Sample records for f1 layer

  1. Artificial ionosphere layers for pumping-wave frequencies near the fourth electron gyroharmonic in experiments at the HAARP facility

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Shindin, A. V.; Mishin, E. V.; Watkins, B.

    2014-02-01

    In this paper we consider the action (in the magnetic-zenith direction) of powerful high frequency (HF) radiation of ordinary polarization on the ionosphere F region. We deal with frequencies f 0 > 4 f ce ( f ce is the electron cyclotron frequency) of 1.7 GW equivalent radiated power. This action results in the appearance in the ionosphere of an artificial ionization layer. The layer descends with respect to the basic (unperturbed) layer at a rate of ˜500 m s-1 down to the altitude, where f 0 ≈ 4 f ce .

  2. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangmei; Valldor, Martin; Mallick, Bert

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axismore » in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4+ ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (Tc = 10 or 13 K for Co and Tc = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+.« less

  4. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  5. Half-metallic superconducting triplet spin multivalves

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  6. 46 CFR 148.04-17 - Petroleum coke, calcined, at 130 °F or above.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flashpoint under 200 °F, a two-to-three foot layer of the material at a temperature not greater than 110 °F..., the loading of the two-to-three foot layer of the material at a temperature not greater than 110 °F... described in paragraph (e)(1) of this section, a two-to-three foot layer of the material at 130 °F or above...

  7. Magnetoresistance of antiferromagnetic Ir22Mn78-pinned spin filter specular spin valves

    NASA Astrophysics Data System (ADS)

    Hwang, J. Y.; Kim, M. Y.; Rhee, J. R.; Lee, S. S.; Hwang, D. G.; Yu, S. C.; Lee, H. B.

    2004-06-01

    Specular spin valves (SSVs) having the spin filter layer (SFL) in contact with the ultrathin free layer of composition Ta3/NiFe2/IrMn7/CoFe1/(NOL1)/CoFe2/Cu1.8/CoFe(tF)/Cu(tSF)/(NOL2)/Ta3.5 (in nm) deposited by magnetron sputtering were studied. For these antiferromagnetic Ir22Mn78-pinned spin filter specular spin valve (SFSSV) films, an optimal magnetoresistance (MR) ratio of 11.9% was obtained when both the free layer thickness (tF) and the SFL thickness (tSF) were 1.5 nm, and a MR ratio higher than 11% was maintained even when tF was reduced to 1.0 nm. This was due to an increase of specular electrons by the nano-oxide layer (NOL) and of current shunting through the SFL. Moreover, the interlayer coupling field (Hint) between the free layer and pinned layer could be explained by considering the RKKY and magnetostatic coupling. The coercivity of the free layer (Hcf) was significantly reduced as compared to traditional spin valves (TSV), and remained as low as 4 Oe when tF varied from 1 to 4 nm. It was found that the SFL made it possible to reduce the free layer thickness and enhance the MR ratio without degrading the soft magnetic property of the free layer.

  8. [Effects of Different Planting Direction and Layer Combination on Gastrodia elata f. elata in Bionic Wild Cultivation].

    PubMed

    Liu, Wei; Zhao, Zhi; Wang, Hua-lei; Luo, Fu-lai; Li, Jin-ling; Liu, Hong-chang; Luo, Chun-li

    2015-05-01

    Combination of different planting direction and layer were set to choose the best technology of cultivation of Gastrodia elata f. elata. To improve the yield and quality of Gastrodia elata f. elata, randomized block design experiments were carried out to investigate the yield and quality, and to analyze their economic effectiveness in bionic wild cultivation. Length, width, thickness and weight of southern direction's Gastrodia elata f. elata developed better than the northeast direction. The three planting layer levels on growth effect of Gastrodia elata f. elata was the 3rd layer > the 2nd layer > the 1st layer. In six treatments, combination of southern direction-the 3rd layer was the best technology of cultivation of Gastrodia elata f. elata, which had the best growth condition, the highest yield significantly higher than other treatments, and the best economic benefits. Southern direction associated with the 3rd layer is the best combination to planting Gastrodia elata f. elata in bionic wild cultivation. The planting ways not only improve the yield and quality, but also save land.

  9. Ionothermal synthesis of open-framework metal phosphates with a Kagomé lattice network exhibiting canted anti-ferromagnetism† †Electronic supplementary information (ESI) available: Cif files, atomic parameters, X-ray diffraction patterns, IR spectra, TG curves, and thermal ellipsoid plot and atomic label schemes of compound 1–4. See DOI: 10.1039/c4tc00290c Click here for additional data file.

    PubMed Central

    Wang, Guangmei; Valldor, Martin; Mallick, Bert

    2014-01-01

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4 + ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (T c = 10 or 13 K for Co and T c = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+. PMID:25580250

  10. Suppression in the electrical hysteresis by using CaF2 dielectric layer for p-GaN MIS capacitors

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Ren, Bing; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2018-04-01

    The capacitance-voltage (C-V) hysteresis in the bidirectional measurements of the p-GaN metal-insulator-semiconductor (MIS) capacitor is suppressed by using a CaF2 dielectric layer and a post annealing treatment. The density of trapped charge states at the CaF2/p-GaN interface is dramatically reduced from 1.3 × 1013 cm2 to 1.1 × 1011/cm2 compared to that of the Al2O3/p-GaN interface with a large C-V hysteresis. It is observed that the disordered oxidized interfacial layer can be avoided by using the CaF2 dielectric. The downward band bending of p-GaN is decreased from 1.51 to 0.85 eV as a result of the low-density oxides-related trap states. Our work indicates that the CaF2 can be used as a promising dielectric layer for the p-GaN MIS structures.

  11. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  12. Observations on the Characteristics of the Exchange Flow in the Daranelles Strait

    DTIC Science & Technology

    2012-11-09

    the Aegean section. For the three-layer exchange, the flow was critical with respect to internal modes when det Mð Þ ¼ h2 F42 r F21 F22 1 r... F22 F23 ¼ 0 [Smeed, 2000]. Fi is the Froude number for the ith layer, r = (r2 r1)/(r3 r1), and h is the nondimensional depth of the...channel. It has been shown by Lane-Serff et al. [2000] that at a control the second internal mode is critical if F21 þ F22 < r, while the first internal

  13. The Acoustic Model Evaluation Committee (AMEC) Reports. Volume 1A. Summary of Range Independent Environment Acoustic Propagation Data Sets

    DTIC Science & Technology

    1982-09-01

    experiment were: isothermal layer depth 36 ft depressed channel axis 66 ft surface water temperature 59.4 F sea state 2 Discussion The propagation loss...experiments were: isothermal layer depths 56 ft surface water temperature 59.7 0F - sea state 1 Discussion The propagation loss measurements are summarized...number of observations 1854 isothermal layer depth 33 ft surface water temperature 59.9°F sea state 2 Discussion The propagation loss measurements

  14. Relationship between vertical ExB drift and F2-layer characteristics in the equatorial ionosphere at solar minimum conditions

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2012-07-01

    Equatorial and low-latitude electrodynamics plays a dominant role in determining the structure and dynamics of the equatorial and low-latitude ionospheric F-region. Thus, they constitute essential input parameters for quantitative global and regional modeling studies. In this work, hourly median value of ionosonde measurements namely, peak height F2-layer (hmF2), F2-layer critical frequency (foF2) and propagation factor M(3000)F2 made at near equatorial dip latitude, Ouagadougou, Burkina Faso (12oN, 1.5oW; dip: 1.5oN) and relevant F2-layer parameters such as thickness parameter (Bo), electron temperature (Te), ion temperature (Ti), total electron content (TEC) and electron density (Ne, at the fixed altitude of 300 km) provided by the International Reference Ionosphere (IRI) model for the longitude of Ouagadougou are contrasted with the IRI vertical drift model to explore in detail the monthly climatological behavior of equatorial ionosphere and the effects of equatorial vertical plasma drift velocities on the diurnal structure of F2-layer parameters. The analysis period covers four months representative of solstitial and equinoctial seasonal periods during solar minimum year of 1987 for geomagnetically quiet-day. We show that month-by-month morphological patterns between vertical E×B drifts and F2-layer parameters range from worst to reasonably good and are largely seasonally dependent. A cross-correlation analysis conducted between equatorial drift and F2-layer characteristics yield statistically significant correlations for equatorial vertical drift and IRI-Bo, IRI-Te and IRI-TEC, whereas little or no acceptable correlation is obtained with observational evidence. Assessment of the association between measured foF2, hmF2 and M(3000)F2 illustrates consistent much more smaller correlation coefficients with no systematic linkage. In general, our research indicates strong departure from simple electrodynamically controlled behavior.

  15. The generation of post noon F3 layers over the dip equatorial location of Thiruvananthapuram- A new perspective

    NASA Astrophysics Data System (ADS)

    Mridula, N.; Pant, Tarun Kumar

    2018-05-01

    In the present paper, occurrence of post noon F3 layers over Thiruvananthapuram (8.5°N; 77°E; dip latitude ∼ 1.5 °N), a dip equatorial station in India have been investigated. F3 layers that occur beyond 13 IST and as observed using ground based ionosonde, for the years 2004-2008 have been studied. Our analysis shows that post noon F3 layers occur mostly on CEJ days around 16 IST to 18 IST. It is found that the time of the ionospheric E-region electric field reversal as inferred from collocated ground based magnetometer observations plays a crucial role in the generation of post noon F3 layers. In fact an early reversal of electric field emerged to be the necessary condition for the formation of post noon F3 layers. A time delay of three to 4 h is observed between the electric field reversal and the formation of F3 layer. It is proposed that this early reversal causes enhanced ionization over dip equatorial region, providing an additional ion drag to the flow of thermospheric zonal wind. This leads to accumulation of more ionization and neutrals culminating in the generation of post noon F3 layers as in the case of pre noon F3 layers. These results reveal that the generation of post noon F3 layers over the dip equatorial region is a natural consequence of the variability associated with the spatio-temporal evolution of EIA and prevailing thermospheric and ionospheric dynamics, and adds a new perspective to the present understanding.

  16. CPP magnetoresistance of magnetic multilayers: A critical review

    NASA Astrophysics Data System (ADS)

    Bass, Jack

    2016-06-01

    We present a comprehensive, critical review of data and analysis of Giant (G) Magnetoresistance (MR) with Current-flow Perpendicular-to-the-layer-Planes (CPP-MR) of magnetic multilayers [F/N]n (n=number of repeats) composed of alternating nanoscale layers of ferromagnetic (F) and non-magnetic (N) metals, or of spin-valves that allow control of anti-parallel (AP) and parallel (P) orientations of the magnetic moments of adjacent F-layers. GMR, a large change in resistance when an applied magnetic field changes the moment ordering of adjacent F-layers from AP to P, was discovered in 1988 in the geometry with Current flow in the layer-Planes (CIP). The CPP-MR has two advantages over the CIP-MR: (1) relatively simple two-current series-resistor (2CSR) and more general Valet-Fert (VF) models allow more direct access to the underlying physics; and (2) it is usually larger, which should be advantageous for devices. When the first CPP-MR data were published in 1991, it was not clear whether electronic transport in GMR multilayers is completely diffusive or at least partly ballistic. It was not known whether the properties of layers and interfaces would vary with layer thickness or number. It was not known whether the CPP-MR would be dominated by scattering within the F-metals or at the F/N interfaces. Nothing was known about: (1) spin-flipping within F-metals, characterized by a spin-diffusion length, lsfF; (2) interface specific resistances (AR=area A times resistance R) for N1/N2 interfaces; (3) interface specific resistances and interface spin-dependent scattering asymmetry at F/N and F1/F2 interfaces; and (4) spin-flipping at F/N, F1/F2 and N1/N2 interfaces. Knowledge of spin-dependent scattering asymmetries in F-metals and F-alloys, and of spin-flipping in N-metals and N-alloys, was limited. Since 1991, CPP-MR measurements have quantified the scattering and spin-flipping parameters that determine GMR for a wide range of F- and N-metals and alloys and of F/N pairs. This review is designed to provide a history of how knowledge of CPP-MR parameters grew, to give credit for discoveries, to explain how combining theory and experiment has enabled extraction of quantitative information about these parameters, but also to make clear that progress was not always direct and to point out where disagreements still exist. To limit its length, the review considers only collinear orientations of the moments of adjacent F-layers. To aid readers looking for specific information, we have provided an extensive table of contents and a detailed summary. Together, these should help locate over 100 figures plus 17 tables that collect values of individual parameters. In 1997, CIP-MR replaced anisotropic MR (AMR) as the sensor in read heads of computer hard drives. In principle, the usually larger CPP-MR was a contender for the next generation read head sensor. But in 2003, CIP-MR was replaced by the even larger Tunneling MR (TMR), which has remained the read-head sensor ever since. However, as memory bits shrink to where the relatively large specific resistance AR of TMR gives too much noise and too large an R to impedance match as a read-head sensor, the door is again opened for CPP-MR. We will review progress in finding techniques and F-alloys and F/N pairs to enhance the CPP-MR, and will describe its present capabilities.

  17. How experimentally to detect a solitary superconductivity in dirty ferromagnet-superconductor trilayers?

    NASA Astrophysics Data System (ADS)

    Avdeev, Maxim V.; Proshin, Yurii N.

    2017-10-01

    We theoretically study the proximity effect in the thin-film layered ferromagnet (F) - superconductor (S) heterostructures in F1F2S design. We consider the boundary value problem for the Usadel-like equations in the case of so-called ;dirty; limit. The ;latent; superconducting pairing interaction in F layers taken into account. The focus is on the recipe of experimental preparation the state with so-called solitary superconductivity. We also propose and discuss the model of the superconducting spin valve based on F1F2S trilayers in solitary superconductivity regime.

  18. Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes.

    PubMed

    Wu, Peng; Cheng, Shuang; Yang, Lufeng; Lin, Zhiqiang; Gui, Xuchun; Ou, Xing; Zhou, Jun; Yao, Minghai; Wang, Mengkun; Zhu, Yuanyuan; Liu, Meilin

    2016-09-14

    Self-standing and flexible films worked as pseudocapacitor electrodes have been fabricated via a simple vacuum-filtration procedure to stack δ-MnO2@carbon nanotubes (CNTs) composite layer and pure CNT layer one by one with CNT layers ended. The lightweight CNTs layers served as both current collector and supporter, while the MnO2@CNTs composite layers with birnessite-type MnO2 worked as active layer and made the main contribution to the capacitance. At a low discharge current of 0.2 A g(-1), the layered films displayed a high areal capacitance of 0.293 F cm(-2) with a mass of 1.97 mg cm(-2) (specific capacitance of 149 F g(-1)) and thickness of only 16.5 μm, and hence an volumetric capacitance of about 177.5 F cm(-3). Moreover, the films also exhibited a good rate capability (only about 15% fading for the capacitance when the discharge current increased to 5 A g(-1) from 0.2 A g(-1)), outstanding cycling stability (about 90% of the initial capacitance was remained after 5,000 cycles) and high flexibility (almost no performance change when bended to different angles). In addition, the capacitance of the films increased proportionally with the stacked layers and the geometry area. E.g., when the stacked layers were three times many with a mass of 6.18 mg cm(-2), the areal capacitance of the films was increased to 0.764 F cm(-2) at 0.5 A g(-1), indicating a high electronic conductivity. It is not overstated to say that the flexible and lightweight layered films emerged high potential for future practical applications as supercapacitor electrodes.

  19. The Influence of Layer Thickness-Ratio on Magnetoresistance in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 Exchange Biased System

    NASA Astrophysics Data System (ADS)

    Gomez, Maria Elena; Milena Diez, Sandra; Cuartas, Lina Maria; Marin, Lorena; Prieto, Pedro

    2012-02-01

    Isothermal magnetic field dependence of the resistance in La2/3Ca1/3MnO3 (F-LCMO)/ La1/3Ca2/3MnO3(AF-LCMO) bilayer and AF-LCMO/F-LCMO/AF-LCMO trilayer at temperatures below N'eel temperature of the antiferromagnetic layer were carried out to study the thickness layers influence on magneto transport properties. We grew multilayers using a high oxygen pressure sputtering technique. We systematically varied the thickness of the F-LCMO layer, tF, maintaining constant the thickness of the AF-LCMO layer, tAF. We studied the influence of the thickness ratio tF/tAF on the ZFC and FC magnetoresistance (MR) loops. HFC was varied from 100 Oe to 400 Oe. We found that MR has hysteretic behavior as observed in [La2/3Ca1/3MnO3/La1/3Ca2/3MnO3]N superlattices, where MR increases with the increasing field from H=0 to a maximum and then it decreases continuously. The position and magnitude of the maximum is not symmetric with respect to the axis H=0 for both FC and ZFC loops. We found that magnetoresistance behavior of the bilayer and trilayer is thickness-ratio dependent for both ZFC and FC loops.

  20. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    PubMed

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  1. Turbulent entrainment in a strongly stratified barrier layer

    NASA Astrophysics Data System (ADS)

    Pham, H. T.; Sarkar, S.

    2017-06-01

    Large-eddy simulation (LES) is used to investigate how turbulence in the wind-driven ocean mixed layer erodes the stratification of barrier layers. The model consists of a stratified Ekman layer that is driven by a surface wind. Simulations at a wide range of N0/f are performed to quantify the effect of turbulence and stratification on the entrainment rate. Here, N0 is the buoyancy frequency in the barrier layer and f is the Coriolis parameter. The evolution of the mixed layer follows two stages: a rapid initial deepening and a late-time growth at a considerably slower rate. During the first stage, the mixed layer thickens to the depth that is proportional to u∗/fN0 where u∗ is the frictional velocity. During the second stage, the turbulence in the mixed layer continues to deepen further into the barrier layer, and the turbulent length scale is shown to scale with u∗/N0, independent of f. The late-time entrainment rate E follows the law of E=0.035Ri∗-1/2 where Ri∗ is the Richardson number. The exponent of -1/2 is identical but the coefficient of 0.035 is much smaller relative to the value of 2-3/2 for the nonrotating boundary layer. Simulations using the KPP model (version applicable to this simple case without additional effects of Langmuir turbulence or surface buoyancy flux) also yield the entrainment scaling of E∝Ri∗-1/2; however, the proportionality coefficient varies with the stratification. The structure of the Ekman current is examined to illustrate the strong effect of stratification in the limit of large N0/f.

  2. Improved hole-injection and power efficiency of organic light-emitting diodes using an ultrathin cerium fluoride buffer layer

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Kao, Po-Ching; Chu, Sheng-Yuan

    2016-09-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3 film as an ultra-thin buffer layer between the ITO and NPB hole transport layer, with the structure configuration ITO/CeF3 (1 nm)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The work function increased from 4.8 eV (standard ITO electrode) to 5.2 eV (1-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The turn-on voltage decreased from 4.2 V to 4.0 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 10820 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.5 cd/A when the 1-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  3. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned awaymore » from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less

  4. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation.

    PubMed

    Ristau, Detlev; Günster, Stefan; Bosch, Salvador; Duparré, Angela; Masetti, Enrico; Ferré-Borrull, Josep; Kiriakidis, George; Peiró, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  5. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Ristau, Detlev; Gunster, Stefan; Bosch, Salvador; Duparre, Angela; Masetti, Enrico; Ferre-Borrull, Josep; Kiriakidis, George; Peiro, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approx1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  6. Layering of inertial confinement fusion targets in microgravity environments

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Fagaly, R. L.

    1995-02-01

    A critical concern in the fabrication of targets for inertial confinement fusion is ensuring that the hydrogenic (D2 or DT) fuel layer maintains spherical symmetry. Because of gravitationally induced sagging of the liquid prior to freezing, only relatively thin (less than 10 micrometers) layers of solid fuel can be produced by fast refreeze methods. One method to reduce the effective gravitational field environment is free-fall insertion into the target chamber. Another method to counterbalance the gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force (F(sub m)) on the liquid fuel layer. For liquid deuterium, the required B dot product del(vector differential operator) B product to counterbalance the gravitational force (F(sub g)) is approximately 10 T(exp 2)/cm. In this paper, we examine the time-dependent dynamics of the liquid fuel layer in a reduced gravitational field environment. We employ an energy method which takes into account the sum of the free energy associated with the surface tension forces, net vertical force (F = F(sub m) - F(sub g) (in the case of magnetic field-assisted microgravity) or F(sub D) (the drag force in the case of free fall)), London-van der Waals forces, the kinetic energy of motion and viscous dissipation. By assuming that the motions are incompressible and irrotational, the volume integrals of the free energies over the deformed liquid fuel layer may be converted to surface integrals. With the surface expressed as the sum of Legendre polynomials, r(sub surface) = a + Sigma a(sub l)(t)P(sub l)(mu), the perturbed amplitude of the individual modes, a(sub l)(t) can be obtained. We show that the l = 1 vertical shift mode takes the longest to damp out, and may be problematic for free-fall insertion even for thin approximately 1 micrometer overfilled foam targets. For a given liquid fuel layer thickness delta, the equilibrium value of a(sub 1)/a (the concentricity of the inner fuel layer) is shown to be dependent on the net vertical force F and layer thickness, i.e., a(sub 1) approximately F delta(exp 5), but independent of the surface tension.

  7. Role of ultrathin metal fluoride layer in organic photovoltaic cells: mechanism of efficiency and lifetime enhancement.

    PubMed

    Lim, Kyung-Geun; Choi, Mi-Ri; Kim, Ji-Hoon; Kim, Dong Hun; Jung, Gwan Ho; Park, Yongsup; Lee, Jong-Lam; Lee, Tae-Woo

    2014-04-01

    Although rapid progress has been made recently in bulk heterojunction organic solar cells, systematic studies on an ultrathin interfacial layer at the electron extraction contact have not been conducted in detail, which is important to improve both the device efficiency and the lifetime. We find that an ultrathin BaF2 layer at the electron extraction contact strongly influences the open-circuit voltage (Voc ) as the nanomorphology evolves with increasing BaF2 thickness. A vacuum-deposited ultrathin BaF2 layer grows by island growth, so BaF2 layers with a nominal thickness less than that of single-coverage layer (≈3 nm) partially cover the polymeric photoactive layer. As the nominal thickness of the BaF2 layer increased to that of a single-coverage layer, the Voc and power conversion efficiency (PCE) of the organic photovoltaic cells (OPVs) increased but the short-circuit current remained almost constant. The fill factor and the PCE decreased abruptly as the thickness of the BaF2 layer exceeded that of a single-coverage layer, which was ascribed to the insulating nature of BaF2 . We find the major cause of the increased Voc observed in these devices is the lowered work function of the cathode caused by the reaction and release of Ba from thin BaF2 films upon deposition of Al. The OPV device with the BaF2 layer showed a slightly improved maximum PCE (4.0 %) and a greatly (approximately nine times) increased device half-life under continuous simulated solar irradiation at 100 mW cm(-2) as compared with the OPV without an interfacial layer (PCE=2.1 %). We found that the photodegradation of the photoactive layer was not a major cause of the OPV degradation. The hugely improved lifetime with cathode interface modification suggests a significant role of the cathode interfacial layer that can help to prolong device lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachar, H.K.; Chao, I.; Fang, X.M.

    1998-12-31

    Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less

  9. Experimental analysis of dark frame growth mechanism in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Minagawa, Masahiro; Tanabe, Takuma; Kondo, Eiki; Kamimura, Kenji; Kimura, Munehiro

    2018-02-01

    Organic light-emitting diodes (OLEDs) were fabricated with heterojunction interfaces and layers that were prepared by cold isostatic pressing (CIP), and the growth characteristics of their non-emission areas, or dark frames (D/Fs), were investigated during storage. We fabricated an OLED with an indium-tin-oxide (ITO)/N,N‧-di(1-naphthyl)-N,N‧-diphenyl-(1,1‧-biphenyl)-4,4‧-diamine (α-NPD)/tris(8-hydroxylquinoline)aluminum (Alq3)/LiF/Al structure without CIP treatment (Device I), as well as OLEDs that were pressed after the deposition of α-NPD (Device II), Alq3 (Device III), and LiF/Al (Device IV) layers. Although Devices I, II, and III showed typical D/F growth characteristics, the D/F growth rate in Device IV was markedly mitigated, indicating that the Alq3/LiF/Al interfaces dominated the D/F growth. Moreover, we found that the electron injection characteristic was poorer in the electron-only device stored after the LiF layer deposition than in that stored before the LiF deposition. Therefore, the decreased electron injection due to storage at the interfaces was attributed to the D/F growth.

  10. CsFe3(SeO3)2F6 with S = 5/2 Cube Tile Lattice.

    PubMed

    Lu, Hongcheng; Kageyama, Hiroshi

    2018-05-21

    A layered iron selenite fluoride CsFe 3 (SeO 3 ) 2 F 6 1 was hydrothermally synthesized. Single-crystal X-ray diffraction studies show that 1 has a trigonal ( P3̅ m1) lattice, where [Fe 3 (SeO 3 ) 2 F 6 ] - blocks of three iron sublayers are separated by Cs cations. Within the block, only Fe(2)F 6 and Fe(1)O 3 F 3 octahedra are magnetically connected via superexchange Fe(1) -F -Fe(2) pathways, giving an S = 5/2 cube tile (dice) lattice. At low magnetic field, 1 exhibits an antiferromagnetic transition at ∼130 K, where ferrimagnetic cube tile layers are arranged in a staggered manner. At low temperatures, we observed a field-induced transition to a ferrimagnetic state with a one-third magnetization plateau.

  11. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    DOE PAGES

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; ...

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less

  12. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors.

    PubMed

    Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming

    2012-10-05

    It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.

  13. Mixing in Shear Coaxial Jets (Briefing Charts)

    DTIC Science & Technology

    2013-08-01

    relevant boundary layers 9. Thermodynamic states (2 phase, 1 phase) 10. Transverse Acoustic mode from chamber/siren, f=f(c, geometry St=fDij/Uij 11...stability theory for inviscid instability of a hyperbolic tangent velocity profile for free boundary layers • U(y)=0.5[1 + tanh(y)] • Chigier and Beer , 1964...acoustics Natural OJ excited IJ excited From Chigier NA. and Beer JM, The Flow Region Near the Nozzle in Double Concentric Jets, J of

  14. Sinking fluxes of 210Pb and 210Po in the deep basin of the northern South China Sea.

    PubMed

    Wei, Ching-Ling; Chia, Chao-Yuan; Chou, Wen-Chen; Lee, Wen-Huei

    2017-08-01

    Vertical fluxes of total mass (F mass ), particulate organic carbon (F POC ), particulate inorganic carbon (F PIC ), 210 Pb (F Pb-210 ), and 210 Po (F Po-210 ) were determined by sediment traps deployed at two depths, 2000 m and 3500 m, at SEATS (South East Asian Time-series Study, 116°00°E, 18°00°N) in the northern South China Sea during June 2008-June 2009. The F mass ranges from 12.2 to 55.1 mg m -2  d -1 and from 89.3 to 250.8 mg m -2  d -1 , at 2000 m and 3500 m, respectively, and shows seasonal and inter-annul variation. The temporal variation of F POC , F PIC , and F Pb-210 were in phase with the F mass , which was coupled with the seasonal cycles of primary production in the euphotic layer. The F Pb-210 ranges from 5 to 48 dpm m -2 d -1 and from 38 to 105 dpm m -2 d -1 , at 2000 m and 3500 m, respectively. Contrasting with 210 Pb, the F Po-210 shows poor correlation with F mass . The F Po-210 ranges from 3 to 146 dpm m -2 d -1 and from 50 to 309 dpm m -2 d -1 , at 2000 m and 3500 m, respectively. Episodic events of the settling of biological particles from the surface layer and the regeneration processes the deep layer control the 210 Po removal in the water column of the South China Sea. Strong correlations of the flux and source ratio of 210 Pb, (F/P) Pb-210 , and the particulate carbon fluxes were found, which give relationships of F POC (μg cm -2 y -1 ) = 26.8 + 371.0 (F/P) Pb-210 and F PIC (μg cm -2 y -1 ) = -1.4 + 533.1 (F/P) Pb-210 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Seasonal and Solar Activity Variations of f3 Layer and StF-4 F-Layer Quadruple Stratification) Near the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Tardelli, A.; Fagundes, P. R.; Pezzopane, M.; Kavutarapu, V.

    2016-12-01

    The ionospheric F-layer shape and electron density peak variations depend on local time, latitude, longitude, season, solar cycle, geomagnetic activity, and electrodynamic conditions. In particular, the equatorial and low latitude F-layer may change its shape and peak height in a few minutes due to electric fields induced by propagation of medium-scale traveling ionospheric disturbances (MSTIDs) or thermospheric - ionospheric coupling. This F-layer electrodynamics feature characterizing the low latitudes is one of the most remarkable ionospheric physics research field. The study of multiple-stratification of the F-layer has the initial records in the mid of the 20th century. Since then, many studies were focused on F3 layer. The diurnal, seasonal and solar activity variations of the F3 layer characteristics have been investigated by several researchers. Recently, investigations on multiple-stratifications of F-layer received an important boost after the quadruple stratification (StF-4) was observed at Palmas (10.3°S, 48.3°W; dip latitude 5.5°S - near equatorial region), Brazil (Tardelli & Fagundes, JGR, 2015). This study present the latest findings related with the seasonal and solar activity characteristics of the F3 layer and StF-4 near the equatorial region during the period from 2002 to 2006. A significant connection between StF-4 and F3 layer has been noticed, since the StF-4 is always preceded and followed by an F3 layer appearance. However, the F3 layer and StF-4 present different seasonal and solar cycle variations. At a near equatorial station Palmas, the F3 layer shows the maximum and minimum occurrence during summer and winter seasons respectively. On the contrary, the StF-4 presents the maximum and minimum occurrence during winter and summer seasons respectively. While the F3 layer occurrence is not affected by solar cycle, the StF-4 appearance is instead more frequent during High Solar Activity (HSA).

  16. The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.

    PubMed

    Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina

    2004-12-03

    The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.

  17. Magnetic conjugate observation of the F3 layer using the SEALION ionosonde network

    NASA Astrophysics Data System (ADS)

    Uemoto, Jyunpei; Ono, Takayuki; Maruyama, Takashi; Saito, Susumu; Iizima, Masahide; Kumamoto, Atsushi

    2007-01-01

    Results from the meridional ionosonde network located in Southeast Asia (SEALION) demonstrate the interesting nature of the F 3 layer, showing its generation mechanism. Ionograms obtained on 16 November 2004 and 31 March 2005 at Chiang Mai (CMU; geographic latitude 18.8°N, geographic longitude 98.9°E, and magnetic latitude 13.2°N), Chumphon (CPN; 10.7°N, 99.4°E, and 3.2°N) and Kototabang (KTB; 0.2°S, 100.3°E, and 10.1°S) showed significant differences between CPN near the magnetic equator, and CMU and KTB in the magnetic low-latitude region. The simultaneous magnetic conjugate observations of the F 3 layer achieved using the SEALION ionosonde network data showed clear dependences of the F 3 layer on the magnetic latitude. It is suggested that these magnetic latitude dependences of the F 3 layer can be explained by considering the plasma diffusion effects along the magnetic field lines in the magnetic low-latitude region.

  18. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  19. [Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].

    PubMed

    Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng

    2013-01-01

    An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.

  20. Comparison of ionospheric profile parameters with IRI-2012 model over Jicamarca

    NASA Astrophysics Data System (ADS)

    Bello, S. A.; Abdullah, M.; Hamid, N. S. A.; Reinisch, B. W.

    2017-05-01

    We used the hourly ionogram data obtained from Jicamarca station (12° S, 76.9° W, dip latitude: 1.0° N) an equatorial region to study the variation of the electron density profile parameters: maximum height of F2-layer (hmF2), bottomside thickness (B0) and shape (B1) parameter of F-layer. The period of study is for the year 2010 (solar minimum period).The diurnal monthly averages of these parameters are compared with the updated IRI-2012 model. The results show that hmF2 is highest during the daytime than nighttime. The variation in hmF2 was observed to modulate the thickness of the bottomside F2-layer. The observed hmF2 and B0 post-sunset peak is as result of the upward drift velocity of ionospheric plasma. We found a close agreement between IRI-CCIR hmF2 model and observed hmF2 during 0000-0700 LT while outside this period the model predictions deviate significantly with the observational values. Significant discrepancies are observed between the IRI model options for B0 and the observed B0 values. Specifically, the modeled values do not show B0 post-sunset peak. A fairly good agreement was observed between the observed B1 and IRI model options (ABT-2009 and Bill 2000) for B1.

  1. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Satoru, E-mail: fujiwara.satoru@jaea.go.jp; Plazanet, Marie; Oda, Toshiro

    2013-02-15

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D{sub 2}O and H{sub 2}O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydratedmore » either with D{sub 2}O or H{sub 2}O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D{sub T}) of the hydration water in the first layer were found to be 1.2 × 10{sup −5} cm{sup 2}/s and 1.7 × 10{sup −5} cm{sup 2}/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10{sup −5} cm{sup 2}/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D{sub T} values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior.« less

  2. In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Fang; Hu, Zhibiao; Liu, Kaiyu; Zhang, Shuirong; Liu, Hongtao; Sang, Shangbin

    2014-12-01

    This paper introduces a new design route to fabricate nickel aluminum-layered double hydroxide (NiAl-LDH) nanosheets/hollow carbon nanofibers (CNFs) composite through an in situ growth method. The NiAl-LDH thin layers which grow on hollow carbon nanofibers have an average thickness of 13.6 nm. The galvanostatic charge-discharge test of the NiAl-LDH/CNFs composite yields an impressive specific capacitance of 1613 F g-1 at 1 A g-1 in 6 M KOH solution, the composite shows a remarkable specific capacitance of 1110 F g-1 even at a high current density of 10 A g-1. Furthermore, the composite remains a specific capacitance of 1406 F g-1 after 1000 cycles at 2 A g-1, indicating the composite has excellent high-current capacitive behavior and good cycle stability in compared to pristine NiAl-LDH.

  3. Crystal Structure and Antiferromagnetic Ordering of Quasi-2D [Cu(HF2)(pyz)2]TaF6 (pyz=pyrazine)

    NASA Astrophysics Data System (ADS)

    Manson, J. L.; Schlueter, J. A.; McDonald, R. D.; Singleton, J.

    2010-04-01

    The crystal structure of the title compound was determined by X-ray diffraction at 90 and 295 K. Copper(II) ions are coordinated to four bridging pyz ligands to form square layers in the ab-plane. Bridging HF2- ligands join the layers together along the c-axis to afford a tetragonal, three-dimensional (3D) framework that contains TaF6- anions in every cavity. At 295 K, the pyz rings lie exactly perpendicular to the layers and cooling to 90 K induces a canting of those rings. Magnetically, the compound exhibits 2D antiferromagnetic correlations within the 2D layers with an exchange interaction of -13.1(1) K. Weak interlayer interactions, as mediated by Cu-F-H-F-Cu, leads to long-range magnetic order below 4.2 K. Pulsed-field magnetization data at 0.5 K show a concave curvature with increasing B and reveal a saturation magnetization at 35.4 T.

  4. Effects of sporadic E-layer characteristics on spread-F generation in the nighttime ionosphere near a northern equatorial anomaly crest during solar minimum

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Chen, W. S.

    2015-06-01

    This study is to know how the characteristics of sporadic E-layer (Es-layer) affect the generation of spread-F in the nighttime ionosphere near the crest of equatorial ionization anomaly during solar minimum. The data of Es-layer parameters and spread-F are obtained from the Chungli ionograms of 1996. The Es-layer parameters include foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). Results show that the nighttime variations of foEs and fbEs medians (Δf medians) are different from (similar to) that of the occurrence probabilities of spread-F. Because the total number of Es-layer events is greater than that of spread-F events, the comparison between the medians of Es-layer parameters and the occurrence probabilities of spread-F might have a shortfall. Further, we categorize the Es-layer and spread-F events into each frequency interval of Es-layer parameters. For the occurrence probabilities of spread-F versus foEs, an increasing trend is found in post-midnight of all three seasons. The increasing trend also exists in pre-midnight of the J-months and in post-midnight of all seasons, for the occurrence probabilities of spread-F versus Δf. These demonstrate that the spread-F occurrence increases with increasing foEs and/or Δf. Moreover, the increasing trends indicate that polarization electric fields generated in Es-layer assist to produce spread-F, through the electrodynamical coupling of Es-layer and F-region. Regarding the occurrence probabilities of spread-F versus fbEs, the significant trend only appears in post-midnight of the E-months. This implies that fbEs might not be a major factor for the spread-F formation.

  5. Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms

    NASA Astrophysics Data System (ADS)

    Enell, Carl-Fredrik; Kozlovsky, Alexander; Turunen, Tauno; Ulich, Thomas; Välitalo, Sirkku; Scotto, Carlo; Pezzopane, Michael

    2016-03-01

    This paper presents a comparison between standard ionospheric parameters manually and automatically scaled from ionograms recorded at the high-latitude Sodankylä Geophysical Observatory (SGO, ionosonde SO166, 64.1° geomagnetic latitude), located in the vicinity of the auroral oval. The study is based on 2610 ionograms recorded during the period June-December 2013. The automatic scaling was made by means of the Autoscala software. A few typical examples are shown to outline the method, and statistics are presented regarding the differences between manually and automatically scaled values of F2, F1, E and sporadic E (Es) layer parameters. We draw the conclusions that: 1. The F2 parameters scaled by Autoscala, foF2 and M(3000)F2, are reliable. 2. F1 is identified by Autoscala in significantly fewer cases (about 50 %) than in the manual routine, but if identified the values of foF1 are reliable. 3. Autoscala frequently (30 % of the cases) detects an E layer when the manual scaling process does not. When identified by both methods, the Autoscala E-layer parameters are close to those manually scaled, foE agreeing to within 0.4 MHz. 4. Es and parameters of Es identified by Autoscala are in many cases different from those of the manual scaling. Scaling of Es at auroral latitudes is often a difficult task.

  6. Enhancement of electron injection in inverted bottom-emitting organic light-emitting diodes using Al/LiF compound thin film

    NASA Astrophysics Data System (ADS)

    Nie, Qu-yang; Zhang, Fang-hui

    2018-05-01

    The inverted bottom-emitting organic light-emitting devices (IBOLEDs) were prepared, with the structure of ITO/Al ( x nm)/LiF (1 nm)/Bphen (40 nm)/CBP: GIr1 (14%):R-4b (2%) (10 nm)/BCP (3 nm)/CBP:GIr1 (14%):R-4b (2%) (20 nm)/TCTA (10 nm)/NPB (40 nm)/MoO3 (40 nm)/Al (100 nm), where the thickness of electron injection layer Al ( x) are 0 nm, 2 nm, 3 nm, 4 nm and 5 nm, respectively. In this paper, the electron injection condition and luminance properties of inverted devices were investigated by changing the thickness of Al layer in Al/LiF compound thin film. It turns out that the introduction of Al layer can improve electron injection of the devices dramatically. Furthermore, the device exerts lower driving voltage and higher current efficiency when the thickness of electron injection Al layer is 3 nm. For example, the current efficiency of the device with 3-nm-thick Al layer reaches 19.75 cd·A-1 when driving voltage is 7 V, which is 1.24, 1.17 and 17.03 times larger than those of the devices with 2 nm, 4 nm and 5 nm Al layer, respectively. The device property reaches up to the level of corresponding conventional device. In addition, all inverted devices with electron injection Al layer show superior stability of color coordinate due to the adoption of co-evaporation emitting layer and BCP spacer-layer, and the color coordinate of the inverted device with 3-nm-thick Al layer only changes from (0.580 6, 0.405 6) to (0.532 8, 0.436 3) when driving voltage increases from 6 V to 10 V.

  7. Nonlinear absorption in single LaF3 and MgF2 layers at 193 nm measured by surface sensitive laser induced deflection technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehlig, Christian; Bublitz, Simon; Kufert, Siegfried

    2009-12-10

    We report nonlinear absorption data of LaF3 and MgF2 single layers at 193 nm. A highly surface sensitive measurement strategy of the laser induced deflection technique is introduced and applied to measure the absorption of highly transparent thin films independently of the substrate absorption. Linear absorptions k=({alpha}x{lambda})/4{pi} of 2x10{sup -4} and 8.5x10{sup -4} (LaF3) and 1.8x10{sup -4} and 6.9x10{sup -4} (MgF2) are found. Measured two photon absorption (TPA) coefficients are {beta}=1x10{sup -4} cm/W (LaF3), 1.8x10{sup -5}, and 5.8x10{sup -5} cm/W (MgF2). The TPA coefficients are several orders of magnitude higher than typical values for fluoride single crystals, which is likelymore » to result from sequential two step absorption processes.« less

  8. Resistance Switching Memory Characteristics of Si/CaF2/CdF2 Quantum-Well Structures Grown on Metal (CoSi2) Layer

    NASA Astrophysics Data System (ADS)

    Denda, Junya; Uryu, Kazuya; Watanabe, Masahiro

    2013-04-01

    A novel scheme of resistance switching random access memory (ReRAM) devices fabricated using Si/CaF2/CdF2/CaF2/Si quantum-well structures grown on metal CoSi2 layer formed on a Si substrate has been proposed, and embryonic write/erase memory operation has been demonstrated at room temperature. It has been found that the oxide-mediated epitaxy (OME) technique for forming the CoSi2 layer on Si dramatically improves the stability and reproducibility of the current-voltage (I-V) curve. This technology involves 10-nm-thick Co layer deposition on a protective oxide prepared by boiling in a peroxide-based solution followed by annealing at 550 °C for 30 min for silicidation in ultrahigh vacuum. A switching voltage of lower than 1 V, a peak current density of 32 kA/cm2, and an ON/OFF ratio of 10 have been observed for the sample with the thickness sequence of 0.9/0.9/2.5/0.9/5.0 nm for the respective layers in the Si/CaF2/CdF2/CaF2/Si structure. Results of surface morphology analysis suggest that the grain size of crystal islands with flat surfaces strongly affects the quality of device characteristics.

  9. Proton gradients produced by glucose oxidase microcapsules containing motor F0F1-ATPase for continuous ATP biosynthesis.

    PubMed

    Duan, Li; Qi, Wei; Yan, Xuehai; He, Qiang; Cui, Yue; Wang, Kewei; Li, Dongxiang; Li, Junbai

    2009-01-15

    Glucose oxidase (GOD) microcapsules held together by cross-linker, glutaraldehyde (GA), are fabricated by the layer-by-layer (LbL) assembly technique. The lipid bilayer containing CF(0)F(1)-ATPase was coated on the outer shell of GOD microcapsules. Driven under the proton gradients produced by catalysis of GOD microcapsules for glucose, ATP is synthesized from ADP and inorganic phosphate catalyzed by the ATPase rotary catalysis. The results show here that ATPase reconstituted on the GOD microcapsules retains its catalytic activity.

  10. Studies of current-perpendicular-to-plane magnetoresistance (CPP-MR) and current-induced magnetization switching (CIMS)

    NASA Astrophysics Data System (ADS)

    Kurt, Huseyin

    2005-08-01

    We present two CPP-MR studies of spin-valves based upon ferromagnetic/nonmagnetic/ferromagnetic (F/N/F) trilayers. We measure the spin-diffusion lengths of N = Pd, Pt, and Au at 4.2K, and both the specific resistances (sample area A times resistance R) and spin-memory-loss of N/Cu interfaces. Pd, Pt and Au are of special device interest because they give perpendicular anisotropy when sandwiching very thin Co layers. Comparing our spin-memory-loss data at Pd/Cu and Pt/Cu interfaces with older data for Nb/Cu and W/Cu gives insight into the importance of spin-orbit coupling in producing such loss. We reproduce and extend prior studies by Eid of 'magnetic activity' at the interface of Co and N-metals (or combinations of N-metals), when the other side of the N-metal contacts a superconductor (S). Our data suggest that magnetic activity may require strong spin-flipping at the N/S interface. We present five studies of a new phenomenon, CIMS, in F1/N/F2 trilayers, with F1 a thick 'polarizing' layer and F2 a thin 'switching' layer. In all prior studies of CIMS, positive current caused the magnetization of F2 to switch from parallel (P) to anti-parallel (AP) to that of F1- 'normal' switching. By judicious addition of impurities to F-metals, we are able to controllably produce both 'normal' and 'inverse' switching- where positive current switches the magnetization of F2 from AP to P to that of F1. In the samples studied, whether the switching is normal or inverse is set by the 'net polarization' produced by F1 and is independent of the properties of F2. As scattering in the bulk of F1 and F2 is essential to producing our results, these results cannot be described by ballistic models, which allow scattering only at interfaces. Most CIMS experiments use Cu as the N-layer due to its low resistivity and long spin-diffusion length. We show that Ag and Au have low enough resistivities and long enough spin-diffusion lengths to be useful alternatives to Cu for some devices. While most technical applications of CIMS require low switching currents, some, like read-heads, require high switching currents. We show that use of a synthetic antiferromagnet can increase the switching current. Manschot et al. recently predicted that the positive critical current for switching from P to AP could be reduced by up to a factor of five by using asymmetric current leads. In magnetically uncoupled samples, we find that highly asymmetric current leads do not significantly reduce the switching current. A CIMS equation given by Katine et al. predicts that lowering the demagnetization field should reduce the switching current. To test this prediction, we compare switching currents for Co/Au/Co(t)/Au nanopillars with t = 1 to 4 nm (where the easy axis should be normal to the layer planes at least for t = 1 and 2 nm) with those for Co/Cu/Co(t)/Au nanopillars (where the easy axis should be in the layer planes). We do not find significant differences in switching currents for the two systems.

  11. A Numerical Simulation of a Carbon Black Suspension Cell Via a Time-Reversed, Double Layer Compute Algorithm

    DTIC Science & Technology

    1999-12-01

    be accounted for by conventional descriptions of the system response. To remedy this deficiency , researchers developed a theory or model of the...timex,tO, tev, tps REAL*8 uO, width, x, xx, yy, zz, zr REAL*8 FRACi, FRAC2,F0_XX,F0_YY,F0_ZZ REAL*8 TKl, TK2 ,TQl,Tq2 INTEGER I, J, JJ, K, KK, L, NUM...UU2(J+1) !KK = Layer J+i’s time counter. TK1 = TAU(J+1) TK2 = TK1 + DELTAT(KK) j LOOP MCM C: DO KQ = UU2(J+1), KSUM PLTTIME = TIME * 1E+09 DO

  12. Crystal Structure and Crystal Chemistry of Some Common REE Minerals and Nanpingite

    NASA Astrophysics Data System (ADS)

    Ni, Yunxiang

    1995-01-01

    Part I. Crystal structure and crystal chemistry of fluorocarbonate minerals. The crystal structure of bastnasite-(Ce) have been solved in P-62c and refined to R = 0.018. The structure is composed of (001) (CeF) layers interspersed with (CO_3) layers in a 1:1 ratio. The Ce atom is coordinated in rm CeO_6F_3 polyhedra. The atomic arrangement of synchysite-(Ce) has been solved and refined to R = 0.036 with a monoclinic space group C2/c. It possesses a (001) layer structure, with layers of (Ca) and (CeF) separated by layers of carbonate groups. The layers stack in a manner analogous to C2/c muscovite. Polytypism similar to the micas may exist in synchysite. The crystal structures of cordylite-(Ce) have been solved in P6 _3/mmc and refined to R = 0.023. The structure and chemical formula are different from those deduced by Oftedal. The formula is rm MBaCe_2(CO _3)_4F, where M is rm Na^+, Ca^{2+}_{1/2 }+ O_{1/2}, or any solution. The presence of (NaF) layer in the structure is the key difference from the Oftedal's structure. This redefinition of the chemical formula and crystal structure of cordylite will be proposed to IMA-CNMMN. Part II. Crystal structure and crystal chemistry of monazite-xenotime series. Monazite is monoclinic, P2 _1/n, and xenotime is isostructural with zircon (I4_1/amd). Both atomic arrangements are based on (001) chains of intervening phosphate tetrahedra and RE polyhedra, with a REO_8 polyhedron in xenotime that accommodates HRE (Tb - Lu) and a REO_9 polyhedron in monazite that preferentially incorporates LRE (La - Gd). As the structure "transforms" from xenotime to monazite, the crystallographic properties are comparable along the (001) chains, with structural adjustments of 2.2 A along (010) to accommodate the different size RE atoms. Part III. Crystal structure of nanpingite-2M _2, the Cs end-member of muscovite. The crystal structure of nanpingite has been refined to R = 0.058. Compared to K^+ in muscovite, the largest interlayer Cs^+ in nanpingite increases (001) separation between adjacent 2:1 layers, but has little effect on the dimensions in (001). The existence of rare 2M_2 polytype in nanpingite is attributed to this large layer separation, which minimizes the repulsion of the superimposed (along (001)) basal oxygens in neighboring tetrahedral layers.

  13. Magnetoresistance measurements in Ferro -- Antiferromagnetic bilayers based on the Ca-doped lanthanum manganite system

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Marin, L.; Ramirez, G.; Prieto, P.

    2011-03-01

    We studied the isothermal magnetic field dependence of the resistance behavior in ferromagnetic--antiferromagnetic interface based on the Ca-doped lanthanum manganite system at temperatures below Neel temperature of the antiferromagnetic layer. We studied the influence of the thickness of the AF-layer, tAF , and F-layer, tF , on the ZFC and FC magnetoresistance (MR) in La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) bilayers. HFC was 400 Oe and the applied magnetic field, H. We systematically varied the tF and tAF thickness, maintaining constant the total bilayer thickness (d = tF +tAF) . We found that MR has hysteretic behavior as observed in [ La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) ]N superlattices, but; MR increases with the increasing field from H=0 to a maximum and then decreases continuously. This behavior also appears for negative fields in both ZFC and FC loops. The position and magnitude of the maximum is not symmetric with respect to the axis H=0. Work supported by CENM-COLCIENCIAS contract RC-0043-(2005).

  14. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  15. Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant.

    PubMed

    Hung, Pao Chen; Lo, Wei Chiao; Chi, Kai Hsien; Chang, Shu Hao; Chang, Moo Been

    2011-01-01

    A laboratory-scale multi-layer system was developed for the adsorption of PCDD/Fs from gas streams at various operating conditions, including gas flow rate, operating temperature and water vapor content. Excellent PCDD/F removal efficiency (>99.99%) was achieved with the multi-layer design with bead-shaped activated carbons (BACs). The PCDD/F removal efficiency achieved with the first layer adsorption bed decreased as the gas flow rate was increased due to the decrease of the gas retention time. The PCDD/F concentrations measured at the outlet of the third layer adsorption bed were all lower than 0.1 ng I-TEQ Nm⁻³. The PCDD/Fs desorbed from BAC were mainly lowly chlorinated congeners and the PCDD/F outlet concentrations increased as the operating temperature was increased. In addition, the results of pilot-scale experiment (real flue gases of an iron ore sintering plant) indicated that as the gas flow rate was controlled at 15 slpm, the removal efficiencies of PCDD/F congeners achieved with the multi-layer reactor with BAC were better than that in higher gas flow rate condition (20 slpm). Overall, the lab-scale and pilot-scale experiments indicated that PCDD/F removal achieved by multi-layer reactor with BAC strongly depended on the flow rate of the gas stream to be treated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. "Egg-Box"-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors.

    PubMed

    Kang, Danmiao; Liu, Qinglei; Gu, Jiajun; Su, Yishi; Zhang, Wang; Zhang, Di

    2015-11-24

    Here we report a method to fabricate porous carbon with small mesopores around 2-4 nm by simple activation of charcoals derived from carbonization of seaweed consisting of microcrystalline domains formed by the "egg-box" model. The existence of mesopores in charcoals leads to a high specific surface area up to 3270 m(2) g(-1), with 95% surface area provided by small mesopores. This special pore structure shows high adaptability when used as electrode materials for an electric double layer capacitor, especially at high charge-discharge rate. The gravimetric capacitance values of the porous carbon are 425 and 210 F g(-1) and volumetric capacitance values are 242 and 120 F cm(-3) in 1 M H2SO4 and 1 M TEA BF4/AN, respectively. The capacitances even remain at 280 F g(-1) (160 F cm(-3)) at 100 A g(-1) and 156 F g(-1) (90 F cm(-3)) at 50 A g(-1) in the aqueous and organic electrolytes, demonstrating excellent high-rate capacitive performance.

  17. Deposition of single and layered amorphous fluorocarbon films by C8F18 PECVD

    NASA Astrophysics Data System (ADS)

    Yamauchi, Tatsuya; Mizuno, Kouichiro; Sugawara, Hirotake

    2008-10-01

    Amorphous fluorocarbon films were deposited by plasma-enhanced chemical vapor deposition (PECVD) using C8F18 in closed system at C8F18 pressures 0.1--0.3 Torr, deposition times 1--30 min and plasma powers 20--200 W@. The layered films were composed by repeated PECVD processes. We compared `two-layered' and `intermittently deposited' films, which were made by the PECVD, respectively, with and without renewal of the gas after the deposition of the first layer. The interlayer boundary was observed in the layered films, and that of the intermittently deposited films showed a tendency to be clearer when the deposition time until the interruption of the PECVD was shorter. The film thickness increased linearly in the beginning of the PECVD and it turned down after 10--15 min, that was similar between the single and intermittently deposited films. It was considered that large precursors made at a low decomposition degree of C8F18 contributed to the film deposition in the early phase and that the downturn was due to the development of the C8F18 decomposition. This explanation on the deposition mechanism agrees qualitatively with our experimental data of pressure change and optical emission spectra during the deposition. This work is supported by Grant-in-Aid from Japan Society for the Promotion of Science.

  18. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  19. Isolation and characterization of bioactive components from Mirabilis jalapa L. radix

    PubMed Central

    Gogoi, Jyotchna; Nakhuru, Khonamai Sewa; Policegoudra, Rudragoud S.; Chattopadhyay, Pronobesh; Rai, Ashok Kumar; Veer, Vijay

    2015-01-01

    The present investigation was carried out to isolate and characterize bioactive components from Mirabilis jalapa L. radix (紫茉莉根 zǐ mò lì gēn). Thin-layer chromatography was used for the separation of spots from fractions of the crude extract. Separated spots were collected for identification of their activities. Free-radical scavenging activity was evaluated by spraying thin-layer chromatography plates (spotted with fractions) with 0.2% of 2,2-diphenyl-1-picrylhydrazyl solution. Activity against human pathogens such as Staphylococcus aureus and Candida albicans were determined using the agar diffusion method. Potential spots were subjected to infrared (IR) analysis and gas chromatography for characterization. Two spots (5F1 and 1F3) showed free-radical scavenging activity. The 1F3 spot was active against both S. aureus and C. albicans, whereas the 5F1 spot was active against S. aureus only. IR spectral analysis indicated that 5F1 spot to be a triterpenoid. Using IR spectral analysis and an IR library search, the 1F3 spot was identified to be a flavone, which may have a hydroxyl group in ring “A” of the flavone nucleus. Our results indicated that the 1F3 and 5F1 spots are potential free-radical scavengers. Both 1F3 and 5F1 exhibited antimicrobial activity. IR spectral analysis coupled with an IR library search indicated 1F3 and 5F1 to be a flavone and a triterpenoid, respectively. PMID:26870679

  20. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks

    PubMed Central

    Jang, Hojin; Plis, Sergey M.; Calhoun, Vince D.; Lee, Jong-Hwan

    2016-01-01

    Feedforward deep neural networks (DNN), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean ± standard deviation; %) of 6.9 (± 3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4 ± 4.6) and the two-layer network (7.4 ± 4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. PMID:27079534

  1. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.

    PubMed

    Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan

    2017-01-15

    Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bibliography of Soviet Laser Developments, Number 39, January - February 1979.

    DTIC Science & Technology

    1979-11-01

    with quantum size effects in the active layers , produced by a continuous (300 K) gas-transport epi- taxy method from metalloorganic compounds. ZhTF P...Chirikov (0). Efficient waveguide CO2 laser. ZhTF P, no. 1, 1979, 25-28. 62. Gordiyets, B.F., A.I. Gudzenko, and V.Ya. Panchenko (1,2). Solar -pumped...p. (RZhF, 2/79, 2D1412) 266. Belanov, A.S., Ye.M. Dianov, and A.M. Prokhorov (1). Data tcansmission over quasi-single-mode three- layer optical

  3. Elastic Behavior of a Rubber Layer Bonded between Two Rigid Spheres.

    DTIC Science & Technology

    1988-05-01

    Cracking, Composites, Compressibility, Def ormition, Dilatancy, Elasticity, Elastomers , Failure, Fracture, Particle ’,-1tr1f6rcement, Rubber, Stress...Analysis. 2.AITRACT (Ca~mmi ON VOW...lds It 񔨾Y MtE fIdnt & bp04 bo ambwe - Finite element methods ( FEM ) have been employed to calculate the stresses...deformations set up by compression or extension of the layer, using finite element methods ( FEM ) and not invoking the condition of incompressibility

  4. Effect of Fluorine Diffusion on Amorphous-InGaZnO-Based Thin-Film Transistors.

    PubMed

    Jiang, Jingxin; Furuta, Mamoru

    2018-08-01

    This study investigated the effect of fluorine (F) diffusion from a fluorinated siliconnitride passivation layer (SiNX:F-Pa) into amorphous-InGaZnO-based thin-film transistors (a-IGZO TFTs). The results of thermal desorption spectroscopy and secondary ion mass spectrometry revealed that F was introduced into the SiOX etch-stopper layer (SiOX-ES) during the deposition of a SiNX:F-Pa, and did not originate from desorption of Si-F bonds; and that long annealing times enhanced F diffusion from the SiOX-ES layer to the a-IGZO channel. Improvements to the performance and threshold-voltage (Vth) negative shift of IGZO TFTs were achieved when annealing time increased from 1 h to 3 h; and capacitance-voltage results indicated that F acted as a shallow donor near the source side in a-IGZO and induced the negative Vth shift. In addition, it was found that when IGZO TFTs with SiNX:F-Pa were annealed 4 h, a low-resistance region was formed at the backchannel of the TFT, leading to a drastic negative Vth shift.

  5. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.

    The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less

  6. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    DOE PAGES

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; ...

    2014-09-29

    The frequency noise spectrum of a magnetic tunnel junction (MTJ) based spin torque oscillator (STO) is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. Here, we find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layermore » is aligned away from the anti-parallel orientation w.r.t the reference layer. Lastly, these results indicate that the origin of 1/f frequency noise is related to mode-hopping which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.« less

  7. F-16XL ship #1 wing close-up showing boundary layer detection Preston tubes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows the boundary layer Preston tubes mounted on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  8. Phase behavior of 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C12MIm(FH)(n)F, n = 1.0-2.3) and their anisotropic ionic conductivity as ionic liquid crystal electrolytes.

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2012-08-23

    The effects of the HF composition, n, in 1-dodecyl-3-methylimidazolium fluorohydrogenate salts (C(12)MIm(FH)(n)F, n = 1.0-2.3) on their physicochemical and structural properties have been investigated using infrared spectroscopy, thermal analysis, polarized optical microscopy, X-ray diffraction, and anisotropic ionic conductivity measurements. The phase diagram of C(12)MIm(FH)(n)F (n vs transition temperature) suggests that C(12)MIm(FH)(n)F is a mixed crystal system that has a boundary around n = 1.9. For all compositions, a liquid crystalline mesophase with a smectic A interdigitated bilayer structure is observed. The temperature range of the mesophase decreases with increasing n value (from 61.8 °C for C(12)MIm(FH)(1.0)F to 37.0 °C for C(12)MIm(FH)(2.3)F). The layer spacing of the smectic structure decreases with increasing n value or increasing temperature. Two structural types with different layer spacings are observed in the crystalline phase (type I, 1.0 ≤ n ≤ 1.9, and type II, 1.9 ≤ n ≤ 2.3). Ionic conductivities parallel and perpendicular to the smectic layers (σ(||) and σ([perpendicular])) increase with increasing n value, whereas the anisotropy of the ionic conductivities (σ(||)/σ([perpendicular])) is independent of the n value, since the thickness of the insulating sheet formed by the dodecyl group remains nearly unchanged.

  9. Reconsideration of F-layer seismic model in the south polar region

    NASA Astrophysics Data System (ADS)

    Ohtaki, T.; Kaneshima, S.

    2017-12-01

    Previously, we analyzed the seismic structure near the inner core boundary beneath Antarctica (Ohtaki et al., 2012). In the study, we determined the velocity of the lowermost outer core (F-layer) using amplitude ratio observations between the inner-core phase (PKIKP) and the inner-core grazing/diffracted phase (PKPbc/c-diff). Because the observations are not so sensitive to the F-layer structure, a constant velocity is assumed in the layer to simplify the model. The obtained model (SPR) has a flat velocity zone with a 75 km thick on the inner core boundary. With this F-layer structure and using travel times of these phases as well as the phase that reflects at the boundary, we determined the seismic structure of the inner core in the south polar region. However, a constant velocity layer is unrealistic, although it is reasonable assumption.Recently, we determined F-layer velocity structures more accurately using the combined observations of PKiKP-PKPbc differential travel times and of PKPbc/c-diff dispersion (Ohtaki et al., 2015, 2016). The former observation is sensitive to average velocity in the F-layer; the latter to velocity gradient in the layer. By analyzing these two observations together, we can determine the detailed velocity structure in the F-layer. The surveyed areas are beneath the Northeast Pacific and Australia. The seismic velocity models obtained are quite different between the two regions. Thus our results require laterally heterogeneous F-layer, and show that F-layer is more complicated than we ever imagined.Then there is one question; which structure is that of the south polar region close to? Unfortunately, the seismic waveforms that we analyzed in the previous study may not have quality high enough to analyze the PKiKP-PKPbc or PKPbc dispersion. However, it would be meaningful to reanalyze the amplitude data and reconsider the F-layer velocity there. And we also estimate how large slope of velocity can be acceptable for the F-layer velocity structure in this region.

  10. Evaluation of Adsorption Characteristics of a Fibrous Adsorbent Containing Zwitter-Ionic Functional Group, Targeting Organic Acids.

    PubMed

    Nakazawa, Akira; Tang, Ning; Inoue, Yoshinori; Kamichatani, Waka; Katoh, Toshifumi; Saito, Mitsuru; Obara, Kenji; Toriba, Akira; Hayakawa, Kazuichi

    2017-01-01

    Diallylamine-maleic acid copolymer (DAM)-nonwoven fabric (DAM-f), a fibrous adsorbent, contains DAM with zwitter-ionic functional groups and forms a hydration layer on the surface. The aim of this report was to evaluate the adsorption selectivity of DAM-f to semi-volatile organic acid (C1-C5). In the aqueous phase, formic acid dissolved in the hydration layer bound to the imino group of DAM-f due to anion exchange interaction. In the gas phase, the adsorption amounts of organic acids increased with the exposure time. Moreover, the adsorption rate constants correlated with the air/water partition coefficients (log K aw ) for formic acid, propionic acid, butyric acid, valeric acid and isovaleric acid, except for acetic acid. These results indicate that DAM-f is highly selective to hydrophilic compounds which easily move from the air to the hydration layer of DAM-f.

  11. Government Beta: The Value of Unscripted Testing

    DTIC Science & Technology

    2012-04-26

    vs . Progress The Contract and Award Fee Plan Final Thoughts 1 GOVERNMENT BETA – The Value of Unscripted Testing 2...D a t a b a s e Database Layer C/C++ SQL OS Layer Presentation / Mission Layer F u n c t i o n a l D L L Application/Controller F u n c t i o n a l...Testing 20 Unscripted, not Unplanned 21 IEEE 12207 22 CUT DD MLT ELT SLT IST RTO , OUE Architecture Based DesignTM Detailed Design Code & Unit

  12. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE PAGES

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...

    2017-02-24

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  13. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  14. Facile preparation, optical and electrochemical properties of layer-by-layer V2O5 quadrate structures

    NASA Astrophysics Data System (ADS)

    Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong

    2017-03-01

    Layer-by-layer V2O5 structures self-assembly by quadrate sheets like "multilayer cake" were successfully synthesized using NH4VO3 as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V2O5 layer-by-layer structures were investigated by the Ultraviolet-visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V2O5 layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g-1 at 1 A g-1 in organic electrolyte, which is improved by 46% compared with 238 F g-1 in aqueous electrolyte. During the cycle performance, the specific capacitances of V2O5 layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer-by-layer V2O5 structures are an ideal material for supercapacitor electrode in the present work.

  15. AlF 3 Surface-Coated Li[Li 0.2 Ni 0.17 Co 0.07 Mn 0.56 ]O 2 Nanoparticles with Superior Electrochemical Performance for Lithium-Ion Batteries

    DOE PAGES

    Sun, Shuwei; Yin, Yanfeng; Wan, Ning; ...

    2015-06-24

    For Li-rich layered cathode materials considerable attention has been paid owing to their high capacity performance for Li-ion batteries (LIBs). In our work, layered Li-rich Li[Li 0.2Ni 0.17Co 0.07Mn 0.56]O 2 nanoparticles are surface-modified with AlF 3 through a facile chemical deposition method. The AlF 3 surface layers have little impact on the structure of the material and act as buffers to prevent the direct contact of the electrode with the electrolyte; thus, they enhance the electrochemical performance significantly. The 3 wt% AlF 3-coated Li-rich electrode exhibits the best cycling capability and has a considerably enhanced capacity retention of 83.1%more » after 50 cycles. Moreover, the rate performance and thermal stability of the 3 wt% AlF3-coated electrode are also clearly improved. Finally, surface analysis indicates that the AlF 3 coating layer can largely suppress the undesirable growth of solid electrolyte interphase (SEI) film and, therefore, stabilizes the structure upon cycling.« less

  16. Negative post sunset height rise of F layer: Causes and implications

    NASA Astrophysics Data System (ADS)

    Joshi, Lalit Mohan; Patra, Amit

    Post sunset height rise (PSHR) of the F layer is a manifestation of the pre reversal enhancement (PRE) of zonal electric field in the equatorial and low latitude ionosphere. Ionosonde observations, made during the equinox period from Sriharikota (13.7 degree North, 80.1 degree East, 6.7 degree North magnetic latitude), a low latitude station in India, have been utilized to study the PSHR of the F layer. Normally, the height of the F layer increases during the early post sunset period (positive PSHR) whose magnitude has a direct bearing on the equatorial spread F (ESF). However, observations revealed that on a few nights (about 3% nights) the height of the F layer descended in the early post sunset period itself, indicating the absence of PRE of zonal field. Such events have been termed as negative PSHR events. Such events never preceded ESF. Detailed investigations revealed that the negative PSHR events were accompanied by an enhancement of low latitude sporadic E (Es) activity with increase in the Es blanketing (fbEs) and top (ftEs) frequencies, during the post sunset period. Numerical simulations have been carried out to evaluate the effectiveness of the westward Pedersen and Hall conductivity gradients that exists in the low latitude E region during the evening hours, in causing the PRE of zonal field and the PSHR of the F layer. Model simulation reveals that the dominant cause of PRE of zonal field is the divergence of Hall current in the low latitude E region. When the zonal conductivity gradient of the low latitude E region was assumed to be either zero or slightly eastward, owing to the intensification of Es, model computation resulted in the negative PSHR of the F layer. Thus, the observational and computational results highlight the important role of the low latitude Es in the PRE of the zonal electric field.

  17. Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors

    PubMed Central

    Fan, Ching-Lin; Lin, Wei-Chun; Chang, Hsiang-Sheng; Lin, Yu-Zuo; Huang, Bohr-Ran

    2016-01-01

    In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F4TCNQ)-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F4TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F4TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F4TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window. PMID:28787845

  18. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  19. Effects of sporadic E-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere: A climatological study

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Chen, W. S.

    2018-04-01

    The aim of this study is to examine the effects of Es-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere. The Es-layer parameters and spread-F appearance of the 23rd solar cycle (1996-2008) are recorded by the Kokubunji ionosonde. The Es-layer parameters are foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). In order to completely explore the effects, the pre-midnight and post-midnight data are classified by seasons, solar activities, and geomagnetic conditions. Results show that the spread-F occurs more frequently in post-midnight and in summer. And, the occurrence probabilities of spread-F are greater, when the solar activity is lower. For the occurrence probabilities of spread-F versus foEs and Δf under geomagnetic quiet-conditions, the trend is increasing, when the associated probabilities are significant. These indicate that the spread-F occurrence increases with increasing foEs and/or Δf. Further, the increasing trends demonstrate that polarization electric fields generated in Es-layer would be helpful to generate spread-F, through the electrodynamical coupling of Es-layer and F-region. Moreover, this electrodynamical coupling is efficient not only under quiet-conditions but under disturbed-conditions, since the significant increasing trend can also be found under disturbed-conditions. Regarding the occurrence probabilities of spread-F versus fbEs, the evident trends are not in the majority. This implies that fbEs might not be a major factor for the spread-F formation.

  20. Surface morphology and interdiffusion of LiF in Alq3-based organic light-emitting devices.

    PubMed

    Lee, Young Joo; Li, Xiaolong; Kang, Da-Yeon; Park, Seong-Sik; Kim, Jinwoo; Choi, Jeong-Woo; Kim, Hyunjung

    2008-09-01

    Highly efficient organic light-emitting devices (OLEDs) have been realized by insertion of a thin insulating lithium fluoride (LiF) layer between aluminum (Al) cathode and an electron transport layer, tris-(8-hydroxyquinoline) aluminum (Alq(3)). In this paper, we study the surface morphology of LiF on Alq(3) by synchrotron X-ray scattering and atomic force microscopy (AFM) as a function of thickness of LiF. We also study the interdiffusion of LiF into Al cathode as well as into Alq(3) layer as a function of temperature. Initially, LiF molecules are distributed randomly as clusters on the Alq(3) layer and then gradually form a layer as increasing LiF thickness. The interdiffusion of LiF into Al occurs more actively than into Alq(3) in annealing process. LiF on Alq(3) induces the ordering of Al to (111) direction strongly with increasing LiF thickness.

  1. Improved electrochemical performance of spinel LiMn(1.5)Ni(0.5)O4 through MgF2 nano-coating.

    PubMed

    Wu, Qing; Zhang, Xiaoping; Sun, Shuwei; Wan, Ning; Pan, Du; Bai, Ying; Zhu, Huiyuan; Hu, Yong-Sheng; Dai, Sheng

    2015-10-14

    A spinel LiMn1.5Ni0.5O4 (LMNO) cathode material synthesized by a sol-gel method is modified by MgF2 nano-coating via a wet coating strategy. The results of X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) showed that the MgF2 nano-coating layers do not physically change the bulk structure of the pristine material. Compared with the pristine compound, the MgF2-coated LMNO electrodes display enhanced cycling stabilities. Particularly, the 5 wt% MgF2-coated LMNO demonstrates the best reversibility, with a capacity retention of 89.9% after 100 cycles, much higher than that of the pristine material, 69.3%. The dQ/dV analysis and apparent Li(+) diffusion coefficient calculation prove that the kinetic properties are enhanced after MgF2 surface modification, which partly explains the improved electrochemical performances. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) data confirm that the MgF2 coating layer helps in suppressing the fast growth of the solid electrolyte interface (SEI) film in repeated cycling, which effectively stabilizes the spinel structure. Additionally, differential scanning calorimetry (DSC) tests show that the MgF2 nano-coating layer also helps in enhancing the thermal stability of the LMNO cathode.

  2. Defects and Impurities in 4H- and 6H-SiC Homoepitaxial Layers: Identification, Origin, Effect on Properties of Ohmic Contacts and Insulating Layers and Reduction.

    DTIC Science & Technology

    1997-03-01

    Grant #N00014-95-l-1080 Office of the Chief of Naval Research Report for the period 1/1/97-3/31/97 R. F. Davis, M. O. Aboelfotoh , B. J. Baliga*, R. J...Contacts and Insulating Layers and Reduction . AUTHOR(S) R. F. Davis, M. O. Aboelfotoh , B. J. Baliga and R. J. Nemanich 5. FUNDING NUMBERS ydl4951... Aboelfotoh , B. J. Baliga, R. J. Nemanich, M. C. Benjamin, S. W. King, M. L. O’Brien, L. S. Porter, S. Sridevan, and H. S. Tomozawa, Quarterly Technical

  3. Effect of interfacial disorder on exchange anisotropy in nickel manganese/nickel epitaxial bilayers

    NASA Astrophysics Data System (ADS)

    Lund, Michael Shane

    In this thesis, the influence of interdiffusion on the structural and magnetic properties of epitaxial Ni1-xMnx/Ni bilayers has been examined. Structural characterization shows (111) oriented epitaxial layers with a 35A interdiffused layer at the Ni47Mn 53/Ni interface. This interdiffused layer is a result of the annealing step (250 C anneal for 16 hours) that is typically needed to transform NiMn into the required antiferromagnetic (AF) phase. A comparison of polarized neutron reflectometry measurements at 300 K and at 10 K show two major features as the temperature is decreased; (i) The ferromagnetic (F) moment of the sample appears to decrease with decreasing temperature, and (ii) The F layer is effectively thinner at low temperatures, i.e. the magnetic interface between the F and underlying non-F layer has a temperature dependent location. These unexpected results are confirmed by measurements of the temperature dependence of the magnetization after cooling in a demagnetized state, then applying an external field while measuring the magnetization. The magnetization decreases with decreasing temperature, consistent with a decrease in the effective F layer thickness. The effective "motion" of the magnetic interface is explained by the increasing dominance of the AF exchange interactions in the interdiffused region as the temperature is lowered. This model is further supported by the existence of memory effects and glassy behavior, which are both consistent with competing AF and F interactions in the interdiffused region. Furthermore, this interdiffusion at the AF/F interface provides a unique opportunity to assess, in a single sample, the effect of uniaxial vs. biaxial anisotropy on phenomena such as training and reversal asymmetry. As predicted by recent theory it is shown that the existence of a strong training effect, and an accompanying reversal asymmetry, can be directly correlated with the presence of biaxial exchange induced anisotropy. Finally, the dependence of exchange bias on x in Ni1-xMnx/Ni bilayers has been studied. It is found that bilayers with x ˜ 0.58 have a maximum exchange coupling and that the maximum exchange bias is achieved with just a 2 hour anneal at 250 C. This is striking and suggests that the as-deposited Ni 1-xMnx is in the AF phase. Additionally, inverted unannealed bilayers exhibit exchange bias, providing clear evidence for spontaneous magnetic ordering of Ni1-xMnx layer. This is an important find since annealing results in interdiffusion at the AF/F interface, and a subsequent reduction in the exchange bias field, it would be technologically desirable to omit this step entirely.

  4. Naval Hydrodynamics Symposium (12th) on Boundary Layer Stability and Transition Ship Boundary Layers and Propeller Hull Interaction Cavitation Geophysical Fluid Dynamics.

    DTIC Science & Technology

    1979-01-01

    Reshotko (1974 ,[ rL12 --o-Wazzan, Okamura & D =cq wdx + dLc (6)1 Snith 11970) F a f XJftW 10 u o-0 where g is the dynamic pressure, cfk and cft are co dx...cdx = 1.328 tr (13) xtr f L tr 106 xtr cft dx = 0.074 / )tr: 0 10 20 30 40 e R WALL OVERHEAT,.IT.° Cx FIGURE 2. Variation of transition Reynolds...change in the anqe , is varied. wavenumber vector in addition to the dispersion relation. Even though no aml itude calculations are included in this paper

  5. Electromagnetic ion cyclotron waves observed in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Fuselier, S. A.; Murr, D.

    1991-01-01

    Observations from AMPTE/CCE in the earth's magnetosheath on October 5, 1984 are presented to illustrate 0.1 - 4.0 Hz magnetic field pulsations in the subsolar plasma depletion layer (PDL) for northward sheath field during a magnetospheric compression. The PDL is unambiguously identified by comparing CCE data with data from IRM in the upstream solar wind. Pulsations in the PDL are dominated by transverse waves with F/F(H+) 1.0 or less and a slot in spectral power at F/F(H+) = 0.5. The upper branch is left hand polarized while the lower branch is linearly polarized. In the sheath the proton temperature anisotropy is about 0.6 but it is about 1.7 in the PDL during wave occurrence. The properties and correlation of waves with increased anisotropy indicate that they are electromagnetic ion cyclotron waves.

  6. LSWS linked with the low-latitude Es and its implications for the growth of the R-T instability

    NASA Astrophysics Data System (ADS)

    Joshi, L. M.

    2016-07-01

    A comprehensive investigation of spread F irregularities over the Indian sector has been carried out using VHF radar and ionosonde observations. Two different categories of spread F observations, one where the onset of the range spread F (RSF) was concurrent with the peak h'F (category 1) and another where the RSF onset happened ~90 min after the peak h'F time (category 2), are presented. RSF in category 2 was preceded by the presence of oblique echoes in ionograms, indicating the irregularity genesis westward of Sriharikota. The average peak h'F in category 1 was ~30 km higher than that in category 2 indicating the presence of standing large-scale wave structure (LSWS). Occurrence of the blanketing Es during 19:30 to 20:30 Indian Standard Time in category 1 (category 2) was 0% (>50%). Model computation is also carried out to further substantiate the observational results. Model computation indicates that zonal variation of low-latitude Es can generate zonal modulation in the F layer height rise. It is found that the modulation of the F layer height, linked with the low-latitude Es, assists the equatorial spread F onset by modifying both the growth rate of the collisional Rayleigh-Taylor (R-T) instability and also its efficiency. A predominant presence of low-latitude Es has been observed, but the increase in the F layer height and the R-T instability growth in the evening hours will maximize with complete absence of low-latitude Es. A new mechanism for the generation of LSWS and its implications on R-T instability is discussed.

  7. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    NASA Astrophysics Data System (ADS)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside layers while ensuring that the resulting electron density profile is free of strong vertical gradient artifacts and is doubly differentiable.

  8. Coordinate Conversion Technique for OTH Backscatter Radar

    DTIC Science & Technology

    1977-05-01

    obliquity of the earth’s equator (=23.0󈧓), A is the mean longitude of the sun measured in the ecliptic counterclockwise from the first point of...MODEL FOR Fo-LAYER CORRECTION FACTORS-VERTICAL IO NO GRAM 11. MODEL FOR Fg-LAYER CORRECTION FACTORS- OBLIQUE IO NO GRAM 12. ELEMENTS OF COMMON BLOCK...simulation in (1) to a given oblique ionogram generate range gradient factors to apply to f F9 and I\\1(3000)F„ to force agreement; (3) from the

  9. F-16XL ship #1 CAWAP flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  10. Mechanical properties of graphene and boronitrene

    NASA Astrophysics Data System (ADS)

    Andrew, R. C.; Mapasha, R. E.; Ukpong, A. M.; Chetty, N.

    2012-03-01

    We present an equation of state (EOS) that describes how the hydrostatic change in surface area is related to two-dimensional in-plane pressure (F) and yields the measure of a material's resilience to isotropic stretching (the layer modulus γ) as one of its fit parameters. We give results for the monolayer systems of graphene and boronitrene, and we also include results for Si, Ge, GeC, and SiC in the isostructural honeycomb structure for comparison. Our results show that, of the honeycomb structures, graphene is the most resilient to stretching with a value of γC = 206.6 N m-1, second is boronitrene with γBN = 177.0 N m-1, followed by γSiC = 116.5 N m-1, γGeC = 101.0 N m-1, γSi = 44.5 N m-1, and γGe = 29.6 N m-1. We calculate the Young's and shear moduli from the elastic constants and find that, in general, they rank according to the layer modulus. We also find that the calculated layer modulus matches the one obtained from the EOS. We use the EOS to predict the isotropic intrinsic strength of the various systems and find that, in general, the intrinsic stresses also rank according to the layer modulus. Graphene and boronitrene have comparable strengths with intrinsic stresses of 29.4 and 26.0 N m-1, respectively. We considered four graphene allotropes including pentaheptite and graphdiyne and find that pentaheptite has a value for γ comparable to graphene. We find a phase transition from graphene to graphdiyne at F = -7.0 N m-1. We also consider bilayer, trilayer, and four-layered graphene and find that the addition of extra layers results in a linear dependence of γ with F.

  11. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  12. Simultaneous observations of F2 layer stratification and spread F at postmidnight over a northern equatorial anomaly region

    NASA Astrophysics Data System (ADS)

    Jiang, Chunhua; Yang, Guobin; Deng, Chi; Zhou, Chen; Zhu, Peng; Yokoyama, Tatsuhiro; Song, Huan; Lan, Ting; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong

    2015-12-01

    Simultaneous observations of F2 layer stratification and spread F at postmidnight (00:00 LT to 05:00 LT) were carried out on 22, 23, and 28 November 2013, using ionosondes distributed over a northern equatorial anomaly region at three specific locations, i.e., Puer (PUR, 22.7°N, 101.05°E, dip latitude 12.9°N), Chiang Mai (CMU, 18.8°N, 98.9°E, dip latitude 9.04°N), and Chumphon (CPN, 10.7°N, 99.4°E, dip latitude 0.93°N). The results show that both the PUR and CMU stations observed the F2 layer stratification at postmidnight in the Northern Hemisphere, frequently accompanied with gravity waves (the periods~30-100 min). It is reported that F2 layer stratification at postmidnight can be observed in the Northern Hemisphere for the first time. It is suggested that the thermospheric neutral wind triggered by gravity waves strongly contribute to the altitude dependence of the combined vertical plasma velocity, which consequently poses significant impacts on the occurrence of the low-latitude F2 layer stratification at postmidnight. In addition, the spread F other than F2 layer stratification was observed at the CPN station located at the geomagnetic equator, suggesting that smaller geomagnetic inclination tend to inhibit the postmidnight F2 layer stratification in the equatorial region. Furthermore, on 23 November 2013 a good correlation was identified between the F2 layer stratification at PUR and the spread F at both CMU and CPN, possibly due to that the large-scale gravity waves originating at middle latitudes contribute to the nighttime spread F observed in the low-latitude and equatorial regions.

  13. Lifetime Improvement of Organic Light Emitting Diodes using LiF Thin Film and UV Glue Encapsulation

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ji; Su, Yan-Kuin; Chang, Ming-Hua; Hsieh, Tsung-Eong; Huang, Bohr-Ran; Wang, Shun-Hsi; Chen, Wen-Ray; Tsai, Yu-Sheng; Hsieh, Huai-En; Liu, Mark O.; Juang, Fuh-Shyang

    2008-07-01

    This work demonstrates the use of lithium fluoride (LiF) as a passivation layer and a newly developed UV glue for encapsulation on the LiF passivation layer to enhance the stability of organic light-emitting devices (OLEDs). Devices with double protective layers showed a 25-fold increase in operational lifetime compared to those without any packaging layers. LiF has a low melting point and insulating characteristics and it can be adapted as both a protective layer and pre-encapsulation film. The newly developed UV glue has a fast curing time of only 6 s and can be directly spin-coated onto the surface of the LiF passivation layer. The LiF thin film plus spin-coated UV glue is a simple packaging method that reduces the fabrication costs of OLEDs.

  14. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers

    PubMed Central

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin

    2018-01-01

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h. PMID:29565280

  15. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers.

    PubMed

    Liu, Xinkuan; Shao, Wenyi; Luo, Mingyi; Bian, Jiayin; Yu, Deng-Guang

    2018-03-22

    Nanomaterials providing sustained release profiles are highly desired for efficacious drug delivery. Advanced nanotechnologies are useful tools for creating elaborate nanostructure-based nanomaterials to achieve the designed functional performances. In this research, a modified coaxial electrospinning was explored to fabricate a novel core-sheath nanostructure (nanofibers F2), in which a sheath drug-free gliadin layer was successfully coated on the core ketoprofen (KET)-gliadin nanocomposite. A monolithic nanocomposite (nanofibers F1) that was generated through traditional blending electrospinning of core fluid was utilized as a control. Scanning electron microscopy demonstrated that both nanofibers F1 and F2 were linear. Transmission electron microscopy verified that nanofibers F2 featured a clear core-sheath nanostructure with a thin sheath layer about 25 nm, whereas their cores and nanofibers F1 were homogeneous KET-gliadin nanocomposites. X-ray diffraction patterns verified that, as a result of fine compatibility, KET was dispersed in gliadin in an amorphous state. In vitro dissolution tests demonstrated that the thin blank nanocoating in nanofibers F2 significantly modified drug release kinetics from a traditional exponential equation of nanofibers F1 to a zero-order controlled release model, linearly freeing 95.7 ± 4.7% of the loaded cargoes over a time period of 16 h.

  16. F-16XL ship #1 - CAWAP boundary layer hot film, left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. Hot film is used to measure temperature changes on a surface. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  17. Patterns of folding and fold interference in oblique contraction of layered rocks of the inverted Cobar Basin, Australia

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Marshall, B.

    1992-12-01

    The inverted Cobar Basin, within the Lachlan Fold Belt of New South Wales, Australia, comprises a mid-Palaeozoic cover sequence, originally deposited in a NNW-trending basin. The pattern of F 1 folding in the layered cover rocks changes from east to west; from tight well-cleaved folds parallel to the NNW-trending basin margin on the east, to open poorly cleaved en echelon folds at about 35° to the margin, further to the west. The change in fold trend and strain intensity has been repeatedly ascribed to the differing behaviour of discrete zones, decoupled across a north-trending strike-slip fault boundary. New field data show that the changes in orientation and strain intensity of F 1 structures are progressively developed, that an abrupt boundary between discrete zones cannot be substantiated, and that interpretations involving decoupled blocks are not supported by the evidence. Conversely, the data require coherent behaviour across the basin, such that the overall pattern of F 1 folding must be explained by strain compatible processes. This new interpretation of the F 1 deformation pattern has been modelled and quantitatively analysed. Theoretical predictions of the orientation of structures in unlayered isotropic material undergoing oblique contraction are inapplicable to layered anisotropic material. The style of deformation in layered material will reflect the interaction of the bulk strain pattern due to convergence together with the influence of the layering anisotropy. The orientations of the finite strain axes inferred from the folding need not match those of the bulk deformation; the amount of strain recorded by folding may be unrepresentative of that developed in the deformed tract. Oblique contraction at a range of convergence angles was simulated by models employing layers of wet tissue paper. Quantitative analysis of the strain patterns in this layered anisotropic material showed consistent departures from the theoretical predictions for isotropic material. The orientations of the principal finite horizontal extension proximal to the margin yielded higher convergence angles than those which were imposed; the orientations distal from the margin yielded substantially lower apparent convergence angles. This is because the layering anisotropy results in tight folds dissipating the normal component of the oblique convergence vector close to the margin. Whereas more open structures further from the margin show orientations controlled by the progressively more dominant shear component of the vergence vector. Modelling of D 1 the Cobar Basin shows that the F 1 pattern is consistent with dextral oblique convergence at 60° to the eastern margin of the basin. The deformation patterns, in both the model and the Cobar Basin, yield higher proximal and substantially lower distal apparent convergence angles. This is as expected from theoretical considerations and quantitative analysis of oblique contraction over a range of convergence angles. The rheological anisotropy of the cover sequence of the basin is replicated by that of the layered wet tissue paper. Wet-tissue modelling of the superposition of the second period of deformation (D 2) on F 1 demonstrates the way in which the tightness and orientation of early folds influence the type of fold interference pattern. At the eastern margin of the Cobar Basin, where D 1 was most intense, this resulted in major swings of the strike of bedding and cleavage, and of the trend of F 1 folds. Further west, open basin and dome patterns developed where D 1 was least intense. Principles developed in relation to the inversion of the Cobar Basin, are equally applicable to other basins in which layered cover rocks have undergone inversion by oblique contraction. Many basins in the Lachlan Fold Belt and in general would fall within this category.

  18. Analysis of variance study of the rat cortical layer 4 barrel and layer 5b neurones

    PubMed Central

    Ito, Muneyuki; Kato, Miyuki

    2002-01-01

    Unique formation of rodent cortical barrels by layer 4 neurones attracts study of the sensory function of cortical input stage neurones (layer 4) compared with that of output stage neurones (layer 5). We have recorded extracellular responses from rat somatosensory cortical neurones to deflections of contralateral vibrissae. Thirty-two layer 4 barrel neurones and 29 layer 5b neurones were studied. Whisker stimulations were ramp-and-hold deflections with one of six different ramp velocities (100–2.5 mm s−1) and one of four different plateau amplitudes (2000–200 μm). Twenty-four (6 × 4) different stimulus forms were applied to the tip of a whisker trimmed to 10 mm in a predetermined order in stimulus cycles of 20–50 repetitions. Spike counts for a period of 2560 ms in 10 ms bins were summed to construct a matrix of 24 peristimulus histograms for each neurone. Twenty-four amplitude and 24 velocity values were computed from counts during the plateau and ramp phases, respectively. To determine the amplitude- and velocity dependence of a neurone, an amplitude F value (the ratio of variations among-/within-amplitude of the amplitude value) and a velocity F value (ratio of variations among-/within-velocity of the velocity value) were derived by analysis of variance. The amplitude F value of the layer 4 barrel neurones was greater than that of the layer 5b neurones (P < 0.0001). The velocity F value of the barrel neurones was smaller than that of the layer 5b neurones (P = 0.0226). The results suggests that barrel neurones and layer 5b neurones tend to detect amplitude and velocity components of whisker deflection, respectively. PMID:11882683

  19. 49 CFR 173.225 - Packaging requirements and other provisions for organic peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Where: q = heat absorption (W) A = wetted area (m2) F = insulation factor (−) (B) Insulation factor (F... insulated vessels F is calculated using the following formula: ER20DE04.003 Where: U = K/L = heat transfer coefficient of the insulation (W·m−2·K−1); where K = heat conductivity of insulation layer (W·m−1·K−1), and L...

  20. On the influence of solar activity on the mid-latitude sporadic E layer

    NASA Astrophysics Data System (ADS)

    Pezzopane, Michael; Pignalberi, Alessio; Pietrella, Marco

    2015-09-01

    To investigate the influence of solar cycle variability on the sporadic E layer (Es), hourly measurements of the critical frequency of the Es ordinary mode of propagation, foEs, and of the blanketing frequency of the Es layer, fbEs, recorded from January 1976 to December 2009 at the Rome (Italy) ionospheric station (41.8° N, 12.5° E), were examined. The results are: (1) a high positive correlation between the F10.7 solar index and foEs as well as between F10.7 and fbEs, both for the whole data set and for each solar cycle separately, the correlation between F10.7 and fbEs being much higher than the one between F10.7 and foEs; (2) a decreasing long-term trend of the F10.7, foEs and fbEs time series, with foEs decreasing more rapidly than F10.7 and fbEs; (3) clear and statistically significant peaks at 11 years in the foEs and fbEs time series, inferred from Lomb-Scargle periodograms.

  1. Infrared and Raman spectroscopic characterization of the silicate-carbonate mineral carletonite - KNa4Ca4Si8O18(CO3)4(OH,F)·H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Belotti, Fernanda Maria

    2013-06-01

    An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chemical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)·H2O has been undertaken using vibrational spectroscopy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of composition NaKSi8O18·H2O, a carbonate layer of composition NaCO3·0.5H2O and two carbonate layers of composition NaCa2CO3(F,OH)0.5. Raman bands are observed at 1066, 1075 and 1086 cm-1. Whether these bands are due to the CO32- ν1 symmetric stretching mode or to an SiO stretching vibration is open to question. Multiple bands are observed in the 300-800 cm-1 spectral region, making the attribution of these bands difficult. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate and carbonate surfaces.

  2. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics.

    PubMed

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-10-08

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT~0.9 GHz, fMAX~1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics.

  3. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    PubMed Central

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573

  4. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  5. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors.

    PubMed

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-24

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g(-1) at a current density of 2 A g(-1), which is higher than the capacitance of bare G (145 F g(-1)) and bare Ni (3 F g(-1)). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g(-1) at a current density of 5 A g(-1) and a capacitance of 144 F g(-1) at a current density of 10 A g(-1). The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  6. Improved electrochemical performance of spinel LiMn 1.5Ni 0.5O 4 through MgF 2 nano-coating

    DOE PAGES

    Wu, Qing; Zhang, Xiaoping; Sun, Shuwei; ...

    2015-07-08

    In this paper, a spinel LiMn 1.5Ni 0.5O 4 (LMNO) cathode material synthesized by a sol–gel method is modified by MgF 2 nano-coating via a wet coating strategy. The results of X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) showed that the MgF 2 nano-coating layers do not physically change the bulk structure of the pristine material. Compared with the pristine compound, the MgF 2-coated LMNO electrodes display enhanced cycling stabilities. Particularly, the 5 wt% MgF 2-coated LMNO demonstrates the best reversibility, with a capacity retention of 89.9% after 100more » cycles, much higher than that of the pristine material, 69.3%. The dQ/dV analysis and apparent Li + diffusion coefficient calculation prove that the kinetic properties are enhanced after MgF 2 surface modification, which partly explains the improved electrochemical performances. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) data confirm that the MgF 2 coating layer helps in suppressing the fast growth of the solid electrolyte interface (SEI) film in repeated cycling, which effectively stabilizes the spinel structure. Finally and additionally, differential scanning calorimetry (DSC) tests show that the MgF 2 nano-coating layer also helps in enhancing the thermal stability of the LMNO cathode.« less

  7. Underwater Flow Visualization Methods in the Upper Layer of the Ocean.

    DTIC Science & Technology

    1981-05-22

    AD-A107 919 NAVAL RESEARCH LAB WASHINGTON DC F/G 8/3 UNDERWATER FLOW VISUALIZATION METHODS IN T1E UPPER LAYER OF THE-ETC(U) AMAY 81 J R MCGRATH, C M...S.bOti1.) S. TYPE OF REPORT I PERIOD COVERED UNDERWATER FLOW VISUALIZATION METHODS Interim report on a continuingNRL problem. IN THE UPPER LAYER OF THE...56 UNDERWATER FLOW VISUALIZATION METHODS IN THE UPPER LAYER OF THE OCEAN 1. INTRODUCTION a) Purpose This report documents the

  8. A Novel Layered Sedimentary Rocks Structure of the Oxygen-Enriched Carbon for Ultrahigh-Rate-Performance Supercapacitors.

    PubMed

    Zhang, Lin-Lin; Li, Huan-Huan; Shi, Yan-Hong; Fan, Chao-Ying; Wu, Xing-Long; Wang, Hai-Feng; Sun, Hai-Zhu; Zhang, Jing-Ping

    2016-02-17

    In this paper, gelatin as a natural biomass was selected to successfully prepare an oxygen-enriched carbon with layered sedimentary rocks structure, which exhibited ultrahigh-rate performance and excellent cycling stability as supercapacitors. The specific capacitance reached 272.6 F g(-1) at 1 A g(-1) and still retained 197.0 F g(-1) even at 100 A g(-1) (with high capacitance retention of 72.3%). The outstanding electrochemical performance resulted from the special layered structure with large surface area (827.8 m(2) g(-1)) and high content of oxygen (16.215 wt %), which effectively realized the synergistic effects of the electrical double-layer capacitance and pseudocapacitance. Moreover, it delivered an energy density of 25.3 Wh kg(-1) even with a high power density of 34.7 kW kg(-1) and ultralong cycling stability (with no capacitance decay even over 10,000 cycles at 2 A g(-1)) in a symmetric supercapacitor, which are highly desirable for their practical application in energy storage devices and conversion.

  9. Hollow Rodlike MgF2 with an Ultralow Refractive Index for the Preparation of Multifunctional Antireflective Coatings.

    PubMed

    Bao, Lei; Ji, Zihan; Wang, Hongning; Chen, Ruoyu

    2017-06-27

    Antireflective coatings with superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength have important practical value. In this research, hollow nanorod-like MgF 2 sols with different void volumes were prepared by a template-free solvothermal method to further obtain hollow nanorod-like MgF 2 crystals with an ultralow refractive index of 1.14. Besides, a MgF 2 coating with an adjustable refractive index of 1.10-1.35 was also prepared by the template-free solvothermal method. Then through the combination of base/acid two-step-catalyzed TEOS and hydroxyl modification on the surface of nanosilica spheres, the SiO 2 coating with good mechanical strength, a flat surface, and a refractive index of 1.30-1.45 was obtained. Double-layer broadband antireflective coatings with an average transmittance of 99.6% at 400-1400 nm were designed using the relevant optical theory. After the coating thickness was optimized by the dip-coating method, the double-layer antireflective coatings, whose parameters were consistent with those designed by the theory, were obtained. The bottom layer was a SiO 2 coating with a refractive index of 1.34 and a thickness of 155 nm, and the top layer was a hollow rodlike MgF 2 coating with a refractive index of 1.10 and a thickness of 165 nm. The average transmittance of the obtained MgF 2 -SiO 2 antireflective coatings was 99.1% at 400-1400 nm, which was close to the theoretical value. The hydrophobic angle of the coating surface reached 119° at first, and the angle further reached 152° after conducting surface modification by PFOTES. In addition, because the porosity of the coating surface was only 10.7%, the pencil hardness of the coating surface was 5 H and the critical load Lc was 27.05 N. In summary, the obtained antireflective coatings possessed superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength.

  10. Microstructure-related properties at 193 nm of MgF2 and GdF3 films deposited by a resistive-heating boat.

    PubMed

    Liu, Ming-Chung; Lee, Cheng-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2006-03-01

    MgF2 and GdF3 materials, used for a single-layer coating at 193 nm, are deposited by a resistive-heating boat at specific substrate temperatures. Optical characteristics (transmittance, refractive index, extinction coefficient, and optical loss) and microstructures (morphology and crystalline structure) are investigated and discussed. Furthermore, MgF2 is used as a low-index material, and GdF3 is used as a high-index material for multilayer coatings. Reflectance, stress, and the laser-induced damage threshold (LIDT) are studied. It is shown that MgF2 and GdF3 thin films, deposited on the substrate at a temperature of 300 degrees C, obtain good quality thin films with high transmittance and little optical loss at 193 nm. For multilayer coatings, the stress mainly comes from MgF2, and the absorption comes from GdF3. Among those coatings, the sixteen-layer design, sub/(1.4L 0.6H)8/air, shows the largest LIDT.

  11. F-16XL ship #1 outboard rake #7

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the #7 outboard rake on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  12. Rapid Near-inertial Internal Wave Group Propagation Through the Transition Layer from Float and Glider Observations in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Johnston, S.; Rudnick, D. L.; Sherman, J. T.

    2016-02-01

    Two Spray gliders and 1 SOLO-II float were deployed in 2013 and 2014 as components of ONR's Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Shallow (10-50 m) salinity-controlled mixed layers in the Bay of Bengal isolate the rest of the deeper isothermal layer and ocean interior from winds. The transition layer is a deeper stratification maximum (20-100 m), which separates the upper ocean from the interior. Downward near-inertial internal wave (NIW) groups are observed here in potential density fluctuations and can rapidly (a few inertial periods) transfer energy out of the mixed layer into the stratified interior. (Inertial periods are T = 2*pi/f = 2 - 3 days from 9 - 17°N, where f is the Coriolis frequency.) When isopycnals shoal at fronts, the transition layer is brought closer to the mixed layer allowing for faster downward group speed due to the higher stratification. With about 10 inertial wind events in the NCEP reanalysis over the observation period of about 21 weeks, we find 3 NIW groups with clear downward energy (upward phase) propagation into the interior. The groups reach 200 m within 2-3 T and have vertical wavelengths of about 200 m. This implies horizontal wavelengths of about 200 km if the waves have a frequency of 1.1f. This horizontal wavelength and propagation time scale appear consistent with surface wind forcing correlation scales from 3-day highpassed wind products and decay estimates from surface drifters and theory (Park et al., 2009). Our results extend this previous work by making subsurface observations and measuring further equatorward. The mesoscale appears to mediate: (a) the conversion from mixed layer inertial oscillations into propagating NIW and (b) NIW propagation into the interior.

  13. Gravity Wave Dynamics and Tidal Interactions in the MLT and at the Bottomside F Layer and Their Potential Contributions to Neutral and Plasma Dynamics

    DTIC Science & Technology

    2012-04-16

    Figure 1. SpreadFEx-2 instrument locations enabled by thi AFOSR contract and related effort . CERTO tomography CERTO bf’acon • • FPI 20 F...layer vector w1nd~ .,..,---:[ - I I II " I I I ’ ’ I \\ I \\ ’, rr1 ’ ’ ’ I ’I ... • An example of the initial tomography using 2 and 3...corresponding non-migrating modes, suggesting that the migrating modes must contribute at least as significantly to thermospheric and ionospheric

  14. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Xiangjun; Dou, Hui; Yuan, Changzhou; Yang, Sudong; Hao, Liang; Zhang, Fang; Shen, Laifa; Zhang, Luojiang; Zhang, Xiaogang

    2012-01-01

    The flexible electrodes have important potential applications in energy storage of portable electronic devices for their powerful structural properties. In this work, unique flexible films with polypyrrole/carbon nanotube (PPy/CNT) composite homogeneously distributed between graphene (GN) sheets are successfully prepared by flow-assembly of the mixture dispersion of GN and PPy/CNT. In such layered structure, the coaxial PPy/CNT nanocables can not only enlarge the space between GN sheets but also provide pseudo-capacitance to enhance the total capacitance of electrodes. According to the galvanostatic charge/discharge analysis, the mass and volume specific capacitances of GN-PPy/CNT (52 wt% PPy/CNT) are 211 F g-1 and 122 F cm-3 at a current density of 0.2 A g-1, higher than those of the GN film (73 F g-1 and 79 F cm-3) and PPy/CNT (164 F g-1 and 67 F cm-3). Significantly, the GN-PPy/CNT electrode shows excellent cycling stability (5% capacity loss after 5000 cycles) due to the flexible GN layer and the rigid CNT core synergistical releasing the intrinsic differential strain of PPy chains during long-term charge/discharge cycles.

  15. Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Wenping; Rui, Xianhong; Ulaganathan, Mani; Madhavi, Srinivasan; Yan, Qingyu

    2015-11-01

    Few-layered Ni(OH)2 nanosheets (4-5 nm in thickness) are synthesized towards high-performance supercapacitors. The ultrathin Ni(OH)2 nanosheets show high specific capacitance and good rate capability in both three-electrode and asymmetric devices. In the three-electrode device, the Ni(OH)2 nanosheets deliver a high capacitance of 2064 F g-1 at 2 A g-1, and the capacitance still has a retention of 1837 F g-1 at a high current density of 20 A g-1. Such excellent performance is by far one of the best for Ni(OH)2 electrodes. In the two-electrode asymmetric device, the specific capacitance is 248 F g-1 at 1 A g-1, and reaches 113 F g-1 at 20 A g-1. The capacitance of the asymmetric device maintains to be 166 F g-1 during the 4000th cycle at 2 A g-1, suggesting good cycling stability of the device. Besides, the asymmetric device exhibits gravimetric energy density of 22 Wh kg-1 at a power density of 0.8 kW kg-1. The present results demonstrate that the ultrathin Ni(OH)2 nanosheets are highly attractive electrode materials for achieving fast charging/discharging and high-capacity supercapacitors.

  16. MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain

    NASA Astrophysics Data System (ADS)

    Mishra, Akhilesh Kumar; Mishra, Satyendra Kumar

    2017-04-01

    A theoretical study of a noble surface plasmon resonance (SPR) based sensing probe has been carried out. The sensing probe consists of a magnesium fluoride (MgF2) prism with its base coated with rarely used noble metal rhodium (Rh) and a bio-compatible layer of graphene. The refractive indices (RIs) of the sensing medium vary from 1.33 to 1.36 refractive index unit (RIU). The thickness of Rh and the number of graphene layers have been optimized for maximum sensitivity in a constraint set by the detection accuracy (DA). For the operating wavelength of 632 nm, the optimized sensing probe Rh (12 nm)/graphene (single layer) demonstrates sensitivity of ~259 degree/RIU with corresponding DA of ~0.32 degree-1 while for 532 nm of excitation, the optimized sensing probe Rh (12 nm)/graphene (three layer) exhibits sensitivity of ~240 degree/RIU and DA of ~0.27 degree-1.

  17. MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain.

    PubMed

    Mishra, Akhilesh Kumar; Mishra, Satyendra Kumar

    2017-04-12

    A theoretical study of a noble surface plasmon resonance (SPR) based sensing probe has been carried out. The sensing probe consists of a magnesium fluoride (MgF 2 ) prism with its base coated with rarely used noble metal rhodium (Rh) and a bio-compatible layer of graphene. The refractive indices (RIs) of the sensing medium vary from 1.33 to 1.36 refractive index unit (RIU). The thickness of Rh and the number of graphene layers have been optimized for maximum sensitivity in a constraint set by the detection accuracy (DA). For the operating wavelength of 632 nm, the optimized sensing probe Rh (12 nm)/graphene (single layer) demonstrates sensitivity of ~259 degree/RIU with corresponding DA of ~0.32 degree -1 while for 532 nm of excitation, the optimized sensing probe Rh (12 nm)/graphene (three layer) exhibits sensitivity of ~240 degree/RIU and DA of ~0.27 degree -1 .

  18. Boundary Layer Structure and Its Relation to Precipitation Over the St. Louis Area.

    DTIC Science & Technology

    1980-10-01

    of METEORO LOGY SECTION 0i{1J ( 0I~) AT THE mp UNI VERSITY OV ILLINOIS0 SMISContract Report 241 T - BOUNDARY LAYER STRUCTURE AND ITS RELATION TO...PRECIPITATION OVER THE ST. LOUIS AREA Gary L. Achtemeier Meteorology Section Ill1inois State Water &uIvey, DTII CLeELEC T E C.> JAN 15 1981( Technical...in f r ’TNil PA&F rlhImm Does Rnteredl 𔄃. -. , .’.-..,. -.- -/" . ECumITYv CLASSFICATIOW Of TH t PAGE(Wfhn Date Entr,.e) 15529. 4-GS ?0. ABSTRACT

  19. Definite existence of subphases with eight- and ten-layer unit cells as studied by complementary methods, electric-field-induced birefringence and microbeam resonant x-ray scattering.

    PubMed

    Feng, Zhengyu; Chandani Perera, A D L; Fukuda, Atsuo; Vij, Jagdish K; Ishikawa, Ken; Iida, Atsuo; Takanishi, Yoichi

    2017-07-01

    A mixture of two selenium-containing compounds, 80 wt. % AS657 and 20 wt. % AS620, are studied with two complementary methods, electric-field-induced birefringence (EFIB) and microbeam resonant x-ray scattering (μRXS). The mixture shows the typical phase sequence of Sm-C_{A}^{*}-1/3-1/2-Sm-C^{*}-Sm-C_{α}^{*}-Sm-A, where 1/3 and 1/2 are two prototypal ferrielectric and antiferroelectric subphases with three- and four-layer unit cells, respectively. Here we designate the subphase as its q_{T} number defined by the ratio of [F]/([F]+[A]), where [F] and [A] are the numbers of synclinic ferroelectric and anticlinic antiferroelectric orderings in the unit cell, respectively. The electric field vs temperature phase diagram with EFIB contours indicates the emergence of three additional subphases, an antiferroelectric one between Sm-C_{A}^{*} and 1/3 and antiferroelectric and apparently ferrielectric ones between 1/3 and 1/2. The simplest probable q_{T}'s for these additional subphases are 1/4, 2/5, and 3/7, respectively, in the order of increasing temperature. The μRXS profiles indicate that antiferroelectric 1/4 and 2/5 approximately have the eight-layer (FAAAFAAA) and ten-layer (FAFAAFAFAA) Ising unit cells, respectively. The remaining subphase may be ferrielectric 3/7 with a seven-layer unit cell, although the evidence is partial. These experimental results are compared with the phenomenological Landau model [P. V. Dolganov and E. I. Kats, Liq. Cryst. Rev. 1, 127 (2014)2168-039610.1080/21680396.2013.869667] and the quasimolecular model [A. V. Emelyanenko and M. A. Osipov, Phys. Rev. E 68, 051703 (2003)1063-651X10.1103/PhysRevE.68.051703].

  20. Magnetospheric convection and the high-latitude F2 ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.

    1974-01-01

    Behavior of the polar ionospheric F layer as it is convected through the cleft, over the polar cap, and through the nightside F layer trough zone is investigated. Passage through the cleft adds approximately 200,000 ions per cu cm in the vicinity of the F2 peak and redistributes the ionization above approximately 400-km altitude to conform with an increased electron temperature. The redistribution of ionization above 400-km altitude forms the 'averaged' plasma ring seen at 1000-km altitude. The F layer is also raised by approximately 20 km in altitude by the convection electric field. The time required for passage across the polar cap (25 deg) is about the same as that required for the F layer peak concentration to decay by e. The F layer response to passage through the nightside soft electron precipitation zone should be similar to but less than its response to passage through the cleft.

  1. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor.

    PubMed

    Itoi, Hiroyuki; Nishihara, Hirotomo; Kogure, Taichi; Kyotani, Takashi

    2011-02-09

    Zeolite-templated carbon is a promising candidate as an electrode material for constructing an electric double layer capacitor with both high-power and high-energy densities, due to its three-dimensionally arrayed and mutually connected 1.2-nm nanopores. This carbon exhibits both very high gravimetric (140-190 F g(-1)) and volumetric (75-83 F cm(-3)) capacitances in an organic electrolyte solution. Moreover, such a high capacitance can be well retained even at a very high current up to 20 A g(-1). This extraordinary high performance is attributed to the unique pore structure.

  2. Geologic Surface Effects of Underground Nuclear Testing, Buckboard Mesa, Climax Stock, Dome Mountain, Frenchman Flat, Rainier/Aqueduct Mesa, and Shoshone Mountain, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Grasso, Dennis N.

    2003-01-01

    Surface effects maps were produced for 72 of 89 underground detonations conducted at the Frenchman Flat, Rainier Mesa and Aqueduct Mesa, Climax Stock, Shoshone Mountain, Buckboard Mesa, and Dome Mountain testing areas of the Nevada Test Site between August 10, 1957 (Saturn detonation, Area 12) and September 18, 1992 (Hunters Trophy detonation, Area 12). The ?Other Areas? Surface Effects Map Database, which was used to construct the maps shown in this report, contains digital reproductions of these original maps. The database is provided in both ArcGIS (v. 8.2) geodatabase format and ArcView (v. 3.2) shapefile format. This database contains sinks, cracks, faults, and other surface effects having a combined (cumulative) length of 136.38 km (84.74 mi). In GIS digital format, the user can view all surface effects maps simultaneously, select and view the surface effects of one or more sites of interest, or view specific surface effects by area or site. Three map layers comprise the database. They are: (1) the surface effects maps layer (oase_n27f), (2) the bar symbols layer (oase_bar_n27f), and (3) the ball symbols layer (oase_ball_n27f). Additionally, an annotation layer, named 'Ball_and_Bar_Labels,' and a polygon features layer, named 'Area12_features_poly_n27f,' are contained in the geodatabase version of the database. The annotation layer automatically labels all 295 ball-and-bar symbols shown on these maps. The polygon features layer displays areas of ground disturbances, such as rock spall and disturbed ground caused by the detonations. Shapefile versions of the polygon features layer in Nevada State Plane and Universal Transverse Mercator projections, named 'area12_features_poly_n27f.shp' and 'area12_features_poly_u83m.shp,' are also provided in the archive.

  3. Micro-Satellite Impact Tests to Investigate Multi-Layer Insulation Fragments

    NASA Technical Reports Server (NTRS)

    Liou, J.C.; Murakami, Junko; Hanaha, Toshiya

    2009-01-01

    This paper summarizes two satellite impact experiments completed in 2008. The objective of the experiments is to investigate the physical properties of satellite fragments, including those originated from Multi-Layer Insulation (MLI) and solar panels. The ultimate goal is to use the results to improve the NASA Standard Breakup Model. The targets were two cubic micro-satellites, 20 cm by 20 cm by 20 cm in size, and approximately 1,500 g in mass. The main structure of each micro-satellite was composed of five layers; the top and bottom layers and three internal layers parallel to the top and bottom layers, plus four side panels. The top layer was equipped with solar cells that was mounted to an aluminum honeycomb sandwich panel with CFRP face sheets. The four side panels and the bottom layer are all covered with MLI. The two satellite impact experiments were conducted using the two-stage light gas gun at the Kyushu Institute of Technology in Kitakyusyu, Japan. For the first experiment (labeled Shot F), the satellite was oriented in such a way that the solar panel was facing the incoming projectile, a 39.3 g aluminum alloy solid sphere. For the second experiment (labeled Shot R), the satellite was oriented so that the solar panel was on the opposite side of the impact surface. The projectile used in the second shot was a 39.2 g aluminum alloy solid sphere. The impact speeds of Shot F and Shot R were 1.74 km/s and 1.78 km/s, respectively. The ratio of the impact kinetic energy to satellite mass for the two experiments was about 40 J/g. Both target satellites were completely fragmented, although there were noticeable differences in the characteristics of the fragments. Approximately 1,800 fragments were collected from Shot F but only 1,000 fragments were collected from Shot R. This difference primarily comes from the number of needle-like CFRP and MLI fragments. The difference in CFRP pieces depends on how the CFRP panels were fragmented. Regarding the MLI pieces, a significant difference in size and number can be observed. The largest MLI pieces in Shot F are almost of the same size as the side panels, whereas those in Shot R are larger by about a factor of two. The collected fragments and MLI pieces will be measured and analyzed using the same method as described in the NASA Standard Breakup Model. This paper will present: (1) the area-to-mass ratio, size, and mass distributions of the fragments, and (2) the differences in fragment properties between Shot F and Shot R.

  4. Dentinal tubule occluding capability of nano-hydroxyapatite; The in-vitro evaluation.

    PubMed

    Baglar, Serdar; Erdem, Umit; Dogan, Mustafa; Turkoz, Mustafa

    2018-04-29

    In this in-vitro study, the effectiveness of experimental pure nano-hydroxyapatite (nHAP) and 1%, 2%, and 3% F¯ doped nano-HAp on dentine tubule occlusion was investigated. And also, the cytotoxicity of materials used in the experiment was evaluated. Nano-HAp types were synthesized by the precipitation method. Forty dentin specimens were randomly divided into five groups of; 1-no treatment (control), 2-specimens treated with 10% pure nano-HAp and 3, 4, 5 specimens treated with 1%, 2%, and 3% F - doped 10% nano-HAp, respectively. To evaluate the effectiveness of the materials used; pH, FTIR, and scanning electron microscopy evaluations were performed before and after degredation in simulated body fluid. To determine cytotoxicity of the materials, MTT assay was performed. Statistical evaluations were performed with F and t tests. All of the nano-HAp materials used in this study built up an effective covering layer on the dentin surfaces even with plugs in tubules. It was found that this layer had also a resistance to degradation. None of the evaluated nano-HAp types were have toxicity. Fluoride doping showed a positive effect on physical and chemical stability until a critical value of 1% F - . The all evaluated nano-HAp types may be effectively used in dentin hypersensitivity treatment. The formed nano-HAp layers were seem to resistant to hydrolic deletion. The pure and 1% F - doped nano-HAp showed the highest biocompatibility thus it was assessed that pure and 1% F - doped materials may be used as an active ingredient in dentin hypersensitivity agents. © 2018 Wiley Periodicals, Inc.

  5. Effect of TiN coating on microstructure of Tif/Al composite.

    PubMed

    Xiu, Z Y; Chen, G Q; Wang, M; Hussain, Murid

    2013-02-01

    In the present work, Ti fibre reinforced Al matrix composites (Ti(f)/Al) were fabricated by pressure infiltration method. In order to suppress the severe Ti-Al reaction and reduce the formation of brittle TiAl(3) phase, a TiN layer was coated on Ti fibres by an arc ion plating method before composite preparation. A thin TiN layer was coated on the Ti fibre surface, and the maximum and minimum thickness values of layer were about 3.5 and 1μm, respectively. Prefer orientation of TiN on (111) and (200) was found by XRD analysis. A thin and uniform TiAl(3) layer was observed in Ti(f)/Al composite. However, after coated with TiN layer, no significant reaction layer was found in (Ti(f)+TiN)/Al composite. Segregation of Mg element was found in Ti(f)/Al composite, and the presence of TiN layer showed little effect on this behaviour. Due to the large CTE difference between Ti fibre and Al matrix, high density dislocations were observed in the Al matrix. Meanwhile, fine dispersed Mg(2)Al(3) phases were also found in Al matrix. Ti fibre is mainly composed of α- and β-Ti. Small discontinuous needle-like TiAl(3) phases were detected at TiN/Al interface, which implies that the presence of TiN layer between the Ti fibre and Al matrix could effectively hinder the formation of TiAl(3) phases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

    PubMed

    Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin

    2015-10-01

    In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Peculiarities of energy trapping of the UHF elastic waves in diamond-based piezoelectric layered structure. I. Waveguide criterion.

    PubMed

    Kvashnin, G M; Sorokin, B P; Novoselov, A S

    2018-03-01

    Finite Element Modeling of the peculiarities of the trapping energy phenomenon in application to the piezoelectric layered structure (PLS) "Al/(0 0 1) AlN/Mo/(1 0 0) diamond" has been fulfilled. The resonant properties of longitudinal bulk acoustic waves (BAW) as well as frequency dependence of impedance within the 1 - 6 GHz band have been studied. The investigation of distribution of elastic energy flow and elastic displacements in a PLS cross-section allowed us to obtain an important information on energy trapping (ET) in PLS. Experimentally and as a result of modeling, it has been found that Q minimums are observed in PLS at quarter-wave resonance in the thin-film piezoelectric transducer (TFPT). Maximal Q value was observed at half-wave resonance in TFPT. It has been established that the ET-effect depends considerably on the mutual location of the n-th overtone's antiresonant frequency f a , n and cut-off frequencies of substrate f s , n-k- 1 and f s , n-k where f s , n-k- 1 f s , n-k , when the BAW energy excites the symmetrical or antisymmetrical Lamb waves. Copyright © 2017. Published by Elsevier B.V.

  8. The Peptidoglycan-Binding Protein SjcF1 Influences Septal Junction Function and Channel Formation in the Filamentous Cyanobacterium Anabaena.

    PubMed

    Rudolf, Mareike; Tetik, Nalan; Ramos-León, Félix; Flinner, Nadine; Ngo, Giang; Stevanovic, Mara; Burnat, Mireia; Pernil, Rafael; Flores, Enrique; Schleiff, Enrico

    2015-06-30

    Filamentous, heterocyst-forming cyanobacteria exchange nutrients and regulators between cells for diazotrophic growth. Two alternative modes of exchange have been discussed involving transport either through the periplasm or through septal junctions linking adjacent cells. Septal junctions and channels in the septal peptidoglycan are likely filled with septal junction complexes. While possible proteinaceous factors involved in septal junction formation, SepJ (FraG), FraC, and FraD, have been identified, little is known about peptidoglycan channel formation and septal junction complex anchoring to the peptidoglycan. We describe a factor, SjcF1, involved in regulation of septal junction channel formation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. SjcF1 interacts with the peptidoglycan layer through two peptidoglycan-binding domains and is localized throughout the cell periphery but at higher levels in the intercellular septa. A strain with an insertion in sjcF1 was not affected in peptidoglycan synthesis but showed an altered morphology of the septal peptidoglycan channels, which were significantly wider in the mutant than in the wild type. The mutant was impaired in intercellular exchange of a fluorescent probe to a similar extent as a sepJ deletion mutant. SjcF1 additionally bears an SH3 domain for protein-protein interactions. SH3 binding domains were identified in SepJ and FraC, and evidence for interaction of SjcF1 with both SepJ and FraC was obtained. SjcF1 represents a novel protein involved in structuring the peptidoglycan layer, which links peptidoglycan channel formation to septal junction complex function in multicellular cyanobacteria. Nonetheless, based on its subcellular distribution, this might not be the only function of SjcF1. Cell-cell communication is central not only for eukaryotic but also for multicellular prokaryotic systems. Principles of intercellular communication are well established for eukaryotes, but the mechanisms and components involved in bacteria are just emerging. Filamentous heterocyst-forming cyanobacteria behave as multicellular organisms and represent an excellent model to study prokaryotic cell-cell communication. A path for intercellular metabolite exchange appears to involve transfer through molecular structures termed septal junctions. They are reminiscent of metazoan gap junctions that directly link adjacent cells. In cyanobacteria, such structures need to traverse the peptidoglycan layers in the intercellular septa of the filament. Here we describe a factor involved in the formation of channels across the septal peptidoglycan layers, thus contributing to the multicellular behavior of these organisms. Copyright © 2015 Rudolf et al.

  9. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.

    PubMed

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander

    2015-03-02

    Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under advanced culture conditions more closely resembling the in vivo situation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, E.; Mercandalli, B.; Houngninou, E.

    The authors describe results from a vertically oriented HF radar operated in the Ivory Coast, which studied irregularities in the E and F regions of the equatorial ionosphere. The authors report on irregularity observations at heights consistent with the equatorial electrojet, and at heights above the electrojet, and into the F1 layer. They observe irregularities into the F region in this work. The radar operated in the frequency range from 1 to 8 MHz.

  11. Design and fabrication of a multi-layered solid dynamic phantom: validation platform on methods for reducing scalp-hemodynamic effect from fNIRS signal

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hiroshi; Tanikawa, Yukari; Yamada, Toru

    2017-02-01

    Scalp hemodynamics contaminates the signals from functional near-infrared spectroscopy (fNIRS). Numerous methods have been proposed to reduce this contamination, but no golden standard has yet been established. Here we constructed a multi-layered solid phantom to experimentally validate such methods. This phantom comprises four layers corresponding to epidermides, dermis/skull (upper dynamic layer), cerebrospinal fluid and brain (lower dynamic layer) and the thicknesses of these layers were 0.3, 10, 1, and 50 mm, respectively. The epidermides and cerebrospinal fluid layers were made of polystyrene and an acrylic board, respectively. Both of these dynamic layers were made of epoxy resin. An infrared dye and titanium dioxide were mixed to match their absorption and reduced scattering coefficients (μa and μs', respectively) with those of biological tissues. The bases of both upper and lower dynamic layers have a slot for laterally sliding a bar that holds an absorber piece. This bar was laterally moved using a programmable stepping motor. The optical properties of dynamic layers were estimated based on the transmittance and reflectance using the Monte Carlo look-up table method. The estimated coefficients for lower and upper dynamic layers approximately coincided with those for biological tissues. We confirmed that the preliminary fNIRS measurement using the fabricated phantom showed that the signals from the brain layer were recovered if those from the dermis layer were completely removed from their mixture, indicating that the phantom is useful for evaluating methods for reducing the contamination of the signals from the scalp.

  12. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  13. Analysis of the Electrical Properties of an Electron Injection Layer in Alq3-Based Organic Light Emitting Diodes.

    PubMed

    Kim, Soonkon; Choi, Pyungho; Kim, Sangsub; Park, Hyoungsun; Baek, Dohyun; Kim, Sangsoo; Choi, Byoungdeog

    2016-05-01

    We investigated the carrier transfer and luminescence characteristics of organic light emitting diodes (OLEDs) with structure ITO/HAT-CN/NPB/Alq3/Al, ITO/HAT-CN/NPB/Alq3/Liq/Al, and ITO/HAT-CN/NPB/Alq3/LiF/A. The performance of the OLED device is improved by inserting an electron injection layer (EIL), which induces lowering of the electron injection barrier. We also investigated the electrical transport behaviors of p-Si/Alq3/Al, p-Si/Alq3/Liq/Al, and p-Si/Alq3/LiF/Al Schottky diodes, by using current-voltage (L-V) and capacitance-voltage (C-V) characterization methods. The parameters of diode quality factor n and barrier height φ(b) were dependent on the interlayer materials between Alq3 and Al. The barrier heights φ(b) were 0.59, 0.49, and 0.45 eV, respectively, and the diode quality factors n were 1.34, 1.31, and 1.30, respectively, obtained from the I-V characteristics. The built in potentials V(bi) were 0.41, 0.42, and 0.42 eV, respectively, obtained from the C-V characteristics. In this experiment, Liq and LiF thin film layers improved the carrier transport behaviors by increasing electron injection from Al to Alq3, and the LiF schottky diode showed better I-V performance than the Liq schottky diode. We confirmed that a Liq or LiF thin film inter-layer governs electron and hole transport at the Al/Alq3 interface, and has an important role in determining the electrical properties of OLED devices.

  14. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  15. Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.A.E.; Beijerinck, H.C.W.

    2005-01-01

    Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less

  16. One-dimensional magnetophotonic crystals with magnetooptical double layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° atmore » a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  18. F-16XL ship #1 CAWAP flight - alpha 5 degrees, altitude 10,000 feet

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. This photo shows the aircraft gathering data at an altitude of 10,000 feet, with an angle of attack of 5 degrees. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  19. F-16XL ship #1 - CAWAP outboard rakes #7 and inboard rack #3

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the #7 outboard rake and the #3 inboard rake on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  20. F-16XL ship #1 CAWAP flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  1. F-16XL ship #1 - CAWAP outboard rake #7

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the #7 outboard rake on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  2. Method for disclosing invisible physical properties in metal-ferroelectric-insulator-semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue

    2017-04-01

    In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.

  3. Hidden symmetries in N-layer dielectric stacks

    NASA Astrophysics Data System (ADS)

    Liu, Haihao; Shoufie Ukhtary, M.; Saito, Riichiro

    2017-11-01

    The optical properties of a multilayer system with arbitrary N layers of dielectric media are investigated. Each layer is one of two dielectric media, with a thickness one-quarter the wavelength of light in that medium, corresponding to a central frequency f 0. Using the transfer matrix method, the transmittance T is calculated for all possible 2 N sequences for small N. Unexpectedly, it is found that instead of 2 N different values of T at f 0 (T 0), there are only (N/2+1) discrete values of T 0, for even N, and (N + 1) for odd N. We explain this high degeneracy in T 0 values by finding symmetry operations on the sequences that do not change T 0. Analytical formulae were derived for the T 0 values and their degeneracies as functions of N and an integer parameter for each sequence we call ‘charge’. Additionally, the bandwidth at f 0 and filter response of the transmission spectra are investigated, revealing asymptotic behavior at large N.

  4. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    PubMed Central

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-01-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g−1 at a current density of 2 A g−1, which is higher than the capacitance of bare G (145 F g−1) and bare Ni (3 F g−1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g−1 at a current density of 5 A g−1 and a capacitance of 144 F g−1 at a current density of 10 A g−1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor. PMID:27553290

  5. Spin-filter specular spin valves

    NASA Astrophysics Data System (ADS)

    Lu, Z. Q.; Pan, G.; Jibouri, A. A.; Zheng, Yaunkai

    2002-01-01

    Both a thin free layer and high magnetoresistance (MR) ratio are required in spin valves for high magnetic density recording heads. In traditional spin valve structures, reducing the free layer normally results in a reduction in MR. We report here on a spin-filter specular spin valve with structure Ta 3.5 nm/NiFe 2 nm/IrMn 6 nm/CoFe 1.5 nm/Nol/CoFe 2 nm/Cu 2.2 nm/CoFe tF/Cu tSF/Nol2/Ta 3 nm, which is demonstrated to maintain MR ratio higher than 12% even when the CoFe free layer is reduced to 1 nm. The semiclassical Boltzmann transport equation was used to simulate MR ratio. An optimized MR ratio of ˜14.5% was obtained when tF was about 1.5 nm and tSF about 1.0 nm as a result of the balance between the increase in electron mean free path difference and current shunting through conducting layer. It is found that the Cu enhancing layer not only enhances the MR ratio but also improves soft magnetic properties of CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibits a low coercivity of ˜3 Oe even after annealing at 270 °C for 7 h in a field of 1 kOe. Furthermore, the interlayer coupling field Hint between free layer and pinned layer can be controlled by balancing the Rudermann-Kittel-(Kasuya)-Yosida and magnetostatic coupling. Such a thin soft CoFe free layer is particularly attractive for high density read sensor application.

  6. Bis(1,3-dimethyl-1H-imidazolium) hexa-fluoro-silicate: the second monoclinic polymorph.

    PubMed

    Tian, Chong; Nie, Wanli; Borzov, Maxim V

    2013-01-01

    The title compound, 2C5H9N2 (+)·SiF6 (2-), (I), crystallized as a new polymorph, different from the previously reported one (Ia) [Light et al. (2007 ▶) private communication (refcode: NIQFAV). CCDC, Cambridge, England]. The symmetry [space groups P21/n for (I) and C2/c for(Ia)] and crystal packing patterns are markedly different for this pair of polymorphs. In (I), all imidazolium cations in the lattice are nearly parallel to each other, whereas a herringbone arrangement can be found in (Ia). In (I), each SiF6 (2-) dianion forms four short C-H⋯F contacts with adjacent C5H9N2 (+) cations, resulting in the formation of layers parallel to the ac plane. In (Ia), the C-H⋯F contacts are generally longer and result in the formation of layers along the bc plane.

  7. On periodic geophysical water flows with discontinuous vorticity in the equatorial f-plane approximation

    NASA Astrophysics Data System (ADS)

    Martin, Calin Iulian

    2017-12-01

    We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f-plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ1 adjacent to the surface situated above another layer of constant non-zero vorticity γ2≠γ1 adjacent to the bed. For certain vorticities γ1,γ2, we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows. This article is part of the theme issue 'Nonlinear water waves'.

  8. Evidence for a π-junction in Nb/F/Nb' trilayers from superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Hinton, Michael; Steers, Stanley; Peters, Bryan; Yang, Fengyuan

    Two-coil measurements of the sheet superfluid density of Nb/NiV/Nb' trilayers reveal the transition temperatures and volume superfluid densities of both Nb layers, as functions of the thickness, dF, of the intervening ferromagnetic (F) Ni0.96V0.04 layer. The upper transition occurs when the thicker Nb layer goes superconducting and superfluid first appears. Fitting the high-temperature superfluid density to an appropriate functional form reveals the presence of a lower ``transition'' where additional superfluid appears. This event is really a crossover, but the difference is irrelevant here. There is a surprising minimum in superfluid densities of both Nb layers at dF ~ 30 Å, followed by a slow rise. This behavior suggests that a π phase difference between the Nb layers develops at dF ~ 30 Å and continues to larger F thickness. Supported in part by NSF Grant DMR-0805227.

  9. Influence of magnesium fluoride (MgF2) layer on a conventional surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-05-01

    In this work, a numerical study of Surface Plasmon Resonance (SPR) sensor has been done by using Magnesium Fluoride (MgF2) layer on a conventional Kretschmann configuration. The prism was coated with smooth gold thin film of thickness 50 nm followed by MgF2 layer. To obtain the maximum reflection dips in the SPR modes, the thickness of MgF2 layer is optimized by varying it from 200-800 nm. Our calculations also reveal that SPR modes corresponding to gold-MgF2 layer are very sensitive to the changes in the surrounding medium as compared to the traditional SPR device. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such bilayer device (gold-MgF2) is expected to take an important role on the field of chemical and biological sensing.

  10. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors.

    PubMed

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-01-19

    In this work, bismuth selenides (Bi 2 Se 3 and Bi 3 Se 4 ), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi 2 Se 3 nanoplates exhibit much better performance as an electrode material than Bi 3 Se 4 nanoparticles do, delivering a higher specific capacitance (272.9 F g -1 ) than that of Bi 3 Se 4 (193.6 F g -1 ) at 5 mV s -1 . This result may be attributed to the fact that Bi 2 Se 3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi 3 Se 4 ). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi 2 Se 3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm -3 at 20 mV s -1 (Bi 3 Se 4 : 79.1 F cm -3 ), a high energy density of 17.9 mWh cm -3 and a high power density of 18.9 W cm -3 . The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi 2 Se 3 (Bi 3 Se 4 :90.3%). Clearly, Bi 2 Se 3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  11. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-02-01

    In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  12. Reactive ion-beam-sputtering of fluoride coatings for the UV/VUV range

    NASA Astrophysics Data System (ADS)

    Schink, Harald; Kolbe, Jurgen; Zimmermann, F.; Ristau, Detlev; Welling, Herbert

    1991-06-01

    Fluoride coatings produced by thermal evaporation suffer from high scatter losses ageing and cracking due to high tensile stress. These problems impose severe limitations to the production of low loss multilayer coatings for the VUV range. A key position for improved performance is the microstructure of the layers. The aim of our investigations is to improve the microstructure of A1F3- and LaF3-'' films by ionbeamsputtering. Scatter measurements of single layers revealed lower values for lBS than for boat evaporation. Unfortunately sputtered fluoride films nave high absorption losses caused by decomposition of the coating material. By sputtering in reactive atmospheres and annealing we were able to reduce the absorption losses significantly. Antireflective as well as high reflective coatings were produced. Reflection and transmission values were obtained with a VUV-spectrophotometer. Damage tests at the 193 mu ArF laser wavelength were performed at the Laser-Laboratorium Gttingen. Key words: ion-beamsputtering fluoride films UVcoatings VUV-coatings color-center laser damage A]. F3 MgF2 LaF3. 1.

  13. Interesting Layering of Excreted 18F-FDG in the Urinary Bladder in Patients with Urinary Tract Infection and Distended Bladder.

    PubMed

    Shen, Guohua; Zhang, Wenjie; Jia, Zhiyun; Deng, Houfu

    2015-09-01

    Settling of (18)F-FDG in the bladder is often noted on whole-body PET/CT images, but this phenomenon has never received any careful attention and the mechanism has been unclear. The 2 patients described in this report, one with a T1 pathologic fracture and another with widespread bone and lymph node metastases from an unknown primary tumor, underwent PET/CT. Both had urinary tract infection and a distended bladder during scanning. The interesting layering of (18)F-FDG in the urinary bladder was observed in both patients. The presence of this phenomenon demands careful evaluation of the urine by the clinician, and the mechanism is hypothesized to be slow (18)F-FDG excretion in patients with a distended urinary bladder, resulting in delayed mixing with urine. In addition, urinary tract infection may be a potential cause. Images showing this interesting layering should be interpreted with care. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Fano Resonance of Eu2+ and Eu3+ in (Eu,Gd)Te MBE Layers

    NASA Astrophysics Data System (ADS)

    Orlowski, B. A.; Kowalski, B. J.; Dziawa, P.; Pietrzyk, M.; Mickievicius, S.; Osinniy, V.; Taliashvili, B.; Kowalik, I. A.; Story, T.; Johnson, R. L.

    2006-11-01

    Resonant photoemission spectroscopy, with application of synchrotron radiation, was used to study the valence band electronic structure of clean surface of (EuGd)Te layers. Fano-type resonant photoemission spectra corresponding to the Eu 4d-4f transition were measured to determine the contribution of 4f electrons of Eu2+ and Eu3+ ions to the valence band. The resonant and antiresonant photon energies of Eu2+ ions were found as equal to 141 V and 132 eV, respectively and for Eu3+ ions were found as equal to 146 eV and 132 eV, respectively. Contribution of Eu2+4f electrons was found at the valence band edge while for Eu3+ it was located in the region between 3.5 eV and 8.5 eV below the valence band edge.

  15. TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis

    NASA Astrophysics Data System (ADS)

    Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.

    2014-10-01

    As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.

  16. Solar Radiative Flux Calculations from Standard Surface Meteorological Observations

    DTIC Science & Technology

    1982-03-01

    the p round in T F3 "d = II3 0 2 and the sum of the terms transmitted through layer 2 𔃻 il, to te botton o0 layer 1 is RTI𔃺/ Ad G. (C; forms a pair o...no obstruc-k k tions to visibility are present. The next stige in; the jproccsts was to evaluate Fk and T’k for the var- 2 5•" k f3 q ious uniform...Boston, 9 bpp . 59. SOLMET, 1977: Hourly solai radiation - surface meteorological obser- vations. Vol. 1 - users Manual. Vol. 2, 1979, Final Report

  17. Hard X-ray photoemission study of the Fabre salts (TMTTF)2X (X = SbF6 and PF6)

    NASA Astrophysics Data System (ADS)

    Medjanik, Katerina; de Souza, Mariano; Kutnyakhov, Dmytro; Gloskovskii, Andrei; Müller, Jens; Lang, Michael; Pouget, Jean-Paul; Foury-Leylekian, Pascale; Moradpour, Alec; Elmers, Hans-Joachim; Schönhense, Gerd

    2014-11-01

    Core-level photoemission spectra of the Fabre salts with X = SbF6 and PF6 were taken using hard X-rays from PETRA III, Hamburg. In these salts TMTTF layers show a significant stack dimerization with a charge transfer of 1 e per dimer to the anion SbF6 or PF6. At room temperature and slightly below the core-level spectra exhibit single lines, characteristic for a well-screened metallic state. At reduced temperatures progressive charge localization sets in, followed by a 2nd order phase transition into a charge-ordered ground state. In both salts groups of new core-level signals occur, shifted towards lower kinetic energies. This is indicative of a reduced transverse-conductivity across the anion layers, visible as layer-dependent charge depletion for both samples. The surface potential was traced via shifts of core-level signals of an adsorbate. A well-defined potential could be established by a conducting cap layer of 5 nm aluminum which appears "transparent" due to the large probing depth of HAXPES (8-10 nm). At the transition into the charge-ordered phase the fluorine 1 s line of (TMTTF)2SbF6 shifts by 2.8 eV to higher binding energy. This is a spectroscopic fingerprint of the loss of inversion symmetry accompanied by a cooperative shift of the SbF6 anions towards the more positively charged TMTTF donors. This shift does not occur for the X = PF6 compound, most likely due to smaller charge disproportion or due to the presence of charge disorder.

  18. Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN)

    NASA Astrophysics Data System (ADS)

    Sundararaman, Sathishkumar

    Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN) S. Sathishkumar1, R. Dhanya1, K. Emperumal1, D. Tiwari2, S. Gurubaran1 and A. Bhattacharyya2 1. Equatorial Geophysical Research Laboratory, Indian Institute of Geomagnetism, Tirunelveli, India 2. Indian Institute of Geomagnetism, Navi Mumbai, India Email: sathishmaths@gmail.com Abstract The equatorial atmosphere-ionosphere system has been studied theoretically and observationally in the past. In the equatorial atmosphere, oscillations with periods of 3-4 days are often observed in the medium frequency (MF) radar over Tirunelveli (8.7oN, 77.8oE, 1.34oN geomag. lat.). Earlier observations show the clear evidence that these waves can propagate from the stratosphere to ionosphere. A digital ionosonde has been providing useful information on several ionospheric parameters from the same site. Simultaneous observations of mesospheric winds using medium frequency radar and F-layer height (h'F) from ionosonde reveal that the 3-4 day wave was evident in both the component during the 01 June 2007 and 31 July 2007. The 3-4 day wave could have an important role in the day to day variability of the equatorial ionosphere evening uplift. Results from an extensive analysis that is being carried out in the direction of 3-4 day wave present in the ionosphere will be presented.

  19. Mercury's Magma Ocean

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Parmentier, E. M.; Wang, S.

    2016-12-01

    The crystallization of Mercury's magma ocean (MMO) would follow a significantly different path than the terrestrial or lunar magma ocean. Evidence from the MESSENGER mission [1] indicates that Mercury's interior has an oxygen fugacity (fO2) orders of magnitude lower any other terrestrial planet (3-8 log units below the iron-wustite buffer = IW-3 to IW-8; [2]). At these conditions, silicate melts and minerals have negligible Fe contents. All Fe is present in sulfides or metal. Thus, the build up of Fe in the last dregs of the lunar magma ocean, that is so important to its evolution, would not happen in the MMO. There would be no overturn or plagioclase flotation crust. Sulfur solubility in silicate melts increases dramatically at low fO2, from 1 wt% at IW-3 to 8wt% at IW-8 [3]. Thus it is possible, perhaps probable, that km-thick layers of sulfide formed during MMO crystallization. Some of the sulfides (e.g. CaS) have high partition coefficients for trace elements and so could control the spatial distribution of radioactive heat producing elements such as U, Th and K. This in turn would have first order effects on the thermal and chemical evolution of the planet. The distribution of the sulfide layers depend upon the density of the sulfides that form in the MMO. At such low fO2, S forms compounds with a range of elements not typical for other planets: Ca, Mg, Na, K. The densities of these sulfides vary widely, with Mg and Ca-rich sulfides being more dense than estimated MMO densities, and Na and K-rich sulfides being less dense than the MMO. Thus sulfide sinking and floating may produce substantial chemical layering on Mercury, potentially including an Mg-Ca rich deep layer and a Na-K rich shallow layer or possibly floatation crust. The total amount of S in the MMO depends on the fO2 and the bulk S content of Mercury, both of which are poorly constrained. In the most extreme case, if the MMO had an fO2of IW-8 and was sulfide saturated from the start, a total equivalent layer of sulfide up to 50 km could form (Figure 1). [1] Nittler et al (2011) Science 333: 847-1850., [2] Zolotov et al (2013), JGR 118: 138-146. [3] Berthet et al (2009) GCA 73: 6402-6420.

  20. Equatorial dynamics in a 2 {1}/{2}- layer model

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Yu, Zuojun

    A nonlinear, 2 {1}/{2}- layer model is used to study the dynamics of wind-driven equatorial ocean circulation, including the generation of mean flows and instabilities. The model allows water to entrain into, and detrain from, the upper layer, and as a consequence the temperatures of the two active layers can vary. The model ocean basin is rectangular, extends 100° zonally, and for most solutions has open boundaries at 15°S and 15°N. All solutions are forced by a switched-on wind field that is an idealized version of the Pacific trades: the wind is westward, uniform in the meridional direction (so it has no curl), located primarily in the central and eastern oceans, and in most cases it has an amplitude of 0.5 dyn cm -2. For reasonable choices of parameters, solutions adjust to have a realistic equatorial circulation with a westward surface jet, an eastward undercurrent, and with upwelling and cool sea surface temperature in the eastern ocean. Most of the meridional circulation (81% of the transport) is part of a closed tropical circulation cell, in which water upwells in the eastern, equatorial ocean and downwells elsewhere in the basin; the rest participates in a mid-latitude circulation cell with lower-layer water entering the basin and upper-layer water leaving it through the open boundaries. Three basic types of unstable disturbances are generated in the eastern ocean: two of them are antisymmetric about the equator, one being surface-trapped with a period of about 21 days (f 1), and the other predominantly a lower-layer oscillation with periods ranging from 35 to 53 days (f 2) that causes the undercurrent to meander; the third is symmetric with a period of about 28 days (f 0) and a structure like that of a first-meridional-mode Rossby wave. The amplitudes of the disturbances are sensitive to model parameters, and as parameter values are varied systematically solutions appear to follow variations of the quasi-periodic route to turbulence, one of the common transitions to chaotic behavior. Realistic mean flows develop only when detrainment and lower-layer cooling are present in the model physics, processes that are necessary for the generation of a tropical circulation cell: without detrainment, water accumulutes in the upper layer until entrainment ceases and the model adjusts to Sverdrup balance, which is a state of rest for a wind without curl; without cooling, the temperature of the lower layer slowly rises until it approaches that of the upper layer. The mean-momentum budget for the upper layer shows that the model's Reynolds-stress terms are not a significant part of the momentum balance, having a maximum amplitude only about 19% of the wind stress. In contrast, the mean-heat budget demonstrates that eddy heating warms the cold tongue significantly, with an amplitude as large as the heating through the surface. Interestingly, the time-averaged continuity equations indicate that the instabilities tend to increase the upward tilt of the upper-layer interface toward the equator. When layer temperatures are kept fixed only a weak version of disturbance f 1 develops, indicating that the equatorial temperature front is an important aspect of instability dynamics. In fact, a frontal instability does exist in the model; it involves the conversion of mean to eddy potential energy, but it is the mean energy associated with the variable upper-layer temperature field, rather than with tilted layer interfaces, as is the case for traditional baroclinic instability. Perturbation-energy budgets suggest that frontal, barotropic and Kelvin-Helmholtz instabilities are energy sources for the disturbances, whereas traditional baroclinic instability is an energy sink. The two, fastest growing, antisymmetric, unstable-wave solutions to a linearized version of the model correspond closely to disturbances f 1 and f 2 from the nonlinear model, and perturbation-energy budgets for these waves indicate that their energy sources are primarily frontal instability and lower-layer barotropic instability, respectively.

  1. Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes.

    PubMed

    Kast, Matthew G; Enman, Lisa J; Gurnon, Nicholas J; Nadarajah, Athavan; Boettcher, Shannon W

    2014-12-24

    Protecting Si photocathodes from corrosion is important for developing tandem water-splitting devices operating in basic media. We show that textured commercial Si-pn(+) photovoltaics protected by solution-processed semiconducting/conducting oxides (plausibly suitable for scalable manufacturing) and coupled to thin layers of Ir yield high-performance H2-evolving photocathodes in base. They also serve as excellent test structures to understand corrosion mechanisms and optimize interfacial electrical contacts between various functional layers. Solution-deposited TiO2 protects Si-pn(+) junctions from corrosion for ∼24 h in base, whereas junctions protected by F:SnO2 fail after only 1 h of electrochemical cycling. Interface layers consisting of Ti metal and/or the highly doped F:SnO2 between the Si and TiO2 reduce Si-emitter/oxide/catalyst contact resistance and thus increase fill factor and efficiency. Controlling the oxide thickness led to record photocurrents near 35 mA cm(-2) at 0 V vs RHE and photocathode efficiencies up to 10.9% in the best cells. Degradation, however, was not completely suppressed. We demonstrate that performance degrades by two mechanisms, (1) deposition of impurities onto the thin catalyst layers, even from high-purity base, and (2) catastrophic failure via pinholes in the oxide layers after several days of operation. These results provide insight into the design of hydrogen-evolving photoelectrodes in basic conditions, and highlight challenges.

  2. Numerical Solutions for Laminar Boundary Layer Behind Blast Waves.

    DTIC Science & Technology

    1980-05-01

    DISTRIBUTION STATEMENT (of thle Report) Approved for public release; distribution unlimited. 17 . DISTRIBUTION STATEMENT (of the abstract entered in Block 20...Reference I ............. 41 5. Boundary-Layer Functions for Case A, B, C, and D ......... 98 3 NOMENCLATURE A constant, Eqs. (10) and ( 17 ) B...the constant A was chosen as follows to simplify the coefficients of f and g1 A = 2mF CZ(a+i) OPO/pCO ( The ( 17 ) The explicit dependence of the flow

  3. Seasonal and solar cycle dependence of F3-layer near the southern crest of the equatorial ionospheric anomaly

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Klausner, V.; Bittencourt, J. A.; Sahai, Y.; Abalde, J. R.

    2011-08-01

    The occurrence of an additional F3-layer has been reported at Brazilian, Indian and Asian sectors by several investigators. In this paper, we report for the first time the seasonal variations of F3-layer carried out near the southern crest of the equatorial ionospheric anomaly (EIA) at São José dos Campos (23.2°S, 45.0°W; dip latitude 17.6°S - Brazil) as a function of solar cycle. The period from September 2000 to August 2001 is used as representative of high solar activity (HSA) and the period from January 2006 to December 2006 as representative of low solar activity (LSA). This investigation shows that during HSA there is a maximum occurrence of F3-layer during summer time and a minimum during winter time. However, during LSA, there is no seasonal variation in the F3-layer occurrence. Also, the frequency of occurrence of the F3-layer during HSA is 11 times more than during LSA.

  4. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian

    2016-03-01

    Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.

  5. Al2O3/SiON stack layers for effective surface passivation and anti-reflection of high efficiency n-type c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin

    2017-02-01

    Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.

  6. Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades.

    PubMed

    Masojídek, Jiří; Kopecký, Jiří; Giannelli, Luca; Torzillo, Giuseppe

    2011-02-01

    This work aims to: (1) correlate photochemical activity and productivity, (2) characterize the flow pattern of culture layers and (3) determine a range of biomass densities for high productivity of the freshwater microalga Chlorella spp., grown outdoors in thin-layer cascade units. Biomass density, irradiance inside culture, pigment content and productivity were measured in the microalgae cultures. Chlorophyll-fluorescence quenching was monitored in situ (using saturation-pulse method) to estimate photochemical activities. Photobiochemical activities and growth parameters were studied in cultures of biomass density between 1 and 47 g L(-1). Fluorescence measurements showed that diluted cultures (1-2 g DW L(-1)) experienced significant photostress due to inhibition of electron transport in the PSII complex. The highest photochemical activities were achieved in cultures of 6.5-12.5 g DW L(-1), which gave a maximum daylight productivity of up to 55 g dry biomass m(-2) day(-1). A midday depression of maximum PSII photochemical yield (F (v)/F (m)) of 20-30% compared with morning values in these cultures proved to be compatible with well-performing cultures. Lower or higher depression of F (v)/F (m) indicated low-light acclimated or photo-inhibited cultures, respectively. A hydrodynamic model of the culture demonstrated highly turbulent flow allowing rapid light/dark cycles (with frequency of 0.5 s(-1)) which possibly match the turnover of the photosynthetic apparatus. These results are important from a biotechnological point of view for optimisation of growth of outdoor microalgae mass cultures under various climatic conditions.

  7. Excess Oxygen Defects in Layered Cuprates

    DOE R&D Accomplishments Database

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  8. Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Zhang, Binbin; Murphy, Elizabeth; Zou, Jianli; Kim, Franklin

    2017-03-01

    As a simple and versatile method, diffusion driven Layer-by-Layer assembly (dd-LbL) is developed to assemble graphene oxide (GO) into three-dimensional (3D) structure. The assembled GO macrostructure can be reduced through a hydrothermal treatment and used as a high volumetric capacitance electrode in supercapacitors. In this report we use rGO framework created from dd-LbL as a scaffold for in situ polymerization of aniline within the pores of the framework to form rGO/polyaniline (rGO/PANI) composite. The rGO/PANI composite affords a robust and porous structure, which facilitates electrolyte diffusion and exhibits excellent electrochemical performance as binder-free electrodes in a sandwich-configuration supercapacitor. Combining electric double layer capacitance and pseudo-capacitance, rGO/PANI electrodes exhibit a specific capacitance of 438.8 F g-1 at discharge rate of 5 mA (mass of electrodes were 10.0 mg, 0.5 A g-1) in 1 mol L-1 H2SO4 electrolyte; furthermore, the generated PANI nanoparticles in rGO template achieve a higher capacitance of 763 F g-1. The rGO/PANI composite electrodes also show an improved recyclability, 76.5% of capacitance retains after recycled 2000 times.

  9. On periodic geophysical water flows with discontinuous vorticity in the equatorial f-plane approximation.

    PubMed

    Martin, Calin Iulian

    2018-01-28

    We are concerned here with geophysical water waves arising as the free surface of water flows governed by the f -plane approximation. Allowing for an arbitrary bounded discontinuous vorticity, we prove the existence of steady periodic two-dimensional waves of small amplitude. We illustrate the local bifurcation result by means of an analysis of the dispersion relation for a two-layered fluid consisting of a layer of constant non-zero vorticity γ 1 adjacent to the surface situated above another layer of constant non-zero vorticity γ 2 ≠ γ 1 adjacent to the bed. For certain vorticities γ 1 , γ 2 , we also provide estimates for the wave speed c in terms of the speed at the surface of the bifurcation inducing laminar flows.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  10. Stereotactic Comparison Study of (18)F-Alfatide and (18)F-FDG PET Imaging in an LLC Tumor-Bearing C57BL/6 Mouse Model.

    PubMed

    Wei, Yu-Chun; Gao, Yongsheng; Zhang, Jianbo; Fu, Zheng; Zheng, Jinsong; Liu, Ning; Hu, Xudong; Hou, Wenhong; Yu, Jinming; Yuan, Shuanghu

    2016-06-28

    This study aimed to stereotactically compare the PET imaging performance of (18)F-Alfatide ((18)F-ALF-NOTA-PRGD2, denoted as (18)F-Alfatide) and (18)F-fluorodeoxyglucose (FDG) and immunohistochemistry (IHC) staining in Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mouse model. (18)F-FDG standard uptake values (SUVs) were higher than (18)F-Alfatide SUVs in tumors, most of the normal tissues and organs except for the bladder. Tumor-to-brain, tumor-to-lung, and tumor-to-heart ratios of (18)F-Alfatide PET were significantly higher than those of (18)F-FDG PET (P < 0.001). The spatial heterogeneity of the tumors was detected, and the tracer accumulation enhanced from the outer layer to the inner layer consistently using the two tracers. The parameters of the tumors were significantly correlated with each other between (18)F-FDG SUV and GLUT-1 (R = 0.895, P < 0.001), (18)F-Alfatide SUV and αvβ3 (R = 0.595, P = 0.019), (18)F-FDG SUV and (18)F-Alfatide SUV (R = 0.917, P < 0.001), and GLUT-1 and αvβ3 (R = 0.637, P = 0.011). Therefore, (18)F-Alfatide PET may be an effective tracer for tumor detection, spatial heterogeneity imaging and an alternative supplement to (18)F-FDG PET, particularly for patients with enhanced characteristics in the brain, chest tumors or diabetes, meriting further study.

  11. Low temperature laser molecular beam epitaxy and characterization of AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Tyagi, Prashant; Ch., Ramesh; Kushvaha, S. S.; Kumar, M. Senthil

    2017-05-01

    We have grown AlGaN (0001) epitaxial layers on sapphire (0001) by using laser molecular beam epitaxy (LMBE) technique. The growth was carried out using laser ablation of AlxGa1-x liquid metal alloy under r.f. nitrogen plasma ambient. Before epilayer growth, the sapphire nitradation was performed at 700 °C using r.f nitrogen plasma followed by AlGaN layer growth. The in-situ reflection high energy electron diffraction (RHEED) was employed to monitor the substrate nitridation and AlGaN epitaxial growth. High resolution x-ray diffraction showed wurtzite hexagonal growth of AlGaN layer along c-axis. An absorption bandgap of 3.97 eV is obtained for the grown AlGaN layer indicating an Al composition of more than 20 %. Using ellipsometry, a refractive index (n) value of about 2.19 is obtained in the visible region.

  12. Ho3+-doped AlF3-TeO2-based glass fibers for 2.1 µm laser applications

    NASA Astrophysics Data System (ADS)

    Wang, S. B.; Jia, Z. X.; Yao, C. F.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2017-05-01

    Ho3+-doped AlF3-TeO2-based glass fibers based on AlF3-BaF2-CaF2-YF3-SrF2-MgF2-TeO2 glasses are fabricated by using a rod-in-tube method. The glass rod including a core and a thick cladding layer is prepared by using a suction method, where the thick cladding layer is used to protect the core from the effect of surface crystallization during the fiber drawing. By inserting the glass rod into a glass tube, the glass fibers with relatively low loss (~2.3 dB m-1 @ 1560 nm) are prepared. By using a 38 cm long Ho3+-doped AlF3-TeO2-based glass fiber as the gain medium and a 1965 nm fiber laser as the pump source, 2065 nm lasing is obtained for a threshold pump power of ~220 mW. With further increasing the pump power to ~325 mW, the unsaturated output power of the 2065 nm laser is about 82 mW and the corresponding slope efficiency is up to 68.8%. The effects of the gain fiber length on the lasing threshold, the slope efficiency, and the operating wavelength are also investigated. Our experimental results show that Ho3+-doped AlF3-TeO2-based glass fibers are promising gain media for 2.1 µm laser applications.

  13. How the effects of winds and electric fields in F2-layer storms vary with latitude and longitude - A theoretical study

    NASA Technical Reports Server (NTRS)

    Mendillo, M.; He, X.-Q.; Rishbeth, H.

    1992-01-01

    The effects of thermospheric winds and electric fields on the ionospheric F2-layer are controlled by the geometry of the magnetic field, and so vary with latitude and longitude. A simple model of the daytime F2-layer is adopted and the effects at midlatitudes (25-65 deg geographic) of three processes that accompany geomagnetic storms: (1) thermospheric changes due to auroral heating; (2) equatorward winds that tend to cancel the quiet-day poleward winds; and (3) the penetration of magnetospheric electric fields are studied. At +/- 65 deg, the effects of heating and electric fields are strongest in the longitudes toward which the geomagnetic dipole is tilted, i.e., the North American and the South Indian Ocean sectors. Because of the proximity of the geomagnetic equator to the East Asian and South American sectors, the reverse is true at +/- 25 deg.

  14. Fabrication of artificially stacked ultrathin ZnS/MgF2 multilayer dielectric optical filters.

    PubMed

    Kedawat, Garima; Srivastava, Subodh; Jain, Vipin Kumar; Kumar, Pawan; Kataria, Vanjula; Agrawal, Yogyata; Gupta, Bipin Kumar; Vijay, Yogesh K

    2013-06-12

    We report a design and fabrication strategy for creating an artificially stacked multilayered optical filters using a thermal evaporation technique. We have selectively chosen a zinc sulphide (ZnS) lattice for the high refractive index (n = 2.35) layer and a magnesium fluoride (MgF2) lattice as the low refractive index (n = 1.38) layer. Furthermore, the microstructures of the ZnS/MgF2 multilayer films are also investigated through TEM and HRTEM imaging. The fabricated filters consist of high and low refractive 7 and 13 alternating layers, which exhibit a reflectance of 89.60% and 99%, respectively. The optical microcavity achieved an average transmittance of 85.13% within the visible range. The obtained results suggest that these filters could be an exceptional choice for next-generation antireflection coatings, high-reflection mirrors, and polarized interference filters.

  15. Highly Efficient Inverted Perovskite Solar Cells with CdSe QDs/LiF Electron Transporting Layer

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Xu, Weizhe; Hu, Xiaodong; Yu, Ping; Zhang, Weifeng

    2017-12-01

    Organic/inorganic hybrid perovskite solar cell has emerged as a very promising candidate for the next generation of near-commercial photovoltaic devices. Here in this work, we focus on the inverted perovskite solar cells and have found that remarkable photovoltaic performance could be obtained when using cadmium selenide (CdSe) quantum dots (QDs) as electron transporting layer (ETL) and lithium fluoride (LiF) as the buffer, with respect to the traditionally applied and high-cost [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The easily processed and low-cost CdSe QDs/LiF double layer could facilitate convenient electron-transfer and collection at the perovskite/cathode interface, promoting an optoelectric conversion efficiency of as high as 15.1%, very close to that with the traditional PCBM ETL. Our work provides another promising choice on the ETL materials for the highly efficient and low-cost perovskite solar cells.

  16. Differences in the concentrations of atmospheric trace gases in and above the tropical boundary layer

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Weekly air samples were collected at Cape Kumakahi (0 km) and at nearby Mauna Loa Observatory (3.4 km) which is above the boundary layer. EC/GC and GC/FID techniques were used to measure CH3I, CHCl3, CO and CH4 which are largely natural in origin, and C2Cl4, CCl4, CH3CCl3, (F-11), CCl2F2, (F-12), CHClF, (F-22) and C2F3Cl3 (F-113), which are due to anthropogenic (CCl3F) etc. activities. It was found that all these gases are significantly (alpha is equal to or less than 0.05) more abundant in the boundary layer than above it.

  17. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    NASA Astrophysics Data System (ADS)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and <1\\bar{1}0>CdTe//<1\\bar{1}0>Ge//{< \\bar{1}10> }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  18. Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement.

    PubMed

    Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya

    2018-02-19

    ReS 2 , a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS 2 for the first time. Few-layer ReS 2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.

  19. Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement

    NASA Astrophysics Data System (ADS)

    Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya

    2018-04-01

    ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.

  20. Ultralow power switching in a silicon-rich SiNy/SiNx double-layer resistive memory device.

    PubMed

    Kim, Sungjun; Chang, Yao-Feng; Kim, Min-Hwi; Bang, Suhyun; Kim, Tae-Hyeon; Chen, Ying-Chen; Lee, Jong-Ho; Park, Byung-Gook

    2017-07-26

    Here we demonstrate low-power resistive switching in a Ni/SiN y /SiN x /p ++ -Si device by proposing a double-layered structure (SiN y /SiN x ), where the two SiN layers have different trap densities. The LRS was measured to be as low as 1 nA at a voltage of 1 V, because the SiN x layer maintains insulating properties for the LRS. The single-layered device suffers from uncontrollability of the conducting path, accompanied by the inherent randomness of switching parameters, weak immunity to breakdown during the reset process, and a high operating current. On the other hand, for a double-layered device, the effective conducting path in each layer, which can determine the operating current, can be well controlled by the I CC during the initial forming and set processes. A one-step forming and progressive reset process is observed for a low-power mode, which differs from the high-power switching mode that shows a two-step forming and reset process. Moreover, nonlinear behavior in the LRS, whose origin can be attributed to the P-F conduction and F-N tunneling driven by abundant traps in the silicon-rich SiN x layer, would be beneficial for next-generation nonvolatile memory applications by using a conventional passive SiN x layer as an active dielectric.

  1. Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.

    2018-05-01

    Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.

  2. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE PAGES

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; ...

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates thatCaulobacter crescentushas two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closestC. crescentushomologs to TolC inE. coli, do not process TolC functionality inC. crescentus.« less

  3. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    ABSTRACT Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrugmore » efflux pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates thatCaulobacter crescentushas two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closestC. crescentushomologs to TolC inE. coli, do not process TolC functionality inC. crescentus.« less

  4. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates thatCaulobacter crescentushas two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closestC. crescentushomologs to TolC inE. coli, do not process TolC functionality inC. crescentus.« less

  5. Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data

    NASA Astrophysics Data System (ADS)

    Shubin, V. N.; Karpachev, A. T.; Tsybulya, K. G.

    2013-11-01

    We propose a global median model SMF2 (Satellite Model of the F2 layer) of the ionospheric F2-layer height maximum (hmF2), based on GPS radio-occultation data for low solar activity periods (F10.7A<80). The model utilizes data provided by GPS receivers onboard satellites CHAMP (~100,000 hmF2 values), GRACE (~70,000) and COSMIC (~2,000,000). The data were preprocessed to remove cases where the absolute maximum of the electron density lies outside the F2 region. Ground-based ionospheric sounding data were used for comparison and validation. Spatial dependence of hmF2 is modeled by a Legendre-function expansion. Temporal dependence, as a function of Universal Time (UT), is described by a Fourier expansion. Inputs of the model are: geographical coordinates, month and F10.7A solar activity index. The model is designed for quiet geomagnetic conditions (Kр=1-2), typical for low solar activity. SMF2 agrees well with the International Reference Ionosphere model (IRI) in those regions, where the ground-based ionosonde network is dense. Maximal difference between the models is found in the equatorial belt, over the oceans and the polar caps. Standard deviations of the radio-occultation and Digisonde data from the predicted SMF2 median are 10-16 km for all seasons, against 13-29 km for IRI-2012. Average relative deviations are 3-4 times less than for IRI, 3-4% against 9-12%. Therefore, the proposed hmF2 model is more accurate than IRI-2012.

  6. Combination tones along the basilar membrane in a 3D finite element model of the cochlea with acoustic boundary layer attenuation

    NASA Astrophysics Data System (ADS)

    Böhnke, Frank; Scheunemann, Christian; Semmelbauer, Sebastian

    2018-05-01

    The propagation of traveling waves along the basilar membrane is studied in a 3D finite element model of the cochlea using single and two-tone stimulation. The advantage over former approaches is the consideration of viscous-thermal boundary layer damping which makes the usual but physically unjustified assumption of Rayleigh damping obsolete. The energy loss by viscous boundary layer damping is 70 dB lower than the actually assumed power generation by outer hair cells. The space-time course with two-tone stimulation shows the traveling waves and the periodicity of the beat frequency f2 - f1.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutzer, B.; Simsek, S.; Zimmermann, C.

    In order to improve the electrical behaviour of metal-insulator-metal capacitors with ZrO{sub 2} insulator grown by Atomic Layer Deposition, the influence of the insertion of interfacial Cr layers between Pt electrodes and the zirconia is investigated. An improvement of the α-voltage coefficient of capacitance as low as 567 ppm/V{sup 2} is achieved for a single layer of Cr while maintaining a high capacitance density of 10.7 fF/μm{sup 2} and a leakage current of less than 1.2 × 10{sup −8} A/cm{sup 2} at +1 V. The role of the interface is discussed by means of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy showing themore » formation of Zr stabilized chromia oxide phase with a dielectric constant of 16.« less

  8. Evidence for a π junction in Nb/Ni 0.96V0.04/Nb trilayers revealed by superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Steers, Stanley; Peters, Bryan; Yang, F. Y.; Lemberger, T. R.

    2016-07-01

    We report measurements of the superfluid density, λ-2(T ) , in ferromagnet-on-superconductor (F/S) bilayers and S/F/S' trilayers comprising Nb with Ni, Py, CoFe, and NiV ferromagnets. Bilayers provide information about F/S interface transparency and the T dependence of λ-2 that inform interpretation of trilayer data. The Houzet-Meyer theory accounts well for the measured dependence of λ-2(0 ) and Tc of F/S bilayers on thickness of F layer, dF, except that λ-2(0 ) is slightly under expectations for CoFe/Nb bilayers. For Nb/F/Nb' trilayers, we are able to extract Tc and and λ-2 for both Nb layers when F is thick enough to weaken interlayer coupling. The lower "Tc" is actually a crossover identified by onset of superfluid in the lower-Tc Nb layer. For Nb/NiV/Nb' trilayers, λ-2(0 ) versus dF for both Nb layers has a minimum followed by a recovery, suggestive of a π junction.

  9. Ca(5)Zr(3)F(22).

    PubMed

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Avignant, Daniel

    2012-04-01

    Single crystals of Ca(5)Zr(3)F(22), penta-calcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF(2) and ZrF(4) in the presence of AgF. The structure of the title compound is isotypic with that of Sr(5)Zr(3)F(22) and can be described as being composed of layers with composition [Zr(3)F(20)](8-) made up from two different [ZrF(8)](4-) square anti-prisms (one with site symmetry 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca(2+) cations, forming a three-dimensional network. Amongst the four crystallographically different Ca(2+) ions, three are located on twofold rotation axes. The Ca(2+) ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca(2+) ions occupy inter-stices between the layers whereas the other two are located in void spaces of the [Zr(3)F(20)](8-) layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.

  10. F-16XL ship #1 CAWAP flight - alpha 15 degrees, altitude 5,000 feet

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. This photo shows the aircraft gathering data at an altitude of 5000 feet, with an angle of attack of 15 degrees. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  11. F3-layer and MSTIDs under the equatorial ionospheric anomaly crest

    NASA Astrophysics Data System (ADS)

    Fagundes, Paulo Roberto; Klausner, Virginia; Sahai, Yogeshwar; Bittencourt, Jose A.; Abalde Guede, Jose Ricardo

    We present F3-layer and medium-scale traveling ionospheric disturbances (MSTIDs) observa-tions from a digital ionosonde installed at São José dos Campos (23.2° S, 45.0° W; dip latitude a 17.6° S), under the southern crest of the equatorial ionization anomaly (EIA) region. In this study we have used ionospheric data from September 2000 to August 2001 representing high solar activity (HSA) and ionospheric data from January 2006 to December 2006 representing low solar activity (LSA) to study the F3-layer characteristics at low latitude. The present investigation shows that the F3-layer occurrence is very larger during HSA as compared with during LSA. Also, during HSA there is a clear seasonal variation with maximum occurrence during January, February, November and December (summer months in South America) and minimum during May, June, July and August (winter months in South America). However, there is no clear seasonal variation in occurrence characteristics of F3-layer during LSA. Since, our previous work and present observations show that MSTIDs occurrences have similar re-sponse to the solar cycle; therefore, we suggest that both F3-layer and MSTIDs have strong connection.

  12. Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP.

    PubMed

    Sergeev, E; Grach, S; Shindin, A; Mishin, E; Bernhardt, P; Briczinski, S; Isham, B; Broughton, M; LaBelle, J; Watkins, B

    2013-02-08

    We report on artificial descending plasma layers created in the ionosphere F region by high-power high-frequency (HF) radio waves from High-frequency Active Auroral Research Program at frequencies f(0) near the fourth electron gyroharmonic 4f(ce). The data come from concurrent measurements of the secondary escaping radiation from the HF-pumped ionosphere, also known as stimulated electromagnetic emission, reflected probing signals at f(0), and plasma line radar echoes. The artificial layers appeared only for injections along the magnetic field and f(0)>4f(ce) at the nominal HF interaction altitude in the background ionosphere. Their average downward speed ~0.5 km/s holds until the terminal altitude where the local fourth gyroharmonic matches f(0). The total descent increases with the nominal offset f(0)-4f(ce).

  13. Laminar fMRI and computational theories of brain function.

    PubMed

    Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J

    2017-11-02

    Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.

    PubMed

    Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M

    2014-09-23

    A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

  15. 49 CFR 173.225 - Packaging requirements and other provisions for organic peroxides.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... insulation (W·m−2·K−1); where K = heat conductivity of insulation layer (W·m−1·K−1), and L = thickness of... complete fire engulfment as calculated by the following formula: ER20DE04.002 Where: q = heat absorption (W) A = wetted area (m2) F = insulation factor (−) (B) Insulation factor (F) in the formula in paragraph...

  16. 49 CFR 173.225 - Packaging requirements and other provisions for organic peroxides.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... insulation (W·m−2·K−1); where K = heat conductivity of insulation layer (W·m−1·K−1), and L = thickness of... complete fire engulfment as calculated by the following formula: ER20DE04.002 Where: q = heat absorption (W) A = wetted area (m2) F = insulation factor (−) (B) Insulation factor (F) in the formula in paragraph...

  17. Transcriptional analysis of liver from chickens with fast (meat bird), moderate (F1 layer x meat bird cross) and low (layer bird) growth potential.

    PubMed

    Willson, Nicky-Lee; Forder, Rebecca E A; Tearle, Rick; Williams, John L; Hughes, Robert J; Nattrass, Greg S; Hynd, Philip I

    2018-05-02

    Divergent selection for meat and egg production in poultry has resulted in strains of birds differing widely in traits related to these products. Modern strains of meat birds can reach live weights of 2 kg in 35 d, while layer strains are now capable of producing more than 300 eggs per annum but grow slowly. In this study, RNA-Seq was used to investigate hepatic gene expression between three groups of birds with large differences in growth potential; meat bird, layer strain as well as an F1 layer x meat bird. The objective was to identify differentially expressed (DE) genes between all three strains to elucidate biological factors underpinning variations in growth performance. RNA-Seq analysis was carried out on total RNA extracted from the liver of meat bird (n = 6), F1 layer x meat bird cross (n = 6) and layer strain (n = 6), males. Differential expression of genes were considered significant at P < 0.05, and a false discovery rate of < 0.05, with any fold change considered. In total, 6278 genes were found to be DE with 5832 DE between meat birds and layers (19%), 2935 DE between meat birds and the cross (9.6%) and 493 DE between the cross and layers (1.6%). Comparisons between the three groups identified 155 significant DE genes. Gene ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the 155 DE genes showed the FoxO signalling pathway was most enriched (P = 0.001), including genes related to cell cycle regulation and insulin signalling. Significant GO terms included 'positive regulation of glucose import' and 'cellular response to oxidative stress', which is also consistent with FoxOs regulation of glucose metabolism. There were high correlations between FoxO pathway genes and bodyweight, as well as genes related to glycolysis and bodyweight. This study revealed large transcriptome differences between meat and layer birds. There was significant evidence implicating the FoxO signalling pathway (via cell cycle regulation and altered metabolism) as an active driver of growth variations in chicken. Functional analysis of the FoxO genes is required to understand how they regulate growth and egg production.

  18. Novel Biocatalysts Combining the Special Assembly Properties of S-Layer Proteins and the Functionality of Enzymes of Extremophiles (BIOCAT)

    DTIC Science & Technology

    2010-04-14

    THE FUNCTIONALITY OF ENZYMES OF EXTREMOPHILES 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-07-1-0313 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR... Enzymes of Extremophiles (BIOCAT) Agreement Award No.: FA9550-07-1-0313 Reporting period: April 15th. 2008 to April 14th, 2010 3Lo\\*p<\\\\%\\%, Prof...Status of effort 4 4. Nanobiotechnologie of S-layers 4 5. Biocat accomplishments 6 5.1. The S-layer-based enzyme immobilization system 6 5.2. S

  19. Skewness and flatness factors of the longitudinal velocity derivative in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Djenidi, Lyazid; Antonia, Robert A.; Talluru, Murali K.; Abe, Hiroyuki

    2017-06-01

    Hot-wire measurements are carried out in turbulent boundary layers over smooth and rough walls in order the assess the behavior of the skewness (S ) and flatness (F ) factors of the longitudinal velocity derivative as y , the distance from the wall, increases. The measurements are complemented by direct numerical simulations of a smooth wall turbulent channel flow. It is observed that, as the distance to the wall increases, S and F vary significantly before approaching a constant in the outer layer of the boundary layer. Further, S and F exhibit a nontrivial dependence on the Taylor microscale Reynolds number (Reλ). For example, in the region below about 0.2 δ (δ is the boundary layer thickness) where Reλ varies significantly, S and F strongly vary with Reλ and can be multivalued at a given Reλ. In the outer region, between 0.3 δ and 0.6 δ , S , F , and Reλ remain approximately constant. The channel flow direct numerical simulation data for S and F exhibit a similar behavior. These results point to the ambiguity that can arise when assessing the Reλ dependence of S and F in wall shear flows. In particular, the multivaluedness of S and F can lead to erroneous conclusions if y /δ is known only poorly, as is the case for the atmospheric shear layer (ASL). If the laboratory turbulent boundary layer is considered an adequate surrogate to the neutral ASL, then the behavior of S and F in the ASL is expected to be similar to that reported here.

  20. Callosal connections of dorso-lateral premotor cortex.

    PubMed

    Marconi, B; Genovesio, A; Giannetti, S; Molinari, M; Caminiti, R

    2003-08-01

    This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.

  1. Axisymmetric computational fluid dynamics analysis of Saturn V/S1-C/F1 nozzle and plume

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1993-01-01

    An axisymmetric single engine Computational Fluid Dynamics calculation of the Saturn V/S 1-C vehicle base region and F1 engine plume is described. There were two objectives of this work, the first was to calculate an axisymmetric approximation of the nozzle, plume and base region flow fields of S1-C/F1, relate/scale this to flight data and apply this scaling factor to a NLS/STME axisymmetric calculations from a parallel effort. The second was to assess the differences in F1 and STME plume shear layer development and concentration of combustible gases. This second piece of information was to be input/supporting data for assumptions made in NLS2 base temperature scaling methodology from which the vehicle base thermal environments were being generated. The F1 calculations started at the main combustion chamber faceplate and incorporated the turbine exhaust dump/nozzle film coolant. The plume and base region calculations were made for ten thousand feet and 57 thousand feet altitude at vehicle flight velocity and in stagnant freestream. FDNS was implemented with a 14 species, 28 reaction finite rate chemistry model plus a soot burning model for the RP-1/LOX chemistry. Nozzle and plume flow fields are shown, the plume shear layer constituents are compared to a STME plume. Conclusions are made about the validity and status of the analysis and NLS2 vehicle base thermal environment definition methodology.

  2. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12

    NASA Astrophysics Data System (ADS)

    Chaïrat, Claire; Schott, Jacques; Oelkers, Eric H.; Lartigue, Jean-Eric; Harouiya, Najatte

    2007-12-01

    The dissolution rates of natural fluorapatite (FAP), Ca 10(PO 4) 6F 2, were measured at 25 °C in mixed-flow reactors as a function of pH from 3.0 to 11.7, and aqueous calcium, phosphorus, and fluoride concentration. After an initial preferential Ca and/or F release, stoichiometric Ca, P, and F release was observed. Measured FAP dissolution rates decrease with increasing pH at 3 ⩽ pH ⩽ 7, FAP dissolution rates are pH independent at 7 ⩽ pH ⩽ 10, and FAP dissolution rates again decrease with increasing pH at pH ⩾ 10. Measured FAP dissolution rates are independent of aqueous Ca, P, and F concentration at pH ≈ 3 and pH ≈ 10. Apatite dissolution appears to be initiated by the relatively rapid removal from the near surface of F and the Ca located in the M1 sites, via proton for Ca exchange reactions. Dissolution rates are controlled by the destruction of this F and Ca depleted surface layer. The destruction of this layer is facilitated by the adsorption/penetration of protons into the surface at acidic conditions, and by surface hydration at neutral and basic conditions. Taking into account these two parallel mechanisms, measured fluorapatite forward dissolution rates can be accurately described using r+(molms)=6.61×10-6{aK}/{1+aK+aCa4aF1.4aOH0.6aH6K}+3.69×10-8[tbnd CaOH2+] where ai refers to the activity of the ith aqueous species, [tbnd CaOH2+] denotes the concentration of hydrated calcium sites at the surface of the leached layer (mol m -2), and Kex and Kads stand for the apparent stability constants of the Ca 2+/H + exchange and adsorption/penetration reactions, respectively.

  3. Investigation on the interfacial chemical state and band alignment for the sputtering-deposited CaF2/p-GaN heterojunction by angle-resolved X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liao, Meiyong; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-11-01

    The interfacial chemical state and the band alignment of the sputtering-deposited CaF2/p-GaN hetero-structure were investigated by angle-resolved X-ray photoelectron spectroscopy. The dependence of Ga 3p core-level positions on the collection angles proves that the downward band bending of p-GaN is reduced from 1.51 to 0.85 eV after the deposition of CaF2, which may be due to the reduction of Mg-Ga-O-related interface states by the oxygen-free deposition of CaF2. The band gap of sputtering-deposited CaF2 is estimated to be about 7.97 eV with a potential gradient of 0.48 eV obtained by the variation of the Ca 2p3/2 position on different collection angles. By taking into account the p-GaN surface band bending and potential gradient in the CaF2 layer, large valence and conduction band offsets of 2.66 ± 0.20 and 1.92 ± 0.20 eV between CaF2 and p-GaN are obtained. These results indicate that CaF2 is a promising gate dielectric layer on the p-GaN for the application of metal-insulator-semiconductor devices.

  4. Flight-determined characteristics of an air intake system on an F-111A airplane

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Johnson, H. J.

    1972-01-01

    Flow phenomena of the F-111A air intake system were investigated over a large range of Mach number, altitude, and angle of attack. Boundary-layer variations are shown for the fuselage splitter plate and inlet entrance stations. Inlet performance is shown in terms of pressure recovery, airflow, mass-flow ratio, turbulence factor, distortion factor, and power spectral density. The fuselage boundary layer was found to be not completely removed from the upper portion of the splitter plate at all Mach numbers investigated. Inlet boundary-layer ingestion started at approximately Mach 1.6 near the translating spike and cone. Pressure-recovery distribution at the compressor face showed increasing distortion with increasing angle of attack and increasing Mach number. The time-averaged distortion-factor value approached 1300, which is near the distortion tolerance of the engine at Mach numbers above 2.1.

  5. MgF2 monolayer as an anti-reflecting material

    NASA Astrophysics Data System (ADS)

    Mahida, H. R.; Singh, Deobrat; Sonvane, Yogesh; Gupta, Sanjeev K.; Thakor, P. B.

    2017-02-01

    The single-layer atomic sheet of magnesium fluoride (MgF2) having 1H and 1T phase structure (hexagonal and tetragonal phase) has been calculated by density functional theory (DFT). Further, we have investigated the structural, electronic and optical properties such as frequency dependent dielectric function, absorption spectra, energy loss spectra, reflectivity, refractive index and optical conductivity of monolayer MgF2 for the direction of parallel and perpendicular electric field polarizations. Our results suggest that monolayer MgF2 provides promising applications in anti-reflection coatings, high-reflective systems and in opto-electronic materials.

  6. Ionospheric response to a recurrent magnetic storm during an event of High Speed Stream in October 2016.

    NASA Astrophysics Data System (ADS)

    Nicoli Candido, C. M.; Resende, L.; Becker-Guedes, F.; Batista, I. S.

    2017-12-01

    In this work we investigate the response of the low latitude ionosphere to recurrent geomagnetic activity caused by events of High speed streams (HSSs)/Corotating Interaction Regions (CIRs) during the low descending phase of solar activity in the solar cycle 24. Intense magnetic field regions called Corotating Interaction Regions or CIRs are created by the interaction of fast streams and slow streams ejected by long duration coronal holes in Sun. This interaction leads to an increase in the mean interplanetary magnetic field (IMF) which causes moderate and recurrent geomagnetic activity when interacts with the Earth's magnetosphere. The ionosphere can be affected by these phenomena by several ways, such as an increase (or decrease) of the plasma ionization, intensification of plasma instabilities during post-sunset/post-midnight hours and subsequent development of plasma irregularities/spread-F, as well as occurrence of plasma scintillation. Therefore, we investigate the low latitude ionospheric response during moderate geomagnetic storm associated to an event of High Speed Stream occurred during decreasing phase of solar activity in 2016. An additional ionization increasing is observed in Es layer during the main peak of the geomagnetic storm. We investigate two possible different mechanisms that caused these extras ionization: the role of prompt penetration of interplanetary electric field, IEFEy at equatorial region, and the energetic electrons precipitation on the E and F layers variations. Finally, we used data from Digisondes installed at equatorial region, São Luís, and at conjugate points in Brazilian latitudes, Boa Vista and Cachoeira Paulista. We analyzed the ionospheric parameters such as the critical frequency of F layer, foF2, the F layer peak height, hmF2, the F layer bottomside, h'F, the blanketing frequency of sporadic layer, fbEs, the virtual height of Es layer h'Es and the top frequency of the Es layer ftEs during this event.

  7. Pressure induced superconductivity in very lightly doped LaFeAsO0.975F0.025

    NASA Astrophysics Data System (ADS)

    Miyoshi, K.; Otsuka, K.; Shiota, A.; Shimojo, Y.; Motoyama, G.; Fujiwara, K.; Kitagawa, H.; Nishigori, S.

    2018-05-01

    We have investigated whether or not superconductivity is induced by the application of pressure in very lightly F-doped LaFeAsO1-xFx , which shows spin density wave (SDW) state at ambient pressure, through the measurements of DC magnetization and electrical resistivity under pressure using pulse current sintered (PCS) high density polycrystalline specimens. It has been confirmed that the specimens with x = 0.025 shows superconductivity with Tcdia ∼ 15 K under pressure above ∼ 1.3 GPa. The pressure induced superconductivity can be explained by the lattice compression along c-axis, which enhances the electron doping from LaO layers to FeAs layers.

  8. Federation for a Secure Enterprise

    DTIC Science & Technology

    2016-09-10

    12 October 2005 e. RFC Internet X.509 Public Key Infrastructure: Certification Path Building, 2005 f. Public Key Cryptography Standard, PKCS #1...v2.2: RSA Cryptography Standard, RSA Laboratories, October 27, 2012 g. PKCS#12 format PKCS #12 v1.0: Personal Information Exchange Syntax Standard, RSA...ClientHello padding extension, 2015-02-17 f. Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier

  9. Structures and electrochemical performances of pyrolized carbons from graphite oxides for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Ick-Jun; Yang, Sunhye; Jeon, Min-Je; Moon, Seong-In; Kim, Hyun-Soo; Lee, Yoon-Pyo; An, Kye-Hyeok; Lee, Young-Hee

    The structural features and the electrochemical performances of pyrolized needle cokes from oxidized cokes are examined and compared with those of KOH-activated needle coke. The structure of needle coke is changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an NaClO 3/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized needle coke is expanded to 6.9 Å with increasing oxygen content. After heating at 200 °C, the oxidized needle coke is reduced to a graphite structure with an inter-layer distance of 3.6 Å. By contrast, a change in the inter-layer distance in KOH-activated needle coke is not observed. An intercalation of pyrolized needle coke, observed on first charge, occurs at 1.0 V. This value is lower than that of KOH-activation needle coke. A capacitor using pyrolized needle coke exhibits a lower internal resistance of 0.57 Ω in 1 kHz, and a larger capacitance per weight and volume of 30.3 F g -1 and 26.9 F ml -1, in the two-electrode system over the potential range 0-2.5 V compared with those of a capacitor using KOH-activation of needle coke. This better electrochemical performance is attributed to a distorted graphene layer structure derived from the process of the inter-layer expansion and shrinkage.

  10. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Shih, Wei-Heng; Shih, Wan Y.

    2016-03-01

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg1/3Nb2/3)O3]0.65[PbTiO3]0.35 (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.

  11. Determination of scattering properties and damage thresholds in tissue using ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Martin, Chris; Ben-Yakar, Adela

    2016-11-01

    Ultrafast laser surgery of tissue requires precise knowledge of the tissue's optical properties to control the extent of subsurface ablation. Here, we present a method to determine the scattering lengths, ℓs, and fluence thresholds, Fth, in multilayered and turbid tissue by finding the input energies required to initiate ablation at various depths in each tissue layer. We validated the method using tissue-mimicking phantoms and applied it to porcine vocal folds, which consist of an epithelial (ep) layer and a superficial lamina propia (SLP) layer. Across five vocal fold samples, we found ℓ=51.0±3.9 μm, F=1.78±0.08 J/cm2, ℓ=26.5±1.6 μm, and F=1.14±0.12 J/cm2. Our method can enable personalized determination of tissue optical properties in a clinical setting, leading to less patient-to-patient variability and more favorable outcomes in operations, such as femto-LASIK surgery.

  12. Evidence for fourth generation structures in the Piedra Lumbre region, Western Picuris Mountains, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernoff, C.B.; Helper, M.A.; Mosher, S.

    1993-02-01

    Mid-Proterozoic Hondo Group metasediments in the western Picuris Mountains, New Mexico clearly display 3 generations of previously recognized penetrative, synmetamorphic structures and a previously undocumented forth generation of overprinting folds with an associated axial planar foliation. The earliest structures include: (1) a bedding-parallel S[sub 1] foliation and rare, rootless, intrafolial F[sub 1] folds; (2) north-verging, west-trending F[sub 2] folds and an axial planar metamorphic foliation (S[sub 2]); (3) a steeply dipping, N-S striking crenulation cleavage (S[sub 3]). In the Piedra Lumbre region, southwest-plunging, open, upright chevron and box folds (F[sub 4]) locally reorient F[sub 2], S[sub 2] and S[sub 3]more » crenulations. The largest F[sub 4] folds in the Piedra Lumbre region have half-wavelengths of 500 meters. An associated nearly vertical foliation (S[sub 4]) overprints the first three foliations. The S[sub 4] foliation is a crenulation cleavage in micaceous layers and a discontinuous alignment of biotite laths in quartzose layers. Crystallization of biotite during S[sub 4] and chloritoid after S[sub 4], along with static recrystallization and mineral replacement by chlorite, suggests this deformation occurred during the waning stages of mid-Proterozoic metamorphism. The orientation of F[sub 2] and F[sub 4] folds are similar and both appear to occur on a regional scale. Interference of open upright F[sub 4] folds and tight, north-verging, overturned F[sub 2] folds produces a geometry that resembles that of the kilometer-scale Copper Hill Anticline of the western Picuris Mountains, previously interpreted to be solely the result of F[sub 2] folding.« less

  13. Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics.

    PubMed

    Lee, Yong-Keun; Cha, Hyun-Suk; Yu, Bin

    2014-09-01

    The color of an object is perceived differently depending on the ambient light conditions. Since dental all-ceramic restorations are fabricated by building up several layers to reproduce the tooth shade, the optical properties of each layer should be optimized for successful shade reproduction. This study aimed to determine the separate contributions of the color shifts in each of the core and veneer layers of all-ceramics by switching the illuminating lights on the color shifts of layered ceramics. Specimens of seven kinds of core ceramics and the corresponding veneer ceramics for each core were fabricated with a layered thickness of 1.5 mm. A sintering ceramic was used as a reference core material. The Commission Internationale de l’Eclairage (CIE) color coordinates of core, veneer, and layered specimens were measured with a spectroradiometer under the CIE illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp) simulating lights. Color shifts of the layered specimens were primarily determined by the CIE a shifts (D65 to A switch) or by the CIE b shifts (D65 to F9 switch) of the veneer layer. The color coordinates shifts in the constituent layers differentially influenced those of the layered specimens by the kind of switched lights. Therefore, the optical properties of the constituent layers of all-ceramics should be controlled to reflect these findings.

  14. Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Keun; Cha, Hyun-Suk; Yu, Bin

    2014-09-01

    The color of an object is perceived differently depending on the ambient light conditions. Since dental all-ceramic restorations are fabricated by building up several layers to reproduce the tooth shade, the optical properties of each layer should be optimized for successful shade reproduction. This study aimed to determine the separate contributions of the color shifts in each of the core and veneer layers of all-ceramics by switching the illuminating lights on the color shifts of layered ceramics. Specimens of seven kinds of core ceramics and the corresponding veneer ceramics for each core were fabricated with a layered thickness of 1.5 mm. A sintering ceramic was used as a reference core material. The Commission Internationale de l'Eclairage (CIE) color coordinates of core, veneer, and layered specimens were measured with a spectroradiometer under the CIE illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp) simulating lights. Color shifts of the layered specimens were primarily determined by the CIE a* shifts (D65 to A switch) or by the CIE b* shifts (D65 to F9 switch) of the veneer layer. The color coordinates shifts in the constituent layers differentially influenced those of the layered specimens by the kind of switched lights. Therefore, the optical properties of the constituent layers of all-ceramics should be controlled to reflect these findings.

  15. Simulation of First-Charge Oxygen-Dimerization and Mn-Migration in Li-Rich Layered Oxides xLi 2MnO 3 ·(1 – x )Li MO 2 and Implications for Voltage Fade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedek, Roy; Iddir, Hakim

    The instabilities of Li-rich layered oxide xLi 2MnO 3•(1-x)LiMO 2 (lithium-ion-battery cathode materials) during the first charge are investigated using first-principles dynamical simulation. To complement our earlier simulations for (x = 0.4, M = Ni 0.5Mn 0.5), we address here: pure Li 2MnO 3; small x; M compositions that include Co; a composite with Co spinel: Li 2MnO 3•Li 2M 2O 4; a Li 2MnO 3 slab. Lastly, we discuss how the threshold fraction f of Li 2(1-f)MnO 3 delithiation at which instabilities occur at the surface, fth(surface), differs from that in the bulk, f th(bulk). Approaches to inhibit voltagemore » fade are discussed.« less

  16. Simulation of First-Charge Oxygen-Dimerization and Mn-Migration in Li-Rich Layered Oxides xLi 2MnO 3 ·(1 – x )Li MO 2 and Implications for Voltage Fade

    DOE PAGES

    Benedek, Roy; Iddir, Hakim

    2017-03-08

    The instabilities of Li-rich layered oxide xLi 2MnO 3•(1-x)LiMO 2 (lithium-ion-battery cathode materials) during the first charge are investigated using first-principles dynamical simulation. To complement our earlier simulations for (x = 0.4, M = Ni 0.5Mn 0.5), we address here: pure Li 2MnO 3; small x; M compositions that include Co; a composite with Co spinel: Li 2MnO 3•Li 2M 2O 4; a Li 2MnO 3 slab. Lastly, we discuss how the threshold fraction f of Li 2(1-f)MnO 3 delithiation at which instabilities occur at the surface, fth(surface), differs from that in the bulk, f th(bulk). Approaches to inhibit voltagemore » fade are discussed.« less

  17. Magnetostriction and complex permeability of [Fe62Co19Ga19/Py]5/glass multilayered films

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Ching; Jen, Shien-Uang; Lin, Yu-Cha; Lai, Chih-Huang; Liao, Sheng-Chieh; Chien, Chia-Hua

    2015-07-01

    [Fe62Co19Ga19(x)/Py(40-x)]5/glass multilayered films, where x=0, 5, 10, 15, 20 nm, y=x(nm)/40(nm), and 0≤y≤1, were made by the magnetron sputtering method at room temperature. The total number of combined [Fe-Co-Ga/Py] unit-layers was five. The total film thickness (tf) was fixed at 200 nm. We have performed two kinds of experiments on these films: (i) the saturation magnetostriction (λS) measurement, and (ii) the complex permeability (μ=μR-jμI) experiment to find the resonance frequency (fR) as a function of external magnetic field (HE). By definition, the microwave power absorption Pabs at ferromagnetic resonance (FMR) for a metallic conductor is written as Pabs = [(μR2+ μI2)1/2 +μI ]1/2 . We define the half-width of the absorption peak Δf as Δf ≣ ΔfS+ΔfA, where ΔfS and ΔfA are the symmetric and asymmetric parts in Δf. The degree of asymmetry, ΔfA/Δf, of each absorption peak is associated with the structural and/or magnetic inhomogeneity in the film. The main findings from this study are summarized as follows: (A) maximum λS occurs in the y=1 film, and as y increases, λS increases; (B) biasing field for magnetostriction decreases greatly by adding Py layers; (C) the magnetostriction sensitivity remains almost constant in the range 0.4

  18. Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.

    PubMed

    Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong

    2018-04-01

    The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

  19. Development of Mathematical Model for Pneumatic Tire-Soil Interaction in Layered Soils

    DTIC Science & Technology

    1975-11-01

    HI SL E 7 Cli *1) 1XTN J (TFI, j)- - T11 1,J))14 71’ tL~f~iLO, 2 /LPC71F>0 oil -1 + C11 4 IJI .1 1_ 001 F[ A TAi I *JCOIIEITE INTERFACE [FFOIF 7DEPTH...RD4HF10 /LES02200 Oil BE = ALOCG IoS IRAMI /LES02TIJO/ 11 10G iAfMjJ2 I SLF I - TH =P/2 + ARM + 001 /LES0ri2q590 17 /LE`O22I J1 ns10I = PSI/QUW...LES0S780/ 09 W RITE TO 0EV (-ý LUV .GT. 2*ON-F >FALSE 0 F BD I /V1A FORMAT /LE1579t ’N IU/L0305690- 19 FALSE z K <K LU.L. ’Kz 22.10 00S0R7* 03 N

  20. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    NASA Astrophysics Data System (ADS)

    Li, Jian-wei; Zhao, Chong-jun; Feng, Chun; Zhou, Zhongfu; Yu, Guang-hua

    2015-08-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  1. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian-wei; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083; Zhao, Chong-jun

    2015-08-15

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three ordersmore » of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.« less

  2. Post-midnight enhancements in low latitude F layer electron density: observations and simulations

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Le, Huijun; Chen, Yiding; Zhang, Yanyan; Wan, Weixing; Ning, Baiqi

    2014-05-01

    Observations from a Lowell DPS-4D ionosonde operated at Sanya (18.3º N, 109.6º E), a low latitude station in China, have been analysed to study the nighttime behavior of ionospheric F layer. Post-midnight enhancement events are frequently occurred in the year of 2012. Common features in these cases illustrate that, accompanying nighttime rises in peak electron density of F2-layer (NmF2), the height of F2-layer goes downward significantly and the ionogram-derived electron density height profiles become sharpener. Enhancement in electron density develops earlier and reaches peaks earlier at higher altitudes than at lower altitudes. Downward plasma drift detected under such events reveals the essential role of the westward electric field in forming the post-midnight enhancements in electron density of ionospheric F-layer at such low latitudes. The important role of westward electric field in formation of nighttime enhancement is supported by the simulated results from a model. Work has been published in Liu et al., A case study of post-midnight enhancement in F-layer electron density over Sanya of China, J. Geophys. Res. Space Physics, 2013, 118, 4640-4648, DOI:10.1002/jgra.50422. Acknowledgements: Ionosonde data are provided from BNOSE of IGGCAS. This research was supported by the projects of Chinese Academy of Sciences (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604), and National Natural Science Foundation of China (41231065).

  3. Effect of spin-orbit coupling on excitonic levels in layered chalcogenide-fluorides

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy; Kykyneshi, Robert; Kinney, Joseph; McIntyre, David H.; Schneider, Guenter; Tate, Janet

    2008-03-01

    BaCuChF (Ch=S,Se,Te) comprise a family of wide-bandgap p-type semiconductors. Due to their high transparency and conductivity, they have potential applications as components of transparent thin-film transistors, solar cells and light-emitting devices. Thin films of BaCuChF have been deposited on MgO by pulsed laser deposition (PLD). Solid solutions BaCuS1-xSexTeF and BaCuSe1-xTex have been prepared by PLD of alternating thin BaCuChF layers. All films were deposited at elevated substrate temperatures. They are preferentially c-axis oriented, conductive and transparent in the visible part of the spectrum. Double excitonic peaks have been observed in the absorption spectrum of these films in the temperature range from 80 to 300K. The separation between the peaks in the doublet increases with the increase of atomic mass of the chalcogen. It also increases with the increase of the heavy chalcogen component x in the solid solutions. This separation most likely is caused by the effect of spin-orbit coupling in the chalcogen atoms on excitonic levels in BaCuChF.

  4. Denticity and Mobility of the Carbonate Groups in AMCO 3 F Fluorocarbonates: A Study on KMnCO 3 F and High Temperature KCaCO 3 F Polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousse, Gwenaelle; Ahouari, Hania; Pomjakushin, Vladimir

    We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ~320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed tomore » two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly “monodentate”, forming one short (2.14 Å) and one long (3.01 Å) Mn–O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.« less

  5. Synthesis and electrochemical properties of layered Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 2- zF z cathode materials prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Liao, Li; Wang, Xianyou; Luo, Xufang; Wang, Ximing; Gamboa, Sergio; Sebastian, P. J.

    The cathode-active materials, layered Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 2- zF z (0 ≤ z ≤ 0.1), were synthesized from a sol-gel precursor at 900 °C in air. The influence of Al-F co-substitution on the structural and electrochemical properties of the as-prepared samples was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical experiments. The results showed that Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 2- zF z has a typical hexagonal structure with a single phase, the particle sizes of the samples tended to increase with increasing fluorine content. It has been found that Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 1.95F 0.05 showed an improved cathodic behavior and discharge capacity retention compared to the undoped samples in the voltage range of 3.0-4.3 V. The electrodes prepared from Li[Ni 0.333Co 0.333Mn 0.293Al 0.04]O 1.95F 0.05 delivered an initial discharge capacity of 158 mAh -1 g and an initial coulombic efficiency is 91.3%, and the capacity retention at the 20th cycle was 94.9%. Though the F-doped samples had lower initial capacities, they showed better cycle performances compared with F-free samples. Therefore, this is a promising material for a lithium-ion battery.

  6. Flight Test Measurement Techniques for Laminar Flow. Volume 23(Les techniques de mesure en vol des ecoulements laminaires)

    DTIC Science & Technology

    2003-10-01

    Chapter 1 – Introduction 1-1 Chapter 2 – Boundary Layer Transition and Laminar Flow Concepts 2-1 2.1 Transition Mechanisms and Transition Prediction 2...Laminar flow control LSTM Lehrstuhl für Strömungsmechanik der Universität Erlangen LWK Laminarwindkanal Stuttgart L2F Laser two-focus anemometer MMO...2.1 Transition mechanisms and transition prediction Modern transonic transport aircraft are characterized by a swept wing resulting in high cruise

  7. The pulmonary mesenchymal tissue layer is defective in an in vitro recombinant model of nitrofen-induced lung hypoplasia.

    PubMed

    van Loenhout, Rhiannon B; Tseu, Irene; Fox, Emily K; Huang, Zhen; Tibboel, Dick; Post, Martin; Keijzer, Richard

    2012-01-01

    Despite modern treatments, congenital diaphragmatic hernia (CDH) remains associated with variable survival and significant morbidity. The associated pulmonary hypoplasia is a major determinant of outcome. To develop better treatments, improved comprehension of the pathogenesis of lung hypoplasia is warranted. We developed an in vitro cell recombinant model to mimic pulmonary hypoplasia and specifically to investigate epithelial-mesenchymal interactions and to decipher which tissue layer is primarily defective in nitrofen-induced CDH-associated lung hypoplasia. Epithelial cells (E) and fibroblasts (F) were isolated from E19 control ((C)) and nitrofen-induced hypoplastic rat lungs ((N)). Cells were recombined and cultured as either homotypic [(F(C))(E(C)) and (F(N))(E(N))] or heterotypic [(F(C))(E(N)) and (F(N))(E(C))] recombinants. Recombinants containing F(N) fibroblasts had a thickened fibroblast tissue layer and there were fewer organized alveolar-like epithelial structures compared with those in control (F(C))(E(C)) recombinants. These F(N) recombinants exhibited a decrease in terminal deoxynucleotidyl transferase dUTP nick end labeling and cleaved caspase-3 positive cells. Cell proliferation was arrested in recombinants containing F(N) fibroblasts, which also exhibited increased p27(Kip1) and p57(Kip2) expression. In conclusion, fibroblasts, and not epithelial cells, appear to be the defective cell type in nitrofen-induced hypoplastic lungs due to a decreased ability to undergo apoptosis and maintain overall proliferation. This may explain the characteristic pulmonary interstitial thickening and hypoplasia observed in both nitrofen-induced hypoplastic lungs as well as human hypoplastic CDH lungs. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berastegui, P.; Hull, S., E-mail: stephen.hull@stfc.ac.u; Eriksson, S.G.

    The compound CsSn{sub 2}F{sub 5} has been investigated over the temperature range from ambient to 545 K using differential scanning calorimetry, impedance spectroscopy and neutron powder diffraction methods. A first-order phase transition is observed from DSC measurements at 510(2) K, to a phase possessing a high ionic conductivity ({sigma}{approx}2.5x10{sup -2} {Omega}{sup -1} cm{sup -1} at 520 K). The crystal structure of the high temperature superionic phase (labelled {alpha}) has been determined to be tetragonal (space group I4/mmm, a=4.2606(10) A, c=19.739(5) A and Z=2) in which the cations form layers perpendicular to the [001] direction, with a stacking sequence CsSnSnCsSnSn... Allmore » the anions are located in two partially occupied sites in the gap between the Cs and Sn layers, whilst the space between the Sn cations is empty, due to the orientation of the lone-pair electrons associated with the Sn{sup 2+}. The structure of {alpha}-CsSn{sub 2}F{sub 5} is discussed in relation to two other layered F{sup -} conducting superionic phases containing Sn{sup 2+} cations, {alpha}-RbSn{sub 2}F{sub 5} and {alpha}-PbSnF{sub 4} and, to facilitate this comparison, an improved structural characterisation of the former is also presented. The wider issue of the role of lone-pair cations such as Sn{sup 2+} in promoting dynamic disorder within an anion substructure is also briefly addressed. - Graphical abstract: CsSn{sub 2}F{sub 5} is shown to undergo a first order phase transition at 510(2) K to a superionic phase in which the specific electronic configuration of the Sn{sup 2+} plays a key role in promoting extensive disorder of the anions.« less

  9. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 2, 1976

    DTIC Science & Technology

    1976-02-01

    34""" ■■■I"" ^"■’ " """"^ R-F Heating of Sporadic E-Layer (abstract) Effects of ionospheric heating by powerful r-f emission on the sporadic E-layers are...situation is just the reverse. Here heating by powerful r-f fields decreases its electron density and increases its thickness. At mean latitudes...T - 2, it decreases by 18% [Ignat’yev, Yu. A. Effect on the sporadic E-layer of ionospheric heating by powerful r-f emission. IVUZ

  10. F-16XL ship #1 CAWAP flight - alpha 10 degrees, beta -5 degrees, altitude 10,000 feet

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. This photo shows the aircraft gathering data at an altitude of 10,000 feet, with an angle of attack of 10 degrees and a sideslip angle of -5 degrees. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  11. F-16XL ship #1 crew

    NASA Technical Reports Server (NTRS)

    1995-01-01

    November 27, 1995 Photograph of the F-16XL Ship #1 Cranked-Arrow Wing Aerodynamic Project (CAWAP) Test Team; from left to right, Ron Wilcox; Operations Engineer, Art Cope; Aircraft Mechanic, Dave Fisher; Chief Project Engineer, Dick Denman; Aircraft Mechanic, Bob Garcia; A/C Crew Chief, Susan Ligon; Aircraft Mechanic, Rodger Tarango; Mobile Operations Facility (MOF) Staff, Jerry Cousins; Aircraft Mechanic, Bruce Gallmeyer; MOF Staff, and Mike Reardon; Aircraft Mechanic/Helper. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred at NASA's Dryden Flight Research Center, Edwards, California, on November 21, 1995, and the test program ended in April 1996.

  12. F-16XL ship #1 CAWAP flight - alpha 21 degrees, altitude 17,500 feet

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The single-seat F-16XL (ship #1) makes another run during the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing (visible here) has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. This photo shows the aircraft gathering data at an altitude of 17,500 feet, with an angle of attack of 21 degrees The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  13. Self-limited growth of the CaF nanowire on the Si(5 5 12)-2 × 1 template

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Duvjir, Ganbat; Dugerjav, Otgonbayar; Li, Huiting; Motlak, Moaaed; Arvisbaatar, Amarmunkh; Seo, Jae M.

    2012-10-01

    The atomic structure and interfacial bonding of the ordered-and-isolated CaF nanowires on Si(5 5 12)-2 × 1 have been disclosed by scanning tunneling microscopy and synchrotron photoemission spectroscopy. Initially, CaF molecules dissociated from thermally deposited CaF2 molecules are adsorbed preferentially on the chain structures of Si(5 5 12)-2 × 1 held at 500 °C. With increasing CaF2 deposition amount, one-dimensional (1D) CaF nanowires composed of (113) and (111) facets are formed. The line density of these CaF nanowires increases as a function of deposition amount. Finally, at a submonolayer coverage, the surface is saturated with these 1D nanowires except for the (225) subunit, while the original period of Si(5 5 12)-2 × 1, 5.35 nm, is preserved. It has been deduced by the present studies that, owing to these preferential adsorption of CaF and facet-dependent growth of a CaF layer within a unit periodic length of Si(5 5 12)-2 × 1, such a self-limited growth of the CaF nanowire with a high aspect ratio becomes possible.

  14. Crystal Chemistry, Magnetic and Electrical Properties of La(2-X)BaXNiO4

    DTIC Science & Technology

    1989-02-01

    alternating rock-salt, AO, and perovskite , ABe 3 , layers, with the separation between layers being almost twice the intraplanar distance between two B...t c 1.02, and it is most stable for t - 1.0. The 2 factor arises because the {110 planes of the perovskite layers are stacked alternately with the...a result of Ba 2 + substitution for La3 +.° This is easily understood with respect to the K2 NiF4 structure. The alternating perovskite and rock-salt

  15. What Is Happening at Spectral Type F5 in Hyades F Stars?

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Robinson, Richard; Carpenter, Kenneth; Mena-Werth, Jose

    2002-01-01

    Aiming at a better understanding of the mechanisms heating the chromospheres, transition regions, and coronae of cool stars, we study ultraviolet, low-resolution Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra of Hyades main-sequence F stars. We study the B-V dependence(s) of the chromospheric and transition layer emission line fluxes and their dependences on rotational velocities. We find that the transition layer emission line fluxes and also those of strong chromospheric lines decrease steeply between B-V = 0.42 and 0.45, i.e., at spectral type F5, for which the rotational velocities also decrease steeply. The magnitude of the line-flux decrease increases for lines of ions with increasing degree of ionization. This shows that the line-flux decrease is not due to a change in the surface filling factor but rather due to a change of the relative importance of different heating mechanisms. For early F stars with B-V < 0.42 we find for the transition layer emission lines increasing fluxes for increasing v sin i, indicating magnetohydrodynamic heating. The v sin i dependence is strongest for the high-ionization lines. On the other hand, the low chromospheric lines show no dependence on v sin i, indicating acoustic shock heating for these layers. This also contributes to the heating of the transition layers. The Mg II and Ca II lines show decreasing fluxes for increasing v sin i, as long as v sin i is less than approx. 40 km/s. The coronal X-ray emission also decreases for increasing v sin i, except for v sin i larger than approx. 100 km/s. We have at present no explanation for this behavior. For late F stars the chromospheric lines show v sin i dependences similar to those observed for early F stars, again indicating acoustic heating for these layers. We were unable to determine the v sin i dependence of the transition layer lines because of too few single star targets. The decrease of emission line fluxes at the spectral type F5, with steeply decreasing v sin i, indicates, however, a decreasing contribution of magnetohydrodynamic heating for the late F stars. The X-ray emission for the late F stars increases for increasing v sin i, indicating magnetohydrodynamic heating for the coronae of the late F stars, different from the early F stars.

  16. Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tran, Chau; Singhal, Richa; Lawrence, Daniel; Kalra, Vibha

    2015-10-01

    Three-dimensional, free-standing, hybrid supercapacitor electrodes combining polyaniline (PANI) and porous carbon nanofibers (P-CNFs) were fabricated with the aim to integrate the benefits of both electric double layer capacitors (high power, cyclability) and pseudocapacitors (high energy density). A systematic investigation of three different electropolymerization techniques, namely, potentiodynamic, potentiostatic, and galvanostatic, for electrodeposition of PANI on freestanding carbon nanofiber mats was conducted. It was found that the galvanostatic method, where the current density is kept constant and can be easily controlled facilitates conformal and uniform coating of PANI on three-dimensional carbon nanofiber substrates. The electrochemical tests indicated that the PANI-coated P-CNFs exhibit excellent specific capacitance of 366 F g-1 (vs. 140 F g-1 for uncoated porous carbon nanofibers), 140 F cm-3 volumetric capacitance, and up to 2.3 F cm-2 areal capacitance at 100 mV s-1 scan rate. Such excellent performance is attributed to a thin and conformal coating of PANI achieved using the galvanostatic electrodeposition technique, which not only provides pseudocapacitance with high rate capability, but also retains the double-layer capacitance of the underlying P-CNFs.

  17. Investigation of optical properties of multilayer dielectric structures using prism-coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V I; Glebov, V N; Malyutin, A M

    2015-09-30

    A method based on resonant excitation of waveguide modes with a prism coupler is proposed for measuring the thickness and refractive index of thin-film layers in multilayer dielectric structures. The peculiarities of reflection of TE- and TM-polarised light beams from a structure comprising eleven alternating layers of zinc sulfide (ZnS) and magnesium barium fluoride (MgBaF{sub 4}), whose thicknesses are much less than the wavelength of light, are investigated. Using the mathematical model developed, we have calculated the coefficients of reflection of collimated TE and TM light beams from a multilayer structure and determined the optical constants and thicknesses of themore » structure layers. The refractive indices of the layers, obtained for TE and TM polarisation of incident light, are in good agreement. The thicknesses of ZnS and MgBaF{sub 4} layers, found for different polarisations, coincide with an accuracy of ±1%. Thus, we have demonstrated for the first time that the prism-coupling technique allows one to determine the optical properties of thin-film structures when the number of layers in the structure exceeds ten layers. (integrated optics)« less

  18. Photograph of the month

    NASA Astrophysics Data System (ADS)

    2016-10-01

    Complex fold pattern superposition in the migmatite core of the Archean Yalgoo Dome, Yilgarn Craton, WA (Myers, J.S. et al., 1985. Geology 13, 778). East-trending F1 axial traces are folded around N-trending F2 axial traces, and truncated by S2, filled with axial planar leucosome. Note that most D2 leucosomes are subparallel to F2 axial traces, but not exactly located along them. Fold interference pattern types 1, 2 and 3 (Ramsay, J. G., 1967) seem to coexist in different portions of this platform. The transition between interference types is likely due to the highly non-cylindrical character of F1 folds. Furthermore, the "dome and basin" pattern, highlighted by ring-shaped layers, results from a subhorizontal cut through the culmination of F1 sheath folds. Such interpretation is supported by: (i) existence of F1 sheath folds in areas unaffected by F2 folds, and (ii) subhorizontal F2 axes, rather than the vertical observed, would be required in order to generate "dome and basin" pattern by fold superposition. The tonalite protolith of the migmatite was emplaced at c. 2.95Ga, and then deformed together with host greenstones (D1 event). Layering in the migmatite is due to alternating biotite-rich melanosomes, leucosomes bearing thin selvages, mesocratic tonalite gneiss and pegmatite to aplite veins. The pervasive, E-W trending S1 is associated with subvertical stretching lineation and is axial planar to subvertical, m- to km-scale highly sheath folds. At c. 2.75Ga, the tonalite-greenstone complex recorded a second episode of syndeformational melting (D2), accompanied by the emplacement of granites surrounding the tonalite. In migmatites, S2 occurs as N-trending, subvertical leucosomes and dykes, that are axial planar to N-trending, open to isoclinal vertical folds. 28°42‧S, 116°39‧E. Photograph© Ivan Zibra and Roberto Weinberg.

  19. Supramolecular assemblies of tetrafluoroterephthalic acid and N-heterocycles via various strong hydrogen bonds and weak Csbnd H⋯F interactions: Synthons cooperation, robust motifs and structural diversity

    NASA Astrophysics Data System (ADS)

    Hu, Yanjing; Hu, Hanbin; Li, Yingying; Chen, Ruixin; Yang, Yu; Wang, Lei

    2016-10-01

    A series of organic solid states including three salts, two co-crystals, and three hydrates based on tetrafluoroterephthalic acid (H2tfBDC) and N-bearing ligands (2,4-(1H,3H)-pyrimidine dione (PID), 2,4-dihydroxy-6-methyl pyrimidine (DHMPI), 2-amino-4,6-dimethyl pyrimidine (ADMPI), 2-amino-4,6-dimenthoxy pyrimidine (ADMOPI), 5,6-dimenthyl benzimidazole (DMBI), 2-aminobenzimidazole (ABI), 3,5-dimethyl pyrazole (DMP), and 3-cyanopyridine (3-CNpy)), namely, [(PID)2·(H2tfBDC)] (1), [(DHMPI)2·(H2tfBDC)] (2), [(H-ADMPI+)2·(tfBDC2-)·2(H2O)] (3), [(H-ADMOPI+)2·(tfBDC2-)·(H2O)] (4), [(H-DMBI+)2·(tfBDC2-)·2(H2O)] (5), [(H-ABI+)2·(tfBDC2-)] (6), [(H-DMP+)·(HtfBDC-)] (7), and [(H-3-CNpy+)·(HtfBDC-)] (8), were synthesized by solvent evaporation method. Crystal structures analyses show that the F atom of the H2tfBDC participates in multiple Csbnd H⋯F hydrogen bond formations, producing different supramolecular synthons. The weak hydrogen bonding Csbnd H⋯F and Nsbnd H⋯F play an important part in constructing the diversity structures 2-8, except in crystal 1. In complexes 1-3, they present the same synthon R22(8) with different N-heterocyclic compounds, which may show the strategy in constructing the supramolecular. Meanwhile, the complex 3 exhibits a 2D layer, and the independent molecules of water exist in the adjacent layers. In complexes 4 and 5, the water molecules connect the neighboring layers to form 3D network by strong Osbnd H⋯O hydrogen bonding. These crystals 1-8 were fully characterized by single-crystal X-ray crystallography, elemental analysis, infrared spectroscopy (IR), and thermogravimetric analysis (TGA).

  20. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels withmore » multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.« less

  1. Chemical splitting of multiwalled carbon nanotubes to enhance electrochemical capacitance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xinlu; Li, Tongtao; Zhang, Xinlin; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-06-01

    Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.

  2. Premixed Turbulent Combustion in High Reynolds Number Regimes of Thickened Flamelets and Distributed Reactions

    DTIC Science & Technology

    2016-03-24

    thickened preheat (TP) regime that is bounded by the Klimov-Williams limit, (b) the broken reaction layers (BR) boundary and the partially-distributed...b) the broken reaction layers (BR) boundary that is bounded by Norbert Peters predicted limit, and the partially-distributed reactions (PDR...Nomenclature BR = broken reaction layer boundary DR = distributed reaction zone boundary Ka = Karlovitz number of Peters (Eq. 1) equal to (δF,L

  3. Effects of interfacial stability between electron transporting layer and cathode on the degradation process of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chu, Ta-Ya; Lee, Yong-Han; Song, Ok-Keun

    2007-11-01

    The authors have demonstrated that the increase of electron injection barrier height between tris(8-hydroxyquinoline)aluminum (Alq3) and LiF /Al cathode is one of the most critical parameters to determine the reliability of organic light-emitting diode with the typical structure of indium tin oxide/N ,N'-bis(naphthalen-1-yl)-N ,N'-bis(phenyl) benzidine/Alq3/LiF /Al. The electrical properties of several devices (hole only, electron only, and integrated double-layered devices) have been measured in the function of operating time to analyze the bulk and interface property changes. Bulk properties of trap energy and mobility in an organic layer have been estimated by using trap-charge-limited currents and transient electroluminescence measurements.

  4. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  5. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors.

    PubMed

    Balasingam, Suresh Kannan; Lee, Jae Sung; Jun, Yongseok

    2015-09-21

    We report the synthesis of few-layered MoSe2 nanosheets using a facile hydrothermal method and their electrochemical charge storage behavior. A systematic study of the structure and morphology of the as-synthesized MoSe2 nanosheets was performed. The downward peak shift in the Raman spectrum and the high-resolution transmission electron microscopy images confirmed the formation of few-layered nanosheets. The electrochemical energy-storage behavior of MoSe2 nanosheets was also investigated for supercapacitor applications in a symmetric cell configuration. The MoSe2 nanosheet electrode exhibited a maximum specific capacitance of 198.9 F g(-1) and the symmetric device showed 49.7 F g(-1) at a scan rate of 2 mV s(-1). A capacitance retention of approximately 75% was observed even after 10 000 cycles at a high charge-discharge current density of 5 A g(-1). The two-dimensional MoSe2 nanosheets exhibited a high specific capacitance and good cyclic stability, which makes it a promising electrode material for supercapacitor applications.

  6. Combined Influence of Free-Stream Turbulence and Favorable Pressure Gradients on Boundary Layer Transition and Heat Transfer

    DTIC Science & Technology

    1981-04-01

    78-C-0064, Project Task No. 2307/A4 61102 F. The performance period covered by this report was from 1 Jnne 1980 to 31 March 1981. The project...Report R80-914 388-12, Sept. 1980 . 2. Blair, M. F., D. A. Bailey and R. H. Schlinker: Development of a Large Scale Wind Tunnel for the Simulation of...Two-Dimensional Potential Cascade Flow Using Finite Area Methods. AIAA Journal, Vol. 18, No. 1, Jan. 1980 . 5. Blackwell, B. F. and R. J. Moffat

  7. F3-LAYER Seasonal Variations Near the Southern Crest of the Equatorial Ionospheric Anomaly as a Function of Solar Cycle

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Klausner, V.; Bittencourt, J. A.; Sahai, Y.; Abalde, J. R.

    2011-12-01

    The occurrence of an additional F3-layer has been reported at Brazilian, Indian and Asian sectors by several investigators. In this paper, we report F3-layer seasonal variations carried out at São José dos Campos (23.2 S, 45.0 W; dip latitude 17.6 S), near the southern crest of the equatorial ionospheric anomaly (EIA), Brazil, as a function of solar cycle. The period from September 2000 to August 2001 is used as representative of high solar activity (HSA) and the period from January 2006 to December 2006 as representative of low solar activity (LSA). This investigation shows that the frequency of occurrence of the F3-layer during HSA is 11 times more than during LSA.

  8. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel-based material is a prerequisite for a high stability under thermocycling loading conditions.

  9. Role of CoFeB thickness in electric field controlled sub-100 nm sized magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Lourembam, James; Huang, Jiancheng; Lim, Sze Ter; Gerard, Ernult Franck

    2018-05-01

    We report a comprehensive study on the role of the free layer thickness (tF) in electric-field controlled nanoscale perpendicular magnetic tunnel junctions (MTJs), comprising of free layer structure Ta/Co40Fe40B20/MgO, by using dc magnetoresistance and ultra-short magnetization switching measurements. Focusing on MTJs that exhibits positive effective device anisotropy (Keff), we observe that both the voltage-controlled magnetic anisotropy (ξ) and voltage modulation of coercivity show strong dependence on tF. We found that ξ varies dramatically and unexpectedly from ˜-3 fJ/V-m to ˜-41 fJ/V-m with increasing tF. We discuss the possibilities of electric-field tuning of the effective surface anisotropy term, KS as well as an additional interfacial magnetoelastic anisotropy term, K3 that scales with 1 /tF2. Voltage pulse induced 180° magnetization reversal is also demonstrated in our MTJs. Unipolar switching and oscillatory function of switching probability vs. pulse duration can be observed at higher tF, and agrees well with the two key device parameters — Keff and ξ.

  10. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  11. Effect of diode laser and ultrasonics with and without ethylenediaminetetraacetic acid on smear layer removal from the root canals: A scanning electron microscope study.

    PubMed

    Amin, Khalid; Masoodi, Ajaz; Nabi, Shahnaz; Ahmad, Parvaiz; Farooq, Riyaz; Purra, Aamir Rashid; Ahangar, Fayaz Ahmad

    2016-01-01

    To evaluate the effect of diode laser and ultrasonics with and without ethylenediaminetetraacetic acid (EDTA) on the smear layer removal from root canals. A total of 120 mandibular premolars were decoronated to working the length of 12 mm and prepared with protaper rotary files up to size F3. Group A canals irrigated with 1 ml of 3% sodium hypochlorite (NaOCl) followed by 3 ml of 3% NaOCl. Group B canals irrigated with 1 ml of 17% EDTA followed by 3 ml of 3% NaOCl. Group C canals lased with a diode laser. Group D canals were initially irrigated with 0.8 ml of 17% EDTA the remaining 0.2 ml was used to fill the root canals, and diode laser application was done. Group E canals were irrigated with 1 ml distilled water with passive ultrasonic activation, followed by 3 ml of 3% NaOCl. Group F canals were irrigated with 1 ml EDTA with passive ultrasonic activation, followed by 3 ml of 3% NaOCl. Scanning electron microscope examination of canals was done for remaining smear layer at coronal middle and apical third levels. Ultrasonics with EDTA had the least smear layer scores. Diode laser alone performed significantly better than ultrasonics.

  12. Real-time reconstruction of topside ionosphere scale height from coordinated GPS-TEC and ionosonde observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Poustovalova, Ljubov

    The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters and TEC allows interpolate these parameters at coordinated grid sites from independent GPS receivers and ionosondes data. Exponential scale height Htop exceeds scale height HT of the α-Chapman layer by 3 times - the latter refers to a narrow altitude range from hmF2 to the height of 1.2 times decay of NmF2. While typical quiet daytime value of the topside scale height is around 200 km, it can be enhanced by 2-3 times during the negative phase of the ionospheric storm as it is captured by IRI-Plas-RT model ingesting the F2 peak and TEC data. This study is supported by the joint grant of RFBR 13-02-91370-CT_a and TUBITAK 112E568.

  13. What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure?

    PubMed

    Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao

    2017-09-26

    In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH < 50%; and then its V m dependence becomes weaker as RH increases above 50%. Comparing the friction data with the attenuated total reflection infrared (ATR-IR) spectroscopy analysis result of the adsorbed water layer, it appeared that the solidlike water layer structure formed on the silica surface plays a critical role in friction at RH < 50% and its contribution diminishes at RH ≥ 50%. These findings give a deeper insight into the role of water condensation in friction of the silicon oxide single asperity contact under ambient conditions.

  14. Tracker Studies

    DTIC Science & Technology

    1975-06-01

    implication of the multiple mode effect is that the multiple returns could be combined non -coherently, or perhaps even coherently, to improve the detection...of three superimposed quasi - parabolic layers. The leading edge of the E, F, and F2 layers are computed 2-12 vw LEADING EDGE E LAYER FOCUSING AT...represent the simplest category of propagation with which the OTH radarist must contend. The underlying Fl and E layers are controlled by sunlight, and their

  15. Short-Term fo F2 Forecast: Present Day State of Art

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Depuev, V. H.; Depueva, A. H.

    An analysis of the F2-layer short-term forecast problem has been done. Both objective and methodological problems prevent us from a deliberate F2-layer forecast issuing at present. An empirical approach based on statistical methods may be recommended for practical use. A forecast method based on a new aeronomic index (a proxy) AI has been proposed and tested over selected 64 severe storm events. The method provides an acceptable prediction accuracy both for strongly disturbed and quiet conditions. The problems with the prediction of the F2-layer quiet-time disturbances as well as some other unsolved problems are discussed

  16. Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)–layered clay nanocomposite fibrous membranes for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubha, Nageswaran; Prasanth, Raghavan; Energy Research Institute - NTU

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► P(VdF-co-HFP)–clay nanocomposite based electrospun membranes are prepared. ► The membranes are used as polymer gel electrolyte (PGE) in lithium ion batteries. ► The composite PGE shows ionic conductivity of 5.5 mS cm{sup −1} at room temperature. ► Li/PGE/LiFePO{sub 4} cell delivers initial discharge capacity of 160 mAh g{sup −1}. ► The use of prepared electrolyte significantly improved the cell performance. -- Abstract: A new approach for fabricating polymer gel electrolytes (PGEs) based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) incorporated with layered nanoclay has been employed to enhance the ionic conductivity and electrochemical properties of P(VdF-co-HFP) withoutmore » compromising its mechanical strength. The effect of layered nanoclay on properties of membranes has been evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Surface morphology of the membranes has been studied using field-emission scanning electron microscopy (FE-SEM). Polymer gel electrolytes are prepared by soaking the fibrous membrane into 1 M LiPF{sub 6} in EC/DEC. The electrochemical studies show that incorporation of layered nanoclay into the polymer matrix greatly enhanced the ionic conductivity and compatibility with lithium electrodes. The charge–discharge properties and cycling performance of Li/LiFePO{sub 4} cells comprising nanocomposite polymer gel electrolytes have been evaluated at room temperature.« less

  17. Variations of the ionospheric parameters obtained from ground based measurements of ULF magnetic noise

    NASA Astrophysics Data System (ADS)

    Ermakova, Elena; Kotik, Dmitry; Bösinger, Tilmann

    2016-07-01

    The dynamics of the amplitude spectra and polarization parameter (epsilon)[1] of magnetic ULF noise were investigated during different seasons and high geomagnetic activity time using the data on the horizontal magnetic components monitoring at mid-latitude (New Life, Russia, 56 N, 46 E) and low-latitude stations (Crete, 35.15 N, 25.20 E). It was found that abrupt changes in the spectral polarization parameters can be linked as with variation of height of maximum and the electron density of the F-layer, and with a change in ionospheric parameters profiles at lower altitudes, for example, with the appearance of sporadic Es-layers and intermediate layers, located between the E and F-layers. It was detected the peculiarities in the daily dynamics of the epsilon parameter at low latitudes: a) the appearance in some cases more complicated than in the mid-latitudes, epsilon structure of the spectrum associated with the presence of two different values of the boundary frequency fB [2]; b) a decreasing of fB near local midnight observed in 70% of cases; c) observation of typical for dark time epsilon spectra after sunrise in the winter season. The numerical calculations of epsilon parameter were made using the IRI-2012 model with setting the models of sporadic and intermediate layers. The results revealed the dependence of the polarization spectra of the intensity and height of such thin layers. The specific changes in the electron density at altitudes of 80-350 km during the recovery phase of strong magnetic storms were defined basing on a comparative analysis of the experimental spectra and the results of the numerical calculations. References. 1. E. N. Ermakova, D. S. Kotik, A. V.Ryabov, A. V.Pershin, T. B.osinger, and Q. Zhou, Studying the variation of the broadband spectral maximum parameters in the natural ULF fields, Radiophysics and Quantum Electronics, Vol. 55, No. 10-11, March, 2013 p. 605-615. 2. T. Bosinger, A. G. Demekhov, E. N. Ermakova, C. Haldoupis and Q. Zhou, Pulsating nighttime magnetic background noise in the upper ULF band at low latitudes, J.Geophys. Res., 2014, Space Physics, 119, doi:10.1002/2014JA019906.

  18. Off-great-circle paths in transequatorial propagation: 2. Nonmagnetic-field-aligned reflections

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.; Maruyama, Takashi; Tsugawa, Takuya; Yokoyama, Tatsuhiro; Ishii, Mamoru; Nguyen, Trang T.; Ogawa, Tadahiko; Nishioka, Michi

    2016-11-01

    There is considerable evidence that plasma structure in nighttime equatorial F layer develops from large-scale wave structure (LSWS) in bottomside F layer. However, crucial details of how this process proceeds, from LSWS to equatorial plasma bubbles (EPBs), remain to be sorted out. A major obstacle to success is the paucity of measurements that provide a space-time description of the bottomside F layer over a broad geographical region. The transequatorial propagation (TEP) experiment is one of few methods that can do so. New findings using a TEP experiment, between Shepparton (SHP), Australia, and Oarai (ORI), Japan, are presented in two companion papers. In Paper 1 (P1), (1) off-great-circle (OGC) paths are described in terms of discrete and diffuse types, (2) descriptions of OGC paths are generalized from a single-reflection to a multiple-reflection process, and (3) discrete type is shown to be associated with an unstructured but distorted upwelling, whereas the diffuse type is shown to be associated with EPBs. In Paper 2 (P2), attention is placed on differences in east-west (EW) asymmetry, found between OGC paths from the SHP-ORI experiment and those from another near-identical TEP experiment. Differences are reconciled by allowing three distinct sources for the EW asymmetries: (1) reflection properties within an upwelling (see P1), (2) OGC paths that depend on magnetic declination of geomagnetic field (B), and (3) OGC paths supported by non-B-aligned reflectors at latitudes where inclination of B is finite.

  19. Study of structure and antireflective properties of LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 trilayers for UV applications

    NASA Astrophysics Data System (ADS)

    Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.

    2015-01-01

    The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Shih, Wei-Heng; Shih, Wan Y., E-mail: shihwy@drexel.edu

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.65}[PbTiO{sub 3}]{sub 0.35} (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PTmore » freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.« less

  1. [Comparative study of the effects of sterilized air and perfluoropropane gas tamponades on recovery after idiopathic full-thickness macular hole surgery].

    PubMed

    He, F; Zheng, L; Dong, F T

    2017-05-11

    Objective: To compare the effects of sterilized air and perfluoropropane (C(3)F(8)) tamponades on recovery after vitrectomy for the treatment of idiopathic full-thickness macular hole (IFTMH). Methods: Case control study. Seventy-three eyes of 69 consecutive cases underwent vitrectomy with air (53 eyes) or 10% C(3)F(8) gas (20 eyes) tamponade. Surgical outcomes were retrospectively analyzed between the two groups, including logarithm of the minimal angle of resolution (logMAR) and optical coherence tomography findings like the size of the macular hole and the photoreceptor layer defect. Results: Preoperatively, the mean best corrected visual acuity (BCVA) was (0.10±0.49), the mean hole diameter was (777.9±320.7) μm, and the mean diameter of the photoreceptor layer defect was (1 709.3±516.0) μm in the sterilized air group, while in the C(3)F(8) group, the mean BCVA was (0.07±0.50), the mean hole diameter was (853.9±355.0) μm, and the mean defect diameter was (1 480.5±429.9) μm. The primary closure rate was 90.6% in the sterilized air group and 95.0% in the C(3)F(8) group. One month after surgery, the mean BCVA was (0.17±0.41), and the mean diameter of the photoreceptor layer defect was (820.5±598.0) μm in the sterilized air group, while in the C(3)F(8) group, the mean BCVA was 0.12±0.49, and the mean defect diameter was (762.5±658.0) μm. There was no statistically significant difference in the closure rate (χ(2)=0.019), BCVA ( t =-1.689), hole diameter ( t =0.837) and diameter of the photoreceptor layer defect ( t =0.338) between the two groups( P >0.05). Conclusions: Vitrectomy with sterilized air tamponade is safe and effective for the treatment of IFTMH and even cases with relatively large diameters. (Chin J Ophthalmol, 2017, 53: 327 - 331) .

  2. Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan, M.

    2014-01-01

    Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.

  3. Effects of gas flow rate on the etch characteristics of a low- k sicoh film with an amorphous carbon mask in dual-frequency CF4/C4F8/Ar capacitively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Soo; Lee, Hea-Lim; Lee, Nae-Eung; Kim, Chang-Young; Choi, Chi Kyu

    2013-01-01

    Highly selective nanoscale etching of a low-dielectric constant (low- k) organosilicate (SiCOH) layer using a mask pattern of chemical-vapor-deposited (CVD) amorphous carbon layer (ACL) was carried out in CF4/C4F8/Ar dual-frequency superimposed capacitively-coupled plasmas. The etching characteristics of the SiCOH layers, such as the etch rate, etch selectivity, critical dimension (CD), and line edge roughness (LER) during the plasma etching, were investigated by varying the C4F8 flow rate. The C4F8 gas flow rate primarily was found to control the degree of polymerization and to cause variations in the selectivity, CD and LER of the patterned SiCOH layer. Process windows for ultra-high etch selectivity of the SiCOH layer to the CVD ACL are formed due to the disproportionate degrees of polymerization on the SiCOH and the ACL surfaces.

  4. Supercurrent in ferromagnetic Josephson junctions with heavy metal interlayers

    NASA Astrophysics Data System (ADS)

    Satchell, Nathan; Birge, Norman O.

    2018-06-01

    The length scale over which supercurrent from conventional BCS, s -wave superconductors (S ) can penetrate an adjacent ferromagnetic (F ) layer depends on the ability to convert singlet Cooper pairs into triplet Cooper pairs. Spin-aligned triplet Cooper pairs are not dephased by the ferromagnetic exchange interaction and can thus penetrate an F layer over much longer distances than singlet Cooper pairs. These triplet Cooper pairs carry a dissipationless spin current and are the fundamental building block for the fledgling field of superspintronics. Singlet-triplet conversion by inhomogeneous magnetism is well established. Here, we describe an attempt to use spin-orbit coupling as an alternative mechanism to mediate singlet-triplet conversion in S-F-S Josephson junctions. We report that the addition of thin Pt spin-orbit-coupling layers in our Josephson junctions significantly increases supercurrent transmission, however the decay length of the supercurrent is not found to increase. We attribute the increased supercurrent transmission to Pt acting as a buffer layer to improve the growth of the Co F layer.

  5. Electronic structure of the polymer-cathode interface of an organic electroluminescent device investigated using operando hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeuchi, J.; Hamamatsu, H.; Miyamoto, T.

    2015-08-28

    The electronic structure of a polymer-cathode interface of an operating organic light-emitting diode (OLED) was directly investigated using hard X-ray photoelectron spectroscopy (HAXPES). The potential distribution profile of the light-emitting copolymer layer as a function of the depth under the Al/Ba cathode layer in the OLED depended on the bias voltage. We found that band bending occurred in the copolymer of 9,9-dioctylfluorene (50%) and N-(4-(2-butyl)-phenyl)diphenylamine (F8-PFB) layer near the cathode at 0 V bias, while a linear potential distribution formed in the F8-PFB when a bias voltage was applied to the OLED. Direct observation of the built-in potential and that bandmore » bending formed in the F8-PFB layer in the operating OLED suggested that charges moved in the F8-PFB layer before electron injection from the cathode.« less

  6. Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe

    2016-01-01

    A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.

  7. A magnetospheric signature of some F layer positive storms

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Mayr, H. G.; Grebowsky, J. M.; Harris, I.; Tulunay, Y. K.

    1981-01-01

    Calculations of electron density distributions in the global thermosphere-ionosphere system perturbed by high-latitude thermospheric heating are presented which indicate a link between the heating and magnetospheric plasma disturbances near the equator. The calculations were made using a self-consistent model of the global sunlit thermosphere-ionosphere system describing the evolution of equatorial plasma disturbances. The heat input is found to cause electron density enhancements that propagate along magnetic field lines from the F2 maximum over mid-latitudes to the equator in the magnetosphere and which correspond to the positive phase of an F layer storm. The positive phase is shown to be generated by the induction of equatorward winds that raise the mid-latitude F layer through momentum transfer from neutral atoms to ionospheric ions, which ions pull electrons with them. Model results are used to identify plasma signatures of equatorward winds and an intensified magnetospheric electric field in Explorer 45 and Arial 4 measurements taken during the positive phase of an F layer storm.

  8. Combinatorial compatibility as habit-controlling factor in lysozyme crystallization II. Morphological evidence for tetrameric growth units

    NASA Astrophysics Data System (ADS)

    Strom, C. S.; Bennema, P.

    1997-03-01

    This work (Part II) explores the relation between units and morphology. It shows the equivalence in behaviour between the attachment energies and the results of Monte Carlo growth kinetics simulations. The energetically optimal combination of the F slices in 1 1 0, 0 1 1 and 1 1 1 in a monomolecular interpretation leads to unsatisfactory agreement with experimentally observed morphology. In a tetrameric (or octameric) interpretation, the unit cell must be subdivided self-consistently in terms of stable molecular clusters. Thus, the presence or absence of the 1 1 1 form functions as a direct experimental criterion for distinguishing between monomolecular growth layers, and tetrameric (or octameric) growth layers of the same composition, but subjected to the condition of combinatorial compatibility, as the F slices combine to produce the growth habit. When that condition is taken into account, the tetrameric (or octameric) theoretical morphology in the broken bond model is in good agreement with experiment over a wide range. Subjectmatter for future study is summarized.

  9. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors

    NASA Astrophysics Data System (ADS)

    Tian, Yapeng; Yang, Chenhui; Que, Wenxiu; He, Yucheng; Liu, Xiaobin; Luo, Yangyang; Yin, Xingtian; Kong, Ling Bing

    2017-11-01

    Supercapacitor, as an important energy storage device, is a critical component for next generation electric power system, due to its high power density and long cycle life. In this study, a novel electrode material with quasi-core-shell structure, consisting of negatively charged few layer Ti3C2 nanosheets (FL-Ti3C2) and positively charged polyethyleneimine as building blocks, has been prepared by using an electrostatic layer-by-layer self-assembly method, with highly conductive Ni foam to be used as the skeleton. The unique quasi-core-shell structured ultrathin Ti3C2 nanosheets provide an excellent electron channel, ion transport channel and large effective contact area, thus leading to a great improvement in electrochemical performance of the material. The specific capacitance of the binder-free FL-Ti3C2@Ni foam electrodes reaches 370 F g-1 at the scan rate of 2 mV s-1 and a specific capacitance of 117 F g-1 is obtained even at the scan rate of 1000 mV s-1 in the electrolyte of Li2SO4, indicating a high rate performance. In addition, this electrode shows a long-term cyclic stability with a loss of only 13.7% after 10,000 circles. Furthermore, quantitative analysis has been conducted to ensure the relationship between the capacitive contribution and the rate performance of the as-fabricated electrode.

  10. Effect of 3,3',5-triiodothyronine and 3,5-diiodothyronine on progesterone production, cAMP synthesis, and mRNA expression of STAR, CYP11A1, and HSD3B genes in granulosa layer of chicken preovulatory follicles.

    PubMed

    Sechman, A; Pawlowska, K; Hrabia, A

    2011-10-01

    In vitro studies were performed to assess whether stimulatory effects of triiodothyronine (T3) on progesterone (P4) production in a granulosa layer (GL) of chicken preovulatory follicles are associated with 3',5'-cyclic adenosine monophosphate (cAMP) synthesis and mRNA expression of STAR protein, CYP11A1, and HSD3B. Effects of 3,5-diiodothyronine (3,5-T2) on steroidogenic function in these follicles were also investigated. The GL of F3 to F1 follicles was incubated in medium supplemented with T3 or 3,5-T2, LH, or forskolin (F), and a combination of each iodothyronine with LH or F. Levels of P4 and cAMP in culture media were determined by RIA. Expression of genes involved in P4 synthesis (ie, STAR protein, CYP11A1, and HSD3B) in the GL of F3 to F1 follicles incubated in medium with T3 or 3,5-T2 and their combination with LH was performed by real-time PCR. Triiodothyronine increased basal and LH- and F-stimulated P4 secretion by preovulatory follicles. The 3,5-T2 elevated P4 synthesis by F3, had no effect on F2 follicles, and diminished P4 production by the GL of F1 follicles. It had no effect on LH-stimulated P4 production; however, it augmented F-stimulated P4 production by F2 and F1 follicles. Although T3 did not affect basal and F-stimulated cAMP synthesis by the GL of preovulatory follicles, it increased LH-stimulated synthesis of this nucleotide. However, 3,5-T2 elevated F-stimulated cAMP synthesis in F3 and F2 follicles; it did not change basal and LH-stimulated cAMP production. Triiodothyronine decreased basal STAR and CYP11A1 mRNAs in F3 follicles, increased them in F1 follicles, and elevated HSD3B mRNA levels in F1 follicles. Triiodothyronine augmented LH-stimulated STAR, CYP11A1, and HSD3B mRNA levels in F2 and CYP11A1 in F1 follicles. However, T3 decreased LH-stimulated STAR and HSD3B mRNA levels in F1 follicles. The 3,5-T2 did not affect basal STAR and CYP11A1 mRNA expression in all investigated follicles; however, it decreased LH-stimulated STAR expression in F2 and F1 ones. The effects of 3,5-T2 caused elevated basal but diminished LH-stimulated HSD3B mRNA levels. In conclusion, data indicate that both iodothyronines are involved in P4 production in the GL of chicken preovulatory follicles acting alone and additively with LH. Effects of iodothyronines depend on follicle maturation and are associated with modulation of cAMP synthesis and STAR, CYP11A1, and HSD3B mRNA expression. We suggest that iodothyronines participate in maturation and ovulation of chicken follicles. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Computer Program for Calculation of Separated Turbulent Flows on Axisymmetric Afterbodies including Exhaust Plume Effects

    DTIC Science & Technology

    1979-03-01

    automatically extended to match the inviscid grid. 53 AEDC-T R-79-4 XT DXP HLIM CFCI DELTA1 DELSTI UEI DUEDX NR XRP ,RL Axial location of...layer-edge velocity gradient at initial boundary-layer station. Integer number of values of XRP and RL to be input for body shape. If NSHPBL = 0, this...If LSHPBL = 0 and LPROG = 0, skip items 20 and 21 NR XRP ,RL 715 I5 2FI0.0 8FI0.0 5F10.0 2FI0.0 2f10.0 I615 2FI0.0 125 AEDC-TR-79-4

  12. Techniques used in the F-14 variable-sweep transition flight experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.; Chiles, Harry R.

    1988-01-01

    This paper discusses and evaluates the test measurement techniques used to determine the laminar-to-turbulent boundary layer transition location in the F-14 variable-sweep transition flight experiment (VSTFE). The main objective of the VSTFE was to determine the effects of wing sweep on the laminar-to-turbulent transition location at conditions representative of transport aircraft. Four methods were used to determine the transition location: (1) a hot-film anemometer system; (2) two boundary-layer rakes; (3) surface pitot tubes; and (4) liquid crystals for flow visualization. Of the four methods, the hot-film anemometer system was the most reliable indicator of transition.

  13. Resilience of antagonistic networks with regard to the effects of initial failures and degree-degree correlations

    NASA Astrophysics Data System (ADS)

    Watanabe, Shunsuke; Kabashima, Yoshiyuki

    2016-09-01

    In this study we investigate the resilience of duplex networked layers α and β coupled with antagonistic interlinks, each layer of which inhibits its counterpart at the microscopic level, changing the following factors: whether the influence of the initial failures in α remains [quenched (case Q )] or not [free (case F )]; the effect of intralayer degree-degree correlations in each layer and interlayer degree-degree correlations; and the type of the initial failures, such as random failures or targeted attacks (TAs). We illustrate that the percolation processes repeat in both cases Q and F , although only in case F are nodes that initially failed reactivated. To analytically evaluate the resilience of each layer, we develop a methodology based on the cavity method for deriving the size of a giant component (GC). Strong hysteresis, which is ignored in the standard cavity analysis, is observed in the repetition of the percolation processes particularly in case F . To handle this, we heuristically modify interlayer messages for macroscopic analysis, the utility of which is verified by numerical experiments. The percolation transition in each layer is continuous in both cases Q and F . We also analyze the influences of degree-degree correlations on the robustness of layer α , in particular for the case of TAs. The analysis indicates that the critical fraction of initial failures that makes the GC size in layer α vanish depends only on its intralayer degree-degree correlations. Although our model is defined in a somewhat abstract manner, it may have relevance to ecological systems that are composed of endangered species (layer α ) and invaders (layer β ), the former of which are damaged by the latter whereas the latter are exterminated in the areas where the former are active.

  14. Combinatorial compatibility as habit-controlling factor in lysozyme crystallization I. Monomeric and tetrameric F faces derived graph-theoretically

    NASA Astrophysics Data System (ADS)

    Strom, C. S.; Bennema, P.

    1997-03-01

    A series of two articles discusses possible morphological evidence for oligomerization of growth units in the crystallization of tetragonal lysozyme, based on a rigorous graph-theoretic derivation of the F faces. In the first study (Part I), the growth layers are derived as valid networks satisfying the conditions of F slices in the context of the PBC theory using the graph-theoretic method implemented in program FFACE [C.S. Strom, Z. Krist. 172 (1985) 11]. The analysis is performed in monomeric and alternative tetrameric and octameric formulations of the unit cell, assuming tetramer formation according to the strongest bonds. F (flat) slices with thickness Rdhkl ( {1}/{2} < R ≤ 1 ) are predicted theoretically in the forms 1 1 0, 0 1 1, 1 1 1. The relevant energies are established in the broken bond model. The relation between possible oligomeric specifications of the unit cell and combinatorially feasible F slice compositions in these orientations is explored.

  15. Optical coatings for high average power XeF lasers

    NASA Astrophysics Data System (ADS)

    Milam, D.; Thomas, I.; Wilder, J.; George, D.

    1988-03-01

    Porous silica, calcium and magnesium fluorides were investigated for potential use as antireflective coatings for XeF lasers. Excellent optical properties were obtained for all types, and laser damage thresholds were in the range 18 to 25 J/sq cm at 350 nm for 25 ns pulses at 25 Hz pulse repetition frequency. Studies of the effects of the XeF laser environment on these coatings were incomplete. Three oxides, ZrO2, HfO2, and Ta2O5 were investigated as the high index components to be paired with low index porous SiO2 for highly reflective dielectric coatings. Single oxide layers had indices in the 1.7 to 1.8 range and HfO2 coatings had the highest damage threshold at about 5 J/sq cm. An unexpected problem arose on attempts to prepare multilayer coatings. Stress in the coating after 6 to 8 layers had been put down, gave rise to crazing and peeling. This could not be avoided even on extending the curing process between coats.

  16. In-plane chemical pressure essential for superconductivity in BiCh2-based (Ch: S, Se) layered structure

    PubMed Central

    Mizuguchi, Yoshikazu; Miura, Akira; Kajitani, Joe; Hiroi, Takafumi; Miura, Osuke; Tadanaga, Kiyoharu; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    BiCh2-based compounds (Ch: S, Se) are a new series of layered superconductors, and the mechanisms for the emergence of superconductivity in these materials have not yet been elucidated. In this study, we investigate the relationship between crystal structure and superconducting properties of the BiCh2-based superconductor family, specifically, optimally doped Ce1−xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1−ySey)2. We use powder synchrotron X-ray diffraction to determine the crystal structures. We show that the structure parameter essential for the emergence of bulk superconductivity in both systems is the in-plane chemical pressure, rather than Bi-Ch bond lengths or in-plane Ch-Bi-Ch bond angle. Furthermore, we show that the superconducting transition temperature for all REO0.5F0.5BiCh2 superconductors can be determined from the in-plane chemical pressure. PMID:26447333

  17. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    PubMed

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  18. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  19. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  20. Cortical lamina-dependent blood volume changes in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Trampel, Robert; Guidi, Maria; Reimer, Enrico; Ivanov, Dimo; Neef, Nicole; Gauthier, Claudine J; Turner, Robert; Möller, Harald E

    2015-02-15

    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons.

    PubMed

    Hu, Jia Sheng; Vogt, Daniel; Lindtner, Susan; Sandberg, Magnus; Silberberg, Shanni N; Rubenstein, John L R

    2017-08-01

    Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST + and PV + ) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 ( Nr2f1 and Nr2f2 ) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST + CINs. Coup-TF1 and Coup-TF2 autonomously repress PV + fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate. © 2017. Published by The Company of Biologists Ltd.

  2. Optimization of the 3-Point Bending Failure of Anodized Aluminum Formed in Tartaric/Sulphuric Acid Using Doehlert Design

    NASA Astrophysics Data System (ADS)

    Bensalah, W.; Feki, M.; De-Petris Wery, M.; Ayedi, H. F.

    2015-02-01

    The bending failure of anodized aluminum in tartaric/sulphuric acid bath was modeled using Doehlert design. Bath temperature, anodic current density, sulphuric acid, and tartaric acid concentrations were retained as variables. Thickness measurements and 3-point bending experiments were conducted. The deflection at failure ( D f) and the maximum load ( F m) of each sample were, then, deducted from the corresponding flexural responses. The treatment of experimental results has established mathematical models of second degree reflecting the relation of cause and effect between the factors and the studied properties. The optimum path study of thickness, deflection at failure, and maximum load, showed that the three optima were opposite. Multicriteria optimization using the desirability function was achieved in order to maximize simultaneously the three responses. The optimum conditions were: C tar = 18.2 g L-1, T = 17.3 °C, J = 2.37 A dm-2, C sul = 191 g L-1, while the estimated response values were e = 57.7 µm, D f = 5.6 mm, and F m = 835 N. Using the established models, a mathematical correlation was found between deflection at failure and thickness of the anodic oxide layer. Before bending tests, aluminum oxide layer was examined by scanning electron microscopy (SEM) and atomic force microscopy. After tests, the morphology and the composition of the anodic oxide layer were inspected by SEM, optical microscopy, and glow-discharge optical emission spectroscopy.

  3. 1/f model for long-time memory of the ocean surface temperature

    NASA Astrophysics Data System (ADS)

    Fraedrich, Klaus; Luksch, Ute; Blender, Richard

    2004-09-01

    The 1/f spectrum of the ocean surface temperature in the Atlantic and Pacific midlatitudes is explained by a simple vertical diffusion model with a shallow mixed layer on top of a deep ocean. The model is forced at the air-sea interface with the total surface heat flux from a 1000 year climate simulation. The analysis reveals the role of ocean advection and substantiates estimates of internal thermal diffusivities.

  4. Reorientation of the ‘free OH’ group in the top-most layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ran-Ran; Guo, Yuan; Wang, Hongfei

    2014-09-17

    Many experimental and theoretical studies have established the specific anion, as well as cation effects on the hydrogen-bond structures at the air/water interface of electrolyte solutions. However, the ion effects on the top-most layer of the air/water interface, which is signified by the non-hydrogen-bonded so-called ‘free O-H’ group, has not been discussed or studied. In this report, we present the measurement of changes of the orientational angle of the ‘free O-H’ group at the air/water interface of the sodium fluoride (NaF) solutions at different concentrations using the interface selective sum-frequency generation vibrational spectroscopy (SFG-VS) in the ssp and ppp polarizations.more » The polarization dependent SFG-VS results show that the average tilt angle of the ‘free O-H’ changes from about 35.3 degrees ± 0.5 degrees to 43.4 degrees ± 2.1degrees as the NaF concentration increase from 0 to 0.94M (nearly saturated). Such tilt angle change is around the axis of the other O-H group of the same water molecule at the top-most layer at the air/water interface that is hydrogen-bonded to the water molecules below the top-most layer. These results provide quantitative molecular details of the ion effects of the NaF salt on the structure of the water molecules at the top-most layer of the air/water interfacial, even though both the Na+ cation and the F- anion are believed to be among the most excluded ions from the air/water interface.« less

  5. Flexural strength and failure modes of layered ceramic structures.

    PubMed

    Borba, Márcia; de Araújo, Maico D; de Lima, Erick; Yoshimura, Humberto N; Cesar, Paulo F; Griggs, Jason A; Della Bona, Alvaro

    2011-12-01

    To evaluate the effect of the specimen design on the flexural strength (σ(f)) and failure mode of ceramic structures, testing the hypothesis that the ceramic material under tension controls the mechanical performance of the structure. Three ceramics used as framework materials for fixed partial dentures (YZ--Vita In-Ceram YZ; IZ--Vita In-Ceram Zirconia; AL--Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs (n=10): monolithic, two layers (porcelain-framework) and three layers (TRI) (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. For bi-layered design, the specimens were tested in both conditions: with porcelain (PT) or framework ceramic (FT) layer under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy (SEM). Young's modulus (E) and Poisson's ratio (ν) were determined using ultrasonic pulse-echo method. Results were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests. Except for VM7 and VM9, significant differences were observed for E values among the materials. YZ showed the highest ν value followed by IZ and AL. YZ presented the highest σ(f). There was no statistical difference in the σ(f) value between IZ and IZ-FT and between AL and AL-FT. σ(f) values for YZ-PT, IZ-PT, IZ-TRI, AL-PT, AL-TRI were similar to the results obtained for VM7 and VM9. Two types of fracture mode were identified: total and partial failure. The mechanical performance of the specimens was determined by the material under tension during testing, confirming the study hypothesis. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Effects of F-treatment on degradation of Mg 2Ni electrode fabricated by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kim, Jun Sung; Lee, Chang Rae; Choi, Jae Woong; Kang, Sung Goon

    The effects of surface fluorination on the electrochemical charge-discharge properties of a Mg 2Ni electrode, prepared by mechanical alloying in Ni-MH batteries are investigated. After 20 h milling, Mg and Ni powder form nanocrystalline Mg 2Ni. The discharge capacity of this alloy increases greatly on the initial cycle but, due to the formation of a Mg(OH) 2 passive layer, displays rapid degradation in alkaline solution within 10 cycles. In a 6 M KOH+ x M KF electrolyte ( x=0.5, 1, and 2), a continuous and stable fluorinated layer is formed and the durability of the Mg 2Ni electrode increases marketly and a high rate discharge capability is obtained (90-100 mAh/g). Addition of 2 M KF leads to the highest durability of all the electrodes tested. The improvement is due to a thin MgF 2—flourinated layer, which reduces the charge-transfer resistance and protects the Mg 2Ni electrode from forming a Mg(OH) 2 layer.

  7. Impact of thickness on the structural properties of high tin content GeSn layers

    NASA Astrophysics Data System (ADS)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  8. Bond Strength of a Bisphenol-A-Free Fissure Sealant With and Without Adhesive Layer under Conditions of Saliva Contamination.

    PubMed

    Mesquita-Guimarães, Késsia Suênia Fidelis de; Sabbatini, Iliana Ferraz; Almeida, Cintia Guimarães de; Galo, Rodrigo; Nelson-Filho, Paulo; Borsatto, Maria Cristina

    2016-01-01

    Dental sealants are important for prevention of carious lesions, if they have good shear strength. The aim of this study was to evaluate the shear bond strength (SBS) of two sealants to saliva-contaminated and non-contaminated enamel with and without an intermediate adhesive layer underneath the sealant. Ninety flat enamel surfaces from human third molars were randomly assigned to 6 groups (n=15): F (control): Fluroshield(tm) sealant; EWB (control): Embrace(tm) WetBond(tm); SB/F: Single Bond adhesive system + F; SB/EWB, s-SB/F and s-SB/EWB. In the s-SB/F and s-SB/EWB groups, the acid-etched enamel was contaminated with 0.01 mL of fresh human saliva for 20 s. Sealant cylinders were bonded to enamel surface with and without an intermediate adhesive system layer. The shear tests were performed using a universal testing machine (0.5 mm/min). Data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (α=0.05). F presented higher mean SBS than EWB in all experimental conditions. The lowest SBS mean was obtained for EWB on contaminated enamel (p<0.05). In conclusion, an adhesive system layer should be used prior to sealant placement, in both dry and saliva-contaminated enamel. F had the best performance in all experimental conditions. EWB sealant showed very low results, but an adhesive layer underneath the sealant increased its SBS even after salivary contamination.

  9. The effect of FeF2 on the magneto-optic response in FeF2/Fe/FeF2 sandwiches

    NASA Astrophysics Data System (ADS)

    Pištora, J.; Lesňák, M.; Lišková, E.; Višňovský, Š.; Harward, I.; Maslankiewicz, P.; Balin, K.; Celinski, Z.; Mistrík, J.; Yamaguchi, T.; Lopusnik, R.; Vlček, J.

    2010-04-01

    The room temperature optical constants n and k of MBE grown FeF2 films are reported. Because of poor chemical stability, FeF2 had to be coated with a protective Au layer. Reflection spectral ellipsometry in the photon energy range between 1.3 and 5.2 eV was performed on structures with a typical profile Au(0.5 nm)/FeF2(120 nm)/Au(30 nm)/Ag(20 nm)/Fe(0.6 nm) grown on GaAs(0 0 1) substrate. The spectra of n and k in FeF2 were subsequently employed in the design of FeF2/Fe/FeF2 sandwiches considered as magneto-optic (MO) sensors for weak microwave currents. Their MO response was evaluated using reflection MO (Kerr) spectroscopy at polar magnetization. The present results may be of interest in MO studies of magnetic nanostructures with Fe/FeF2/Fe, including MO magnetometry and MO magnetic domain imaging.

  10. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    NASA Astrophysics Data System (ADS)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.

  11. Coordination of crown structure, leaf plasticity and carbon gain within the crowns of three winter-deciduous mature trees.

    PubMed

    Uemura, Akira; Harayama, Hisanori; Koike, Nobuya; Ishida, Atsushi

    2006-05-01

    We examined the vertical profiles of leaf characteristics within the crowns of two late-successional (Fagus crenata Blume and Fagus japonica Maxim.) and one early-successional tree species (Betula grossa Sieb. et Zucc.) in a Japanese forest. We also assessed the contributions of the leaves in each crown layer to whole-crown instantaneous carbon gain at midday. Carbon gain was estimated from the relationship between electron transport and photosynthetic rates. We hypothesized that more irradiance can penetrate into the middle of the crown if the upper crown layers have steep leaf inclination angles. We found that such a crown has a high whole-crown carbon gain, even if leaf traits do not change greatly with decreasing crown height. Leaf area indices (LAIs) of the two Fagus trees (5.26-5.52) were higher than the LAI of the B. grossa tree (4.50) and the leaves of the F. crenata tree were more concentrated in the top crown layers than were leaves of the other trees. Whole-crown carbon gain per unit ground area (micromol m(-2) ground s(-1)) at midday on fine days in summer was 16.3 for F. crenata, 11.0 for F. japonica, and 20.4 for B. grossa. In all study trees, leaf dry mass (LMA) and leaf nitrogen content (N) per unit area decreased with decreasing height in the crown, but leaf N per unit mass increased. Variations (plasticity) between the uppermost and lowermost crown layers in LMA, leaf N, the ratio of chlorophyll to N and the ratio of chlorophyll a to b were smaller for F. japonica and B. grossa than for F. crenata. The light extinction coefficients in the crowns were lower for the F. japonica and B. grossa trees than for the F. crenata tree. The leaf carbon isotope ratio (delta(13)C) was higher for F. japonica and B. grossa than for F. crenata, especially in the mid-crown. These results suggest that, in crowns with low leaf plasticity but steep leaf inclination angles, such as those of F. japonica and B. grossa trees, irradiance can penetrate into the middle of the crowns, thereby enhancing whole-crown carbon gain.

  12. Halocarbons in the stratosphere

    NASA Astrophysics Data System (ADS)

    Fabian, P.; Borchers, R.

    1981-12-01

    The possible impact of chlorine compounds on the Earth's ozone layer has caused concern. Profiles of the anthropogenic halocarbons F-11 (CFC13) and F-12 (CF2Cl2) have already been measured in the stratosphere1-4. Measurements of the vertical distribution of methyl chloride (CH3Cl), the most important natural chlorine-bearing species confirm that chlorine of anthropogenic origin now predominates the stratosphere5,6. More halogen radicals are added through decomposition of various other halocarbons, most of them released by man. We report here the first measurements of vertical profiles of F-13 (CF3Cl), F-14 (CF4), F-113 (C2F3Cl3), F-114 (C2F4Cl2), F-115 (C2F5Cl), F-116 (C2F6), and F-13 B(CF3Br) resulting from gas chromatography-mass spectrometer (GC-MS) analysis of air samples collected cryogenically between 10 and 33 km, at 44° N. Some data for F-22 (CHF2C1), methyl bromide (CH3Br) and methyl chloroform (CH3CC13) also presented are subject to confirmation.

  13. Latitudinal Variations Of The F3 Layer Observed From The SEALION Ionosonde Network

    NASA Astrophysics Data System (ADS)

    Uemoto, J.; Ono, T.; Maruyama, T.; Saito, S.; Iizima, M.; Kumamoto, A.

    2006-12-01

    [INTRODUCTION] The occurrence probability, local time, solar and magnetic activity dependences of the F3 layer have been clarified experimentally from ionosonde observations as well as model calculation, whereas some unexplained problems have remained; It has been reported that the F3 layer was frequently obrved in June solstice season at Fortaleza in Brazil (geographic latitude -4 deg, geographic longitude 322 deg, and dip latitude -5.4 deg) though in this season (local winter season), frequently occurrences of the F3 layer were not predicted from the model calculation with normal values of the E x B drift and meridional neutral wind and seasonal dependence of occurrences at Waltair (17.7 deg, 83.3 deg, 11.5 deg) shows a different tendency from that at Fortaleza. The latter problem seems to result from geographic control or differences of dip latitude between two observation locations, however, its physical mechanism has not been clarified. Then conjugate observations in a magnetic meridional plane are needed. For the purpose of clarifying the mechanism of the F3 layer in more detail, we are analyzing the ionosonde data of the South East Asian Low-latitude IOnosonde Network [SEALION] mainly provided by NiCT which consists of 4 ionosonde stations. In this study, we analyzed ionosonde data observed at Chiang Mai (CMU [18.8 deg, 98.9 deg, 13.0 deg]), Chumphon(CPN [10.7 deg, 99.4 deg, 3.3 deg]) and Kototabang (KTB [-0.2 deg, 100.3 deg, -10.0 deg]). [ANALYSIS] As a result from analyzing ionosonde data on 31st March, 2005, following dip latitudinal differences have been found; At CPN, in the vicinity of the dip equator, the F3 layer moved upward rapidly and disappeared in earlier local time, while at CMU and KTB, in the low dip latitude region, the F3 layer stayed at almost the same altitude and remained to be detectable with longer time duration. [CONCLUSION] From comparing between observation results and the model calculation, it is suggested that such a dip latitudinal difference can be explained by considering that (1) the magnetic field line at the F2 peak which moved upward by the E x B drift (corresponding to the F3 peak or subsequently ionization ledge peak) in the vicinity of the dip equator is also crossing at that in the low dip latitude region and (2) a dip latitudinal difference of field aligned plasma diffusion effects; In the vicinity of the dip equator, since plasma at the upward drifted peak altitude diffuses aligned magnetic field line to higher altitude, plasma density at upward drifted peak decreases and becomes smaller immediately than the F2 peak existing at the usual altitude, then double peak structure is observable from the ground with shorter duration time and the ionization ledge structure might be formed in earlier local time. On the other hand, in the low latitude region, since plasma are transported from the vicinity of the dip equator, plasma density at upward drifted peak altitude is retained denser than that at usual F2 peak altitude for a longer time. Then double peak structure is observable from the ground with longer duration time.

  14. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 2

    DTIC Science & Technology

    1989-03-01

    a mathematical representation of a PE and its connections. This representation describes the " neurodynamics " of a PE. A sigmoid transfer function is...Element(i) Neurodynamics : Summation Function: Wo*XO + W,*X + W*X "X 0 0 1 1 2 W~fn Transfer Function: F(k) = (1 + e k) Output: x. - F(I) Figure 2-4...simplifies the description of the network operations. Thus, one or more PEs grouped together, with the same neurodynamics , is a layer [reference 5]. A

  15. Super-Resolving Properties of Metallodielectric Stacks

    DTIC Science & Technology

    2010-01-01

    i i B A   TMM formalism 11332211 ... += nnn TPTPTPTPTF        2221 1211 ff ff F 2 11 2 11 21 1, f T f f R ==)exp())exp()exp(( xiziBziAE...a b s (H )2 i n a .u Plot of the Magnetic field squared across the thickness of MDS1 consisting of Ag and GaP layers. There is an overlay of the...photonic band gaps)”         l  i ZR r i Zw r Zw w tEtrZE )()( exp )( )(),,( 2 2 2 0 0 l  20

  16. Haudenosaunee Territory for Consultation Purposes (EPA.TRIBCONSULTBND_R2)

    EPA Pesticide Factsheets

    Layer for displaying areas in New York State that are of interest to Region 2 Haudenosaunee tribes for consultation on environmental issues. The boundaries are based on a hard copy map provided by Janice Whitney of R2/DEPP. See the following URLs for scans of source maps: http://r2quickplace1.r02.epa.gov/QuickPlace/r2gis/Main.nsf/$defaultview/50AA19DAB434F06685257154004F8180/$File/morgan-map.gif?OpenElementhttp://r2quickplace1.r02.epa.gov/QuickPlace/r2gis/Main.nsf/$defaultview/50AA19DAB434F06685257154004F8180/$File/indiannation_land_claim_areas_time_life.jpg?OpenElement

  17. Low-frequency electronic noise in single-layer MoS2 transistors.

    PubMed

    Sangwan, Vinod K; Arnold, Heather N; Jariwala, Deep; Marks, Tobin J; Lauhon, Lincoln J; Hersam, Mark C

    2013-09-11

    Ubiquitous low-frequency 1/f noise can be a limiting factor in the performance and application of nanoscale devices. Here, we quantitatively investigate low-frequency electronic noise in single-layer transition metal dichalcogenide MoS2 field-effect transistors. The measured 1/f noise can be explained by an empirical formulation of mobility fluctuations with the Hooge parameter ranging between 0.005 and 2.0 in vacuum (<10(-5) Torr). The field-effect mobility decreased, and the noise amplitude increased by an order of magnitude in ambient conditions, revealing the significant influence of atmospheric adsorbates on charge transport. In addition, single Lorentzian generation-recombination noise was observed to increase by an order of magnitude as the devices were cooled from 300 to 6.5 K.

  18. The Data Base for the May 1979 Marine Surface Layer Micrometeorological Experiment at San Nicolas Island, California.

    DTIC Science & Technology

    1982-05-07

    ATIO VE LOC I TY HUMIDITY TEMP. L ENGTH ClIFF. 72% 7TO 160 4% 53% IS 5% A8t RZ lit 492 29% 23% END Of DATA RIiM 29 MARINE SURFACE LAYER...DRAG NO.AT GMM AlTOIM FL UX FLUX FLUX FL UX FLU X RTATIO VK LOC ITTY HUtMIDITY TEMP. LEN4GTH COE. 160% 161% 116% 167% 128% 9% 124% 295% s8% 109% 71...SCC PSI 90951!4 DRAG; NT, VT "MXT ’tI TIM ELS L X H Sy I 1(09rU F LT PtX ATIO VE LOC ITY ((IIDITIY TE MP. L EM!.TIH ItF 11% (1, .14% Il 195 Tx 5% 2A

  19. F layer positive response to a geomagnetic storm - June 1972

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Grebowsky, J. M.; Mayr, H. G.; Harris, I.; Tulunay, Y. K.

    1979-01-01

    A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside midlatitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17-18, 1972. It is inferred that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F-layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in the apparent response to magnetospheric E x B drifts. A summer F-layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F-layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics.

  20. Atomic Layer Deposited (ALD) coatings for future astronomical telescopes: recent developments

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Samuel; Hennessy, John; Jewell, April D.; Nikzad, Shouleh; France, Kevin

    2016-07-01

    Atomic Layer Deposition (ALD) can create conformal, near stoichiometric and pinhole free transmissive metal fluoride coatings to protect reflective aluminum films. Spectral performance of astronomical mirror coatings strongly affect the science capabilities of astronomical satellite missions. We are utilizing ALD to create a transmissive overcoat to protect aluminum film mirrors from oxidation with the goal of achieving high reflectance (> 80%) from the UV ( 100 nm) to the IR ( 2,000 nm). This paper summarizes the recent developments of ALD aluminum fluoride (AlF3) coatings on Al. Reflectance measurements of aluminum mirrors protected by ALD AlF3 and future applications are discussed. These measurements demonstrate that Al + ALD AlF3, even with an interfacial oxide layer of a few nanometers, can provide higher reflectance than Al protected by traditional physical vapor deposited MgF2 without an oxide layer, below 115 nm.

  1. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less

  2. Geographic Resources Analysis Support System (GRASS) Version 4.0 User’s Reference Manual

    DTIC Science & Technology

    1992-06-01

    inpur-image need not be square; before processing, the X and Y dimensions of the input-image are padded with zeroes to the next highest power of two in...structures an input kowledge /control script with an appropriate combination of map layer category values (GRASS raster map layers that contain data on...F cos(x) cosine of x (x is in degrees) F exp(x) exponential function of x F exp(x,y) x to the power y F float(x) convert x to floating point F if

  3. Synthesis, crystal structure, characterizations and magnetic study of a novel two-dimensional iron fluoride

    NASA Astrophysics Data System (ADS)

    Bouketaya, Sabrine; Smida, Mouna; Abdelbaky, Mohammed S. M.; Dammak, Mohamed; García-Granda, Santiago

    2018-06-01

    A new hybrid compound formulated as [Fe3F8(H2O)2](Am2TAZ)2 (Am2TAZ= 3,5-diamino-1,2,4-triazole) was prepared under hydrothermal conditions. The crystal structure was solved by single-crystal X-ray diffraction and the bulk was characterized by thermal analyses (TG-MS), vibrational spectroscopy (FTIR, Raman), Ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM-EDX). It crystallizes in the triclinic system space group P 1 ̅ with unit cell parameters a= 7.100(2) Å, b= 7.658(2) Å, c= 8.321(2) Å, α = 107.330(20)°, β = 111.842(18)°, γ = 93.049(17)°, Z = 1 and V= 394.01(17) Å3. The studied X-ray crystal structure shows the two oxidation states for iron atoms (Fe2+, Fe3+) and generates a 2D inorganic network, built up of inorganic layers constructed from infinite inorganic chains running along a axis. In fact, these chains are connected via (Fe3+(3)F6) octahedral. OW-H…F and N-H…F hydrogen bonds, making up the whole 3D network, are strongly linked in the layers. Magnetization measurements were performed, exhibiting the paramagnetic feature of the studied compound above 150 K.

  4. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  5. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang

    2015-08-01

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.

  6. EFFECTS OF BROILER REARING ENVIRONMENT ON TRANSMISSION OF F-STRAIN MYCOPLASMA GALLISEPTICUM FROM COMMERCIAL LAYER HENS TO BROILER CHICKENS: ROLE OF ACID-BASE BALANCE

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted concurrently to determine and compare, blood pH, blood gases, hematocrit, and hemoglobin in mycoplasma-free, F-strain Mycoplasma gallisepticum (FMG) inoculation layers, and FMG contact-infected broilers. FMG-inoculated layers had the highest partial pressure of O2 and the l...

  7. The Influence of Visible Light on the Sulfhydryl Content of Yeast Cells After Ionizing and Ultraviolet Irradiation

    DTIC Science & Technology

    1951-12-15

    be irradiated. ?A liquid filter consisting of a 1 cm layer of 5% CUSO4 was used to remove most of the infrared. F. Cell Counts n f. The...Protein sulfhydryl groups and the reversible inactivation of the enzyme „our ease. The reducing groups of egg albumin and of urease . Jt

  8. Dietary poultry fat, phytase, and 25-hydroxycholecalciferol influence the digestive and reproductive organ characteristic of commercial...at the onset of lay with F-strain Mycoplasma gallisepticum 1 , 2

    USDA-ARS?s Scientific Manuscript database

    ABSTRACT Effects of 2 supplemental concentrations of dietary poultry fat (PF) and the combination of PF, phytase (PHY) and 25-hydroxycholecalciferol [25(OH)D] on the gross digestive and reproductive organ characteristics of commercial layers inoculated with F-strain Mycoplasma gallisepticum (FMG) w...

  9. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI.

    PubMed

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2017-04-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.

  10. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.

    2017-04-01

    Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved

  11. Observations on the Daytime F-region Irregularities in Two Magnetic Quiet Days Using Hainan Coherent Scatter Phased Array Radar (HCOPAR)

    NASA Astrophysics Data System (ADS)

    Jin, H.; Chen, G.

    2017-12-01

    In the magnetic quiet afternoon on 22 July 2013 and noon on 23 May 2016 , Hainan coherent scatter phased array radar (HCOPAR) located at low latitude of China has recorded two cases of the extremely rare daytime F region irregularities. The field-aligned irregularities (FAIs) appeared in the topside F2 layer with small Doppler velocities and narrow spectral widths. The time sequence of the fan sector maps shows the FAIs of 2016 moved northward with almost no zonal drift velocity. The Kp and DST indexes indicate that the irregularities emerged in the magnetic quiet days, so the irregularities were irrelevant to the storm-induced eastward electric field as other daytime cases. More than 2 h after the emergency of the daytime irregularities over Hainan, the Shaoyang digisonde situated 870 km north to the HCOPAR recorded the spread-F in ionospheric F1 layer. According to the echo altitudes, the spread-F may connect the daytime bubbles via magnetic field line. It is difficult for F-region irregularities to survive in the sunlit ionosphere due to the strong photoionization after sunrise. Consequently, the daytime FAIs over Hainan may travel from higher altitudes in the south along the geomagnetic field and are most likely the remnant of postsunset/postmidnight plasma bubbles.

  12. Measurement of Small Molecular Dopant F4TCNQ and C 60F 36 Diffusion in Organic Bilayer Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Rochester, Chris W.; Jacobs, Ian E.

    2015-12-03

    The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this paper, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C 60F 36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of themore » diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C 60F 36, a much bulkier molecule, is shown to have a substantially higher morphological stability. Finally, this study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures.« less

  13. NH4 Be2 BO3 F2 and γ-Be2 BO3 F: Overcoming the Layering Habit in KBe2 BO3 F2 for the Next-Generation Deep-Ultraviolet Nonlinear Optical Materials.

    PubMed

    Peng, Guang; Ye, Ning; Lin, Zheshuai; Kang, Lei; Pan, Shilie; Zhang, Min; Lin, Chensheng; Long, Xifa; Luo, Min; Chen, Yu; Tang, Yu-Huan; Xu, Feng; Yan, Tao

    2018-05-12

    KBe 2 BO 3 F 2 (KBBF) is still the only practically usable crystal that can generate deep-ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH 4 Be 2 BO 3 F 2 (ABBF) and γ-Be 2 BO 3 F (γ-BBF), which not only overcome the layering but also can be used as next-generation DUV NLO materials with the shortest type I phase-matching second-harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ-BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Strong Optical Injection Locking of Edge-Emitting Lasers and Its Applications

    DTIC Science & Technology

    2006-08-18

    investigated for communications applications. Using AlGaAs lasers, Kobayashi et al. demonstrated stable single-mode operation of Fabry - Perot (F-P...modulation (AM) efficiency is obtained at the expense of linearity. Furthermore, the previous gain-lever devices were Fabry - Perot (F-P) lasers operating in...coating of ~ 0.2-μm Zirconium dioxide (ZrO2) layer with a reflectivity of less than 0.1% is deposited on one facet to suppress the Fabry - Perot (F-P

  15. Efficient CsF interlayer for high and low bandgap polymer solar cell

    NASA Astrophysics Data System (ADS)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  16. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    PubMed

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  18. Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2016-09-21

    Here, AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction (XRD) as well as cross-section transmission electron microscopy (TEM) were used to assess the quality of the HEMT structure. The XRD 2θ scans showed full-width-at-half-maximum values of 0.16°, 0.07°, and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffermore » layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10 8 cm –2 range. The HEMT device exhibited a saturation drain current density of 820 mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency (f T) of 8.9 GHz and a maximum frequency of oscillation (f max) of 17.3 GHz were achieved for HEMTs with gate dimensions of 1 × 200 μm.« less

  19. Influence of a novel co-doping (Zn + F) on the physical properties of nano structured (1 1 1) oriented CdO thin films applicable for window layer of solar cell

    NASA Astrophysics Data System (ADS)

    Anitha, M.; Saravanakumar, K.; Anitha, N.; Amalraj, L.

    2018-06-01

    Un-doped and co-doped (Zn + F) cadmium oxide (CdO) thin films were prepared by modified spray pyrolysis technique using a nebulizer on glass substrates kept at 200 °C. They were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy, Hall Effect and photoluminescence (PL) respectively. The thin films were having thickness in the range of 520-560 nm. They were well crystalline and displayed high transparency of about >70% in the visible region. It was clearly seen from the SEM photographs that co-doping causes notable changes in the surface morphology. Electrical study exhibited the resistivity of co-doped CdO thin films drastically fell to 1.43 × 10-4 Ω-cm compared with the un-doped CdO thin film. The obtained PL spectra were well corroborated with the structural and optical studies. The high transparency, wide band gap energy and enhanced electrical properties obtained infer that Zn + F co-doped CdO thin films find application in optoelectronic devices, especially in window layer of solar cells.

  20. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong

    2016-09-01

    In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.

  1. The curved kinetic boundary layer of active matter.

    PubMed

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  2. A Fast Infrared Radiative Transfer Model for Overlapping Clouds

    NASA Technical Reports Server (NTRS)

    Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.

    2006-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.

  3. Qualitative analysis of ionospheric disorders in Solok earthquake (March 6, 2007) viewed from anomalous critical frequency of layer F (f0F2) and genesis spread F

    NASA Astrophysics Data System (ADS)

    Pujiastuti, D.; Daniati, S.; Taufiqurrahman, E.; Mustafa, B.; Ednofri

    2018-03-01

    A qualitative analysis has been conducted by comparing the critical frequency anomalies of layer F (f0F2) and Spread F events to see the correlation with seismic activity before the Solok earthquake (March 6, 2007) in West Sumatra. The ionospherics data used was taken using the FMCW ionosonde at LAPAN SPD Kototabang, Palupuah, West Sumatra. The process of ionogramme scaling is done first to get the daily value of f0F2. The value of f0F2 is then compared with its monthly median to see the daily variations that appear. Anomalies of f0F2 and Spread F events were observed from February 20, 2007 to March 6, 2007. The presence of f0F2 anomalies was the negative deviation and the presence of Spread F before earthquake events were recommended as Solok earthquake precursors as they occurred when geomagneticsics and solar activities were normal.

  4. Aerosol optical properties in the southeastern United States in summer - Part 1: Hygroscopic growth

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Attwood, Alexis R.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Carlton, Annmarie G.; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Ng, Nga L.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Washenfelder, Rebecca A.; Welti, Andre; Xu, Lu; Ziemba, Luke D.; Murphy, Daniel M.

    2016-04-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made during May-September 2013 in the southeastern United States (US) under fair-weather, afternoon conditions with well-defined planetary boundary layer structure. Optical extinction at 532 nm was directly measured at relative humidities (RHs) of ˜ 15, ˜ 70, and ˜ 90 % and compared with extinction calculated from measurements of aerosol composition and size distribution using the κ-Köhler approximation for hygroscopic growth. The calculated enhancement in hydrated aerosol extinction with relative humidity, f(RH), calculated by this method agreed well with the observed f(RH) at ˜ 90 % RH. The dominance of organic aerosol, which comprised 65 ± 10 % of particulate matter with aerodynamic diameter < 1 µm in the planetary boundary layer, resulted in relatively low f(RH) values of 1.43 ± 0.67 at 70 % RH and 2.28 ± 1.05 at 90 % RH. The subsaturated κ-Köhler hygroscopicity parameter κ for the organic fraction of the aerosol must have been < 0.10 to be consistent with 75 % of the observations within uncertainties, with a best estimate of κ = 0.05. This subsaturated κ value for the organic aerosol in the southeastern US is broadly consistent with field studies in rural environments. A new, physically based, single-parameter representation was developed that better described f(RH) than did the widely used gamma power-law approximation.

  5. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  6. Optimization of one-dimensional photonic crystals with double layer magneto-active defect

    NASA Astrophysics Data System (ADS)

    Mikhailova, T. V.; Berzhansky, V. N.; Shaposhnikov, A. N.; Karavainikov, A. V.; Prokopov, A. R.; Kharchenko, Yu. M.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, M. F.

    2018-04-01

    Success of practical implementation of one-dimensional photonic crystals with magneto-active layers is evaluated in high values of magneto-optical (MO) quality factor Q and figure of merit F. The article relates to optimization of one-dimensional photonic crystals with double layer magneto-active (MA) defect of composition Bi1.0Y0.5Gd1.5Fe4.2Al0.8O12/Bi2.8Y0.2Fe5O12 located between the nongarnet dielectric Bragg mirrors. The structure design was performed by changing the number of layer pairs in Bragg mirrors m and the optical thickness of MA defect lM to achieve high values of MO characteristics. Theoretical predictions were confirmed by experimental investigation of eight synthesized configurations with m = 4 and m = 7. We have demonstrated the maximum Q = 15.1 deg and F = 7.5% at 624 nm for structure with m = 4 and lM = (2.5·λ0/2), where λ0 = 690 nm is the photonic band gap center. Configurations with m = 3 can also provide their effectiveness in realization. Maximum MO activity was achieved for configurations with m = 7. The structures with lM = (0.8·λ0/2) and lM = (2.5·λ0/2) showed respectively the specific Faraday rotation -113 deg/μm (that exceeds in 62 times the Faraday rotation of MA double layer film) at 654 nm and absolute Faraday rotation -20.6 deg at 626 nm.

  7. Analysis of Simultaneous Polar Fox II Backscatter and Ionospheric Sounding Data

    DTIC Science & Technology

    latitudes where vertical soundings show spread-E and -F. Those regions appear to be identical to the auroral E (night E) layer and ’ plasma ring ’ F layer known to be associated with the auroral oval.

  8. Giant voltage-controlled magnetic anisotropy effect in a crystallographically strained CoFe system

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yoda, Hiroaki; Saito, Yoshiaki; Oikawa, Soichi; Fujii, Keiko; Yoshiki, Masahiko; Koi, Katsuhiko; Sugiyama, Hideyuki; Ishikawa, Mizue; Inokuchi, Tomoaki; Shimomura, Naoharu; Shimizu, Mariko; Shirotori, Satoshi; Altansargai, Buyandalai; Ohsawa, Yuichi; Ikegami, Kazutaka; Tiwari, Ajay; Kurobe, Atsushi

    2018-05-01

    We experimentally demonstrate a giant voltage-controlled magnetic anisotropy (VCMA) coefficient in a crystallographically strained CoFe layer (∼15 monolayers in thickness) in a MgO/CoFe/Ir system. We observed a strong applied voltage dependence of saturation field and an asymmetric concave behavior with giant VCMA coefficients of ‑758 and 1043 fJ V‑1 m‑1. The result of structural analysis reveals epitaxial growth in MgO/CoFe/Ir layers and the orientation relationship MgO(001)[110] ∥ CoFe(001)[100] ∥ Ir(001)[110]. The CoFe layer has a bcc structure and a tetragonal distortion due to the lattice mismatch; therefore, the CoFe layer has a large perpendicular magnetic anisotropy.

  9. Parametric evaluation of a dual-layer dynamic hyperfiltration membrane for recovery of spacecraft wash water at elevated temperature

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1975-01-01

    Performance data consisting of solute rejections and product flux have been measured, as dependent on the operational parameters. These parameters were pressure, 5,000,000 N/sq m (750 psia) to 7,000,000 N/sq m (1040 psia); temperature, 347 K (165 F) to 368 K (200 F); velocity, 1.6 m/s to 10 m/s; and concentration (up to 14x). Tests were carried out on analog wash water. Data taken include rejections of organic materials (TOC), ammonia, urea, and an assortment of ions. The membrane used was a dual-layer, polyacrylic acid over zirconium oxide, deposited in situ on a porcelain ceramic substrate.

  10. On the short circuit resilience of organic solar cells: prediction and validation.

    PubMed

    Oostra, A Jolt; Smits, Edsger C P; de Leeuw, Dago M; Blom, Paul W M; Michels, Jasper J

    2015-09-07

    The operational characteristics of organic solar cells manufactured with large area processing methods suffers from the occurrence of short-circuits due to defects in the photoactive thin film stack. In this work we study the effect of a shunt resistance on an organic solar cell and demonstrate that device performance is not affected negatively as long as the shunt resistance is higher than approximately 1000 Ohm. By studying charge transport across PSS-lithium fluoride/aluminum (LiF/Al) shunting junctions we show that this prerequisite is already met by applying a sufficiently thick (>1.5 nm) LiF layer. We demonstrate that this remarkable shunt-resilience stems from the formation of a significant charge transport barrier at the PSS-LiF/Al interface. We validate our predictions by fabricating devices with deliberately severed photoactive layers and find an excellent agreement between the calculated and experimental current-voltage characteristics.

  11. The effects of the magnitude of the modulation field on electroreflectance spectroscopy of undoped-n+ type doped GaAs

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.

    1998-01-01

    The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.

  12. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes

    PubMed Central

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  13. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-05-26

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.

  14. Changes in quantity and spectroscopic properties of water-extractable organic matter during soil aquifer treatment.

    PubMed

    Xue, S; Zhao, Q L; Wei, L L; Ma, X P; Tie, M

    2013-01-01

    The aim of this study was to identify qualitative and quantitative changes in the character of water-extractable organic matter (WEOM) in soils as a consequence of soil aquifer treatment (SAT). Soil samples were obtained from a soil-column system with a 2-year operation, and divided into seven layers from top to bottom: CS1 (0-12.5 cm), CS2 (12.5-25 cm), CS3 (25-50 cm), CS4 (50-75 cm), CS5 (75-100 cm), CS6 (100-125 cm) and CS7 (125-150 cm). A sample of the original soil used to pack the columns was also analysed to determine the effects of SAT. Following 2 years of SAT operation, both soil organic carbon and water-extractable organic carbon were shown to accumulate in the top soil layer (0-12.5 cm), and to decrease in soil layers deeper than 12.5 cm. The WEOM in the top soil layer was characterized by low aromaticity index (AI), low emission humification index (HIX) and low fluorescence efficiency index (F(eff)). On the other hand, the WEOM in soil layers deeper than 12.5 cm had increased values of HIX and F(eff), as well as decreased AI values relative to the original soil before SAT. In all soil layers, the percentage of hydrophobic and transphilic fractions decreased, while that of the hydrophilic fraction increased, as a result of SAT. The production of the amide-2 functional groups was observed in the top soil layer. SAT operation also led to the enrichment of hydrocarbon and amide-1 functional groups, as well as the depletion of oxygen-containing functional groups in soil layers deeper than 12.5 cm.

  15. Optoreflectometry determination of the resonance properties of a vocal fold.

    PubMed

    Garrel, Renaud; Nicollas, Richard; Giovanni, Antoine; Ouaknine, Maurice

    2007-09-01

    A new method of measuring the resonance properties of a vocal fold using electromagnetic excitation and laser optoreflectometry for response monitoring is described. Two resonance peaks were experimentally identified with one magnet stuck on the vocal fold at frequencies F0(1m)=54.7 Hz and F0'(1m)=35.8 Hz. The addition of a second magnet allowed calculation of the actual viscoelastic properties of the vocal fold: F0=71.8 Hz; quality factor Q=8.03; mass m=0.057 g; stiffness k=11.6 Nm; and damping zeta=0.0032 Nm(-1). A numerical simulation of a two-layered model verified the experimental data.

  16. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Griffith, A.; Laconti, A. B.

    1989-01-01

    Work was conducted that could lead to a high energy density electrochemical capacitor, completely free of liquid electrolyte. A three-dimensional RuO sub x-ionomer composite structure has been successfully formed and appears to provide an ionomer ionic linkage throughout the composite structure. Capacitance values of approximately 0.6 F/sq cm were obtained compared with 1 F/sq cm when a liquid electrolyte is used with the same configuration.

  17. Spin scattering asymmetric coefficients and enhanced specific interfacial resistance of fully epitaxial current-perpendicular-to-plane giant magnetoresistance spin valves using alternate monatomic layered [Fe/Co]n and a Ag spacer layer

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Shiozaki, R.; Doi, M.; Sahashi, M.

    2011-04-01

    Using current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) measurement, we have evaluated the bulk and interface spin scattering asymmetric coefficients, βF and γF/N and the specific interfacial resistance, AR*F/N, for exchange-biased spin-valves consisting of artificially ordered B2 structure Fe50Co50 and Ag spacer layer. Artificially epitaxial ordered Fe50Co50 superlattices have been successfully fabricated on MgO (001) substrate by alternate monatomic layer (AML) deposition at a substrate temperature of 75 °C. The structural properties of the full epitaxial trilayer, AML[Fe/Co]n/Ag/AML[Fe/Co]n, on the Ag electrode have been confirmed by in situ reflection high-energy electron diffraction and transmission electron diffraction microscopy. A considerably large resistance-area product change and MR ratio (ΔRA > 3 mΩμm2 and MR ratio ˜5%) were confirmed even at thin AML[Fe/Co]n layer at room temperature (RT) in our spin-valve elements. The estimated values of βF and γF/N were 0.80 and 0.84 ± 0.02, respectively, from the Valet-Fert theory analysis of ΔRA as a function of thickness of the ferromagnetic layer (3, 4, and 5 nm) on the basis of the two-current model.

  18. A new inversion algorithm for HF sky-wave backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Ni, Binbin; Lou, Peng; Wei, Na; Yang, Longquan; Liu, Wen; Zhao, Zhengyu; Li, Xue

    2018-05-01

    HF sky-wave backscatter sounding system is capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density. The leading edge (LE) of a backscatter ionogram (BSI) is widely used for ionospheric inversion since it is hardly affected by any factors other than ionospheric electron density. Traditional BSI inversion methods have failed to distinguish LEs associated with different ionospheric layers, and simply utilize the minimum group path of each operating frequency, which generally corresponds to the LE associated with the F2 layer. Consequently, while the inversion results can provide accurate profiles of the F region below the F2 peak, the diagnostics may not be so effective for other ionospheric layers. In order to resolve this issue, we present a new BSI inversion method using LEs associated with different layers, which can further improve the accuracy of electron density distribution, especially the profile of the ionospheric layers below the F2 region. The efficiency of the algorithm is evaluated by computing the mean and the standard deviation of the differences between inverted parameter values and true values obtained from both vertical and oblique incidence sounding. Test results clearly manifest that the method we have developed outputs more accurate electron density profiles due to improvements to acquire the profiles of the layers below the F2 region. Our study can further improve the current BSI inversion methods on the reconstruction of 2-D electron density distribution in a vertical plane aligned with the direction of sounding.

  19. Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark

    2017-12-01

    In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.

  20. F-16XL Ship #1 in flight - used for laminar airflow studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    One of two F-16XL prototype aircraft, on loan from the Air Force, was used by NASA's Dryden Flight Research Center, Edwards, California, in a program to investigate laminar flow technology and help improve the flow of air over an aircraft's wing at sustained supersonic speeds. A small, perforated titanium wing glove with a turbo compressor was tested on the F-16XL to determine if air suction can remove a small part of the boundary-layer air flowing over the wing and thereby achieve laminar (smooth) flow over a portion of the wing. The flight research program on ship #1 ended in 1996. It was then conducted with NASA's two-seat F-16XL, ship #2 employing a larger glove.

  1. The Behavior of the Atmosphere in the Desert Planetary Boundary Layer.

    DTIC Science & Technology

    1983-06-30

    i5962 THE BEHAVIOR OF THE ATMOSPHERE IN THE DESERT PL NET RY 1/i. BOUNDARY LAVERMU BEN-GURION UNIV OF THE NEGEV SEDE BOGER (ISRAEL) JACOB BLAUST...DESERT PLANETARY BOUNDARY LAYER Louis Berkofsky The Jacob Blaustein Institute for Desert Research Ben-Gurion University of the Negev Sede Boqer Campus...TASK- nm insl1tute for esert Research AREA A WORK UNiT NUMBERS Ben-Gurion University of the Negev Sede Boqer Campus 84990, Israel F- 3 / St

  2. Anomalous Insulator-Metal Transition in Boron Nitride-Graphene Hybrid Atomic Layers

    DTIC Science & Technology

    2012-08-13

    REPORT Anomalous insulator-metal transition in boron nitride-graphene hybrid atomic layers 14 . ABSTRACT 16. SECURITY CLASSIFICATION OF: The study of...from the DFT calculation. The calculated transmission through a N terminated zigzag edged h-BN nanodomain embedded in graphene is shown in Fig. 14 , with...Energy ε − ε F (eV) 0 0.5 1 1.5 2 Tr an sm is si on FIG. 14 . (Color online) Transmission through a N terminated zigzag edged h-BN nanodomain embedded in

  3. Spectral distribution of UV range diffuse reflectivity for Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.

    2008-05-01

    The analysis of the UV range spectral characteristics can supply additional information on the formed sub-surface buried layer with implanted dopants. The near-surface layer (50÷150 nm) of bulk polymer samples have been implanted with silicon (Si+) ions at low energies (E = 30 keV) and a wide range of ion doses (D = 1.1013 ÷ 1, 2.1017 cm-2). The studied polymer materials were: ultra-high-molecular-weight polyethylene (UHMWPE), poly-methyl-metacrylate (PMMA) and poly-tetra-fluor-ethylene (PTFE). The diffuse optical reflectivity spectra Rd = f(λ) of the ion implanted samples have been measured in the UV range (λ = 220÷350 nm). In this paper the dose dependences of the size and sign of the diffuse optical reflectivity changes λRd = f(D) have been analysed.

  4. Low resistance nonalloyed Ni/Au Ohmic contacts to p-GaN irradiated by KrF excimer laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Min-Suk; Hwang, Dae-Kue; Lim, Jae-Hong

    2006-07-24

    A specific contact resistance of 8.9x10{sup -5} {omega} cm{sup 2} was obtained for a Ni/Au Ohmic layer on the KrF laser-irradiated p-GaN. It was found that laser irradiation increases the hole concentration from 4.1x10{sup 17} to 9.7x10{sup 17} cm{sup -3} by removing hydrogen atoms from p-GaN layer. The native oxide was also removed as evidenced by the Ga 2p peak shift and the decrease in the intensity of O 1s peak in the x-ray photoelectron spectra. The formation of a low resistance is attributed to the increase in the hole concentration and the removal of native oxide from p-GaN bymore » laser irradiation.« less

  5. Modeling the detectability of vesicoureteral reflux using microwave radiometry.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo F; De Luca, Valeria; Bardati, Fernando; Snow, Brent W; Stauffer, Paul R

    2010-09-21

    We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (f(c)), frequency band (Deltaf) and aperture radius (r(a)) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna (eta). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over f(c) +/- Deltaf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature (deltaT(B)) for 15-25 mL urine refluxes at 40-42 degrees C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum eta over 1.1-1.6 GHz for r(a) = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over f(c) +/- Deltaf/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate deltaT(B) 0.1 K for the 15 mL urine at 40 degrees C and 35 mm depth. Higher eta and deltaT(B) were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in a saline phantom are in agreement with the simulation data. The numerical study suggests that a radiometer with f(c) = 1.35 GHz, Deltaf = 500 MHz and detector sensitivity better than 0.1 K would be the appropriate tool to noninvasively detect VUR using the log spiral antenna.

  6. Modeling the detectability of vesicoureteral reflux using microwave radiometry

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Maccarini, Paolo F.; De Luca, Valeria; Bardati, Fernando; Snow, Brent W.; Stauffer, Paul R.

    2010-09-01

    We present the modeling efforts on antenna design, frequency selection and receiver sensitivity estimation to detect vesicoureteral reflux (VUR) using microwave (MW) radiometry as warm urine from the bladder maintained at fever range temperature using a MW hyperthermia device reflows into the kidneys. The radiometer center frequency (fc), frequency band (Δf) and aperture radius (ra) of the physical antenna for kidney temperature monitoring are determined using a simplified universal antenna model with a circular aperture. Anatomical information extracted from the computed tomography (CT) images of children aged 4-6 years is used to construct a layered 3D tissue model. Radiometric antenna efficiency is evaluated in terms of the ratio of the power collected from the target at depth to the total power received by the antenna (η). The power ratio of the theoretical antenna is used to design a microstrip log spiral antenna with directional radiation pattern over fc ± Δf/2. Power received by the log spiral from the deep target is enhanced using a thin low-loss dielectric matching layer. A cylindrical metal cup is proposed to shield the antenna from electromagnetic interference (EMI). Transient thermal simulations are carried out to determine the minimum detectable change in the antenna brightness temperature (δTB) for 15-25 mL urine refluxes at 40-42 °C located 35 mm from the skin surface. Theoretical antenna simulations indicate maximum η over 1.1-1.6 GHz for ra = 30-40 mm. Simulations of the 35 mm radius tapered log spiral yielded a higher power ratio over fc ± Δf/2 for the 35-40 mm deep targets in the presence of an optimal matching layer. Radiometric temperature calculations indicate δTB >= 0.1 K for the 15 mL urine at 40 °C and 35 mm depth. Higher η and δTB were observed for the antenna and matching layer inside the metal cup. Reflection measurements of the log spiral in a saline phantom are in agreement with the simulation data. The numerical study suggests that a radiometer with fc = 1.35 GHz, Δf = 500 MHz and detector sensitivity better than 0.1 K would be the appropriate tool to noninvasively detect VUR using the log spiral antenna.

  7. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Zhou, Yi, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn; Song, Bo, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn

    2015-08-10

    Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than thatmore » of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.« less

  8. Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Phillips, Roger J.; Campbell, Bruce A.; Holt, John W.; Plaut, Jeffrey J.; Carter, Lynn M.; Egan, Anthony F.; Bernardini, Fabrizio; Safaeinili, Ali; Seu, Roberto

    2009-12-01

    We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km 2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (˜1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km 3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during accumulation rather than one of lag production during periods of sublimation.

  9. Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.

    PubMed

    Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan

    2018-01-05

    The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications.

    PubMed

    Makkar, Preeti; Kang, Hoe Jin; Padalhin, Andrew R; Park, Ihho; Moon, Byoung-Gi; Lee, Byong Taek

    2018-01-01

    The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 μm) as upper layer with compact MgF2 (~2.2 μm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications.

  11. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications

    PubMed Central

    Makkar, Preeti; Kang, Hoe Jin; Padalhin, Andrew R.; Park, Ihho; Moon, Byoung-Gi

    2018-01-01

    The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 μm) as upper layer with compact MgF2 (~2.2 μm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications. PMID:29608572

  12. Effects of annealing on the optical, structural, and chemical properties of TiO2 and MgF2 thin films prepared by plasma ion-assisted deposition.

    PubMed

    Woo, Seouk-Hoon; Hwangbo, Chang Kwon

    2006-03-01

    Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.

  13. Carbon Monoxide Adsorption on a Platinum Electrode Studied by Polarization Modulated FT-IRRAS (Fourier Transform - IR Reflection Absorption Spectroscopy). I. CO Adsorbed in the Double Layer Potential Region and Its Oxidation in Acids.

    DTIC Science & Technology

    1984-11-01

    TR-B N888i4-82-C- 8583 UNCLASSIFIED F/G 7/4 N C 11101106 il iii 3 6 2 0 o 1 1.25 i 111 6 - (f11 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF...this report) Unclassified ISO . DECLASSIFICATION, DOWNGRADING SCHEDULE 4 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release

  14. Boundary Layers Induced by Three-Dimensional Vortex Loops

    DTIC Science & Technology

    1993-12-01

    obtained analytically (see Appendix B) and are given by =-2 Oz,(sin0 -)I- k IK(I IckI) - sKo (Y I k ) Cosa, (2.35) 1= -2 1 k Oq IIJ~ G=2 -’(cosO-y’)lkl...F- Ko (o Ipl) 279Ul I 280 p = if’, and similarly U a E(g) = 2(g 2 + a2)3/2 ** F = IPI K(a Ipl) 3 where K0, K, are the modified Bessel functions of

  15. Rule of formation of aluminum electroplating layer on Q235 steel.

    PubMed

    Ding, Zhimin; Feng, Qiuyuan; Shen, Changbin; Gao, Hong

    2011-06-01

    Aluminum electroplating layer on Q235 steel in AlCl3-NaCl-KCl molten salt was obtained, and the rule of its nucleation and growth were investigated. The results showed that aluminum electroplating layer formed through nucleating and growing of aluminum particles, and thickened by delaminating growth pattern. At low current density, the morphology of aluminum particles took on flake-like, while at high current density they changed to spherical. The thickness of plating layer increases with increasing current density and electroplating time. The relationship between the plating thickness (δ) and electroplating time (t) or current density (i) can be expressed as δ = 0.28f(137), and δ = 1.1i(1-39). Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. F2 region response to geomagnetic disturbances across Indian latitudes: O(1S) dayglow emission

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, Sumedha; Brahmanandam, P. S.

    2016-03-01

    The morphology of ionospheric storms has been investigated across equatorial and low latitudes of Indian region. The deviation in F2 region characteristic parameters (foF2 and h'F) along with modeled green line dayglow emission intensities is examined at equatorial station Thiruvananthapuram (8.5°N, 76.8°E, 0.63°S geomagnetic latitude) and low-latitude station Delhi (28.6°N, 77.2°E,19.2°N geomagnetic latitude) during five geomagnetic storm events. Both positive and negative phases have been noticed in this study. The positive storm phase over equatorial station is found to be more frequent, while the drop in ionization in most of the cases was observed at low-latitude station. It is concluded that the reaction as seen at different ionospheric stations may be quite different during the same storm depending on both the geographic and geomagnetic coordinates of the station, storm intensity, and the storm onset time. Modulation in the F2 layer critical frequency at low and equatorial stations during geomagnetic disturbance of 20-23 November 2003 was caused by the storm-induced changes in O/N2. It is also found that International Reference Ionosphere 2012 model predicts the F2 layer characteristic (foF2 and h'F) parameters at both the low and equatorial stations during disturbed days quite reasonably. A simulative approach in GLOW model developed by Solomon is further used to estimate the changes in the volume emission rate of green line dayglow emission under quiet and strong geomagnetic conditions. It is found that the O(1S) dayglow thermospheric emission peak responds to varying geomagnetic conditions.

  17. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  18. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    NASA Astrophysics Data System (ADS)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07373h

  19. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion

    NASA Astrophysics Data System (ADS)

    Rishbeth, H.; Müller-Wodarg, I. C. F.; Zou, L.; Fuller-Rowell, T. J.; Millward, G. H.; Moffett, R. J.; Idenden, D. W.; Aylward, A. D.

    2000-08-01

    The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2) at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP), without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down) motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs at high geographic latitudes, where the zenith angle effect becomes overwhelming and causes a midwinter depression of electron density, despite the enhanced atomic/molecular ratio. This leads to a semiannual variation of NmF2. A different situation exists in winter at longitudes near the magnetic poles, where the downwelling occurs at relatively low geographic latitudes so that solar radiation is strong enough to produce large values of NmF2. This circulation-driven mechanism provides a reasonably complete explanation of the observed pattern of F2 layer annual and semiannual quiet-day variations.

  20. Cases Study of Nonlinear Interaction Between Near-Inertial Waves Induced by Typhoon and Diurnal Tides Near the Xisha Islands

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; He, Yinghui; Li, Juan; Cai, Shuqun; Wang, Dongxiao; Huang, Yandan

    2018-04-01

    Nonlinear interaction between near-inertial waves (NIWs) and diurnal tides (DTs) after nine typhoons near the Xisha Islands of the northwestern South China Sea (SCS) were investigated using three-year in situ mooring observation data. It was found that a harmonic wave (f + D1, hereafter referred to as fD1 wave), with a frequency equal to the sum of frequencies of NIWs and DTs (hereafter referred to as f and D1, respectively), was generated via nonlinear interaction between typhoon-induced NIWs and DTs after each typhoon. The fD1 wave mainly concentrates in the subsurface layer, and is mainly induced by the first component of the vertical nonlinear momentum term, the product of the vertical velocity of DT and vertical shear of near-inertial current (hereafter referred to as Component 1), in which the vertical shear of the near-inertial current greatly affects the strength of the fD1 current. The larger the Component 1, the stronger the fD1 currents. The background preexisting mesoscale anticyclonic eddy near the mooring site may also enhance the vertical velocity of DT and thus Component 1, which subsequently facilitates the nonlinear interaction-induced energy transfer to the fD1 wave and enhances the fD1 currents after the passage of a typhoon.

  1. Transparent 1T-MoS2 nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Danqin; Zhou, Weiqiang; Zhou, Qianjie; Ye, Guo; Wang, Tongzhou; Wu, Jing; Chang, Yanan; Xu, Jingkun

    2017-09-01

    Two-dimensional MoS2 materials have attracted more and more interest and been applied to the field of energy storage because of its unique physical, optical, electronic and electrochemical properties. However, there are no reports on high-stable transparent MoS2 nanofilms as supercapacitors electrode. Here, we describe a transparent 1T-MoS2 nanofilm electrode with super-long stability anchored on the indium tin oxide (ITO) glass by a simple alternate layer-by-layer (LBL) self-assembly of a highly charged cationic poly(diallyldimethylammonium chloride) (PDDA) and negative single-/few-layer 1T MoS2 nanosheets. The ITO/(PDDA/MoS2)20 electrode shows a transmittance of 51.6% at 550 nm and obviously exhibits excellent transparency by naked eye observation. Ultrasonic damage test validates that the (PDDA/MoS2)20 film with the average thickness about 50 nm is robustly anchored on ITO substrate. Additionally, the electrochemical results indicate that the ITO/(PDDA/MoS2)20 film shows areal capacitance of 1.1 mF cm-2 and volumetric capacitance of 220 F cm-3 at 0.04 mA cm-2, 130.6% retention of the original capacitance value after 5000 cycles. Further experiments indicate that the formation of transparent (PDDA/MoS2) x nanofilm by LBL self-assembly can be extended to other substrates, e.g., slide glass and flexible polyethylene terephthalate (PET). Thus, the easily available (PDDA/MoS2) x nanofilm electrode has great potential for application in transparent and/or flexible optoelectronic and electronics devices.

  2. LPE growth of crack-free PbSe layers on Si(100) using MBE-Grown PbSe/BaF2CaF2 buffer layers

    NASA Astrophysics Data System (ADS)

    Strecker, B. N.; McCann, P. J.; Fang, X. M.; Hauenstein, R. J.; O'Steen, M.; Johnson, M. B.

    1997-05-01

    Crack-free PbSe on (100)-oriented Si has been obtained by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. MBE is employed first to grow a PbSe/BaF2/CaF2 buffer structure on the (100)-oriented Si. A 2.5 μm thick PbSe layer is then grown by LPE. The LPE-grown PbSe displays excellent surface morphology and is continuous over the entire 8×8 mm2 area of growth. This result is surprising because of the large mismatch in thermal expansion coefficients between PbSe and Si. Previous attempts to grow crack-free PbSe by MBE alone using similar buffer structures on (100)-oriented Si have been unsuccessful. It is speculated that the large concentration of Se vacancies in the LPE-grown PbSe layer may allow dislocation climb along higher order slip planes, providing strain relaxation.

  3. In-situ studies of plasma irregularities in high latitude ionosphere with the ICI-2 sounding rocket within the 4DSpace project

    NASA Astrophysics Data System (ADS)

    Miloch, Wojciech; Moen, Joran; Spicher, Andres

    Ionospheric plasma is often characterized by irregularities, instabilities, and turbulence. Two regions of the ionospheric F-layer are of particular interest: low-latitudes for the equatorial anomaly and electrojet, and high-latitude regions where the most dynamic phenomena occur due to magnetic field lines coupling to the magnetosphere and the solar wind. The spectra of plasma fluctuations in the low-latitude F-layer usually exhibit a power law with a steeper slope at high frequencies [1]. Until recently, there was no clear evidence of the corresponding double slope spectra for plasma fluctuations in the high latitude ionospheric F-layer, and this difference was not well understood. We report the first direct observations of the double slope power spectra for plasma irregularities in the F-layer of the polar ionosphere [2]. The ICI-2 sounding rocket, which intersected enhanced plasma density regions with decameter scale irregularities in the cusp region, measured the electron density with unprecedented high resolution. This allowed for a detailed study of the plasma irregularities down to kinetic scales. Spectral analysis reveals double slope power spectra for regions of enhanced fluctuations associated mainly with density gradients, with the steepening of the spectra occurring close to the oxygen gyro-frequency. The double slope spectra are further supported by the results from the ICI-3 sounding rocket. Double slope spectra were not resolved in previous works presumably due to limited resolution of instruments. The study is a part of the 4DSpace initiative for integrated studies of the ionospheric plasma turbulence with multi-point, multi-scale in-situ studies by sounding rockets and satellites, and numerical and analytical models. A brief overview of the 4DSpace initiative is given. [1] M.C. Kelley, The Earth’s Ionosphere Plasma Physics and Electrodynamics (Elsevier, Amsterdam 2009). [2] A. Spicher, W. J. Miloch, and J. I. Moen, Geophys. Res. Lett. 40, (in press, accepted 13.02.2014).

  4. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers

    NASA Astrophysics Data System (ADS)

    Sogabe, Ryota; Goto, Yosuke; Mizuguchi, Yoshikazu

    2018-05-01

    We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.

  5. Efficient polymer light-emitting diode with air-stable aluminum cathode

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Doumon, N. Y.; Blom, P. W. M.

    2016-03-01

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlOx) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtained by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlOx cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlOx into the emissive layer. PLEDs with an AlOx cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.

  6. Effects of Wing Sweep on Boundary-layer Transition for a Smooth F-14A Wing at Mach Numbers from 0.700 to 0.825

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The results are discussed of the variable sweep transition flight experiment (VSTFE). The VSTFE was a natural laminar flow experiment flown on the swing wing F-14A aircraft. The main objective of the VSTFE was to determine the effects of wing sweep on boundary layer transition at conditions representative of transport aircraft. The experiment included the flight testing of two laminar flow wing gloves. Glove 1 was a cleanup of the existing F-14A wing. Glove 2, not discussed herein, was designed to provide favorable pressure distributions for natural laminar flow at Mach number (M) 0.700. The transition locations presented for glove 1 were determined primarily by using hot film sensors. Boundary layer rake data was provided as a supplement. Transition data were obtained for leading edge wing sweeps of 15, 20, 25, 30, and 35 degs, with Mach numbers ranging from 0.700 to 0.825, and altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number of 13.7 x 10(exp 6) was obtained for the condition of 15 deg of sweep, M = 0.800, and an altitude of 20,000 ft.

  7. Non-equilibrium steady-state distributions of colloids in a tilted periodic potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoguang; Lai, Pik-Yin; Ackerson, Bruce; Tong, Penger

    A two-layer colloidal system is constructed to study the effects of the external force F on the non-equilibrium steady-state (NESS) dynamics of the diffusing particles over a tilted periodic potential, in which detailed balance is broken due to the presence of a steady particle flux. The periodic potential is provided by the bottom layer colloidal spheres forming a fixed crystalline pattern on a glass substrate. The corrugated surface of the bottom colloidal crystal provides a gravitational potential field for the top layer diffusing particles. By tilting the sample with respect to gravity, a tangential component F is applied to the diffusing particles. The measured NESS probability density function Pss (x , y) of the particles is found to deviate from the equilibrium distribution depending on the driving or distance from equilibrium. The experimental results are compared with the exact solution of the 1D Smoluchowski equation and the numerical results of the 2D Smoluchowski equation. Moreover, from the obtained exact 1D solution, we develop an analytical method to accurately extract the 1D potential U0 (x) from the measured Pss (x) . Work supported in part by the Research Grants Council of Hong Kong SAR.

  8. Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolyarov, Maxim A.; Liu, Guanxiong; Balandin, Alexander A., E-mail: balandin@ee.ucr.edu

    2015-07-13

    We have investigated low-frequency 1/f noise in the boron nitride–graphene–boron nitride heterostructure field-effect transistors on Si/SiO{sub 2} substrates (f is a frequency). The device channel was implemented with a single layer graphene encased between two layers of hexagonal boron nitride. The transistors had the charge carrier mobility in the range from ∼30 000 to ∼36 000 cm{sup 2}/Vs at room temperature. It was established that the noise spectral density normalized to the channel area in such devices can be suppressed to ∼5 × 10{sup −9 }μm{sup 2 }Hz{sup −1}, which is a factor of ×5 – ×10 lower than that in non-encapsulated graphene devices on Si/SiO{sub 2}. The physicalmore » mechanism of noise suppression was attributed to screening of the charge carriers in the channel from traps in SiO{sub 2} gate dielectric and surface defects. The obtained results are important for the electronic and optoelectronic applications of graphene.« less

  9. Overcoming Film Quality Issues for Conjugated Polymers Doped with F4TCNQ by Solution Sequential Processing: Hall Effect, Structural, and Optical Measurements.

    PubMed

    Scholes, D Tyler; Hawks, Steven A; Yee, Patrick Y; Wu, Hao; Lindemuth, Jeffrey R; Tolbert, Sarah H; Schwartz, Benjamin J

    2015-12-03

    We demonstrate that solution-sequential processing (SqP) can yield heavily doped pristine-quality films when used to infiltrate the molecular dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into pure poly(3-hexylthiophene) (P3HT) polymer layers. Profilometry measurements show that the SqP method produces doped films with essentially the same surface roughness as pristine films, and 2-D grazing-incidence wide-angle X-ray scattering (GIWAXS) confirms that SqP preserves both the size and orientation of the pristine polymer's crystallites. Unlike traditional blend-cast F4TCNQ/P3HT doped films, our sequentially processed layers have tunable and reproducible conductivities reaching as high as 5.5 S/cm even when measured over macroscopic (>1 cm) distances. The high conductivity and superb film quality allow for meaningful Hall effect measurements, which reveal p-type conduction and carrier concentrations tunable from 10(16) to 10(20) cm(-3) and hole mobilities ranging from ∼0.003 to 0.02 cm(2) V(-1) s(-1) at room temperature over the doping levels examined.

  10. Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Kim, Hyoungsub; McIntyre, Paul C.; Saraswat, Krishna C.; Byun, Jeong-Soo

    2003-04-01

    A metal-insulator-metal (MIM) capacitor using ZrO2 on tungsten (W) metal bottom electrode was demonstrated and characterized in this letter. Both ZrO2 and W metal were synthesized by an atomic layer deposition (ALD) method. High-quality 110˜115 Å ZrO2 films were grown uniformly on ALD W using ZrCl4 and H2O precursors at 300 °C, and polycrystalline ZrO2 in the ALD regime could be obtained. A 13˜14-Å-thick interfacial layer between ZrO2 and W was observed after fabrication, and it was identified as WOx through angle-resolved x-ray photoelectron spectroscopy analysis with wet chemical etching. The apparent equivalent oxide thickness was 20˜21 Å. An effective dielectric constant of 22˜25 including an interfacial WOx layer was obtained by measuring capacitance and thickness of MIM capacitors with Pt top electrodes. High capacitance per area (16˜17 fF/μm2) and low leakage current (10-7 A/cm2 at ±1 V) were achieved.

  11. Ionospheric modification by radio waves: An overview and novel applications

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.

    2008-12-01

    High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.

  12. Low-frequency 1/f noise in graphene devices

    NASA Astrophysics Data System (ADS)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  13. Low-frequency 1/f noise in graphene devices.

    PubMed

    Balandin, Alexander A

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  14. Inventory of File gfs.t06z.pgrb2.1p00.f000

    Science.gov Websites

    analysis U-Component of Wind [m/s] 002 planetary boundary layer VGRD analysis V-Component of Wind [m/s] 003 planetary boundary layer VRATE analysis Ventilation Rate [m^2/s] 004 surface GUST analysis Wind Speed (Gust mb RH analysis Relative Humidity [%] 008 10 mb UGRD analysis U-Component of Wind [m/s] 009 10 mb VGRD

  15. Stimulated electromagnetic emission and plasma line during pump wave frequency stepping near 4th electron gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Sergeev, Evgeny; Shindin, Alexey; Mishin, Evgeny; Watkins, Brenton

    Concurrent observations of stimulated (secondary) electromagnetic emissions (SEE) and incoherent plasma line (PL) backscatter from the MUIR radar during HF pumping of the ionosphere by the HAARP heating facility (62.4(°) °N, 145.15(°) W, magnetic inclination α = 75.8^circ) with the pump wave (PW) frequency sweeps about the fourth electron gyroharmonic (4f_c) are presented. The PW frequency f0 was changed every 0.2 s in a 1-kHz step, i.e. with the rate of r_{f_0}=5 kHz/s. PW was transmitted at the magnetic zenith (MZ). Prior to sweeping, PW was transmitted continuously (CW) during 2 min at f_0 = 5730 kHz <4f_c to create the “preconditioned” ionosphere with small-scale magnetic field-aligned irregularities. During CW pumping, a typical SEE spectrum for f_0<4f_c, containing the prominent downshifted maxiμm (DM) shifted by Delta f_{DM} = f_{DM}-f_0approx-9 kHz, developed in 5-10 s after PW turn on. The PL echoes were observed during 2-3 s from the range dsim 220 km corresponding to the altitude slightly above PW reflection height. After sim5 s the PL echoes descended to dsim 210-212 km corresponding to the height h = d / (sinalpha) by sim 7 km below the height where f_0 = 4f_c. During frequency sweeps, two upshifted features appeared in the SEE spectrum for f_0> 4f_c, namely BUM_S and BUM_D. The former (stationary broad upshifted maxiμm) peaks at Delta f_{BUMs} approx f0 - nfc (d) + 15-20 kHz and is a typical SEE spectral feature. The latter, the dynamic BUM_D at smaller Delta f, is observed only at high pump powers (ERP=1.7 GW) and corresponds to artificial descending plasma layers created in the F-region ionosphere [1]. In the experiment in question, the BUM_D was present for f_0> f^*, where f^* was 5805-5815 kHz during stepping up and sim 10 kHz less for stepping down, and located 8-10 km below the background F-layer. The miniμm DM which indicated that f_0=4f_c=f_{uh} in the background ionospheric plasma, was sim 5760 kHz. The PL was observed only for f_0< f^* and mainly from altitudes h where f_0 <4f_c. The height h decreased with increasing f_0 in accordance with the altitude dependence 4f_c(h), the difference Delta f_g = f_0 - 4f_c was kept constant during either sweeping up [-(4-8 kHz)] or sweeping down [-(18-22 kHz)]. This corresponds to the difference between the altitude where f_0=4f_c and the PL generation altitude by Delta h sim 1.5-3 km and 7-8 km, respectively. During stepping up, the PL was observed also from the ranges where f_0 > 4f_c. In this case we obtained Delta f_g sim 8-13 kHz corresponding to Delta h sim - 4 km. The PL has never been observed for f_0>f^*$. \\ 1. Sergeev E., Grach S., et al. //Phys. Rev. Lett., 110 (2013), 065002.

  16. Disturbance in the Tropical Ionosphere and Earth Magnetic Field Mensured on the Magnetic Equator Caused by Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Sobral, José; Resende, Laysa; Marcos Denardini, Clezio; Carlotto Aveiro, Henrique

    The focus of the present work is to monitor the disturbances in the equatorial F region caused by magnetic storms and comparatively to observe possible effects caused by the storms in the earth magnetics field measured on the ground, aiming to establish the events time occurrence order. The motivation for this work is due to the diversity of phenomena of scientific interest, which are observed in this region and also are capable to disturbance the transionospheric communication. The monitoring on the ionospheric plasma variation in the F region during and after the magnetics storms can generate indications of magnetosphere - ionosphere coupling effects. For this study we have used F region parameters measured by digital sounder installed at the Observatório Espacial de São Lú (2.33° S; 44.20° W; -0.5° DIP): foF2 (critical frequency o a ıs of F layer), hmF2 (real height of electronic density F layer peak) and h'F (minimum virtual height of F layer). For monitoring the disturbance in the magnetic field we have studied the H- and Z-component of the Earth magnetic field measured by magnetometers installed in the same site. The results are presented and discussed.

  17. E and F Layer H.F. Volume Backscatter Reflectivities.

    DTIC Science & Technology

    1980-02-01

    organization , please notify RADC (EEP), Hanscom AFB MA 01731. This will assist us in maintaining a current mailing list. Do not return this copy. Retain...6rd F19628-8C06 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKARE A & WORK UNIT NUMBERS Deputy for Electronic Technology...p&U?4 and executeA weeath, devetopment, tet and ee.ted atcqu1,6tion p’wgAam6 in a6uppo’cL 06 Command, ContAot Coffexmlico.tionI and InteLigence (C31

  18. Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells.

    PubMed

    Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin

    2012-12-12

    Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.

  19. Atomic layer deposition and etching methods for far ultraviolet aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Hennessy, John; Moore, Christopher S.; Balasubramanian, Kunjithapatham; Jewell, April D.; Carter, Christian; France, Kevin; Nikzad, Shouleh

    2017-09-01

    High-performance aluminum mirrors at far ultraviolet wavelengths require transparent dielectric materials as protective coatings to prevent oxidation. Reducing the thickness of this protective layer can result in additional performance gains by minimizing absorption losses, and provides a path toward high Al reflectance in the challenging wavelength range of 90 to 110 nm. We have pursued the development of new atomic layer deposition processes (ALD) for the metal fluoride materials of MgF2, AlF3 and LiF. Using anhydrous hydrogen fluoride as a reactant, these films can be deposited at the low temperatures required for large-area surface-finished optics and polymeric diffraction gratings. We also report on the development and application of an atomic layer etching (ALE) procedure to controllably etch native aluminum oxide. Our ALE process utilizes the same chemistry used in the ALD of AlF3 thin films, allowing for a combination of high-performance evaporated Al layers and ultrathin ALD encapsulation without requiring vacuum transfer. Progress in demonstrating the scalability of this approach, as well as the environmental stability of ALD/ALE Al mirrors are discussed in the context of possible future applications for NASA LUVOIR and HabEx mission concepts.

  20. Novel phosphate halides BaMn{sup III}[PO{sub 4}]FCl and BaMn{sup III}[PO{sub 4}]F{sub 2}: Effects of mixed halides on crystal structures and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Da-Ting, E-mail: pdtcug@gmail.com; Sun, Wei, E-mail: 421221789@qq.com; Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Canada SK S7N 5E2

    2016-02-15

    Two new phosphate halides BaMn{sup III}[PO{sub 4}]FCl (1) and BaMn{sup III}[PO{sub 4}]F{sub 2} (2), have been synthesized under hydrothermal conditions. Structural characterizations show that both new compounds adopt layered structures but with different polyhedral linkages. Introduction of Cl into Compound (1) results in isolated hemimorphic [MnO{sub 4}FCl] octahedra, different from the chain of [MnO{sub 4}F{sub 2}]/[MnO{sub 2}F{sub 4}] octahedra in Compound (2). These compounds have significantly different molecular vibration modes and thermal stabilities. Magnetic measurements reveal that Compound (2) has larger antiferromagnetic interactions than Compound (1), because the former has strong interactions between Mn{sup 3+}-Mn{sup 3+} ions within corner-shared Mn{supmore » 3+}-octahedral chains whereas the latter only possesses isolated Mn{sup 3+}-octahedra. Both compounds transform to a new orthorhombic compound BaMn{sup II}(PO{sub 4})F (3) after thermal decomposition. - Graphical abstract: The large radius of Cl{sup -} ions makesBaMn{sup III}[PO{sub 4}]FCl to adopt isolated [MnO{sub 4}FCl] rather than corner-sharing octahedra as observed in BaMn{sup III}[PO{sub 4}]F{sub 2}. - Highlights: • Two novel phosphate halides BaMn[PO{sub 4}]FCl and BaMn[PO{sub 4}]F{sub 2} have been prepared. • These new compounds adopt different types of layered structures. • They have different molecular vibration modes and thermal stabilities. • BaMn[PO{sub 4}]FCl has weaker antiferromagnetic interactions than BaMn[PO{sub 4}]F{sub 2}. • The former adopts isolated octahedra whereas the latter adopts octahedral chains.« less

  1. Raman scattering and X-ray powder diffraction studies of hydrate layered perovskites: dirubidium aquapentafluoromanganate(III) and dipotassium aquapentafluoroferrate(III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galicka, Karolina; Slodczyk, Aneta; Ratuszna, Alicja

    2004-06-08

    The structural and vibrational properties of above mentioned crystals were determined using X-ray powder diffraction and Raman scattering experiments. At room temperature hydrate layered perovskites: Rb{sub 2}MnF{sub 5}{center_dot}H{sub 2}O and K{sub 2}FeF{sub 5}{center_dot}H{sub 2}O exhibit orthorhombic--Cmcm (D{sub 2h}{sup 17}) and monoclinic--C2/c (C{sub 2h}{sup 6}) symmetry. Their structure is built up of MnF{sub 6} or FeF{sub 5}{center_dot}H{sub 2}O octahedra forming trans-linked zig-zag chains or hydrogen bonded zig-zag chains along the major crystallographic direction [0 0 1], respectively. To confirm crystal structures and to describe lattice dynamics of these compounds the vibrational normal modes (in {gamma} point of first Brillouin zone) weremore » calculated on the base of the group theory analysis and compared with the spectra obtained from Raman scattering experiments. A relatively good reliability was obtained for both X-ray powder diffraction and Raman scattering.« less

  2. Thermal atomic layer etching of crystalline aluminum nitride using sequential, self-limiting hydrogen fluoride and Sn(acac){sub 2} reactions and enhancement by H{sub 2} and Ar plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nicholas R.; Sun, Huaxing; Sharma, Kashish

    2016-09-15

    Thermal atomic layer etching (ALE) of crystalline aluminum nitride (AlN) films was demonstrated using sequential, self-limiting reactions with hydrogen fluoride (HF) and tin(II) acetylacetonate [Sn(acac){sub 2}] as the reactants. Film thicknesses were monitored versus number of ALE reaction cycles at 275 °C using in situ spectroscopic ellipsometry (SE). A low etch rate of ∼0.07 Å/cycle was measured during etching of the first 40 Å of the film. This small etch rate corresponded with the AlO{sub x}N{sub y} layer on the AlN film. The etch rate then increased to ∼0.36 Å/cycle for the pure AlN films. In situ SE experiments established the HF and Sn(acac){submore » 2} exposures that were necessary for self-limiting surface reactions. In the proposed reaction mechanism for thermal AlN ALE, HF fluorinates the AlN film and produces an AlF{sub 3} layer on the surface. The metal precursor, Sn(acac){sub 2}, then accepts fluorine from the AlF{sub 3} layer and transfers an acac ligand to the AlF{sub 3} layer in a ligand-exchange reaction. The possible volatile etch products are SnF(acac) and either Al(acac){sub 3} or AlF(acac){sub 2}. Adding a H{sub 2} plasma exposure after each Sn(acac){sub 2} exposure dramatically increased the AlN etch rate from 0.36 to 1.96 Å/cycle. This enhanced etch rate is believed to result from the ability of the H{sub 2} plasma to remove acac surface species that may limit the AlN etch rate. The active agent from the H{sub 2} plasma is either hydrogen radicals or radiation. Adding an Ar plasma exposure after each Sn(acac){sub 2} exposure increased the AlN etch rate from 0.36 to 0.66 Å/cycle. This enhanced etch rate is attributed to either ions or radiation from the Ar plasma that may also lead to the desorption of acac surface species.« less

  3. Real-Time Adaptive Control of Mixing in a Plane Shear Layer

    DTIC Science & Technology

    1992-01-01

    ODAT1 3*as ypt AND OAIU COVusa3 Ja 192A6ua Technical 15 Jan 91 - 14 Jan 𔃼 rrlTLAND SUR0(U) T a 192= Pij. m F N IEu M Real-Time Adaptive Control of...0465 Submitted to Air Force Office of Scientific Research Boiling Air Force Base, Building 410 Washington, D.C. 20332 Submitted by A. Glezer Acc&:io n F1...t ibu_:ion i ... ..... ... . Aw ilfbility Cc.C’ Dist Spec I A-1 92-05643 92 1 3a 12 TABLE OF CONTENTS IN TRO D U CTIO N

  4. Comparison of foE and M(3000)F2 variability at Ibadan, Singapore and Slough

    NASA Astrophysics Data System (ADS)

    Somoye, E. O.; Onori, E. O.; Akala, A. O.

    2013-01-01

    The variability, VR, of critical frequency of E-layer, foE, and ionospheric propagation factor, M(3000)F2 at Ibadan (7.4°N, 3.9°E, 6°S dip) is investigated for local time, seasonal and solar cycle variations. Latitudinal influence of these characteristics is sought by comparison with foE VR and M(3000)F2 VR of Slough ( 51.5°N, 359.4°E, 66.5°N dip) in the European sector, and Singapore (1.3°N,103.8°E, 17.6°S dip) in the Asian sector. While the pattern of foE VR is similar to those of other F2 characteristics with characteristic peaks around dawn and dusk, M(3000)F2 VR shows no clear diurnal trend.A lower bound of foE VR is usually 3% while the maximum VR ranges between 8% and13% at post-sunrise and pre-sunset hours at all the epochs, M(3000)F2 VR is however lower during MSA (about 9%) than during LSA and HSA when it is 4% to about 12-14%. Generally, daytime M(3000)F2 VR is greater than that of foE VR by between 5% and 10%. Furthermore, no latitudinal difference is observed in both characteristics during both HSA and MSA. While nighttime M(3000)F2 VR is about half that of nighttime foF2 VR (the critical frequency of F2-layer ) VR, daytime VR of both characteristics are about equal during the three epochs at Ibadan. For Slough, nighttime M(3000)F2 VR and nighttime foF2 VR as well as the daytime VR of both characteristics are about equal. This difference is most likely due to latitudinal effect.

  5. Development of Methods and Facilities for Radio-Wave UHF Diagnostics of Plane-layered Dielectric Structures

    DTIC Science & Technology

    2010-02-05

    Herzberger Yu. Introduction to interval computation. 1983 5. Gutman S . Identification of multilayered particles from scattering...66 68 70 72 74 76 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 f, GHz an gl e( V s ) , ra d 1 2 1 2 Fig. 5. Modeling of exfoliation in plate. Two plexiglass...1 10 0 |V s | 58 60 62 64 66 68 70 72 74 76 -3 -2.5 -2 -1.5 -1 -0.5 f, GHz an gl e( V s ) , ra d Fig. 7. Two plexiglass plates without a gap 58

  6. Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Sulymenko, O. R.; Prokopenko, O. V.; Tiberkevich, V. S.; Slavin, A. N.; Ivanov, B. A.; Khymyn, R. S.

    2017-12-01

    We propose a design of a terahertz-frequency signal generator based on a layered structure consisting of a current-driven platinum (Pt) layer and a layer of an antiferromagnet (AFM) with easy-plane anisotropy, where the magnetization vectors of the AFM sublattices are canted inside the easy plane by the Dzyaloshinskii-Moriya interaction (DMI). The dc electric current flowing in the Pt layer creates due to the spin Hall effect, a perpendicular spin current that, being injected in the AFM layer, tilts the DMI-canted AFM sublattices out of the easy plane, thus exposing them to the action of a strong internal exchange magnetic field of the AFM. The sublattice magnetizations, along with the small net magnetization vector mDMI of the canted AFM, start to rotate about the hard anisotropy axis of the AFM with the terahertz frequency proportional to the injected spin current and the AFM exchange field. The rotation of the small net magnetization mDMI results in the terahertz-frequency dipolar radiation that can be directly received by an adjacent (e.g., dielectric) resonator. We demonstrate theoretically that the radiation frequencies in the range f =0.05 - 2 THz are possible at the experimentally reachable magnitudes of the driving current density, and we evaluate the power of the signal radiated into different types of resonators. This power increases with the increase of frequency f , and it can exceed 1 μ W at f ˜0.5 THz for a typical dielectric resonator of the electric permittivity ɛ ˜10 and a quality factor Q ˜750 .

  7. Design rules and reality check for carbon-based ultracapacitors

    NASA Astrophysics Data System (ADS)

    Eisenmann, Erhard T.

    1995-04-01

    Design criteria for carbon-based Ultracapacitors have been determined for specified energy and power requirements, using the geometry of the components and such material properties as density, porosity and conductivity as parameters, while also considering chemical compatibility. This analysis shows that the weights of active and inactive components of the capacitor structure must be carefully balanced for maximum energy and power density. When applied to nonaqueous electrolytes, the design rules for a 5 Wh/kg device call for porous carbon with a specific capacitance of about 30 F/cu cm. This performance is not achievable with pure, electrostatic double layer capacitance. Double layer capacitance is only 5 to 30% of that observed in aqueous electrolyte. Tests also showed that nonaqueous electrolytes have a diminished capability to access micropores in activated carbon, in one case yielding a capacitance of less than 1 F/cu cm for carbon that had 100 F/cu cm in aqueous electrolyte. With negative results on nonaqueous electrolytes dominating the present study, the obvious conclusion is to concentrate on aqueous systems. Only aqueous double layer capacitors offer adequate electrostatic charging characteristics which is the basis for high power performance. There arc many opportunities for further advancing aqueous double layer capacitors, one being the use of highly activated carbon films, as opposed to powders, fibers and foams. While the manufacture of carbon films is still costly, and while the energy and power density of the resulting devices may not meet the optimistic goals that have been proposed, this technology could produce true double layer capacitors with significantly improved performance and large commercial potential.

  8. Atlas of North Atlantic-Indian Ocean Monthly Mean Temperatures and Mean Salinities of the Surface Layer.

    DTIC Science & Technology

    1979-01-01

    00 F ( 103M 2. 100 ° 90 ° 80 ° 70’ 60’ 50 40- 30 ° 20* 𔃺’ 0. I-- - T 7 - I I I F I I I T I I T 1 1I- - 7 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I 70...CYL TE PRT- CURVES- --- --- - ATAN- -C D J " RH i AS0 H 1 t, (7 Z" sm2N su 2N42U N 32 . OPLACS- .04- - - -0 25 25 1MJJASONOJ 0 JF4AI4JJAS0N0J

  9. Daytime VHF amplitude scintillations recorded at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during 1997-2003

    NASA Astrophysics Data System (ADS)

    Uma, G.; Brahmanandam, P. S.; Srinivasu, V. K. D.; Prasad, D. S. V. V. D.; Rama Rao, P. V. S.

    2018-04-01

    In this research, it is presented the daytime amplitude scintillations recorded at VHF frequency (244 MHz) at an Indian low-latitude station, Waltair (17.7°N, 83.3°E) during seven continuous years (1997-2003). Contrary to the nighttime scintillation seasonal trends, the occurrence of daytime scintillations maximizes during summer followed by winter and the equinox seasons. The fade depths, scintillation indices and the patch durations of daytime scintillations are meager when compared with their nighttime counterparts. A co-located digital high frequency (HF) ionosonde radar confirms the presence of sporadic (Es) layers when daytime scintillations are observed. The presence of daytime scintillations is evident when the critical frequency of the Es-layer (foEs) is ≥4 MHz and Es-layers are characterized by a highly diffuse range spread Es echoes as can be seen on ionograms. It is surmised that the gradient drift instability (GDI) seems to be the possible mechanism for the generation of these daytime scintillations. It is quite likely that the spread Es-F-layer coupling is done through polarization electric fields (Ep) that develop inside the destabilized patches of sporadic E layers, which are mapped up to the F region along the field lines as to initiate the daytime scintillations through the GDI mechanism. Further, the presence of additional stratification of ionosphere F-layer, popularly known as the F3-layer, is observed on ionograms once the Es-layers and daytime scintillations are ceased.

  10. Flight Wing Surface Pressure and Boundary-Layer Data Report from the F-111 Smooth Variable-Camber Supercritical Mission Adaptive Wing

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.

    1997-01-01

    Flight tests were conducted using the advanced fighter technology integration F-111 (AFTI/F-111) aircraft modified with a variable-sweep supercritical mission adaptive wing (MAW). The MAW leading- and trailing-edge variable-camber surfaces were deflected in flight to provide a near-ideal wing camber shape for the flight condition. The MAW features smooth, flexible upper surfaces and fully enclosed lower surfaces, which distinguishes it from conventional flaps that have discontinuous surfaces and exposed or semi-exposed mechanisms. Upper and lower surface wing pressure distributions were measured along four streamwise rows on the right wing for cruise, maneuvering, and landing configurations. Boundary-layer measurements were obtained near the trailing edge for one of the rows. Cruise and maneuvering wing leading-edge sweeps were 26 deg for Mach numbers less than 1 and 45 deg or 58 deg for Mach numbers greater than 1. The landing wing sweep was 9 deg or 16 deg. Mach numbers ranged from 0.27 to 1.41, angles of attack from 2 deg to 13 deg, and Reynolds number per unit foot from 1.4 x 10(exp 6) to 6.5 x 10(exp 6). Leading-edge cambers ranged from O deg to 20 deg down, and trailing-edge cambers ranged from 1 deg up to 19 deg down. Wing deflection data for a Mach number of 0.85 are shown for three cambers. Wing pressure and boundary-layer data are given. Selected data comparisons are shown. Measured wing coordinates are given for three streamwise semispan locations for cruise camber and one spanwise location for maneuver camber.

  11. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  12. RF Properties of Epitaxial Lift-Off HEMT Devices

    NASA Technical Reports Server (NTRS)

    Young, Paul G.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.

    1993-01-01

    Epitaxial layers containing GaAs HEMT and P-HEMT structures have been lifted-off the GaAs substrate and attached to other host substrates using an AlAs parting layer. The devices were on-wafer RF probed before and after the lift-off step showing no degradation in the measured S-parameters. The maximum stable gain indicates a low frequency enhancement of the gain of 1-2 dB with some devices showing an enhancement of F(sub max)F(sub T) consistently shows an increase of 12-20% for all lifted-off HEMT structures. Comparison of the Hall measurements and small signal models show that the gain is improved and this is most probably associated with an enhanced carrier concentration.

  13. Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Xu, Wei; Wei, Fuxiang; Bai, Yu; Jiang, X. Y.; Zhang, Z. L.; Zhu, W. Q.

    2007-11-01

    Highly efficient organic electroluminescent devices (OLEDs) were developed based on 4,7-diphenyl-1, 10-phenanthroline (BPhen) as the electron transport layer (ETL), tris-(8-hydroxyquinoline) aluminum (Alq 3) as the emission layer (EML) and N,Ń-bis-[1-naphthy(-N,Ńdiphenyl-1,1'-biphenyl-4,4'-diamine)] (NPB) as the hole transport layer (HTL). The typical device structure was glass substrate/ ITO/ NPB/ Alq 3/ BPhen/ LiF/ Al. Since BPhen possesses a considerable high electron mobility of 5×10 -4 cm 2 V -1 s -1, devices with BPhen as ETL can realize an extremely high luminous efficiency. By optimizing the thickness of both HTL and ETL, we obtained a highly efficient OLED with a current efficiency of 6.80 cd/A and luminance of 1361 cd/m 2 at a current density of 20 mA/cm 2. This dramatic improvement in the current efficiency has been explained on the principle of charge balance.

  14. Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1

    PubMed Central

    Olman, Cheryl A.; Harel, Noam; Feinberg, David A.; He, Sheng; Zhang, Peng; Ugurbil, Kamil; Yacoub, Essa

    2012-01-01

    Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T2-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths. PMID:22448223

  15. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    NASA Astrophysics Data System (ADS)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  16. Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors.

    PubMed

    Yu, Lei; Wang, Guilong; Wan, Gengping; Wang, Guizhen; Lin, Shiwei; Li, Xinyue; Wang, Kan; Bai, Zhiming; Xiang, Yang

    2016-09-21

    In this work, we report an atomic layer deposition (ALD) method for the fabrication of NiO/CNT hybrid structures in order to improve electronic conductivity, enhance cycling stability and increase rate capability of NiO used as supercapacitor electrodes. A uniform NiO coating can be well deposited on carbon nanotubes (CNTs) through simultaneously employing O3 and H2O as oxidizing agents in a single ALD cycle of NiO for the first time, with a high growth rate of nearly 0.3 Å per cycle. The electrochemical properties of the as-prepared NiO/CNT were then investigated. The results show that the electrochemical capacitive properties are strongly associated with the thickness of the NiO coating. The NiO/CNT composite materials with 200 cycles of NiO deposition exhibit the best electrochemical properties, involving high specific capacitance (622 F g(-1) at 2 A g(-1), 2013 F g(-1) for NiO), excellent rate capability (74% retained at 50 A g(-1)) and outstanding cycling stability. The impressive results presented here suggest a great potential for the fabrication of composite electrode materials by atomic layer deposition applied in high energy density storage systems.

  17. Spin relaxation 1/f noise in graphene

    NASA Astrophysics Data System (ADS)

    Omar, S.; Guimarães, M. H. D.; Kaverzin, A.; van Wees, B. J.; Vera-Marun, I. J.

    2017-02-01

    We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measured spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.

  18. The impact of fluctuating light on the dinoflagellate Prorocentrum micans depends on NO3(-) and CO2 availability.

    PubMed

    Zheng, Ying; Giordano, Mario; Gao, Kunshan

    2015-05-15

    Increasing atmospheric pCO2 and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient supply from deeper layers. These events may alter the nutritional conditions and the light regime to which primary producers are exposed in the UML. In order to better understand the physiology behind the responses to the concomitant climate changes factors, we examined the impact of light fluctuation on the dinoflagellate Prorocentrum micans grown at low (1 μmol L(-1)) or high (800 μmol L(-1)) [NO3(-)] and at high (1000 μatm) or low (390 μatm, ambient) pCO2. The light regimes to which the algal cells were subjected were (1) constant light at a photon flux density (PFD) of either 100 (C100) or 500 (C500) μmol m(-2) s(-1) or (2) fluctuating light between 100 or 500 μmol photons m(-2) s(-1) with a frequency of either 15 (F15) or 60 (F60) min. Under continuous light, the initial portion of the light phase required the concomitant presence of high CO2 and NO3(-) concentrations for maximum growth. After exposure to light for 3h, high CO2 exerted a negative effect on growth and effective quantum yield of photosystem II (F'(v)/F'(m)). Fluctuating light ameliorated growth in the first period of illumination. In the second 3h of treatment, higher frequency (F15) of fluctuations afforded high growth rates, whereas the F60 treatment had detrimental consequences, especially when NO3(-) concentration was lower. F'(v)/F'(m) respondent differently from growth to fluctuating light: the fluorescence yield was always lower than at continuous light at 100 μmol m(-2) s(-1), and always higher at 500 μmol m(-2) s(-1). Our data show that the impact of atmospheric pCO2 increase on primary production of dinoflagellate depends on the availability of nitrate and the irradiance (intensity and the frequency of irradiance fluctuations) to which the cells are exposed. The impact of global change on oceanic primary producers would therefore be different in waters with different chemical and physical (mixing) properties. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.

    PubMed

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO(2)-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO(2) films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO(2) with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO(2):F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO(2) was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO(2):F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  20. The mesospheric metal layer topside: Examples of simultaneous metal observations

    NASA Astrophysics Data System (ADS)

    Höffner, J.; Friedman, J. S.

    2005-09-01

    We show examples of common volume observations of three metals by lidar focusing on the altitude of the topside of the meteoric metal layer as described by Höffner and Friedman (H&F) [The mesospheric metal layer topside: a possible connection to meteoroids, Atmos. Chem. Phys. 4 (2004) 801 808]. In contrast to H&F, we will focus on time scales of a few hours and less whereas the previous study examined the seasonally averaged climatological state on time scales of several days or weeks, and we examine the entire topside, whereas H&F focused on data at 113 km. The examples, taken under different observation conditions in 1997 and 1998 at Kühlungsborn, Germany (54°N, 15°E), show that the metal layers can often be observed at altitudes as high as 130 km if the signal is integrated over a period of several hours. Under such conditions it is possible to derive reasonably good metal abundance ratios from nocturnally averaged data, which, in turn, allow the discussion of metal abundance ratios to broaden from a single altitude as discussed in H&F to an altitude range extending as high as 130 km. The examples herein show, for the first time, that it is possible to track the transition in the metal abundance ratios from the main layer to an altitude region that has not been studied in the past by lidar. On shorter time scales, small structures are detectable and observable, sometimes above 120 km, resulting in, on average, a broad but weak topside layer above 105 km. In particular, the example of 26 27 October 1997, obtained during enhanced meteor activity, is an indication that this broad layer may result from meteor ablation occurring in this altitude range during the observation. Ratios of metal densities for Ca, Fe, K, and Na are remarkably consistent above about 110 km and in close agreement with the results of H&F. They are less consistent with ratios measured in individual meteor trails and appear to have little relation to the ratios measured in CI meteorites. Finally, it is the temporal smoothing of descending sporadic metal atom layers on top of an undisturbed background metal layer that is the basis of the summer topside extension as described by H&F.

  1. F77NNS - A FORTRAN-77 NEURAL NETWORK SIMULATOR

    NASA Technical Reports Server (NTRS)

    Mitchell, P. H.

    1994-01-01

    F77NNS (A FORTRAN-77 Neural Network Simulator) simulates the popular back error propagation neural network. F77NNS is an ANSI-77 FORTRAN program designed to take advantage of vectorization when run on machines having this capability, but it will run on any computer with an ANSI-77 FORTRAN Compiler. Artificial neural networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to biological nerve cells. Problems which involve pattern matching or system modeling readily fit the class of problems which F77NNS is designed to solve. The program's formulation trains a neural network using Rumelhart's back-propagation algorithm. Typically the nodes of a network are grouped together into clumps called layers. A network will generally have an input layer through which the various environmental stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. The back-propagation training algorithm can require massive computational resources to implement a large network such as a network capable of learning text-to-phoneme pronunciation rules as in the famous Sehnowski experiment. The Sehnowski neural network learns to pronounce 1000 common English words. The standard input data defines the specific inputs that control the type of run to be made, and input files define the NN in terms of the layers and nodes, as well as the input/output (I/O) pairs. The program has a restart capability so that a neural network can be solved in stages suitable to the user's resources and desires. F77NNS allows the user to customize the patterns of connections between layers of a network. The size of the neural network to be solved is limited only by the amount of random access memory (RAM) available to the user. The program has a memory requirement of about 900K. The standard distribution medium for this package is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. F77NNS was developed in 1989.

  2. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding

    PubMed Central

    Maass, Anne; Schütze, Hartmut; Speck, Oliver; Yonelinas, Andrew; Tempelmann, Claus; Heinze, Hans-Jochen; Berron, David; Cardenas-Blanco, Arturo; Brodersen, Kay H.; Enno Stephan, Klaas; Düzel, Emrah

    2014-01-01

    The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC–EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2–3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC–EC input pathways, the memory fate of a novel stimulus depends more on HC–EC output. PMID:25424131

  3. Layer Structured Bismuth Selenides of Bi2Se3 and Bi3Se4 for High Energy and Flexible All-Solid-State Micro-Supercapacitors.

    PubMed

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2017-12-20

    Bismuth selenides (Bi2Se3 and Bi3Se4), both of which have the layered rhombohedral crystal structure, and found to be useful as electrode materials for supercapacitor application in this work. Bi2Se3 nanoplates as electrode material exhibit much better performance than that of Bi3Se4 nanoparticles in liquid electrolyte system (6 M KOH), which delivers a higher specific capacitance (272.9 F/g) than that of Bi3Se4 (193.6 F/g) at 5 mV/s. This result would may be attributed to that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to its planar quintuple stacked layers (septuple layers for Bi3Se4). For the demand of electronic skin, we used a novel flexible annular interdigital structure electrode applying for all-solid-state micro-supercapacitors (AMSCs). Bi2Se3 AMSCs device delivers a much more excellent supercapacitor performance, exhibits a large stack capacitance 89.5 F/cm3 (Bi3Se4: 79.1 F/cm3) at 20 mV/s, a high energy density 17.9 mWh/cm3 and high power density 18.9 W/cm3. The bismuth selenides also exhibit good cycle stability, retention 95.5% (90.3%) after 1000 c for Bi2Se3 (Bi3Se4). Obviously, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital all-solid-sate supercapacitor. © 2017 IOP Publishing Ltd.

  4. Fabrication and Characterization of Plasma-Sprayed Carbon-Fiber-Reinforced Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Xiong, Jiang-tao; Zhang, Hao; Peng, Yu; Li, Jing-long; Zhang, Fu-sheng

    2018-04-01

    Carbon fiber ( C f)/Al specimens were fabricated by plasma-spraying aluminum powder on unidirectional carbon fiber bundles (CFBs) layer by layer, followed by a densification heat treatment process. The microstructure and chemical composition of the C f/Al composites were examined by scanning electron microscopy and energy-dispersive spectrometry. The CFBs were completely enveloped by aluminum matrix, and the peripheral regions of the CFBs were wetted by aluminum. In the wetted region, no significant Al4C3 reaction layer was found at the interface between the carbon fibers and aluminum matrix. The mechanical properties of the C f/Al specimens were evaluated. When the carbon fiber volume fraction (CFVF) was 9.2%, the ultimate tensile strength (UTS) of the C f/Al composites reached 138.3 MPa with elongation of 4.7%, 2.2 times the UTS of the Al matrix (i.e., 63 MPa). This strength ratio (between the UTS of C f/Al and the Al matrix) is higher than for most C f/Al composites fabricated by the commonly used method of liquid-based processing at the same CFVF level.

  5. Geomagnetic Storm Effects at F1 Layer Altitudes in Various Periods of Solar Activity (Irkutsk Station)

    NASA Astrophysics Data System (ADS)

    Kushnarenko, G. P.; Yakovleva, O. E.; Kuznetsova, G. M.

    2018-03-01

    The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003-2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° E) is examined. Variations of Ne at heights of 150-190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal-autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003-2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150-190 km.

  6. Mesomorphic phase transitions of 3F7HPhF studied by complementary methods

    NASA Astrophysics Data System (ADS)

    Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Marzec, Monika; Pociecha, Damian; Fitas, Jakub; Żurowska, Magdalena; Tykarska, Marzena; Hooper, James

    2018-02-01

    Physical properties and the phase sequence of (S)-4‧-(1-methylheptyloxycarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-2-fluorobenzoate exhibiting the liquid crystalline paraelectric smectic A*, ferroelectric smectic C* and antiferroelectric smectic CA* phases were studied by complementary methods in the temperature range from -125 to 120 °C. Differential scanning calorimetry measurements together with polarizing optical microscopy provided the phase sequence, including the glass transition and a cold crystallization. X-ray diffraction was used to obtain the unit-cell parameters of the crystal phase, as well as the layer thickness and correlation length in the liquid crystalline smectic phases. The tilt angle was found to reach 45°, as determined from the measurements of the layer thickness and molecular modeling. Relaxation processes in the smectic phases and the fragility parameter were studied using frequency-domain dielectric spectroscopy.

  7. Influence of the layer parameters on the performance of the CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Haddout, Assiya; Raidou, Abderrahim; Fahoume, Mounir

    2018-03-01

    Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1D. The ZnO: Al film shows a high efficiency than SnO2:F. Moreover, the thinner window layer and lower defect density of CdS films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field (BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.

  8. Electrodeposition of hydroxyapatite nanoparticles onto ultra-fine TiO2 nanotube layer by electrochemical reaction in mixed electrolyte.

    PubMed

    Park, Su-Jung; Jang, Jae-Myung

    2011-08-01

    Electrochemical depositions of HAp nanoparticles onto Ultra-fine TiO2 nanotube layer were carried out by the electrochemical reaction in mixed electrolyte of 1.6 M (NH4)H2PO4 + 0.8 M NH4F containing 0.15 and 0.25 wt% HAp. The Ca/P ratios of the HAp nanoparticles were evaluated by EDS analysis and their values were 1.53 and 1.66 respectively. The distribution quantity of Ca and P were remained at the middle region of TiO2 nanotube, but the Ti element was mainly stayed at the bottom of barrier layer from the result of line scanning diagram. Especially, adsorbed phosphate ions facilitated nucleation of nanophase calcium phosphate material inside the TiO2 nanotubu layer that resulted in vertical growth of HAp nanoparticles. These surfaces and structures were all effective for biocompatibility from the SBF tests.

  9. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  10. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Kylián, Ondřej; Kratochvíl, Jiří; Petr, Martin; Kuzminova, Anna; Slavínská, Danka; Biederman, Hynek; Beranová, Jana

    Silver-based nanomaterials that exhibit antibacterial character are intensively studied as they represent promising weapon against multi-drug resistant bacteria. Equally important class of materials represent coatings that have highly water repellent nature. Such materials may be used for fabrication of anti-fogging or self-cleaning surfaces. The aim of this study is to combine both of these valuable material characteristics. Antibacterial and highly hydrophobic Ag/C:F nanocomposite films were fabricated by means of gas aggregation source of Ag nanoparticles and sputter deposition of C:F matrix. The nanocomposite coatings had three-layer structure C:F base layer/Ag nanoparticles/C:F top layer. It is shown that the increasing number of Ag nanoparticles in produced coatings leads not only in enhancement of their antibacterial activity, but also causes substantial increase of their hydrophobicity. Under optimized conditions, the coatings are super-hydrophobic with water contact angle equal to 165∘ and are capable to induce 6-log reduction of bacteria presented in solution within 4h.

  11. Evaluation of Nd-Loaded SnO2:F Films Coated via Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Turgut, G.

    2018-05-01

    Thin layers of single (F)- and double (F/Nd)-incorporated tin oxide have been coated on glass substrate via spray pyrolysis. The structural, morphological, electrical, and optical features of F-incorporated samples were evaluated depending on the Nd loading. X-ray diffraction analysis revealed that samples had tetragonal tin oxide structure with (211) and (200) preferential directions. The crystallite size and strain values varied from 37.98 nm and 1.21 × 10-3 to 52.12 nm and 1.88 × 10-3. Scanning electron microscopy analysis showed that the samples consisted of pyramidal, polyhedral, and needle-shaped granules. The lowest sheet resistance value of 1.22 Ω was found for 1.8 at.% Nd + 25 at.% F-coloaded SnO2. However, the widest optical bandgap of 4.01 eV was observed for the single 25 at.% F-loaded sample. The Urbach tail and figure of merit also changed in the ranges of 664 meV to 1296 meV and 6.4 × 10-2 Ω-1 to 2.3 × 10-3 Ω-1, respectively. The results presented herein indicate that the character of F-doped tin oxide films can be controlled by Nd loading and that these films could be useful for technological applications.

  12. Evaluation of Nd-Loaded SnO2:F Films Coated via Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Turgut, G.

    2018-07-01

    Thin layers of single (F)- and double (F/Nd)-incorporated tin oxide have been coated on glass substrate via spray pyrolysis. The structural, morphological, electrical, and optical features of F-incorporated samples were evaluated depending on the Nd loading. X-ray diffraction analysis revealed that samples had tetragonal tin oxide structure with (211) and (200) preferential directions. The crystallite size and strain values varied from 37.98 nm and 1.21 × 10-3 to 52.12 nm and 1.88 × 10-3. Scanning electron microscopy analysis showed that the samples consisted of pyramidal, polyhedral, and needle-shaped granules. The lowest sheet resistance value of 1.22 Ω was found for 1.8 at.% Nd + 25 at.% F-coloaded SnO2. However, the widest optical bandgap of 4.01 eV was observed for the single 25 at.% F-loaded sample. The Urbach tail and figure of merit also changed in the ranges of 664 meV to 1296 meV and 6.4 × 10-2 Ω-1 to 2.3 × 10-3 Ω-1, respectively. The results presented herein indicate that the character of F-doped tin oxide films can be controlled by Nd loading and that these films could be useful for technological applications.

  13. Insights into the nature of northwest-to-southeast aligned ionospheric wavefronts from contemporaneous Very Large Array and ionosonde observations

    NASA Astrophysics Data System (ADS)

    Helmboldt, J. F.

    2012-07-01

    The results of contemporaneous summer nighttime observations of midlatitude medium scale traveling ionospheric disturbances (MSTIDs) with the Very Large Array (VLA) in New Mexico and nearby ionosondes in Texas and Colorado are presented. Using 132, 20-minute observations, several instances of MSTIDs were detected, all having wavefronts aligned northwest to southeast and mostly propagating toward the southwest, consistent with previous studies of MSTIDs. However, some were also found to move toward the northeast. It was found that both classes of MSTIDs were only found when sporadic-E (Es) layers of moderate peak density (1.5​ < ​ foEs​ < ​3 MHz) were present. Limited fbEs data from one ionosonde suggests that there was a significant amount of structure within the Es layers during observations when foEs > ​3 MHz that was not present when 1.5​ < foEs < ​3 MHz. No MSTIDs were observed either before midnight or when the F-region height was increasing at a relatively high rate, even when these Es layers were observed. Combining this result with AE indices which were relatively high at the time (an average of about 300 nT and maximum of nearly 700 nT), it is inferred that both the lack of MSTIDs and the increase in F-region height are due to substorm-induced electric fields. The northeastward-directed MSTIDs were strongest post-midnight during times when the F-region was observed to be collapsing relatively quickly. This implies that these two occurrences are related and likely both caused by rare shifts in F-region neutral wind direction from southwest to northwest.

  14. Spiro-(1,1‧)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Yu, Xuewen; Ruan, Dianbo; Wu, Changcheng; Wang, Jing; Shi, Zhiqiang

    2014-11-01

    A novel quaternary ammonium salt based on spiro-(1,1‧)-bipyrolidinium tetrafluoroborate (SBP-BF4) has been synthesized and dissolved in propylene carbonate (PC) with 1.5 mol L-1 (M) concentration for electric double-layer capacitors (EDLCs). The physic-chemical properties and electrochemical performance of SBP-BF4/PC electrolyte are investigated. Compared with the standard electrolyte 1.5 M TEMA-BF4 in PC, the novel SBP-BF4/PC electrolyte exhibited much better electrochemical performance due to its smaller cation size, lower viscosity and higher conductivity. The specific discharge capacitance of activated carbon electrode based EDLCs using SBP-BF4/PC electrolyte is 120 F g-1, the energy density and power density can reach 31 kW kg-1 and 6938 W kg-1, respectively, when the working voltage is 2.7 V and current density is 50 mA g-1. The withstand voltage of activated carbon based EDLCs with SBP-BF4/PC electrolyte can reach to 3.2 V, where the stable discharge capacitance and energy density are 121 F g-1 and 43 Wh kg-1, respectively.

  15. Tension Amplification in Molecular Brushes in Solutions and on Substrates

    PubMed Central

    Panyukov, Sergey; Zhulina, Ekaterina B.; Sheiko, Sergei S.; Randall, Greg C.; Brock, James; Rubinstein, Michael

    2009-01-01

    Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension depends on the overall molecular conformation and the surrounding environment. Here we study the relation between the tension and conformation of the molecular brushes in solutions, melts, and on substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds. Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density and high spreading parameter the cross-sectional profile of adsorbed molecular brush is approximately rectangular with thicknes ~bA/S, where A is the Hamaker constant and S is the spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the lower layer gain surface energy due to the direct interaction with the substrate, while the second layer spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The predicted cap shape is in excellent agreement with both computer simulation and experiment. PMID:19673133

  16. Molecular analysis of neocortical layer structure in the ferret

    PubMed Central

    Rowell, Joanna J.; Mallik, Atul K.; Dugas-Ford, Jennifer; Ragsdale, Clifton W.

    2010-01-01

    Molecular markers that distinguish specific layers of rodent neocortex are increasingly employed to study cortical development and the physiology of cortical circuits. The extent to which these markers represent general features of neocortical cell type identity across mammals is, however, unknown. To assess the conservation of layer markers more broadly, we isolated orthologs for fifteen layer-enriched genes in the ferret, a carnivore with a large, gyrencephalic brain, and analyzed their patterns of neocortical gene expression. Our major findings are: (1) Many but not all layer markers tested show similar patterns of layer-specific gene expression between mouse and ferret cortex, supporting the view that layer-specific cell type identity is conserved at a molecular level across mammalian superorders; (2) Our panel of deep layer markers (ER81/ETV1, SULF2, PCP4, FEZF2/ZNF312, CACNA1H, KCNN2/SK2, SYT6, FOXP2, CTGF) provides molecular evidence that the specific stratifications of layer 5 and 6 into 5a, 5b, 6a and 6b are also conserved between rodents and carnivores. (3) Variations in layer-specific gene expression are more pronounced across areas of ferret cortex than between homologous areas of mouse and ferret cortex; (4) This variation of area gene expression was clearest with the superficial layer markers studied (SERPINE2, MDGA1, CUX1, UNC5D, RORB/NR1F2, EAG2/KCNH5). Most dramatically, the layer 4 markers RORB and EAG2 disclosed a molecular sublamination to ferret visual cortex and demonstrated a molecular dissociation among the so-called agranular areas of the neocortex. Our findings establish molecular markers as a powerful complement to cytoarchitecture for neocortical layer and cell-type comparisons across mammals. PMID:20575059

  17. Molecular analysis of neocortical layer structure in the ferret.

    PubMed

    Rowell, Joanna J; Mallik, Atul K; Dugas-Ford, Jennifer; Ragsdale, Clifton W

    2010-08-15

    Molecular markers that distinguish specific layers of rodent neocortex are increasingly employed to study cortical development and the physiology of cortical circuits. The extent to which these markers represent general features of neocortical cell type identity across mammals, however, is unknown. To assess the conservation of layer markers more broadly, we isolated orthologs for 15 layer-enriched genes in the ferret, a carnivore with a large, gyrencephalic brain, and analyzed their patterns of neocortical gene expression. Our major findings are: 1) Many but not all layer markers tested show similar patterns of layer-specific gene expression between mouse and ferret cortex, supporting the view that layer-specific cell type identity is conserved at a molecular level across mammalian superorders; 2) Our panel of deep layer markers (ER81/ETV1, SULF2, PCP4, FEZF2/ZNF312, CACNA1H, KCNN2/SK2, SYT6, FOXP2, CTGF) provides molecular evidence that the specific stratifications of layers 5 and 6 into 5a, 5b, 6a, and 6b are also conserved between rodents and carnivores; 3) Variations in layer-specific gene expression are more pronounced across areas of ferret cortex than between homologous areas of mouse and ferret cortex; 4) This variation of area gene expression was clearest with the superficial layer markers studied (SERPINE2, MDGA1, CUX1, UNC5D, RORB/NR1F2, EAG2/KCNH5). Most dramatically, the layer 4 markers RORB and EAG2 disclosed a molecular sublamination to ferret visual cortex and demonstrated a molecular dissociation among the so-called agranular areas of the neocortex. Our findings establish molecular markers as a powerful complement to cytoarchitecture for neocortical layer and cell-type comparisons across mammals. (c) 2010 Wiley-Liss, Inc.

  18. Direct visualization of in vitro drug mobilization from Lescol XL tablets using two-dimensional (19)F and (1)H magnetic resonance imaging.

    PubMed

    Chen, Chen; Gladden, Lynn F; Mantle, Michael D

    2014-02-03

    This article reports the application of in vitro multinuclear ((19)F and (1)H) two-dimensional magnetic resonance imaging (MRI) to study both dissolution media ingress and drug egress from a commercial Lescol XL extended release tablet in a United States Pharmacopeia Type IV (USP-IV) dissolution cell under pharmacopoeial conditions. Noninvasive spatial maps of tablet swelling and dissolution, as well as the mobilization and distribution of the drug are quantified and visualized. Two-dimensional active pharmaceutical ingredient (API) mobilization and distribution maps were obtained via (19)F MRI. (19)F API maps were coregistered with (1)H T2-relaxation time maps enabling the simultaneous visualization of drug distribution and gel layer dynamics within the swollen tablet. The behavior of the MRI data is also discussed in terms of its relationship to the UV drug release behavior.

  19. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  20. Structural morphology of YBa 2Cu 3O 7- x

    NASA Astrophysics Data System (ADS)

    Sun, B. N.; Hartman, P.; Woensdregt, C. F.; Schmid, H.

    1990-03-01

    The structural morphology of YBa 2Cu 3O 7- x (YBCO) has been investigated by application of the periodic bond chain (PBC) theory. For x=1, the F forms were found to be {001}, {011}, {013}, {112} and {114}. Attachment energies have been calculated in broken bond model and in an electrostatic point charge model. For x=1 the theoretical growth habit is tabular to platy {001} with {011} as side faces. For x=0 {010} also becomes an F form. The habit is isometric with large {001} and {011} and small {010} faces. The outermost layer of {001} contains half of the Cu + ( x=1) or Cu 3+ and O 2- ( x=0) ions in an ordered arrangement based on a c(2x2) quadratic lattice. For the outermost layer of (010) ( x=0) an ordering scheme of the copper and oxygen ions is proposed. The occurrence of {010} rather than {011} on grown crystals has to be ascribed to external factors.

  1. Anomalous behavior of 1/f noise in graphene near the charge neutrality point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Shunpei; Tanaka, Takahiro; Arakawa, Tomonori

    2016-03-07

    We investigate the noise in single layer graphene devices from equilibrium to far-from equilibrium and found that the 1/f noise shows an anomalous dependence on the source-drain bias voltage (V{sub SD}). While the Hooge's relation is not the case around the charge neutrality point, we found that it is recovered at very low V{sub SD} region. We propose that the depinning of the electron-hole puddles is induced at finite V{sub SD}, which may explain this anomalous noise behavior.

  2. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    NASA Astrophysics Data System (ADS)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  3. Design and fabrication of a reflection far ultraviolet polarizer and retarder

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Torr, Douglas G.

    1993-01-01

    New methods have been developed for the design of a far ultraviolet multilayer reflection polarizer and retarder. A MgF2/Al/MgF2 three-layer structure deposited on a thick opaque Al film (substrate) is used for the design of polarizers and retarders. The induced transmission and absorption method is used for the design of a polarizer and layer-by-layer electric field calculation method is used for the design of a quarterwave retarder. In order to fabricate these designs in a conventional high vacuum chamber, we have to minimize the oxidation of the Al layers and somehow characterize the oxidized layer. X-ray photoelectron spectroscopy is used to investigate the amount and profile of oxidation. Depth profiling results and a seven layer oxidation model are presented.

  4. Characterization of nanoscopic calcium fluoride films

    NASA Astrophysics Data System (ADS)

    Rehmer, A.; Kemnitz, E.

    2016-09-01

    Nano metal fluorides are appropriate materials for different applications e.g. heterogeneous catalysis, ceramic materials for laser applications and antireflective layers on glass, respectively. An easy way to synthesize such nano metal fluorides is the fluorolytic sol-gel synthesis which was developed some few years ago for HS-AlF3 [1] and MgF2.[2] CaF2 exhibits similar optical properties as MgF2, and thus, is a promising candidate for antireflective (AR) coatings. That means, CaF2 exhibits a lower refractive index (n500 = 1.44) as compared to common soda lime glass (n500 = 1.53). Hence, we present an easy synthesis approach toward nanoscaled CaF2 sols to fabricate finally AR-CaF2 films by dip coating. Irrespective of the choice of the calcium precursor, the CaF2 films are porous in comparison to thin dense CaF2 films which are generated by physical vapor deposition. The characterization of CaF2 films was performed by different analytical methods like HR-SEM, XPS, EDX, EP (ellipsometric porosimetry), DLS (dynamic light scattering) and CA (contact angle measurement). Beside the good optical and mechanical properties, we have investigated the surface properties of CaF2 films on glass and silicon wafer e.g. surface morphology with elemental composition, open porosity, zeta potentials at the surfaces as well as the free energy of interaction between water and the CaF2 film.

  5. Effect of processing parameters on the formation of C{sub f}/LAS composites/Ag−Cu−Ti/TC4 brazed joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Duo; Niu, Hongwei

    C{sub f}/LAS composites were successfully jointed to TC4 alloy with Ag−Cu−Ti filler by vacuum brazing. The interfacial microstructure of TC4/C{sub f}/LAS composites joints was characterized by employing scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-diffraction (XRD) and transmission electron microscopy (TEM). The determination of the thin interfacial reaction layer (TiSi{sub 2} + TiC layer) was realized by TEM. The effect of holding time on the interfacial microstructure and shear strength were investigated. With the increasing holding time, the thickness of diffusion layer, Ti{sub 3}Cu{sub 4} layer, and TiSi{sub 2} + TiC layer increased obviously, on the contrary, that ofmore » Ti−Cu intermetallic compound layers decreased gradually. Besides, blocky Ti{sub 3}Cu{sub 4} phase was coarsened when the joint was brazed at 890 °C for 20 min, which deteriorated the mechanical properties of the joint dramatically. The interfacial evolution of TC4/C{sub f}/LAS composites joint and the formation of TiSi{sub 2}, TiC, Ti{sub 3}Cu{sub 4}, TiCu and Ti{sub 2}Cu phases were expounded. The maximum shear strength of 26.4 MPa was obtained when brazed at 890 °C for 10 min. - Highlights: •The thin interface reaction layer was determined to be TiSi{sub 2} + TiC layer by TEM. •Holding time had influence on the interfacial microstructure and joint properties. •Microstructural evolution mechanism and reactions of brazed joints were expounded.« less

  6. Solid-Solution Sulfides Derived from Tunable Layered Double Hydroxide Precursors/Graphene Aerogel for Pseudocapacitors and Sodium-Ion Batteries.

    PubMed

    Song, Yajie; Li, Hui; Yang, Lan; Bai, Daxun; Zhang, Fazhi; Xu, Sailong

    2017-12-13

    Transition-metal sulfides (TMSs) are suggested as promising electrode materials for electrochemical pseudocapacitors and lithium- and sodium-ion batteries; however, they typically involve mixed composites or conventionally stoichiometric TMSs (such as NiCo 2 S 4 and Ni 2 CoS 4 ). Herein we demonstrate a preparation of solid-solution sulfide (Ni 0.7 Co 0.3 )S 2 supported on three-dimensional graphene aerogel (3DGA) via a sulfuration of NiCo-layered double hydroxide (NiCo-LDH) precursor/3DGA. The electrochemical tests show that the (Ni 0.7 Co 0.3 )S 2 /3DGA electrode exhibits a capacitance of 2165 F g -1 at 1 A g -1 , 2055 F g -1 at 2 A g -1 , and 1478 F g -1 at 10 A g -1 ; preserves 78.5% capacitance retention upon 1000 cycles for pseudocapacitors; and in particular, possesses a relatively high charge capacity of 388.7 mA h g -1 after 50 cycles at 100 mA g -1 as anode nanomaterials for sodium-ion batteries. Furthermore, the electrochemical performances are readily tuned by varying the cationic type of the tunable LDH precursors to prepare different solid-solution sulfides, such as (Ni 0.7 Fe 0.3 )S 2 /3DGA and (Co 0.7 Fe 0.3 )S 2 /3DGA. Our results show that engineering LDH precursors can offer an alternative for preparing diverse transition-metal sulfides for energy storage.

  7. A Novel Fabrication Approach for Multifunctional Graphene-based Thin Film Nano-composite Membranes with Enhanced Desalination and Antibacterial Characteristics.

    PubMed

    Hegab, Hanaa M; ElMekawy, Ahmed; Barclay, Thomas G; Michelmore, Andrew; Zou, Linda; Losic, Dusan; Saint, Christopher P; Ginic-Markovic, Milena

    2017-08-08

    A practical fabrication technique is presented to tackle the trade-off between the water flux and salt rejection of thin film composite (TFC) reverse osmosis (RO) membranes through controlled creation of a thinner active selective polyamide (PA) layer. The new thin film nano-composite (TFNC) RO membranes were synthesized with multifunctional poly tannic acid-functionalized graphene oxide nanosheets (pTA-f-GO) embedded in its PA thin active layer, which is produced through interfacial polymerization. The incorporation of pTA-f-GOL into the fabricated TFNC membranes resulted in a thinner PA layer with lower roughness and higher hydrophilicity compared to pristine membrane. These properties enhanced both the membrane water flux (improved by 40%) and salt rejection (increased by 8%) of the TFNC membrane. Furthermore, the incorporation of biocidal pTA-f-GO nanosheets into the PA active layer contributed to improving the antibacterial properties by 80%, compared to pristine membrane. The fabrication of the pTA-f-GO nanosheets embedded in the PA layer presented in this study is a very practical, scalable and generic process that can potentially be applied in different types of separation membranes resulting in less energy consumption, increased cost-efficiency and improved performance.

  8. Efficient polymer light-emitting diode with air-stable aluminum cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbaszadeh, D.; Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven; Wetzelaer, G. A. H.

    2016-03-07

    The fast degradation of polymer light-emitting diodes (PLEDs) in ambient conditions is primarily due to the oxidation of highly reactive metals, such as barium or calcium, which are used as cathode materials. Here, we report the fabrication of PLEDs using an air-stable partially oxidized aluminum (AlO{sub x}) cathode. Usually, the high work function of aluminum (4.2 eV) imposes a high barrier for injecting electrons into the lowest unoccupied molecular orbital (LUMO) of the emissive polymer (2.9 eV below the vacuum level). By partially oxidizing aluminum, its work function is decreased, but not sufficiently low for efficient electron injection. Efficient injection is obtainedmore » by inserting an electron transport layer of poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT), which has its LUMO at 3.3 eV below vacuum, between the AlO{sub x} cathode and the emissive polymer. The intermediate F8BT layer not only serves as a hole-blocking layer but also provides an energetic staircase for electron injection from AlO{sub x} into the emissive layer. PLEDs with an AlO{sub x} cathode and F8BT interlayer exhibit a doubling of the efficiency as compared to conventional Ba/Al PLEDs, and still operate even after being kept in ambient atmosphere for one month without encapsulation.« less

  9. A Theoretical Study of the Outer Layers of Eight Kepler F-stars: The Relevance of Ionization Processes

    NASA Astrophysics Data System (ADS)

    Brito, Ana; Lopes, Ilídio

    2017-07-01

    We have analyzed the theoretical model envelopes of eight Kepler F-stars by computing the phase shift of the acoustic waves, α (ω ), and its related function, β (ω ). The latter is shown to be a powerful probe of the external stellar layers since it is particularly sensitive to the partial ionization zones located in these upper layers. We found that these theoretical envelopes can be organized into two groups, each of which is characterized by a distinct β (ω ) shape that we show to reflect the differences related to the magnitudes of ionization processes. Since β (ω ) can also be determined from the experimental frequencies, we compared our theoretical results with the observable β (ω ). Using the function β (ω ), and with the purpose of quantifying the magnitude of the ionization processes occurring in the outer layers of these stars, we define two indexes, {{Δ }}{β }1 and {{Δ }}{β }2. These indexes allow us to connect the microphysics of the interior of the star with macroscopic observable characteristics. Motivated by the distinct magnetic activity behaviors of F-stars, we studied the relation between the star’s rotation period and these indexes. We found a trend, in the form of a power-law dependence, that favors the idea that ionization is acting as an underlying mechanism, which is crucial for understanding the relation between rotation and magnetism and even observational features such as the Kraft break.

  10. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  11. A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors.

    PubMed

    Liu, Qi; Liu, Xiuxiu; Shi, Changdong; Zhang, Yanpeng; Feng, Xuejun; Cheng, Mei-Ling; Su, Seng; Gu, Jiande

    2015-11-28

    A copper-based layered coordination polymer ([Cu(hmt)(tfbdc)(H2O)]; hmt = hexamethylenetetramine, tfbdc = 2,3,5,6-tetrafluoroterephthalate; Cu-LCP) has been synthesized, and it has been structurally and magnetically characterized. The Cu-LCP shows ferromagnetic interactions between the adjacent copper(II) ions. Density functional theory calculations on the special model of Cu-LCP support the occurrence of ferromagnetic interactions. As an electrode material for supercapacitors, Cu-LCP exhibits a high specific capacitance of 1274 F g(-1) at a current density of 1 A g(-1) in 1 M LiOH electrolyte, and the capacitance retention is about 88% after 2000 cycles.

  12. Toward an Understanding of Surface Layer Formation, Growth, and Transformation at the Glass–Fluid Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopf, Juliane; Eskelsen, Jeremy R.; Chiu, Michelle Y.

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (~200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formationmore » of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterized reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. This estimate is within the experimental error of the value estimated from the B release rate data (~10 ±1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ~20 to 40 GPa, which is in the range of porous silica that contains from ~20 to ~50% porosity, yet significantly lower than dense silica (~70 to 80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image of a region provides a qualitative estimate of ≥ 22% porosity in this layer with variations in the hydrated layer in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS) and STEM-EDS, clearly show that the altered layer is mainly composed of Al, H, Si, and O with the clay layer being enriched in Li, Zn, Fe, and Mg. The amorphous hydrated layer is enriched in Ca, H, and Zr with a minor amount of K. Furthermore, ToF-SIMS results also suggest the B profile is anti-correlated with the H profile in the hydrated layer. Our selected-area electron diffraction results suggest the structure of the hydrated layer closely resembles opal-AG (amorphous gel-like) with an average crystallite size of ~0.7 nm which is smaller than the critical nucleus for silica nanoparticles (i.e., 1.4 to 3 nm). These results suggest the hydrated layer is more consistent with a polymeric gel rather than a colloidal gel and is comprised of molecular units (<1 nm in size) that result from the difficult to hydrolyze bonds, such as Si—O—Zr units, during the glass corrosion process. The size of individual particles or molecular units is a function of formation conditions (e.g., pH, ionic strength, nano-confinement, solute composition) in the hydrated layer.« less

  13. Toward an Understanding of Surface Layer Formation, Growth, and Transformation at the Glass–Fluid Interface

    DOE PAGES

    Hopf, Juliane; Eskelsen, Jeremy R.; Chiu, Michelle Y.; ...

    2018-02-01

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (~200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formationmore » of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterized reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. This estimate is within the experimental error of the value estimated from the B release rate data (~10 ±1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ~20 to 40 GPa, which is in the range of porous silica that contains from ~20 to ~50% porosity, yet significantly lower than dense silica (~70 to 80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image of a region provides a qualitative estimate of ≥ 22% porosity in this layer with variations in the hydrated layer in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS) and STEM-EDS, clearly show that the altered layer is mainly composed of Al, H, Si, and O with the clay layer being enriched in Li, Zn, Fe, and Mg. The amorphous hydrated layer is enriched in Ca, H, and Zr with a minor amount of K. Furthermore, ToF-SIMS results also suggest the B profile is anti-correlated with the H profile in the hydrated layer. Our selected-area electron diffraction results suggest the structure of the hydrated layer closely resembles opal-AG (amorphous gel-like) with an average crystallite size of ~0.7 nm which is smaller than the critical nucleus for silica nanoparticles (i.e., 1.4 to 3 nm). These results suggest the hydrated layer is more consistent with a polymeric gel rather than a colloidal gel and is comprised of molecular units (<1 nm in size) that result from the difficult to hydrolyze bonds, such as Si—O—Zr units, during the glass corrosion process. The size of individual particles or molecular units is a function of formation conditions (e.g., pH, ionic strength, nano-confinement, solute composition) in the hydrated layer.« less

  14. Toward an understanding of surface layer formation, growth, and transformation at the glass-fluid interface

    NASA Astrophysics Data System (ADS)

    Hopf, J.; Eskelsen, J. R.; Chiu, M.; Ievlev, A. V.; Ovchinnikova, O. S.; Leonard, D.; Pierce, E. M.

    2018-05-01

    Silicate glass is a metastable and durable solid that has application to a number of energy and environmental challenges (e.g., microelectronics, fiber optics, and nuclear waste storage). If allowed to react with water over time silicate glass develops an altered layer at the solid-fluid interface. In this study, we used borosilicate glass (LAWB45) as a model material to develop a robust understanding of altered layer formation (i.e., amorphous hydrated surface layer and crystalline reaction products). Experiments were conducted at high surface area-to-volume ratio (∼200,000 m-1) and 90 °C in the pressurized unsaturated flow (PUF) apparatus for 1.5-years to facilitate the formation of thick altered layers and allow for the effluent solution chemistry to be monitored continuously. A variety of microscopy techniques were used to characterize reacted grains and suggest the average altered layer thickness is 13.2 ± 8.3 μm with the hydrated and clay layer representing 74.8% and 25.2% of the total altered layer, respectively. The estimate of hydrated layer thickness is within the experimental error of the value estimated from the B release rate data (∼10 ± 1 μm/yr) over the 1.5-year duration. PeakForce® quantitative nanomechanical mapping results suggest the hydrated layer has a modulus that ranges between ∼20 and 40 GPa, which is in the range of porous silica that contains from ∼20 to ∼50% porosity, yet significantly lower than dense silica (∼70-80 GPa). Scanning transmission electron microscopy (STEM) images confirm the presence of pores and an analysis of a higher resolution image provides a qualitative estimate of ≥22% porosity in the hydrated layer with variations in void volume with increasing distance from the unaltered glass. Chemical composition analyses, based on a combination of time-of-flight secondary-ion mass spectrometry (ToF-SIMS), scanning electron microscopy with X-ray energy dispersive spectroscopy (EDS), and STEM-EDS, clearly show that the altered layer is mainly composed of Al, H, Si, and O with the clay layer being enriched in Li, Zn, Fe, and Mg. The amorphous hydrated layer is enriched in Ca, H, and Zr with a minor amount of K. Furthermore, ToF-SIMS results also suggest the B profile is anti-correlated with the H profile in the hydrated layer. Our selected-area electron diffraction results suggest the structure of the hydrated layer closely resembles opal-AG (amorphous gel-like) with an average crystallite size of ∼0.7 nm which is smaller than the critical nucleus for silica nanoparticles (i.e., 1.4-3 nm). These results suggest the hydrated layer is more consistent with a polymeric gel rather than a colloidal gel and is comprised of molecular units (<1 nm in size) that result from the difficult to hydrolyze bonds, such as Sisbnd Osbnd Zr units, during the glass corrosion process. The size of individual particles or molecular units is a function of formation conditions (e.g., pH, ionic strength, nano-confinement, solute composition) in the hydrated layer.

  15. Effect of vertically oriented few-layer graphene on the wettability and interfacial reactions of the AgCuTi-SiO2f/SiO2 system.

    PubMed

    Sun, Z; Zhang, L X; Qi, J L; Zhang, Z H; Hao, T D; Feng, J C

    2017-03-22

    With the aim of expanding their applications, particularly when joining metals, a simple but effective method is reported whereby the surface chemical reactivity of SiO 2f /SiO 2 (SiO 2f /SiO 2 stands for silica fibre reinforced silica based composite materials and f is short for fibre) composites with vertically oriented few-layer graphene (VFG, 3-10 atomic layers of graphene vertically oriented to the substrate) can be tailored. VFG was uniformly grown on the surface of a SiO 2f /SiO 2 composite by using plasma enhanced chemical vapour deposition (PECVD). The wetting experiments were conducted by placing small pieces of AgCuTi alloy foil on SiO 2f /SiO 2 composites with and without VFG decoration. It was demonstrated that the contact angle dropped from 120° (without VFG decoration) to 50° (with VFG decoration) when the holding time was 10 min. The interfacial reaction layer in SiO 2f /SiO 2 composites with VFG decoration became continuous without any unfilled gaps compared with the composites without VFG decoration. High-resolution transmission electron microscopy (HRTEM) was employed to investigate the interaction between VFG and Ti from the AgCuTi alloy. The results showed that VFG possessed high chemical reactivity and could easily react with Ti even at room temperature. Finally, a mechanism of how VFG promoted the wetting of the SiO 2f /SiO 2 composite by the AgCuTi alloy is proposed and thoroughly discussed.

  16. The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases.

    PubMed

    Ciossani, Giuseppe; Overlack, Katharina; Petrovic, Arsen; Huis In 't Veld, Pim J; Koerner, Carolin; Wohlgemuth, Sabine; Maffini, Stefano; Musacchio, Andrea

    2018-05-10

    The segregation of chromosomes during cell division relies on the function of the kinetochores, protein complexes that physically connect chromosomes with microtubules of the spindle. The metazoan proteins, centromere protein E (CENP-E) and CENP-F, are components of a fibrous layer of mitotic kinetochores named the corona. Several of their features suggest that CENP-E and CENP-F are paralogs: they are very large (comprising approximately 2700 and 3200 residues, respectively), contain abundant predicted coiled-coil structures, are C-terminally prenylated, and are endowed with microtubule-binding sites at their termini. Moreover, CENP-E contains an ATP-hydrolyzing motor domain that promotes microtubule plus end-directed motion. Here, we show that both CENP-E and CENP-F are recruited to mitotic kinetochores independently of the main corona constituent, the Rod-Zwilch-ZW10 (RZZ) complex. We identified specific interactions of CENP-F and CENP-E with budding uninhibited by benzimidazole 1 (BUB1) and BUB1-related (BUBR1) mitotic checkpoint Ser/Thr kinases, respectively, paralogous proteins involved in mitotic checkpoint control and chromosome alignment. Whereas BUBR1 was dispensable for kinetochore localization of CENP-E, BUB1 was stringently required for CENP-F localization. Through biochemical reconstitution, we demonstrated that the CENP-E-BUBR1 and CENP-F-BUB1 interactions are direct and require similar determinants, a dimeric coiled-coil in CENP-E or CENP-F and a kinase domain in BUBR1 or BUB1. Our findings are consistent with the existence of structurally similar BUB1-CENP-F and BUBR1-CENP-E complexes, supporting the notion that CENP-E and CENP-F are evolutionarily related. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Comparison of enamel remineralization potential after application of titanium tetra fluoride and carbon dioxide laser

    PubMed Central

    Fekrazad, Reza; Najafi, Ahmad; Mahfar, Ramona; Namdari, Mahshid

    2017-01-01

    Background and Aims The aim was comparison of enamel remineralization after application of APF, TiF4 and CO2 laser alone or in combination. Materials and Methods Enamel blocks were prepared from human third molars. The initial surface hardness was determined by Vicker's hardness tester. The samples underwent a demineralization regimen for 7 days to produce artificial initial caries. The hardness of enamel blocks with white spot lesions was measured, and the samples which had the mean hardness change of 65–90%, were selected, and randomly divided into 5 groups (N=15): G1: control; G2: APF 1.23%; G3: TiF4 4%; G4: TiF4 4% followed by CO2 laser (10.6 µm wavelength, 1 W peak power, 10 ms pulse duration, 500 ms repeat time, 0.2 mm beam spot size, 2 cm distance); G5: CO2 laser (same parameters) followed by TiF4 4%. Surface hardness recovery was measured after the treatments. Three samples in each group were observed under scanning electron microscope at ×1,000 magnification. Data were analyzed by repeated measure ANOVA and Bonferrouni tests. Significance level was set at 0.05. Results G2, G3, G4 indicated significant differences with control and G5 (p<0.05). Surface hardness in G5 was not significantly different from control (p=0.7) in enamel hardness test. There was not a significant difference between G2 & G3, G2 & G4, and G3 & G4 (p=1). The SEM results indicated globules of calcium fluoride on the surface in G2, and a smooth glaze-like surface layer in G3 and G4. In G5, some micro-cracks without any glaze-like layer were observed. Conclusions APF, TiF4 and TiF4 before CO2 laser irradiation significantly increased the micro-hardness of initially demineralized enamel surfaces. CO2 laser irradiation before TiF4 application could not remineralize the white-spot lesions. PMID:28785131

  18. Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate

    NASA Astrophysics Data System (ADS)

    Czarnecki, Slawomir

    2017-10-01

    This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.

  19. Epitaxial Stabilization of a-PbO2 Structure in MnF2 Layers on Si and GaP

    DTIC Science & Technology

    2001-06-01

    Before the epitaxy, the substrates were dipped in a HF solution and fixed on Si platelets with InGa eutectic . The crystalline quality of the substrates...15 keV. We used a recrystallization annealing (RA) in the 550-700’C range to improve the MnF2 film quality of some epitaxial structures grown at... recrystallization annealing. The inset in Fig. 1(a) shows the RHEED pattern of a 30 nm MnF2 film grown at 100°C and annealed at 550’C. Well-pronounced

  20. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    PubMed Central

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. PMID:22164007

  1. Signature of a possible relationship between the maximum CME speed index and the critical frequencies of the F1 and F2 ionospheric layers: Data analysis for a mid-latitude ionospheric station during the solar cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Kilcik, Ali; Ozguc, Atila; Yiǧit, Erdal; Yurchyshyn, Vasyl; Donmez, Burcin

    2018-06-01

    We analyze temporal variations of two solar indices, the monthly mean Maximum CME Speed Index (MCMESI) and the International Sunspot Number (ISSN) as well as the monthly median ionospheric critical frequencies (foF1, and foF2) for the time period of 1996-2013, which covers the entire solar cycle 23 and the ascending branch of the cycle 24. We found that the maximum of foF1 and foF2 occurred respectively during the first and second maximum of the ISSN solar activity index in the solar cycle 23. We compared these data sets by using the cross-correlation and hysteresis analysis and found that both foF1 and foF2 show higher correlation with ISSN than the MCMESI during the investigated time period, but when significance levels are considered correlation coefficients between the same indices become comparable. Cross-correlation analysis showed that the agreement between these data sets (solar indices and ionospheric critical frequencies) is better pronounced during the ascending phases of solar cycles, while they display significant deviations during the descending phase. We conclude that there exists a signature of a possible relationship between MCMESI and foF1 and foF2, which means that MCMESI could be used as a possible indicator of solar and geomagnetic activity, even though other investigations are needed.

  2. A Study of Normal Shock-Wave Turbulent Boundary-Layer Interactions at Mach Numbers of 1.3, 1.4 and 1.5.

    DTIC Science & Technology

    1982-10-01

    Veigas 13used a third technique which was to hold the normal shock wave steady in a supersonic tube by the adjustment of a conical choke downstream of...the equilibrium functioii E (equation (3) as tie eqoi ihri:’ fl -it I lows of East, Sawyer and Nash 2 8 . Although the maximum values of ti wakce :, i...f.. ..l.. .. .. ..t.. fl iC!alaCC CCCCCCCCt t CCCCCifllt CCCCCCCCit C C--- ---- -- C A CCC5C tCC C NC C - f CC1S $ C C A * E~ - - C 2

  3. Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk

    2015-04-01

    Surfactant-treated graphene/polyaniline (G/PANI) nanocomposites were prepared by the MnO2 template-aided oxidative polymerization of aniline (ANI) on the surfactant-treated graphene sheets. The electrochemical performances of the G/PANI nanocomposites in a three-electrode system using an aqueous sulfuric acid as an electrolyte exhibited a specific capacitance of 436 F g-1 at 1 A g-1, which is much higher than the specific capacitance of pure PANI (367 F g-1). Such a higher specific capacitance of the G/PANI nanocomposite inferred an excellent synergistic effect of respective pseudocapacitance and electrical double-layer capacitance of PANI and graphene.

  4. Flight, Wind-Tunnel, and Computational Fluid Dynamics Comparison for Cranked Arrow Wing (F-16XL-1) at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Obara, Clifford J.; Fisher, Bruce D.; Fisher, David F.

    2001-01-01

    Geometrical, flight, computational fluid dynamics (CFD), and wind-tunnel studies for the F-16XL-1 airplane are summarized over a wide range of test conditions. Details are as follows: (1) For geometry, the upper surface of the airplane and the numerical surface description compare reasonably well. (2) For flight, CFD, and wind-tunnel surface pressures, the comparisons are generally good at low angles of attack at both subsonic and transonic speeds, however, local differences are present. In addition, the shock location at transonic speeds from wind-tunnel pressure contours is near the aileron hinge line and generally is in correlative agreement with flight results. (3) For boundary layers, flight profiles were predicted reasonably well for attached flow and underneath the primary vortex but not for the secondary vortex. Flight data indicate the presence of an interaction of the secondary vortex system and the boundary layer and the boundary-layer measurements show the secondary vortex located more outboard than predicted. (4) Predicted and measured skin friction distributions showed qualitative agreement for a two vortex system. (5) Web-based data-extraction and computational-graphical tools have proven useful in expediting the preceding comparisons. (6) Data fusion has produced insightful results for a variety of visualization-based data sets.

  5. [Contents of different soil fluorine forms in North Anhui and their affecting factors].

    PubMed

    Yu, Qun-ying; Ci, En; Yang, Lin-zhang

    2007-06-01

    By the method of consecutive extraction, this paper studied the contents and vertical distribution of soil fluorine (F) forms in North Anhui, with their relations to the soil physical and chemical properties analyzed. The results showed that the soil total F (T-F) content in North Anhui was ranged from 265.8 mg . kg(-1) to 612.8 mg . kg(-1), with an average of 423.7 mg . kg(-1), and decreased in the sequence of vegetable soil > fluvo-aquic soil > paddy soil > shajiang black soil > yellow brown soil. Among the T-F, residual F (Res-F) was the main form, occupying > 95% of total F, followed by water soluble F (Ws-F), being about 1.5% of the total, and organic-F (Or-F), Fe and Mn oxide-F (Fe/Mn-F) and exchangeable-F (Ex-F) only had very small amount. The Ws-F content in test soils ranged from 1.35 mg . kg(-1) to 17.98 mg . kg(-1), with a mean value of 6.62 mg . kg(-1). Vegetable soil, fluvo-aquic soil and shajiang black soil had a relatively higher content of Ws-F, while yellow brown soil was in adverse. Soil pH and the contents of soil organic matter, total and available phosphorus, and physical clay were the main factors affecting the contents of various F forms. Soil Ws-F was significantly positively correlated with soil pH and soil total and available phosphorus, soil Ex-F was significantly positively correlated with soil clay ( < 0.01 mm and <0.001 mm), soil Fe/Mn-F was significantly positively correlated with soil total phosphorus, and soil Or-F had a significant positive correlation with soil organic matter. Soil Ws-F content also had a close connection to the parent material. The soil developed from shallow lacustrine and marsh sediments usually had the highest Ws-F content, followed by those developed from Huang River alluvial deposit, Q3 loess, Huaihe River alluvial deposit, and light-texture yellow brown soil, with the mean Ws-F content being 9.05, 8.12, 2.97, 2.05 and 1.91 mg . kg(-1), respectively. The contents of soil Or-F and Fe/Mn-F decreased with increasing soil depth, and those of T-F and Ws-F in vegetable soil were higher in upper than in deeper soil layers.

  6. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    NASA Technical Reports Server (NTRS)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  7. Blocking, descent and gravity waves: Observations and modelling of a MAP northerly föhn event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.; Smith, Ronald B.

    2005-01-01

    A northerly föhn event observed during the special observational period of the Mesoscale Alpine Programme is investigated based on observational analysis and numerical modelling. The focus of this study includes three dynamical processes associated with mountain perturbations and their interactions, namely, windward flow blocking, descent and warming on the lee side, and mountain waves. Observations indicate the presence of a deep weak-flow layer underneath a stable layer, associated with Alpine-scale blocking. Satellite imagery reveals a föhninduced cloud-free area to the south of the Alps, which is consistent with flow descent diagnosed from radiosondes and constant-volume balloons. Moderate-amplitude stationary waves were observed by research aircraft over the major Alpine peaks. Satellite images and balloon data indicate the presence of stationary trapped-wave patterns located to the north of the Alpine massif.Satisfactory agreement is found between observations and a real-data COAMPS simulation nested to 1 km resolution. COAMPS indicates the presence of trapped waves associated with a sharp decrease of Scorer parameter above a stable layer in the mid-troposphere. Underneath the stable layer, moist low-level flow is blocked to the north of the Alps. The warm air in the stable layer descends in the lee and recovers its altitude over a relatively short horizontal distance through a hydraulic jump.Blocking reduces the effective mountain and hence significantly reduces mountain drag. A simple empirical formula for estimation of the effective mountain height, he, is derived based on numerical simulations. The formula states he/hc = (h/hc), where h is the real mountain height and hc is the critical mountain height to have flow stagnation.

  8. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    NASA Astrophysics Data System (ADS)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  9. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    NASA Astrophysics Data System (ADS)

    Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  10. Development of Protective Coatings for Chromium-Base Alloys

    NASA Technical Reports Server (NTRS)

    English, J. J.; MacMillan, C. A.; Williams, D. N.; Bartlett, E. S.

    1966-01-01

    Chromium alloy sheet was clad with 5 to 10-mil-thick oxidation-resistant nickel-base alloy foils. Specimens also contained 1/2 to 1-mil-thick intermediate layers of platinum, tungsten, and/or W-25Re. Cladding was done by the isostatic hot gas-pressure bonding,.process. The clad chromium-alloy specimens were cyclic oxidation tested at 2100 F and 2300 F for up to 200 hours to determine the effectiveness of these metal claddings in protecting the chromium alloy Cr-5W from oxidation and contamination. Cladding systems consisting of 5-mil-thick Ni-20Cr-20W modified with 3 to 5 weight percent aluminum and containing a 1 /2-mil tungsten diffusion barrier demonstrated potential for long-time service at temperatures as high as 2300 F.

  11. Experimental characterization of a F/1.5 geometric-phase lens with high-achromatic efficiency and low aberration

    NASA Astrophysics Data System (ADS)

    Hornburg, Kathryn J.; Kim, Jihwan; Escuti, Michael J.

    2017-02-01

    We report on the properties of a fast F/1.5 geometric-phase lens with a focal length of 37 mm at 633 nm and a 24.5 mm diameter. This lens employs photo-aligned liquid crystal layers to implement the spatially varying Pancharatnam-Berry phase, leading to the expected polarization- and wavelength-dependent focusing. An achromatic spectrum is achieved using (chiral nematic) multi-twist retarder coatings, with high first-order (>=98%) and low zero-order (<=1%) transmittance across 450-700 nm. We measure traditional optical metrics of the GP lens including focused spot profile and modulation transfer function through knife edge testing and NBS 1963a resolution charts. This work includes a comparison to similar F/# conventional thick and thin lenses.

  12. 21 CFR 177.1390 - Laminate structures for use at temperatures of 250 °F and above.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Laminate structures for use at temperatures of 250 °F and above. (a) The high-temperature laminates... of layers. These layers may be laminated, extruded, coextruded, or fused. (b) When containers subject... produced from high-temperature laminates may be safely used to package all food types except those...

  13. Strengthening of oxidation resistant materials for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Platts, D. R.; Kirchner, H. P.; Gruver, R. M.

    1972-01-01

    Compressive surface layers were formed on hot-pressed silicon carbide and nitride. The objective of these treatments was to improve the impact resistance of these materials at 1590 K (2400 F). Quenching was used to form compressive surface layers on silicon carbide. The presence of the compressive stresses was demonstrated by slotted rod tests. Compressive stresses were retained at elevated temperatures. Improvements in impact resistance at 1590 K (2400 F) and flexural strength at room temperature were achieved using cylindrical rods 3.3 mm (0.13 in.) in diameter. Carburizing treatments were used to form the surface layers on silicon nitride. In a few cases using rectangular bars improvements in impact resistance at 1590 K (2400 F) were observed.

  14. An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Tianhong

    2011-02-01

    The flexible cancer sensor based on layer-by-layer self-assembled graphene reported in this letter demonstrates features including ultrahigh sensitivity and low cost due to graphene material properties in nature, self-assembly technique, and polyethylene terephthalate substrate. According to the conductance change of self-assembled graphene, the label free and labeled graphene sensors are capable of detecting very low concentrations of prostate specific antigen down to 4 fg/ml (0.11 fM) and 0.4 pg/ml (11 fM), respectively, which are three orders of magnitude lower than carbon nanotube sensors under the same conditions of design, manufacture, and measurement.

  15. Effect of carbon entrapped in Co-Al double oxides on structural restacking and electrochemical performances

    NASA Astrophysics Data System (ADS)

    Su, Ling-Hao; Zhang, Xiao-Gang

    Co-Al layered double hydroxides (LDH) were synthesized from nitrates and sodium benzoate by direct coprecipitation, and heated at 600 °C for 3 h in argon gas flow to obtain Co-Al double oxides. The effect of carbon, created during the pyrolysis of benzoate and inserted in resulting double oxides, on structural reconstruction was investigated by X-ray diffraction, scanning electron microscope, Raman spectroscopy, and infrared spectroscopy techniques. It is horizontal arrangement rather than vertical dilayer orientation in the interlayer spacing that was adopted by benzoate. An abnormal phenomenon was found that when immersed in aqueous 6 M KOH solution in air, the double oxides restacked to Co-Al layered double hydroxides with more regular crystal than before. The reason is believed that carbon was confined in the matrix of resulting double oxides, which prevented further collapse of the layered structure. Cyclic voltammetries (CV) and constant current charge/discharge measurements reveal that the restacked Co-Al layered double hydroxide has good long-life capacitive performance with a capacitance up to 145 F g -1 even at a large current of 2 A g -1. In addition, two clear slopes in chronoampermetric test demonstrated two different diffusion coefficients, explaining the slope of about 118.4 mV in the plot of formal potential E f versus pOH.

  16. Geology of proximal, small-volume trachyte-trachyandesite pyroclastic flows and associated surge deposits, Roccamonfina volcano, Italy

    NASA Astrophysics Data System (ADS)

    Giannetti, Bernardino

    1998-01-01

    This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse grading in Unit B is probably due to grain dispersive pressures. The convolute structures within Fl are related to zones of diagenetic cementation associated with groundwater. Finally, the laminated, fine-grained nature of subunit F2 is interpreted as due to ash clouds elutriated from the basal part of Unit F. Stratigraphic markers MK1-MK2 are ground layer breccias formed by settling of lithic and scoria clasts from overlying units E and F, respectively. Vesiculation and morphologies of glass shards of the MTTT succession suggest that eruptions were essentially driven by magmatic explosions which had an appreciable hydromagmatic component.

  17. Evidence of the Dampening Effect of Dense E-region Structures on E-F Coupling

    NASA Astrophysics Data System (ADS)

    Helmboldt, J.

    2012-12-01

    Results from a combination of instruments including ionosondes, GPS receivers, the Very Large Array (VLA), and the Long Wavelength Array (LWA) are used to demonstrate the role structure within the E-region plays in coupling between instabilities within the E and F regions at midlatitudes. VLA observations of cosmic sources at 74 MHz during summer nighttime in 2002 detected northwest-to-southeast aligned wavefronts, consistent with medium-scale traveling ionospheric disturbances (MSTIDs). These waves were only found when contemporaneous observations from nearby ionosondes detected echoes from sporadic-E layers. However, when the peak density of these layers was high (foEs> 3 MHz), there were no MSTIDs detected. Similar results are presented using the first station of the LWA, LWA1, to perform all-sky imaging of dense E-region structures (sporadic-E "clouds") via coherent scattering of distant analog TV broadcasts at 55 MHz. These observations were conducted during summer/autumn 2012 and include simultaneous GPS-based observations of F-region disturbances.Left: LWA1 all-sky image of ionospheric echoes of analog TV transmissions at 55.25 MHz. Right: Doppler speed maps for the brightest echoes.

  18. First-principles study of alloying effects on fluorine incorporation in Al x Ga1-x N alloys

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Tan, Wei; Zhang, Jian; Chen, Feng-Xiang; Wei, Su-Huai

    2018-02-01

    Incorporation of fluorine (F) into the AlGaN layer is crucial to the fabrication of enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs). However, the understanding of properties of F doping in AlGaN alloys is rather limited. Using first-principles calculations and the special quasirandom structure (SQS) approach, we investigate the alloying effects on the doping properties of F-incorporated Al x Ga1-x N alloys. We find that substitutional F on N sites (FN) and interstitial F (Fi) are dominant defects for F in Al x Ga1-x N alloys. For these two types of defects, both the global composition x and the local motif surrounding the dopant play important roles. On contrary, the incorporation of substitutional F on Ga sites (FGa) or Al sites (FAl) are affected only by the composition x. We also find that there exists a large asymmetric bowing for the effective formation energies of FN and Fi. These results are explained in terms of local structural distortion and electronic effects. The mechanism discussed in this paper can also be used in understanding doping in other semiconductor alloys.

  19. Piezoelectric Performance and Hydrostatic Parameters of Novel 2-2-Type Composites.

    PubMed

    Topolov, Vitaly Yu; Bowen, Christopher R; Krivoruchko, Andrey V

    2017-10-01

    This paper provides a detailed study of the structure-piezoelectric property relationships and the hydrostatic response of 2-2-Type composites based on relaxor-ferroelectric 0.72 Pb (Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 single crystal (SC) material. Type I layers in the composite system are represented by a single-domain [111]-poled SC. Changes in the orientation of the crystallographic axes in the Type I layer are undertaken to determine the maximum values of the hydrostatic piezoelectric coefficients d h ∗ , g h ∗ , and e h ∗ , and squared figure of merit d h ∗ g h ∗ of the composite. The Type II layers are a 0-3 composite whereby inclusions of modified PbTiO 3 ceramic are distributed in a polymer matrix. A new effect is described for the first time due to the impact of anisotropic elastic properties of the Type II layers on the hydrostatic piezoelectric response that is coupled with the polarization orientation effect in the Type I layers. Large hydrostatic parameters g h ∗ ≈ 300 -400 mV · m/N, e h ∗ ≈ 40 -45 C/ [Formula: see text], and d h ∗ g h ∗  ∼ 10 -11 Pa -1 are achieved in the composite based on the 0.72 Pb(Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 SC. Examples of the large piezoelectric anisotropy ( |d 33 ∗ /d 3f ∗ | ≥ 5 or | g 33 ∗ /g 3f ∗ | ≥ 5 ) are discussed. The hydrostatic parameters of this novel compositesystem are compared to those of conventional 2-2 piezocomposites.

  20. Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals.

    PubMed

    Niwa, Hitoshi; Sekita, Yoko; Tsend-Ayush, Enkhjargal; Grützner, Frank

    2008-01-01

    Uterine nourishment of embryos by the placenta is a key feature of mammals. Although a variety of placenta types exist, they are all derived from the trophectoderm (TE) cell layer of the developing embryo. Egg-laying mammals (platypus and echidnas) are distinguished by a very short intrauterine embryo development, in which a simple placenta forms from TE-like cells. The Pou5f1 gene encodes a class V POU family transcription factor Oct3/4. In mice, Oct3/4 together with the highly conserved caudal-related homeobox transcription factor Cdx2, determines TE fate in pre-implantation development. In contrast to Cdx2, Pou5f1 has only been identified in eutherian mammals and marsupials, whereas, in other vertebrates, pou2 is considered to be the Pou5f1 ortholog. Here, we show that platypus and opossum genomes contain a Pou5f1 and pou2 homolog, pou2-related, indicating that these two genes are paralogues and arose by gene duplication in early mammalian evolution. In a complementation assay, we found that platypus or human Pou5f1, but not opossum or zebrafish pou2, restores self-renewal in Pou5f1-null mouse ES cells, showing that platypus possess a fully functional Pou5f1 gene. Interestingly, we discovered that parts of one of the conserved regions (CR4) is missing from the platypus Pou5f1 promoter, suggesting that the autoregulation and reciprocal inhibition between Pou5f1 and Cdx2 evolved after the divergence of monotremes and may be linked to the development of more elaborate placental types in marsupial and eutherian mammals.

  1. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  2. Nanoporous graphene obtained by hydrothermal process in H2O2 and its application for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lv, Jinlong; Liang, Tongxiang

    2016-08-01

    Nanohole graphene oxide (NHGO) was obtained in a homogeneous aqueous mixture of graphene oxide (GO) and H2O2 at 120 °C. Supercapacitors were fabricated as the electrode material by using NHGO. A specific capacitance of 240.1 F g-1 was obtained at a current density of 1 A g-1 in 6 m KOH electrolyte and specific capacitance remained 193.6 F g-1 at the current density of 20 A g-1. This was attributed to reducing the inner space between the double-layers, enhanced ion diffusion and large specific surface area. Supercapacitor prepared with NHGO electrodes also exhibited an excellent cycle stability.

  3. Analysis of the tunable asymmetric fiber F-P cavity for fiber sensor edge-filter demodulation

    NASA Astrophysics Data System (ADS)

    Chen, Haitao; Liang, Youcheng

    2014-12-01

    An asymmetric fiber (Fabry-Pérot,F-P) interferometric cavity with good linearity and wide dynamic range is successfully designed basing on optical thin film characteristic matrix theory; by choosing the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity is fabricated by depositing the multi-layer thin films on the optical fiber's end face. The demodulation method for the wavelength shift of fiber Bragg grating (FBG) sensor basing on the F-P cavity is demonstrated and a theoretical formula is obtained. And the experimental results coincide well with computational results obtained from the theoretical model.

  4. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries.

    PubMed

    Sun, Yang-Kook; Lee, Min-Joon; Yoon, Chong S; Hassoun, Jusef; Amine, Khalil; Scrosati, Bruno

    2012-03-02

    A Li[Li(0.19)Ni(0.16)Co(0.08)Mn(0.57)]O(2) cathode was coated with AlF(3) on the surface. The AlF(3)-coating enhanced the overall electrochemical characteristics of the electrode while overcoming the typical shortcomings of lithium-enriched cathodes. This improvement was attributed to the transformation of the initial electrode layer to a spinel phase, induced by the Li chemical leaching effect of the AlF(3) coating layer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Remote sensing of the ionospheric F layer by use of O I 6300-A and O I 1356-A observations

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Meier, R. R.; Opal, C. B.; Hicks, G. T.

    1975-01-01

    The possibility of using airglow techniques for estimating the electron density and height of the F layer is studied on the basis of a simple relationship between the height of the F2 peak and the column emission rates of the O I 6300 A and O I 1356 A lines. The feasibility of this approach is confirmed by a numerical calculation of F2 peak heights and electron densities from simultaneous measurements of O I 6300 A and O I 1356 A obtained with earth-facing photometers carried by the Ogo 4 satellite. Good agreement is established with the F2 peak heights estimates from top-side and bottom-side ionospheric sounding.

  6. Analysis of the tunable asymmetric fiber F-P cavity for fiber strain sensor edge-filter demodulation

    NASA Astrophysics Data System (ADS)

    Chen, Haotao; Liang, Youcheng

    2014-12-01

    An asymmetric fiber (Fabry-Pérot, F-P) interferometric cavity with the good linearity and wide dynamic range was successfully designed based on the optical thin film characteristic matrix theory; by adjusting the material of two different thin metallic layers, the asymmetric fiber F-P interferometric cavity was fabricated by depositing the multi-layer thin films on the optical fiber's end face. The asymmetric F-P cavity has the extensive potential application. In this paper, the demodulation method for the wavelength shift of the fiber Bragg grating (FBG) sensor based on the F-P cavity is demonstrated, and a theoretical formula is obtained. And the experimental results coincide well with the computational results obtained from the theoretical model.

  7. Three-dimensional fit-to-flow microfluidic assembly.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2011-12-01

    Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.

  8. Local hypercoagulative activity precedes hyperfibrinolytic activity in the subdural space during development of chronic subdural haematoma from subdural effusion.

    PubMed

    Suzuki, M; Kudo, A; Kitakami, A; Doi, M; Kubo, N; Kuroda, K; Ogawa, A

    1998-01-01

    The involvement of coagulation and fibrinolysis in the development of chronic subdural haematoma (CSH) from subdural effusion was investigated. Subdural fluid and venous blood samples were obtained from 34 patients with CSH and 9 patients with subdural effusion, and analyzed using enzyme-linked immunosorbent assays for thrombin-antithrombin III complex (TAT), prothrombin fragment F1 + 2 (F1 + 2), tissue factor, tissue factor pathway inhibitor (TFPI) and D-dimer. CSH was classified into the layering type, believed to be active, and other types according to x-ray computed tomography. All markers in the blood of both patient groups were similar to the values of normal subjects. Levels of TAT and F1 + 2 were much higher in the subdural fluid than in the blood of patients with CSH (P < 0.001, P < 0.001) and with subdural effusion (P < 0.05, P < 0.05). The level of D-dimer in the subdural fluid was significantly higher than in the blood (P < 0.001) in patients with CSH, but not in patients with subdural effusion. All markers in the subdural fluid of layering type CSH, except TFPI, were significantly higher than in the other types (P < 0.05). Local hypercoagulative activity in the subdural space is present in subdural effusion and precedes hyperfibrinolytic activity in CSH. Thrombin generation as indicated by TAT and F1 + 2 might be involved in the development of CSH. Propagation of CSH may be modulated by the coagulation system including the extrinsic pathway and fibrinolysis.

  9. Quantitative proteomic analysis reveals the role of tea polyphenol EGCG in egg whites in response to vanadium stress.

    PubMed

    Wang, Jianping; Bai, Xue; Ding, Xuemei; Bai, Shiping; Zeng, Qiufeng; Mao, Xiangbing; Zhang, Keying

    Tea polyphenol (TP) epigallo-catechin-3-gallate (EGCG) can alleviate vanadium (V) stress in laying hens; however, our understanding of the molecular mechanisms and proteomic changes occurring in the egg albumen remains limited. The aim of the present study is to better understand the response in layers under V challenge and mechanism of EGCG detoxification. We divided 120 layers into four treatments in the absence and presence of 130 mg/kg EGCG, supplemented with either 0 or 5 mg/kg V. The Haugh unit (HU) was decreased and the apoptosis rate of magnum and V residual in egg was increased by the effect of vanadium and EGCG alleviated the detrimental effect in HU and apoptosis rate induced by vanadium (interactive effect, P < 0.05). In all, 379 proteins were identified and 28 differential proteins were observed with and without EGCG and V. Eight proteins, which respond to stress stimuli (five immune response proteins [F1P3B2, P21760, A2N881, F2Z4L6, and P02789], and one cell redox homeostasis protein [Q5F472] were presented in the albumen of laying hens with EGCG administration. Proteins involved in heavy metal binding (E1C5J4) and cell proliferation (F1NX05 and E1BT2) also were changed in EGCG-treated albumen. The detoxification mechanism of EGCG under V stress may act through regulating metal-binding mediation, cell proliferation, and immune function-related proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Buffet Active Control - Experimental and Numerical Results

    DTIC Science & Technology

    2001-06-01

    the phenomenon, will be further studied in t time f, f0 frequency, natural buffet frequency 1Dept. Models for Aerodynamics and Energetics ( DMAE ) phase...buffet characteristics of an OAT15A ration bubble is created. The flow separation spreads airfoil was carried out in T2 wind tunnel of DMAE , to the...layer approximation of Le Balleur’s upstream viscous influence (as in Navier-Stokes so- " Defect -Formulation theory" [14, 15, 17, 16] for lutions

  11. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    NASA Astrophysics Data System (ADS)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  12. Atomic layer deposition of molybdenum disulfide films using MoF 6 and H 2 S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, Anil U.; Letourneau, Steven; Mandia, David J.

    2018-01-01

    Molybdenum sulfide films were grown by atomic layer deposition on silicon and fused silica substrates using molybdenum hexafluoride (MoF6) and hydrogen sulfide at 200 degrees C. In situ quartz crystal microbalance (QCM) measurements confirmed linear growth at 0.46 angstrom/cycle and self-limiting chemistry for both precursors. Analysis of the QCM step shapes indicated that MoS2 is the reaction product, and this finding is supported by x-ray photoelectron spectroscopy measurements showing that Mo is predominantly in the Mo(IV) state. However, Raman spectroscopy and x-ray diffraction measurements failed to identify crystalline MoS2 in the as-deposited films, and this might result from unreacted MoFxmore » residues in the films. Annealing the films at 350 degrees C in a hydrogen rich environment yielded crystalline MoS2 and reduced the F concentration in the films. Optical transmission measurements yielded a bandgap of 1.3 eV. Finally, the authors observed that the MoS2 growth per cycle was accelerated when a fraction of the MoF6 pulses were substituted with diethyl zinc. Published by the AVS« less

  13. Atomic Layer Deposition of Al–W–Fluoride on LiCoO 2 Cathodes: Comparison of Particle- and Electrode-Level Coatings

    DOE PAGES

    Park, Joong Sun; Mane, Anil U.; Elam, Jeffrey W.; ...

    2017-07-19

    Atomic layer deposition (ALD) of the well-known Al 2O 3 on a LiCoO 2 system is compared with that of a newly developed AlW xF y material. ALD coatings (~1 nm thick) of both materials are shown to be effective in improving cycle life through mitigation of surface-induced capacity losses. However, the behaviors of Al 2O 3 and AlW xF y are shown to be significantly different when coated directly on cathode particles versus deposition on a composite electrode composed of active materials, carbons, and binders. Electrochemical impedance spectroscopy, galvanostatic intermittent titration techniques, and four-point measurements suggest that electron transportmore » is more limited in LiCoO 2 particles coated with Al 2O 3 compared with that in particles coated with AlW xF y. Here, the results show that proper design/choice of coating materials (e.g., AlW xF y) can improve capacity retention without sacrificing electron transport and suggest new avenues for engineering electrode–electrolyte interfaces to enable high-voltage operation of lithium-ion batteries.« less

  14. In vivo comparative property study of the bioactivity of coated Mg-3Zn-0.8Zr alloy.

    PubMed

    Sun, Jin'e; Wang, Jingbo; Jiang, Hongfeng; Chen, Minfang; Bi, Yanze; Liu, Debao

    2013-08-01

    In this in vivo study, degradable Mg-3Zn-0.8Zr cylinders were coated with a calcium phosphorus compound (Ca-P) layer or a magnesium fluoride (MgF2) layer; uncoated Mg-3Zn-0.8Zr alloy was used as a control. These were then implanted intramedullary into the femora of nine Japanese big-ear white rabbits for implantation periods of 1, 2 and 3 months. During the postoperative observation period with radiographic examination, the results showed that the MgF2-coated implants were tolerated well compared to the Ca-P-coated implants and uncoated implants. Moreover, large amounts of cells, rich fibrillar collagen and calcium and phosphorus products were found on the surface of the MgF2-coated implants using scanning electron microscopy. Micro-computed tomography further showed a slight decrease in volume (23.85%) and a greater increase in new bone mass (new bone volume fraction=11.56%, tissue mineral density=248.81 mg/cm(3)) for the MgF2-coated implants in comparison to uncoated and Ca-P compound-coated implants after 3 months of implantation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Carrier Conduction and Light Emission by Modification of Poly(alkylfluorene) Interface under Vacuum Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke

    2013-03-01

    Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.

  16. Formation routes and structural details of the CaF1 layer on Si(111) from high-resolution noncontact atomic force microscopy data

    NASA Astrophysics Data System (ADS)

    Rahe, Philipp; Smith, Emily F.; Wollschläger, Joachim; Moriarty, Philip J.

    2018-03-01

    We investigate the CaF1/Si (111 ) interface using a combination of high-resolution scanning tunneling and noncontact atomic force microscopy operated at cryogenic temperature as well as x-ray photoelectron spectroscopy. Submonolayer CaF1 films grown at substrate temperatures between 550 and 600 ∘C on Si (111 ) surfaces reveal the existence of two island types that are distinguished by their edge topology, nucleation position, measured height, and inner defect structure. Our data suggest a growth model where the two island types are the result of two reaction pathways during CaF1 interface formation. A key difference between these two pathways is identified to arise from the excess species during the growth process, which can be either fluorine or silicon. Structural details as a result of this difference are identified by means of high-resolution noncontact atomic force microscopy and add insights into the growth mode of this heteroepitaxial insulator-on-semiconductor system.

  17. Silicon oxidation in fluoride solutions

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Kapur, V.

    1980-01-01

    Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.

  18. One-step spray processing of high power all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Chun; Grant, Patrick S.

    2013-08-01

    Aqueous suspensions of multi-wall carbon nanotubes (MWNTs) in dilute H2SO4 were sprayed onto both sides of a Nafion membrane and dried to fabricate flexible solid-state supercapacitors. A single cell with MWNT-only electrodes had a capacitance of 57 F g-1 per electrode at 2 mV s-1 and 44 F g-1 at 150 mV s-1 but with low H+ mobility. Cells with MWNT + ionomer hybrid electrodes showed higher H+ mobility, and the electric double layer (EDL) capacitance increased to 145 F g-1 at 2 mV s-1 and 91 F g-1 at 150 mV s-1. The energy and power densities of one electrode charged to 1 V at 1 A g-1 were 12.9 Wh kg-1 and 3.3 kW kg-1 respectively. Three solid-state supercapacitor cells connected in series charged to 3 V at 1 and 2 A g-1 provided a device power density of 8.9 kW kg-1 at 1 A g-1 and 9.4 kW kg-1 at 2 A g-1, the highest for all-solid-state EDL supercapacitors.

  19. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    The impact that sub-mesoscale (1-10 km) to mesocale (50-100 km) oceanographic variability has on plankton and nutrient distributions (horizontal and vertical) in the coastal upwelling and transition zones off Concepcion was the focus of this study. Satellite time-series data (wind, sea-surface temperature (SST), and altimetry) were used to understand the dynamic context of in situ data derived from a short-term front survey (3 d) during the upwelling period (3-6 February, 2014). The survey included two transects perpendicular to the coast, covering the shelf and shelf-break areas just north of Punta Lavapie, a main upwelling center (˜37° S). Wind and SST time-series data indicated that the survey was undertaken just after a moderate upwelling event (end of January) which lead to a relaxation phase during early February. A submesoscale thermal front was detected previous to and during the survey and results from an eddy tracking algorithm based on altimetry data indicated that this front (F1) was flanked on its oceanic side by an anticyclonic, mesoscale eddy (M1), which was ˜25 d old at the sampling time. M1 strengthened the thermal gradient of F1 by bringing warmer oceanic water nearer to the colder coastal upwelling zone. The distributions of hydrographic variables and nutrients in the water column (<300 m depth) also denoted these two features. Phytoplankton biomass (Chl-a) and diatom abundance were highest in the surface layer (<20 m depth) between the coast and F1, with primary maxima in the latter, whereas they were highest at the subsurface (20-40 m depth) towards M1 and associated with secondary maxima. The distribution of dominant diatoms in the top layer (<100 m depth) indicated that both coastal and oceanic species were aggregated at F1 and in M1. These results suggest that the front-eddy interaction creates a complex field of submesoscale processes in the top layer, including vertical nutrient injections and lateral stirring, which contributes to the exportation of coastal communities to the open ocean in this region. We discuss how this interaction might affect ecosystem productivity in the coastal band.

  20. Polarized emission from light-emitting electrochemical cells using uniaxially oriented polymer thin films of poly(9,9-dioctylfluorene-co-bithiophene)

    NASA Astrophysics Data System (ADS)

    Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi

    2018-03-01

    Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.

  1. Nondestructive and in situ determination of graphene layers using optical fiber Fabry-Perot interference

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun

    2017-02-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.

  2. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomeng; Jiao, Yanqing; Sun, Li; Wang, Lei; Wu, Aiping; Yan, Haijing; Meng, Meichen; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2016-01-01

    Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices.Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07857a

  3. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex

    PubMed Central

    Gray, Lucas T; Yao, Zizhen; Nguyen, Thuc Nghi; Kim, Tae Kyung; Zeng, Hongkui; Tasic, Bosiljka

    2017-01-01

    Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including Cux1/2, Foxp2, Nfia, Pou3f2, and Rorb. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex. DOI: http://dx.doi.org/10.7554/eLife.21883.001 PMID:28112643

  4. PolyMEMS Actuator: A Polymer-Based Microelectromechanical (MEMS) Actuator with Macroscopic Action

    DTIC Science & Technology

    2002-09-01

    On the right, a gold reinforcement layer has been added on top of the Al, creating a more robust bond. These held up well to handling and use...value back into the total energy, and finally set ∂UT/∂δ=0, with the result V d EtF oext 2/1 2 3 4)1(4 3       − −= εε ν π . (26) 25...0.5-1 µm gold layer above the bond pad. The thicker film resists peeling, has very low contact resistance, and can be soldered. The second

  5. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.

    PubMed

    Wang, Meng; Ford, Roseanne M

    2009-08-01

    The significance of chemotaxis in directing bacterial migration toward contaminants in natural porous media was investigated under groundwater flow conditions. A laboratory-scale column, with a coarse-grained sand core surrounded by a fine-grained annulus, was used to simulate natural aquifers with strata of different hydraulic conductivities. A chemoattractant source was placed along the central axis of the column to model contaminants trapped in the heterogeneous subsurface. Chemotactic bacterial strains, Escherichia coli HCB1 and Pseudomonas putida F1, introduced into the column by a pulse injection, were found to alter their transport behaviors under the influence of the attractant chemical emanating from the central source. For E. coil HCB1, approximately 18% more of the total population relative to the control without attractant exited the column from the coarse sand layer due to the chemotactic effects of alpha-methylaspartate under an average fluid velocity of 5.1 m/d. Although P. putida F1 demonstrated no observable changes in migration pathways with the model contaminant acetate under the same flow rate, when the flow rate was reduced to 1.9 m/d, approximately 6-10% of the population relative to the control migrated from the fine sand layer toward attractant into the coarse sand layer. Microbial transport properties were further quantified by a mathematical model to examine the significance of bacterial motility and chemotaxis under different hydrodynamic conditions, which suggested important considerations for strain selection and practical operation of bioremediation schemes.

  6. Synthesis and structure determination of the novel aluminophosphate TL-1: A new layered compound with corner-sharing AlX{sub 6} chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastero, Linda; Interdepartmental Centre “Nanostructured Interfaces and Surfaces-NIS”, Via Quarello 15A, 10135 Torino; CrisDi – Interdepartmental Center for Crystallography, Università di Torino, Via Pietro Giuria 7, I-10125 Torino

    2016-10-15

    A novel layered aluminophosphate (TL-1) has been synthesized. Crystals grow as pseudo-hexagonal thin platelets and their whole morphology depends on the synthesis conditions. The structure was solved by single-crystal X-ray diffraction using charge flipping methods. The synthesized layered material, with composition [AlPO{sub 4}F(H{sub 2}O)]-(H{sub 10}C{sub 4}ON){sub 4}, crystallizes in the monoclinic space group P2{sub 1}/a with a=9.2282(5) Å, b=6.9152(4) Å, c=14.4615(9) Å, β=101.57(1)°. The novel compound has corner sharing AlO{sub 3}F{sub 2}(H{sub 2}O) octahedral chains running along [010], where fluorine atoms are at the shared apices, three oxygen atoms are shared with PO{sub 4} tetrahedra while the sixth oxygen pertainmore » to an H{sub 2}O molecule. The stability field of the novel material is enclosed in the HF/Al{sub 2}O{sub 3} ratio ranging between 1 and 4 and the HF/morpholine ratio lower than 3. At temperature lower than 190 °C, the synthesis results is a pure aluminophosphate sample (low alumina/morpholine ratio). A treatment with H{sub 2}CO{sub 3} leads to a complete morpholine removal, as shown by in situ Raman spectroscopy. Powder X-ray diffraction reveals that, after morpholine extraction, the material collapses. The collapse is irreversible. - Highlights: • A new layered aluminophosphate was obtained and characterized. • The crystal structure is a sequence of aluminophosphate and organic layers. • The stability field of the new phase was defined by changing chemistry and T. • The templating agent can be removed by using a CO{sub 2} aqueous solution. • The decomposition of the morpholine induce a collapse in the structure.« less

  7. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    DTIC Science & Technology

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  8. Uranium passivation by C + implantation: A photoemission and secondary ion mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Felter, T. E.; Wu, K. J.; Evans, C.; Ferreira, J. L.; Siekhaus, W. J.; McLean, W.

    2006-03-01

    Implantation of 33 keV C + ions into polycrystalline U 238 with a dose of 4.3 × 10 17 cm -2 produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C + ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.

  9. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  10. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  11. Optimizing the Electron-Withdrawing Character on Benzenesulfonyl Moiety Attached to a Glyco-Conjugate to Impart Sensitive and Selective Sensing of Cyanide in HEPES Buffer and on Cellulose Paper and Silica Gel Strips.

    PubMed

    Areti, Sivaiah; Bandaru, Sateesh; Yarramala, Deepthi S; Rao, Chebrolu Pulla

    2015-12-15

    Dansyl-derivatized, triazole-linked, glucopyranosyl conjugates, (5F)LOH, (2F)LOH, (1F)LOH, and (0F)LOH were synthesized and characterized. While the (5F)LOH acts as a molecular probe for CN(-), (2F)LOH, (1F)LOH, and (0F)LOH acts as control molecules. The reactivity of CN(-) toward (5F)LOH has been elicited through the changes observed in NMR, ESI MS, emission, and absorption spectroscopy. The conjugate (5F)LOH releases a fluorescent product upon reaction by CN(-) in aqueous acetonitrile medium by exhibiting an ∼125-fold fluorescence enhancement even in the presence of other anions. Fluorescence switch-on behavior has been clearly demonstrated on the basis of the nucleophilic substitution reaction of CN(-) on (5F)LOH. A minimum detection limit of (2.3 ± 0.3) × 10(-7) M (6 ± 1 ppb) was shown by (5F)LOH for CN(-) in solution. All the other anions studied showed no change in the fluorescence emission. The utility of (5F)LOH has been demonstrated by showing its reactivity toward CN(-) on a thin layer of silica gel as well as on Whatman No. 1 cellulose filter paper strips. The role of glucose moiety and the penta-fluorobenzenesulfonyl reactive center present in (5F)LOH in the selectivity of CN(-) over other anions has been demonstrated by fluorescence, absorption and thermodynamics study. Similar studies carried out with the control molecules showed no selectivity for CN(-). The mechanistic aspects of the reactivity of CN(-) toward (5F)LOH were supported by DFT computational study.

  12. Normal and frictional interactions of purified human statherin adsorbed on molecularly-smooth solid substrata.

    PubMed

    Harvey, Neale M; Carpenter, Guy H; Proctor, Gordon B; Klein, Jacob

    2011-09-01

    Human salivary statherin was purified from parotid saliva and adsorbed to bare hydrophilic (HP) mica and STAI-coated hydrophobic (HB) mica in a series of Surface Force Balance experiments that measured the normal (F(n)) and friction forces (F(s)*) between statherin-coated mica substrata. Readings were taken both in the presence of statherin solution (HP and HB mica) and after rinsing (HP mica). F(n) measurements showed, for both substrata, monotonic steric repulsion that set on at a surface separation D ~20 nm, indicating an adsorbed layer whose unperturbed thickness was ca 10 nm. An additional longer-ranged repulsion, probably of electrostatic double-layer origin, was observed for rinsed surfaces under pure water. Under applied pressures of ~1 MPa, each surface layer was compressed to a thickness of ca 2 nm on both types of substratum, comparable with earlier estimates of the size of the statherin molecule. Friction measurements, in contrast with F(n) observations, were markedly different on the two different substrata: friction coefficients, μ ≡ ∂F(s)*/∂F(n), on the HB substratum (μ ≈ 0.88) were almost an order of magnitude higher than on the HP substratum (μ ≈ 0.09 and 0.12 for unrinsed and rinsed, respectively), and on the HB mica there was a lower dependence of friction on sliding speed than on the HP mica. The observations were attributed to statherin adsorbing to the mica in multimer aggregates, with internal re-arrangement of the protein molecules within the aggregate dependent on the substratum to which the aggregate adsorbed. This internal re-arrangement permitted aggregates to be of similar size on HP and HB mica but to have different internal molecular orientations, thus exposing different moieties to the solution in each case and accounting for the very different friction behaviour.

  13. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing; Xiong, Bo; Ren, Zhipeng; Zhao, Biqiang; Zhang, Yun; Ning, Baiqi; Liu, Libo

    2015-05-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation coefficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  14. Modeling Chinese ionospheric layer parameters based on EOF analysis

    NASA Astrophysics Data System (ADS)

    Yu, You; Wan, Weixing

    2016-04-01

    Using 24-ionosonde observations in and around China during the 20th solar cycle, an assimilative model is constructed to map the ionospheric layer parameters (foF2, hmF2, M(3000)F2, and foE) over China based on empirical orthogonal function (EOF) analysis. First, we decompose the background maps from the International Reference Ionosphere model 2007 (IRI-07) into different EOF modes. The obtained EOF modes consist of two factors: the EOF patterns and the corresponding EOF amplitudes. These two factors individually reflect the spatial distributions (e.g., the latitudinal dependence such as the equatorial ionization anomaly structure and the longitude structure with east-west difference) and temporal variations on different time scales (e.g., solar cycle, annual, semiannual, and diurnal variations) of the layer parameters. Then, the EOF patterns and long-term observations of ionosondes are assimilated to get the observed EOF amplitudes, which are further used to construct the Chinese Ionospheric Maps (CIMs) of the layer parameters. In contrast with the IRI-07 model, the mapped CIMs successfully capture the inherent temporal and spatial variations of the ionospheric layer parameters. Finally, comparison of the modeled (EOF and IRI-07 model) and observed values reveals that the EOF model reproduces the observation with smaller root-mean-square errors and higher linear correlation co- efficients. In addition, IRI discrepancy at the low latitude especially for foF2 is effectively removed by EOF model.

  15. Opposite Latitudinal Dependence of the Premidnight and Postmidnight Oscillations in the Electron Density of Midlatitude F Layer

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, Jin; Zhang, Shaodong; Deng, Zhongxin; Zhong, Dingkun; Wu, Chen; Jin, Han; Li, Yaxian

    2018-01-01

    The dense observation points of the oblique-incidence ionosonde network in North China make it possible to discover the ionospheric regional variations with relatively high spatial resolution. The ionosonde network and the Beijing digisonde are used to investigate the ionospheric nighttime oscillations in January and February 2011. The electron density enhancements occurring before and after midnight present the obvious opposite latitudinal dependence in the time-latitude maps, which are composed by the differential critical frequency of F2 layer. The premidnight enhancements (PRMEs) appeared earlier in the north and then moved to south. The postmidnight enhancements (POMEs) did the opposite. The data analysis shows that the PRME was a part of the large-scale traveling ionospheric disturbance (LSTID), which may be produced by gravity waves. The southward propagation of the LSTIDs is considered to form the positive latitudinal dependence of the wave peaks and troughs. The postmidnight F layer oscillation was composed by a single enhancement and a single decline following it. The westward electric field-induced E × B drift, which pushed the F layer to lower altitudes with higher recombination loss, was most likely to compress the plasma and produce the POMEs. Along with the continuously dropping of the layer, the recombination loss exceeded the density increase due to the compression effect and then the electron density decline appeared.

  16. Microcracking of Materials for Space

    NASA Technical Reports Server (NTRS)

    Brown, Timothy L.

    1998-01-01

    The effect of thermal-cycling-induced microcracking in fiber-reinforced polymer matrix composites is studied. Specific attention is focused on microcrack density as a function of the number of thermal cycles, and the effect of microcracking on the dimensional stability of composite materials. Changes in laminate coefficient of thermal expansion (CTE) and laminate stiffness are of primary concern. Included in the study are materials containing four different Thornel fiber types: a PAN-based T50 fiber and three pitch-based fibers, P55, P75, and P120. The fiber stiffnesses range from 55 Msi to 120 Msi. The fiber CTE's range from -0.50 x 1O(exp -6)/degrees F to -0.80 x 10(exp -6)/degrees F. Also included are three matrix types: Fiberite's 934 epoxy, Amoco's ERL1962 toughened epoxy, and YLA's RS3 cyanate ester. The lamination sequences of the materials considered include a cross-ply configuration, [0/90](sub 2s), and two quasi-isotropic configurations, [0/+45/-45/90](sub s), and [0/+45/90/-45](sub s). The layer thickness of the materials range from a nominal 0.001 in. to 0.005 in. In addition to the variety of materials considered, three different thermal cycling temperature ranges are considered. These temperature ranges are +/-250 degrees F, +/-l5O degrees F, and +/-50 degrees F. The combination of these material and geometric parameters and temperature ranges, combined with thermal cycling to thousands of cycles, makes this one of the most comprehensive studies of thermal-cycling-induced microcracking to date. Experimental comparisons are presented by examining the effect of layer thickness, fiber type, matrix type, and thermal cycling temperature range on microcracking and its influence on the laminates. Results regarding layer thickness effects indicate that thin-layer laminates microcrack more severely than identical laminates with thick layers. For some specimens in this study, the number of microcracks in thin-layer specimens exceeds that in thick-layer specimens by more than a factor of two. Despite the higher number of microcracks in the thin-layer specimens, small changes in CTE after thousands of cycles indicate that the thin-layer specimens are relatively unaffected by the presence of these cracks compared to the thick-layer specimens. Results regarding fiber type indicate that the number of microcracks and the change in CTE after thousands of cycles in the specimens containing PAN-based fibers are less than in the specimens containing comparable stiffness pitch-based fibers. Results for specimens containing the different pitch-based fibers indicate that after thousands of cycles, the number of microcracks in the specimens does not depend on the modulus or CTE of the fiber. The change in laminate CTE does, however, depend highly on the stiffness and CTE of the fiber. Fibers with higher stiffness and more negative CTE exhibit the lowest change in laminate CTE as a result of thermal cycling. The overall CTE of these specimens is, however, more negative as a result of the more negative CTE of the fiber. Results regarding matrix type based on the +/-250 degree F temperature range indicate that the RS3 cyanate ester resin system exhibits the greatest resistance to microcracking and the least change in CTE, particularly for cycles numbering 3000 and less. Extrapolations to higher numbers of cycles indicate, however, that the margin of increased performance is expected to decrease with additional thermal cycling. Results regarding thermal cycling temperature range depend on the matrix type considered and the layer thickness of the specimens. For the ERL1962 resin system, microcrack saturation is expected to occur in all specimens, regardless of the temperature range to which the specimens are exposed. By contrast, the RS3 resin system demonstrates a threshold effect such that cycled to less severe temperature ranges, microcracking does not occur. For the RS3 specimens with 0.005 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between +/-150 degree F or +/- 50 degree F. For the RS3 specimens with 0.002 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between +/-50 degree F. Results regarding laminate stiffness indicate negligible change in laminate stiffness due to thermal cycling for the materials and geometries considered in this investigation. The study includes X-ray examination of the specimens, showing that cracks observed at the edge of the specimens penetrate the entire width of the specimen. Glass transition temperatures of the specimens are measured, showing that resin chemistry is not altered as a result of thermal cycling. Results are also presented based on a one-dimensional shear lag analysis developed in the literature. The analysis requires material property information that is difficult to obtain experimentally. Using limited data from the present investigation, material properties associated with the analysis are modified to obtain reasonable agreement with measured microcrack densities. Based on these derived material properties, the analysis generally overpredicts the change in laminate CTE. Predicted changes in laminate stiffness show reasonable correlation with experimentally measured values.

  17. Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage

    DOE PAGES

    Yoo, Hyun Deog; Li, Yifei; Liang, Yanliang; ...

    2016-05-23

    In this study, we report intercalation pseudocapacitance of 250 F g -1 for exfoliated molybdenum disulfide (MoS 2) in non-aqueous electrolytes that contain lithium ions. The exfoliated MoS 2 shows surface-limited reaction kinetics with high rate capability up to 3 min of charge or discharge. The intercalation pseudocapacitance originates from the extremely fast kinetics due to the enhanced ionic and electronic transport enabled by the slightly expanded layer structure as well as the metallic 1T-phase. The exfoliated MoS 2 could be also used in a Li-Mg-ion hybrid capacitor, which shows full cell specific capacitance of 240 F g -1.

  18. Importance of uniaxial compression for the appearance of superconductivity in NdO1-xFxBiS2

    NASA Astrophysics Data System (ADS)

    A, Omachi; T, Hiroi; J, Kajitani; O, Miura; Y, Mizuguchi

    2014-05-01

    We have investigated the crystal structure and superconducting properties of the new layered superconductor NdO1-xFxBiS2. Bulk superconductivity with a Tc above 4.5 K was observed. It was found that the Tc depended on both F concentration and crystal structure. Uniaxial compression along the c axis upon F substitution seemed to be linked with the appearance of bulk superconductivity. Furthermore, we considered that a higher Tc can be achieved when the c/a parameter was optimized in the NdO1-xFxBiS2 system.

  19. Tourmaline (dravite) from the Boehls Butte anorthosite, Idaho, U.S.A.

    USGS Publications Warehouse

    Hietanen, A.

    1987-01-01

    Greenish black tourmaline occurs in small localized masses in the Boehls Butte layered, two-plagioclase anorthosite. Chemical analysis by S. Neil gave SiO2 36.6, TiO2 0.34, B2O3 10.7, Al2O3 33.6, V2O3 0.24, FeO 4.16, MnO 0.09, MgO 8.04, CaO 0.98, Na2O 1.74, F 0.03, H2O+ 3.06, less O = F 0.01, = 99.57; epsilon (pale reddish brown) 1.62, omega (brownish green) 1.647; a 15.9425, c 7.1883 A.-R.A.H.

  20. An Integral Method and Its Application to Some Three-Dimensional Boundary-Layer Flows,

    DTIC Science & Technology

    1979-07-18

    M. Scala Dr. H. Lew Mr. J. W. Faust A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O...RESEARCH AND TECHNOLOGY DEPARTMENT 18 JULY 1979 Approved for public release, distribution unlimited DTICEILECTE1 APR 2 5 1930,, A NAVAL SURFACE WEAPONS...TITLE (end Subtlle) S. TYPE OF REPORT A PERIOD COVERED I INVTEGRAL M.ETHOD AND ITS 4PPLICATION TO SSOME THREE-DIMENSIONAL BOUNDARY-LAYER FLOWS 6

Top