O, A. Ibrahim

    2016-05-01

    A tetrad field that is homogeneous and anisotropic which contains two unknown functions A(t) and B(t) of cosmic time is applied to the field equations of f (T), where T is the torsion scalar, T = T μ νρ S μ νρ . We calculate the equation of continuity and rewrite it as a product of two brackets, the first is a function of f (T) and the second is a function of the two unknowns A(t) and B(t). We use two different relations between the two unknown functions A(t) and B(t) in the second bracket to solve it. Both of these relations give constant scalar torsion and solutions coincide with the de Sitter one. So, another assumption related to the contents of the matter fields is postulated. This assumption enables us to drive a solution with a non-constant value of the scalar torsion and a form of f (T) which represents ΛCDM. Project supported by the Egyptian Ministry of Scientific Research (Project No. 24-2-12).

  11. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    DOEpatents

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  12. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals,more » by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.« less

  13. Model-independent reconstruction of f( T) teleparallel cosmology

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2017-11-01

    We propose a model-independent formalism to numerically solve the modified Friedmann equations in the framework of f( T) teleparallel cosmology. Our strategy is to expand the Hubble parameter around the redshift z=0 up to a given order and to adopt cosmographic bounds as initial settings to determine the corresponding f(z)≡ f(T(H(z))) function. In this perspective, we distinguish two cases: the first expansion is up to the jerk parameter, the second expansion is up to the snap parameter. We show that inside the observed redshift domain z≤ 1, only the net strength of f( z) is modified passing from jerk to snap, whereas its functional behavior and shape turn out to be identical. As first step, we set the cosmographic parameters by means of the most recent observations. Afterwards, we calibrate our numerical solutions with the concordance Λ CDM model. In both cases, there is a good agreement with the cosmological standard model around z≤ 1, with severe discrepancies outer of this limit. We demonstrate that the effective dark energy term evolves following the test-function: f(z)=A+B{z}^2e^{Cz}. Bounds over the set A, B, C are also fixed by statistical considerations, comparing discrepancies between f( z) with data. The approach opens the possibility to get a wide class of test-functions able to frame the dynamics of f( T) without postulating any model a priori. We thus re-obtain the f( T) function through a back-scattering procedure once f( z) is known. We figure out the properties of our f( T) function at the level of background cosmology, to check the goodness of our numerical results. Finally, a comparison with previous cosmographic approaches is carried out giving results compatible with theoretical expectations.

  14. Generalized second law of thermodynamics in f(T) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karami, K.; Abdolmaleki, A., E-mail: KKarami@uok.ac.ir, E-mail: AAbdolmaleki@uok.ac.ir

    2012-04-01

    We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in the framework of f(T) modified teleparallel gravity. We consider a spatially flat FRW universe containing only the pressureless matter. The boundary of the universe is assumed to be enclosed by the Hubble horizon. For two viable f(T) models containing f(T) = T+μ{sub 1}((−T)){sup n} and f(T) = T−μ{sub 2}T(1−e{sup βT{sub 0}/T}), we first calculate the effective equation of state and deceleration parameters. Then, (we investigate the null and strong energy conditions and conclude that a sudden future singularity appears in both models. Furthermore, using a cosmographicmore » analysis we check the viability of two models. Finally, we examine the validity of the GSL and find that for both models it) is satisfied from the early times to the present epoch. But in the future, the GSL is violated for the special ranges of the torsion scalar T.« less

  15. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  16. Spherically symmetric vacuum in covariant F (T )=T +α/2 T2+O (Tγ) gravity theory

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Andrew; Ilijić, Saša

    2016-12-01

    Recently, a fully covariant version of the theory of F (T ) torsion gravity has been introduced by M. Kršśák and E. Saridakis [Classical Quantum Gravity 33, 115009 (2016)]. In covariant F (T ) gravity, the Schwarzschild solution is not a vacuum solution for F (T )≠T , and therefore determining the spherically symmetric vacuum is an important open problem. Within the covariant framework, we perturbatively solve the spherically symmetric vacuum gravitational equations around the Schwarzschild solution for the scenario with F (T )=T +(α /2 )T2 , representing the dominant terms in theories governed by Lagrangians analytic in the torsion scalar. From this, we compute the perihelion shift correction to solar system planetary orbits as well as perturbative gravitational effects near neutron stars. This allows us to set an upper bound on the magnitude of the coupling constant, α , which governs deviations from general relativity. We find the bound on this nonlinear torsion coupling constant by specifically considering the uncertainty in the perihelion shift of Mercury. We also analyze a bound from a similar comparison with the periastron orbit of the binary pulsar PSR J0045-7319 as an independent check for consistency. Setting bounds on the dominant nonlinear coupling is important in determining if other effects in the Solar System or greater universe could be attributable to nonlinear torsion.

  17. On Kasner solution in Bianchi I f( T) cosmology

    NASA Astrophysics Data System (ADS)

    Skugoreva, Maria A.; Toporensky, Alexey V.

    2018-05-01

    Recently the cosmological dynamics of an anisotropic Universe in f( T) gravity became an area of intense investigations. Some earlier papers devoted to this issue contain contradictory claims about the nature and propertied of vacuum solutions in this theory. The goal of the present paper is to clarify this situation. We compare properties of f( T) and f( R) vacuum solutions and outline differences between them. The Kasner solution appears to be an exact solution for the T=0 branch, and an asymptotic solution for the T ≠ 0 branch. It is shown that the Kasner solution is a past attractor if T<0, being a past and future attractor for the T>0 branch.

  18. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction.

    PubMed

    Xie, Xiaohong; Chen, Siguo; Ding, Wei; Nie, Yao; Wei, Zidong

    2013-10-03

    High dispersion Pt nanoparticles supported on 2D Ti3C2X2 (X = OH, F) nanosheets are presented and electro-chemical measurements confirm that the Pt/Ti3C2X2 catalyst shows enhanced durability and improved ORR activity compared with the commercial Pt/C catalyst.

  19. Stability of the Kasner universe in f (T ) gravity

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Said, Jackson Levi; Barrow, John D.

    2018-02-01

    f (T ) gravity theory offers an alternative context in which to consider gravitational interactions where torsion, rather than curvature, is the mechanism by which gravitation is communicated. We investigate the stability of the Kasner solution with several forms of the arbitrary Lagrangian function examined within the f (T ) context. This is a Bianchi type-I vacuum solution with anisotropic expansion factors. In the f (T ) gravity setting, the solution must conform to a set of conditions in order to continue to be a vacuum solution of the generalized field equations. With this solution in hand, the perturbed field equations are determined for power-law and exponential forms of the f (T ) function. We find that the point which describes the Kasner solution is a saddle point which means that the singular solution is unstable. However, we find the de Sitter universe is a late-time attractor. In general relativity, the cosmological constant drives the isotropization of the spacetime while in this setting the extra f (T ) contributions now provide this impetus.

  20. Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Guha, B. K.; Rahaman, Farook; Ray, Saibal

    2018-04-01

    We study strange stars in the framework of f (R ,T ) theory of gravity. To provide exact solutions of the field equations it is considered that the gravitational Lagrangian can be expressed as the linear function of the Ricci scalar R and the trace of the stress-energy tensor T , i.e. f (R ,T )=R +2 χ T , where χ is a constant. We also consider that the strange quark matter (SQM) distribution inside the stellar system is governed by the phenomenological MIT bag model equation of state (EOS), given as pr=1/3 (ρ -4 B ) , where B is the bag constant. Further, for a specific value of B and observed values of mass of the strange star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f (R ,T ) gravity and have studied in detail the dependence of the different physical parameters, like the metric potentials, energy density, radial and tangential pressures and anisotropy etc., due to the chosen different values of χ . Likewise in GR, as have been shown in our previous work [Deb et al., Ann. Phys. (Amsterdam) 387, 239 (2017), 10.1016/j.aop.2017.10.010] in the present work also we find maximum anisotropy at the surface which seems an inherent property of the strange stars in modified f (R ,T ) theory of gravity. To check the physical acceptability and stability of the stellar system based on the obtained solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept, adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction between the matter and the curvature terms in f (R ,T ) gravity, on the anisotropic compact stellar system. It is interesting to note that as the values of χ increase the strange stars become more massive and their radius increase gradually so that eventually they gradually turn into less dense compact objects. The present study reveals that the modified f (R ,T ) gravity is a suitable

  1. Isotope exchange in oxide-containing catalyst

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  2. Generalized second law of thermodynamics in f(R,T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Momeni, D.; Moraes, P. H. R. S.; Myrzakulov, R.

    2016-07-01

    We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T)=R+f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and also on the form of f(T).

  3. Preliminary results from screening tests of commercial catalysts with potential use in gas turbine combustors. Part 1: Furnace studies of catalyst activity

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1976-01-01

    Thirty commercially produced monolith and pellet catalysts were tested as part of a screening process to select catalysts suitable for use in a gas turbine combustor. The catalysts were contained in a 1.8 centimeter diameter quartz tube and heated to temperatures varying between 300 and 1,200 K while a mixture of propane and air passed through the bed at space velocities of 44,000 to 70,000/hour. The amount of propane oxidized was measured as a function of catalyst temperature. Of the samples tested, the most effective catalysts proved to be noble metal catalysts on monolith substrates.

  4. Bouncing cosmological solutions from f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Shabani, Hamid; Ziaie, Amir Hadi

    2018-05-01

    In this work we study classical bouncing solutions in the context of f(R,T)=R+h(T) gravity in a flat FLRW background using a perfect fluid as the only matter content. Our investigation is based on introducing an effective fluid through defining effective energy density and pressure; we call this reformulation as the " effective picture". These definitions have been already introduced to study the energy conditions in f(R,T) gravity. We examine various models to which different effective equations of state, corresponding to different h(T) functions, can be attributed. It is also discussed that one can link between an assumed f(R,T) model in the effective picture and the theories with generalized equation of state ( EoS). We obtain cosmological scenarios exhibiting a nonsingular bounce before and after which the Universe lives within a de-Sitter phase. We then proceed to find general solutions for matter bounce and investigate their properties. We show that the properties of bouncing solution in the effective picture of f(R,T) gravity are as follows: for a specific form of the f(R,T) function, these solutions are without any future singularities. Moreover, stability analysis of the nonsingular solutions through matter density perturbations revealed that except two of the models, the parameters of scalar-type perturbations for the other ones have a slight transient fluctuation around the bounce point and damp to zero or a finite value at late times. Hence these bouncing solutions are stable against scalar-type perturbations. It is possible that all energy conditions be respected by the real perfect fluid, however, the null and the strong energy conditions can be violated by the effective fluid near the bounce event. These solutions always correspond to a maximum in the real matter energy density and a vanishing minimum in the effective density. The effective pressure varies between negative values and may show either a minimum or a maximum.

  5. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.; Rabo, Jule A.

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  6. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOEpatents

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  7. Testing Viable f(T) Models with Current Observations

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Yu, Hongwei; Wu, Puxun

    2018-03-01

    We perform observational tests on the f(T) gravity with the BAO data (including the BOSS DR 12 galaxy sample, the DR12 Lyα-Forests measurement, the new eBOSS DR14 quasar sample, the 6dFGS, and the SDSS), the CMB distance priors from the Planck 2015, the SNIa data from the joint light-curve analysis, the latest H(z) data, and the local value of the Hubble constant. Six different f(T) models are investigated. Furthermore, the ΛCDM is also considered. All models are compared by using the Akaike information criteria (AIC) and the Bayesian information criteria (BIC). Our results show that the ΛCDM remains to be the most favored model by current observations. However, there are also the Hubble constant tension between the Planck measurements and the local Universe observations and the tension between the CMB data and the H(z) data in the ΛCDM. For f(T) models considered in this paper, half, which can reduce to the ΛCDM, have values of {{χ }2}\\min smaller than that of the ΛCDM and can relieve the tensions existing in the ΛCDM. However, they are punished slightly by the BIC due to one extra parameter. Two of six f(T) models, in which the crossing of the phantom divide line can be realized for the equation of state of the effective dark energy and this crossing is shown in this paper to be favored by current observations, are punished by the information criteria. In addition, we find that the logarithmic f(T) model is excluded by cosmological observations.

  8. Catalysts for conversion of syngas to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  9. Noncommutative wormhole solutions in F(T, T𝒢) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2017-04-01

    This paper is devoted to the study of static spherically symmetric wormhole solutions along with noncommutative geometry in the background of F(T, T𝒢) gravity. We assume a nonzero redshift function as well as two well-known models of this gravity and discuss the behavior of null/weak energy conditions graphically. We conclude that there does not exist any physically acceptable wormhole solution for the first model, but there is a chance to develop physically acceptable wormhole solution in a particular region for the second model.

  10. Isotropic cosmological models in F(T,TG) theory

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2016-09-01

    This paper is devoted to study evolution of the isotropic universe models in the framework of F(T,TG) gravity (T represents torsion scalar and TG is the teleparallel equivalent of the Gauss-Bonnet (GB) term). We construct F(T,TG) models by taking different eras of the universe like non-relativistic and relativistic matter eras, dark energy (DE) dominated era and their combinations. It is found that the reconstructed models indicate decreasing behavior for DE dominated era and its combination with other eras. We also discuss stability of each reconstructed model. Finally, we evaluate equation of state (EoS) parameter by considering two models and study its behavior graphically.

  11. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  12. Cosmological viability conditions for f(T) dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch,more » then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.« less

  13. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOEpatents

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  14. New Agegraphic Pilgrim Dark Energy in f(T, TG) Gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Debnath, Ujjal

    2015-08-01

    In this work, we briefly discuss a novel class of modified gravity like f(T, TG) gravity. In this background, we assume the new agegraphic version of pilgrim dark energy and reconstruct f(T, TG) models for two specific values of s. We also discuss the equation of state parameter, squared speed of sound and wDE-w‧DE plane for these reconstructed f(T, TG) models. The equation of state parameter provides phantom-like behavior of the universe. The wDE-w‧DE plane also corresponds to ΛCDM limit, thawing and freezing regions for both models.

  15. Synthesis of 2'-deoxy-2'-[.sup.18F]fluoro-5-methyl-1-B-D-arabinofuranosyluracil (.sup.18F-FMAU)

    DOEpatents

    Li, Zibo; Cai, Hancheng; Conti, Peter S

    2014-12-16

    The present invention relates to methods of synthesizing .sup.18F-FMAU. In particular, .sup.18F-FMAU is synthesized using one-pot reaction conditions in the presence of Friedel-Crafts catalysts. The one-pot reaction conditions are incorporated into a fully automated cGMP-compliant radiosynthesis module, which results in a reduction in synthesis time and simplifies reaction conditions. The one-pot reaction conditions are also suitable for the production of 5-substituted thymidine or cytidine analogs. The products from the one-pot reaction (e.g. the labeled thymidine or cytidine analogs) can be used as probes for imaging tumor proliferative activity. More specifically, these [.sup.18F]-labeled thymidine or cytidine analogs can be used as a PET tracer for certain medical conditions, including, but not limited to, cancer disease, autoimmunity inflammation, and bone marrow transplant.

  16. Gravastars in f (G ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Shamir, M. Farasat; Ahmad, Mushtaq

    2018-05-01

    This work proposes a stellar model under Gauss-Bonnet f (G ,T ) gravity with the conjecture theorized by Mazur and Mottola, well known as the gravitational vacuum stars (gravastars). By taking into account the f (G ,T ) stellar model, the structure of the gravastar with its exclusive division of three different regions, namely, (i) the core interior region, (ii) the junction region (shell), and (iii) the exterior region, has been investigated with reference to the existence of energy density, pressure, ultrarelativistic plasma, and repulsive forces. The different physical features, like the equation of state parameter, length of the shell, entropy, and energy-thickness relation of the gravastar shell model, have been discussed. Also, some other physically valid aspects have been presented with the connection to nonsingular and event-horizon-free gravastar solutions, which in contrast to a black hole solution, might be stable without containing any information paradox.

  17. Reconstruction of f(T)-gravity in the absence of matter

    NASA Astrophysics Data System (ADS)

    El Hanafy, W.; Nashed, G. G. L.

    2016-06-01

    We derive an exact f(T) gravity in the absence of ordinary matter in Friedmann-Robertson-Walker (FRW) universe, where T is the teleparallel torsion scalar. We show that vanishing of the energy-momentum tensor {T}^{μ ν } of matter does not imply vanishing of the teleparallel torsion scalar, in contrast to general relativity, where the Ricci scalar vanishes. The theory provides an exponential ( inflationary) scale factor independent of the choice of the sectional curvature. In addition, the obtained f(T) acts just like cosmological constant in the flat space model. Nevertheless, it is dynamical in non-flat models. In particular, the open universe provides a decaying pattern of the f(T) contributing directly to solve the fine-tuning problem of the cosmological constant. The equation of state (EoS) of the torsion vacuum fluid has been studied in positive and negative Hubble regimes. We study the case when the torsion is made of a scalar field ( tlaplon) which acts as torsion potential. This treatment enables to induce a tlaplon field sensitive to the symmetry of the spacetime in addition to the reconstruction of its effective potential from the f(T) theory. The theory provides six different versions of inflationary models. The real solutions are mainly quadratic, the complex solutions, remarkably, provide Higgs-like potential.

  18. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  19. In Vivo Cytometry of Antigen-Specific T Cells Using 19F MRI

    PubMed Central

    Srinivas, Mangala; Turner, Michael S.; Janjic, Jelena M.; Morel, Penelope A.; Laidlaw, David H.; Ahrens, Eric T.

    2009-01-01

    Noninvasive methods to image the trafficking of phenotypically defined immune cells are paramount as we attempt to understand adaptive immunity. A 19F MRI-based methodology for tracking and quantifying cells of a defined phenotype is presented. These methods were applied to a murine inflammation model using antigen-specific T cells. The T cells that were intracellularly labeled ex vivo with a perfluoropolyether (PFPE) nanoemulsion and cells were transferred to a host receiving a localized inoculation of antigen. Longitudinal 19F MRI over 21 days revealed a dynamic accumulation and clearance of T cells in the lymph node (LN) draining the antigen. The apparent T-cell numbers were calculated in the LN from the time-lapse 19F MRI data. The effect of in vivo T-cell division on the 19F MRI cell quantification accuracy was investigated using fluorescence assays. Overall, in vivo cytometry using PFPE labeling and 19F MRI is broadly applicable to studies of whole-body cell biodistribution. PMID:19585593

  20. Suitability of hair type for dermatophytes perforation and differential diagnosis of T. mentagrophytes from T. verrucosum.

    PubMed

    Al-Janabi, Ali Abdul Hussein S; Ai-Tememi, Nabaa N; Ai-Shammari, Rabab A; Ai-Assadi, Abdul Hadi A

    2016-04-01

    Most of the dermatophyte species have the ability to perforate hair structure and consume its contents of keratin through secretion of keratinase enzyme. Two clinical isolated species of dermatophytes were diagnosed as Trichophyton mentagrophytes var. granulosum and Trichophyton verrucosum. To determine the perforation ability, the isolated fungi were incubated with the hair of four different animals (rabbit, rat, cow and cat) and human hairs with three different colours (black, albino and bleached yellow) for different periods. Variable perforating ability of T. mentagrophytes was shown in rat hair and all types of human hair after 15 days, while other mammalian hairs exhibited resistance to this fungal activity. On the other hand, T. verrucosum was revealed a slow perforating ability, which needed a long time (60 days) for most of tested hairs. Perforation of human black hair could be considered a diagnostic test for differentiation between T. mentagrophytes and T. verrucosum. In conclusion, the treated or untreated human hair was considered more suitable to use as a source of keratin for the growth of dermatophytes than animal hairs. The human black hair was a best type of hair to use in the perforating test for differentiation between T. mentagrophytes and T. verrucosum. © 2016 Blackwell Verlag GmbH.

  1. Study of stellar structures in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    This paper is devoted to study the compact objects whose pressure and density are related through polytropic equation-of-state (EoS) and MIT bag model (for quark stars) in the background of f(R,T) gravity. We solve the field equations together with the hydrostatic equilibrium equation numerically for the model f(R,T) = R + αR2 + λT and discuss physical properties of the resulting solution. It is observed that for both types of stars (polytropic and quark stars), the effects of model parameters α and λ remain the same. We also obtain that the energy conditions are satisfied and stellar configurations are stable for both EoS.

  2. Study of galactic halo F(T,TG) wormhole solutions

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    In this paper, we investigate static spherically symmetric wormhole solutions with galactic halo region in the background of F(T,TG) gravity. Here, T represents torsion scalar and TG is teleparallel equivalent Gauss-Bonnet term. For this purpose, we consider a diagonal tetrad and two specific F(T,TG) models. We analyze the wormhole structure through shape function graphically for both models. We also investigate the behavior of null/weak energy conditions. Finally, we evaluate the equilibrium condition to check stability of the wormhole solutions. It is concluded that there exists physically viable wormhole solution only for the first model that turns out to be stable.

  3. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOEpatents

    Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  4. Surface studies of heterogeneous catalysts by time-of-flight secondary ion mass spectrometry.

    PubMed

    Grams, Jacek

    2010-01-01

    The aim of this paper was to present potentialities of time-of-flight secondary ion mass spectrometry (ToF- SIMS) in the studies of heterogeneous catalysts. The results of ToF-SIMS investigations of Co/Al2O3, Mo/Al2O3, Co-Mo/Al2O3, Au/Al2O3, Pt/TiO2 and Pd/TiO2 systems were described. It was demonstrated that, in this case, an application of ToF-SIMS makes possible the determination of surface composition of investigated catalysts (including an identification of surface contaminants), characterization of interactions between an active phase and support, estimation of active phase dispersion on the analyzed surface, comparison of the degree of metal oxidation after treatment of the catalyst in different conditions, investigation of catalyst deactivation processes (formation of new chemical compounds, adsorption of various impurities and poisons on the catalyst surface) and determination of organic precursors of catalysts.

  5. Power law f(𝒢,T) gravity models supporting wormhole solutions

    NASA Astrophysics Data System (ADS)

    Shamir, M. Farasat; Ahmad, Mushtaq

    This work provides some feasible regions for the existence of traversable wormhole geometries in modified f(𝒢,T) gravity. For this purpose, three different matter contents have been studied with special emphasis on anisotropic fluid by considering a specific f(𝒢,T) gravity power law model. It has been shown that the null energy conditions for the effective energy-momentum tensor are widely violated for the ordinary matter content. However, some small feasible regions to support the wormhole solutions have been noted. Furthermore, the stability of the anisotropic feasible regions for the wormhole solutions has been discussed. It is concluded that the wormhole geometries threaded by the ordinary matter actually exist and are well stable in f(𝒢,T) gravity.

  6. Spherical collapse and virialization in f ( T ) gravities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Rui-Hui; Zhai, Xiang-Hua; Li, Xin-Zhou, E-mail: 1000379711@smail.shnu.edu.cn, E-mail: zhaixh@shnu.edu.cn, E-mail: kychz@shnu.edu.cn

    2017-03-01

    Using the classical top-hat profile, we study the non-linear growth of spherically symmetric density perturbation and structure formation in f ( T ) gravities. In particular, three concrete models, which have been tested against the observation of large-scale evolution and linear perturbation of the universe in the cosmological scenario, are investigated in this framework, covering both minimal and nonminimal coupling cases of f ( T ) gravities. Moreover, we consider the virialization of the overdense region in the models after they detach from the background expanding universe and turn around to collapse. We find that there are constraints in themore » magnitude and occurring epoch of the initial perturbation. The existence of these constraints indicates that a perturbation that is too weak or occurs too late will not be able to stop the expanding of the overdense region. The illustration of the evolution of the perturbation shows that in f ( T ) gravities, the initial perturbation within the constraints can eventually lead to clustering and form structure. The evolution also shows that nonminimal coupling models collapse slower than the minimal coupling one.« less

  7. f(T) gravity and energy distribution in Landau-Lifshitz prescription

    NASA Astrophysics Data System (ADS)

    Ganiou, M. G.; Houndjo, M. J. S.; Tossa, J.

    We investigate in this paper the Landau-Lifshitz energy distribution in the framework of f(T) theory view as a modified version of Teleparallel theory. From some important Teleparallel theory results on the localization of energy, our investigations generalize the Landau-Lifshitz prescription from the computation of the energy-momentum complex to the framework of f(T) gravity as it is done in the modified versions of General Relativity. We compute the energy density in the first step for three plane-symmetric metrics in vacuum. We find for the second metric that the energy density vanishes independently of f(T) models. We find that the Teleparallel Landau-Lifshitz energy-momentum complex formulations for these metrics are different from those obtained in General Relativity for the same metrics. Second, the calculations are performed for the cosmic string spacetime metric. It results that the energy distribution depends on the mass M and the radius r of cosmic string and it is strongly affected by the parameter of the considered quadratic and cubic f(T) models. Our investigation with this metric induces interesting results susceptible to be tested with some astrophysics hypothesis.

  8. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    PubMed

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of

  9. Generalized second law of thermodynamics in f(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Jawad, Abdul

    2015-11-01

    We discuss the equilibrium picture of thermodynamic at the apparent horizon of FRW universe in f(T,TG) gravity, where T represents the torsion invariant and TG is the teleparallel equivalent of the Gauss-Bonnet term. It is found that one can translate the Friedmann equations to the standard form of first law of thermodynamics. We discuss GSLT in the locality of assumption that temperature of matter inside the horizon is similar to that of apparent horizon. Furthermore, we consider particular models in this theory and generate constraints on the coupling parameters for the validity of GSLT. For this purpose we set the present day values of cosmic parameters and find the possible constraints on f(T,TG) models. We also choose the power law cosmology and found that GSLT can be met in accelerated cosmic expansion. We have also presented the cosmological reconstruction of some viable f(T,TG) models and discussed the cosmic evolution and validity of GSLT.

  10. New observational constraints on f ( T ) gravity from cosmic chronometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N., E-mail: nunes@ecm.ub.edu, E-mail: span@iiserkol.ac.in, E-mail: Emmanuel_Saridakis@baylor.edu

    2016-08-01

    We use the local value of the Hubble constant recently measured with 2.4% precision, as well as the latest compilation of cosmic chronometers data, together with standard probes such as Supernovae Type Ia and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f ( T ) gravity models, where T is the torsion scalar in teleparallel gravity. In particular, we consider three f ( T ) models with two parameters, out of which one is independent, and we quantify their deviation from ΛCDM cosmology through a sole parameter. Our analysis reveals thatmore » for one of the models a small but non-zero deviation from ΛCDM cosmology is slightly favored, while for the other models the best fit is very close to ΛCDM scenario. Clearly, f ( T ) gravity is consistent with observations, and it can serve as a candidate for modified gravity.« less

  11. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

    PubMed

    Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole

    2017-05-03

    Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (<0.1 Hz) are driven by underlying electrophysiological rhythms that typically occur at much faster timescales (>5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological

  12. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    1999-01-01

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar'R4(O)Ar"R'.sub.4 M(CH.sub.2 Ph).sub.2 where Ar' is a phenyl or naphthyl group; Ar" is a cyclopentadienyl or indenyl group, R and R' are H or alkyl substituents (C.ltoreq.10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a "one-pot" procedure. The catalyst, when combined with a cocatalyst such as Pb.sub.3 C.sup.+ B(Ar.sub.3.sup.F).sub.4 BAr.sub.3.sup.F or methyl alumoxane where Ar.sup.F is a fluoroaryl group, is an effective catalyst for the polymerization of .alpha.-olefins such as ethylene, propylene and styrene.

  13. Some aspects of reconstruction using a scalar field in f( T) gravity

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Soumya; Said, Jackson Levi; Farrugia, Gabriel

    2017-12-01

    General relativity characterizes gravity as a geometric property exhibited on spacetime by massive objects, while teleparallel gravity achieves the same results at the level of equations, by taking a torsional perspective of gravity. Similar to the f( R) theory teleparallel gravity can also be generalized to f( T), with the resulting field equations being inherently distinct from f( R) gravity in that they are second order, while in the former case they turn out to be fourth order. In the present case, a minimally coupled scalar field is investigated in the f( T) gravity context for several forms of the scalar field potential. A number of new f( T) solutions are found for these potentials. Their respective state parameters are also being examined.

  14. Slurry hydrocracking of Arab heavy vacuum resid with new bifunctional catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankel, L.A.

    1993-12-31

    Co-processing coal with hydrogenated vacuum resids can solubilize coal and aid in metals removals from the hydrotreated resid. Several bifunctional NiW catalysts were evaluated for resid hydrocracking in a slurry reactor. Autoclave runs were made to determine whether a hydrogenative metal function (NiW) plus support with cracking activity might be an effective catalyst for high resid 1000F{degrees}{sup +} conversion, H-content enrichment, deS, and demetallation at low coke make. An Arab Heavy 895{degrees}F{sup +} vacuum resid (262 ppm Ni+V, 5.3% S and 24% CCR) was hydrocracked over sulfided and unsulfided NiW catalysts on alumina, silica-alumina, US-Y, etc. at 800{degrees}F and 2000more » psig hydrogen in a batch reactor and compared to oil soluble mixtures of Ni and W homogenous organometallics. Of the catalysts tested here, results indicate that addition of sulfided NiW/aluminum to slurry type processing might improve hydrogenation activity and produce more 1000{degrees}F{sup +} conversion at a particular severity while generating the low coke make necessary for a continuous process. Once the resid is hydrotreated, coal could be added to the NiW bifunctional catalyst/resid slurry for co-processing.« less

  15. Modified QCD ghost f(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Chattopadhyay, Surajit

    2015-12-01

    In this paper, we explore the reconstruction scenario of modified QCD ghost dark energy model and newly proposed f(T,TG) gravity in flat FRW universe. We consider the well-known assumption of scale factor, i.e., power law form. We construct the f(T,TG) model and discuss its cosmological consequences through various cosmological parameters such as equation of state parameter, squared speed of sound and ω_{DE}-ω '_{DE}. The equation of state parameter provides the quintom-like behavior of the universe. The squared speed of sound exhibits the stability of model in the later time. Also, ω_{DE}- ω '_{DE} corresponds to freezing as well as thawing regions. It is also interesting to remark here that the results of equation of state parameter and w_{DE}-w'_{DE} coincide with the observational data.

  16. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Singhal, Richa; Kalra, Vibha

    2017-01-18

    Efficient, low-cost, non-precious metal-based, and stable bifunctional electrocatalysts are key to various energy storage and conversion devices such as regenerative fuel cells and metal-air batteries. In this work, we report cobalt nanoparticle-embedded porous carbon nanofibers with inherent N- and F-doping as binder-free bifunctional electrocatalysts with excellent activity for both the oxygen reduction and oxygen evolution reaction (ORR/OER) in an alkaline medium. Single-step electrospinning of a solution of the polymer mixture (carbon precursor) and the cobalt precursor followed by controlled pyrolysis with an intermediate reduction step in H 2 (to reduce cobalt oxides to cobalt) was utilized to synthesize an integrated freestanding catalyst. The fabricated catalyst with effective structural and electronic interaction between the cobalt metal nanoparticles and the N- and F-doped carbon defect sites showed enhanced catalytic properties compared to the benchmark catalysts for ORR and OER (Pt, Ir, and Ru). The ORR potential at the current density of -3 mA cm -2 was 0.81 V RHE and the OER potential at a current density of 10 mA cm -2 was 1.595 V RHE , resulting in a ΔE of only 0.785 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    PubMed

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr

    2015-10-01

    We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.

  19. FLRW cosmological models with quark and strange quark matters in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Nagpal, Ritika; Singh, J. K.; Aygün, S.

    2018-06-01

    In this paper, we have studied the magnetized quark matter (QM) and strange quark matter (SQM) distributions in the presence of f(R,T) gravity in the background of Friedmann-Lemaître-Robertson-Walker (FLRW) metric. To get exact solutions of modified field equations we have used f(R,T ) = R + 2 f(T) model given by Harko et al. with two different parametrization of geometrical parameters i.e. the parametrization of the deceleration parameter q , and the scale factor a in hybrid expansion form. Also, we have obtained Einstein Static Universe (ESU) solutions for QM and SQM distributions in f(R,T) gravity and General Relativity (GR). All models in f(R,T) gravity and GR for FRW and ESU Universes with QM also SQM distributions, we get zero magnetic field. These results agree with the solutions of Aktaş and Aygün in f(R,T) gravity. However, we have also discussed the physical consequences of our obtained models.

  20. Phenolate constrained geometry polymerization catalyst and method for preparing

    DOEpatents

    Marks, T.J.; Chen, Y.X.

    1999-01-05

    The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar{prime}R4(O)Ar{double_prime}R{prime}{sub 4}M(CH{sub 2}Ph){sub 2} where Ar{prime} is a phenyl or naphthyl group; Ar{double_prime} is a cyclopentadienyl or indenyl group, R and R{prime} are H or alkyl substituents (C{<=}10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a ``one-pot`` procedure. The catalyst, when combined with a cocatalyst such as Pb{sub 3}C{sup +}B(Ar{sub 3}{sup F}){sub 4}BAr{sub 3}{sup F} or methyl alumoxane where Ar{sup F} is a fluoroaryl group, is an effective catalyst for the polymerization of {alpha}-olefins such as ethylene, propylene and styrene. 1 fig.

  1. Structure formation in f(T) gravity and a solution for H0 tension

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2018-05-01

    We investigate the evolution of scalar perturbations in f(T) teleparallel gravity and its effects on the cosmic microwave background (CMB) anisotropy. The f(T) gravity generalizes the teleparallel gravity which is formulated on the Weitzenböck spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. For the first time, we derive the observational constraints on the modified teleparallel gravity using the CMB temperature power spectrum from Planck's estimation, in addition to data from baryonic acoustic oscillations (BAO) and local Hubble constant measurements. We find that a small deviation of the f(T) gravity model from the ΛCDM cosmology is slightly favored. Besides that, the f(T) gravity model does not show tension on the Hubble constant that prevails in the ΛCDM cosmology. It is clear that f(T) gravity is also consistent with the CMB observations, and undoubtedly it can serve as a viable candidate amongst other modified gravity theories.

  2. Static spherical wormhole models in f (R, T) gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Ilyas, M.; Zaeem-ul-Haq Bhatti, M.

    2017-06-01

    This paper explores the possibility of the existence of wormhole geometries coupled with relativistic matter configurations by taking a particular model of f(R,T) gravity (where T is the trace of energy-momentum tensor). For this purpose, we take the static form of spherically symmetric spacetime and after assuming a specific form of matter and combinations of shape function, the validity of energy conditions is checked. We have discussed our results through graphical representation and studied the equilibrium background of wormhole models by taking an anisotropic fluid. The extra curvature quantities coming from f(R,T) gravity could be interpreted as a gravitational entity supporting these non-standard astrophysical wormhole models. We have shown that in the context of anisotropic fluid and R+α R^2+λ T gravity, wormhole models could possibly exist in few zones in the space of parameters without the need for exotic matter.

  3. f (T ) gravity after GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin

    2018-05-01

    The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.

  4. SELECTIVE OXIDATION OF ALCOHOLS OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various alcohols is studied in liquid phase under nitrogen atmosphere over vanadium phosphorus oxide catalyst in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method are found to be suitable for the selective oxidation of a variet...

  5. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T

    PubMed Central

    Kim, Seong-Gi; Ye, Jong Chul

    2015-01-01

    Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503

  6. Methods of producing epoxides from alkenes using a two-component catalyst system

    DOEpatents

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  7. Charged anti-de Sitter BTZ black holes in Maxwell-f(T) gravity

    NASA Astrophysics Data System (ADS)

    Nashed, G. G. L.; Capozziello, S.

    2018-05-01

    Inspired by the Bañados, Teitelboim and Zanelli (BTZ) formalism, we discuss the Maxwell-f(T) gravity in (2 + 1) dimensions. The main task is to derive exact solutions for a special form of f(T) = T + 𝜖T2, with T being the torsion scalar of Weitzenböck geometry. To this end, a triad field is applied to the equations of motion of charged f(T) and sets of circularly symmetric noncharged and charged solutions have been derived. We show that, in the charged case, the monopole-like and the ln terms are linked by a correlative constant despite the known results in teleparallel geometry and its extensions.39 Furthermore, it is possible to show that the event horizon is not identical with the Cauchy horizon due to such a constant. The singularities and the horizons of these black holes are examined: they are new and have no analogue in the literature due to the fact that their curvature singularities are soft. We calculate the energy content of these solutions by using the general vector form of the energy-momentum within the framework of f(T) gravity. Finally, some thermodynamical quantities, like entropy and Hawking temperature, are derived.

  8. Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: F(R) , F(G) and F(T) theories

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.; Saridakis, Emmanuel N.

    2015-12-01

    We investigate the realization of two bouncing paradigms, namely of the superbounce and the loop quantum cosmological ekpyrosis, in the framework of various modified gravities. In particular, we focus on the F(R) , F(G) and F(T) gravities, and we reconstruct their specific subclasses which lead to such universe evolutions. These subclasses constitute from power laws, polynomials, or hypergeometric ansatzes, which can be approximated by power laws. The qualitative similarity of the different effective gravities which realize the above two bouncing cosmologies, indicates that a universality might be lying behind the bounce. Finally, performing a linear perturbation analysis, we show that the obtained solutions are conditionally or fully stable.

  9. Analytical general solutions for static wormholes in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Correa, R. A. C.; Lobato, R. V.

    2017-07-01

    Originally proposed as a tool for teaching the general theory of relativity, wormholes are today approached in many different ways and are seeing as an efficient alternative for interstellar and time travel. Attempts to achieve observational signatures of wormholes have been growing as the subject has become more and more popular. In this article we investigate some f(R,T) theoretical predictions for static wormholes, i.e., wormholes whose throat radius can be considered a constant. Since the T-dependence in f(R,T) gravity is due to the consideration of quantum effects, a further investigation of wormholes in such a theory is well motivated. We obtain the energy conditions of static wormholes in f(R,T) gravity and apply an analytical approach to find their physical and geometrical solutions. We highlight that our results are in agreement with previous solutions and assumptions presented in the literature.

  10. A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand.

    PubMed

    Jiang, Xiaowu; Wu, Jian; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2016-01-01

    How to simply and efficiently separate and recycle catalyst has still been a constraint for the wide application of atom transfer radical polymerization (ATRP), especially for the polymerization systems with hydrophilic monomers because the polar functional groups may coordinate with transition metal salts, resulting in abundant catalyst residual in the resultant water-soluble polymers. In order to overcome this problem, a latent-biphasic system is developed, which can be successfully used for ATRP catalyst separation and recycling in situ for various kinds of hydrophilic monomers for the first time, such as poly(ethylene glycol) monomethyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), N,N-dimethyl acrylamide (DMA), and N-isopropylacrylamide (NIPAM). Herein, random copolymer of octadecyl acrylate (OA), MA-Ln (2-(bis(pyridin-2-ylmethyl)amino)ethyl acrylate), and POA-ran-P(MA-Ln) is designed as the macroligand, and heptane/ethanol is selected as the biphasic solvent. Copper(II) bromide (CuBr2 ) is employed as the catalyst, PEG-bound 2-bromo-2-methylpropanoate (PEG350 -Br) as the water-soluble ATRP initiator and 2,2'-azobis(isobutyronitrile) (AIBN) as the azo-initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP system. Importantly, well-defined water-soluble polymers are obtained even though the recyclable catalyst is used for sixth times. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of thermodynamic laws in f(R,T,R{sub μν}T{sup μν}) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M.; Zubair, M., E-mail: msharif.math@pu.edu.pk, E-mail: mzubairkk@gmail.com

    2013-11-01

    We study first and second laws of black hole thermodynamics at the apparent horizon of FRW spacetime in f(R,T,R{sub μν}T{sup μν}) gravity, where R, R{sub μν} are the Ricci scalar and Riemann tensor and T is the trace of the energy-momentum tensor T{sub μν}. We develop the Friedmann equations for any spatial curvature in this modified theory and show that these equations can be transformed to the form of Clausius relation T{sub h}S{sub eff} = δQ. Here T{sub h} is the horizon temperature, S{sub eff} is the entropy which contains contributions both from horizon entropy and additional entropy term introducedmore » due to the non-equilibrating description and δQ is the energy flux across the horizon. The generalized second law of thermodynamics is also established in a more comprehensive form and one can recover the corresponding results in Einstein, f(R) and f(R,T) gravities. We discuss GSLT in the locality of assumption that temperature of matter inside the horizon is similar to that of horizon. Finally, we consider particular models in this theory and generate constraints on the coupling parameter for the validity of GSLT.« less

  12. Wormholes in R^2-gravity within the f( R, T) formalism

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Moraes, P. H. R. S.; Sahoo, Parbati

    2018-01-01

    We propose, as a novelty in the literature, the modeling of wormholes within a particular case of f( R, T) gravity, namely f(R,T)=R+α R2+λ T, with R and T being the Ricci scalar and trace of the energy-momentum tensor, respectively, while α and λ are constants. Although such a functional form application can be found in the literature, those concern compact astrophysical objects, such that no wormhole analysis has been done so far. The quadratic geometric and linear material corrections of this theory render the matter content of the wormhole remarkably able to obey the energy conditions.

  13. Analytical general solutions for static wormholes in f ( R , T ) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, P.H.R.S.; Correa, R.A.C.; Lobato, R.V., E-mail: moraes.phrs@gmail.com, E-mail: fis04132@gmail.com, E-mail: ronaldo.lobato@icranet.org

    Originally proposed as a tool for teaching the general theory of relativity, wormholes are today approached in many different ways and are seeing as an efficient alternative for interstellar and time travel. Attempts to achieve observational signatures of wormholes have been growing as the subject has become more and more popular. In this article we investigate some f ( R , T ) theoretical predictions for static wormholes, i.e., wormholes whose throat radius can be considered a constant. Since the T -dependence in f ( R , T ) gravity is due to the consideration of quantum effects, a furthermore » investigation of wormholes in such a theory is well motivated. We obtain the energy conditions of static wormholes in f ( R , T ) gravity and apply an analytical approach to find their physical and geometrical solutions. We highlight that our results are in agreement with previous solutions and assumptions presented in the literature.« less

  14. Surface curvature singularities of polytropic spheres in Palatini f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Barrientos O., José; Rubilar, Guillermo F.

    2016-01-01

    We consider Palatini f (R ,T ) gravity models, similar to those introduced by Harko et al. (2012), where the gravitational Lagrangian is given by an arbitrary function of the curvature scalar R and of the trace of the energy-momentum tensor T . Interior spherical static solutions are studied considering the model of matter given by a perfect fluid configuration and a polytropic equation of state. We analyze the curvature singularities found previously for Palatini f (R ) gravity and discuss the possibility to remove them in some particular f (R ,T ) models. We show that it is possible to construct a restricted family of models for which these singularities are not present.

  15. Study of static wormhole solutions in F(T ,TG) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2018-06-01

    In this paper, we investigate static spherically symmetric wormhole solutions in the background of F(T ,TG) gravity (T is the torsion scalar and TG represents teleparallel equivalent of the Gauss-Bonnet term). We study the wormhole solutions by assuming four different matter contents, a specific redshift function and a particular F(T ,TG) model. The behavior of null/weak energy conditions for these fluids is analyzed graphically. It turns out that wormhole solutions can be obtained in the absence of exotic matter for some particular regions of spacetime. We also explore stability of wormhole solutions through equilibrium condition. It is concluded that there exist physically acceptable wormhole solutions for anisotropic, isotropic and traceless fluids.

  16. Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure.

    PubMed

    Jarupatrakorn, Jonggol; Don Tilley, T

    2002-07-17

    A molecular precursor approach involving simple grafting procedures was used to produce site-isolated titanium-supported epoxidation catalysts of high activity and selectivity. The tris(tert-butoxy)siloxy titanium complexes Ti[OSi(O(t)Bu)(3)](4) (TiSi4), ((i)PrO)Ti[OSi(O(t)Bu)(3)](3) (TiSi3), and ((t)BuO)(3)TiOSi(O(t)Bu)(3) (TiSi) react with the hydroxyl groups of amorphous Aerosil, mesoporous MCM-41, and SBA-15 via loss of HO(t)Bu and/or HOSi(O(t)Bu)(3) and introduction of titanium species onto the silica surface. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared, and diffuse reflectance ultraviolet spectroscopies were used to investigate the structures and chemical natures of the surface-bound titanium species. The titanium species exist mainly in isolated, tetrahedral coordination environments. Increasing the number of siloxide ligands in the molecular precursor decreases the amount of titanium that can be introduced this way, but also enhances the catalytic activity and selectivity for the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. In addition, the high surface area mesoporous silicas (MCM-41 and SBA-15) are more effective than amorphous silica as supports for these catalysts. Supporting TiSi3 on the SBA-15 affords highly active cyclohexene epoxidation catalysts (0.25-1.77 wt % Ti loading) that provide turnover frequencies (TOFs) of 500-1500 h(-1) after 1 h (TOFs are reduced by about half after calcination). These results demonstrate that oxygen-rich siloxide complexes of titanium are useful as precursors to supported epoxidation catalysts.

  17. An improved analysis of proton structure function F2(x,t) at small x

    NASA Astrophysics Data System (ADS)

    Machahari, Luxmi; Choudhury, D. K.

    2018-04-01

    We report an improved analysis of Taylor approximated coupled DGLAP equations for singlet F2S(x,t) and gluon G( x, t) distributions at small x pursued in recent years. To that end, we assume a plausible t-dependent relation between the singlet and gluon distribution valid at small x and omit the boundary condition F2S (1, t) = 0, for any t which needs large x extrapolation of small x solution. We observe that in general two inequivalent t-evolutions of F2S (x, t) and G( x, t) are possible. Theoretical advantages of one over the other are discussed and compared with the recently compiled data in order to choose the best one. Phenomenological range of validity of solutions is also reported.

  18. Stellar equilibrium configurations of white dwarfs in the f( R, T) gravity

    NASA Astrophysics Data System (ADS)

    Carvalho, G. A.; Lobato, R. V.; Moraes, P. H. R. S.; Arbañil, José D. V.; Otoniel, E.; Marinho, R. M.; Malheiro, M.

    2017-12-01

    In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, namely, f( R, T) gravity, for which R and T stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form f(R,T)=R+2λ T, with λ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter λ are derived. More massive and larger white dwarfs are found for negative values of λ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of f( R, T) theory for massive white dwarfs is the increase of the radius in comparison with GR and also f( R) results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for λ , namely, λ >- 3× 10^{-4}.

  19. Time varying G and \\varLambda cosmology in f(R,T) gravity theory

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.

    2017-08-01

    We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.

  20. Study of charged stellar structures in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    2017-12-01

    This paper explores charged stellar structures whose pressure and density are related through polytropic equation of state ( p=ωρ^{σ}; ω is polytropic constant, p is pressure, ρ denotes density and σ is polytropic exponent) in the scenario of f(R,T) gravity (where R is the Ricci scalar and T is the trace of energy-momentum tensor). The Einstein-Maxwell field equations are solved together with the hydrostatic equilibrium equation for f(R,T)=R+2λ T where λ is the coupling constant, also called model parameter. We discuss different features of such configurations (like pressure, mass and charge) using graphical behavior for two values of σ. It is found that the effects of model parameter λ on different quantities remain the same for both cases. The energy conditions are satisfied and stellar configurations are stable in each case.

  1. Can f(T) gravity theories mimic ΛCDM cosmic history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir

    2013-01-01

    Recently the teleparallel Lagrangian density described by the torsion scalar T has been extended to a function of T. The f(T) modified teleparallel gravity has been proposed as the natural gravitational alternative for dark energy to explain the late time acceleration of the universe. In order to reconstruct the function f(T) by demanding a background ΛCDM cosmology we assume that, (i) the background cosmic history provided by the flat ΛCDM (the radiation ere with ω{sub eff} = (1/3), matter and de Sitter eras with ω{sub eff} = 0 and ω{sub eff} = −1, respectively) (ii) the radiation dominate in themore » radiation era with Ω{sub 0r} = 1 and the matter dominate during the matter phases when Ω{sub 0m} = 1. We find the cosmological dynamical system which can obey the ΛCDM cosmic history. In each era, we find a critical lines that, the radiation dominated and the matter dominated are one points of them in the radiation and matter phases, respectively. Also, we drive the cosmologically viability condition for these models. We investigate the stability condition with respect to the homogeneous scalar perturbations in each era and we obtain the stability conditions for the fixed points in each eras. Finally, we reconstruct the function f(T) which mimics cosmic expansion history.« less

  2. Dynamical behavior of the Tolman metrics in f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Hansraj, Sudan; Banerjee, Ayan

    2018-05-01

    We analyze the behavior of well-known stellar models within the context of f (R ,T ) modified theory of gravity, in which the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and the trace of the energy-momentum tensor T , namely f (R ,T )=R +2 χ T for some constant χ . The equation of pressure isotropy in this theory is identical to that of the standard Einstein theory therefore all known metric potentials solving Einstein's equations are valid here. However, the pressure and energy density profiles are markedly different due to the presence of the term 2 χ T . The exact solutions to the corresponding static spherically symmetric field equations with a perfect fluid source are the well known Tolman solutions [Phys. Rev. 55, 364 (1939), 10.1103/PhysRev.55.364] in general relativity. To support the theoretical results, graphical representation are employed to investigate the physical viability of compact stars. Specifically we study the density and pressure profiles, the sound speed behavior as well as the energy conditions and mass behavior where appropriate. It is found that in some cases the f (R ,T ) model displays more pleasing behavior than its Einstein counterpart while in other cases the behavior is similar. In no case does the 2 χ T addition negatively impact the model's behavior.

  3. Evading the non-continuity equation in the f( R, T) cosmology

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Correa, R. A. C.; Ribeiro, G.

    2018-03-01

    We present a new approach for the f( R, T) gravity formalism, by thoroughly exploring the extra terms of its effective energy-momentum tensor T_{μ ν }^eff, which we name \\tilde{T}_{μ ν }, so that T_{μ ν }^eff=T_{μ ν }+\\tilde{T}_{μ ν }, with T_{μ ν } being the usual energy-momentum tensor of matter. Purely from the Bianchi identities, we obtain the conservation of both parts of the effective energy-momentum tensor, rather than the non-conservation of T_{μ ν }, originally occurring in the f( R, T) theories. In this way, the intriguing scenario of matter creation, which still lacks observational evidence, is evaded. One is left, then, with two sets of cosmological equations to be solved: the Friedmann-like equations along with the conservation of T_{μ ν } and along with the conservation of \\tilde{T}_{μ ν }. We present a physical interpretation for the conservation of \\tilde{T}_{μ ν }, which can be related to the presence of stiff matter in the universe. The cosmological consequences of this approach are presented and discussed as well as the benefits of evading the matter energy-momentum tensor non-conservation.

  4. The hidden flat like universe. Starobinsky-like inflation induced by f (T) gravity

    NASA Astrophysics Data System (ADS)

    El Hanafy, W.; Nashed, G. G. L.

    2015-06-01

    We study a single-fluid component in a flat like universe (FLU) governed by f( T) gravity theories, where T is the teleparallel torsion scalar. The FLU model, regardless of the value of the spatial curvature k, identifies a special class of f( T) gravity theories. Remarkably, FLU f( T) gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state evolves similarly in all models . We study the case when the torsion tensor consists of a scalar field, which enables to derive a quintessence potential from the obtained f( T) gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions, so that for a single value of the scalar tilt (spectral index) the theory can predict double tensor-to-scalar ratios r of E-mode and B-mode polarizations.

  5. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect.

    PubMed

    Gernigon, Nicolas; Al-Zoubi, Raed M; Hall, Dennis G

    2012-10-05

    The importance of amides as a component of biomolecules and synthetic products motivates the development of catalytic, direct amidation methods employing free carboxylic acids and amines that circumvent the need for stoichiometric activation or coupling reagents. ortho-Iodophenylboronic acid 4a has recently been shown to catalyze direct amidation reactions at room temperature in the presence of 4A molecular sieves as dehydrating agent. Herein, the arene core of ortho-iodoarylboronic acid catalysts has been optimized with regards to the electronic effects of ring substitution. Contrary to the expectation, it was found that electron-donating substituents are preferable, in particular, an alkoxy substituent positioned para to the iodide. The optimal new catalyst, 5-methoxy-2-iodophenylboronic acid (MIBA, 4f), was demonstrated to be kinetically more active than the parent des-methoxy catalyst 4a, providing higher yields of amide products in shorter reaction times under mild conditions at ambient temperature. Catalyst 4f is recyclable and promotes the formation of amides from aliphatic carboxylic acids and amines, and from heteroaromatic carboxylic acids and other functionalized substrates containing moieties like a free phenol, indole and pyridine. Mechanistic studies demonstrated the essential role of molecular sieves in this complex amidation process. The effect of substrate stoichiometry, concentration, and measurement of the catalyst order led to a possible catalytic cycle based on the presumed formation of an acylborate intermediate. The need for an electronically enriched ortho-iodo substituent in catalyst 4f supports a recent theoretical study (Marcelli, T. Angew. Chem. Int. Ed.2010, 49, 6840-6843) with a purported role for the iodide as a hydrogen-bond acceptor in the orthoaminal transition state.

  6. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.

    Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.

  7. f(T) teleparallel gravity and cosmology.

    PubMed

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable

  8. Bianchi Type-II String Cosmological Model with Magnetic Field in f ( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Sharma, N. K.; Singh, J. K.

    2014-09-01

    The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f( R, T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f( R, T) model and investigate the modification R+ f( T) in Bianchi type-II cosmology with an appropriate choice of a function f( T)= μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.

  9. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    DOEpatents

    Narula, Chaitanya K.; Yang, Xiaofan

    2016-10-25

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  10. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    DOEpatents

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  11. A study of binuclear zirconium hydride catalysts of the hydrogenolysis of alkanes by the density functional theory method

    NASA Astrophysics Data System (ADS)

    Ustynyuk, L. Yu.; Fast, A. S.; Ustynyuk, Yu. A.; Lunin, V. V.

    2012-06-01

    Binuclear hydride centers containing two Zr(IV) atoms are suggested as promising catalysts for the hydrogenolysis of alkanes under mild conditions ( T < 450 K, p ˜ 1 atm). Reactions of model compounds L2(H)Zr(X)2Zr(H)L2 (X = H, L = OSi≡ ( 4a), X = L = OMe ( 4d)), L(H)Zr(O)2Zr(H)L (L = OSi≡ ( 4b), Cp( 4c)) and (≡SiO)2(H)Zr-O-Zr(H)(OSi≡)2 ( 4e and 4f) with the propane molecule were studied using the density functional theory method. The results show that centers of the 4a, 4e, and 4f types and especially 4b are promising catalysts of the hydrogenolysis of alkanes due to a high degree of unsaturation of two Zr atoms and their sequential participation in the splitting of the C-C bond and hydrogenation of ethylene formed as a result of splitting.

  12. 75 FR 47881 - Noise Exposure Map Notice, T.F.Green Airport, Warwick, RI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Noise Exposure Map Notice, T.F.Green... Aviation Administration (FAA) announces its determination that the noise exposure maps for T.F.Green... Aviation Safety and Noise Abatement Act of 1979 (Pub. L. 96-193) and 14 CFR part 150, are in compliance...

  13. Reconstruction from scalar-tensor theory and the inhomogeneous equation of state in f( T) gravity

    NASA Astrophysics Data System (ADS)

    Said, Jackson Levi

    2017-12-01

    General relativity (GR) characterizes gravity as a geometric properly exhibited as curvature on spacetime. Teleparallelism describes gravity through torsional properties, and can reproduce GR at the level of equations. Similar to f( R) gravity, on taking a generalization, f( T) gravity can produce various modifications its gravitational mechanism. The resulting field equations are inherently distinct to f( R) gravity in that they are second order. In the present work, f( T) gravity is examined in the cosmological context with a number of solutions reconstructed by means of an auxiliary scalar field. To do this, various forms of the Hubble parameter are considered with an f( T) Lagrangian emerging for each instance. In addition, the inhomogeneous equation of state (EoS) is investigated with a particular Hubble parameter model used to show how this can be used to reconstruct the f( T) Lagrangian. Observationally, the auxiliary scalar field and the exotic terms in the FRW field equations give the same results, meaning that the variation in the Hubble parameter may be interpreted as the need to reformulate gravity in some way, as in f( T) gravity.

  14. Optimization of Biomass Gasification Process for F-T Bio-Diesel Synthesys

    NASA Astrophysics Data System (ADS)

    Song, Jae Hun; Sung, Yeon Kyung; Yu, Tae U.; Choi, Young Tae; Lee, Uen Do

    The characteristics of biomass steam gasification were investigated to make an optimum syngas for Fischer Tropsch (F-T) synthesis of bio-diesel. Korean pine wood chip was used as a fuel and the experiment was conducted in a lab scale bubbling fluidized bed (0.1m LD. x 3.Omheight). Gas composition was evaluated by changing operating parameters such as gasifier temperature, and steam to fuel ratio. Major syngas was monitored by on-line gas analyzer (ND-IR spectroscopy) and gas chromatography (GC). As the temperature of gasifier increases hydrogen in the syngas increases while CO in the product gas decreases. The low concentration of sulfur compound and nitrogen in the product gas shows the potential advantages in the purification process of the syngas for F-T process. Optimum operating condition of the gasifier was found concerning the following gas cleaning and F-T process; H2-CO ratio and total gas yield increase while decreasing methane and CO2 concentrations in the syngas.

  15. A combined ToF-SIMS and XPS study for the elucidation of the role of water in the performances of a Post-Plasma Process using LaMnO3+δ as catalyst in the total oxidation of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Nuns, N.; Beaurain, A.; Dinh, M. T. Nguyen; Vandenbroucke, A.; De Geyter, N.; Morent, R.; Leys, C.; Giraudon, J.-M.; Lamonier, J.-F.

    2014-11-01

    LaMnO3+δ which is an environment-friendly and inexpensive material has been previously used as catalyst in Post-Plasma Catalysis (PPC) in the total oxidation of trichloroethylene (TCE) which is a solvent widely used in dry cleaning and degreasing processes. It has been shown that the process efficiency increases in moist air (RH = 18%).The issue we want to address herein is the effect of water on the location of chlorine at the surface of the catalyst as chlorine is able to alter the catalyst structure, activity and stability. Therefore, a combined Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) study has been carried out on the fresh LaMnO3+δ catalyst (LM) and used catalysts after performing PPC with TCE diluted in dry synthetic air (LM0) or with industrial air containing water (LM18; 18 stands for the Relative Humidity) and CO2 (about 560 ppmv) at a temperature of 150 °C. XPS and ToF-SIMS results both show the presence of chlorine on the tested catalysts whose amount increases by exposure of the catalyst to the reactive mixture in dry synthetic air. XPS results reveal that chlorine is present as both chloride ion and covalent chlorine on LM0 while organic chlorinated residues are absent on LM18 catalyst. ToF-SIMS study indicates that lanthanum excess as oxide(hydroxide) partially covering the perovskite mainly transforms into LaOCl and to a minor extent into LaCl3. Extent of Mn chlorination seems to be favored over LM0 having a higher MnClx±/MnOCl± ionic ratio compared to LM18. Furthermore ToF-SIMS clearly identifies C1 chlorinated organic ions, mainly CH2Cl+ and CHCl2-, on LM0 which may contribute to the XPS Cl organic component. From the combined ToF-SIMS and XPS results it is found that water delays the surface degradation extent of the perovskite into related (oxy)(hydroxy)chlorinated inorganic phases by less molecular chlorine and related chlorine species on the catalyst surface. A reaction scheme of

  16. The simplest non-minimal matter-geometry coupling in the f( R, T) cosmology

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Sahoo, P. K.

    2017-07-01

    f( R, T) gravity is an extended theory of gravity in which the gravitational action contains general terms of both the Ricci scalar R and the trace of the energy-momentum tensor T. In this way, f( R, T) models are capable of describing a non-minimal coupling between geometry (through terms in R) and matter (through terms in T). In this article we construct a cosmological model from the simplest non-minimal matter-geometry coupling within the f( R, T) gravity formalism, by means of an effective energy-momentum tensor, given by the sum of the usual matter energy-momentum tensor with a dark energy contribution, with the latter coming from the matter-geometry coupling terms. We apply the energy conditions to our solutions in order to obtain a range of values for the free parameters of the model which yield a healthy and well-behaved scenario. For some values of the free parameters which are submissive to the energy conditions application, it is possible to predict a transition from a decelerated period of the expansion of the universe to a period of acceleration (dark energy era). We also propose further applications of this particular case of the f( R, T) formalism in order to check its reliability in other fields, rather than cosmology.

  17. Selection and Suitability of an Artificial Diet for Tuta absoluta (Lepidoptera: Gelechiidae) Based on Physical and Chemical Characteristics

    PubMed Central

    Parra, J. R. P.

    2017-01-01

    Tuta absoluta (Meyrick, 1917) is a key tomato pest in South America and, recently, in Europe and Africa. To develop efficient control methods for this pest, adequate rearing protocols are desirable. As an alternative to tomato leaves (natural diet), we evaluated four artificial diets. Biological traits including larval and pupal viability and development time, pupal weight and deformations were assessed. Additionally, the optimum container size and larval density were evaluated. The diet based on casein, wheat germ and cellulose allowed the best development of T. absoluta, showing higher viability and no negative effects on larval instars and pupal weight. The best container was a glass tube measuring Ø 1 × h 6 cm, topped with waterproof cotton, with a density of three larvae. To evaluate the suitability of this diet, T. absoluta was reared during eight generations and life-table parameters were estimated for the F1, F3, F6, and F8 generations. The total viability (egg–adult) increased over the generations, reaching 75% in the eighth generation. Based on life-table estimations no differences among generations were found. The net reproductive rate (Ro) was higher than 40, the intrinsic rate of increase (rm) ranged between 0.08 and 0.11, the finite rate of increase (λ) was 1.1, the mean generation time (T) have a maximum of 44 d and doubling time ranged from 5.89–8.32 generations. These results indicated that a diet based on casein, wheat germ and cellulose was suitable for T. absoluta rearing in laboratory conditions. PMID:28042106

  18. Viability of the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology for general potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume; Amorós, Jaume, E-mail: jaime.haro@upc.edu, E-mail: jaume.amoros@upc.edu

    2014-12-01

    We consider the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology (LQC) for phenomenological potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding or contracting phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these potentials, numerically solving the dynamical perturbation equations we have seen that, for the particular F(T) model that we will name teleparallel versionmore » of LQC, and whose modified Friedmann equation coincides with the corresponding one in holonomy corrected LQC when one deals with the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the corresponding equations obtained from the well-know perturbed equations in F(T) gravity lead to theoretical results that fit well with current observational data. More precisely, in this teleparallel version of LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with Planck's experimental data. On the other hand, in the standard holonomy corrected LQC, using the perturbed equations obtained replacing the Ashtekar connection by a suitable sinus function and inserting some counter-terms in order to preserve the algebra of constrains, the theoretical value of the tensor/scalar ratio is smaller than in the teleparallel version, which means that there is always a set of solutions that matches with Planck's data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.« less

  19. Stable carbonous catalyst particles and method for making and utilizing same

    DOEpatents

    Ganguli, Partha S.; Comolli, Alfred G.

    2005-06-14

    Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr.sub.2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m.sup.2 /g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations. This invention also includes method steps for making the stable carbonous catalyst particles having improved particle strength and catalytic activity, and processes for utilizing the active stable carbonous carbon-coated catalysts such as for syn-gas reactions in ebullated/fluidized bed reactors for producing alcohol products and Fischer-Tropsch synthesis liquid products.

  20. Insight into Oxide-Bridged Heterobimetallic Al/Zr Olefin Polymerization Catalysts.

    PubMed

    Boulho, Cédric; Zijlstra, Harmen S; Hofmann, Alexander; Budzelaar, Peter H M; Harder, Sjoerd

    2016-11-21

    Reaction of (TBBP)AlMe⋅THF with [Cp* 2 Zr(Me)OH] gave [(TBBP)Al(THF)-O-Zr(Me)Cp* 2 ] (TBBP=3,3',5,5'-tetra-tBu-2,2'-biphenolato). Reaction of [DIPPnacnacAl(Me)-O-Zr(Me)Cp 2 ] with [PhMe 2 NH] + [B(C 6 F 5 ) 4 ] - gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)-O-Zr(THF)Cp 2 ] + [B(C 6 F 5 ) 4 ] - (DIPPnacnac=HC[(Me)C=N(2,6-iPr 2 -C 6 H 3 )] 2 ). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40-47 kcal mol -1 ) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six-membered-ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal-Me-C angle that prevents synchronized bond-breaking and making. A more-likely pathway is dissociation of the Al-O-Zr complex into an aluminate and the active polymerization catalyst [Cp* 2 ZrMe] + . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The capacity of modified nickel catalysts derived from discharged catalyst of fertilizer plants for NOx treatment

    NASA Astrophysics Data System (ADS)

    Ha, T. M. P.; Luong, N. T.; Le, P. N.

    2016-11-01

    In Vietnam for recent years, a large amount of hazardous waste containing nickel (Ni) derived from discharged catalyst of fertilizer plants has caused environmental problems in landfill overloading and the risk of soil or surface water sources pollution. Taking advantage of discharged catalyst, recycling Ni components and then synthesizing new catalysts apply for mono-nitrogen oxides (NOx) treatments is an approach to bring about both economic and environmental benefits. This study was carried out with the main objective: Evaluate the performance of modified catalysts (using recovered Ni from the discharged RKS-2-7H catalyst of Phu My Fertilizer Plant) on NOx treatment. The catalysts was synthesized and modified with active phases consist of recovered Ni and commercial Barium oxide (BaO), Manganese dioxide (MnO2) / Cerium (IV) oxide (CeO2) on the support Aluminium oxide (γ-Al2O3). The results show that the modified catalysts with Ni, Ba, Ce was not more beneficial for NOx removal than which with Ni, Ba, Mn. 98% NOx removal at 350°C with the start temperature at 115°C and the T60 value at 307°C can be obtained with 10Ni10Ba10Mn/Al catalyst.

  2. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  3. Catalysts and process developments for two-stage liquefaction. Third quarterly technical progress report No. 44, April 1, 1991--June 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

    Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage close-coupled catalytic process. As documented in the previous quarterly report (Task 3.1), there was little advantage for presoaking Black Thunder coal or Martin Lake lignite in a hydrogen-donor solvent, such as tetralin, at temperatures up to 600{degrees}F prior to liquefaction at higher temperatures. The amount of decarboxylation that occurred during the presoaking of Black Thunder coal or Martin Lake lignite in tetralin in the temperature range of 400 to 600{degrees}F was also relatively small. Further experimentation was undertaken inmore » a continuous flow unit with Black Thunder coal, where the primary goal was to determine the extent of decarboxylation and changes in the structure of the unconverted coal samples. The preliminary results indicated little conversion of the feed coal to THF solubles at 600{degrees}F, although the conversion did increase with increasing temperature up to 24% at 700{degrees}F. The level of decarboxylation was also low at the above reaction temperatures. Thus, presoaking in a coal-derived solvent or even tetralin does not seem to be an effective means to achieve decarboxylation. A suitable sample of Illinois No. 6 coal was received and tested for liquefaction. The batch liquefaction showed that this sample had good reactivity. The continuous liquefaction test was done in a two-stage unit with AMOCAT{trademark}-1C catalyst in both reactors. A significant amount of resid was produced throughout this three-week run. As the catalyst aged, the distillate production decreased and its product quality got worse. The feedstock liquefaction studies for the three feedstocks (Black Thunder subbituminous coal, Martin Lake lignite, and Illinois No. 6 coal) have been completed, and their results will be compared in a subsequent quarterly report.« less

  4. Effect of H2O2 injection patterns on catalyst bed characteristics

    NASA Astrophysics Data System (ADS)

    Kang, Hongjae; Lee, Dahae; Kang, Shinjae; Kwon, Sejin

    2017-01-01

    The decomposition process of hydrogen peroxide can be applied to a bipropellant thruster, as well as to monopropellant thruster. To provide a framework for the optimal design of the injector and catalyst bed depending on a type of thruster, this research scrutinizes the effect of injection patterns of the propellant on the performance of the catalyst bed. A showerhead injector and impinging jet injector were tested with a 50 N monopropellant thruster. Manganese oxide/γ-alumina catalyst and manganese oxide/lanthanum-doped alumina catalyst were prepared and tested. The showerhead injector provided a fast response time, suitable for pulse mode operation. The impinging jet injector mitigated the performance instability and catalyst attrition that is favorable for large scale bipropellant thrusters. The design of a dual catalyst bed was conceptually proposed based on the data obtained from firing tests.

  5. Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix.

    PubMed

    Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard

    2015-03-21

    Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.

  6. Improved process for generating ClF/sub 3/ from ClF and F/sub 2/

    DOEpatents

    Reiner, R.H.; Pashley, J.H.; Barber, E.J.

    The invention is an improvement in the process for producing gaseous ClF/sub 3/ by reacting ClF and F/sub 2/ at elevated temperature. The improved process comprises conducting the reaction in the presence of NiF/sub 2/, which preferably is in the form of particles or in the form of a film or layer on a particulate substrate. The nickel fluoride acts as a reaction catalyst, significantly increasing the reaction rate and thus permitting valuable reductions in process temperature, pressure, and/or reactor volume.

  7. Cardiomyopathy mutation (F88L) in troponin T abolishes length dependency of myofilament Ca2+ sensitivity.

    PubMed

    Reda, Sherif M; Chandra, Murali

    2018-05-18

    Recent clinical studies have revealed a new hypertrophic cardiomyopathy-associated mutation (F87L) in the central region of human cardiac troponin T (TnT). However, despite its implication in several incidences of sudden cardiac death in young and old adults, whether F87L is associated with cardiac contractile dysfunction is unknown. Because the central region of TnT is important for modulating the muscle length-mediated recruitment of new force-bearing cross-bridges (XBs), we hypothesize that the F87L mutation causes molecular changes that are linked to the length-dependent activation of cardiac myofilaments. Length-dependent activation is important because it contributes significantly to the Frank-Starling mechanism, which enables the heart to vary stroke volume as a function of changes in venous return. We measured steady-state and dynamic contractile parameters in detergent-skinned guinea pig cardiac muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnT WT ) or the guinea pig analogue (TnT F88L ) of the human mutation at two different sarcomere lengths (SLs): short (1.9 µm) and long (2.3 µm). TnT F88L increases pCa 50 (-log [Ca 2+ ] free required for half-maximal activation) to a greater extent at short SL than at long SL; for example, pCa 50 increases by 0.25 pCa units at short SL and 0.17 pCa units at long SL. The greater increase in pCa 50 at short SL leads to the abolishment of the SL-dependent increase in myofilament Ca 2+ sensitivity (ΔpCa 50 ) in TnT F88L fibers, ΔpCa 50 being 0.10 units in TnT WT fibers but only 0.02 units in TnT F88L fibers. Furthermore, at short SL, TnT F88L attenuates the negative impact of strained XBs on force-bearing XBs and augments the magnitude of muscle length-mediated recruitment of new force-bearing XBs. Our findings suggest that the TnT F88L -mediated effects on cardiac thin filaments may lead to a negative impact on the Frank-Starling mechanism. © 2018 Reda and Chandra.

  8. Friedmann Cosmology with Matter Creation in Modified f( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Singh, C. P.

    2016-02-01

    The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f( R, T) ( R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f( R, T)= R+2 f( T) with "gamma-law" equation of state p = ( γ-1) ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3 β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.

  9. Removal of ammonia from urine vapor by a dual-catalyst system

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1977-01-01

    The feasibility of removing ammonia from urine vapor by a low-temperature dual-catalyst system has been demonstrated. The process is based on the catalytic oxidation of ammonia to a mixture of nitrogen, nitrous oxide, and water, followed by a catalytic decomposition of the nitrous oxide into its elements. Potential ammonia oxidation and nitrous oxide decomposition catalysts were first screened with artificial gas mixtures, then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual-catalyst bed arrangement was found that achieved the removal of ammonia and also organic carbon, and recovered water of good quality from urine vapor.

  10. Need for optimizing catalyst loading for achieving affordable microbial fuel cells.

    PubMed

    Singh, Inderjeet; Chandra, Amreesh

    2013-08-01

    Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61 mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Palatini formulation of f( R, T) gravity theory, and its cosmological implications

    NASA Astrophysics Data System (ADS)

    Wu, Jimin; Li, Guangjie; Harko, Tiberiu; Liang, Shi-Dong

    2018-05-01

    We consider the Palatini formulation of f( R, T) gravity theory, in which a non-minimal coupling between the Ricci scalar and the trace of the energy-momentum tensor is introduced, by considering the metric and the affine connection as independent field variables. The field equations and the equations of motion for massive test particles are derived, and we show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, energy-momentum trace dependent metric, related to the physical metric by a conformal transformation. Similar to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We obtain the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra force, which is identical to the one obtained in the metric case. The thermodynamic interpretation of the theory is also briefly discussed. We investigate in detail the cosmological implications of the theory, and we obtain the generalized Friedmann equations of the f( R, T) gravity in the Palatini formulation. Cosmological models with Lagrangians of the type f=R-α ^2/R+g(T) and f=R+α ^2R^2+g(T) are investigated. These models lead to evolution equations whose solutions describe accelerating Universes at late times.

  12. Cosmic transit and anisotropic models in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Sahu, S. K.; Tripathy, S. K.; Sahoo, P. K.; Nath, A.

    2017-06-01

    Accelerating cosmological models are constructed in a modified gravity theory dubbed as $f(R,T)$ gravity at the backdrop of an anisotropic Bianchi type-III universe. $f(R,T)$ is a function of the Ricci scalar $R$ and the trace $T$ of the energy-momentum tensor and it replaces the Ricci scalar in the Einstein-Hilbert action of General Relativity. The models are constructed for two different ways of modification of the Einstein-Hilbert action. Exact solutions of the field equations are obtained by a novel method of integration. We have explored the behaviour of the cosmic transit from an decelerated phase of expansion to an accelerated phase to get the dynamical features of the universe. Within the formalism of the present work, it is found that, the modification of the Einstein-Hilbert action does not affect the scale factor. However the dynamics of the effective dark energy equation of state is significantly affected.

  13. Green Propellant Demonstration with Hydrazine Catalyst of F-16 Emergency Power Unit

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Brechbill, Shawn

    2015-01-01

    Some space vehicle and aircraft Auxiliary Power Units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel which requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants that could enable their use in APU's: the Swedish LMP-103S and the Air Force Research Laboratory (AFRL) AF-M315E. While there has been work on development of these propellants for thruster applications (Prisma and Green Propulsion Infusion Mission, respectively), there has been less focus on the application to power units. Beginning in 2012, an effort was started by the Marshall Space Flight Center (MSFC) on the APU application. The MSFC plan was to demonstrate green propellants with residual Space Shuttle hardware. The principal investigator was able to acquire a Solid Rocket Booster gas generator and an Orbiter APU. Since these test assets were limited in number, an Air Force equivalent asset was identified: the F-16 Emergency Power Unit (EPU). In June 2013, two EPU's were acquired from retired aircraft located at Davis Monthan Air Force Base. A gas generator from one of these EPU's was taken out of an assembly and configured for testing with a version of the USAF propellant with a higher water content (AF-M315EM) to reduce decomposition temperatures. Testing in November 2014 has shown that this green propellant is reactive with the Hydrazine catalyst (Shell 405) generating 300 psi of pressure with the existing F-16 EPU configuration. This paper will highlight the results of MSFC testing in collaboration with AFRL.

  14. Study of removal of ammonia from urine vapor by dual catalyst

    NASA Technical Reports Server (NTRS)

    Budininkas, P.

    1976-01-01

    The feasibility of ammonia removal from urine vapor by a low temperature dual-catalyst system was investigated. The process is based on the initial catalytic oxidation of ammonia present in urine vapor to nitrogen and nitrous oxide, followed by a catalytic decomposition of the nitrous oxide formed into its elements. The most active catalysts for the oxidation of ammonia and for the decomposition of N2O, identified in screening tests, were then combined into dual catalyst systems and tested to establish their overall efficiencies for the removal of ammonia from artificial gas mixtures. Dual catalyst systems capable of ammonia removal from the artificial gas mixtures were then tested with the actual urine vapor produced by boiling untreated urine. A suitable dual catalyst bed arrangement was found that achieved the removal of ammonia and organic carbon, and recovered water of good quality from urine vapor.

  15. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    PubMed

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  16. Interpretation of f(R,T) gravity in terms of a conserved effective fluid

    NASA Astrophysics Data System (ADS)

    Shabani, Hamid; Ziaie, Amir Hadi

    2018-03-01

    In the present work, we introduce a novel approach to study f(R,T) gravity theory from a different perspective. Here, T denotes the trace of energy-momentum tensor (EMT) of matter fluids. The usual method (as discussed in the literature) is to choose an h(T) function and then solve for the resulted Friedman equations. Nevertheless, our aim here is, without loss of generality, to reformulate a particular class of f(R,T) gravity models in which the Einstein-Hilbert action is promoted by an arbitrary function of the trace of EMT. The strategy is the redefinition of the equation of motion in terms of the components of an effective fluid. We show that in this case the EMT is automatically conserved. As we shall see, adopting such a point of view (at least) in f(R,T) gravity is accompanied by two significant points. On one hand, h(T) function is chosen based upon a physical concept and on the other, we clearly understand the overall or effective behavior of matter in terms of a conserved effective fluid. To illustrate the idea, we study some models in which different physical properties for the effective fluid is attributed to each model. Particularly, we discuss models with constant effective density, constant effective pressure and constant effective equation of state (EoS) parameter. Moreover, two models with a relation between the effective density and the effective pressure will be considered. An elegant result is that in f(R,T) gravity, there is a possibility that a perfect fluid could effectively behave as a modified Chaplygin gas with four free parameters.

  17. Bianchi type-I universe in f(R, T) modified gravity with quark matter and Λ

    NASA Astrophysics Data System (ADS)

    Ćaǧlar, Halife; Aygün, Sezgin

    2017-02-01

    In this study, we investigate homogeneous and anisotropic Bianchi type I universe in the presence of quark matter source in f(R, T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011) with cosmological constant Λ (where R is the Ricci scalar and T is the trace of the energy momentum tensor). For this aim we have used the anisotropy feature of Bianchi type I universe and equation of states (EoS) of quark matter. We explore the exact solution f(R,T)=R+2f(T) model for Bianchi type I universe model. When t→∞, we get very small cosmological constant value, this result agrees with recent observations.

  18. Enhancement of biodiesel synthesis from soybean oil by potassium fluoride modification of a calcium magnesium oxides catalyst.

    PubMed

    Fan, Mingming; Zhang, Pingbo; Ma, Qinke

    2012-01-01

    Transesterification of soybean oil with methanol was carried out in the presence of CaO-MgO and KF-modified CaO-MgO catalysts at atmospheric pressure. While the methyl ester yield for the CaO-MgO catalyst with a ratio of 8:2 (CaO:MgO) was 63.6%, it was 97.9% for the KF-modified catalyst at a 2% catalyst to the reactants (methanol/oil mixture) weight ratio, a temperature of 65 °C, a methanol-soybean oil ratio of 9:1 and a reaction time of 2.5 h. The KF/CaO-MgO catalyst still yielded 86.7% after four successive uses. The catalytic performance of the KF/CaO-MgO catalyst was attributed to the formation of active KCaF(3) and K(2)MgF(4) centers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A validation of dynamic causal modelling for 7T fMRI.

    PubMed

    Tak, S; Noh, J; Cheong, C; Zeidman, P; Razi, A; Penny, W D; Friston, K J

    2018-07-15

    There is growing interest in ultra-high field magnetic resonance imaging (MRI) in cognitive and clinical neuroscience studies. However, the benefits offered by higher field strength have not been evaluated in terms of effective connectivity and dynamic causal modelling (DCM). In this study, we address the validity of DCM for 7T functional MRI data at two levels. First, we evaluate the predictive validity of DCM estimates based upon 3T and 7T in terms of reproducibility. Second, we assess improvements in the efficiency of DCM estimates at 7T, in terms of the entropy of the posterior distribution over model parameters (i.e., information gain). Using empirical data recorded during fist-closing movements with 3T and 7T fMRI, we found a high reproducibility of average connectivity and condition-specific changes in connectivity - as quantified by the intra-class correlation coefficient (ICC = 0.862 and 0.936, respectively). Furthermore, we found that the posterior entropy of 7T parameter estimates was substantially less than that of 3T parameter estimates; suggesting the 7T data are more informative - and furnish more efficient estimates. In the framework of DCM, we treated field-dependent parameters for the BOLD signal model as free parameters, to accommodate fMRI data at 3T and 7T. In addition, we made the resting blood volume fraction a free parameter, because different brain regions can differ in their vascularization. In this paper, we showed DCM enables one to infer changes in effective connectivity from 7T data reliably and efficiently. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effect of fly ash on catalytic removal of gaseous dioxins over V{sub 2}O{sub 5}-WO{sub 3} catalyst of a sinter plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Hao Chang; Kai Hsien Chi; Chi Wei Young

    2009-10-01

    A PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran)-containing gas stream generating system was developed to investigate the efficiency and effectiveness of V{sub 2}O{sub 5}-WO{sub 3} catalyst for PCDD/F destruction. Catalytic decomposition of PCDD/Fs (simulated gas streams) was evaluated with lab-scale pelletized and plate-type catalyst based on V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} at controlled temperature, space velocity, and inlet PCDD/F concentration. Due to the lower porosity of the pelletized catalyst, PCDD/F destruction efficiencies reach 72.9-83.2% for different levels of inlet PCDD/F concentrations (1.08-3.04 ng-TEQ/Nm{sup 3}) of the gas stream (space velocity: 5000 h-1). As the surface area is increased from 287 m{sup 2}/m{supmore » 3} (plate-type A) to 550 m{sup 2}/m{sup 3} (plate-type B), the PCDD/F destruction achieved with plate-type catalyst increases from 76.0% to 85.3% at 320{sup o}C (space velocity: 5000 h{sup -1}). In addition, the results of pilot-scale experiment (real flue gases of a sinter plant) indicate that relatively lower PCDD/F destruction efficiencies (62.1-65.7%) were achieved with the plate-type B catalyst as the solid-phase PCDD/F and fly ash passed through the reactor (space velocity: 5000 h{sup -1}). Overall, the lab-scale and pilot-scale experiments indicate that PCDD/F destructions achieved with pelletized and plate-type catalysts strongly depend on the operating temperature of the catalyst. The results also indicate that the presence of fly ash lowers PCDD/F destruction due to significant PCDD/F formation via de novo synthesis at 320{sup o}C. 20 refs., 5 figs., 3 tabs.« less

  1. Generalized ghost pilgrim dark energy in F(T,TG) cosmology

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nazir, Kanwal

    2016-07-01

    This paper is devoted to study the generalized ghost pilgrim dark energy (PDE) model in F(T,TG) gravity with flat Friedmann-Robertson-Walker (FRW) universe. In this scenario, we reconstruct F(T,TG) models and evaluate the corresponding equation of state (EoS) parameter for different choices of the scale factors. We assume power-law scale factor, scale factor for unification of two phases, intermediate and bouncing scale factor. We study the behavior of reconstructed models and EoS parameters graphically. It is found that all the reconstructed models show decreasing behavior for PDE parameter u = -2. On the other hand, the EoS parameter indicates transition from dust-like matter to phantom era for all choices of the scale factor except intermediate for which this is less than - 1. We conclude that all the results are in agreement with PDE phenomenon.

  2. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  3. An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies.

    PubMed

    Feller, David; Peterson, Kirk A

    2013-08-28

    The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.

  4. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn

    DOEpatents

    Wickham, David [Boulder, CO; Cook, Ronald [Lakewood, CO

    2008-10-28

    The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

  5. Nitrogen-doped three-dimensional graphene-supported platinum catalysts for polymer electrolyte membrane fuel cells application

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Li, Xingxing; Yuan, Wensen; Zhu, Huanhuan; Qin, Yong; Zhang, Shuai; Yuan, Ningyi; Lin, Bencai; Ding, Jianning

    Catalysts are a key component of polymer electrolyte membrane fuel cells (PEMFCs). In this work, nitrogen-doped three-dimensional graphene-supported platinum (Pt-3DNG) catalysts are successfully prepared and characterized. SEM and TEM images show the Pt nanoparticles are uniformly dispersed in the sheets of nitrogen-doped 3DNG. Compared with that of the commercial Pt/C catalysts, Pt-3DNG show much better oxygen reduction reaction (ORR) activity and cycling stability, and the reduction in limit current density after 1000 cycles is only about 1.6% for the Pt-3DNG catalysts, whereas 7.2% for the commercial Pt/C catalysts. The single cell using Pt-3DNG catalysts in both the anode and the cathode show a higher peak power density (21.47mW cm-2) than that using commercial Pt/C catalysts (20.17mW cm-2) under the same conditions. These properties make this type of catalyst suitable for the application in PEMFCs.

  6. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  7. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    PubMed

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  8. Three-dimensional structure of Escherichia coli initiator tRNA/f//Met/

    NASA Technical Reports Server (NTRS)

    Woo, N. H.; Rich, A.; Roe, B. A.

    1980-01-01

    The crystal structure of Escherichia coli tRNA(f)(Met), an initiator transfer RNA, has been determined. While grossly similar to that of the chain-elongating yeast tRNA(Phe), there are three major differences. One involves the folding of the anticodon loop; in particular, the position of the constant uridine, U33. This difference was unexpected and may be of functional significance.

  9. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls.

    PubMed

    Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer

    2016-11-05

    In green catalyst systems, both the catalyst and the technique should be environmentally safe. In this study we designed a green palladium(II) catalyst for microwave-assisted Suzuki CC coupling reactions. The catalyst support was produced from biopolymers; chitosan and cellulose. The catalytic activity of the catalyst was tested on 16 substrates in solvent-free media and compared with those of commercial palladium salts. Reusability tests were done. The catalyst was also used in conventional reflux-heating system to demonstrate the efficiency of microwave heating method. We recorded high activity, selectivity and excellent TONs (6600) and TOFs (82500) just using a small catalyst loading (1.5×10(-3)mol%) in short reaction time (5min). The catalyst exhibited a long lifetime (9 runs). The findings indicated that both green chitosan/cellulose-Pd(II) catalyst and the microwave heating are suitable for synthesis of biaryl compounds by using Suzuki CC coupling reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Recyclable catalysts methods of making and using the same

    DOEpatents

    Dioumaev, Vladimir K.; Bullock, R. Morris

    2006-02-28

    Organometallic complexes are provided, which include a catalyst containing a transition metal, a ligand and a component having the formula GAr.sup.F. Ar.sup.F is an aromatic ring system selected from phenyl, naphthalenyl, anthracenyl, fluorenyl, or indenyl. The aromatic ring system has at least a substituent selected from fluorine, hydrogen, hydrocarbyl or fluorinated hydrocarbyl, G is substituted or unsubstituted (CH.sub.2).sub.n or (CF.sub.2).sub.n, wherein n is from 1 to 30, wherein further one or more CH.sub.2 or CF.sub.2 groups are optionally replaced by NR, PR, SiR.sub.2, BR, O or S, or R is hydrocarbyl or substituted hydrocarbyl, GAr.sup.F being covalently bonded to either said transition metal or said ligand of said catalyst, thereby rendering said cationic organometallic complex liquid. The catalyst of the organometallic complex can be [CpM(CO).sub.2(NHC)L.sub.k].sup.+A.sup.-, wherein M is an atom of molybdenum or tungsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5Q.sup.1Q.sup.2Q.sup.3Q.sup.4Q.sup.5], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, GAr.sup.F C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, substituted hydrocarbyl radical substituted by GAr.sup.F, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2R', --SiR'.sub.3 and --NR'R'', wherein R' and R'' are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complexes as catalysts in catalytic reactions, such as for

  11. Laser ablated high T(sub c) superconducting thin YBa2Cu3O(7-x) films on substrates suitable for microwave applications

    NASA Astrophysics Data System (ADS)

    Warner, J. D.; Meola, J. E.; Jenkins, K. A.; Bhasin, K. B.

    1990-04-01

    The development of high temperature superconducting YBa2Cu3O(7-x) thin films on substrates suitable for microwave applications is of great interest for evaluating their applications for space radar, communication, and sensor systems. Thin films of YBa2Cu3O(7-x) were formed on SrTiO3, ZrO2, MgO, and LaAlO3 substrates by laser ablation. The wavelength used was 248 nm from a KrF excimer laser. During deposition the films were heated to 600 C in a flowing oxygen environment, and required no post annealing. The low substrate temperature during deposition with no post annealing gave films which were smooth, which had their c-axis aligned to the substrates, and which had grains ranging from 0.2 to 0.5 microns in size. The films being c-axis aligned gave excellent surface resistance at 35 GHz which was lower than that of copper at 77 K. At present, LaAlO3 substrates with a dielectric constant of 22, appears suitable as a substrate for microwave and electronic applications. The films were characterized by resistance-temperature measurements, scanning electron microscopy, and x ray diffraction. The highest critical transition temperatures (T sub c) are above 89 K for films on SrTiO3 and LaAlO3, above 88 K for ZrO2, and above 86 K for MgO. The critical current density (J sub c) of the films on SrTiO3 is above 2 x 10(exp 6) amperes/sq cm at 77 K. The T(sub c) and J(sub c) are reported as a function of laser power, composition of the substrate, and temperature of the substrate during deposition.

  12. Scalar field and time varying cosmological constant in f(R,T) gravity for Bianchi type-I universe

    NASA Astrophysics Data System (ADS)

    Singh, G. P.; Bishi, Binaya K.; Sahoo, P. K.

    2016-04-01

    In this article, we have analysed the behaviour of scalar field and cosmological constant in $f(R,T)$ theory of gravity. Here, we have considered the simplest form of $f(R,T)$ i.e. $f(R,T)=R+2f(T)$, where $R$ is the Ricci scalar and $T$ is the trace of the energy momentum tensor and explored the spatially homogeneous and anisotropic Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model. It is assumed that the Universe is filled with two non-interacting matter sources namely scalar field (normal or phantom) with scalar potential and matter contribution due to $f(R,T)$ action. We have discussed two cosmological models according to power law and exponential law of the volume expansion along with constant and exponential scalar potential as sub models. Power law models are compatible with normal (quintessence) and phantom scalar field whereas exponential volume expansion models are compatible with only normal (quintessence) scalar field. The values of cosmological constant in our models are in agreement with the observational results. Finally, we have discussed some physical and kinematical properties of both the models.

  13. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  14. Fe3O4@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Qiu, Ling-Guang; Zhu, Junfa

    2014-01-01

    Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe3O4@MIL-100(Fe) core-shell magnetic microspheres. It has been shown that these catalysts not only exhibit high catalytic activities for the Claisen-Schmidt condensation reactions under environmentally friendly conditions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after being used for many times. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, these catalysts are green, cheap and more suitable for large scale industrial applications.Separation and recycling of catalysts after catalytic reactions are critically required to reduce the cost of catalysts as well as to avoid the generation of waste in industrial applications. In this work, we present a facile fabrication and characterization of a novel type of MOF-based porous catalyst, namely, Fe3O4@MIL-100(Fe) core-shell magnetic microspheres. It has been shown that these catalysts not only exhibit high catalytic activities for the Claisen-Schmidt condensation reactions under environmentally friendly conditions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after being used for many times. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, these catalysts are green, cheap and more suitable for large scale industrial applications. Electronic supplementary information (ESI) available: SEM and TEM images, and GC-MS spectra for chalcones. See DOI: 10.1039/c3nr05051c

  15. High-precision half-life measurements of the T =1 /2 mirror β decays 17F and 33Cl

    NASA Astrophysics Data System (ADS)

    Grinyer, J.; Grinyer, G. F.; Babo, M.; Bouzomita, H.; Chauveau, P.; Delahaye, P.; Dubois, M.; Frigot, R.; Jardin, P.; Leboucher, C.; Maunoury, L.; Seiffert, C.; Thomas, J. C.; Traykov, E.

    2015-10-01

    Background: Measurements of the f t values for T =1 /2 mirror β+ decays offer a method to test the conserved vector current hypothesis and to determine Vud, the up-down matrix element of the Cabibbo-Kobayashi-Maskawa matrix. In most mirror decays used for these tests, uncertainties in the f t values are dominated by the uncertainties in the half-lives. Purpose: Two precision half-life measurements were performed for the T =1 /2 β+ emitters, 17F and 33Cl, in order to eliminate the half-life as the leading source of uncertainty in their f t values. Method: Half-lives of 17F and 33Cl were determined using β counting of implanted radioactive ion beam samples on a moving tape transport system at the Système de Production d'Ions Radioactifs Accélérés en Ligne low-energy identification station at the Grand Accélérateur National d'Ions Lourds. Results: The 17F half-life result, 64.347 (35) s, precise to ±0.05 % , is a factor of 5 times more precise than the previous world average. The half-life of 33Cl was determined to be 2.5038 (22) s. The current precision of ±0.09 % is nearly 2 times more precise compared to the previous world average. Conclusions: The precision achieved during the present measurements implies that the half-life no longer dominates the uncertainty of the f t values for both T =1 /2 mirror decays 17F and 33Cl.

  16. Cosmological parameters in a generalized multi-function gravitation model f(T,θ )

    NASA Astrophysics Data System (ADS)

    Sadatian, S. Davood; Tahajjodi, A.

    2017-11-01

    The aim of the present article was to study the cosmological model f(T,θ ). By introducing and examining this model as well as a number of other proposed f(T,θ ) models, certain cosmological parameters were analyzed in this framework, and their behaviors were investigated. Ultimately, the results were qualitatively compared with the observational data. It was found that by employing proper coefficients, phantom crossing division occured for the equation of state, thus pointing to the existence of a bouncing universe scenario. Furthermore, it was revealed that by creating a potential in the model, inflation could be produced, and the early cosmos could be studied.

  17. Local Refinement of Analysis-Suitable T-splines

    DTIC Science & Technology

    2011-03-01

    3.2. The extension graph Intersecting T-junction extensions in an extended T-mesh Text can be visualized using an undirected graph . We call this graph ...the extension graph and denote it by E(Text). Each node in E corresponds to a single T-junction extension in Text. If two extensions in Text...intersect then an edge is drawn between the corresponding nodes in E. The extension graph for the extended T-mesh in Figure 7b is shown in Figure 8a. In this

  18. Diesel particulate abatement via wall-flow traps based on perovskite catalysts.

    PubMed

    Fino, Debora; Russo, Nunzio; Saracco, Guido; Specchia, Vito

    2003-01-01

    It is probably redundant to stress how extensive are nowadays the attempts to reduce the diesel particulate emissions from automotive and stationary sources. The present paper looks into a technology relied on a catalytic trap based on a SiC wall-flow monolith lined with suitable catalysts for the sake of promoting a more complete and faster regeneration after particulate capture. All the major steps of the catalytic filter preparation are dealt with, including: the synthesis and choice of the proper catalyst and trap materials, the development of an in situ catalyst deposition technique, the bench testing of the derived catalytic wall-flow. The best catalyst selected was the perovskite La0.9K0.1Cr0.9O3-delta. The filtration efficiency and the pressure drop of the catalytic and non-catalytic monoliths were evaluated on a diesel engine bench under various operating conditions.

  19. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  20. Comparative study on catalytic hydrodehalogenation of halogenated aromatic compounds over Pd/C and Raney Ni catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Xuanxuan; Liu, Sujing; Liu, Ying; Gu, Guodong; Xia, Chuanhai

    2016-04-01

    Catalytic hydrodehalogenation (HDH) has proved to be an efficient approach to dispose halogenated aromatic compounds (HACs). Liquid-phase HDH of single and mixed halobenzenes/4-halophenols with H2 over 5% Pd/C and Raney Ni catalyst are investigated and compared. For liquid-phase HDH of single HACs, hydrogenolytic scission reactivity of C-X bonds decreases in order of C-Br > C-Cl > C-I > C-F over Pd/C catalyst, and in order of C-I > C-Br > C-Cl > C-F over Raney Ni catalyst. To clarify the reason why hydrogenolytic scission reactivity of C-X bonds over Pd/C and Raney Ni catalysts exhibits different trends, liquid-phase HDH of mixed HACs over Pd/C and Raney Ni catalysts were studied, and catalysts are characterized by SEM, EDX, and XRD techniques. It was found that the high adsorption of iodoarenes on Pd/C catalyst caused the HDH reactivity of iodoarenes to be lower than that of chloroarenes and bromoarenes in the HDH of single HACs. Moreover, the adsorption of in situ produced iodine ion (I-) to catalyst surface would result in the decline of catalytic activity, which might be the main reason why the HDH reactivity of HACs in the presence of NaI is rather low.

  1. Bianchi type string cosmological models in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Mishra, B.; Sahoo, Parbati; Pacif, S. K. J.

    2016-09-01

    In this work we have studied Bianchi-III and - VI 0 cosmological models with string fluid source in f( R, T) gravity (T. Harko et al., Phys. Rev. D 84, 024020 (2011)), where R is the Ricci scalar and T the trace of the stress energy-momentum tensor in the context of late time accelerating expansion of the universe as suggested by the present observations. The exact solutions of the field equations are obtained by using a time-varying deceleration parameter. The universe is anisotropic and free from initial singularity. Our model initially shows acceleration for a certain period of time and then decelerates consequently. Several dynamical and physical behaviors of the model are also discussed in detail.

  2. Higher-dimensional gravitational collapse of perfect fluid spherically symmetric spacetime in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Khan, Suhail; Khan, Muhammad Shoaib; Ali, Amjad

    2018-04-01

    In this paper, our aim is to study (n + 2)-dimensional collapse of perfect fluid spherically symmetric spacetime in the context of f(R, T) gravity. The matching conditions are acquired by considering a spherically symmetric non-static (n + 2)-dimensional metric in the inner region and Schwarzschild (n + 2)-dimensional metric in the outer region of the star. To solve the field equations for above settings in f(R, T) gravity, we choose the stress-energy tensor trace and the Ricci scalar as constants. It is observed that two physical horizons, namely, cosmological and black hole horizons appear as a consequence of this collapse. A singularity is also formed after the birth of both the horizons. It is also observed that the term f(R0, T0) slows down the collapsing process.

  3. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  4. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  5. Stellar equilibrium configurations of compact stars in f ( R , T ) theory of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, P.H.R.S.; Arbañil, José D.V.; Malheiro, M., E-mail: moraes.phrs@gmail.com, E-mail: arbanil@ita.br, E-mail: malheiro@ita.br

    In this article we study the hydrostatic equilibrium configuration of neutron stars and strange stars, whose fluid pressure is computed from the equations of state p =ωρ{sup 5/3} and p =0.28(ρ−4B), respectively, with ω and B being constants and ρ the energy density of the fluid. We start by deriving the hydrostatic equilibrium equation for the f ( R , T ) theory of gravity, with R and T standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Such an equation is a generalization of the one obtained from general relativity, and the latter can be retrievedmore » for a certain limit of the theory. For the f ( R , T )= R +2λ T functional form, with λ being a constant, we find that some physical properties of the stars, such as pressure, energy density, mass and radius, are affected when λ is changed. We show that for a fixed central star energy density, the mass of neutron and strange stars can increase with λ. Concerning the star radius, it increases for neutron stars and it decreases for strange stars with the increment of λ. Thus, in f ( R , T ) theory of gravity we can push the maximum mass above the observational limits. This implies that the equation of state cannot be eliminated if the maximum mass within General Relativity lies below the limit given by observed pulsars.« less

  6. Stellar equilibrium configurations of compact stars in f(R,T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Arbañil, José D. V.; Malheiro, M.

    2016-06-01

    In this article we study the hydrostatic equilibrium configuration of neutron stars and strange stars, whose fluid pressure is computed from the equations of state p=ωρ5/3 and p=0.28(ρ-4Script B), respectively, with ω and Script B being constants and ρ the energy density of the fluid. We start by deriving the hydrostatic equilibrium equation for the f(R,T) theory of gravity, with R and T standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Such an equation is a generalization of the one obtained from general relativity, and the latter can be retrieved for a certain limit of the theory. For the f(R,T)=R+2λ T functional form, with λ being a constant, we find that some physical properties of the stars, such as pressure, energy density, mass and radius, are affected when λ is changed. We show that for a fixed central star energy density, the mass of neutron and strange stars can increase with λ. Concerning the star radius, it increases for neutron stars and it decreases for strange stars with the increment of λ. Thus, in f(R,T) theory of gravity we can push the maximum mass above the observational limits. This implies that the equation of state cannot be eliminated if the maximum mass within General Relativity lies below the limit given by observed pulsars.

  7. Faecal corticosterone metabolite concentrations are not a good predictor of habitat suitability for common gartersnakes.

    PubMed

    Halliday, William D; Gilmour, Kathleen M; Blouin-Demers, Gabriel

    2015-01-01

    Measuring habitat suitability is important in conservation and in wildlife management. Measuring the abundance or presence-absence of a species in various habitats is not sufficient to measure habitat suitability because these metrics can be poor predictors of population success. Therefore, having some measure of population success is essential in assessing habitat suitability, but estimating population success is difficult. Identifying suitable proxies for population success could thus be beneficial. We examined whether faecal corticosterone metabolite (fCM) concentrations could be used as a proxy for habitat suitability in common gartersnakes (Thamnophis sirtalis). We conducted a validation study and confirmed that fCM concentrations indeed reflect circulating corticosterone concentrations. We estimated abundance, reproductive output and growth rate of gartersnakes in field and in forest habitat and we also measured fCM concentrations of gartersnakes from these same habitats. Common gartersnakes were more abundant and had higher reproductive outputs and higher growth rates in field habitat than in forest habitat, but fCM concentrations did not differ between the same two habitats. Our results suggest either that fCM concentrations are not a useful metric of habitat suitability in common gartersnakes or that the difference in suitability between the two habitats was too small to induce changes in fCM concentrations. Incorporating fitness metrics in estimates of habitat suitability is important, but these metrics of fitness have to be sensitive enough to vary between habitats.

  8. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-08-01

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co2+ cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the

  9. Photo-oxidation catalysts

    DOEpatents

    Pitts, J Roland [Lakewood, CO; Liu, Ping [Irvine, CA; Smith, R Davis [Golden, CO

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  10. Structure of the MazF-mt9 toxin, a tRNA-specific endonuclease from Mycobacterium tuberculosis.

    PubMed

    Chen, Ran; Tu, Jie; Liu, Zhihui; Meng, Fanrong; Ma, Pinyun; Ding, Zhishan; Yang, Chengwen; Chen, Lei; Deng, Xiangyu; Xie, Wei

    2017-05-06

    Tuberculosis (TB) is a severe disease caused by Mycobacterium tuberculosis (M. tb) and the well-characterized M. tb MazE/F proteins play important roles in stress adaptation. Recently, the MazF-mt9 toxin has been found to display endonuclease activities towards tRNAs but the mechanism is unknown. We hereby present the crystal structure of apo-MazF-mt9. The enzyme recognizes tRNA Lys with a central UUU motif within the anticodon loop, but is insensitive to the sequence context outside of the loop. Based on our crystallographic and biochemical studies, we identified key residues for catalysis and proposed the potential tRNA-binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE PAGES

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...

    2017-03-20

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  12. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  13. A simple and facile Heck-type arylation of alkenes with diaryliodonium salts using magnetically recoverable Pd-catalyst

    EPA Science Inventory

    The Heck-type arylation of alkenes was achieved in aqueous polyethylene glycol using a magnetically recoverable heterogenized palladium catalyst employing diaryliodonium salts under ambient conditions. The benign reaction medium and the stability of the catalyst are the salient f...

  14. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  15. Modeling wormholes in f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Sahoo, P. K.

    2017-08-01

    In this work, we propose the modeling of static wormholes within the f (R ,T ) extended theory of gravity perspective. We present some models of wormholes, which are constructed from different hypotheses for their matter content, i.e., different relations for their pressure components (radial and lateral) and different equations of state. The solutions obtained for the shape function of the wormholes obey the necessary metric conditions. They show a behavior similar to those found in previous references about wormholes, which also happens to our solutions for the energy density of such objects. We also apply the energy conditions for the wormholes' physical content.

  16. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-09-01

    As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.

  17. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange

    PubMed Central

    2015-01-01

    Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials composed of TiO2/PMAA (poly(methacrylic acid)) and PVP (polyvinylpyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of “nano-SABRE” catalyst particle, a target substrate, and ethanol, up to ∼(−)40-fold and ∼(−)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging. PMID:26185545

  18. Mutated and Bacteriophage T4 Nanoparticle Arrayed F1-V Immunogens from Yersinia pestis as Next Generation Plague Vaccines

    PubMed Central

    Tao, Pan; Mahalingam, Marthandan; Kirtley, Michelle L.; van Lier, Christina J.; Sha, Jian; Yeager, Linsey A.; Chopra, Ashok K.; Rao, Venigalla B.

    2013-01-01

    Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. PMID:23853602

  19. SISGR-Fundamental Experimental and Theoretical Studies on a Novel Family of Oxide Catalyst Supports for Water Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant

    2014-10-03

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [< $ 3.0 / gallon gasoline equivalent (gge)] comparable to conventional liquid fuels. In line with these goals, it wasmore » demonstrated that fluorine doped IrO2 thin films and nanostructured high surface area powders display remarkably higher electrochemical activity, and comparable durability as pure IrO2 electro-catalyst for the oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O2 thin films of different compositions FUNDAMENTAL STUDY OF NANOSTRUCTURED ELECTRO-CATALYSTS WITH REDUCED NOBLE METAL CONTENT FOR PEM BASED WATER ELECTROLYSIS 4 have also been studied. It has been shown that (Ir0.40Sn0.30Nb0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would

  20. 26 CFR 1.280F-4T - Special rules for listed property (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Special rules for listed property (temporary). 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.280F-4T Special rules...) and § 1.280F-6(d)(2)) in 1984 through 1988 is 80 percent, 70 percent, 60 percent, and 55 percent...

  1. 26 CFR 1.280F-4T - Special rules for listed property (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Special rules for listed property (temporary). 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.280F-4T Special rules...) and § 1.280F-6(d)(2)) in 1984 through 1988 is 80 percent, 70 percent, 60 percent, and 55 percent...

  2. 26 CFR 1.280F-4T - Special rules for listed property (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Special rules for listed property (temporary). 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.280F-4T Special rules...) and § 1.280F-6(d)(2)) in 1984 through 1988 is 80 percent, 70 percent, 60 percent, and 55 percent...

  3. 26 CFR 1.280F-4T - Special rules for listed property (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Special rules for listed property (temporary). 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.280F-4T Special rules...) and § 1.280F-6(d)(2)) in 1984 through 1988 is 80 percent, 70 percent, 60 percent, and 55 percent...

  4. Magnetized string cosmological models of accelerated expansion of the Universe in f(R,T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Jaiswal, Rekha

    A class of spatially homogeneous and anisotropic Bianchi-V massive string models have been studied in the modified f(R,T)-theory of gravity proposed by Harko et al. [Phys. Rev. D 84:024020, 2011] in the presence of magnetic field. For a specific choice of f(R,T)=f1(R) + f2(T), where f1(R) = ν1R and f2(T) = ν2T; ν1, ν2 being arbitrary parameters, solutions of modified gravity field equations have been generated. To find the deterministic solution of the field equations, we have considered the time varying deceleration parameter which is consistent with observational data of standard cosmology (SNIa, BAO and CMB). As a result to study the transit behavior of Universe, we consider a law of variation for the specifically chosen scale factor, which yields a time-dependent deceleration parameter comprising a class of models that depicts a transition of the Universe from the early decelerated phase to the recent accelerating phase. In this context, for the model of the Universe, the field equations are solved and corresponding cosmological aspects have been discussed. The Energy conditions in this modified gravity theory are also studied. Stability analysis of the solutions through cosmological perturbation is performed and it is concluded that the expanding solution is stable against the perturbation with respect to anisotropic spatial direction. Some physical and geometric properties of the models are also discussed.

  5. Scalar field cosmology in f(R,T) gravity via Noether symmetry

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nawazish, Iqra

    2018-04-01

    This paper investigates the existence of Noether symmetries of isotropic universe model in f(R,T) gravity admitting minimal coupling of matter and scalar fields. The scalar field incorporates two dark energy models such as quintessence and phantom models. We determine symmetry generators and corresponding conserved quantities for two particular f(R,T) models. We also evaluate exact solutions and investigate their physical behavior via different cosmological parameters. For the first model, the graphical behavior of these parameters indicate consistency with recent observations representing accelerated expansion of the universe. For the second model, these parameters identify a transition form accelerated to decelerated expansion of the universe. The potential function is found to be constant for the first model while it becomes V(φ )≈ φ 2 for the second model. We conclude that the Noether symmetry generators and corresponding conserved quantities appear in all cases.

  6. Carbon nanotube synthesis with different support materials and catalysts

    NASA Astrophysics Data System (ADS)

    Gümüş, Fatih; Yuca, Neslihan; Karatepe, Nilgün

    2013-09-01

    Having remarkable characteristics, carbon nanotubes (CNTs) have attracted a lot of interest. Their mechanical, electrical, thermal and chemical properties make CNTs suitable for several applications such as electronic devices, hydrogen storage, textile, drug delivery etc. CNTs have been synthesized by various methods, such as arc discharge, laser ablation and catalytic chemical vapor deposition (CCVD). In comparison with the other techniques, CCVD is widely used as it offers a promising route for mass production. High capability of decomposing hydrocarbon formation is desired for the selected catalysts. Therefore, transition metals which are in the nanometer scale are the most effective catalysts. The common transition metals that are being used are Fe, Co, Ni and their binary alloys. The impregnation of the catalysts over the support material has a crucial importance for the CNT production. In this study, the influence of the support materials on the catalytic activity of metals was investigated. CNTs have been synthesized over alumina (Al2O3), silica (SiO2) and magnesium oxide (MgO) supported Fe, Co, Fe-Co catalysts. Catalyst - support material combinations have been investigated and optimum values for each were compared. Single walled carbon nanotubes (SWCNTs) were produced at 800°C. The duration of synthesis was 30 minutes for all support materials. The synthesized materials were characterized by thermal gravimetric analysis (TGA), Raman spectroscopy and transmission electron microscopy.

  7. Kl-impregnated Oyster Shells as a Solid Catalyst for Soybean Oil Transesterificaton

    USDA-ARS?s Scientific Manuscript database

    Research on inexpensive and green catalysts is needed for economical production of biodiesel. The goal of the research was to test KI-impregnated oyster shell as a solid catalyst for transesterification of soybean oil. Specific objectives were to characterize KI-impregnated oyster shell, determine t...

  8. UTBB FDSOI suitability for IoT applications: Investigations at device, design and architectural levels

    NASA Astrophysics Data System (ADS)

    Berthier, Florent; Beigne, Edith; Heitzmann, Frédéric; Debicki, Olivier; Christmann, Jean-Frédéric; Valentian, Alexandre; Billoint, Olivier; Amat, Esteve; Morche, Dominique; Chairat, Soundous; Sentieys, Olivier

    2016-11-01

    In this paper, we propose to analyze Ultra Thin Body and Box FDSOI technology suitability and architectural solutions for IoT applications and more specifically for autonomous Wireless Sensor Nodes (WSNs). As IoT applications are extremely diversified there is a strong need for flexible solutions at design, architectural level but also at technological level. Moreover, as most of those systems are recovering their energy from the environment, they are challenged by low voltage supplies and low leakage functionalities. We detail in this paper some Ultra Thin Body and Box FDSOI 28 nm characteristics and results demonstrating that this technology could be a perfect option for multidisciplinary IoT devices. Back biasing capabilities and low voltage features are investigated demonstrating efficient high speed/low leakage flexibility. In addition, architectural solutions for WSNs microcontroller are also proposed taking advantage of Ultra Thin Body and Box FDSOI characteristics for full user applicative flexibility. A partitioned architecture between an Always Responsive part with an asynchronous Wake Up Controller (WUC) managing WSN current tasks and an On Demand part with a main processor for application maintenance is presented. First results of the Always Responsive part implemented in Ultra Thin Body and Box FDSOI 28 nm are also exposed.

  9. A Late Stage Strategy for the Functionalization of Triazolium-based NHC catalysts.

    PubMed

    Ozboya, Kerem E; Rovis, Tomislav

    A strategy for the diversification of triazolium-based catalysts is presented. This method is based on the reduction to the triazoline, which serves as a suitable and stable substrate for Pd-mediated cross-coupling, followed by trityl cation mediated reoxidation to the triazolium.

  10. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    PubMed

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  11. Method for treating engine exhaust by use of hydrothermally stable, low-temperature NO.sub.x reduction NH3-SCR catalysts

    DOEpatents

    Narula, Chaitanya K.; Yang, Xiaofan

    2017-07-04

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  12. Crack growth behavior of 2219-T87 aluminum alloy from 20 K (-423 F) to 422 K (300 F)

    NASA Technical Reports Server (NTRS)

    Witzell, W. E.

    1973-01-01

    The aluminum alloy 2219-T87 has great potential for use as a cryogenic material for various manned and unmanned aerospace vehicles. Although its properties are generally known, toughness characteristics in various grain directions when the material is machined from thick plates and subjected to various environments have not been documented. This program, sponsored by the NASA Johnson Space Center, was designed to determine these properties between 20 K (-423 F) and 423 K (300 F).

  13. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  14. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.

  15. Metric-affine f (R ,T ) theories of gravity and their applications

    NASA Astrophysics Data System (ADS)

    Barrientos, E.; Lobo, Francisco S. N.; Mendoza, S.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2018-05-01

    We study f (R ,T ) theories of gravity, where T is the trace of the energy-momentum tensor Tμ ν, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f (R ) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservation of the energy-momentum tensor, which implies nongeodesic motion and consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications are discussed.

  16. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    PubMed

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 < MoF 3 < MoF 6 before sharply decreasing for MoF 9 , with a similar effect for the supported systems (MoF 0 ≈ MoF 9 < MoF 6 < MoF 3 ). This is consistent with the different kinetic behavior (zeroth order in alkyne for MoF 9 derivatives instead of first order for the others) and the isolation of stable metallacyclobutadiene intermediates of MoF 9 for both molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  17. Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method.

    PubMed

    Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro

    2018-04-18

    Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.

  18. Generation of ΔF508-CFTR T84 cell lines by CRISPR/Cas9-mediated genome editing.

    PubMed

    Chung, Woo Young; Song, Myungjae; Park, Jinhong; Namkung, Wan; Lee, Jinu; Kim, Hyongbum; Lee, Min Goo; Kim, Joo Young

    2016-12-01

    To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport.

  19. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction.

    PubMed

    Peera, S Gouse; Arunchander, A; Sahu, A K

    2016-08-14

    Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ∼110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity

  20. Spectroscopic investigation and direct comparison of the reactivities of iron pyridyl oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Song, Yang; Mayes, Howard G.; Queensen, Matthew J.; Bauer, Eike B.; Dupureur, Cynthia M.

    2017-03-01

    The growing interest in green chemistry has fueled attention to the development and characterization of effective iron complex oxidation catalysts. A number of iron complexes are known to catalyze the oxidation of organic substrates utilizing peroxides as the oxidant. Their development is complicated by a lack of direct comparison of the reactivities of the iron complexes. To begin to correlate reactivity with structural elements, we compare the reactivities of a series of iron pyridyl complexes toward a single dye substrate, malachite green (MG), for which colorless oxidation products are established. Complexes with tetradentate, nitrogen-based ligands with cis open coordination sites were found to be the most reactive. While some complexes reflect sensitivity to different peroxides, others are similarly reactive with either H2O2 or tBuOOH, which suggests some mechanistic distinctions. [Fe(S,S-PDP)(CH3CN)2](SbF6)2 and [Fe(OTf)2(tpa)] transition under the oxidative reaction conditions to a single intermediate at a rate that exceeds dye degradation (PDP = bis(pyridin-2-ylmethyl) bipyrrolidine; tpa = tris(2-pyridylmethyl)amine). For the less reactive [Fe(OTf)2(dpa)] (dpa = dipicolylamine), this reaction occurs on a timescale similar to that of MG oxidation. Thus, the spectroscopic method presented herein provides information about the efficiency and mechanism of iron catalyzed oxidation reactions as well as about potential oxidative catalyst decomposition and chemical changes of the catalyst before or during the oxidation reaction.

  1. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  2. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  3. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  4. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  5. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  6. Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation

    PubMed Central

    McKendrick, Ryan; Parasuraman, Raja; Ayaz, Hasan

    2015-01-01

    Contemporary studies with transcranial direct current stimulation (tDCS) provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS) systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings. PMID:25805976

  7. Cosmological implications of scalar field dark energy models in f(T,𝒯 ) gravity

    NASA Astrophysics Data System (ADS)

    Salako, Ines G.; Jawad, Abdul; Moradpour, Hooman

    After reviewing the f(T,𝒯 ) gravity, in which T is the torsion scalar and 𝒯 is the trace of the energy-momentum tensor, we refer to two cosmological models of this theory in agreement with observational data. Thereinafter, we consider a flat Friedmann-Robertson-Walker (FRW) universe filled by a pressureless source and look at the terms other than the Einstein terms in the corresponding Friedmann equations, as the dark energy (DE) candidate. In addition, some cosmological features of models, including equation of states and deceleration parameters, are addressed helping us in getting the accelerated expansion of the universe in quintessence era. Finally, we extract the scalar field as well as potential of quintessence, tachyon, K-essence and dilatonic fields for both f(T,𝒯 ) models. It is observed that the dynamics of scalar field as well as the scalar potential of these models indicate an accelerated expanding universe in these models.

  8. In Vivo MR Imaging of Glioma Recruitment of Adoptive T-Cells Labeled with NaGdF4 -TAT Nanoprobes.

    PubMed

    Zhang, Hua; Wu, Yue; Wang, Jing; Tang, Zhongmin; Ren, Yan; Ni, Dalong; Gao, Hongbo; Song, Ruixue; Jin, Teng; Li, Qiao; Bu, Wenbo; Yao, Zhenwei

    2018-01-01

    Adoptive T lymphocyte immunotherapy is one of the most promising methods to treat residual lesions after glioma surgery. However, the fate of the adoptively transferred T-cells in vivo is unclear, hampering the understanding of this emerging therapy. Thus, it is highly desirable to develop noninvasive and quantitative in vivo tracking of these T-cells to glioma for better identification of the migratory fate and to provide objective evaluation of outcomes of adoptive T-cell immunotherapy targeting glioma. In this work, ultrasmall T 1 MR-based nanoprobes, NaGdF 4 -TAT, as molecular probes with high longitudinal relaxivity (8.93 mm -1 s -1 ) are designed. By means of HIV-1 transactivator (TAT) peptides, nearly 95% of the adoptive T-cells are labeled with the NaGdF 4 -TAT nanoprobes without any measurable side effects on the labeled T-cells, which is remarkably superior to that of the control fluorescein isothiocyanate-NaGdF 4 concerning labeling efficacy. Labeled adoptive T-cell clusters can be sensitively tracked in an orthotopic GL261-glioma model 24 h after intravenous infusion of 10 7 labeled T-cells by T 1 -weighted MR imaging. Both in vitro and in vivo experiments show that the NaGdF 4 -TAT nanoprobes labeling of T-cells may be a promising method to track adoptive T-cells to improve our understanding of the pathophysiology in adoptive immunotherapy for gliomas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Suppression of Bekenstein-Hawking radiation in f(T)-gravity

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2018-01-01

    We discuss semiclassical Nariai black holes in the framework of f(T)-gravity. For a diagonal choice of tetrads, stable Nariai metrics can be found, emitting Bekenstein-Hawking radiation in semiclassical limit. However, for a nondiagonal choice of tetrads, evaporation and anti-evaporation instabilities are turned on. In turn, this causes a backreaction effect suppressing the Bekenstein-Hawking radiation. In particular, evaporation instabilities produce a new radiation — different by Bekenstein-Hawking emission — nonviolating unitarity in particle physics sector.

  10. Simultaneous tDCS-fMRI Identifies Resting State Networks Correlated with Visual Search Enhancement.

    PubMed

    Callan, Daniel E; Falcone, Brian; Wada, Atsushi; Parasuraman, Raja

    2016-01-01

    This study uses simultaneous transcranial direct current stimulation (tDCS) and functional MRI (fMRI) to investigate tDCS modulation of resting state activity and connectivity that underlies enhancement in behavioral performance. The experiment consisted of three sessions within the fMRI scanner in which participants conducted a visual search task: Session 1: Pre-training (no performance feedback), Session 2: Training (performance feedback given), Session 3: Post-training (no performance feedback). Resting state activity was recorded during the last 5 min of each session. During the 2nd session one group of participants underwent 1 mA tDCS stimulation and another underwent sham stimulation over the right posterior parietal cortex. Resting state spontaneous activity, as measured by fractional amplitude of low frequency fluctuations (fALFF), for session 2 showed significant differences between the tDCS stim and sham groups in the precuneus. Resting state functional connectivity from the precuneus to the substantia nigra, a subcortical dopaminergic region, was found to correlate with future improvement in visual search task performance for the stim over the sham group during active stimulation in session 2. The after-effect of stimulation on resting state functional connectivity was measured following a post-training experimental session (session 3). The left cerebellum Lobule VIIa Crus I showed performance related enhancement in resting state functional connectivity for the tDCS stim over the sham group. The ability to determine the relationship that the relative strength of resting state functional connectivity for an individual undergoing tDCS has on future enhancement in behavioral performance has wide ranging implications for neuroergonomic as well as therapeutic, and rehabilitative applications.

  11. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  12. MTBE Hydrolysis in Dilute Aqueous Solution Using Heterogeneous Strong Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Rixey, W. G.

    2003-12-01

    The objective of this research has been the development of a potential in situ catalytic process for the hydrolysis of methyl tertiary butyl ether (MTBE) to tertiary butyl alcohol (TBA) and methanol in ground water. Bench-scale batch reactor studies were conducted over a temperature range of 23 deg C to 50 deg C with several heterogeneous strong acid catalysts to obtain rates of hydrolysis of MTBE to TBA and methanol at dilute concentrations in water. Continuous flow experiments were then conducted to obtain kinetic data over a temperature range of 15 deg C to 50 deg C for various flow rates for the most active catalysts. It was found that the batch and continuous flow experiments yielded similar intrinsic kinetic rate constants when sorption of MTBE to the catalyst was accounted for. Additional fixed-bed experiments were conducted with deionized water and 0.005 M CaCl2 feed solutions containing 100 mg/L MTBE, respectively, to assess the deactivation of the catalyst, and deactivation was found to be controlled by ion exchange of H+ in the catalyst with Ca+2 in the feed. Our results indicate that, for low to moderate groundwater velocities and cation concentrations at ambient temperatures, an in situ reactive barrier process using the most active catalysts studied in this research could be a viable process in terms of both suitable conversion of MTBE and catalyst life. Although application to in situ remediation is emphasized, the results of this research are also applicable to ex-situ groundwater treatment.

  13. Catalysts and process development for two-stage liquefaction. First quarterly report, January 1, 1992--March 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

    Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The project is being carried out under contract to the United States Department of Energy. As discussed in the previous quarterly report, promising results were obtained by liquefying Illinois No. 6 bituminous and Black Thunder subbituminous coals using oil-soluble catalysts Molyvan L and molybdenum octoate. In this quarter, the liquefaction of Black Thunder coal was continued. Runs were made in catalytic/thermal (C/T) mode with supported AMOCAT{trademark} 1C (NiMo) and AMOCAT{trademark} 1B (Mo) catalysts. Although the initialmore » performance in these runs was good (90% conversion with no resid production), both catalysts deactivated rapidly. Spent catalysts showed severe coke deposition as well as formation of a calcium-rich shell on the catalyst surface. Overall, C/T liquefaction is not a good process option for Black Thunder coal.« less

  14. Urea, Uric Acid, Prolactin and fT4 Concentrations in Aqueous Humor of Keratoconus Patients.

    PubMed

    Stachon, Tanja; Stachon, Axel; Hartmann, Ulrike; Seitz, Berthold; Langenbucher, Achim; Szentmáry, Nóra

    2017-06-01

    Keratoconus is a noninflammatory disease of the cornea associated with progressive thinning and conical shape. Metabolic alterations in the urea cycle, with changes in collagen fibril stability, oxidative stress, thyroid hormones and prolactin with regulatory effect on biosynthesis and biomechanical stability of corneal stroma, may all play a role in keratoconus etiology. Our purpose was to determine urea, uric acid, prolactin and free thyroxin (fT4) concentrations in human aqueous humor (hAH) of keratoconus and cataract patients. hAH was collected from 100 keratoconus (penetrating keratoplasty) (41.9 ± 14.9 years, 69 males) and 100 cataract patients (cataract surgery) (71.2 ± 12.4 years, 58 males). Urea, uric acid, prolactin and fT4 concentrations were measured by Siemens clinical chemistry or immunoassay system. For statistical analysis, a generalized linear model (GLM) was used. Urea concentration was 11.88 ± 3.03 mg/dl in keratoconus and 16.44 ± 6.40 mg/dl in cataract patients, uric acid 2.04 ± 0.59 mg/dl in keratoconus and 2.18 ± 0.73 mg/dl in cataract groups. Prolactin concentration was 3.18 ± 0.34 ng/ml in keratoconus and 3.33 ± 0.32 ng/ml in cataract patients, fT4 20.57 ± 4.76 pmol/l in KC and 19.06 ± 3.86 pmol/l in cataract group. Urea concentration was effected through gender (p = 0.039), age (p = 0.001) and diagnosis (p = 0.025). Uric acid concentration was not effected through any of the analyzed parameters (p > 0.056). Prolactin and fT4 concentration were effected only through diagnosis (p = 0.009 and p = 0.006). Urea and prolactin concentrations are decreased, fT4 concentration is increased in aqueous humor of keratoconus patients, and uric acid concentration remains unchanged. Urea concentration in aqueous humor is also increased in older and male patients. Therefore, metabolic disorder and hormonal balance may both have an impact on keratoconus development. Further studies are necessary to assess the specific impact.

  15. Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Robert S.; Olarte, Mariefel V.; Wang, Huamin

    The fouling of catalysts for the upgrading of bio-oils appears to be very different from the fouling of catalysts for the hydroprocessing of petroleum-derived streams. There are two reasons for the differences: a) bio-oil contains polarizable components and phases that can stabilize reaction intermediates exhibiting charge separation and b) bio-oil components contain functional groups that contain O, notably carbonyls (>C=O). Aldol condensation of carbonyls affords very different pathways for the production of oligomeric, refractory deposits than does dehydrogenation/polymerization of petroleum-derived hydrocarbons. Colloquially, we refer to the bio-oil derived deposits as “gunk” to discriminate them from coke, the carbonaceous deposits encounteredmore » in petroleum refining. Classical gelation, appears to be a suitable model for the “gunking” reaction. Our work has helped explain the temperature range at which bio-oil should be pre-processed (“stabilized”) to confer longer lifetimes on the catalysts used for more severe processing. Stochastic modeling (kinetic Monte Carlo simulations) appears suitable to capture the rates of oligomerization of bio-oil. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  16. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    DOEpatents

    Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  17. Low Temperature Catalyst for NH3 Removal

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  18. Feasibility of an intracranial EEG-fMRI protocol at 3T: risk assessment and image quality.

    PubMed

    Boucousis, Shannon M; Beers, Craig A; Cunningham, Cameron J B; Gaxiola-Valdez, Ismael; Pittman, Daniel J; Goodyear, Bradley G; Federico, Paolo

    2012-11-15

    Integrating intracranial EEG (iEEG) with functional MRI (iEEG-fMRI) may help elucidate mechanisms underlying the generation of seizures. However, the introduction of iEEG electrodes in the MR environment has inherent risk and data quality implications that require consideration prior to clinical use. Previous studies of subdural and depth electrodes have confirmed low risk under specific circumstances at 1.5T and 3T. However, no studies have assessed risk and image quality related to the feasibility of a full iEEG-fMRI protocol. To this end, commercially available platinum subdural grid/strip electrodes (4×5 grid or 1×8 strip) and 4 or 6-contact depth electrodes were secured to the surface of a custom-made phantom mimicking the conductivity of the human brain. Electrode displacement, temperature increase of electrodes and surrounding phantom material, and voltage fluctuations in electrode contacts were measured in a GE Discovery MR750 3T MR scanner during a variety of imaging sequences, typical of an iEEG-fMRI protocol. An electrode grid was also used to quantify the spatial extent of susceptibility artifact. The spatial extent of susceptibility artifact in the presence of an electrode was also assessed for typical imaging parameters that maximize BOLD sensitivity at 3T (TR=1500 ms; TE=30 ms; slice thickness=4mm; matrix=64×64; field-of-view=24 cm). Under standard conditions, all electrodes exhibited no measurable displacement and no clinically significant temperature increase (<1°C) during scans employed in a typical iEEG-fMRI experiment, including 60 min of continuous fMRI. However, high SAR sequences, such as fast spin-echo (FSE), produced significant heating in almost all scenarios (>2.0°C) that in some cases exceeded 10°C. Induced voltages in the frequency range that could elicit neuronal stimulation (<10 kHz) were well below the threshold of 100 mV. fMRI signal intensity was significantly reduced within 20mm of the electrodes for the imaging parameters

  19. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  20. Metallocene catalyst containing bulky organic group

    DOEpatents

    Marks, T.J.; Ja, L.; Yang, X.

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetrafluoro-aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  1. Metallocene catalyst containing bulky organic group

    DOEpatents

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1996-03-26

    An ionic metallocene catalyst for olefin polymerization which comprises: (1) a cyclopentadienyl-type ligand, a Group IVB transition metal, and alkyl, aryl, or hydride substituents, as a cation, and (2) a weakly coordinating anion comprising boron substituted with halogenated, such as tetra fluoro, aryl substituents preferably containing silylalkyl substitution, such as para-silyl t-butyldimethyl.

  2. A combined experimental and theoretical study on ethanol conversion to propylene over Y/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Xia, Wei; Mu, Xichuan; Chen, Kun; Si, Huimin; Li, Zhihao

    2018-05-01

    ZrO2-based catalysts doped with Y were prepared by co-precipitation method. The effect of yttrium modification on the selective conversion of bio-ethanol to propylene over ZrO2 catalysts was investigated. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption method, temperature programmed desorption and X-ray diffraction. The maximum yield of propylene reached 44.0% over 0.03Y/ZrO2 catalyst. A coordination of acid-base properties accounts for the remarkable improvement of reaction activities over Y-doped ZrO2 catalysts in this investigation. On the basis of calculation results, it can be concluded that significant charge transfer occurs as a result of introduction of Y or O-vacancy. The adsorption of ethanol and propylene on perfect t-ZrO2 (1 0 1), defect t-ZrO2 (1 0 1) and Y/ZrO2 (1 0 1) surfaces were investigated with density functional theory (DFT). The adsorption for ethanol on Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces are more stable than that on perfect t-ZrO2 (1 0 1). On the defect t-ZrO2 (1 0 1) surface, ethanol dominantly absorbs at the O-vacancy site, indicating that O-vacancy becomes the favorable adsorption site. On the Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces, the adsorption energy of propylene decreases, which makes propylene desorb quickly after formation.

  3. Synthesis of solid catalyst from egg shell waste and clay for biodiesel production

    NASA Astrophysics Data System (ADS)

    Setiadji, S.; Sundari, C. D. D.; Munir, M.; Fitriyah, S.

    2018-05-01

    Until now, energy consumption in Indonesia is almost entirely fulfilled by fossil fuels, thus, its availability will be limited and continue to decrease. To overcome these problems, development and utilization of renewable energy are required, one of which is biodiesel. Biodiesel can be prepared through transesterification reaction of vegetable oil using catalyst. In this research, a solid catalyst for biodiesel synthesis was prepared from chicken egg shell waste and clay. Optimization of the transesterification reaction of coconut (Cocos nucifera) oil to obtain biodiesel was also carried out. The formation of CaO/kaolin catalyst was confirmed based on the results of XRD and SEM-EDS. This catalyst is suitable for biodiesel synthesis from vegetable oils with lower FFA (free fatty acid) levels, i.e. coconut oil with FFA level of 0.18%. Based on FTIR result, FFA level and flame tests, it was found that biodiesel was successfully formed. Synthesis of biodiesel has the optimum conditions on reaction time of 16 hours and temperature of 64 °C, with oil: methanol ratio of 1: 15 and CaO/kaolin catalyst concentration of 0.9% in a reflux system.

  4. Study of isotropic compact stars in f(R,T,R_{μν}T^{μν}) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Waseem, Arfa

    2016-06-01

    In this paper, we investigate physical behavior and stability of compact stars filled with isotropic fluid in f(R,T,R_{μν}T^{μν}) gravity. We consider the static spherically symmetric spacetime and choose the simplest model of this gravity, i.e., R+α R_{μν}T^{μν} . To examine the basic features of compact stars like Her X-1, SAX J 1808.4-3658 and 4U 1820-30, we apply analytic solutions of Krori and Barua metric using the mass-radius relation. We study the behavior of effective energy density, pressure, equation of state parameter and energy conditions in the interior of compact stars. We also explore the stability criteria of compact stars via the speed of sound. It is concluded that all the energy conditions are satisfied and the compact stars are found to be stable at the boundary for this particular model.

  5. Boron-Based Catalysts for C-C Bond-Formation Reactions.

    PubMed

    Rao, Bin; Kinjo, Rei

    2018-05-02

    Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hierarchical porous silver metal using Pluronic F-127 and graphene oxide as reinforcing agents for the reduction of o-nitroaniline to 1, 2-benzenediamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bano, Mustri; Ahirwar, Devendra; Thomas, Molly

    An elegant method is used to prepare silver monoliths with Pluronic F-127(F-127) as sacrificial template by modified sol-gel method. Si nanoparticles (SiNPs) and graphene oxide (GO) are added in situ to Ag/F-127 hydrogel for the reduction of ο-nitroaniline (ο-NA) to 1, 2-benzenediamine. Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Raman Spectroscopy, Powder X-Ray Diffraction (PXRD) analysis and Brunauer-Emmett-Teller (BET) Nitrogen adsorption techniques were used for characterization of monoliths. An epoch-making catalytic activity of Ag/F-127/GO monoliths is observed in the reduction of ο-NA to 1, 2-benzenediamine in presence of NaBH{sub 4} inmore » aqueous media. The catalyst Ag/F-127/GO took only 2 min which is the minimum time reported so far with significant rate constant claimed itself a leading catalyst for the reduction of ο-NA to 1,2-benzenediamine. Pseudo first order rate constant (k) and Turn over frequency (TOF) values are 0.231 min{sup −1} and 30.053×10{sup 19} molecules min{sup −1} respectively suggest that the catalyst has industrial importance. Recyclability and stability of Ag/F-127/GO catalyst are studied successfully up to 10 cycles. Energy of activation (E{sub a}), and thermodynamic parameters viz. activation enthalpy (ΔH{sup ≠}), activation Gibbs free energy (ΔG{sup ≠}), and entropy of activation (ΔS{sup ≠}) were also ascertained. Catalytic activities of Ag/F-127, Ag/F-127/Dextran, Ag/F-127/Trimethylbenzene (TMB), Ag/F-127/SiNPs, and Ag/F-127/Si/GO monoliths were also studied. - Graphical abstract: Significant catalytic activities of silver monoliths against the reduction of ο-NA to 1,2 benzenediamine. - Highlights: • A new catalyst synthesized Ag/F-127/GO for the reduction of ο- NA to 1, 2- benzenediamine took only 2 min. • Turn over frequency of as synthesized catalyst was 30.053×10{sup 19} molecules min

  7. Microemulsion and Sol-Gel Synthesized ZrO₂-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural.

    PubMed

    Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J

    2017-12-18

    Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.

  8. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  9. Insulin Resistance-Associated Interhemispheric Functional Connectivity Alterations in T2DM: A Resting-State fMRI Study

    PubMed Central

    Xia, Wenqing; Wang, Shaohua; Spaeth, Andrea M.; Rao, Hengyi; Wang, Pin; Yang, Yue; Huang, Rong; Cai, Rongrong; Sun, Haixia

    2015-01-01

    We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM) by using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR) among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG) and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR) negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients. PMID:26064945

  10. Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging.

    PubMed

    Hartimath, S V; Draghiciu, O; van de Wall, S; Manuelli, V; Dierckx, R A J O; Nijman, H W; Daemen, T; de Vries, E F J

    2017-01-01

    Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[ 18 F]fluorobenzoyl)-interleukin-2 ([ 18 F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [ 18 F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [ 18 F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.

  11. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  12. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOEpatents

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  13. 26 CFR 1.168(f)(8)-1T - Safe-harbor lease information returns concerning qualified mass commuting vehicles (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Safe-harbor lease information returns concerning qualified mass commuting vehicles (temporary). 1.168(f)(8)-1T Section 1.168(f)(8)-1T Internal Revenue... information returns concerning qualified mass commuting vehicles (temporary). In general. Form 6793, Safe...

  14. 26 CFR 1.280F-2T - Limitations on recovery deductions and the investment tax credit for certain passenger...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... investment tax credit for certain passenger automobiles (temporary). 1.280F-2T Section 1.280F-2T Internal... tax credit for certain passenger automobiles (temporary). (a) Limitation on amount of investment tax... passenger automobile shall not exceed $1,000. For a passenger automobile placed in service after December 31...

  15. 26 CFR 1.280F-2T - Limitations on recovery deductions and the investment tax credit for certain passenger...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... investment tax credit for certain passenger automobiles (temporary). 1.280F-2T Section 1.280F-2T Internal... tax credit for certain passenger automobiles (temporary). (a) Limitation on amount of investment tax... passenger automobile shall not exceed $1,000. For a passenger automobile placed in service after December 31...

  16. 26 CFR 1.280F-2T - Limitations on recovery deductions and the investment tax credit for certain passenger...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... investment tax credit for certain passenger automobiles (temporary). 1.280F-2T Section 1.280F-2T Internal... tax credit for certain passenger automobiles (temporary). (a) Limitation on amount of investment tax... passenger automobile shall not exceed $1,000. For a passenger automobile placed in service after December 31...

  17. 26 CFR 1.280F-2T - Limitations on recovery deductions and the investment tax credit for certain passenger...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... investment tax credit for certain passenger automobiles (temporary). 1.280F-2T Section 1.280F-2T Internal... tax credit for certain passenger automobiles (temporary). (a) Limitation on amount of investment tax... passenger automobile shall not exceed $1,000. For a passenger automobile placed in service after December 31...

  18. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu

    2016-06-07

    In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from

  19. Development of Advanced ISS-WPA Catalysts for Organic Oxidation at Reduced Pressure/Temperature

    NASA Technical Reports Server (NTRS)

    Yu, Ping; Nalette, Tim; Kayatin, Matthew

    2016-01-01

    The Water Processor Assembly (WPA) at International Space Station (ISS) processes a waste stream via multi-filtration beds, where inorganic and non-volatile organic contaminants are removed, and a catalytic reactor, where low molecular weight organics not removed by the adsorption process are oxidized at elevated pressure in the presence of oxygen and elevated temperature above the normal water boiling point. Operation at an elevated pressure requires a more complex system design compared to a reactor that could operate at ambient pressure. However, catalysts currently available have insufficient activity to achieve complete oxidation of the organic load at a temperature less than the water boiling point and ambient pressure. Therefore, it is highly desirable to develop a more active and efficient catalyst at ambient pressure and a moderate temperature that is less than water boiling temperature. This paper describes our efforts in developing high efficiency water processing catalysts. Different catalyst support structures and coating metals were investigated in subscale reactors and results were compared against the flight WPA catalyst. Detailed improvements achieved on alternate metal catalysts at ambient pressure and 200 F will also be presented in the paper.

  20. Development of Retardation and Automatic Flotation System (R.A.F.T.)

    DTIC Science & Technology

    1980-07-07

    recovery search Category I Hazard -i ’tationE is necessary. Detailed assembly operations inhibited. Classification eck list must be implemented...VW.KIDD=E CYL.NDER.A AH2)SPRcDS 6IEE AH4 I -86 54 3 2 ECK SIR DESO!fr4VA mr= . . z -i * - = Ik r 075 i AITZ~~ R__ roARK:8 .L,,I CE AI FITTSKE Ew Eb~I A \\t...INER VOWE5 .-...... U-...... 13 1 N5ERT DOWEL F~~INE, FLUSH WITH To FITM1 SET3t INER DWE 6I LSHWT 5 REVISIONS Eck SYM DESCR-PtM DT AO A EAEL..Y RELE-A

  1. Catalyst mixtures

    DOEpatents

    Masel, Richard I.; Rosen, Brian A.

    2017-02-14

    Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO.sub.2 or formic acid. The catalysts can also suppress H.sub.2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH.sup.-, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, O.sub.2, H.sub.2, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  2. 26 CFR 1.280F-2T - Limitations on recovery deductions and the investment tax credit for certain passenger...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... investment tax credit for certain passenger automobiles (temporary). 1.280F-2T Section 1.280F-2T Internal... for certain passenger automobiles (temporary). (a) Limitation on amount of investment tax credit—(1... automobile shall not exceed $1,000. For a passenger automobile placed in service after December 31, 1984, the...

  3. Catalyst, method of making, and reactions using the catalyst

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2009-03-03

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  4. Catalyst, method of making, and reactions using the catalyst

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2002-08-27

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  5. Catalyst, Method Of Making, And Reactions Using The Catalyst

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Gao, Yufei

    2004-07-13

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  6. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation.

    PubMed

    He, Fei; Niu, Na; Qu, Fengyu; Wei, Shuquan; Chen, Yujin; Gai, Shili; Gao, Peng; Wang, Yan; Yang, Piaoping

    2013-09-21

    The reduced graphene oxide (rGO) supported cobalt nanocrystals have been synthesized through an in situ crystal growth method using Co(acac)2 under solvothermal conditions by using DMF as the solvent. By carefully controlling the reaction temperature, the phase transition of the cobalt nanocrystals from the cubic phase to the hexagonal phase has been achieved. Moreover, the microscopic structure and morphology as well as the reduction process of the composite have been investigated in detail. It is found that oxygen-containing functional groups on the graphene oxide (GO) can greatly influence the formation process of the Co nanocrystals by binding the Co(2+) cations dissociated from the Co(acac)2 in the initial reaction solution at 220 °C, leading to the 3D reticular structure of the composite. Furthermore, this is the first attempt to use a Co/rGO composite as the catalyst in the F-T CO2 hydrogenation process. The catalysis testing results reveal that the as-synthesized 3D structured composite exhibits ideal catalytic activity and good stability, which may greatly extend the scope of applications for this kind of graphene-based metal hybrid material.

  7. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  8. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  9. Consequences of energy conservation violation: late time solutions of Λ (T) CDM subclass of f(R,T) gravity using dynamical system approach

    NASA Astrophysics Data System (ADS)

    Shabani, Hamid; Ziaie, Amir Hadi

    2017-05-01

    Very recently, Josset and Perez (Phys. Rev. Lett. 118:021102, 2017) have shown that a violation of the energy-momentum tensor ( EMT) could result in an accelerated expansion state via the appearance of an effective cosmological constant, in the context of unimodular gravity. Inspired by this outcome, in this paper we investigate cosmological consequences of a violation of the EMT conservation in a particular class of f(R,T) gravity when only the pressure-less fluid is present. In this respect, we focus on the late time solutions of models of the type f(R,T)=R+β Λ (-T). As the first task, we study the solutions when the conservation of EMT is respected, and then we proceed with those in which violation occurs. We have found, provided that the EMT conservation is violated, that there generally exist two accelerated expansion solutions of which the stability properties depend on the underlying model. More exactly, we obtain a dark energy solution for which the effective equation of state depends on the model parameters and a de Sitter solution. We present a method to parametrize the Λ (-T) function, which is useful in a dynamical system approach and has been employed in the model. Also, we discuss the cosmological solutions for models with Λ (-T)=8π G(-T)^{α } in the presence of ultra-relativistic matter.

  10. Cerebral [18 F]T807/AV1451 retention pattern in clinically probable CTE resembles pathognomonic distribution of CTE tauopathy

    PubMed Central

    Dickstein, D L; Pullman, M Y; Fernandez, C; Short, J A; Kostakoglu, L; Knesaurek, K; Soleimani, L; Jordan, B D; Gordon, W A; Dams-O'Connor, K; Delman, B N; Wong, E; Tang, C Y; DeKosky, S T; Stone, J R; Cantu, R C; Sano, M; Hof, P R; Gandy, S

    2016-01-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder most commonly associated with repetitive traumatic brain injury (TBI) and characterized by the presence of neurofibrillary tangles of tau protein, known as a tauopathy. Currently, the diagnosis of CTE can only be definitively established postmortem. However, a new positron emission tomography (PET) ligand, [18F]T807/AV1451, may provide the antemortem detection of tau aggregates, and thus various tauopathies, including CTE. Our goal was to examine [18F]T807/AV1451 retention in athletes with neuropsychiatric symptoms associated with a history of multiple concussions. Here we report a 39-year-old retired National Football League player who suffered 22 concussions and manifested progressive neuropsychiatric symptoms. Emotional lability and irritability were the chief complaints. Serial neuropsychological exams revealed a decline in executive functioning, processing speed and fine motor skills. Naming was below average but other cognitive functions were preserved. Structural analysis of longitudinally acquired magenetic resonance imaging scans revealed cortical thinning in the left frontal and lateral temporal areas, as well as volume loss in the basal ganglia. PET with [18F]florbetapir was negative for amyloidosis. The [18F]T807/AV1451 PET showed multifocal areas of retention at the cortical gray matter–white matter junction, a distribution considered pathognomonic for CTE. [18F]T807/AV1451 standard uptake value (SUV) analysis showed increased uptake (SUVr⩾1.1) in bilateral cingulate, occipital, and orbitofrontal cortices, and several temporal areas. Although definitive identification of the neuropathological underpinnings basis for [18F]T807/AV1451 retention requires postmortem correlation, our data suggest that [18F]T807/AV1451 tauopathy imaging may be a promising tool to detect and diagnose CTE-related tauopathy in living subjects. PMID:27676441

  11. A Molecular Copper Catalyst for Hydrogenation of CO­2 to Formate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zall, Christopher M.; Linehan, John C.; Appel, Aaron M.

    2015-09-04

    There is widespread interest in the hydrogenation of CO2 to energy-rich products such as formate. However, first-row transition metal complexes that catalyze the hydrogenation of CO2 to formate remain rare. Copper phosphine complexes are widely used in the reduction of organic substrates but have not previously been used as catalysts for the conversion of H2 and CO2 to formate. Here we demonstrate that the triphosphine-ligated copper(I) complex LCu(MeCN)PF6 is an active catalyst for CO2 hydrogenation in the presence of a suitable base. Screening of bases and studies of catalytic reactions by in operando spectroscopy revealed important and unusual roles formore » the base in promoting H2 activation and turnover.« less

  12. Electrochemical Behavior of TiO(x)C(y) as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders.

    PubMed

    Calvillo, Laura; García, Gonzalo; Paduano, Andrea; Guillen-Villafuerte, Olmedo; Valero-Vidal, Carlos; Vittadini, Andrea; Bellini, Marco; Lavacchi, Alessandro; Agnoli, Stefano; Martucci, Alessandro; Kunze-Liebhäuser, Julia; Pastor, Elena; Granozzi, Gaetano

    2016-01-13

    To achieve complete oxidation of ethanol (EOR) to CO2, higher operating temperatures (often called intermediate-T, 150-200 °C) and appropriate catalysts are required. We examine here titanium oxycarbide (hereafter TiOxCy) as a possible alternative to standard carbon-based supports to enhance the stability of the catalyst/support assembly at intermediate-T. To test this material as electrocatalyst support, a systematic study of its behavior under electrochemical conditions was carried out. To have a clear description of the chemical changes of TiOxCy induced by electrochemical polarization of the material, a special setup that allows the combination of X-ray photoelectron spectroscopy and electrochemical measurements was used. Subsequently, an electrochemical study was carried out on TiOxCy powders, both at room temperature and at 150 °C. The present study has revealed that TiOxCy is a sufficiently conductive material whose surface is passivated by a TiO2 film under working conditions, which prevents the full oxidation of the TiOxCy and can thus be considered a stable electrode material for EOR working conditions. This result has also been confirmed through density functional theory (DFT) calculations on a simplified model system. Furthermore, it has been experimentally observed that ethanol molecules adsorb on the TiOxCy surface, inhibiting its oxidation. This result has been confirmed by using in situ Fourier transform infrared spectroscopy (FTIRS). The adsorption of ethanol is expected to favor the EOR in the presence of suitable catalyst nanoparticles supported on TiOxCy.

  13. Iron chloride catalysed PCDD/F-formation: Experiments and PCDD/F-signatures.

    PubMed

    Zhang, Mengmei; Buekens, Alfons; Ma, Siyuan; Li, Xiaodong

    2018-01-01

    Iron chloride is often cited as catalyst of PCDD/F-formation, together with copper chloride. Conversely, iron chloride catalysis has been less studied during de novo tests. This paper presents such de novo test data, derived from model fly ash incorporating iron (III) chloride and established over a vast range of temperature and oxygen concentration in the gas phase. Both PCDD/F-output and its signature are extensively characterised, including homologue and congener profiles. For the first time, a complete isomer-specific analysis is systematically established, for all samples. Special attention is paid to the chlorophenols route PCDD/F, to the 2,3,7,8-substituted congeners, and to their relationship and antagonism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Role of CeO2 promoter in NiO/α-Al2O3 catalyst for dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Loc, Luu Cam; Phuong, Phan Hong; Tri, Nguyen

    2017-09-01

    A series of Ni/α-Al2O3 (NiAl) catalysts promoted by CeO2 was prepared by co-impregnation methods with content of (NiO+CeO2) being in the range of 10-30 wt%. The NiO:CeO2 weight ratio was fluctuated at 1:1, 1:2 and 1:3. Several techniques, including X-ray powder diffraction (XRD), Hydrogen temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM) were used to investigate catalysts' physico-chemical properties. The activity of these catalysts in dry reforming of CH4 was investigated at temperature range of 550-800 °C. The results revealed that the most suitable CeO2 promoted Ni catalyst contained 20 wt% of (NiO+CeO2) and NiO:CeO2 weight ratio of 1:2. The best catalytic performance of catalyst [20(1Ni2Ce)Al] due to a better reducibility resulted in a higher amount of free small particle NiO. At 700 °C and CH4:CO2 molar ratio of 1:1, the conversion of CH4 and CO2 on the most suitable CeO2 promoted Ni catalyst reached 86% and 67%, respectively; H2 and CO selectivity of 90% and H2:CO molar ratio of 1.15 were obtained. Being similar to MgO [1], promoter CeO2 could improve catalytic activity of Ni/α-Al2O3 catalyst at a lower range of temperature. Besides, both MgO and CeO2 had a great impact on improving coke resistance of Ni catalysts. At higher temperature, the role of CeO2 as well as MgO in preventing coke formation on catalyst was clarified by temperature-programmed oxidation (TPO) technique. Coke amount formed after 30-h TOS on 20(1Ni2Ce) catalyst was found to be 22.18 mgC/gcat, being less than on non-promoted catalyst (36.75 mgC/gcat), but more than on 20(1Ni2Mg)Al one (5.25 mgC/gcat).

  15. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  16. Activity of Highly Dispersed Co/SBA-15 Catalysts (Low Content) in Carbon Black Oxidation

    NASA Astrophysics Data System (ADS)

    Hassan, Nissrine El; Casale, Sandra; Aouad, Samer; Hanein, Theodor; Jabbour, Karam; Chidiac, Elvis; Khoury, Bilal el; Zakhem, Henri El; Nakat, Hanna El

    Cobalt supported on mesoporous silica SBA-15 (0.75, 1.5 and 3 wt% Co) were used as catalysts for the oxidation of carbon black. Catalysts were characterized by N2 sorption, XRD, TEM and TPR. The catalytic activity in CB oxidation was measured. It has been shown that only small cobalt domains (less than 5 nm) are present on all samples. A homogeneous dispersion was obtained for all catalysts. With increasing cobalt loading, crystalline species start to appear. Using an intermediate contact between the CB and the catalyst, the best activity is that of 0.75Co/SBA-15 catalyst where the oxidation reaches the maximum (Tmax) 68 K before the non-catalyzed reaction. On the same catalyst used in tight contact mode with CB, even if Tmax didn't decrease for more than additional 12 K but the Ti decreases by 38K and thus starts 83 K before.

  17. Cosmological consequences and statefinder diagnosis of a noninteracting generalized Chaplygin gas in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Shabani, Hamid

    In this paper, we investigate cosmological consequences as well as statefinder diagnosis of a scenario for recently reported accelerated expansion of the universe in the framework of f(R,T) = R + h(T) gravity theories. In these models, R and T denote the Ricci curvature scalar and the trace of the energy-momentum tensor (EMT), respectively. Our scenario assumes that the generalized Chaplygin gas (GCG) along with the baryonic matter are responsible for this observed phenomenon. We consider three classes of Chaplygin gas models which include three different forms of f(R,T) function; those models which employ the standard CG (SCG), models which use GCG in the high pressure regimes and finally, the third case is devoted to investigating high density regimes in the presence of GCG. We also test these models using recent Hubble parameter as well as type Ia supernova data. Finally, we compare the predicted present values of the statefinder parameters by these models to the astronomical data.

  18. anti-Selective catalytic asymmetric nitroaldol reaction via a heterobimetallic heterogeneous catalyst.

    PubMed

    Nitabaru, Tatsuya; Nojiri, Akihiro; Kobayashi, Makoto; Kumagai, Naoya; Shibasaki, Masakatsu

    2009-09-30

    Full details of an anti-selective catalytic asymmetric nitroaldol reaction promoted by a heterobimetallic catalyst comprised of Nd(5)O(O(i)Pr)(13), an amide-based ligand, and NaHMDS (sodium hexamethyldisilazide) are described. A systematic synthesis and evaluation of amide-based ligands led to the identification of optimum ligand 1m, which provided a suitable platform for the Nd/Na heterobimetallic complex. During the catalyst preparation in THF, a heterogeneous mixture developed and centrifugation of the suspension allowed for separation of the precipitate, which contained the active catalyst and which could be stored for at least 1 month without any loss of catalytic performance. The precipitate promoted a nitroaldol (Henry) reaction for a broad range of nitroalkanes and aldehydes under heterogeneous conditions, affording the corresponding 1,2-nitroalkanol in a highly anti-selective (up to anti/syn = >40/1) and enantioselective manner (up to 98% ee). Inductively coupled plasma (ICP) and X-ray fluorescence (XRF) analyses revealed that the precipitate indeed included both neodymium and sodium, which was further supported by high-resolution ESI TOF MS spectrometry.

  19. Tunneling magnetoresistance sensor with pT level 1/f magnetic noise

    NASA Astrophysics Data System (ADS)

    Deak, James G.; Zhou, Zhimin; Shen, Weifeng

    2017-05-01

    Magnetoresistive devices are important components in a large number of commercial electronic products in a wide range of applications including industrial position sensors, automotive sensors, hard disk read heads, cell phone compasses, and solid state memories. These devices are commonly based on anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), but over the past few years tunneling magnetoresistance (TMR) has been emerging in more applications. Here we focus on recent work that has enabled the development of TMR magnetic field sensors with 1/f noise of less than 100 pT/rtHz at 1 Hz. Of the commercially available sensors, the lowest noise devices have typically been AMR, but they generally have the largest die size. Based on this observation and modeling of experimental data size and geometry dependence, we find that there is an optimal design rule that produces minimum 1/f noise. This design rule requires maximizing the areal coverage of an on-chip flux concentrator, providing it with a minimum possible total gap width, and tightly packing the gaps with MTJ elements, which increases the effective volume and decreases the saturation field of the MTJ freelayers. When properly optimized using this rule, these sensors have noise below 60 pT/rtHz, and could possibly replace fluxgate magnetometers in some applications.

  20. Effects of Phenolic Acids on the Growth and Production of T-2 and HT-2 Toxins by Fusarium langsethiae and F. sporotrichioides.

    PubMed

    Ferruz, Elena; Atanasova-Pénichon, Vessela; Bonnin-Verdal, Marie-Noëlle; Marchegay, Gisèle; Pinson-Gadais, Laëtitia; Ducos, Christine; Lorán, Susana; Ariño, Agustín; Barreau, Christian; Richard-Forget, Florence

    2016-04-04

    The effect of natural phenolic acids was tested on the growth and production of T-2 and HT-2 toxins by Fusarium langsethiae and F. sporotrichioides, on Mycotoxin Synthetic medium. Plates treated with 0.5 mM of each phenolic acid (caffeic, chlorogenic, ferulic and p-coumaric) and controls without phenolic acid were incubated for 14 days at 25 °C. Fungal biomass of F. langsethiae and F. sporotrichioides was not reduced by the phenolic acids. However, biosynthesis of T-2 toxin by F. langsethiae was significantly reduced by chlorogenic (23.1%) and ferulic (26.5%) acids. Production of T-2 by F. sporotrichioides also decreased with ferulic acid by 23% (p < 0.05). In contrast, p-coumaric acid significantly stimulated the production of T-2 and HT-2 toxins for both strains. A kinetic study of F. langsethiae with 1 mM ferulic acid showed a significant decrease in fungal biomass, whereas T-2 production increased after 10 days of incubation. The study of gene expression in ferulic supplemented cultures of F. langsethiae revealed a significant inhibition for Tri5, Tri6 and Tri12 genes, while for Tri16 the decrease in gene expression was not statistically significant. Overall, results indicated that phenolic acids had a variable effect on fungal growth and mycotoxin production, depending on the strain and the concentration and type of phenolic acid assayed.

  1. Highly dispersed metal catalyst

    DOEpatents

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  2. Informatics-Aided Density Functional Theory Study on the Li Ion Transport of Tavorite-Type LiMTO4F (M(3+)-T(5+), M(2+)-T(6+)).

    PubMed

    Jalem, Randy; Kimura, Mayumi; Nakayama, Masanobu; Kasuga, Toshihiro

    2015-06-22

    The ongoing search for fast Li-ion conducting solid electrolytes has driven the deployment surge on density functional theory (DFT) computation and materials informatics for exploring novel chemistries before actual experimental testing. Existing structure prototypes can now be readily evaluated beforehand not only to map out trends on target properties or for candidate composition selection but also for gaining insights on structure-property relationships. Recently, the tavorite structure has been determined to be capable of a fast Li ion insertion rate for battery cathode applications. Taking this inspiration, we surveyed the LiMTO4F tavorite system (M(3+)-T(5+) and M(2+)-T(6+) pairs; M is nontransition metals) for solid electrolyte use, identifying promising compositions with enormously low Li migration energy (ME) and understanding how structure parameters affect or modulate ME. We employed a combination of DFT computation, variable interaction analysis, graph theory, and a neural network for building a crystal structure-based ME prediction model. Candidate compositions that were predicted include LiGaPO4F (0.25 eV), LiGdPO4F (0.30 eV), LiDyPO4F (0.30 eV), LiMgSO4F (0.21 eV), and LiMgSeO4F (0.11 eV). With chemical substitutions at M and T sites, competing effects among Li pathway bottleneck size, polyanion covalency, and local lattice distortion were determined to be crucial for controlling ME. A way to predict ME for multiple structure types within the neural network framework was also explored.

  3. High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction.

    PubMed

    Jung, Won Suk

    2018-03-15

    In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2  g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Selective Production of 2-Methylfuran by Gas-Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts.

    PubMed

    Jiménez-Gómez, Carmen Pilar; Cecilia, Juan A; Moreno-Tost, Ramón; Maireles-Torres, Pedro

    2017-04-10

    Copper species have been incorporated in mesoporous silica (MS) through complexation with the amine groups of dodecylamine, which was used as a structure-directing agent in the synthesis. A series of Cu/SiO 2 catalysts (xCu-MS) with copper loadings (x) from 2.5 to 20 wt % was synthesized and evaluated in the gas-phase hydrogenation of furfural (FUR). The most suitable catalytic performance in terms of 2-methylfuran yield was obtained with an intermediate copper content (10 wt %). This 10Cu-MS catalyst exhibits a 2-methylfuran yield higher than 95 mol % after 5 h time-on-stream (TOS) at a reaction temperature of 210 °C with a H 2 /FUR molar ratio of 11.5 and a weight hourly space velocity (WHSV) of 1.5 h -1 . After 14 h TOS, this catalyst still showed a yield of 80 mol %. In all cases, carbonaceous deposits on the external surface were the cause of the catalyst deactivation, although sintering of the copper particles was observed for higher copper loadings. This intermediate copper loading (10 wt %) offered a suitable balance between resistance to sintering and tendency to form carbonaceous deposits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Relationship between surface property and catalytic application of amorphous NiP/Hβ catalyst for n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Chen, Jinshe; Duan, Zunbin; Song, Zhaoyang; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2017-12-01

    The amorphous NiP nanoparticles were synthesized and a novel amorphous NiP/Hβ catalyst was prepared successfully further. Due to the superior surface property of amorphous NiP/Hβ catalyst, it exhibited good catalytic application for n-hexane isomerization. The catalytic activity of amorphous NiP/Hβ catalyst was close to that of the prepared Pt/Hβ sample, and better than that of commercial catalyst and crystalline Ni2P/Hβ catalyst. What's more, the amorphous NiP/Hβ catalyst shows high resistance to different sulfur compounds and water on account of its unique surface property. The effect of loading amounts on surface property and catalytic performance was investigated, and the structure-function relationship among them was studied ulteriorly. The results demonstrate that loading amounts have effect on textural property and surface acid property, which further affect the catalytic performance. The 10 wt.% NiP/Hβ sample has appropriate pore structure and acid property with uniformly dispersed NiP nanoparticles on surface, which is helpful for providing suitable synergistic effect. The effects of reaction conditions on surface reactions and the mechanism for n-hexane isomerization were investigated further. Based on these results, the amorphous NiP/Hβ catalyst with superior surface property probably pavesa way to overcome the drawbacks of traditional noble metal catalyst, which shows good catalytic application prospects.

  6. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    PubMed

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  7. System for reactivating catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  8. James F. T. Bugental (1915-2008).

    PubMed

    Schneider, Kirk J; Greening, Tom

    2009-01-01

    James F. T. Bugental died peacefully at age 92 at his Petaluma, California, home on September 18, 2008. Jim was a leading psychotherapist and a founding father, with Abraham Maslow and others, of humanistic psychology, or the "third force" (in contrast to psychoanalysis and behaviorism). Jim was also the creator, along with Rollo May, of existential-humanistic psychotherapy. Jim was born in Fort Wayne, Indiana, on Christmas Day in 1915. Jim earned his doctorate in 1948 from Ohio State University, where he was influenced by Victor Raimy and George Kelly. After a brief time on the University of California, Los Angeles (UCLA) faculty in psychology, Jim resigned in 1953 to found the first group practice of psychotherapy, Psychological Service Associates, with Alvin Lasko. With Abraham Maslow and others, Jim was a cofounder of the Journal of Humanistic Psychology (JHP) and the Association for Humanistic Psychology in 1961. Jim also wrote many books on the topic of psychotherapy during his lifetime. Jim was a great and bold spirit--his many writings and teachings are cherished today widely, and the field of psychology is much richer for his efforts. 2009 APA, all rights reserved

  9. Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz.

    PubMed

    Egard, M; Johansson, S; Johansson, A-C; Persson, K-M; Dey, A W; Borg, B M; Thelander, C; Wernersson, L-E; Lind, E

    2010-03-10

    In this letter we report on high-frequency measurements on vertically standing III-V nanowire wrap-gate MOSFETs (metal-oxide-semiconductor field-effect transistors). The nanowire transistors are fabricated from InAs nanowires that are epitaxially grown on a semi-insulating InP substrate. All three terminals of the MOSFETs are defined by wrap around contacts. This makes it possible to perform high-frequency measurements on the vertical InAs MOSFETs. We present S-parameter measurements performed on a matrix consisting of 70 InAs nanowire MOSFETs, which have a gate length of about 100 nm. The highest unity current gain cutoff frequency, f(t), extracted from these measurements is 7.4 GHz and the maximum frequency of oscillation, f(max), is higher than 20 GHz. This demonstrates that this is a viable technique for fabricating high-frequency integrated circuits consisting of vertical nanowires.

  10. Sterically shielded diboron-containing metallocene olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Ja, Li; Yang, Xinmin

    1995-09-05

    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  11. Integrating Semiconducting Catalyst of ReS2 Nanosheets into P-silicon Photocathode toward Enhanced Solar Water Reduction.

    PubMed

    Zhao, Heng; Dai, Zhengyi; Xu, Xiaoyong; Pan, Jing; Hu, Jingguo

    2018-06-22

    Loading the electro-catalysts at the semiconductor-electrolyte interface is one of promising strategies to develop photoelectrochemical (PEC) water splitting cells. However, the assembly of compatible and synergistic heterojunction between the semiconductor and the selected catalyst remains challenging. Here, we report a hierarchical p-Si/ReS2 heterojunction photocathode fabricated through uniform growth vertically standing ReS2 nanosheets (NSs) on planar p-Si substrate for solar-driven hydrogen evolution reaction (HER). The laden ReS2 NSs not only serve as a high-activity HER catalyst but also render a suitable electronic band coupled with p-Si into a Ⅱ-type heterojunction, which facilitates the photo-induced charge production, separation and utilization. As a result, the assembled p-Si/ReS2 photocathode exhibits a 23-fold-increased photocurrent density at 0 VRHE and a 35-fold-enhanced photoconversion efficiency compared to pure p-Si counterpart. The bifunctional ReS2 as catalyst and semiconductor enables multi effects in improving light harvesting, charge separation and catalytic kinetics, highlighting the potential of semiconducting catalysts integrated into solar water splitting devices.

  12. Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study.

    PubMed

    D'Mello, Anila M; Turkeltaub, Peter E; Stoodley, Catherine J

    2017-02-08

    It has been proposed that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. In language, semantic prediction speeds speech production and comprehension. Right cerebellar lobules VI and VII (including Crus I/II) are engaged during a variety of language processes and are functionally connected with cerebral cortical language networks. Further, right posterolateral cerebellar neuromodulation modifies behavior during predictive language processing. These data are consistent with a role for the cerebellum in semantic processing and semantic prediction. We combined transcranial direct current stimulation (tDCS) and fMRI to assess the behavioral and neural consequences of cerebellar tDCS during a sentence completion task. Task-based and resting-state fMRI data were acquired in healthy human adults ( n = 32; μ = 23.1 years) both before and after 20 min of 1.5 mA anodal ( n = 18) or sham ( n = 14) tDCS applied to the right posterolateral cerebellum. In the sentence completion task, the first four words of the sentence modulated the predictability of the final target word. In some sentences, the preceding context strongly predicted the target word, whereas other sentences were nonpredictive. Completion of predictive sentences increased activation in right Crus I/II of the cerebellum. Relative to sham tDCS, anodal tDCS increased activation in right Crus I/II during semantic prediction and enhanced resting-state functional connectivity between hubs of the reading/language networks. These results are consistent with a role for the right posterolateral cerebellum beyond motor aspects of language, and suggest that cerebellar internal models of linguistic stimuli support semantic prediction. SIGNIFICANCE STATEMENT Cerebellar involvement in language tasks and language networks is now well established, yet the specific cerebellar contribution to language processing remains unclear. It is thought that the

  13. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.

    PubMed

    Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush; Mohamed, Abdul Rahman

    2018-01-01

    Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted.

  14. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

    PubMed Central

    Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush

    2018-01-01

    Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted. PMID:29719767

  15. Suitability of ARES for Simulating Tactical Burst EMP Environments.

    DTIC Science & Technology

    1980-04-01

    Parkinson ofience Applic;a tions. t ,’,T : P Mot t- I ATTN: A. Chadsey Sidney Frankel ,N Asseate. Tf : f ,e . ATTN: S Frank] s , i ’ ’ , trtC f1(’’ ATTN...Corporation VARE-WOKUINMBS P.O. Drawer 719 S & X Santa Barbara, California 93102 I CO 1 -. qLING CEFFlOE NAME AND ADDRESS 12I REPORT P)ATE ,4, Director rM 8...definition since it must be tL,1,de(1 t)v the prevailing battlefield philosophy as well as by the laws ot pJysi,.-. Tle basic Army philosopny reyardini

  16. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  17. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOEpatents

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  18. Design and use of nanostructured single-site heterogeneous catalysts for the selective transformation of fine chemicals.

    PubMed

    Dal Santo, Vladimiro; Liguori, Francesca; Pirovano, Claudio; Guidotti, Matteo

    2010-05-26

    Nanostructured single-site heterogeneous catalysts possess the advantages of classical solid catalysts, in terms of easy recovery and recycling, together with a defined tailored chemical and steric environment around the catalytically active metal site. The use of inorganic oxide supports with selected shape and porosity at a nanometric level may have a relevant impact on the regio- and stereochemistry of the catalytic reaction. Analogously, by choosing the optimal preparation techniques to obtain spatially isolated and well-characterised active sites, it is possible to achieve performances that are comparable to (or, in the most favourable cases, better than) those obtained with homogeneous systems. Such catalysts are therefore particularly suitable for the transformation of highly-functionalised fine chemicals and some relevant examples where high chemo-, regio- and stereoselectivity are crucial will be described.

  19. Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations.

    PubMed

    Santos, Ana Raquel O; Leon, Marina P; Barros, Katharina O; Freitas, Larissa F D; Hughes, Alice F S; Morais, Paula B; Lachance, Marc-André; Rosa, Carlos A

    2018-04-01

    Six novel yeast species, Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., Starmerella opuntiae f.a., sp. nov., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a, sp. nov. are proposed to accommodate 19 isolates recovered from ephemeral flowers or bees in Brazil, Costa Rica and Belize. Sequence analysis of the ITS-5.8S region (when available) and the D1/D2 domains of the large subunit of the rRNA gene showed that the six novel yeasts are phylogenetically related to several species of the Starmerella clade. The type strains are Starmerella camargoi f.a., sp. nov. UFMG-CM-Y595 T (=CBS 14130 T ; Mycobank number MB 822640), Starmerella ilheusensis f.a., sp. nov. UFMG-CM-Y596 T (=CBS CBS14131 T ; MB 822641), Starmerella litoralis f.a., sp. nov. UFMG-CM-Y603 T (=CBS14104 T ; MB 822642), Starmerella opuntiae f.a., sp. nov. UFMG-CM-Y286 T (=CBS 13466 T ; MB 822643), Starmerella roubikii f.a., sp. nov. UWOPS 01-191.1 (=CBS 15148; MB 822645) and Starmerella vitae f.a., sp. nov. UWOPS 00-107.2 (=CBS 15147 T ; MB 822646). In addition, 25 species currently assigned to the genus Candida are reassigned formally to the genus Starmerella.

  20. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  1. Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell.

    PubMed

    Kuralkar, Mayuri; Ingle, Avinash; Gaikwad, Swapnil; Gade, Aniket; Rai, Mahendra

    2015-04-01

    The authors report the biosynthesis of gold nanoparticles (Au-NPs) using plant pathogenic Phoma glomerata (MTCC 2210). The synthesis of nanoparticles was characterised by visual observation followed UV-visible spectrophotometric analysis, Fourier transform infrared spectroscopy and nanoparticle tracking analysis. Later, direct methanol fuel cell (DMFC) was constructed using two chambers (anodic chamber and cathodic chamber). These Au-NPs as catalysts have various advantages over the other catalysts that are used in the DMFC. Most importantly, it is cheaper as compared with other catalysts like platinum, and showed higher catalytic activity because of its effective surface structure. Being nano in size, it provides more surface area for the attachment of reactant molecules (methanol molecules). The DMFC catalysed by Au-NPs are found to be suitable to replace lithium ion battery technology in consumer electronics like cell phones, laptops and so on due to the fact that they can produce a high amount of energy in a small space. As long as fuel and air are supplied to the DMFC, it will continue to produce power, so it does not need to be recharged. The use of Au-NPs as catalyst in DMFC has not been reported in the past; it is reported here the first time.

  2. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel [Chihuahua, MX; Chianelli, Russell R [El Paso, TX; Fuentes, Sergio [Ensenada, MX; Torres, Brenda [El Paso, TX

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  3. A Highly Reactive Dicationic Iridium(III) Catalyst for Polarized Nazarov Cyclization

    PubMed Central

    Vaidya, Tulaza; Atesin, Abdurrahman C.; Herrick, Ildiko R.; Frontier, Alison J.; Eisenberg, Richard

    2010-01-01

    Pushing the Nazarov Envelope A new electrophilic complex [IrBr(CO)(diethylisopropylidene malonate)((R)-(+)-BINAP)](SbF6)2 (2) exhibits unusual activity in the catalysis of polarized Nazarov cyclization. Aryl vinyl ketones that show poor reactivity with well-known catalysts such as [Ir(CH3)(CO)(1,2-diiodobenzene)(dppe)](B(Arf)4−)2 (1), Sc(OTf)3 + LiClO4 and Cu(ClO4)2, can be cyclized with 2 + AgSbF6 (1:1) under mild conditions with concurrent AgBr precipitation. PMID:20358570

  4. Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel.

    PubMed

    Hartl, Monika; Gillis, Robert Chad; Daemen, Luke; Olds, Daniel P; Page, Katherine; Carlson, Stefan; Cheng, Yongqiang; Hügle, Thomas; Iverson, Erik B; Ramirez-Cuesta, A J; Lee, Yongjoong; Muhrer, Günter

    2016-06-29

    Molecular hydrogen exists in two spin-rotation coupled states: parahydrogen and orthohydrogen. Due to the variation of energy with rotational level, the occupation of ortho- and parahydrogen states is temperature dependent, with parahydrogen being the dominant species at low temperatures. The equilibrium at 20 K (99.8% parahydrogen) can be reached by natural conversion only after a lengthy process. With the use of a suitable catalyst, this process can be shortened significantly. Two types of commercial catalysts currently being used for ortho- to parahydrogen conversion are: iron(iii) oxide (Fe2O3, IONEX®), and chromium(ii) oxide doped silica catalyst (CrO·SiO2, OXISORB®). We investigate the interaction of ortho- and parahydrogen with the surfaces of these ortho-para conversion catalysts using neutron vibrational spectroscopy. The catalytic surfaces have been characterized using X-ray absorption fine structure (XAFS) and X-ray/neutron pair distribution function measurements.

  5. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  6. 26 CFR 1.280F-4T - Special rules for listed property (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Special rules for listed property (temporary). 1... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Items Not Deductible § 1.280F-4T Special rules for listed...-6(d)(2)) in 1984 through 1988 is 80 percent, 70 percent, 60 percent, and 55 percent, respectively...

  7. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  8. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  9. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  10. Communicating catalysts

    NASA Astrophysics Data System (ADS)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  11. Differential transcriptional control of the two tRNA(fMet) genes of Escherichia coli K-12.

    PubMed

    Nagase, T; Ishii, S; Imamoto, F

    1988-07-15

    The metZ gene of Escherichia coli, which encodes the tRNA(f1Met), was cloned. Using the nucleotide sequence, in vitro transcription, and S1 nuclease mapping analyses, we identified the promoter region, transcriptional start point, the two tandem tRNA(f1Met) structural genes separated by an intergenic space of 33 bp, and the two Rho-independent transcriptional termination sites, in that order. We compared the promoter region of the metZ gene with that of the metY gene, which encodes the tRNA(f2Met) and is located in the promoter-proximal portion of the nusA operon. A G + C-rich sequence (5'-GCGCATCCAC-3'), similar to the corresponding sequence of the rrn promoters that are under stringent control, was found between the Pribnow box and the transcriptional start point of the metZ promoter, but not in the metY promoter region. We therefore examined the effect of guanosine 3'-diphosphate, 5'-diphosphate (ppGpp), the chemical mediator of stringent control, and found that ppGpp inhibited the transcription of the metZ gene, but not that of the metY gene. These data suggested that the promoters for metZ and metY have different physiological functions and are regulated by different mechanisms.

  12. Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Al₂O₃ modified MgZnO catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2013-03-01

    An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Identification of suitable fundus images using automated quality assessment methods.

    PubMed

    Şevik, Uğur; Köse, Cemal; Berber, Tolga; Erdöl, Hidayet

    2014-04-01

    Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores.

  14. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  15. Interpretation of f({epsilon}) measurements by T. Kimura, K. Akatsuka and K. Ohe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M.

    1996-11-26

    This note describes my analysis of the measurement of the electron energy distribution function in a DC glow discharge reported by T. Kimura, K. Akatsuka, and K. Ohe, in `Experimental and theoretical investigations of DC glow discharges in argon-nitrogen mixtures,`J. Phys. D: Appl. Phys. 27 (1994) 1664-1671. T. Kimura of the Department of Systems Engineering at the Nagoya Institute of Technology sent me this paper in 1994, as well as `Electron Energy Distribution Function in Neon-Nitrogen Mixture Positive Column,` T. Kimura, and K. Ohe, Jpn. J. Appl. Phys. Vol. 3 1, Part 1, No. 12A, December 1992, pp. 4051- 4052.more » I base my analysis on the data for a pure N{sub 2} discharge at p=1 torr in the 1994 paper. Figures 2 and 3 in that paper show a discrepancy between f({epsilon}) as measured by Langmuir probing and f({epsilon}) as calculated from E/N based on the measured axial field. Kimura et. al. explain their observation of hotter than expected electrons on superelastic collisions with vibrationally excited nitrogen. My fundamental point is that the radial field generated by ambipolar diffusion significantly augments E/N above the contribution from the axial field in this experiment, and creates a higher than expected radially averaged electron energy.« less

  16. Carbene Catalysts

    NASA Astrophysics Data System (ADS)

    Moore, Jennifer L.; Rovis, Tomislav

    The use of N-heterocyclic carbenes as catalysts for organic transformations has received increased attention in the past 10 years. A discussion of catalyst development and nucleophilic characteristics precedes a description of recent advancements and new reactions using N-heterocyclic carbenes in catalysis.

  17. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    NASA Astrophysics Data System (ADS)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  18. The lattice of trumping majorization for 4D probability vectors and 2D catalysts.

    PubMed

    Bosyk, Gustavo M; Freytes, Hector; Bellomo, Guido; Sergioli, Giuseppe

    2018-02-27

    The transformation of an initial bipartite pure state into a target one by means of local operations and classical communication and entangled-assisted by a catalyst defines a partial order between probability vectors. This partial order, so-called trumping majorization, is based on tensor products and the majorization relation. Here, we aim to study order properties of trumping majorization. We show that the trumping majorization partial order is indeed a lattice for four dimensional probability vectors and two dimensional catalysts. In addition, we show that the subadditivity and supermodularity of the Shannon entropy on the majorization lattice are inherited by the trumping majorization lattice. Finally, we provide a suitable definition of distance for four dimensional probability vectors.

  19. Identification of a dynamic temperature threshold for soil moisture freeze/thaw (F/T) state classification using soil real dielectric constant derivatives.

    NASA Astrophysics Data System (ADS)

    Pardo, R.; Berg, A. A.; Warland, J. S.

    2017-12-01

    The use of microwave remote sensing for surface ground ice detection has been well documented using both active and passive systems. Typical validation of these remotely sensed F/T state products relies on in-situ air or soil temperature measurements and a threshold of 0°C to identify frozen soil. However, in soil pores, the effects of capillary and adsorptive forces combine with the presence of dissolved salts to depress the freezing point. This is further confounded by the fact that water over this temperature range releases/absorbs latent heat of freezing/fusion. Indeed, recent results from SLAPEx2015, a campaign conducted to evaluate the ability to detect F/T state and examine the controls on F/T detection at multiple resolutions, suggest that using a soil temperature of 0°C as a threshold for freezing may not be appropriate. Coaxial impedance sensors, like Steven's HydraProbeII (HP), are the most widely used soil sensor in water supply forecast and climatological networks. These soil moisture probes have recently been used to validate remote sensing F/T products. This kind of validation is still relatively uncommon and dependent on categorical techniques based on seasonal reference states of frozen and non-frozen soil conditions. An experiment was conducted to identify the correlation between the phase state of the soil moisture and the probe measurements. Eight soil cores were subjected to F/T transitions in an environmental chamber. For each core, at a depth of 2.5 cm, the temperature and real dielectric constant (rdc) were measured every five minutes using HPs while two heat pulse probes captured the apparent heat capacity 24 minutes apart. Preliminary results show the phase transition of water is bounded by inflection points in the soil temperature, attributed to latent heat. The rdc, however, appears to be highly sensitive to changes in the water preceding the phase change. This opens the possibility of estimating a dynamic temperature threshold for

  20. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  1. Biodiesel production from rice bran oil by transesterification using heterogeneous catalyst natural zeolite modified with K2CO3

    NASA Astrophysics Data System (ADS)

    Taslim; Iriany; Bani, O.; Parinduri, S. Z. D. M.; Ningsih, P. R. W.

    2018-02-01

    In the present study, an effort had been made to use natural zeolite from Tapanuli Utara, North Sumatera as a potential catalyst for biodiesel production. Biodiesel production is usuallythrough transesterification, and a catalyst is employed to improve reaction rate and yield. In this research rice bran oil (RBO) was used as feedstock. The objective of this work was to discover the effectiveness of natural zeolite modified by K2CO3 as catalysts in biodiesel production from RBO. K2CO3/natural zeolite catalyst modification was by impregnation method at various K2CO3 concentrations followed by drying and calcination. Transesterification was conducted at 65°C and 500 rpm. Effect of process variables such as the amount of catalyst, reaction time, and the molar ratio of methanol to RBO was investigated.The maximum yield of 98.18% biodiesel was obtained by using 10:1 molar ratio of methanol to RBO at a reaction time of 3 hours in the presence of 4 w% catalyst. The obtained biodiesel was then characterized by its density, viscosity and ester content. The biodiesel properties met the Indonesia standard (SNI).The results showed that natural zeolite modified by K2CO3 was suitable as a catalyst in the synthesis of biodiesel through transesterification from RBO.

  2. AN INVESTIGATION OF CFC12 (CCI2F2) DECOMPOSITION ON TIO2 CATALYST

    EPA Science Inventory

    The catalytic oxidation of CFC12 was studied over a titania (TiO2) catalyst in a fixed-bed reactor at temperatures ranging from 200 to 400 degrees C and space velocity of 10,500 h-1. Results showed substantially complete conversion of CFC12 (>90%) to CO2 and halogen acids at and...

  3. Vibration measurements of automobile catalyst

    NASA Astrophysics Data System (ADS)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  4. Thermodynamic properties of {Delta}H{sub f 298}{degree}, S{sub 298}{degree}, and C{sub p}(T) for 2-fluoro-2-methylpropane, {Delta}H{sub f 298}{degree} of fluorinated ethanes, and group additivity for fluoroalkanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Takahiro; Bozzelli, J.W.

    1999-09-09

    G2(MP2) composite calculations are performed to obtain thermodynamic properties ({Delta}H{sub f 298}{degree}, S{sub 298}{degree} and C{sub p}(T)'s) of 2-fluoro-2-methylpropane. {Delta}H{sub f 298}{degree} is calculated from the G2(MP2) calculated enthalpy of reaction ({Delta}H{sub rxn 298}{degree}) and use of isodesmic reactions. Standard entropy (S{sub 298}{degree} in cal/(mol{center{underscore}dot}K)) and heat capacities (C{sub p}(T)'s in cal/(mol{center{underscore}dot}K)) are calculated using the rigid-rotor--harmonic-oscillator approximation with direct integration over energy levels of the intermolecular rotation potential energy curve. These thermodynamic properties are used to estimate data for the C/C3/F group. Enthalpies of formation ({Delta}H{sub f 298}{degree} in kcal/mol) for 1,2-difluoroethane ({minus}102.7), 1,1,2-trifluoroethane ({minus}156.9), 1,1,2,2- and 1,1,1,2-tetrafluoroethane (209.6more » and 213.3), and pentafluoroethane ({minus}264.1), are calculated using total energies obtained from G2(MP2) composite ab initio methods. Isodesmic reactions with existing literature values of {Delta}H{sub f 298}{degree} for ethane, 1-fluoroethane, 1,1-difjuoroethane and 1,1,1-trifluoroethane are used. Fluorine/fluorine interaction terms, F/F, 2F/F, 3F/F, 2F/2F, and 3F/2F, where ``/'' indicates interaction for alkane compounds, for {Delta}H{sub f 298}{degree} are reevaluated based on {Delta}H{sub f 298}{degree} of the above five fluoroethanes. Thermodynamic properties ({Delta}H{sub f 298}{degree}, S{sub 298}{degree} and C{sub p}(T)'s (300 {le} T/K {le} 1500)) for fluorinated carbon groups, C/C3F, C/C2/F/H, C/C2/F2, are calculated using data from ab initio methods and existing literature data. Fluorine-methyl (alkyl) group additivity corrections for gauche interactions are also evaluated.« less

  5. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst:tyre ratio and catalyst temperature.

    PubMed

    Williams, Paul T; Brindle, Alexander J

    2002-12-01

    Pyrolysis with on-line Zeolite catalysis of scrap tyres was undertaken in a fluidised bed reactor with the aim of maximising the production of higher value single ring aromatic hydrocarbons in the derived oil. Experiments were carried out in relation to the ratio of the catalyst to tyre feedstock and the temperature of the catalyst bed. Two Zeolite catalysts were examined, a Y-type Zeolite catalyst and Zeolite ZSM-5 catalyst of differing pore size and surface activity. The composition of the oils derived from the uncatalysed fluidised bed pyrolysis of tyres showed that benzene concentration was 0.2 wt%, toluene concentration was 0.8 wt%, o-xylene was 0.3 wt%, m/p-xylenes were 1.8 wt% and limonene was 4.3 wt%. Benzene, toluene and xylenes present in the oils showed a significant increase in the presence of both of the catalysts. The maximum concentrations of these chemicals for the Y-Zeolite (CBV-400) catalyst was 1 wt% for benzene, 8wt% for toluene, 3 wt% for o-xylene and 8.5 wt% for m/p-xylenes, produced at a catalyst:tyre ratio of 1.5. There was less influence of catalyst temperature on the yield of benzene, toluene and xylenes, however, increasing the temperature of the catalyst resulted in a marked decrease in limonene concentration. The Y-type Zeolite catalyst produced significantly higher concentrations of benzene, toluene and xylenes which was attributed to the larger pore size and higher surface acidity of the Y-Zeolite catalyst compared to the Zeolite ZSM-5 catalyst.

  6. 3d-4f {Co(II)3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts.

    PubMed

    Evangelisti, Fabio; Moré, René; Hodel, Florian; Luber, Sandra; Patzke, Greta Ricarda

    2015-09-02

    Although the {CaMn4O5} oxygen evolving complex (OEC) of photosystem II is a major paradigm for water oxidation catalyst (WOC) development, the comprehensive translation of its key features into active molecular WOCs remains challenging. The [Co(II)3Ln(hmp)4(OAc)5H2O] ({Co(II)3Ln(OR)4}; Ln = Ho-Yb, hmp = 2-(hydroxymethyl)pyridine) cubane WOC series is introduced as a new springboard to address crucial design parameters, ranging from nuclearity and redox-inactive promoters to operational stability and ligand exchange properties. The {Co(II)3Ln(OR)4} cubanes promote bioinspired WOC design by newly combining Ln(3+) centers as redox-inactive Ca(2+) analogues with flexible aqua-/acetate ligands into active and stable WOCs (max. TON/TOF values of 211/9 s(-1)). Furthermore, they open up the important family of 3d-4f complexes for photocatalytic applications. The stability of the {Co(II)3Ln(OR)4} WOCs under photocatalytic conditions is demonstrated with a comprehensive analytical strategy including trace metal analyses and solution-based X-ray absorption spectroscopy (XAS) investigations. The productive influence of the Ln(3+) centers is linked to favorable ligand mobility, and the experimental trends are substantiated with Born-Oppenheimer molecular dynamics studies.

  7. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  8. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  9. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage.

    PubMed

    Neltner, Brian; Peddie, Brian; Xu, Alex; Doenlen, William; Durand, Keith; Yun, Dong Soo; Speakman, Scott; Peterson, Andrew; Belcher, Angela

    2010-06-22

    For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.

  10. Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.

    PubMed

    Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong

    2017-12-01

    With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  12. Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Kodali, Mounika; Santoro, Carlo; Herrera, Sergio; Serov, Alexey; Atanassov, Plamen

    2017-10-01

    M1-M2-N-C bimetallic catalysts with M1 as Fe and Co and M2 as Fe, Co, Ni and Mn were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR). The catalysts were prepared by Sacrificial Support Method in which silica was the template and aminoantipyrine (AAPyr) was the organic precursor. The electro-catalytic properties of these catalysts were investigated by using rotating ring disk (RRDE) electrode setup in neutral electrolyte. Fe-Mn-AAPyr outperformed Fe-AAPyr that showed higher performances compared to Fe-Co-AAPyr and Fe-Ni-AAPyr in terms of half-wave potential. In parallel, Fe-Co-AAPyr, Co-Mn-AAPyr and Co-Ni-AAPyr outperformed Co-AAPyr. The presence of Co within the catalyst contributed to high peroxide production not desired for efficient ORR. The catalytic capability of the catalysts integrated in air-breathing cathode was also verified. It was found that Co-based catalysts showed an improvement in performance by the addition of second metal compared to simple Co- AAPyr. Fe-based bimetallic materials didn't show improvement compared to Fe-AAPyr with the exception of Fe-Mn-AAPyr catalyst that had the highest performance recorded in this study with maximum power density of 221.8 ± 6.6 μWcm-2. Activated carbon (AC) was used as control and had the lowest performances in RRDE and achieved only 95.6 ± 5.8 μWcm-2 when tested in MFC.

  13. New catalysts for coal liquefaction and new nanocrystalline catalysts synthesis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1994-09-01

    The use of coal as a source of transportation fuel is currently economically unfavorable due to an abundant world petroleum supply and the relatively high cost of coal liquefaction. Consequently, a reduction in the cost of coal liquefaction, for example by using less and/or less costly catalysts or lower liquefaction temperatures, must be accomplished if coal is to play an significant role as a source of liquid feedstock for the petrochemical industry. The authors and others have investigated the applicability of using inexpensive iron-based catalysts in place of more costly and environmentally hazardous metal catalysts for direct coal liquefaction. Iron-basedmore » catalysts can be effective in liquefying coal and in promoting carbon-carbon bond cleavage in model compounds. The authors have been involved in an ongoing effort to develop and optimize iron-based powders for use in coal liquefaction and related petrochemical applications. Research efforts in this area have been directed at three general areas. The authors have explored ways to optimize the effectiveness of catalyst precursor species through use of nanocrystalline materials and/or finely divided powders. In this effort, the authors have developed two new nanophase material production techniques, Modified Reverse Micelle (MRM) and the Rapid Thermal Decomposition of precursors in Solution (RTDS). A second effort has been aimed at optimizing the effectiveness of catalysts by variations in other factors. To this, the authors have investigated the effect that the crystalline phase has on the capacity of iron-based oxide and oxyhydroxide powders to be effectively converted to an active catalyst phase under liquefaction conditions. And finally, the authors have developed methods to produce active catalyst precursor powders in quantities sufficient for pilot-scale testing. Major results in these three areas are summarized.« less

  14. Direct correlation between adsorption energetics and nuclear spin relaxation in liquid-saturated catalyst material.

    PubMed

    Robinson, Neil; Robertson, Christopher; Gladden, Lynn F; Jenkins, Stephen J; D'Agostino, Carmine

    2018-06-20

    The ratio of NMR relaxation time constants T1/T2 provides a non-destructive indication of the relative surface affinities exhibited by adsorbates within liquid-saturated mesoporous catalysts. In the present work we provide supporting evidence for the existence of a quantitative relationship between such measurements and adsorption energetics. As a prototypical example with relevance to green chemical processes we examine and contrast the relaxation characteristics of primary alcohols and cyclohexane within an industrial silica catalyst support. T1/T2 values obtained at intermediate magnetic field strength are in good agreement with DFT adsorption energy calculations performed on single molecules interacting with an idealised silica surface. Our results demonstrate the remarkable ability of this metric to quantify surface affinities within systems of relevance to liquid-phase heterogeneous catalysis, and highlight NMR relaxation as a powerful method for the determination of adsorption phenomena within mesoporous solids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. FAIR exempting separate T (1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI.

    PubMed

    Lai, S; Wang, J; Jahng, G H

    2001-01-01

    A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid. Copyright 2001 John Wiley & Sons, Ltd.

  16. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-01

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. The reaction process of ultra-deep desulfurization.

  17. Distribution of adoptively transferred porcine T-lymphoblasts tracked by (18)F-2-fluoro-2-deoxy-D-glucose and position emission tomography.

    PubMed

    Eriksson, Olof; Sadeghi, Arian; Carlsson, Björn; Eich, Torsten; Lundgren, Torbjörn; Nilsson, Bo; Tötterman, Thomas; Korsgren, Olle; Sundin, Anders

    2011-08-01

    Autologous or allogeneic transfer of tumor-infiltrating T-lymphocytes is a promising treatment for metastatic cancers, but a major concern is the difficulty in evaluating cell trafficking and distribution in adoptive cell therapy. This study presents a method of tracking transfusion of T-lymphoblasts in a porcine model by (18)F-2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) and positron emission tomography. T-lymphoblasts were labeled with the positron-emitting tracer [(18)F]FDG through incubation. The T-lymphoblasts were administered into the bloodstream, and the distribution was followed by positron emission tomography for 120 min. The cells were administered either intravenously into the internal jugular vein (n=5) or intraarterially into the ascending aorta (n=1). Two of the pigs given intravenous administration were pretreated with low-molecular-weight dextran sulphate. The cellular kinetics and distribution were readily quantifiable for up to 120 min. High (78.6% of the administered cells) heterogeneous pulmonary uptake was found after completed intravenous transfusion. The pulmonary uptake was decreased either by preincubating and coadministrating the T-lymphoblasts with low-molecular-weight dextran sulphate or by administrating them intraarterially. The present work shows the feasibility of quantitatively monitoring and evaluating cell trafficking and distribution following administration of [(18)F]FDG-labeled T-lymphoblasts. The protocol can potentially be transferred to the clinical setting with few modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Analysis of simian virus 40 small t antigen-induced progression of rat F111 cells minimally transformed by large T antigen.

    PubMed Central

    Zerrahn, J; Deppert, W

    1993-01-01

    Minimal transformants of rat F111 fibroblasts were established after infection with the large T antigen (large T)-encoding retroviral expression vector pZIPTEX (M. Brown, M. McCormack, K. Zinn, M. Farrell, I. Bikel, and D. Livingston, J. Virol. 60:290-293, 1986). Coexpression of small t antigen (small t) in these cells efficiently led to their progression toward a significantly enhanced transformed phenotype. Small t forms a complex with phosphatase 2A and thereby might influence cellular phosphorylation processes, including the phosphorylation of large T. Since phosphorylation can modulate the transforming activity of large T, we asked whether the phosphorylation status of large T in minimally transformed cells might differ from that of large T in maximally transformed FR(wt648) cells and whether it might be altered by coexpression of small t. We found the phosphate turnover on large T in minimally transformed cells significantly different from that in fully transformed cells. This resulted in underphosphorylation of large T in minimally transformed cells at phosphorylation sites previously shown to be involved in the regulation of the transforming activity of large T. However, coexpression of small t in the minimally transformed cells did not alter the phosphate turnover on large T during progression; i.e., it did not induce a change in the steady-state phosphorylation of large T. This suggests that the helper function of small t during the progression of these cells was not mediated by modulating phosphatase 2A activity toward large T. Images PMID:8382310

  19. A Spreadsheet Tool for Learning the Multiple Regression F-Test, T-Tests, and Multicollinearity

    ERIC Educational Resources Information Center

    Martin, David

    2008-01-01

    This note presents a spreadsheet tool that allows teachers the opportunity to guide students towards answering on their own questions related to the multiple regression F-test, the t-tests, and multicollinearity. The note demonstrates approaches for using the spreadsheet that might be appropriate for three different levels of statistics classes,…

  20. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOEpatents

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  1. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    NASA Astrophysics Data System (ADS)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  2. Constructing a Catalytic Cycle for C-F to C-X (X = O, S, N) Bond Transformation Based on Gold-Mediated Ligand Nucleophilic Attack.

    PubMed

    Hu, Ji-Yun; Zhang, Jing; Wang, Gao-Xiang; Sun, Hao-Ling; Zhang, Jun-Long

    2016-03-07

    A tricoordinated gold(I) chloride complex, tBuXantphosAuCl, supported by a sterically bulky 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene ligand (tBuXantphos) was synthesized. This complex features a remarkably longer Au-Cl bond length [2.632(1) Å] than bicoordinated linear gold complexes (2.27-2.30 Å) and tricoordinated XantphosAuCl [2.462(1) Å]. Single-crystal X-ray diffraction analysis of a cocrystal of tBuXantphosAuCl and pentafluoronitrobenzene (PFNB) and UV-vis spectroscopic titration experiments revealed the existence of an anion-π interaction between the Cl anion ligand and PFNB. Stoichiometric reaction between PFNB and tBuXantphosAuOtBu, after replacement of Cl by a more nucleophilic tBuO anion ligand, showed higher reactivity and para selectivity in the transformation of C-F to C-OtBu bond, distinctively different from that when only KOtBu was used (ortho selectivity) under the identical condition. Mechanistic studies including density functional theory calculations suggested a gold-mediated nucleophilic ligand attack of the C-F bond pathway via an SNAr process. On the basis of these results, using trimethylsilyl derivatives TMS-X (X = OMe, SEt, NEt2) as the nucleophilic ligand source and the fluorine acceptor, catalytic transformation of the C-F bond of aromatic substrates to the C-X (X = O, S, N) bond was achieved with tBuXantphosAuCl as the catalyst (up to 20 turnover numbers).

  3. Catalysts and method

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  4. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  5. Type IV Pili in Francisella tularensis: Roles of pilF and pilT in Fiber Assembly, Host Cell Adherence, and Virulence ▿

    PubMed Central

    Chakraborty, Subhra; Monfett, Michael; Maier, Tamara M.; Benach, Jorge L.; Frank, Dara W.; Thanassi, David G.

    2008-01-01

    Francisella tularensis, a highly virulent facultative intracellular bacterium, is the causative agent of tularemia. Genome sequencing of all F. tularensis subspecies revealed the presence of genes that could encode type IV pili (Tfp). The live vaccine strain (LVS) expresses surface fibers resembling Tfp, but it was not established whether these fibers were indeed Tfp encoded by the pil genes. We show here that deletion of the pilF putative Tfp assembly ATPase in the LVS resulted in a complete loss of surface fibers. Disruption of the pilT putative disassembly ATPase also caused a complete loss of pili, indicating that pilT functions differently in F. tularensis than in model Tfp systems such as those found in Pseudomonas aeruginosa and Neisseria spp. The LVS pilF and pilT mutants were attenuated for virulence in a mouse model of tularemia by the intradermal route. Furthermore, although absence of pili had no effect on the ability of the LVS to replicate intracellularly, the pilF and pilT mutants were defective for adherence to macrophages, pneumocytes, and hepatocytes. This work confirms that the surface fibers expressed by the LVS are encoded by the pil genes and provides evidence that the Francisella pili contribute to host cell adhesion and virulence. PMID:18426883

  6. 1.5-V-threshold-voltage Schottky barrier normally-off AlGaN/GaN high-electron-mobility transistors with f T/f max of 41/125 GHz

    NASA Astrophysics Data System (ADS)

    Hou, Bin; Ma, Xiaohua; Yang, Ling; Zhu, Jiejie; Zhu, Qing; Chen, Lixiang; Mi, Minhan; Zhang, Hengshuang; Zhang, Meng; Zhang, Peng; Zhou, Xiaowei; Hao, Yue

    2017-07-01

    In this paper, a normally-off AlGaN/GaN high-electron-mobility transistors (HEMT) fabricated using inductively coupled plasma (ICP) CF4 plasma recessing and an implantation technique is reported. A gate-to-channel distance of ˜10 nm and an equivalent negative fluorine sheet charge density of -1.21 × 1013 cm-2 extracted using a simple threshold voltage (V th) analytical model result in a high V th of 1.5 V, a peak transconductance of 356 mS/mm, and a subthreshold slope of 133 mV/decade. A small degradation of channel mobility leads to a high RF performance with f T/f max of 41/125 GHz, resulting in a record high f T × L g product of 10.66 GHz·µm among Schottky barrier AlGaN/GaN normally-off HEMTs with V th exceeding 1 V, to the best of our knowledge.

  7. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin

    2018-05-01

    Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.

  8. Identification of suitable sites for mountain ginseng cultivation using GIS and geo-temperature.

    PubMed

    Kang, Hag Mo; Choi, Soo Im; Kim, Hyun

    2016-01-01

    This study was conducted to explore an accurate site identification technique using a geographic information system (GIS) and geo-temperature (gT) for locating suitable sites for growing cultivated mountain ginseng (CMG; Panax ginseng), which is highly sensitive to the environmental conditions in which it grows. The study site was Jinan-gun, South Korea. The spatial resolution for geographic data was set at 10 m × 10 m, and the temperatures for various climatic factors influencing CMG growth were calculated by averaging the 3-year temperatures obtained from the automatic weather stations of the Korea Meteorological Administration. Identification of suitable sites for CMG cultivation was undertaken using both a conventional method and a new method, in which the gT was added as one of the most important factors for crop cultivation. The results yielded by the 2 methods were then compared. When the gT was added as an additional factor (new method), the proportion of suitable sites identified decreased by 0.4 % compared with the conventional method. However, the proportion matching real CMG cultivation sites increased by 3.5 %. Moreover, only 68.2 % corresponded with suitable sites identified using the conventional factors; i.e., 31.8 % were newly detected suitable sites. The accuracy of GIS-based identification of suitable CMG cultivation sites improved by applying the temperature factor (i.e., gT) in addition to the conventionally used factors.

  9. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  10. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  11. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  12. Merox catalyst innovation solves difficult kerosene treating problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verachtert, T.A.; Salazar, J.R.; Staehle, B.E.

    1985-03-01

    The UOP* Merox* process has enjoyed more than 25 years of successful commercial application. It is applied to treatment of mercaptanrich hydrocarbon streams ranging from a light gas to liquids as heavy as 350/sup 0/C (650/sup 0/F) endpoint diesel fuel. Although Merox has been applied successfully to many kerosenes, there are kerosenes from certain crudes that could not be treated using the standard Merox system. Recent UOP Merox research has centered on the development of new catalysts. From this research, an improved catalyst system (Merox 10*) for kerosene treatment now makes the Merox process applicable to the sweetening of anymore » kerosene boiling range material from any crude oil source now in production. This Merox catalyst innovation also could replace the more expensive hydrotreating still being used by refiners for reducing the mercaptan content of distillates. This paper discusses the application of the Merox process to the treatment of higher boiling fuels, particularly kerosene and jet fuel; however, it should be understood that the treatment of illuminating kerosene, stove oil, diesel fuel, and light furnace oil is quite similar although generally less complicated. Comparative economics and commercial data are provided for the Merox 10 and conventional fixed bed Merox systems. The well established superior economics of Merox over an equivalent duty hydrotreater are presented.« less

  13. Embryonal carcinoma antigen and the T/t locus of the mouse.

    PubMed Central

    Kemler, R; Babinet, C; Condamine, H; Gachelin, G; Guenet, J L; Jacob, F

    1976-01-01

    The presence of the F9 antigen and of four other antigens related to the T/t locus of the mouse was investigated by immunofluorescence on preimplantation embryos. In morulae heterozygous for any of these t haplotypes, both the appropriate t antigen and the F9 antigen are expressed. The F9 antigen segregates among the progeny of crosses producing embryos homozygous for some (tw32 and tw5) but not for other haplotypes. It is concluded that (i) whatever the time of action of a t haplotype, its corresponding antigen is expressed during cleavage and (ii) the F9 antigen is specified by a gene(s) in the region of the T/t locus. Images PMID:1069295

  14. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    NASA Astrophysics Data System (ADS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg

    2016-01-01

    The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core⿿shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core⿿shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.

  15. METHOD OF PURIFYING CATALYSTS

    DOEpatents

    Joris, G.G.

    1958-09-01

    It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

  16. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Na; Li, Siwen; Wang, Jinyi

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts weremore » characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.« less

  17. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    PubMed

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Precision half-life measurement of 11C: The most precise mirror transition F t value

    NASA Astrophysics Data System (ADS)

    Valverde, A. A.; Brodeur, M.; Ahn, T.; Allen, J.; Bardayan, D. W.; Becchetti, F. D.; Blankstein, D.; Brown, G.; Burdette, D. P.; Frentz, B.; Gilardy, G.; Hall, M. R.; King, S.; Kolata, J. J.; Long, J.; Macon, K. T.; Nelson, A.; O'Malley, P. D.; Skulski, M.; Strauss, S. Y.; Vande Kolk, B.

    2018-03-01

    Background: The precise determination of the F t value in T =1 /2 mixed mirror decays is an important avenue for testing the standard model of the electroweak interaction through the determination of Vu d in nuclear β decays. 11C is an interesting case, as its low mass and small QE C value make it particularly sensitive to violations of the conserved vector current hypothesis. The present dominant source of uncertainty in the 11CF t value is the half-life. Purpose: A high-precision measurement of the 11C half-life was performed, and a new world average half-life was calculated. Method: 11C was created by transfer reactions and separated using the TwinSol facility at the Nuclear Science Laboratory at the University of Notre Dame. It was then implanted into a tantalum foil, and β counting was used to determine the half-life. Results: The new half-life, t1 /2=1220.27 (26 ) s, is consistent with the previous values but significantly more precise. A new world average was calculated, t1/2 world=1220.41 (32 ) s, and a new estimate for the Gamow-Teller to Fermi mixing ratio ρ is presented along with standard model correlation parameters. Conclusions: The new 11C world average half-life allows the calculation of a F tmirror value that is now the most precise value for all superallowed mixed mirror transitions. This gives a strong impetus for an experimental determination of ρ , to allow for the determination of Vu d from this decay.

  19. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections.

    PubMed

    Shabani, Farzin; Kumar, Lalit

    2013-01-01

    Global climate model outputs involve uncertainties in prediction, which could be reduced by identifying agreements between the output results of different models, covering all assumptions included in each. Fusarium oxysporum f.sp. is an invasive pathogen that poses risk to date palm cultivation, among other crops. Therefore, in this study, the future distribution of invasive Fusarium oxysporum f.sp., confirmed by CSIRO-Mk3.0 (CS) and MIROC-H (MR) GCMs, was modeled and combined with the future distribution of date palm predicted by the same GCMs, to identify areas suitable for date palm cultivation with different risk levels of invasive Fusarium oxysporum f.sp., for 2030, 2050, 2070 and 2100. Results showed that 40%, 37%, 33% and 28% areas projected to become highly conducive to date palm are under high risk of its lethal fungus, compared with 37%, 39%, 43% and 42% under low risk, for the chosen years respectively. Our study also indicates that areas with marginal risk will be limited to 231, 212, 186 and 172 million hectares by 2030, 2050, 2070 and 2100. The study further demonstrates that CLIMEX outputs refined by a combination of different GCMs results of different species that have symbiosis or parasite relationship, ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication.

  20. Risk Levels of Invasive Fusarium oxysporum f. sp. in Areas Suitable for Date Palm (Phoenix dactylifera) Cultivation under Various Climate Change Projections

    PubMed Central

    Shabani, Farzin; Kumar, Lalit

    2013-01-01

    Global climate model outputs involve uncertainties in prediction, which could be reduced by identifying agreements between the output results of different models, covering all assumptions included in each. Fusarium oxysporum f.sp. is an invasive pathogen that poses risk to date palm cultivation, among other crops. Therefore, in this study, the future distribution of invasive Fusarium oxysporum f.sp., confirmed by CSIRO-Mk3.0 (CS) and MIROC-H (MR) GCMs, was modeled and combined with the future distribution of date palm predicted by the same GCMs, to identify areas suitable for date palm cultivation with different risk levels of invasive Fusarium oxysporum f.sp., for 2030, 2050, 2070 and 2100. Results showed that 40%, 37%, 33% and 28% areas projected to become highly conducive to date palm are under high risk of its lethal fungus, compared with 37%, 39%, 43% and 42% under low risk, for the chosen years respectively. Our study also indicates that areas with marginal risk will be limited to 231, 212, 186 and 172 million hectares by 2030, 2050, 2070 and 2100. The study further demonstrates that CLIMEX outputs refined by a combination of different GCMs results of different species that have symbiosis or parasite relationship, ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication. PMID:24340100

  1. Hierarchical porous silver metal using Pluronic F-127 and graphene oxide as reinforcing agents for the reduction of o-nitroaniline to 1, 2-benzenediamine

    NASA Astrophysics Data System (ADS)

    Bano, Mustri; Ahirwar, Devendra; Thomas, Molly; Sheikh, Mehraj Ud Din; Khan, Farid

    2017-04-01

    An elegant method is used to prepare silver monoliths with Pluronic F-127(F-127) as sacrificial template by modified sol-gel method. Si nanoparticles (SiNPs) and graphene oxide (GO) are added in situ to Ag/F-127 hydrogel for the reduction of ο-nitroaniline (ο-NA) to 1, 2-benzenediamine. Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermogravimetric analysis (TGA), Raman Spectroscopy, Powder X-Ray Diffraction (PXRD) analysis and Brunauer-Emmett-Teller (BET) Nitrogen adsorption techniques were used for characterization of monoliths. An epoch-making catalytic activity of Ag/F-127/GO monoliths is observed in the reduction of ο-NA to 1, 2-benzenediamine in presence of NaBH4 in aqueous media. The catalyst Ag/F-127/GO took only 2 min which is the minimum time reported so far with significant rate constant claimed itself a leading catalyst for the reduction of ο-NA to 1,2-benzenediamine. Pseudo first order rate constant (k) and Turn over frequency (TOF) values are 0.231 min-1 and 30.053×1019 molecules min-1 respectively suggest that the catalyst has industrial importance. Recyclability and stability of Ag/F-127/GO catalyst are studied successfully up to 10 cycles. Energy of activation (Ea), and thermodynamic parameters viz. activation enthalpy (ΔH≠), activation Gibbs free energy (ΔG≠), and entropy of activation (ΔS≠) were also ascertained. Catalytic activities of Ag/F-127, Ag/F-127/Dextran, Ag/F-127/Trimethylbenzene (TMB), Ag/F-127/SiNPs, and Ag/F-127/Si/GO monoliths were also studied.

  2. Models of collapsing and expanding anisotropic gravitating source in f( R, T) theory of gravity

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Ahmed, Riaz

    2017-07-01

    In this paper, we have formulated the exact solutions of the non-static anisotropic gravitating source in f( R, T) gravity which may lead to expansion and collapse. By assuming there to be no thermal conduction in gravitating source, we have determined parametric solutions in f( R, T) gravity with a non-static spherical geometry filled using an anisotropic fluid. We have examined the ranges of the parameters for which the expansion scalar becomes negative and positive, leading to collapse and expansion, respectively. Further, using the definition of the mass function, the conditions for the trapped surface have been explored, and it has been investigated that there exists a single horizon in this case. The impact of the coupling parameter λ has been discussed in detail in both cases. For the various values of the coupling parameter λ , we have plotted the energy density, anisotropic pressure and anisotropy parameter in the cases of collapse and expansion. The physical significance of the graphs has been explained in detail.

  3. Microstructure, elastic, and inelastic properties of biomorphic carbons carbonized using a Fe-containing catalyst

    NASA Astrophysics Data System (ADS)

    Orlova, T. S.; Kardashev, B. K.; Smirnov, B. I.; Gutierrez-Pardo, A.; Ramirez-Rico, J.

    2016-12-01

    The microstructure and amplitude dependences of the Young's modulus E and internal friction (logarithmic decrement δ), and microplastic properties of biocarbon matrices BE-C(Fe) obtained by beech tree carbonization at temperatures T carb = 850-1600°C in the presence of an iron-containing catalyst are studied. By X-ray diffraction analysis and transmission electron microscopy, it is shown that the use of Fe-catalyst during carbonization with T carb ≥ 1000°C leads to the appearance of a bulk graphite phase in the form of nanoscale bulk graphite inclusions in a quasi-amorphous matrix, whose volume fraction and size increase with T carb. The correlation of the obtained dependences E( T carb) and δ( T carb) with microstructure evolution with increasing T carb is revealed. It is found that E is mainly defined by a crystalline phase fraction in the amorphous matrix, i.e., a nanocrystalline phase at T carb < 1150°C and a bulk graphite phase at T carb > 1300°C. Maximum values E = 10-12 GPa are achieved for samples with T carb ≈ 1150 and 1600°C. It is shown that the microplasticity manifest itself only in biocarbons with T carb ≥ 1300°C (upon reaching a significant volume of the graphite phase); in this case, the conditional microyield stress decreases with increasing total volume of introduced mesoporosity (free surface area).

  4. Characterization of the novel GlyT1 PET tracer [18F]MK-6577 in humans.

    PubMed

    Joshi, Aniket D; Sanabria-Bohórquez, Sandra M; Bormans, Guy; Koole, Michel; De Hoon, Jan; Van Hecken, Anne; Depre, Marleen; De Lepeleire, Inge; Van Laere, Koen; Sur, Cyrille; Hamill, Terence G

    2015-01-01

    Decreased glutamatergic neurotransmission is hypothesized to be involved in the pathophysiology of schizophrenia. Inhibition of glycine transporter Type-1 (GlyT1) reuptake is expected to increase the glutamatergic neurotransmission and may serve as treatment for cognitive and negative symptoms of schizophrenia. In this article, we present human data from a novel GlyT1 PET tracer, [(18) F]MK-6577. In the process of developing a GlyT1 inhibitor therapeutic, a PET tracer can assist in determining the dose with a high probability of sufficiently testing the mechanism of action. This article reports the human PET studies with [(18) F]MK-6577 for measuring GlyT1 receptor availability at baseline in normal human subjects and occupancy with a GlyT1 inhibitor, MK-2637. Studies were also performed to measure radiation burden and the baseline test-retest (T-RT) variability of the tracer. The effective dose from sequential whole-body dosimetry scans in three male subjects was estimated to be 24.5 ± 2.9 µSV/MBq (mean ± SD). The time-activity curves from T-RT scans modeled satisfactorily using a two tissue compartmental model. The tracer uptake was highest in the pons (VT  = 6.7 ± 0.9, BPND  = 4.1 ± 0.43) and lowest in the cortex (VT  = 2.1 ± 0.5, BPND  = 0.60 ± 0.23). VT T-RT variability measured in three subjects was <12% on average. The occupancy scans performed in a cohort of 15 subjects indicated absence of a reference region. The in vivo potency (Occ50 ) of MK-2637 was determined using two methods: A: Lassen plot with a population input function (Occ50  = 106 nM, SE = 20 nM) and B: pseudo reference tissue model using cortex as the pseudo reference region (Occ50  = 141 nM, SE = 21 nM). © 2014 Wiley Periodicals, Inc.

  5. Time-Resolved and Operando XAS Studies on Heterogeneous Catalysts - From the Gas Phase Towards Reactions in Supercritical Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Baiker, Alfons

    2007-02-02

    x-ray absorption spectroscopy is a well-suited technique to uncover the structure of heterogeneous catalysts under reaction conditions. Different aspects of in situ cell design suitable for dynamic and catalytic studies are discussed. In addition, criteria are presented that allow estimating the influence external and internal mass transfer. Starting with studies on gas-solid reactions, including structure-activity relationships, this concept is extended to liquid-solid reactions, reactions at high pressure and in supercritical fluids. The following examples are discussed in more detail: partial oxidation of methane over Pt-Rh/Al2O3, reduction of a Cu/ZnO catalyst, alcohol oxidation over Bi-promoted Pd/Al2O3 in liquid phase and overmore » Pd/Al2O3 in supercritical CO2, and batch reactions (e.g. CO2-fixation over zinc-based catalysts)« less

  6. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  7. Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene

    PubMed Central

    Peng, Zhikun; Liu, Xu; Li, Shuaihui; Li, Zhongjun; Li, Baojun; Liu, Zhongyi; Liu, Shouchang

    2017-01-01

    ZrO2 heterophase structure nanocrystals (HSNCs) were synthesized with tunable ratios of monoclinic ZrO2 (m-ZrO2) to tetragonal ZrO2 (t-ZrO2). The phase mole ratio of m-ZrO2 versus t-ZrO2 in ZrO2 HSNCs was tuned from 40% to 100%. The concentration of the surface hydroxyl groups on m-ZrO2 is higher than that on t-ZrO2. ZrO2 HSNCs have different surface hydroxyl groups on two crystalline phases. This creates more intimate synergistic effects than their single-phase counterparts. The ZrO2 HSNCs were used as effective supports to fabricate heterophase-structured Ru/ZrO2 catalysts for benzene-selective hydrogenation. The excellent catalytic performance including high activity and selectivity is attributed to the heterogeneous strong/weak hydrophilic interface and water layer formed at the m-ZrO2/t-ZrO2 catalyst junction. PMID:28057914

  8. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.

    PubMed

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-12-14

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  9. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  10. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  11. Mesoporous inorganic salts with crystal defects: unusual catalysts and catalyst supports† †Electronic supplementary information (ESI) available: Scheme S1 contains reaction equation, Fig. S1–S7 contain solubility test, XRD, SEM, TEM, micropore size distribution and reaction conversion. See DOI: 10.1039/c4sc03736g Click here for additional data file.

    PubMed Central

    Kang, Xinchen; Shang, Wenting; Zhu, Qinggong; Zhang, Jianling; Wu, Zhonghua; Li, Zhihong; Xing, Xueqing

    2015-01-01

    We proposed a strategy to synthesize mesoporous inorganic salt particles using the special properties of ionic liquid (IL) mixtures, and hollow mesoporous LaF3, NdF3, and YF3 particles were synthesized and characterized using different techniques. The size of the mesopores in the salt particles was about 4 nm, and the materials were full of crystal defects. The LaF3, NdF3 and YF3 particles were used as the catalysts for the cyanosilylation reaction of benzaldehyde using trimethylsilyl cyanide, and Ru/LaF3 and Ru/NdF3, in which Ru nanocatalysts were supported on the LaF3 and NdF3 particles with mesopores, were used to catalyze hydrogenations of benzene to cyclohexane and levulinic acid (LA) to γ-valerolactone (GVL). It was discovered that the activities of these catalysts were unprecedentedly high for these reactions. Detailed study showed that both the crystal defects and the mesopores in the salt particles played crucial roles for the extremely high catalytic activity. PMID:29308132

  12. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    NASA Astrophysics Data System (ADS)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  13. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  14. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  15. SDF7, a group of Scoparia dulcis Linn. derived flavonoid compounds, stimulates glucose uptake and regulates adipocytokines in 3T3-F442a adipocytes.

    PubMed

    Beh, Joo Ee; Khoo, Li Teng; Latip, Jalifah; Abdullah, Mohd Paud; Alitheen, Noorjahan Baru Mohamed; Adam, Zainah; Ismail, Amin; Hamid, Muhajir

    2013-10-28

    Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes. Morphology and lipid accumulation of differentiated 3T3-F442a adipocytes by 100 nM insulin treated with different concentrations of SDF7 and rosiglitazone were examined followed by the evaluation of glucose uptake activity expressions of insulin signalling downstream components (IRS-1, PI3-kinase, PKB, PKC, TC10 and GLUT4) from four cellular fractions (plasma membrane, cytosol, high density microsome and low density microsome). Next, the expression level of adipocytokines (TNF-α, adiponectin and leptin) and immunoblotting of treated 3T3-F442 adipocytes was determined at 30 min and 480 min. Glucose transporter 4 (GLUT4) translocation of 3T3-F442a adipocytes membrane was also determined. Lastly, mRNA expression of adiponectin and PPAR-γ of 3T3-F442a adipocytes were induced and compared with basal concentration. It was found that SDF7 was able to induce adipocytes differentiation with great extends of morphological changes, lipid synthesis and lipid stimulation in vitro. SDF7 stimulation of glucose transport on 3T3-F442a adipocytes are found to be dose independent, time-dependent and plasma membrane GLUT4 expression-dependent. Moreover, SDF7 are observed to be able to suppress TNF-α and leptin expressions that were mediated by 3T3-F442a adipocytes, while stimulated adiponectin secretion on the cells. There was a significant expression (p<0.01) of protein kinase C and small G protein TC10 on 3T3-F442a adipocytes

  16. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination.

    PubMed

    Shinde, Sandip S; Patil, Sunil N

    2014-12-07

    The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.

  17. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    PubMed Central

    2015-01-01

    Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized 1H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst’s full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent—paving the way to various biomedical applications of SABRE hyperpolarization methods. PMID:25372972

  18. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts.

    PubMed

    Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M

    2017-08-01

    Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  20. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst.

    PubMed

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-06-30

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst.

  1. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst

    PubMed Central

    Lee, Heejin; Kim, Hannah; Yu, Mi Jin; Ko, Chang Hyun; Jeon, Jong-Ki; Jae, Jungho; Park, Sung Hoon; Jung, Sang-Chul; Park, Young-Kwon

    2016-01-01

    The hydrodeoxygenation of a model compound of lignin-derived bio-oil, guaiacol, which can be obtained from the pyrolysis of biomass to bio-oil, has attracted considerable research attention because of its huge potential as a substitute for conventional fuels. In this study, platinum-loaded HY zeolites (Pt/HY) with different Si/Al molar ratios were used as catalysts for the hydrodeoxygenation of guaiacol, anisole, veratrole, and phenol to a range of hydrocarbons, such as cyclohexane. The cyclohexane (major product) yield increased with increasing number of acid sites. To produce bio-oil with the maximum level of cyclohexane and alkylated cyclohexanes, which would be suitable as a substitute for conventional transportation fuels, the Si/Al molar ratio should be optimized to balance the Pt particle-induced hydrogenation with acid site-induced methyl group transfer. The fuel properties of real bio-oil derived from the fast pyrolysis of cork oak was improved using the Pt/HY catalyst. PMID:27357731

  2. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  3. Gravastars in f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Ghosh, Shounak; Guha, B. K.; Das, Swapan; Rahaman, Farook; Ray, Saibal

    2017-06-01

    We propose a unique stellar model under the f (R ,T ) gravity by using the conjecture of Mazur-Mottola [P. Mazur and E. Mottola, Report No. LA-UR-01-5067, P. Mazur and E. Mottola, Proc. Natl. Acad. Sci. USA 101, 9545 (2004), 10.1073/pnas.0402717101] which is known as gravastar and a viable alternative to the black hole as available in literature. This gravastar is described by the three different regions, viz., (I) Interior core region, (II) Intermediate thin shell, and (III) Exterior spherical region. The pressure within the interior region is equal to the constant negative matter density which provides a repulsive force over the thin spherical shell. This thin shell is assumed to be formed by a fluid of ultrarelativistic plasma and the pressure, which is directly proportional to the matter-energy density according to Zel'dovich's conjecture of stiff fluid [Y. B. Zel'dovich, Mon. Not. R. Astron. Soc. 160, 1 (1972), 10.1093/mnras/160.1.1P], does counterbalance the repulsive force exerted by the interior core region. The exterior spherical region is completely vacuum and assumed to be de Sitter spacetime which can be described by the Schwarzschild solution. Under this specification we find out a set of exact and singularity-free solution of the gravastar which presents several other physically valid features within the framework of alternative gravity.

  4. Green and efficient sample preparation method for the determination of catalyst residues in margarine by ICP-MS.

    PubMed

    Hartwig, Carla Andrade; Pereira, Rodrigo Mendes; Novo, Diogo La Rosa; Oliveira, Dirce Taina Teixeira; Mesko, Marcia Foster

    2017-11-01

    Responding to the need for green and efficient methods to determine catalyst residues with suitable precision and accuracy in samples with high fat content, the present work evaluates a microwave-assisted ultraviolet digestion (MW-UV) system for margarines and subsequent determination of Ni, Pd and Pt using inductively coupled plasma mass spectrometry (ICP-MS). It was possible to digest up to 500mg of margarine using only 10mL of 4molL -1 HNO 3 with a digestion efficiency higher than 98%. This allowed the determination of catalyst residues using the ICP-MS and free of interferences. For this purpose, the following experimental parameters were evaluated: concentration of digestion solution, sample mass and microwave irradiation program. The residual carbon content was used as a parameter to evaluate the efficiency of digestion and to select the most suitable experimental conditions. The accuracy evaluation was performed by recovery tests using a standard solution and certified reference material, and recoveries ranging from 94% to 99% were obtained for all analytes. The limits of detection for Ni, Pd and Pt using the proposed method were 35.6, 0.264 and 0.302ngg -1 , respectively. When compared to microwave-assisted digestion (MW-AD) in closed vessels using concentrated HNO 3 (used as a reference method for sample digestion), the proposed MW-UV could be considered an excellent alternative for the digestion of margarine, as this method requires only a diluted nitric acid solution for efficient digestion. In addition, MW-UV provides appropriate solutions for further ICP-MS determination with suitable precision (relative standard deviation < 7%) and accuracy for all evaluated analytes. The proposed method was applied to margarines from different brands produced in Brazil, and the concentration of catalyst residues was in agreement with the current legislation or recommendations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T{sub c} or T{sub B}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngai, K. L.; CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa; Habasaki, J.

    The cusp-like temperature dependence of the Debye-Waller factor or non-ergodicity parameter f{sub Q}(T) at some temperature T{sub c} above T{sub g} found by experiments in several fragile glassformers has been considered as critical evidence for validity of the ideal Mode Coupling Theory (MCT). A comprehensive review of experimental data of f{sub Q}(T) and beyond brings out various problems of the MCT predictions. For example, the molten salt, 0.4Ca(NO{sub 3}){sub 2}-0.6KNO{sub 3} (CKN), was the first glassformer measured by neutron scattering to verify the cusp-like behavior of f{sub Q}(T) at T{sub c} predicted by ideal MCT. While the fits of themore » other scaling laws of MCT to viscosity, light scattering, and dielectric relaxation data all give T{sub c} in the range from 368 to 375 K, there is no evidence of cusp-like behavior of f{sub Q}(T) at T{sub c} from more accurate neutron scattering data obtained later on by Mezei and Russina [J. Phys.: Condens. Matter 11, A341 (1999)] at temperatures below 400 K. In several molecular glass-formers, experiments have found at temperatures below T{sub c} that [1−f{sub Q}(T)] is manifested as nearly constant loss (NCL) in the frequency dependent susceptibility. The NCL persists down to below T{sub g} and is not predicted by the ideal MCT. No clear evidence of the change of T-dependence of f{sub Q}(T) at any T{sub c} was found in intermediate and strong glassformers, although ideal MCT does not distinguish fragile and strong glassformers in predicting the critical behavior of f{sub Q}(T) a priori. Experiments found f{sub Q}(T) changes T-dependence not only at T{sub c} but also at the glass transition temperature T{sub g}. The changes of T-dependence of f{sub Q}(T) at T{sub c} and T{sub g} are accompanied by corresponding changes of dynamic variables and thermodynamic quantities at T{sub B} ≈ T{sub c} and at T{sub g}. The dynamic variables include the relaxation time τ{sub α}(T), the non-exponentiality parameter n(T

  6. Alkene Metalates as Hydrogenation Catalysts

    PubMed Central

    Büschelberger, Philipp; Gärtner, Dominik; Reyes‐Rodriguez, Efrain; Kreyenschmidt, Friedrich; Koszinowski, Konrad

    2017-01-01

    Abstract First‐row transition‐metal complexes hold great potential as catalysts for hydrogenations and related reductive reactions. Homo‐ and heteroleptic arene/alkene metalates(1−) (M=Co, Fe) are a structurally distinct catalyst class with good activities in hydrogenations of alkenes and alkynes. The first syntheses of the heteroleptic cobaltates [K([18]crown‐6)][Co(η4‐cod)(η2‐styrene)2] (5) and [K([18]crown‐6)][Co(η4‐dct)(η4‐cod)] (6), and the homoleptic complex [K(thf)2][Co(η4‐dct)2] (7; dct=dibenzo[a,e]cyclooctatetraene, cod=1,5‐cyclooctadiene), are reported. For comparison, two cyclopentadienylferrates(1−) were synthesized according to literature procedures. The isolated and fully characterized monoanionic complexes were competent precatalysts in alkene hydrogenations under mild conditions (2 bar H2, r.t., THF). Mechanistic studies by NMR spectroscopy, ESI mass spectrometry, and poisoning experiments documented the operation of a homogeneous mechanism, which was initiated by facile redox‐neutral π‐ligand exchange with the substrates followed by H2 activation. The substrate scope of the investigated precatalysts was also extended to polar substrates (ketones and imines). PMID:28026060

  7. Hydroxide catalysts for lignin depolymerization

    DOEpatents

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  8. Hydroxide catalysts for lignin depolymerization

    DOEpatents

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  9. Laser Ablation Increases PEM/Catalyst Interfacial Area

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Yalisove, Steve

    2009-01-01

    An investigational method of improving the performance of a fuel cell that contains a polymer-electrolyte membrane (PEM) is based on the concept of roughening the surface of the PEM, prior to deposition of a thin layer of catalyst, in order to increase the PEM/catalyst interfacial area and thereby increase the degree of utilization of the catalyst. The roughening is done by means of laser ablation under carefully controlled conditions. Next, the roughened membrane surface is coated with the thin layer of catalyst (which is typically platinum), then sandwiched between two electrode/catalyst structures to form a membrane/ele c t - rode assembly. The feasibility of the roughening technique was demonstrated in experiments in which proton-conducting membranes made of a perfluorosulfonic acid-based hydrophilic, protonconducting polymer were ablated by use of femtosecond laser pulses. It was found that when proper combinations of the pulse intensity, pulse-repetition rate, and number of repetitions was chosen, the initially flat, smooth membrane surfaces became roughened to such an extent as to be converted to networks of nodules interconnected by filaments (see Figure 1). In further experiments, electrochemical impedance spectroscopy (EIS) was performed on a pristine (smooth) membrane and on two laser-roughened membranes after the membranes were coated with platinum on both sides. Some preliminary EIS data were interpreted as showing that notwithstanding the potential for laser-induced damage, the bulk conductivities of the membranes were not diminished in the roughening process. Other preliminary EIS data (see Figure 2) were interpreted as signifying that the surface areas of the laser-roughened membranes were significantly greater than those of the smooth membrane. Moreover, elemental analyses showed that the sulfur-containing molecular groups necessary for proton conduction remained intact, even near the laser-roughened surfaces. These preliminary results can be taken

  10. Improved synthesis of [(18)F]FLETT via a fully automated vacuum distillation method for [(18)F]2-fluoroethyl azide purification.

    PubMed

    Ackermann, Uwe; Plougastel, Lucie; Goh, Yit Wooi; Yeoh, Shinn Dee; Scott, Andrew M

    2014-12-01

    The synthesis of [(18)F]2-fluoroethyl azide and its subsequent click reaction with 5-ethynyl-2'-deoxyuridine (EDU) to form [(18)F]FLETT was performed using an iPhase FlexLab module. The implementation of a vacuum distillation method afforded [(18)F]2-fluoroethyl azide in 87±5.3% radiochemical yield. The use of Cu(CH3CN)4PF6 and TBTA as catalyst enabled us to fully automate the [(18)F]FLETT synthesis without the need for the operator to enter the radiation field. [(18)F]FLETT was produced in higher overall yield (41.3±6.5%) and shorter synthesis time (67min) than with our previously reported manual method (32.5±2.5% in 130min). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Heterobimetallic lanthanide/sodium phenoxides: efficient catalysts for amidation of aldehydes with amines.

    PubMed

    Li, Junmei; Xu, Fan; Zhang, Yong; Shen, Qi

    2009-03-20

    Heterobimetallic lanthanide/sodium phenoxides were found to be efficient catalysts for amidation of aldehydes with amines under mild conditions. The reactivity follows the order Nd < Y < Sm for metals and 2,6-(Me)2C6H3O < 2,6-(iPr)2C6H3O < 2,6-(tBu)2C6H3O for phenoxide groups. In comparison with the corresponding monometallic complexes, heterobimetallic complexes show higher activity and a wider range of scope of amines. A cooperation of lanthanide and sodium in this process is proposed to contribute to the high activity of the present catalyst.

  12. Oxidation Catalysts in the Dark and the Light

    DTIC Science & Technology

    2010-01-01

    TiO2 with added silver, chromium, vanadium, manganese, carbon, and/or sulfur (selected transition metal ions and selected non- metals ) are very...Ranjit, Koodali T.; Klabunde, Kenneth J.; “ Catalysis by Metal Oxides,” Surface and Nanomolecular Catalysis , ed. Ryan Richards, CRC Press, NY, Ch. 2, pgs...REPORT Oxidation Catalysts in the Dark and the Light--Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Extensive research on mixed metal oxide

  13. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    PubMed

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  14. NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange.

    PubMed

    Liu, Yucan; Zhang, Guangming; Chong, Shan; Zhang, Nan; Chang, Huazhen; Huang, Ting; Fang, Shunyan

    2017-05-01

    This paper studies a heterogeneous Fenton catalyst NiFe(C 2 O 4 ) x , which showed better catalytic activity than Ni(C 2 O 4 ) x and better re-usability than Fe(C 2 O 4 ) x . The methyl orange removal efficiency was 98% in heterogeneous Fenton system using NiFe(C 2 O 4 ) x . The prepared NiFe(C 2 O 4 ) x had a laminated shape and the size was in the range of 2-4 μm, and Ni was doped into catalyst's structure successfully. The NiFe(C 2 O 4 ) x had a synergistic effect of catalyst of 24.7 for methyl orange removal, and the dope of Ni significantly reduced the leaching of Fe by 77%. The reaction factors and kinetics were investigated. Under the optimal conditions, 0.4 g/L of catalyst dose and 10 mmol/L of hydrogen peroxide concentration, 98% of methyl orange was removed within 20 min. Analysis showed that hydroxyl radicals and superoxide radicals participated in the reaction. With NiFe(C 2 O 4 ) x catalyst, the suitable pH range for heterogeneous Fenton system was wide from 3 to 10. The catalyst showed good efficiency after five times re-use. NiFe(C 2 O 4 ) x provided great potential in treatment of refractory wastewater with excellent property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predicting the potential environmental suitability for Theileria orientalis transmission in New Zealand cattle using maximum entropy niche modelling.

    PubMed

    Lawrence, K E; Summers, S R; Heath, A C G; McFadden, A M J; Pulford, D J; Pomroy, W E

    2016-07-15

    The tick-borne haemoparasite Theileria orientalis is the most important infectious cause of anaemia in New Zealand cattle. Since 2012 a previously unrecorded type, T. orientalis type 2 (Ikeda), has been associated with disease outbreaks of anaemia, lethargy, jaundice and deaths on over 1000 New Zealand cattle farms, with most of the affected farms found in the upper North Island. The aim of this study was to model the relative environmental suitability for T. orientalis transmission throughout New Zealand, to predict the proportion of cattle farms potentially suitable for active T. orientalis infection by region, island and the whole of New Zealand and to estimate the average relative environmental suitability per farm by region, island and the whole of New Zealand. The relative environmental suitability for T. orientalis transmission was estimated using the Maxent (maximum entropy) modelling program. The Maxent model predicted that 99% of North Island cattle farms (n=36,257), 64% South Island cattle farms (n=15,542) and 89% of New Zealand cattle farms overall (n=51,799) could potentially be suitable for T. orientalis transmission. The average relative environmental suitability of T. orientalis transmission at the farm level was 0.34 in the North Island, 0.02 in the South Island and 0.24 overall. The study showed that the potential spatial distribution of T. orientalis environmental suitability was much greater than presumed in the early part of the Theileria associated bovine anaemia (TABA) epidemic. Maximum entropy offers a computer efficient method of modelling the probability of habitat suitability for an arthropod vectored disease. This model could help estimate the boundaries of the endemically stable and endemically unstable areas for T. orientalis transmission within New Zealand and be of considerable value in informing practitioner and farmer biosecurity decisions in these respective areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Process of making supported catalyst

    DOEpatents

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  17. Catalyst displacement assay: a supramolecular approach for the design of smart latent catalysts for pollutant monitoring and removal† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05584b Click here for additional data file.

    PubMed Central

    Ho, Pui-Yu; Lu, Yu-Jing; Tang, Qian

    2017-01-01

    Latent catalysts can be tuned to function smartly by assigning a sensing threshold using the displacement approach for targeted analytes. Three cyano-bridged bimetallic complexes were synthesized as “smart” latent catalysts through the supramolecular assembly of different metallic donors [FeII(CN)6]4–, [FeII(tBubpy)(CN)4]2–, and FeII(tBubpy)2(CN)2 with a metallic acceptor [CuII(dien)]2+. The investigation of both their thermodynamic and kinetic properties on binding with toxic pollutants provided insight into their smart off–on catalytic capabilities, enabling us to establish a threshold-controlled catalytic system for the degradation of pollutants such as cyanide and oxalate. With these smart latent catalysts, a new catalyst displacement assay (CDA) was demonstrated and applied in a real wastewater treatment process to degrade cyanide pollutants in both domestic (level I, untreated) and industrial wastewater samples collected in Hong Kong, China. The smart system was adjusted to be able to initiate the catalytic oxidation of cyanide at a threshold concentration of 20 μM (the World Health Organization’s suggested maximum allowable level for cyanide in wastewater) to the less harmful cyanate under ambient conditions. PMID:28580114

  18. Spherical accretion of matter by charged black holes on f(T) Gravity

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. E.; Junior, E. L. B.

    2018-03-01

    We studied the spherical accretion of matter by charged black holes on f(T) Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with p=ω e and where p is the pressure and e the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.

  19. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts?

    DOE PAGES

    Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian

    2017-08-28

    The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano

  20. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Junfei; Lu, Xingxu; Gao, Pu-Xian

    The monolithic catalyst, namely the structured catalyst, is one of the important categories of catalysts used in various fields, especially in catalytic exhaust after-treatment. Despite its successful application in conventional wash-coated catalysts in both mobile and stationary catalytic converters, washcoat-based technologies are facing multi-fold challenges, including: (1) high Pt-group metals (PGM) material loading being required, driving the market prices; (2) less-than ideal distribution of washcoats in typically square-shaped channels associated with pressure drop sacrifice; and (3) far from clear correlations between macroscopic washcoat structures and their catalytic performance. To tackle these challenges, the well-defined nanostructure array (nano-array)-integrated structured catalysts whichmore » we invented and developed recently have been proven to be a promising class of cost-effective and efficient devices that may complement or substitute wash-coated catalysts. This new type of structured catalysts is composed of honeycomb-structured monoliths, whose channel surfaces are grown in situ with a nano-array forest made of traditional binary transition metal oxide support such as Al 2O 3, CeO 2, Co 3O 4, MnO 2, TiO 2, and ZnO, or newer support materials including perovskite-type ABO3 structures, for example LaMnO 3, LaCoO 3, LaNiO, and LaFeO 3. The integration strategy parts from the traditional washcoat technique. Instead, an in situ nanomaterial assembly method is utilized, such as a hydro (solva-) thermal synthesis approach, in order to create sound structure robustness, and increase ease and complex-shaped substrate adaptability. Specifically, the critical fabrication procedures for nano-array structured catalysts include deposition of seeding layer, in situ growth of nano-array, and loading of catalytic materials. The generic methodology utilization in both the magnetic stirring batch process and continuous flow reactor synthesis offers the nano

  1. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  2. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu 1.5Mn 1.5O 4, identified by exploiting theoretical first principles calculations for ORR and OERmore » in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO 2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO 2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  3. Development of GREET Catalyst Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Cronauer, Donald C.

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™)more » catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.« less

  4. Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blint, Richard J.

    DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 testsmore » of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.« less

  5. Synthesis of low cost organometallic-type catalysts for their application in microbial fuel cell technology.

    PubMed

    Zerrouki, A; Salar-García, M J; Ortiz-Martínez, V M; Guendouz, S; Ilikti, H; de Los Ríos, A P; Hernández-Fernández, F J; Kameche, M

    2018-03-05

    Microbial fuel cells (MFCs) are a promising technology that generates electricity from several biodegradable substrates and wastes. The main drawback of these devices is the need of using a catalyst for the oxygen reduction reaction at the cathode, which makes the process relatively expensive. In this work, two low cost materials are tested as catalysts in MFCs. A novel iron complex based on the ligand n-phenyledenparaethoxy aniline has been synthesized and its performance as catalyst in single chamber MFCs containing ionic liquids has been compared with a commercial inorganic material such as Raney nickel. The results show that both materials are suitable for bioenergy production and wastewater treatment in the systems. Raney nickel cathodes allow MFCs to reach a maximum power output of 160 mW.m -3 anode , while the iron complex offers lower values. Regarding the wastewater treatment capacity, MFCs working with Raney nickel-based cathodes reach higher values of chemical oxygen demand removal (76%) compared with the performance displayed by the cathodes based on Fe-complex (56%).

  6. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    NASA Astrophysics Data System (ADS)

    Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.

    2015-12-01

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method.

  7. A Study of the Hadronic Production of $D^0$ and $$\\overline{D}\\,{^0}$$ Mesons: $$x_F$$ and $$p_t$$ Distributions (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Mello Neto, Joao Torres

    Using a 250 Ge V hadron beam incident on thin targets foils of Be, Al, Cu and W, themore » $$x_F$$ and $$p_t$$ distributions of $D^0$ and $$\\bar{D}^0$$ were measured from Fermilab experiment E769 using the decay mode $$D^0 \\to K^- \\pi^+$$ and c.c. The measurements were made with the $$\\pi^-$$ induced sample, 607 ± 29 events. Fitting the $$x_F$$ distribution to (1- $$x_F)^{\\eta}$$ it was measured $$\\eta$$ = 3.86 ± 0.25 ± 0.10 for $$D0/\\bar{D}^0$$ , $$\\eta$$ = 3.89 ± 0.40 for $D^0$ and $$\\eta$$ = 3.74 ± 0.34 for $$\\bar{D}^0$$ • Fitting the $$p^2_t$$ distribuition to exp $$bp^2_t$$;, it was measured $b$ = 1.05 ± 0.06 ± 0.02 for $$DO/\\bar{D}^0$$ $b$ = 1.12 ± 0.09 for $D^0$ and $b$ = 1.00 ± 0.07 for $$\\bar{D}^0$$. The $$x_F$$ distribution is consistent with the perturbative QCD calculations.« less

  8. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  9. Autothermal reforming catalyst having perovskite structure

    DOEpatents

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  10. 2'-O-methyl-5-formylcytidine (f5Cm), a new modified nucleotide at the 'wobble' of two cytoplasmic tRNAs Leu (NAA) from bovine liver.

    PubMed Central

    Païs de Barros, J P; Keith, G; El Adlouni, C; Glasser, A L; Mack, G; Dirheimer, G; Desgrès, J

    1996-01-01

    The nucleotide analysis of a cytoplasmic tRNA(Leu) isolated from bovine liver revealed the presence of an unknown modified nucleotide N. The corresponding N nucleoside was isolated by different enzymatic and chromatographic protocols from a partially purified preparation of this tRNA(Leu). Its chemical characterization was determined from its chromatographic properties, UV-absorption spectroscopy and mass spectrometric measurements, as well as from those of the borohydride reduced N nucleoside and its etheno-trimethylsilyl derivative. The structure of N was established as 2'-O-methyl-5-formylcytidine (f5CM), and its reduced derivative as 2'-O-methyl-5-hydroxy-methylcytidine (om5Cm). By sequencing the bovine liver tRNA(Leu), the structure of the anticodon was determined as f5CmAA. In addition, the nucleotide sequence showed two primary structures differing only by the nucleotide 47c which is either uridine or adenosine. The two slightly differing bovine liver tRNAs-Leu(f5CmAA) are the only tRNAs so far sequenced which contain f5Cm. The role of such a modified cytidine at the first position of the anticodon is discussed in terms of decoding properties for the UUG and UUA leucine codons. Recently, precise evidence was obtained for the presence of f5Cm at the same position in tRNAs(Leu)(NAA) isolated from rabbit and lamb liver. Therefore, the 2'-O-methyl-5-formyl modification of cytidine at position 34 could be a general feature of cytoplasmic tRNAs(Leu)(NAA) in mammals. PMID:8628682

  11. Preliminary Results of T and F Asymmetries for KLambda Photoproduction from the Proton

    NASA Astrophysics Data System (ADS)

    Walford, Natalie; Klein, Franz

    2013-04-01

    The search for undiscovered excited states of the nucleon continues to be a focus of experiments at Jefferson Lab. A large effort has been launched using the CLAS detector to provide the database, which will allow nearly model-independent partial wave analyses to be carried out in the search for such states. Polarization observables play a crucial role in this effort, as they are essential in disentangling overlapping resonant and non-resonant amplitudes. Recent coupled-channel analyses [1] have found strong sensitivity of the K-Lambda channel to several higher mass nucleon resonances. In 2010, double-polarization data were taken at JLab using circularly polarized photons incident on a transversely polarized frozen spin target (FROST) [2] comprising butanol, operated at the low temperature of 30mK. The reaction products were detected in CLAS using tagged photons. We will present preliminary data of the T and F asymmetries of the K-Lambda final state with comparisons to predictions of recent multipole analyses. There are very few published measurements of the T asymmetry and none of the F asymmetry for the K-Lambda channel. This work is the first of its kind and will significantly broaden the world database for this reaction.[4pt] [1] A.V. Anisovich et al., Eur. Phys. J. A48 (2012) 15.2] C.D. Keith et al., Nucl. Instr. Meth. A694 (2012) 27.

  12. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    PubMed

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  13. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  14. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, Lawrence J.

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  15. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  16. Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.

    PubMed

    Koukounas, Constantine; Mavridis, Aristides

    2008-11-06

    The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.

  17. Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.

    1977-01-01

    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.

  18. Alkene metathesis: the search for better catalysts.

    PubMed

    Deshmukh, Prashant H; Blechert, Siegfried

    2007-06-28

    Alkene metathesis catalyst development has made significant progress over recent years. Research in metathesis catalyst design has endeavoured to tackle three key issues: those of (i) catalyst efficiency and activity, (ii) substrate scope and selectivity--particularly stereoselective metathesis reactions--and (iii) the minimization of metal impurities and catalyst recycling. This article describes a brief history of metathesis catalyst development, followed by a survey of more recent research, with a particular emphasis on ruthenium catalysts.

  19. Oxygen-reducing catalyst layer

    DOEpatents

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  20. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer.

    PubMed

    Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M

    2018-05-10

    Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = <0.001) and TTP ( P = 0.044). Higher FDG SUV max at scan2 predicted a shorter time to tSRE ( P = <0.001). A multivariable model using FDG SUV max of the index lesion at scan1 plus the difference in SUV max of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18 F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters

  1. Generation of reactive oxygen species and oxidative stress in Escherichia coli and Staphylococcus aureus by a novel semiconductor catalyst

    NASA Astrophysics Data System (ADS)

    Chow, K. L.; Mak, N. K.; Wong, M. H.; Zhou, X. F.; Liang, Y.

    2011-03-01

    The objective of this study was to investigate antimicrobial mechanisms of a new catalytic material (charge transfer auto oxidation-reduction type catalyst, CT catalyst) that may have great potential for application in water/wastewater treatment. Generation of reactive oxygen species (ROS) in bacteria-free solution, induction of ROS and oxidative damage in bacteria (including E. coli and S. aureus) were examined for the CT catalyst. The results showed that significantly higher ( p < 0.05, via t-test) amount of hydroxyl radicals was generated by the CT catalyst compared with the control, particularly after 6 h of contact time that more than twice of the amount of the control was produced. The generation of ROS in the bacteria was greater under higher pH and temperature levels, which closely related with the oxidative damage in cells. The results indicated that CT catalyst induced oxidative damage in the bacteria might serve as an important mechanism interpreting the anti-microbial function of the CT catalyst.

  2. The Project L.I.F.T. Story: Early Lessons from a Public-Private Education Turnaround Initiative

    ERIC Educational Resources Information Center

    Kim, Juli; Ellison, Shonaka

    2015-01-01

    Leading Charlotte foundations formed a funding collaborative to support a five-year district turnaround initiative to dramatically improve educational outcomes for students in the West Charlotte High School corridor, one of the city's lowest-performing feeder zones. The "Project L.I.F.T." initiative involves four areas of education…

  3. Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes.

    PubMed

    Kast, Matthew G; Enman, Lisa J; Gurnon, Nicholas J; Nadarajah, Athavan; Boettcher, Shannon W

    2014-12-24

    Protecting Si photocathodes from corrosion is important for developing tandem water-splitting devices operating in basic media. We show that textured commercial Si-pn(+) photovoltaics protected by solution-processed semiconducting/conducting oxides (plausibly suitable for scalable manufacturing) and coupled to thin layers of Ir yield high-performance H2-evolving photocathodes in base. They also serve as excellent test structures to understand corrosion mechanisms and optimize interfacial electrical contacts between various functional layers. Solution-deposited TiO2 protects Si-pn(+) junctions from corrosion for ∼24 h in base, whereas junctions protected by F:SnO2 fail after only 1 h of electrochemical cycling. Interface layers consisting of Ti metal and/or the highly doped F:SnO2 between the Si and TiO2 reduce Si-emitter/oxide/catalyst contact resistance and thus increase fill factor and efficiency. Controlling the oxide thickness led to record photocurrents near 35 mA cm(-2) at 0 V vs RHE and photocathode efficiencies up to 10.9% in the best cells. Degradation, however, was not completely suppressed. We demonstrate that performance degrades by two mechanisms, (1) deposition of impurities onto the thin catalyst layers, even from high-purity base, and (2) catastrophic failure via pinholes in the oxide layers after several days of operation. These results provide insight into the design of hydrogen-evolving photoelectrodes in basic conditions, and highlight challenges.

  4. Structure Characterization and Catalytic Properties of Cr2O3 Doped with MgO Supported on MgF2

    NASA Astrophysics Data System (ADS)

    Goslar, J.; Wojciechowska, M.; Zieliński, M.; Tomska-Foralewska, I.; Przystajko, W.

    2006-08-01

    A characterization of double oxide systems containing Cr2O3 doped with MgO and supported on MgF2 was carried out. The catalysts were prepared by impregnation and co-impregnation methods and characterized by the Brunauer-Emmett-Teller method, EPR, and temperature programmed reduction. The results proved the interactions between supported oxides and the presence of spinel-like phase after treatment at 400 ºC. Magnesium oxide clearly influences the catalytic activity as well as selectivity of chromium catalysts supported on MgF2. The MgO-Cr2O3/MgF2 systems were active and selective in the reaction of CO oxidation at the room temperature and in the dehydrogenation of cyclohexene.

  5. Observational information for f(T) theories and dark torsion

    NASA Astrophysics Data System (ADS)

    Bengochea, Gabriel R.

    2011-01-01

    In the present work we analyze and compare the information coming from different observational data sets in the context of a sort of f(T) theories. We perform a joint analysis with measurements of the most recent type Ia supernovae (SNe Ia), Baryon Acoustic Oscillation (BAO), Cosmic Microwave Background radiation (CMB), Gamma-Ray Bursts data (GRBs) and Hubble parameter observations (OHD) to constraint the only new parameter these theories have. It is shown that when the new combined BAO/CMB parameter is used to put constraints, the result is different from previous works. We also show that when we include Observational Hubble Data (OHD) the simpler ΛCDM model is excluded to one sigma level, leading the effective equation of state of these theories to be of phantom type. Also, analyzing a tension criterion for SNe Ia and other observational sets, we obtain more consistent and better suited data sets to work with these theories.

  6. The hidden flat like universe II. Quasi inverse power law inflation by f ( T ) f(T) gravity

    NASA Astrophysics Data System (ADS)

    El Hanafy, W.; Nashed, G. G. L.

    2016-08-01

    In a recent work, a particular class of f(T) gravity, where T is the teleparallel torsion scalar, has been derived. This class has been identified by flat-like universe (FLU) assumptions (El Hanafy and Nashed 2015). The model is consistent with the early cosmic inflation epoch. A quintessence potential has been constructed from the FLU f(T)-gravity. We show that the first order potential of the induced quintessence is a quasi inverse power law inflation with an additional constant providing an end of the inflation with no need to an extra mechanism. At e-folds N_{*}= 55 before the end of the inflation, this type of potential can perform both E and B modes of the cosmic microwave background (CMB) polarization pattern.

  7. F4/80 inhibits osteoclast differentiation via downregulation of nuclear factor of activated T cells, cytoplasmic 1.

    PubMed

    Kang, Ju-Hee; Sim, Jung-Sun; Zheng, Ting; Yim, Mijung

    2017-04-01

    Osteoclastogenesis is an essential process in bone metabolism, which can be induced by RANKL stimulation. The F4/80 glycoprotein is a member of the EGF-transmembrane 7 (TM7) family and has been established as a specific cell-surface marker for murine macrophages. This study aimed to identify the role of F4/80 in osteoclastogenesis. Using mouse bone marrow-derived macrophages (BMMs), we observed that the mRNA level of F4/80 was dramatically reduced as these cells differentiated into osteoclasts. Furthermore, osteoclastogenesis was decreased in F4/80 high BMMs compared to F4/80 -/low BMMs. The inhibitory effect of F4/80 was associated with decreased expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). Ectopic overexpression of a constitutively active form of NFATc1 rescued the anti-osteoclastogenic effect of F4/80 completely, suggesting that the anti-osteoclastogenic effect of F4/80 was mainly due to reduction in NFATc1 expression. As an underlying mechanism, we demonstrated that the presence of F4/80 abrogated the effect of RANKL on the phosphorylation of CREB and activated the expression of IFN-β, which are restored by cyclic AMP. Collectively, our results demonstrate that the presence of F4/80 suppresses RANKL-induced osteoclastogenesis by impairing the expression of NFATc1 via CREB and IFN-β. Therefore, F4/80 may hold therapeutic potential for bone destructive diseases.

  8. Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.

    1980-01-01

    The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.

  9. Enhanced Oxidation Catalysts for Water Reclamation

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1999-01-01

    This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.

  10. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging.

    PubMed

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-18

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  11. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE PAGES

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin; ...

    2016-05-19

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  12. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  13. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  14. Elucidation of the biosynthesis of the methane catalyst coenzyme F430

    PubMed Central

    Moore, Simon J.; Sowa, Sven T.; Schuchardt, Christopher; Deery, Evelyne; Lawrence, Andrew D.; Ramos, José Vazquez; Billig, Susan; Birkemeyer, Claudia; Chivers, Peter T.; Howard, Mark J.; Rigby, Stephen E. J.; Layer, Gunhild; Warren, Martin J.

    2017-01-01

    Summary Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilisation of methane through anaerobic methane oxidation. The enzyme employs an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a novel methyl radical/Ni(II)-thiolate intermediate. However, the biosynthesis of coenzyme F430 from the common primogenitor uroporphyrinoge III, incorporating 11 steric centres into the macrocycle, has remained poorly understood although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamisation and carbocyclic ring formation. We have now identified the proteins that catalyse coenzyme F430 biosynthesis from sirohydrochlorin, termed CfbA-E, and shown their activity. The research completes our understanding of how nature is able to construct its repertoire of tetrapyrrole-based life pigments, permitting the development of recombinant systems to utilise these metalloprosthetic groups more widely. PMID:28225763

  15. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less

  16. Ethylene polymerization on a SiH4-modified Phillips catalyst: detection of in situ produced α-olefins by operando FT-IR spectroscopy.

    PubMed

    Barzan, Caterina; Groppo, Elena; Quadrelli, Elsje Alessandra; Monteil, Vincent; Bordiga, Silvia

    2012-02-21

    Ethylene polymerization on a model Cr(II)/SiO(2) Phillips catalyst modified with gas phase SiH(4) leads to a waxy product containing a bimodal MW distribution of α-olefins (M(w) < 3000 g mol(-1)) and a highly branched polyethylene, LLDPE (M(w) ≈ 10(5) g mol(-1), T(m) = 123 °C), contrary to the unmodified catalyst which gives a linear and more dense PE, HDPE (M(w) = 86,000 g mol(-1) (PDI = 7), T(m) = 134 °C). Pressure and temperature resolved FT-IR spectroscopy under operando conditions (T = 130-230 K) allows us to detect α-olefins, and in particular 1-hexene and 1-butene (characteristic IR absorption bands at 3581-3574, 1638 and 1598 cm(-1)) as intermediate species before their incorporation in the polymer chains. The polymerization rate is estimated, using time resolved FT-IR spectroscopy, to be 7 times higher on the SiH(4)-modified Phillips catalyst with respect to the unmodified one.

  17. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    PubMed

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  18. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques

  19. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    PubMed

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-07

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011

  20. Pyrolysis of marine biomass to produce bio-oil and its upgrading using a novel multi-metal catalyst prepared from the spent car catalytic converter.

    PubMed

    Sabegh, Mahzad Yaghmaei; Norouzi, Omid; Jafarian, Sajedeh; Khosh, Akram Ghanbari; Tavasoli, Ahmad

    2018-02-01

    In order to reduce the economic and environmental consequences caused by spent car catalyst, we herein report for the first time a novel promising multi-metal catalyst prepared from spent car catalytic converters to upgrade the pyrolysis bio-oils. The physico-chemical properties of prepared catalyst were characterized by XRD, EDS, FESEM, and FT-IR analyses. The thermal stability of the multi-metal catalyst was studied with TGA. To investigate the activity of the catalyst, Conversion of Cladophora glomerata (C. glomerata) into bio-products was carried out via a fixed bed reactor with and without catalyst at the temperature of 500°C. Although the catalyst didn't catalyze the gasification reaction, bio-oil was upgraded over the catalyst. The main effect of the catalyst on the bio-oil components is deoxygenating of nitrogen compounds and promotion the ketonization reaction, which converts acid to ketone and declines the corrosive nature of bio-oil. Copyright © 2017. Published by Elsevier Ltd.

  1. B. F. Skinner and T. N. Whitehead: A Brief Encounter, Research Similarities, Hawthorne Revisited, What Next?

    ERIC Educational Resources Information Center

    Claus, Calvin K.

    2007-01-01

    B. F. Skinner and T. N. Whitehead recalled a personal interaction in 1934, with differing memories of the event. No evidence of other subsequent interactions or mutual citations has been found. Although they went their separate ways, three similarities in their research strategies have been found and are discussed. Elements of Whitehead's…

  2. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  3. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  4. DEHYDROGENATION CATALYST FOR PRODUCTION OF MTBE

    EPA Science Inventory

    The objectives of this project were to better understand the effect of different catalyst preparation parameters, the effect of different catalyst treatment parameters, and the mechanism of deactivation. Accordingly, catalysts were made using various preparation methods and with...

  5. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.

    PubMed

    Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke

    2018-08-15

    In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Charlotte, N.C.'s Project L.I.F.T.: New Teaching Roles Create Culture of Excellence in High-Need Schools. An Opportunity Culture Case Study

    ERIC Educational Resources Information Center

    Han, Jiye Grace; Barrett, Sharon Kebschull

    2013-01-01

    This case study reports on the work of Denise Watts, who in 2011 was the newly named Project L.I.F.T. executive director and a Charlotte-Mecklenburg Schools zone superintendent. She approached Public Impact for help in meeting the new Project L.I.F.T. (Leadership and Investment for Transformation) goals. Facing urgent needs for real change, Watts…

  7. Non-PGM cathode catalysts for fuel cell application derived from heat treated heteroatomic amines precursors

    DOEpatents

    Serov, Alexey; Halevi, Barr; Artyushkova, Kateryna; Atanassov, Plamen B; Martinez, Ulises A

    2017-04-25

    A method of preparing M-N--C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.

  8. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi

    2014-09-01

    catalysts for the C-O bond hydrogenolysis in model compounds, which mimic the b-O-4, a-O-4, and 4-O-5 linkages of natural lignin. The versatile IRMOF-74(n) series is proposed as a platform for creating efficient hydrogenolysis catalysts as it not only displays tunable pore sizes, but also has the required thermal and chemical stability. The catalytic C-O bond cleavage occurs at 10 bar hydrogen pressure and temperatures as low as 120 degC. The conversion efficiency of the aromatic ether substrates into the corresponding hydrocarbons and phenols varies as PhCH 2 CH 2 OPh > PhCH 2 OPh > PhOPh (Ph = phenyl), while the catalytic activity generally follows the following trend Ni@IRMOF-74>Ti@IRMOF-74>IRMOF-74. Conversions as high as 80%, coupled with good selectivity for hydrogenolysis vs. hydrogenation, highlight the potential of MOF-based catalysts for the selective cleavage of recalcitrant aryl-ether bonds found in lignin and other biopolymers. This project supports the DOE Integrated Biorefinery Program goals, the objective of which is to convert biomass to fuels and high-value chemicals, by addressing an important technology gap: the lack of low-temperature catalysts suitable for industrial lignin degradation. Biomass, which is %7E30 wt% lignin, constitutes a potentially major source of platform chemicals that could improve overall profitability and productivity of all energy-related products, thereby benefiting consumers and reducing national dependence on imported oil. Additionally, DoD has a strong interest in low-cost drop-in fuels (Navy Biofuel Initiative) and has signed a Memorandum of Understanding with DOE and USDA to develop a sustainable biofuels industry.« less

  9. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  10. Effects of the Acrylic Polyol Structure and the Selectivity of the Employed Catalyst on the Performance of Two-Component Aqueous Polyurethane Coatings

    PubMed Central

    Cakic, Suzana; Lacnjevac, Caslav; Stamenkovic, Jakov; Ristic, Nikola; Takic, Ljiljana; Barac, Miroljub; Gligoric, Miladin

    2007-01-01

    Two kinds of aqueous acrylic polyols (single step and multi step synthesis type) have been investigated for their performance in the two-component aqueous polyurethane application, by using more selective catalysts. The aliphatic polyfunctional isocyanates based on hexamethylen diisocyanates have been employed as suitable hardeners. The complex of zirconium, commercially known as K-KAT®XC-6212, and manganese (III) complexes with mixed ligands based on the derivative of maleic acid have been used as catalysts in this study. Both of the aqueous polyols give good results, in terms of application and hardness, when elevated temperatures and more selective catalysts are applied. A more selective catalyst promotes the reaction between the isocyanate and polyol component. This increases the percentage of urethane bonds and the degree of hardness in the films formed from the two components of aqueous polyurethane lacquers. The polyol based on the single step synthesis route is favourable concerning potlife and hardness. The obtained results show that the performance of the two-component aqueous polyurethane coatings depends on the polymer structure of the polyols as well as on the selectivity of the employed catalyst.

  11. Kaluza-Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Samanta, Gauranga Charan; Myrzakulov, Ratbay; Shah, Parth

    2017-04-01

    The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza-Klein space time. The bulk viscous coefficient (ξ) expressed as ξ = {ξ_0} + {ξ_1}{{\\dot a} \\over a} + {ξ_2}{{\\ddot a} \\over {\\dot a}}, where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ-1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to {ξ _2}{{\\ddot a} \\over {\\dot a}}, hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to ξ = {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}} and ξ = {ξ _0} + {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}}, so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.

  12. Catalyst Development for Hydrogen Peroxide Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.

    1999-01-01

    The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.

  13. F-35 Joint Strike Fighter Aircraft (F-35)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-198 F-35 Joint Strike Fighter Aircraft (F-35) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 21, 2016 08:47:09 UNCLASSIFIED F-35 December 2015 SAR March 21, 2016 08:47:09 UNCLASSIFIED 2...Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost F-35 December 2015 SAR March 21

  14. Vegetable Oil Derived Solvent, and Catalyst Free “Click Chemistry” Thermoplastic Polytriazoles

    PubMed Central

    Floros, Michael C.; Leão, Alcides Lopes; Narine, Suresh S.

    2014-01-01

    Azide-alkyne Huisgen “click” chemistry provides new synthetic routes for making thermoplastic polytriazole polymers—without solvent or catalyst. This method was used to polymerize three diester dialkyne monomers with a lipid derived 18 carbon diazide to produce a series of polymers (labelled C18C18, C18C9, and C18C4 based on monomer chain lengths) free of residual solvent and catalyst. Three diester dialkyne monomers were synthesized with ester chain lengths of 4, 9, and 18 carbons from renewable sources. Significant differences in thermal and mechanical properties were observed between C18C9 and the two other polymers. C18C9 presented a lower melting temperature, higher elongation at break, and reduced Young's modulus compared to C18C4 and C18C18. This was due to the “odd-even” effect induced by the number of carbon atoms in the monomers which resulted in orientation of the ester linkages of C18C9 in the same direction, thereby reducing hydrogen bonding. The thermoplastic polytriazoles presented are novel polymers derived from vegetable oil with favourable mechanical and thermal properties suitable for a large range of applications where no residual solvent or catalyst can be tolerated. Their added potential biocompatibility and biodegradability make them ideal for applications in the medical and pharmaceutical industries. PMID:25032224

  15. Oxygen-Dependent Photocatalytic Water Reduction with a Ruthenium(imidazolium) Chromophore and a Cobaloxime Catalyst.

    PubMed

    Petermann, Lydia; Staehle, Robert; Pfeifer, Maxim; Reichardt, Christian; Sorsche, Dieter; Wächtler, Maria; Popp, Jürgen; Dietzek, Benjamin; Rau, Sven

    2016-06-06

    Detailed investigations of a photocatalytic system capable of producing hydrogen under pre-catalytic aerobic conditions are reported. This system consists of the NHC precursor chromophore [Ru(tbbpy)2 (RR'ip)][PF6 ]3 (abbreviated as Ru(RR'ip)[PF6 ]3 ; tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine, RR'ip=1,3-disubstituted-1H-imidazo[4,5-f][1,10]phenanthrolinium), the reduction catalyst Co(dmgH)2 (dmgH=dimethylglyoximato), and the electron donor ascorbic acid (AA). Screening studies with respect to solvent, cobaloxime catalyst, electron donor, pH, and concentrations of the individual components yielded optimized photocatalytic conditions. The system shows high activity based on Ru, with turnover numbers up to 2000 under oxygen-free and pre-catalytic aerobic conditions. The turnover frequency in the latter case was even higher than that for the oxygen-free catalyst system. The Ru complexes show high photostability and their first excited state is primarily located on the RR'ip ligand. X-ray crystallographic analysis of the rigid cyclophane-type ligand dd(ip)2 (Br)2 (dd(ip)2 =1,1',3,3'-bis(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(1H-imidazo[4,5-f][1,10]phenanthrolinium)) and the catalytic activity of its Ru complex [{(tbbpy)2 Ru}2 (μ-dd(ip)2 )][PF6 ]6 (abbreviated as Ru2 (dd(ip)2 )[PF6 ]6 ) suggest an intermolecular catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Operando chemistry of catalyst surfaces during catalysis.

    PubMed

    Dou, Jian; Sun, Zaicheng; Opalade, Adedamola A; Wang, Nan; Fu, Wensheng; Tao, Franklin Feng

    2017-04-03

    Chemistry of a catalyst surface during catalysis is crucial for a fundamental understanding of mechanism of a catalytic reaction performed on the catalyst in the gas or liquid phase. Due to the pressure- or molecular density-dependent entropy contribution of gas or liquid phase of the reactants and the potential formation of a catalyst surface during catalysis different from that observed in an ex situ condition, the characterization of the surface of a catalyst under reaction conditions and during catalysis can be significant and even necessary for understanding the catalytic mechanism at a molecular level. Electron-based analytical techniques are challenging for studying catalyst nanoparticles in the gas or liquid phase although they are necessary techniques to employ. Instrumentation and further development of these electron-based techniques have now made in situ/operando studies of catalysts possible. New insights into the chemistry and structure of catalyst nanoparticles have been uncovered over the last decades. Herein, the origin of the differences between ex situ and in situ/operando studies of catalysts, and the technical challenges faced as well as the corresponding instrumentation and innovations utilized for characterizing catalysts under reaction conditions and during catalysis, are discussed. The restructuring of catalyst surfaces driven by the pressure of reactant(s) around a catalyst, restructuring in reactant(s) driven by reaction temperature and restructuring during catalysis are also reviewed herein. The remaining challenges and possible solutions are briefly discussed.

  17. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  18. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  19. 77 FR 73114 - Draft Written Re-Evaluation for Environmental Impact Statement: T.F. Green Airport, Warwick, RI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    [email protected]gov Include ``Comment to T.F. Green Draft Written Re-Evaluation'' in the subject line Mail... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Draft Written Re-Evaluation for... notice to advise the public that a Draft Written Re-Evaluation for an Environmental Impact Statement (EIS...

  20. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra

    2011-10-01

    Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Chen, Jinshe; Cai, Tingting; Jing, Xiaohui; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2016-12-01

    The amorphous NiB nanoparticles were synthesized and a novel type of NiB/Hβ catalyst was prepared for the isomerization of n-hexane. The optimum preparation conditions were investigated and the effect of preparation conditions on the surface chemistry information of catalysts was characterized by XRD, N2 sorption studies, XPS, TPD and other related means. It was demonstrated that the loading amounts of NiB have effect on textural properties and the acid properties of surface. The loading amounts of NiB were also related to the amount of strong Lewis acid sites and the ratios of weak acid to strong acid of samples. Meanwhile, calcination temperatures of samples were closely associated with the structure of active components that function as metal centers. When the loading amount of NiB was 5 wt.% and calcination temperature was 200 °C, the catalyst had proper surface acidity sites and metal active sites to provide suitable synergistic effects. The mechanism for n-hexane isomerization was also investigated and the existence of unique structure of Bsbnd Nisbnd H was proved, which could provide good hydrogenation-dehydrogenation functions.

  2. PCDD/F catalysis by metal chlorides and oxides.

    PubMed

    Zhang, Mengmei; Yang, Jie; Buekens, Alfons; Olie, Kees; Li, Xiaodong

    2016-09-01

    Model fly ash (MFA) samples were composed of silica, sodium chloride, and activated carbon, and doped with metal (0.1 wt% Cu, Cr, Ni, Zn and Cd) chloride or oxide. Each sample was de novo tested at 350 °C for 1 h, in a flow of gas (N2, N2 + 10% O2, +21% O2 or +10% H2) to investigate the effect of metal catalyst and gas composition on PCDD/F formation. Total PCDD/F yield rises rapidly with oxygen content, while the addition of hydrogen inhibits the formation and chlorination of PCDD/F. The amount of PCDD on average rises linearly with the oxygen concentration, while that of PCDF follows a reaction order of about 1/2; thus the PCDF to PCDD ratio drops when more oxygen becomes available. Some samples do not follow this trend. Chlorides are much more active than oxides, yet there are marked differences between individual metals. Principal component analysis (PCA) was applied to study the signatures from all samples, showing their unique specificity and diversity. Each catalyst shows a different signature within its individual homologue groups, demonstrating that these signatures are not thermodynamically controlled. Average congener patterns do not vary considerably with oxygen content changing from oxidising (air) to reducing (nitrogen, hydrogen). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. On-line regeneration of hydrodesulfurization catalyst

    DOEpatents

    Preston, Jr., John L.

    1980-01-01

    A hydrotreating catalyst is regenerated as it concurrently hydrotreats a hydrocarbon fuel by introducing a low concentration of oxygen into the catalyst bed either continuously or periodically. At low oxygen concentrations the carbon deposits on the catalyst are burned off without harming the catalyst and without significantly affecting the hydrotreating process. In a preferred embodiment the hydrotreating process is hydrodesulfurization, and regenerating is done periodically with oxygen concentrations between 0.1 and 0.5 volume percent.

  4. Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot

    PubMed Central

    Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang

    2017-01-01

    This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully. PMID:28862691

  5. Peg-in-Hole Assembly Based on Two-phase Scheme and F/T Sensor for Dual-arm Robot.

    PubMed

    Zhang, Xianmin; Zheng, Yanglong; Ota, Jun; Huang, Yanjiang

    2017-09-01

    This paper focuses on peg-in-hole assembly based on a two-phase scheme and force/torque sensor (F/T sensor) for a compliant dual-arm robot, the Baxter robot. The coordinated operations of human beings in assembly applications are applied to the behaviors of the robot. A two-phase assembly scheme is proposed to overcome the inaccurate positioning of the compliant dual-arm robot. The position and orientation of assembly pieces are adjusted respectively in an active compliant manner according to the forces and torques derived by a six degrees-of-freedom (6-DOF) F/T sensor. Experiments are conducted to verify the effectiveness and efficiency of the proposed assembly scheme. The performances of the dual-arm robot are consistent with those of human beings in the peg-in-hole assembly process. The peg and hole with 0.5 mm clearance for round pieces and square pieces can be assembled successfully.

  6. Effects of acid catalyst type on structural, morphological, and optoelectrical properties of spin-coated TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2013-03-01

    The effects of different acid catalysts of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and citric acid on structural, morphological, and optoelectrical properties of nanocrystalline spin-coated TiO2 thin films synthesized via alkoxide sol-gel route were investigated. It was found that only the sols with HNO3 and HCl are suitable for film preparation. The X-ray diffractometry and Raman analysis showed that crystalline phases could be controlled by the type of acid catalyst. Although the H2SO4 sol shows good stability, it causes extremely different morphology to form due to its different sol nature and high contact angle. Fourier transformed infrared spectra confirmed the presence of acid anion species in all samples even after calcination. Furthermore, it was inferred from UV-visable absorption spectra that although the band gap and thickness of the films are independent of acid catalyst type, the refractive index and porosity of the films are strongly affected by the type of acids.

  7. Human exposure to power frequency magnetic fields up to 7.6 mT: An integrated EEG/fMRI study.

    PubMed

    Modolo, Julien; Thomas, Alex W; Legros, Alexandre

    2017-09-01

    We assessed the effects of power-line frequency (60 Hz in North America) magnetic fields (MF) in humans using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Twenty-five participants were enrolled in a pseudo-double-blind experiment involving "real" or "sham" exposure to sinusoidal 60 Hz MF exposures delivered using the gradient coil of an MRI scanner following two conditions: (i) 10 s exposures at 3 mT (10 repetitions); (ii) 2 s exposures at 7.6 mT (100 repetitions). Occipital EEG spectral power was computed in the alpha range (8-12 Hz, reportedly the most sensitive to MF exposure in the literature) with/without exposure. Brain functional activation was studied using fMRI blood oxygen level-dependent (BOLD, inversely correlated with EEG alpha power) maps. No significant effects were detected on occipital EEG alpha power during or post-exposure for any exposure condition. Consistent with EEG results, no effects were observed on fMRI BOLD maps in any brain region. Our results suggest that acute exposure (2-10 s) to 60 Hz MF from 3 to 7.6 mT (30,000 to 76,000 times higher than average public exposure levels for 60 Hz MF) does not induce detectable changes in EEG or BOLD signals. Combined with previous findings in which effects were observed on the BOLD signal after 1 h exposure to 3 mT, 60 Hz MF, this suggests that MF exposure in the low mT range (<10 mT) might require prolonged durations of exposure to induce detectable effects. Bioelectromagnetics. 38:425-435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Development of GREET Catalyst Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al 2O3, and Pt/ γ-Al 2O 3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  9. Catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene over fluorinated NiO/Cr2O3 catalysts

    NASA Astrophysics Data System (ADS)

    Luo, Jian-Wei; Song, Jian-Dong; Jia, Wen-Zhi; Pu, Zhi-Ying; Lu, Ji-Qing; Luo, Meng-Fei

    2018-03-01

    Catalytic dehydrofluorination of 1,1,1,3,3-pentafluoropropane to 1,3,3,3-tetrafluoropropene was performed on a series of fluorinated NiO/Cr2O3 catalysts. The NiO/Cr2O3 catalysts were more active than the Cr2O3 because the new acid sites provided by NiF2 had higher turnover frequencies (9.43 × 10-3 - 12.08 × 10-3 s-1) than those on the Cr2O3 (4.55 × 10-3 s-1). Also, the NiO/Cr2O3 was more stable than the Cr2O3 due to its lower density of surface acid sites, which alleviated the coke deposition on the catalyst as evidenced by the Raman spectroscopic results. The kinetic results revealed that the15NiO/Cr2O3 had much lower activation energy (63.6 ± 4.5 kJ mol-1) than the Cr2O3 (127.6 ± 3.8 kJ mol-1). Accordingly, different reaction pathways on the two catalysts were proposed, which involved the cleavage of the Csbnd F and Csbnd H bonds on the surface acid and base sites, respectively.

  10. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.

    PubMed

    Kaewpengkrow, Prangtip; Atong, Duangduen; Sricharoenchaikul, Viboon

    2012-12-01

    Pyrolysis and gasification processes were utilized to study the feasibility of producing fuels from landfilled plastic wastes. These wastes were converted in a gasifier at 700-900 degrees C. The equivalence ratio (ER) was varied from 0.4-0.6 with or without addition ofa Ni-Mg-La/Al2O3 catalyst. The pyrolysis and gasification of plastic wastes without catalyst resulted in relatively low H2, CO and other fuel gas products with methane as the major gaseous species. The highest lower heating value (LHV) was obtained at 800 degrees C and for an ER of 0.4, while the maximum cold gas efficiency occurred at 700 degrees C and for an ER of 0.4. The presence of the Ni-Mg-La/Al2O3 catalyst significantly enhanced H2 and CO production as well as increasing the gas energy content to 15.76-19.26 MJ/m3, which is suitable for further usage as quality fuel gas. A higher temperature resulted in more H2 and CO and other product gas yields, while char and liquid (tars) decreased. The maximum gas yield, gas calorific value and cold gas efficiency were achieved when the Ni-Mg-La/Al2O3 catalyst was used at 900 degrees C. In general, addition of prepared catalyst resulted in greater H2, CO and other light hydrocarbon yields from superior conversion of wastes to these gases. Thus, thermochemical treatment of these problematic wastes using pyrolysis and gasification processes is a very attractive alternative for sustainable waste management.

  11. NOVEL RU-NI-S ELECTRODE CATALYST FOR PEMFC

    EPA Science Inventory

    The expected results from this project include:

    • a new formula and preparation procedures for Ru-Ni-S catalyst;>
    • demonstration of CO and S tolerance of the new catalyst;>
    • a small size PEMFC with Ru-Ni-S catalyst and good performance; an...

    • Nitrogen oxides storage catalysts containing cobalt

      DOEpatents

      Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

      2010-10-12

      Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

    • Characterization of Deactivated Bio-oil Hydrotreating Catalysts

      DOE Office of Scientific and Technical Information (OSTI.GOV)

      Wang, Huamin; Wang, Yong

      Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase ofmore » the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.« less

    • [Fe(F20 TPP)Cl]-catalyzed amination with arylamines and {[Fe(F20 TPP)(NAr)](PhI=NAr)} + . Intermediate assessed by high-resolution ESI-MS and DFT calculations.

      PubMed

      Liu, Yungen; Chen, Guo-Qiang; Tse, Chun-Wai; Guan, Xianguo; Xu, Zheng-Jiang; Huang, Jie-Sheng; Che, Chi-Ming

      2015-01-01

      Amination of CH bonds catalyzed by transition metal complexes via nitrene/imide insertion is an appealing strategy for CN bond formation, and the use of iminoiodinanes, or their in situ generated forms from 'PhI(OAc)2 +primary amides (such as sulfonamides, sulfamates, and carbamates)', as nitrogen sources for the amination reaction has been well documented. In this work, a 'metal catalyst+PhI(OAc)2 +primary arylamines' amination protocol has been developed using [Fe(F20 TPP)Cl] (H2 F20 TPP=meso-tetrakis(pentafluorophenyl)porphyrin) as a catalyst. This catalytic method is applicable for both intra- and intermolecular amination of sp(2) and sp(3) CH bonds (>27 examples), affording the amination products, including natural products such as rutaecarpine, in moderate-to-good yields. ESI-MS analysis and DFT calculations lend support for the involvement of {[Fe(F20 TPP)(NC6 H4 -p-NO2 )](PhI=NC6 H4 -p-NO2 )} + . intermediate in the catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

    • Monolithic catalyst beds for hydrazine reactors

      NASA Technical Reports Server (NTRS)

      1973-01-01

      A monolithic catalyst bed for monopropellant hydrazine decomposition was evaluated. The program involved the evaluation of a new hydrazine catalyst concept wherein open-celled foamed materials are used as supports for the active catalysts. A high-surface-area material is deposited upon the open-celled foamed material and is then coated with an active metal to provide a spontaneous catalyst. Only a fraction of the amount of expensive active metal in currently available catalysts is needed to promote monolithic catalyst. Numerous parameters were evaluated during the program, and the importance of additional parameters became obvious only while the program was in progress. A demonstration firing (using a 2.2-Newton (N)(0.5-lbf) reactor) successfully accumulated 7,700 seconds of firing time and 16 ambient temperature starts without degradation. Based on the excellent results obtained throughout the program and the demonstrated life capability of the monolithic foam, it is recommended that additional studies be conducted to further exploit the advantages of this concept.

    • Low temperature catalysts for methanol production

      DOEpatents

      Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

      1986-09-30

      A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

    • Low temperature catalysts for methanol production

      DOEpatents

      Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

      1985-03-12

      A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

    • Low temperature catalysts for methanol production

      DOEpatents

      Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder

      1986-01-01

      A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

    • Low temperature catalysts for methanol production

      DOEpatents

      Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

      1986-10-28

      A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

    • Recent advances in secondary ion mass spectrometry of solid acid catalysts: large zeolite crystals under bombardment.

      PubMed

      Hofmann, Jan P; Rohnke, Marcus; Weckhuysen, Bert M

      2014-03-28

      This Perspective aims to inform the heterogeneous catalysis and materials science community about the recent advances in Time-of-Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) to characterize catalytic solids by taking large model H-ZSM-5 zeolite crystals as a showcase system. SIMS-based techniques have been explored in the 1980-1990's to study porous catalyst materials but, due to their limited spectral and spatiotemporal resolution, there was no real major breakthrough at that time. The technical advancements in SIMS instruments, namely improved ion gun design and new mass analyser concepts, nowadays allow for a much more detailed analysis of surface species relevant to catalytic action. Imaging with high mass and lateral resolution, determination of fragment ion patterns, novel sputter ion concepts as well as new mass analysers (e.g. ToF, FTICR) are just a few novelties, which will lead to new fundamental insight from SIMS analysis of heterogeneous catalysts. The Perspective article ends with an outlook on instrumental innovations and their potential use for catalytic systems other than zeolite crystals.

  1. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  2. Chalcogen catalysts for polymer electrolyte fuel cell

    DOEpatents

    Alonso-Vante, Nicolas [Buxerolles, FR; Zelenay, Piotr [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Wieckowski, Andrzej [Champaign, IL; Cao, Dianxue [Urbana, IL

    2009-09-15

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  3. Chalcogen catalysts for polymer electrolyte fuel cell

    DOEpatents

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  4. Catalyst systems and uses thereof

    DOEpatents

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  5. Determination of platinum in waste platinum-loaded carbon catalyst samples using microwave-assisted sample digestion and ICP-OES

    NASA Astrophysics Data System (ADS)

    Ma, Yinbiao; Wei, Xiaojuan

    2017-04-01

    A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.

  6. 40 CFR 721.9665 - Organotin catalysts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Organotin catalysts. 721.9665 Section... Substances § 721.9665 Organotin catalysts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as organotin catalysts (PMNs P-93-853, P-93...

  7. 40 CFR 721.9665 - Organotin catalysts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin catalysts. 721.9665 Section... Substances § 721.9665 Organotin catalysts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as organotin catalysts (PMNs P-93-853, P-93...

  8. Pretreatment of CO oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Vannorman, John D.

    1988-01-01

    CO oxidation catalysts with high activity in the range of 25 C to 100 C are important for long-life, closed-cycle operation of pulsed carbon dioxide 2 lasers. A reductive pretreatment with either CO or H sub 2 was shown to significantly enhance the activity of a commerically-available platinum on tin (IV) oxide (Pt/SnO2) catalyst relative to an oxidative or inert pretreatment or no pretreatment. Pretreatment at temperatures of 175 C and above caused an initial dip in observed CO or O sub 2 loss or CO sub 2 formation in a test gas mixture of 1 percent CO and 0.5 percent O sub 2 in a He gas matrix before a steady-state yield was obtained. This dip was found to be caused by dehydration of the surface of the catalyst and was readily eliminated by humidifying the catalyst or the test gas mixture. It was also found that too much moisture resulted in a lower overall yield of CO sub 2. Under similar conditions, it is hypothesized that the effect of the humidification is to increase the concentration of OH groups on the surface of the catalyst. The effect of having high concentration of CO sub 2 in the test gas mixture upon the loss of CO and O sub 2 as well as the effect of periods of relaxation of the catalyst under non-test gas conditions was studied. The purpose of these studies was to gain an insight into the mechanism of CO oxidation on this type of catalyst.

  9. Highly Stable and Active Catalyst for Sabatier Reactions

    NASA Technical Reports Server (NTRS)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  10. Hydrodeoxygenation of coal using organometallic catalyst precursors

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen R.

    2002-04-01

    coals. Trends within the data were similar to those reported by other authors. Based on the conclusions from both the model compound studies and the coal analysis, predictions were made of the catalyst precursors' performance in the HDO of the three selected coals. It was concluded that CoMo-T2 is a desirable catalyst precursor for the HDO of coals (particularly low-rank coals), but that an optimum set of conditions must be determined to take full advantage of its HDO ability. (Abstract shortened by UMI.)

  11. Attrition and carbon formation on iron catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, S.D.; Harrington, M.S.; Jackson, N.B.

    1994-08-01

    A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attritionmore » of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.« less

  12. T-T Neutron Spectrum from Inertial Confinement Implosions

    NASA Astrophysics Data System (ADS)

    Bacher, A. D.; Casey, D. T.; Frenje, J. A.; Gatu Johnson, M. J.; Manuel, M.; Sinenian, N.; Zylstra, A. B.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu; Radha, P. B.; Meyerhofer, D. D.; Sangster, T. C.; McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Caggiano, J. A.; Hatchett, S. P.; Pino, J. E.; Quaglioni, S.; Rygg, J. R.; Thompson, I. J.; Herrmann, H. W.; Kim, Y. H.

    2013-08-01

    A new technique that uses inertial confinement implosions for measuring low-energy nuclear reactions important to nuclear astrophysics is described. Simultaneous measurements of n-D and n-T elastic scattering at 14.1 MeV using deuterium-tritium gas-filled capsules provide a proof of principle for this technique. Measurements have been made of D(d,p)T (dd) and T(t,2n)4He (tt) reaction yields relative to the D(t,n)4He (dt) reaction yield for deuterium-tritium mixtures with f T / f D between 0.62 and 0.75 and for a wide range of ion temperatures to test our understanding of the implosion processes. Measurements of the shape of the neutron spectrum from the T(t,2n)4He reaction have been made for each of these target configurations.

  13. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Bharti, Abha; Cheruvally, Gouri

    2017-08-01

    In this study, we discuss the influence of various carbon supports for Pt on proton exchange membrane (PEM) fuel cell performance. Here, Pt supported on various carbon nano-forms [Pt/carbon black (Pt/CB), Pt/single-walled carbon nanotubes (Pt/SWCNT), Pt/multi-walled carbon nanotubes (Pt/MWCNT) and Pt/graphene (Pt/G)] are synthesized by a facile, single step, microwave-assisted, modified chemical reduction route. Their physical, chemical and electrochemical characteristics pertaining to oxygen reduction reaction (ORR) catalytic activity and stability in PEM fuel cell are studied in detail by various techniques and compared. The study shows that the different carbon supports does not significantly affect the Pt particle size during synthesis, but leads to different amount of defective sites in the carbon framework which influence both the availability of active metal nano-catalysts and metal-support interaction. In-situ electrochemical investigations reveal that the different carbon supports influence both ORR catalytic activity and stability of the catalyst. This is further corroborated by the demonstration of varying polarization characteristics on PEM fuel cell performance by different carbon supported Pt catalysts. This study reveals MWCNT as the most suitable carbon support for Pt catalyst, exhibiting high activity and stability for ORR in PEM fuel cell.

  14. Tumor cell-released TLR4 ligands stimulate Gr-1+CD11b+F4/80+ cells to induce apoptosis of activated T cells.

    PubMed

    Liu, Yan-Yan; Sun, Ling-Cong; Wei, Jing-Jing; Li, Dong; Yuan, Ye; Yan, Bin; Liang, Zhi-Hui; Zhu, Hui-Fen; Xu, Yong; Li, Bo; Song, Chuan-Wang; Liao, Sheng-Jun; Lei, Zhang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2010-09-01

    Gr-1(+)CD11b(+)F4/80(+) cells play important roles in tumor development and have a negative effect on tumor immunotherapy. So far, the mechanisms underlying the regulation of their immunosuppressive phenotype by classical and alternative macrophage activation stimuli are not well elucidated. In this study, we found that molecules from necrotic tumor cells (NTC-Ms) stimulated Gr-1(+)CD11b(+)F4/80(+) cells to induce apoptosis of activated T cells but not nonstimulated T cells. The apoptosis-inducing capacity was determined by higher expression levels of arginase I and IL-10 relative to those of NO synthase 2 and IL-12 in Gr-1(+)CD11b(+)F4/80(+) cells, which were induced by NTC-Ms through TLR4 signaling. The apoptosis-inducing capacity of NTC-Ms-stimulated Gr-1(+)CD11b(+)F4/80(+) cells could be enhanced by IL-10. IFN-gamma may reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells only if their response to IFN-gamma was not attenuated. However, the potential of Gr-1(+)CD11b(+)F4/80(+) cells to express IL-12 in response to IFN-gamma could be attenuated by tumor, partially due to the existence of active STAT3 in Gr-1(+)CD11b(+)F4/80(+) cells and NTC-Ms from tumor. In this situation, IFN-gamma could not effectively reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells. Tumor immunotherapy with 4-1BBL/soluble programmed death-1 may significantly reduce, but not abolish the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells in local microenvironment. Blockade of TLR4 signaling could further reduce the apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and enhance the suppressive effect of 4-1BBL/soluble form of programmed death-1 on tumor growth. These findings indicate the relationship of distinct signaling pathways with apoptosis-inducing capacity of Gr-1(+)CD11b(+)F4/80(+) cells and emphasize the importance of blocking TLR4 signaling to prevent the induction of T cell apoptosis by Gr-1(+)CD11b(+)F4/80(+) cells.

  15. Reactivation of a tin oxide-containing catalyst

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Paulin, Patricia A. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Upchurch, Billy T. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  16. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen

    2017-07-01

    Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).

  17. A novel coil array for combined TMS/fMRI experiments at 3 T.

    PubMed

    Navarro de Lara, Lucia I; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald; Laistler, Elmar

    2015-11-01

    To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. The state-of-the-art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7-channel receive-only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state-of-the-art setup. MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g-factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. The novel coil array is safe, strongly improves signal-to-noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  18. Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone.

    PubMed

    Yu, Ming-Feng; Lin, Xiao-Qing; Yan, Mi; Li, Xiao-Dong; Chen, Tong; Yan, Jian-Hua

    2016-09-01

    Catalytic destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans) over V2O5-CeO2/TiO2 catalyst was investigated at a low temperature range of 140-180 °C, in the absence and presence of ozone (200 ppm). Nano-TiO2 support was used to prepare the catalyst by step impregnation method. A stable PCDD/Fs-generating system was established to support the catalytic destruction tests. In the presence of ozone alone, destruction efficiencies of PCDD/Fs are between 32.2 and 43.1 % with temperature increasing from 140 to 180 °C. The activity of V2O5-CeO2/TiO2 catalyst alone on PCDD/Fs destruction is also studied. The increase of temperature from 140 to 180 °C enhances the activity of catalyst with destruction efficiencies increasing from 54.7 to 73.4 %. However, ozone addition greatly enhances the catalytic activity of V2O5-CeO2/TiO2 catalyst on PCDD/Fs decomposition. At 180 °C, the destruction efficiency of PCDD/Fs achieved with V2O5-CeO2/TiO2 catalyst and ozone is above 86.0 %. It indicates that the combined use of ozone and catalyst reduces the reaction temperature of PCDD/Fs oxidation and offers a new method to destroy PCDD/Fs with high destruction efficiency at a low temperature. Furthermore, the destruction efficiencies of 17 toxic PCDD/F congeners, achieved with ozone alone, catalyst alone, and catalyst/ozone are analyzed.

  19. New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory

    NASA Astrophysics Data System (ADS)

    Srivastava, Milan; Singh, C. P.

    2018-06-01

    The aim of this paper is to study new holographic dark energy (HDE) model in modified f(R,T) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model f(R,T)=R+λ T, where R is the Ricci scalar, T the trace of the energy-momentum tensor and λ is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, ζ =ζ 0= const. to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of λ over the constraint on ζ 0 to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on λ . We also investigate the statefinder and Om diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to Λ CDM model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.

  20. XeCl laser pumped iodine laser using t-C4F9I

    NASA Technical Reports Server (NTRS)

    Hwang, In Heon; Han, Kwang S.

    1989-01-01

    An iodine photodissociation laser using t-C4F9I as the active material was pumped by an XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodide pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.