Sample records for f2 peak density

  1. Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.

    2015-12-01

    Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.

  2. Empirical model for the electron density peak height disturbance in response to solar wind conditions

    NASA Astrophysics Data System (ADS)

    Blanch, E.; Altadill, D.

    2009-04-01

    Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.

  3. Remote sensing of the ionospheric F layer by use of O I 6300-A and O I 1356-A observations

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Meier, R. R.; Opal, C. B.; Hicks, G. T.

    1975-01-01

    The possibility of using airglow techniques for estimating the electron density and height of the F layer is studied on the basis of a simple relationship between the height of the F2 peak and the column emission rates of the O I 6300 A and O I 1356 A lines. The feasibility of this approach is confirmed by a numerical calculation of F2 peak heights and electron densities from simultaneous measurements of O I 6300 A and O I 1356 A obtained with earth-facing photometers carried by the Ogo 4 satellite. Good agreement is established with the F2 peak heights estimates from top-side and bottom-side ionospheric sounding.

  4. Statistical behavior of the longitudinal variations of daytime electron density in the topside ionosphere at middle latitudes

    NASA Astrophysics Data System (ADS)

    Su, Fanfan; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Zhu, Fuying; Lin, Jian

    2016-11-01

    Electron density in the topside ionosphere has significant variations with latitude, longitude, altitude, local time, season, and solar cycle. This paper focuses on the global and seasonal features of longitudinal structures of daytime topside electron density (Ne) at middle latitudes and their possible causes. We used in situ Ne measured by DEMETER and F2 layer peak height (hmF2) and peak density (NmF2) from COSMIC. The longitudinal variations of the daytime topside Ne show a wave number 2-type structure in the Northern Hemisphere, whereas those in the Southern Hemisphere are dominated by a wave number 1 structure and are much larger than those in the Northern Hemisphere. The patterns around December solstice (DS) in the Northern Hemisphere (winter) are different from other seasons, whereas the patterns in the Southern Hemisphere are similar in each season. Around March equinox (ME), June solstice (JS), and September equinox (SE) in the Northern Hemisphere and around ME, SE, and DS in the Southern Hemisphere, the longitudinal variations of topside Ne have similar patterns to hmF2. Around JS in the Southern Hemisphere (winter), the topside Ne has similar patterns to NmF2 and hmF2 does not change much with longitude. Thus, the topside variations may be explained intuitively in terms of hmF2 and NmF2. This approach works reasonably well in most of the situations except in the northern winter in the topside not too far from the F2 peak. In this sense, understanding variations in hmF2 and NmF2 becomes an important and relevant subject for this topside ionospheric study.

  5. Ionospheric Peak Electron Density and Performance Evaluation of IRI-CCIR Near Magnetic Equator in Africa During Two Extreme Solar Activities

    NASA Astrophysics Data System (ADS)

    Adebesin, B. O.; Rabiu, A. B.; Obrou, O. K.; Adeniyi, J. O.

    2018-03-01

    The F2 layer peak electron density (NmF2) was investigated over Korhogo (Geomagnetic: 1.26°S, 67.38°E), a station near the magnetic equator in the African sector. Data for 1996 and 2000 were, respectively, categorized into low solar quiet and disturbed and high solar quiet and disturbed. NmF2 prenoon peak was higher than the postnoon peak during high solar activity irrespective of magnetic activity condition, while the postnoon peak was higher for low solar activity. Higher NmF2 peak amplitude characterizes disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum peaks appeared in equinox. June solstice noontime bite out lagged other seasons by 1-2 h. For any condition of solar and magnetic activities, the daytime NmF2 percentage variability (%VR) measured by the relative standard deviation maximizes/minimizes in June solstice/equinox. Daytime variability increases with increasing magnetic activity. The highest peak in the morning time NmF2 variability occurs in equinox, while the highest evening/nighttime variability appeared in June solstice for all solar/magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period. At daytime, variability is similar for all conditions of solar activities. NmF2 at Korhogo is well represented on the International Reference Ionosphere-International Radio Consultative Committee (IRI-CCIR) option. The model/observation relationship performed best between local midnight and postmidnight period (00-08 LT). The noontime trough characteristics is not prominent in the IRI pattern during high solar activity but evident during low solar conditions when compared with Korhogo observations. The Nash-Sutcliffe coefficients revealed better model performance during disturbed activities.

  6. Real-time reconstruction of topside ionosphere scale height from coordinated GPS-TEC and ionosonde observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Poustovalova, Ljubov

    The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters and TEC allows interpolate these parameters at coordinated grid sites from independent GPS receivers and ionosondes data. Exponential scale height Htop exceeds scale height HT of the α-Chapman layer by 3 times - the latter refers to a narrow altitude range from hmF2 to the height of 1.2 times decay of NmF2. While typical quiet daytime value of the topside scale height is around 200 km, it can be enhanced by 2-3 times during the negative phase of the ionospheric storm as it is captured by IRI-Plas-RT model ingesting the F2 peak and TEC data. This study is supported by the joint grant of RFBR 13-02-91370-CT_a and TUBITAK 112E568.

  7. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Zhipeng; Zhao, Biqiang; Wan, Weixing; Liu, Libo

    2017-04-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  8. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  9. Occurrence of the dayside three-peak density structure in the F2 and the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Astafyeva, Elvira; Zakharenkova, Irina; Pineau, Yann

    2016-07-01

    In this work, we discuss the occurrence of the dayside three-peak electron density structure in the ionosphere. We first use a set of ground-based and satellite-borne instruments to demonstrate the development of a large-amplitude electron density perturbation at the recovery phase of a moderate storm of 11 October 2008. The perturbation developed in the F2 and low topside ionospheric regions over the American sector; it was concentrated on the north from the equatorial ionization anomaly (EIA) but was clearly separated from it. At the F2 region height, the amplitude of the observed perturbation was comparable or even exceeded that of the EIA. Further analysis of the observational data together with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model simulation results showed that a particular local combination of the thermospheric wind surges provided favorable conditions for the generation of the three-peak EIA structure. We further proceed with a statistical study of occurrence of the three-peak density structure in the ionosphere in general. Based on the analysis of 7 years of the in situ data from CHAMP satellite, we found that such three-peak density structure occurs sufficiently often during geomagnetically quiet time. The third ionization peak develops in the afternoon hours in the summer hemisphere at solstice periods. Based on analysis of several quiet time events, we conclude that during geomagnetically quiet time, the prevailing summer-to-winter thermospheric circulation acts in similar manner as the storm-time enhanced thermospheric winds, playing the decisive role in generation of the third ionization peak in the daytime ionosphere.

  10. International Reference Ionosphere -2010

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo

    The International Reference Ionosphere 2010 includes several important improvements and ad-ditions. This presentation introduces these changes and discusses their benefits. The electron and ion density profiles for the bottomside ionosphere will be significantly improved by using more ionosonde data as well as photochemical considerations. As an additional lower iono-sphere parameter IRI-2010 will include the transition height from molecular to cluster ions. At the F2 peak Neural Net models for the peak density and the propagation factor M3000F2, which is related to the F2 peak height, are introduced as new options. At high latitudes the model will benefit from the introduction of auroral oval boundaries and their variation with magnetic activity. Regarding the electron temperature, IRI-2010 now models variations with solar activity. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.

  11. Semiannual and annual variations in the height of the ionospheric F2-peak

    NASA Astrophysics Data System (ADS)

    Rishbeth, H.; Sedgemore-Schulthess, K. J. F.; Ulich, T.

    2000-03-01

    Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric , in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric . The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.

  12. Mysteries of LiF TLD response following high ionisation density irradiation: nanodosimetry and track structure theory, dose response and glow curve shapes.

    PubMed

    Horowitz, Y; Fuks, E; Datz, H; Oster, L; Livingstone, J; Rosenfeld, A

    2011-06-01

    Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f(D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following high-dose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f(D); (2) modified TST employing calculated values of f(D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose-response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in T(max) of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination).

  13. Mysteries of LiF TLD response following high ionisation density irradiation: nanodosimetry and track structure theory, dose response and glow curve shapes

    PubMed Central

    Horowitz, Y.; Fuks, E.; Datz, H.; Oster, L.; Livingstone, J.; Rosenfeld, A.

    2011-01-01

    Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f(D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following high-dose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f(D); (2) modified TST employing calculated values of f(D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose–response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in Tmax of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination). PMID:21106636

  14. The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2

    NASA Astrophysics Data System (ADS)

    Meehan, J.; Sojka, J. J.

    2017-12-01

    The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.

  15. Post-midnight enhancements in low latitude F layer electron density: observations and simulations

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Le, Huijun; Chen, Yiding; Zhang, Yanyan; Wan, Weixing; Ning, Baiqi

    2014-05-01

    Observations from a Lowell DPS-4D ionosonde operated at Sanya (18.3º N, 109.6º E), a low latitude station in China, have been analysed to study the nighttime behavior of ionospheric F layer. Post-midnight enhancement events are frequently occurred in the year of 2012. Common features in these cases illustrate that, accompanying nighttime rises in peak electron density of F2-layer (NmF2), the height of F2-layer goes downward significantly and the ionogram-derived electron density height profiles become sharpener. Enhancement in electron density develops earlier and reaches peaks earlier at higher altitudes than at lower altitudes. Downward plasma drift detected under such events reveals the essential role of the westward electric field in forming the post-midnight enhancements in electron density of ionospheric F-layer at such low latitudes. The important role of westward electric field in formation of nighttime enhancement is supported by the simulated results from a model. Work has been published in Liu et al., A case study of post-midnight enhancement in F-layer electron density over Sanya of China, J. Geophys. Res. Space Physics, 2013, 118, 4640-4648, DOI:10.1002/jgra.50422. Acknowledgements: Ionosonde data are provided from BNOSE of IGGCAS. This research was supported by the projects of Chinese Academy of Sciences (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604), and National Natural Science Foundation of China (41231065).

  16. IRI STORM validation over Europe

    NASA Astrophysics Data System (ADS)

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  17. Variations of plasmaspheric field-aligned electron and ion densities (90-4000 km) during quiet to moderately active (Kp < 4) geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.

    2017-12-01

    Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.

  18. North-south components of the annual asymmetry in the ionosphere

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Veselovsky, I. S.

    2014-07-01

    A retrospective study of the asymmetry in the ionosphere during the solstices is made using the different geospace parameters in the North and South magnetic hemispheres. Data of total electron content (TEC) and global electron content (GEC) produced from global ionospheric maps, GIM-TEC for 1999-2013, the ionospheric electron content (IEC) measured by TOPEX-Jason 1 and 2 satellites for 2001-2012, the F2 layer critical frequency and peak height measured on board ISIS 1, ISIS 2, and IK19 satellites during 1969-1982, and the earthquakes M5+ occurrences for 1999-2013 are analyzed. Annual asymmetry is observed with GEC and IEC for the years of observation with asymmetry index, AI, showing January > July excess from 0.02 to 0.25. The coincident pattern of January-to-July asymmetry ratio of TEC and IEC colocated along the magnetic longitude sector of 270° ± 5°E in the Pacific Ocean is obtained varying with local time and magnetic latitude. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. The topside peak electron density NmF2, TEC, IEC, and the hemisphere part of GEC are dominant in the South hemisphere which resembles the pattern for seismic activity with dominant earthquake occurrence in the South magnetic hemisphere. Though the study is made for the hemispheric and annual asymmetry during solstices in the ionosphere, the conclusions seem valid for other aspects of seismic-ionospheric associations with tectonic plate boundaries representing zones of enhanced risk for space weather.

  19. Variations in Ionospheric Peak Electron Density During Sudden Stratospheric Warmings in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Yasyukevich, A. S.

    2018-04-01

    The focus of the paper is the ionospheric disturbances during sudden stratospheric warming (SSW) events in the Arctic region. This study examines the ionospheric behavior during 12 SSW events, which occurred in the Northern Hemisphere over 2006-2013, based on vertical sounding data from DPS-4 ionosonde located in Norilsk (88.0°E, 69.2°N). Most of the addressed events show that despite generally quiet geomagnetic conditions, notable changes in the ionospheric behavior are observed during SSWs. During the SSW evolution and peak phases, there is a daytime decrease in NmF2 values at 10-20% relative to background level. After the SSW maxima, in contrast, midday NmF2 surpasses the average monthly values for 10-20 days. These changes in the electron density are observed for both strong and weak stratospheric warmings occurring at midwinter. The revealed SSW effects in the polar ionosphere are assumed to be associated with changes in the thermospheric neutral composition, affecting the F2-layer electron density. Analysis of the Global Ultraviolet Imager data revealed the positive variations in the O/N2 ratio within the thermosphere during SSW peak and recovery periods. Probable mechanisms for SSW impact on the state of the high-latitude neutral thermosphere and ionosphere are discussed.

  20. Anomalous Ionospheric signatures observed at low-mid latitude Indian station Delhi prior to earthquake events during the year 2015 to early 2016.

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, S.; Kotnala, R. K.

    2017-12-01

    Five major earthquake events measuring greater than six on Richter scale (M>6) that occurred during the year 2015 to early 2016, affecting Indian region ionosphere, are analyzed using F2 layer critical parameters (foF2, hmF2) obtained using Digisonde from a low-mid latitude Indian station, Delhi (28.6°N, 77.2°E, 19.2°N Geomagnetic latitude, 42.4°N Dip). Normal day-to-day variability occurring in ionosphere is segregated by calculating F2 layer critical frequency and peak height variations (ΔfoF2, ΔhmF2) from the normal quiet time behavior. We find that the ionospheric F2 region across Delhi by and large shows some significant perturbations 3-4 days prior to these earthquake events, resulting in a large peak electron density variation of 200%. These observed perturbations indicate towards a possibility of seismo-ionospheric coupling as the solar and geomagnetic indices were normally quiet and stable during the period of these events. It was also observed that the precursory effect of earthquake was predominantly seen even outside the earthquake preparation zone, as given by Dobrovolsky et al. [1979]. The thermosphere neutral composition (O/N2) as observed by GUVI [Christensen et al., 2003], across Delhi, during these earthquake events does not show any marked variation. Further, the effect of earthquake events on ionospheric peak electron density is compared to the lower atmosphere meteorological phenomenon of 2015 Sudden Stratospheric Warming event and are found to be comparable.

  1. Characteristics of ionospheric electron density profiles in the auroral and polar cap regions from long-term incoherent scatter radar observations

    NASA Astrophysics Data System (ADS)

    Jee, G.; Kim, E.; Kwak, Y. S.; Kim, Y.; Kil, H.

    2017-12-01

    We investigate the climatological characteristics of the ionospheric electron density profiles in the auroral and polar cap regions in comparison with the mid-latitude ionosphere using incoherent scatter radars (ISR) observations from Svalbard (78.15N, 16.05E), Tromso (69.59N, 19.23E), and Millstone Hill (42.6N, 288.5E) during a period of 1995 - 2015. Diurnal variations of electron density profiles from 100 to 500 km are compared among the three radar observations during equinox, summer and winter solstice for different solar and geomagnetic activities. Also investigated are the physical characteristics of E-region and F-region peak parameters of electron density profiles in the auroral and polar cap regions, which are significantly different from the mid-latitude ionosphere. In the polar ionosphere, the diurnal variations of density profiles are extremely small in summer hemisphere. Semiannual anomaly hardly appears for all latitudes, but winter anomaly occurs at mid-latitude and auroral ionospheres for high solar activity. Nighttime density becomes larger than daytime density in the winter polar cap ionosphere for high solar activity. The E-region peak is very distinctive in the nighttime auroral region and the peak height is nearly constant at about 110 km for all conditions. Compared with the F-region peak density, the E-region peak density does not change much with solar activity. Furthermore, the E-region peak density can be even larger than F-region density for low solar activity in the auroral region, particularly during disturbed condition.

  2. The International Reference Ionosphere - Status 2013

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter

    2015-04-01

    This paper describes the latest version of the International Reference Ionosphere (IRI) model. IRI-2012 includes new models for the electron density and ion densities in the region below the F-peak, a storm-time model for the auroral E-region, an improved electron temperature model that includes variations with solar activity, and for the first time a description of auroral boundaries. In addition, the thermosphere model required for baseline neutral densities and temperatures was upgraded from MSIS-86 to the newer NRLMSIS-00 model and Corrected Geomagnetic coordinates (CGM) were included in IRI as an additional coordinate system for a better representation of auroral and polar latitudes. Ongoing IRI activities towards the inclusion of an improved model for the F2 peak height hmF2 are discussed as are efforts to develop a "Real-Time IRI". The paper is based on an IRI status report presented at the 2013 IRI Workshop in Olsztyn, Poland. The IRI homepage is at

  3. Nernst and Seebeck effects in HgTe/CdTe topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuan; Song, Juntao; Li, Yu-Xian, E-mail: yxli@mail.hebtu.edu.cn

    2015-03-28

    The Seebeck and Nernst effects in HgTe/CdTe quantum wells are studied using the tight-binding Hamiltonian and the nonequilibrium Green's function method. The Seebeck coefficient, S{sub c}, and the Nernst coefficient, N{sub c}, oscillate as a function of E{sub F}, where E{sub F} is the Fermi energy. The Seebeck coefficient shows peaks when the Fermi energy crosses the discrete transverse channels, and the height of the nth peak of the S{sub c} is [ln2/(1/2 +|n|)] for E{sub F} > 0. For the case E{sub F} < 0, the values of the peaks are negative, but the absolute values of the first five peaks are themore » same as those for E{sub F} > 0. The 6th peak of S{sub c} reaches the value [ln2/1.35] due to a higher density of states. When a magnetic field is applied, the Nernst coefficient appears. However, the values of the peaks for N{sub c} are all positive. For a weak magnetic field, the temperature suppresses the oscillation of the Seebeck and Nernst coefficients but increases their magnitude. For a large magnetic field, because of the highly degenerate Landau levels, the peaks of the Seebeck coefficient at position E{sub F}=−12, 10, 28meV, and Nernst coefficient at E{sub F}=−7, 10meV are robust against the temperature.« less

  4. Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations

    NASA Astrophysics Data System (ADS)

    Gordiyenko, G. I.; Yakovets, A. F.

    2017-07-01

    The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great difference in the shape of the Alouette-, NeQuick-, IRI02-coorr, and IRI2001-derived Ne profiles, with overestimated Ne values at some altitudes and underestimated Ne values at others. The results obtained in the study showed that the observation-model differences were significant especially for the real observed (not median) data. For practical application, it is clearly important for the IRI2012 model to be adapted to the observed F2-layer peak parameters. However, the model does not offer a simple solution to predict the shape of the vertical electron density profile in the topside ionosphere, because of the problem with the topside shape parameters.

  5. GDPC: Gravitation-based Density Peaks Clustering algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin

    2018-07-01

    The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.

  6. TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis

    NASA Astrophysics Data System (ADS)

    Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.

    2014-10-01

    As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.

  7. Wavenumber-4 structures observed in the low-latitude ionosphere during low and high solar activity periods using FORMOSAT/COSMIC observations

    NASA Astrophysics Data System (ADS)

    Onohara, Amelia Naomi; Staciarini Batista, Inez; Prado Batista, Paulo

    2018-03-01

    The main purpose of this study is to investigate the four-peak structure observed in the low-latitude equatorial ionosphere by the FORMOSAT/COSMIC satellites. Longitudinal distributions of NmF2 (the density of the F layer peak) and hmF2 (ionospheric F2-layer peak height) averages, obtained around September equinox periods from 2007 to 2015, were submitted to a bi-spectral Fourier analysis in order to obtain the amplitudes and phases of the main waves. The four-peak structure in the equatorial and low-latitude ionosphere was present in both low and high solar activity periods. This kind of structure possibly has tropospheric origins related to the tidal waves propagating from below that modulate the E-region dynamo, mainly the eastward non-migrating diurnal tide with wavenumber 3 (DE3, E for eastward). This wave when combined with the migrating diurnal tide (DW1, W for westward) presents a wavenumber-4 (wave-4) structure under a synoptic view. Electron densities observed during 2008 and 2013 September equinoxes revealed that the wave-4 structures became more prominent around or above the F-region altitude peak (˜ 300-350 km). The four-peak structure remains up to higher ionosphere altitudes (˜ 800 km). Spectral analysis showed DE3 and SPW4 (stationary planetary wave with wavenumber 4) signatures at these altitudes. We found that a combination of DE3 and SPW4 with migrating tides is able to reproduce the wave-4 pattern in most of the ionospheric parameters. For the first time a study using wave variations in ionospheric observations for different altitude intervals and solar cycle was done. The conclusion is that the wave-4 structure observed at high altitudes in ionosphere is related to effects of the E-region dynamo combined with transport effects in the F region.

  8. Topside Ionospheric Response to Solar EUV Variability

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.; Hawkins, J.

    2015-12-01

    We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from several DMSP spacecraft at ~800 km. The solar cycle variations of the daily averaged densities, temperatures, and H+/O+ ratios show a strong relationship to the solar EUV as described by the E10.7 solar EUV proxy with cross-correlation coefficients (CCCs) with the density greater than 0.85. The H+/O+ varies dramatically from solar maximum when it is O+ dominated to solar minimum when it is H+ dominated. These ionospheric parameters also vary strongly with season, particularly at latitudes well away from the equator where the solar zenith angle (SZA) varies greatly with season. There are strong 27-day solar rotation periodicities in the density, associated with the periodicities in the solar EUV as measured by the TIMED SEE and SDO EVE instruments, with CCCs at times greater than 0.9 at selected wavelengths. Empirical Orthogonal Function (EOF) analysis captures over 95% of the variation in the density over the 23 years in the first two principle components. The first principle component (PC1) is clearly associated with the solar EUV showing a 0.91 CCC with the E10.7 proxy while the PC1 EOFs remain relatively constant with latitude indicating that the solar EUV effects are relatively independent of latitude. The second principle component (PC2) is clearly associated with the SZA variation, showing strong correlations with the SZA and the concomitant density variations at latitudes away from the equator and with the PC2 EOFs having magnitudes near zero at the equator and maximum at high latitude. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is expected to be amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated, DMSP may be much less than a scale height above the F2 peak while when it is O+ dominated, DMSP may be several scale heights above the F2 peak.

  9. A global scale picture of ionospheric peak electron density changes during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kumar, Vickal V.; Parkinson, Murray L.

    2017-04-01

    Changes in ionospheric plasma densities can affect society more than ever because of our increasing reliance on communication, surveillance, navigation, and timing technology. Models struggle to predict changes in ionospheric densities at nearly all temporal and spatial scales, especially during geomagnetic storms. Here we combine a 50 year (1965-2015) geomagnetic disturbance storm time (Dst) index with plasma density measurements from a worldwide network of 132 vertical incidence ionosondes to develop a picture of global scale changes in peak plasma density due to geomagnetic storms. Vertical incidence ionosondes provide measurements of the critical frequency of the ionospheric F2 layer (foF2), a direct measure of the peak electron density (NmF2) of the ionosphere. By dissecting the NmF2 perturbations with respect to the local time at storm onset, season, and storm intensity, it is found that (i) the storm-associated depletions (negative storm effects) and enhancements (positive storm effects) are driven by different but related physical mechanisms, and (ii) the depletion mechanism tends to dominate over the enhancement mechanism. The negative storm effects, which are detrimental to HF radio links, are found to start immediately after geomagnetic storm onset in the nightside high-latitude ionosphere. The depletions in the dayside high-latitude ionosphere are delayed by a few hours. The equatorward expansion of negative storm effects is found to be regulated by storm intensity (farthest equatorward and deepest during intense storms), season (largest in summer), and time of day (generally deeper on the nightside). In contrast, positive storm effects typically occur on the dayside midlatitude and low-latitude ionospheric regions when the storms are in the main phase, regardless of the season. Closer to the magnetic equator, moderate density enhancements last up to 40 h during the recovery phase of equinox storms, regardless of the local time. Strikingly, high-latitude plasma densities are moderately enhanced for up to 60 h prior to the actual onset of storms during the equinoxes and summer; a potential precursor of a geomagnetic storm.

  10. SAMI3_ICON: Model of the Ionosphere/Plasmasphere System

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Maute, A.; Crowley, G.

    2017-10-01

    The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the F layer at NmF2 (hmF2).

  11. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    NASA Astrophysics Data System (ADS)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside layers while ensuring that the resulting electron density profile is free of strong vertical gradient artifacts and is doubly differentiable.

  12. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (approximately 400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the approximately 30 - 60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.

  13. Polar Cap Electron Densities from DE-1 Plasma Wave Observations.

    DTIC Science & Technology

    1983-06-11

    of plasma above the F2 peak, predicts an electron density distribution of [ Angerami and Thomas, 1964) .4...Grants NGL- 16-001-002 and NGL-16-001-043 from NASA Headquarters, and by the Office of Naval Research. -p 42 REFERENCES Angerami , J. J., and J. 0. Thomas

  14. Formation Mechanisms of the Spring-Autumn Asymmetry of the Midlatitudinal NmF2 under Daytime Quiet Geomagnetic Conditions at Low Solar Activity

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.; Pavlova, N. M.

    2018-05-01

    Formation mechanism of the spring-autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere-plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring-autumn asymmetry of NmF2: first, the spring-autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring-autumn asymmetry of NmF2.

  15. Effects of charge density waves on flux dynamics in weak-pinning single crystals of NbSe2 : free flux flow, flux-core size effects, and unexpected doubling of Jc(H) `peak effect'

    NASA Astrophysics Data System (ADS)

    Favreau, Peter; Gapud, Albert A.; Moraes, Sunhee; Delong, Lance; Reyes, Arneil P.; Thompson, James R.; Christen, David K.

    2010-03-01

    The interaction of two different ordering schemes -- charge density waves (CDWs) and superconductivity -- is studied in high-quality samples of NbSe2, particularly in the motion of magnetic flux quanta. More specifically, the study is on the effect of ``switching off'' the CDW phase -- effected by doping with Ta -- on the magnetic-field H dependence of: (i) the Lorentz-force-driven free flux flow (FFF) resistivity ρf associated with the ordered motion of vortices, and (ii) critical current density Jc. FFF is achieved for the first time in this material. The field dependence of ρf deviates from traditional Bardeen-Stephen flux flow and is more consistent with effects of flux core size as predicted by Kogan and Zelezhina. However, the suppression of CDW's seems to have no significant effect on these properties. On the other hand, Jc(H) shows a surprising double peak for the CDW-suppressed sample --contrary to previous studies in which the Jc peak was shown to disappear. Possible mechanisms are discussed.

  16. TEC data ingestion into IRI and NeQuick over the antarctic region

    NASA Astrophysics Data System (ADS)

    Nava, Bruno; Pezzopane, Michael; Radicella, Sandro M.; Scotto, Carlo; Pietrella, Marco; Migoya Orue, Yenca; Alazo Cuartas, Katy; Kashcheyev, Anton

    2016-07-01

    In the present work a comparative analysis to evaluate the IRI and NeQuick 2 models capabilities in reproducing the ionospheric behaviour over the Antarctic Region has been performed. A technique to adapt the two models to GNSS-derived vertical Total Electron Content (TEC) has been therefore implemented to retrieve the 3-D ionosphere electron density at specific locations where ionosonde data were available. In particular, the electron density profiles used in this study have been provided in the framework of the AUSPICIO (AUtomatic Scaling of Polar Ionograms and Cooperative Ionospheric Observations) project applying the Adaptive Ionospheric Profiler (AIP) to ionograms recorded at eight selected mid, high-latitude and polar ionosondes. The relevant GNSS-derived vertical TEC values have been obtained from the Global Ionosphere Maps (GIM) produced by the Center for Orbit Determination in Europe (CODE). The effectiveness of the IRI and NeQuick 2 in reconstructing the ionosphere electron density at the given locations and epochs has been primarily assessed in terms of statistical comparison between experimental and model-retrieved peak parameters values (foF2 and hmF2). The analysis results indicate that in general the models are equivalent in their ability to reproduce the critical frequency of the F2 layer and they also tend to overestimate the height of the peak electron density, especially during high solar activity periods. Nevertheless this tendency is more noticeable in NeQuick 2 than in IRI. For completeness, the statistics indicating the models bottomside reconstruction capabilities, computed as height integrated electron density profile mismodeling, will also be discussed.

  17. Latitudinal Variations Of The F3 Layer Observed From The SEALION Ionosonde Network

    NASA Astrophysics Data System (ADS)

    Uemoto, J.; Ono, T.; Maruyama, T.; Saito, S.; Iizima, M.; Kumamoto, A.

    2006-12-01

    [INTRODUCTION] The occurrence probability, local time, solar and magnetic activity dependences of the F3 layer have been clarified experimentally from ionosonde observations as well as model calculation, whereas some unexplained problems have remained; It has been reported that the F3 layer was frequently obrved in June solstice season at Fortaleza in Brazil (geographic latitude -4 deg, geographic longitude 322 deg, and dip latitude -5.4 deg) though in this season (local winter season), frequently occurrences of the F3 layer were not predicted from the model calculation with normal values of the E x B drift and meridional neutral wind and seasonal dependence of occurrences at Waltair (17.7 deg, 83.3 deg, 11.5 deg) shows a different tendency from that at Fortaleza. The latter problem seems to result from geographic control or differences of dip latitude between two observation locations, however, its physical mechanism has not been clarified. Then conjugate observations in a magnetic meridional plane are needed. For the purpose of clarifying the mechanism of the F3 layer in more detail, we are analyzing the ionosonde data of the South East Asian Low-latitude IOnosonde Network [SEALION] mainly provided by NiCT which consists of 4 ionosonde stations. In this study, we analyzed ionosonde data observed at Chiang Mai (CMU [18.8 deg, 98.9 deg, 13.0 deg]), Chumphon(CPN [10.7 deg, 99.4 deg, 3.3 deg]) and Kototabang (KTB [-0.2 deg, 100.3 deg, -10.0 deg]). [ANALYSIS] As a result from analyzing ionosonde data on 31st March, 2005, following dip latitudinal differences have been found; At CPN, in the vicinity of the dip equator, the F3 layer moved upward rapidly and disappeared in earlier local time, while at CMU and KTB, in the low dip latitude region, the F3 layer stayed at almost the same altitude and remained to be detectable with longer time duration. [CONCLUSION] From comparing between observation results and the model calculation, it is suggested that such a dip latitudinal difference can be explained by considering that (1) the magnetic field line at the F2 peak which moved upward by the E x B drift (corresponding to the F3 peak or subsequently ionization ledge peak) in the vicinity of the dip equator is also crossing at that in the low dip latitude region and (2) a dip latitudinal difference of field aligned plasma diffusion effects; In the vicinity of the dip equator, since plasma at the upward drifted peak altitude diffuses aligned magnetic field line to higher altitude, plasma density at upward drifted peak decreases and becomes smaller immediately than the F2 peak existing at the usual altitude, then double peak structure is observable from the ground with shorter duration time and the ionization ledge structure might be formed in earlier local time. On the other hand, in the low latitude region, since plasma are transported from the vicinity of the dip equator, plasma density at upward drifted peak altitude is retained denser than that at usual F2 peak altitude for a longer time. Then double peak structure is observable from the ground with longer duration time.

  18. The concept of quasi-tissue-equivalent nanodosimeter based on the glow peak 5a/5 in LiF:Mg,Ti (TLD-100).

    PubMed

    Oster, L; Horowitz, Y S; Biderman, S; Haddad, J

    2003-12-01

    We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.

  19. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983]. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  20. Vertical structure of medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Kim, Eunsol

    2015-11-01

    We develop an algorithm of computerized ionospheric tomography (CIT) to infer information on the vertical and horizontal structuring of electron density during nighttime medium-scale traveling ionospheric disturbances (MSTIDs). To facilitate digital CIT we have adopted total electron contents (TEC) from a dense Global Positioning System (GPS) receiver network, GEONET, which contains more than 1000 receivers. A multiplicative algebraic reconstruction technique was utilized with a calibrated IRI-2012 model as an initial solution. The reconstructed F2 peak layer varied in altitude with average peak-to-peak amplitude of ~52 km. In addition, the F2 peak layer anticorrelated with TEC variations. This feature supports a theory in which nighttime MSTID is composed of oscillating electric fields due to conductivity variations. Moreover, reconstructed TEC variations over two stations were reasonably close to variations directly derived from the measured TEC data set. Our tomographic analysis may thus help understand three-dimensional structure of MSTIDs in a quantitative way.

  1. F2 layer characteristics and electrojet strength over an equatorial station

    NASA Astrophysics Data System (ADS)

    Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Reinisch, B. W.; Yumoto, K.

    2013-09-01

    The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27-35 nT (at 1400 LT) , 30-40 nT (at 1200 LT) and 35-45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.

  2. A simulation study of the equatorial ionospheric response to the October 2013 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Lei, J.; Ren, D.

    2017-12-01

    The ionospheric observation from ionosonde at Sao Luis (2.5S, 44.2W; 7S dip latitude) around the magnetic equator showed that the nighttime ionospheric F2 peak height (hmF2) was uplifted by more than 150 km during the October 2013 geomagnetic storm. The changes of hmF2 at the magnetic equator were generally attributed to the variations of vertical drift associated with zonal electric field. In this paper, the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) simulation results are utilized to explore the possible physical mechanisms responsible for the observed increase of hmF2 at Sao Luis. The TIEGCM reproduced the changes of F2 peak electron density (NmF2) and its height (hmF2) during the main and recovery phases of the October 2013 storm. A series of controlled simulations revealed that, besides the enhancement of vertical plasma drift, the convergence of horizontal neutral winds and thermospheric expansion also contributed significantly to the profound increase of nighttime hmF2 observed at Sao Luis on 2 October. Moreover, the changes of neutral winds and neutral temperature in the equatorial region are associated with the interference of storm time travelling atmospheric disturbances originating from high latitudes.

  3. Evidence for four- and three-wave interactions in solar type III radio emissions

    NASA Astrophysics Data System (ADS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2013-08-01

    The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10-3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI) and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT)-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe - fS), are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves). In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe), appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for the first time provide combined evidence that (1) the OTSI and related strong turbulence processes play a significant role in the stabilization of the electron beam, (2) the coalescence of the oppositely propagating up- and down-shifted daughter Langmuir waves excited by the OTSI probably is the emission mechanism of the second harmonic radiation, and (3) the Langmuir collapse follows the route of OTSI in some of the type III radio bursts.

  4. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the majority of the ionospheric parameters -density and kinetic temperature of electron and main ions, the plasma drift velocity and others. The comparison of RO reveals that usually COSMIC RO profiles are in a rather good agreement with ISR profiles both in the F2 layer peak electron density (NmF2) and the form of profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ISR location. It is necessary to note that retrieved electron density profiles should not be interpreted as actual vertical profiles. The geographical location of the ray path tangent points at the top and at the bottom of a profile may differ by several hundred kilometers. So the spatial smearing of data takes place and RO technique represents an image of vertical and horizontal ionospheric structure. That is why the comparison with ground-based data has rather relative character. We derived quantitative parameters to char-acterize the differences of the compared profiles: the peak height difference, the relative peak density difference. Most of the compared profiles agree within error limits, depending on the accuracy of the occultation-and the radar-derived profiles. In general COSMIC RO profiles are in a good agreement with incoherent radar profiles both in the F2 layer peak electron density (NmF2) and the form of the profiles. The coincidence of COSMIC and incoherent radar pro-files is better in the cases when projection of the ray path tangent points is closer to the radar location. COSMIC measurements can be efficiently used to study the topside part of the iono-spheric electron density. To validate the reliability of the COSMIC ionospheric observations it must be done the big work on the analysis and statistical generalization of the huge data array (today the total number of ionospheric occultation is more than 2.300.000), but this technique is a very promising one to retrieve accurate profiles of the ionospheric electron density with ground-based measurements on a global scale. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data.

  5. Status of the Topside Vary-Chap Ionospheric Model

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter

    Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seagle, Christopher T.; Davis, Jean-Paul; Knudson, Marcus D.

    Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. We employed velocimetry measurements in order to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ~1.8 mm thick. We also performed a dual thickness Lagrangian analysis on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. Finally, we observed an elastic response on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual samplemore » analyses (up to ~1.8 mm) combined with a relative timing accuracy of ~0.2 ns resulted in an uncertainty of less than 1% on density and stress at ~200 GPa peak loading on one experiment and <4% on peak loading at ~330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.« less

  7. A Simulation Study of the Equatorial Ionospheric Response to the October 2013 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Ren, Dexin; Lei, Jiuhou

    2017-09-01

    The ionospheric observation from ionosonde at Sao Luis (2.5°S, 44.2°W; 6.68°S dip latitude) around the magnetic equator showed that the nighttime ionospheric F2 layer was uplifted by more than 150 km during the October 2013 geomagnetic storm. The changes of the F2 peak height (hmF2) at the magnetic equator were generally attributed to the variations of vertical drift associated with zonal electric fields. In this paper, the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) simulation results are utilized to explore the possible physical mechanisms responsible for the observed increase of hmF2 at Sao Luis. The TIEGCM generally reproduced the changes of F2 peak electron density (NmF2) and its height (hmF2) during the main and recovery phases of the October 2013 storm. A series of controlled simulations revealed that storm time hmF2 changes at the magnetic equator are not purely associated with the changes of electric fields; horizontal plasma transport due to meridional winds and thermospheric expansion also contributed significantly to the profound increase of nighttime hmF2 observed at Sao Luis on 2 October. Moreover, the changes of meridional winds and neutral temperature in the equatorial region are associated with storm time traveling atmospheric disturbances originating from high latitudes.

  8. A new inversion algorithm for HF sky-wave backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Ni, Binbin; Lou, Peng; Wei, Na; Yang, Longquan; Liu, Wen; Zhao, Zhengyu; Li, Xue

    2018-05-01

    HF sky-wave backscatter sounding system is capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density. The leading edge (LE) of a backscatter ionogram (BSI) is widely used for ionospheric inversion since it is hardly affected by any factors other than ionospheric electron density. Traditional BSI inversion methods have failed to distinguish LEs associated with different ionospheric layers, and simply utilize the minimum group path of each operating frequency, which generally corresponds to the LE associated with the F2 layer. Consequently, while the inversion results can provide accurate profiles of the F region below the F2 peak, the diagnostics may not be so effective for other ionospheric layers. In order to resolve this issue, we present a new BSI inversion method using LEs associated with different layers, which can further improve the accuracy of electron density distribution, especially the profile of the ionospheric layers below the F2 region. The efficiency of the algorithm is evaluated by computing the mean and the standard deviation of the differences between inverted parameter values and true values obtained from both vertical and oblique incidence sounding. Test results clearly manifest that the method we have developed outputs more accurate electron density profiles due to improvements to acquire the profiles of the layers below the F2 region. Our study can further improve the current BSI inversion methods on the reconstruction of 2-D electron density distribution in a vertical plane aligned with the direction of sounding.

  9. Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces

    DOE PAGES

    Kaghazchi, Payam; Jacob, Timo; Chen, Wenhua; ...

    2013-06-03

    Here, we report adsorption and desorption of hydrogen on planar Ir(210) and faceted Ir(210), consisting of nanoscale {311} and (110) facets, by means of temperature programmed desorption (TPD) and density functional theory (DFT) in combination with the ab initio atomistic thermodynamics approach. TPD spectra show that only one H 2 peak is seen from planar Ir(210) at all coverages whereas a single H 2 peak is observed at around 440 K (F1) at fractional monolayer (ML) coverage and an additional H 2 peak appears at around 360 K (F2) at 1 ML coverage on faceted Ir(210), implying structure sensitivity inmore » recombination and desorption of hydrogen on faceted Ir(210) versus planar Ir(210), but no evidence is found for size effects in recombination and desorption of hydrogen on faceted Ir(210) for average facet sizes of 5-14 nm. Calculations indicate that H prefers to bind at the two-fold short-bridge sites of the Ir surfaces. In addition, we studied the stability of the Ir surfaces in the presence of hydrogen at different H coverages through surface free energy plots as a function of the chemical potential, which is also converted to a temperature scale. Moreover, the calculations revealed the origin of the two TPD peaks of H 2 from faceted Ir(210): F1 from desorption of H 2 on {311} facets while F2 from desorption of H 2 on (110) facets.« less

  10. A global picture of ionospheric slab thickness derived from GIM TEC and COSMIC radio occultation observations

    NASA Astrophysics Data System (ADS)

    Huang, He; Liu, Libo; Chen, Yiding; Le, Huijun; Wan, Weixing

    2016-01-01

    The ionospheric equivalent slab thickness (EST), defined as the ratio of total electron content (TEC) to F2 layer peak electron density (NmF2), describes the thickness of the ionospheric profile. In this study, we retrieve EST from TEC data obtained from Global Ionospheric Map (GIM) and NmF2 retrieved from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ionospheric radio occultation data. The diurnal, seasonal, and solar activity variations of global EST are analyzed as the excellent spatial coverage of GIM and COSMIC data. During solstices, daytime EST in the summer hemisphere is larger than that in the winter hemisphere, except in some high-latitude regions, and the reverse is true for the nighttime EST. The peaks of EST often appear at 0400 local time. The presunrise enhancement in EST appears in all seasons, while the postsunset enhancement in EST is not readily observed in equinox. Both enhancements are attributed to the more remarkable electron density decay of NmF2 compared to that of TEC. The dependence of EST on solar activity is related to the inconsistent solar activity dependences of electron density at different altitudes. Furthermore, it is interesting that EST is enhanced from 0° to 120°E in longitude and 30° to 75°S in latitude during nighttime, just to the east of Weddell Sea Anomaly, during equinox and the Southern Hemisphere summer. This phenomenon is supposed to be related to the effects of geomagnetic declination-related plasma vertical drifts.

  11. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Fly Ash in Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Li, Liangxing; Xu, Junli; Shi, Zhongning; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen; Yu, Jiangyu; Chen, Gong

    2014-05-01

    An electrochemical method on preparation of Al-Si master alloy was investigated in fluoride-based molten salts of 47.7wt.%NaF-43.3wt.%AlF3-4wt.%CaF2 containing 5 wt.% fly ash at 1233 K. The cathodic products obtained by galvanostatic electrolysis were analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy, and energy-dispersive spectrometry. The result showed that the compositions of the products are Al, Si, and Al3.21Si0.47. Meanwhile, the cathodic electrochemical process was studied by cyclic voltammetry, and the results showed the reduction peak of aluminum deposition is at -1.3 V versus the platinum quasi-reference electrode in 50.3wt.%NaF-45.7wt.%AlF3-4wt.%CaF2 molten salts, while the reduction peak at -1.3 V was the co-deposition of aluminum and silicon when the fly ash was added. The silicon and iron were formed via both co-deposition and aluminothermic reduction. In the electrolysis experiments, current efficiency first increased to a maximum value of 40.7% at a current density of 0.29 A/cm2, and then it decreased with the increase of current density. With the electrolysis time lasting, the content of aluminum in the alloys decreased from 76.05 wt.% to 48.29 wt.% during 5 h, while the content of silicon increased from 15.94 wt.% to 37.89 wt.%.

  12. Laser Wakefield Acceleration Experiments Using HERCULES Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, T.; McGuffey, C.; Dollar, F.

    2009-07-25

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less

  13. Ionospheric tomography by gradient-enhanced kriging with STEC measurements and ionosonde characteristics

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; van den Boogaart, Karl Gerald; Gerzen, Tatjana; Hoque, Mainul; Hernández-Pajares, Manuel

    2016-11-01

    The estimation of the ionospheric electron density by kriging is based on the optimization of a parametric measurement covariance model. First, the extension of kriging with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial-temporal covariance model, assimilating STEC data of a sliding window, is presented. Secondly, a novel tomography approach by gradient-enhanced kriging (GEK) is developed. Beyond the ingestion of STEC measurements, GEK assimilates ionosonde characteristics, providing peak electron density measurements as well as gradient information. Both approaches deploy the 3-D electron density model NeQuick as a priori information and estimate the covariance parameter vector within a maximum likelihood estimation for the dedicated tomography time stamp. The methods are validated in the European region for two periods covering quiet and active ionospheric conditions. The kriging with spatial and spatial-temporal covariance model is analysed regarding its capability to reproduce STEC, differential STEC and foF2. Therefore, the estimates are compared to the NeQuick model results, the 2-D TEC maps of the International GNSS Service and the DLR's Ionospheric Monitoring and Prediction Center, and in the case of foF2 to two independent ionosonde stations. Moreover, simulated STEC and ionosonde measurements are used to investigate the electron density profiles estimated by the GEK in comparison to a kriging with STEC only. The results indicate a crucial improvement in the initial guess by the developed methods and point out the potential compensation for a bias in the peak height hmF2 by means of GEK.

  14. Microscopic interpretation of inelastic electron scattering from even Ni isotopes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Atsushi; Ogawa, Kengo

    1990-10-01

    Transition charge densities of inelastic electron scattering for the excitation of 2+ and 4+ states in even-mass Ni isotopes are investigated in terms of the standard shell model of the (p3/2,p1/2,f5/2)n configurations. Effective transition operators pertinent to the model space are derived by considering particle-hole excitations up to 12ħω for C2 and 14ħω for C4 transitions within the framework of a first-order perturbation theory. It is shown that surface-peaked transition charge densities can be obtained for the first excited 2+ and 4+ states, being in agreement with experiment. Particle-hole excitations up to λħω, e.g., λ=2 for C2 transition, are most responsible for that feature. Higher ħω excitations appear relatively significant in the interior region of the nucleus: They enhance the peak around the surface, improving further agreement with experiment, but for C2 transition they tend to generate another peak inside the nucleus and thus seem to deteriorate agreement with experiment. Transition densities for the 0+g.s.-->2+2,3 and 0+g.s.-->4+2 transitions are also discussed.

  15. Thailand low and equatorial F 2-layer peak electron density and comparison with IRI-2007 model

    NASA Astrophysics Data System (ADS)

    Wichaipanich, N.; Supnithi, P.; Tsugawa, T.; Maruyama, T.

    2012-06-01

    Ionosonde measurements obtained at two Thailand ionospheric stations, namely Chumphon (10.72°N, 99.37°E, dip 3.0°N) and Chiang Mai (18.76°N, 98.93°E, dip 12.7°N) are used to examine the variation of the F 2-layer peak electron density ( N m F 2) which is derived from the F 2-layer critical frequency, f o f 2. Measured data from September 2004 to August 2005 (a period of low solar activity) are analyzed based on the diurnal and seasonal variation and then compared with IRI-2007 model predictions. Our results show that, in general, the diurnal and seasonal variations of the N m F 2 predicted by the IRI (URSI and CCIR options) model show a feature generally similar to the observed N m F 2. Underestimation mostly occurs in all seasons except during the September equinox and the December solstice at Chumphon, and the September equinox and the March equinox at Chiang Mai, when they overestimate those measured. The best agreement between observation and prediction occurs during the pre-sunrise to post-sunrise hours. The best agreement of the %PD values of both the options occurs during the March equinox, while the agreement is the worst during the September equinox. The N m F 2 values predicted by the CCIR option show a smaller range of deviation than the N m F 2 values predicted by the URSI option. During post-sunset to morning hours (around 21:00-09:00 LT), the observed N m F 2 at both stations are almost identical for the periods of low solar activity. However, during daytime, the observed N m F 2 at Chumphon is lower than that at Chiang Mai. The difference between these two stations can be explained by the equatorial ionospheric anomaly (EIA). These results are important for future improvements of the IRI model for N m F 2 over Southeast Asia, especially for the areas covered by Chumphon and Chiang Mai stations.

  16. Ionospheric signatures of Lightning

    NASA Astrophysics Data System (ADS)

    Hsu, M.; Liu, J.

    2003-12-01

    The geostationary metrology satellite (GMS) monitors motions of thunderstorm cloud, while the lightning detection network (LDN) in Taiwan and the very high Frequency (VHF) radar in Chung-Li (25.0›XN, 121.2›XE) observed occurrences of lightning during May and July, 1997. Measurements from the digisonde portable sounder (DPS) at National Central University shows that lightning results in occurrence of the sporadic E-layer (Es), as well as increase and decrease of plasma density at the F2-peak and E-peak in the ionosphere, respectively. A network of ground-based GPS receivers is further used to monitor the spatial distribution of the ionospheric TEC. To explain the plasma density variations, a model is proposed.

  17. Variation of hmF2 and NmF2 deduced from DPS-4 over Multan (Pakistan) and their comparisons with IRI-2012 & IRI-2016 during the deep solar minimum between cycles 23 & 24

    NASA Astrophysics Data System (ADS)

    Ameen, Muhammad Ayyaz; Khursheed, Haqqa; Jabbar, Mehak Abdul; Ali, Muneeza Salman; Chishtie, Farrukh

    2018-04-01

    We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008-2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both E × B drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008-2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer.

  18. Comparison of ionospheric profile parameters with IRI-2012 model over Jicamarca

    NASA Astrophysics Data System (ADS)

    Bello, S. A.; Abdullah, M.; Hamid, N. S. A.; Reinisch, B. W.

    2017-05-01

    We used the hourly ionogram data obtained from Jicamarca station (12° S, 76.9° W, dip latitude: 1.0° N) an equatorial region to study the variation of the electron density profile parameters: maximum height of F2-layer (hmF2), bottomside thickness (B0) and shape (B1) parameter of F-layer. The period of study is for the year 2010 (solar minimum period).The diurnal monthly averages of these parameters are compared with the updated IRI-2012 model. The results show that hmF2 is highest during the daytime than nighttime. The variation in hmF2 was observed to modulate the thickness of the bottomside F2-layer. The observed hmF2 and B0 post-sunset peak is as result of the upward drift velocity of ionospheric plasma. We found a close agreement between IRI-CCIR hmF2 model and observed hmF2 during 0000-0700 LT while outside this period the model predictions deviate significantly with the observational values. Significant discrepancies are observed between the IRI model options for B0 and the observed B0 values. Specifically, the modeled values do not show B0 post-sunset peak. A fairly good agreement was observed between the observed B1 and IRI model options (ABT-2009 and Bill 2000) for B1.

  19. Numerical simulations of the seasonal/latitudinal variations of atomic oxygen and nitric oxide in the lower thermosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Rees, D.; Fuller-Rowell, T. J.

    1989-01-01

    A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling.

  20. Multi-instrument Observations of Storm Enhanced Density (SED) During the Oct. 24-25 2011 Storm: Implications for SED Formation Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Zou, S.; Ridley, A. J.; Moldwin, M.; Nicolls, M. J.; Coster, A. J.; Thomas, E. G.; Ruohoniemi, J.

    2013-12-01

    Ionospheric density often exhibits significant variations, which affect the propagation of radio signals that pass through or are reflected by the ionosphere. One example of these effects is the loss of phase lock and range errors in Global Navigation Satellite Systems (GNSS) signals. Because our modern society increasingly relies on ground-to-ground and ground-to-space communications and navigation, understanding the sources of the ionospheric density variability and monitoring its dynamics during space weather events has great importance. Storm-enhanced density (SED) is one of the most prominent ionospheric density structures that can have significant space weather impact. We present multi-instrument observations of a SED event during the Oct. 24-25, 2011 intense geomagnetic storm. Formation and the subsequent evolution of the SED and the mid-latitude trough are revealed by global GPS vertical total electron content (VTEC) maps. In addition, we present high time resolution Poker Flat Incoherent Scatter Radar (PFISR) observations of ionospheric properties within the SED. The SED structure observed by PFISR is found to consist of two parts with different properties. Both parts are characterized by elevated ionospheric peak height (HmF2) and TEC, compared to quiet time values. However, the two parts of the SED have different characteristics in the electron temperature (Te), the F-region peak density (NmF2) and convection flows. The first part of the SED is associated with enhanced Te in the lower F region and reduced Te in the upper F region, and is collocated with northward convection flows. The NmF2 was lower than quiet time values. The second part of the SED is associated with significantly increased NmF2, elevated Te at all altitudes, and is located near the equatorward boundary of large northwestward flow, which is probably subauroral polarization stream (SAPS). Based on these observations, we suggest that the mechanisms responsible for the formation of the two parts of the SED are different. The first part is due to equatorward expansion of the convection pattern and the projection of northward convection flows in the vertical direction, which lifts the ionospheric plasma to higher altitudes and thus reduces the loss rate of plasma recombination. The formation mechanism of the second part appears more complex. Besides equatorward expansion of the convection pattern and large upward flows, evidence of other mechanisms, including horizontal advection due to SAPS flows, energetic particle precipitation, and enhanced thermospheric wind in the topside ionosphere, is also present in the observations. Our estimates show that contribution from precipitating energetic protons accounts for at most ~10% of the total F-region density. The thermospheric wind also plays a minor role in this case.

  1. A technique for routinely updating the ITU-R database using radio occultation electron density profiles

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno

    2013-09-01

    Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).

  2. Magnetic Design Guidelines for Electronic Power Supplies.

    DTIC Science & Technology

    1986-09-30

    henries ",= peak flux density in gauss d = wire (conductor) dia in mils CM = d2 = circular mi’s Irms = RMS current in amperes Idc = DC current in...component lac = RMS ac current in the inductor f = minimum frequency in hertz L = inductance in henries Then Eac 2 16.83 x 2, x 760 x .05 10 Eac 1 168.3 x 2...duty cycle x 1/f L inductance in henries *permeability in gauss/oersted H magnetizing force in oersteds ’. i g length of air gap in cm ic length of

  3. F region above Kauai - Measurement, model, modification

    NASA Technical Reports Server (NTRS)

    Johnson, C. Y.; Sjolander, G. W.; Oran, E. S.; Young, T. R.; Bernhardt, P. A.; Da Rosa, A. V.

    1980-01-01

    Results of the Lagopedo II experiment conducted from Kauai, Hawaii to investigate the ionospheric modification that occurs when rocket combustion products are introduced into the O(+)-rich F region are presented. The experiment involved the detonation of a chemical explosion in the F2 peak accompanied by rocket-borne measurements of ion composition and electron content in the vicinity of the explosion. The experimental data is found to be in good agreement with the predictions of a model of the nighttime ion densities in the midlatitude laminar ionosphere, with the exception of N2(+) densities before the explosion. H2O(+) and H3O(+) currents produced by considerable H2O outgassing from the rocket are used to determine a H3O(+)/H2O(+) dissociative recombination rate averaging 1.6 to 1.08, depending on model assumptions. At the time of the explosion, an ionic void 1 km in radius is observed, the boundary of which is characterized by a steep gradient in ionic densities. Evidence of variations in the concentrations of ambient ion species, new reactant species and ionic depletion by sweeping is also obtained.

  4. Temporal and spatial deviation in F2 peak parameters derived from FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Singh, R. P.; Tan, Eng Leong; Singh, A. K.; Ghodpage, R. N.; Siingh, Devendraa

    2016-06-01

    The plasma frequency profiles derived from the Constellation of Observing System for Meteorology, Ionosphere and Climate (COSMIC) radio occultation measurements are compared with ground-based ionosonde data during the year 2013. Equatorial and midlatitude five stations located in the Northern and Southern Hemisphere are considered: Jicamarca, Jeju, Darwin, Learmonth, and Juliusruh. The aim is to validate the COSMIC-derived data with ground-based measurements and to estimate the difference in plasma frequency (which represents electron density) and height of F2 layer peak during the daytime/nighttime and during different seasons by comparing the two data sets. Analysis showed that the nighttime data are better correlated than the daytime, and the maximum difference occurs at the equatorial ionospheric anomaly (EIA) station as compared to lower and midlatitude stations during the equinox months. The difference between daytime and nighttime correlations becomes insignificant at midlatitude stations. The statistical analysis of computed errors in foF2 (hmF2) showed Gaussian nature with the most probable error range of ±15% (±10%) at the equatorial and EIA stations, ±9% (±7%) outside the EIA region which reduced to ±8% (±6%) at midlatitude stations. The reduction in error at midlatitudes is attributed to the decrease in latitudinal electron density gradients. Comparing the analyzed data during the three geomagnetic storms and quiet days of the same months, it is observed that the differences are significantly enhanced during storm periods and the magnitude of difference in foF2 increases with the intensity of geomagnetic storm.

  5. Neutral O2 and Ion O2+ Sources from Rings into the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Elrod, M. K.; Johnson, R. E.; Cassidy, T. A.; Wilson, R. J.; Tseng, W.; Ip, W.

    2009-12-01

    The primary source of neutral O2 for Saturn’s magnetosphere is due to solar UV photons protons that produce O2 from H2O ice decomposition over the main rings as well as the tenuous F and G rings resulting in a tenuous O2 atmosphere (Johnson et. al. 2006). The O2 atmosphere is very thin to the point of being nearly collisionless. Our model of the atmosphere predict that as it interacts with the ring particles, the O2 is adsorbed and desorbed from the rings causing changes in the trajectories, which in turn, allows for a distribution of O2 from the rings throughout the magnetosphere (Tokar et. al. 2005; Tseng et. al. 2009). Predominately through photo-ionization and ion-exchange these O2 neutrals from the ice grains become a source for O2+ ions in the inner magnetosphere. Once the O2 becomes ionized to become O2+ the ions then follow the field lines. The ions interact with the ice particles in the rings to stick to the ring particles effectively reducing the ion density. As a result the ion density is greater over the Cassini Division and the area between the F and G ring where the optical depth due to the ice grain is less. Accordingly, the neutral O2 densities would tend to be high over the higher optical depth of the B and A main rings where the source rates are higher. Models of the neutral densities have shown high densities over the main rings, with a tail through the magnetosphere. Analysis of the CAPS (Cassini Plasma Spectrometer) data from the Saturn Orbit Insertion (SOI) in 2004 shows a peak in density over the Cassini Division and a higher peak in O2+ ion density between the F and G rings. References: Johnson, R.E., J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Siler, J.F. Cooper, T.W. Hill, H.T. Smith, M. Michael, M. Liu, F.J. Crary, D.T. Young, "Production, Ionization and Redistribution of O2 Saturn's Ring Atmosphere" Icarus 180, 393-402 (2006).(pdf) Tokar, R.L., and 12 colleagues, 2005. Cassini Observations of the Thermal Plasma in the Vicinity of Saturn’s Main Rings and the F and G Rings. Geophys. Res. Lett. 32, doi:10.1029/2005GL022690. L14S04. Martens, H. R., Reisenfeld, D. B., Williams, J. D., Johnson, R.E., Smith H. T., “Observations of molecular oxygen ions in Saturn’s inner magnetosphere”. Geophy. Res. Lett. 2009. W.-L. Tseng, Ip, W.-H., Johnson, R. E., Cassidy, T. A., Elrod, M. K., “The Structure and Time Variability of the Ring atmosphere and ionosphere”. Geophy. Res. Lett. 2009.

  6. Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.

    PubMed

    Mirvakili, Seyed M; Hunter, Ian W

    2017-07-01

    Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m -2 (100 mF cm -2 ) with peak energy and power density of 2 kJ m -2 (6.2 MJ m -3 or 1.7 mWh cm -3 ) and 150 kW m -2 (480 MW m -3 or 480 W cm -3 ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m 2 or 24.9 mΩ cm 2 ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

    DOE PAGES

    Seagle, Christopher T.; Davis, Jean-Paul; Knudson, Marcus D.

    2016-10-26

    Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. We employed velocimetry measurements in order to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ~1.8 mm thick. We also performed a dual thickness Lagrangian analysis on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. Finally, we observed an elastic response on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual samplemore » analyses (up to ~1.8 mm) combined with a relative timing accuracy of ~0.2 ns resulted in an uncertainty of less than 1% on density and stress at ~200 GPa peak loading on one experiment and <4% on peak loading at ~330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.« less

  8. The determination of ionospheric electron content and distribution from satellite observations. Part 2. Results of the analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriott, O K

    1960-04-01

    The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less

  9. Effect of AlF3 on the Density and Elastic Properties of Zinc Tellurite Glass Systems

    PubMed Central

    Sidek, Haji Abdul Aziz; Rosmawati, Shaharuddin; Halimah, Mohamed Kamari; Matori, Khamirul Amin; Talib, Zainal Abidin

    2012-01-01

    This paper presents the results of the physical and elastic properties of the ternary zinc oxyfluoro tellurite glass system. Systematic series of glasses (AlF3)x(ZnO)y(TeO2)z with x = 0–19, y = 0–20 and z = 80, 85, 90 mol% were synthesized by the conventional rapid melt quenching technique. The composition dependence of the physical, mainly density and molar volume, and elastic properties is discussed in term of the AlF3 modifiers addition that are expected to produce quite substantial changes in their physical properties. The absence of any crystalline peaks in the X-ray diffraction (XRD) patterns of the present glass samples indicates the amorphous nature. The addition of AlF3 lowered the values of the densities in ternary oxyfluorotellurite glass systems. The longitudinal and transverse ultrasonic waves propagated in each glass sample were measured using a MBS8020 ultrasonic data acquisition system. All the velocity data were taken at 5 MHz frequency and room temperature. The longitudinal modulus (L), shear modulus (G), Young’s modulus (E), bulk modulus (K) and Poisson’s ratio (σ) are obtained from both velocities data and their respective density. Experimental data shows the density and elastic moduli of each AlF3-ZnO-TeO2 series are found strongly depend upon the glass composition. The addition of AlF3 modifiers into the zinc tellurite causes substantial changes in their density, molar volume as well as their elastic properties.

  10. A model-assisted radio occultation data inversion method based on data ingestion into NeQuick

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Nava, B.; Kashcheyev, A.

    2017-01-01

    Inverse Abel transform is the most common method to invert radio occultation (RO) data in the ionosphere and it is based on the assumption of the spherical symmetry for the electron density distribution in the vicinity of an occultation event. It is understood that this 'spherical symmetry hypothesis' could fail, above all, in the presence of strong horizontal electron density gradients. As a consequence, in some cases wrong electron density profiles could be obtained. In this work, in order to incorporate the knowledge of horizontal gradients, we have suggested an inversion technique based on the adaption of the empirical ionospheric model, NeQuick2, to RO-derived TEC. The method relies on the minimization of a cost function involving experimental and model-derived TEC data to determine NeQuick2 input parameters (effective local ionization parameters) at specific locations and times. These parameters are then used to obtain the electron density profile along the tangent point (TP) positions associated with the relevant RO event using NeQuick2. The main focus of our research has been laid on the mitigation of spherical symmetry effects from RO data inversion without using external data such as data from global ionospheric maps (GIM). By using RO data from Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC) mission and manually scaled peak density data from a network of ionosondes along Asian and American longitudinal sectors, we have obtained a global improvement of 5% with 7% in Asian longitudinal sector (considering the data used in this work), in the retrieval of peak electron density (NmF2) with model-assisted inversion as compared to the Abel inversion. Mean errors of NmF2 in Asian longitudinal sector are calculated to be much higher compared to American sector.

  11. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  12. Callosal connections of dorso-lateral premotor cortex.

    PubMed

    Marconi, B; Genovesio, A; Giannetti, S; Molinari, M; Caminiti, R

    2003-08-01

    This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.

  13. Mechanical Behavior of Brittle Rock-Like Specimens with Pre-existing Fissures Under Uniaxial Loading: Experimental Studies and Particle Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Cao, Ri-hong; Cao, Ping; Lin, Hang; Pu, Cheng-zhi; Ou, Ke

    2016-03-01

    Joints and fissures with similar orientation or characteristics are common in natural rocks; the inclination and density of the fissures affect the mechanical properties and failure mechanism of the rock mass. However, the strength, crack coalescence pattern, and failure mode of rock specimens containing multi-fissures have not been studied comprehensively. In this paper, combining similar material testing and discrete element numerical method (PFC2D), the peak strength and failure characteristics of rock-like materials with multi-fissures are explored. Rock-like specimens were made of cement and sand and pre-existing fissures created by inserting steel shims into cement mortar paste and removing them during curing. The peak strength of multi-fissure specimens depends on the fissure angle α (which is measured counterclockwise from horizontal) and fissure number ( N f). Under uniaxial compressional loading, the peak strength increased with increasing α. The material strength was lowest for α = 25°, and highest for α = 90°. The influence of N f on the peak strength depended on α. For α = 25° and 45°, N f had a strong effect on the peak strength, while for higher α values, especially for the 90° sample, there were no obvious changes in peak strength with different N f. Under uniaxial compression, the coalescence modes between the fissures can be classified into three categories: S-mode, T-mode, and M-mode. Moreover, the failure mode can be classified into four categories: mixed failure, shear failure, stepped path failure, and intact failure. The failure mode of the specimen depends on α and N f. The peak strength and failure modes in the numerically simulated and experimental results are in good agreement.

  14. Comparison of COSMIC measurements with the IRI-2007 model over the eastern Mediterranean region.

    PubMed

    Vryonides, P; Haralambous, H

    2013-05-01

    This paper presents a comparison of the International Reference Ionosphere (IRI-2007) model over the eastern Mediterranean region with peak ionospheric characteristics (foF2-hmF2) and electron density profiles measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique and the Cyprus digisonde. In the absence of systematic ionosonde measurements over this area, COSMIC measurements provide an opportunity to perform such a study by considering observations for year 2010 to investigate the behaviour of the IRI-2007 model over the eastern Mediterranean area.

  15. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. and are believed to cause scintillations of VHF radiowaves. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  16. A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Capo-Chichi, M.; Leprince-Wang, Y.; Basset, P.

    2018-01-01

    This paper reports a paper-based electrostatic kinetic energy harvester (e-KEH) implementing multilayered electret films based on electrospun nanofibrous material. It is the first time that a fully flexible electret-based e-KEH is reported. The proposed electret, PVDF-PTFD nanofibrous covered by Parylene C, has a faster stabilization of surface potential than a planar thin film of Parylene C, and a higher stability of charge storage. With a maximum force of 0.5 N and a 3-layer electret, the device capacitance increases from 25 to 100 pF during a pressing operation. Working with the optimal resistive load of 16 MΩ, the device pressed manually delivers a peak instantaneous power up to 45.6 μW and an average energy of 54 nJ/stroke, corresponding to a peak instantaneous power density of 7.3 μW cm-2 and an average energy density of 8.6 nJ cm-2/stroke. Within 450 manual strokes, a 10 nF capacitor is charged up to 8.5 V by the prototype through a full-wave diode bridge. On a 1 μF capacitor, the energy delivery of 9.9 nJ/stroke has been obtained with a 10 Hz pressing movement excited by a vibrator with a maximum force of 0.5 N.

  17. Evidence of prompt penetration electric fields during HILDCAA events

    NASA Astrophysics Data System (ADS)

    Pereira Silva, Regia; Sobral, Jose Humberto Andrade; Koga, Daiki; Rodrigues Souza, Jonas

    2017-10-01

    High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.

  18. Universal time dependence of nighttime F region densities at high latitudes

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Wickwar, V. B.; Caudal, G.; Holt, J. M.; Craven, J. D.; Frank, L. A.; Brace, L. H.

    1985-01-01

    Coincident auroral-zone experiments using three incoherent-scatter radars at widely spaced longitudes are reported. The observational results demonstrate that, during the night, the F layer electron density is strongly dependent on the longitude of the observing site. Ionization patches were observed in the nighttime F region from the Chatanika and EISCAT radars, while densities observed from the Millstone radar were substantially smaller. The electron density within these maxima is larger at EISCAT than at Chatanika. When observed in the midnight sector auroral zone, these densities had a peak density at a high altitude of 360-475 km. The density was maximum when EISCAT was in the midnight sector and minimum when Millstone was in the midnight sector. A minimum in insolation in the auroral zone occurs at the UT when Millstone is in the midnight sector.

  19. Model study of greenline dayglow emission under geomagnetic storm conditions.

    NASA Astrophysics Data System (ADS)

    Singh, V.; Bag, T.; Sunil Krishna, M. V.

    2016-12-01

    A comprehensive model is developed to study the influences of geomagnetic storms on greenline (557.7 nm) dayglow emission during the solar active and solar quiet conditions in thermosphere. This study is based on a photochemical model which is developed using the latest reaction rate coefficients, quantum yields and collisional cross-sections obtained from the experimental observations and empirical models. This study is for a low latitude station Tirunelveli (8.7N,77.8E), India. The volume emission rate (VER) has been calculated using the densities and temperature from NRLMSISE-00 and IRI-2012 models. The modeled VER shows a positive correlation with the Dst index, and a negative correlation with the number densities of O, O2, and N2. The VER calculated at the peak emission altitude shows depletion during the main phase of the storm. The peak emission altitude doesn't show any appreciable variation during storm period. On the other hand, the peak emission altitude shows an upward movement with the increase in F10.7 solar index.

  20. A study of large, medium and small scale structures in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Gross, Stanley H.; Kuo, Spencer P.; Shmoys, Jerry

    1986-01-01

    Alouette and ISIS data were studied for large, medium, and small scale structures in the ionosphere. Correlation was also sought with measurements by other satellites, such as the Atmosphere Explorer C and E and the Dynamic Explorer 2 satellites, of both neutrals and ionization, and with measurements by ground facilities, such as the incoherent scatter radars. Large scale coherent wavelike structures were found from ISIS 2 electron density contours from above the F peak to nearly the satellite altitude. Such structures were also found to correlate with the observation by AE-C below the F peak during a conjunction of the two satellites. Vertical wavefronts found in the upper F region suggest the dominance of diffusion along field lines as well. Also discovered were multiple, evenly spaced field-aligned ducts in the F region that, at low latitudes, extended to the other hemisphere and were in the form of field-aligned sheets in the east-west direction. Low latitude heating events were discovered that could serve as sources for waves in the ionosphere.

  1. Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.

    2016-05-01

    Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC-1F1, TMC-1F2, and TMC-1F4 are very elongated, dense, and cold. TMC-1F3 is a little less elongated and somewhat warmer, and probably heated by the Class I protostar, IRAS 04381+2540, which is embedded in it. TMC-1F3 is approximately 0.1 pc behind TMC1-F1. Because of its structure, TMC-1 is a good target to test filament evolution scenarios.

  2. Comparison of COSMIC RO Data with European Digisondes and GPS TEC measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Krypiak-Gregorczyk, Anna; Shagimuratov, Irk; Krankowski, Andrzej; Lagovsky, Anatoly

    FormoSat-3/COSMIC now provides unprecedented global coverage of GPS occultations mea-surements, each of which yields the ionosphere electron density information with high vertical resolution. However systematic validation work is still needed before using the powerful RO technique for sounding the ionosphere on a routine basis. In the given study electron density profiles retrieved from the Formosat-3/COSMIC RO measurements were compared with differ-ent kinds of ground-based observations. We used the ionospheric data recorded by European digisondes of DIAS network (Rome, Ebro, Arenosillo, Athens, Chilton, Pruhonice and Julius-ruh) for temporal interval of 2007-2009 and compare these ground measured data with the GPS COSMIC RO ionospheric profiles. It was revealed that in general the form of COSMIC profile in the bottom side is in a good agreement with ionosonde profiles, the heights of the peak density value are also good comparable. Special attention was focused to the question of the topside part of electron density profile. Practically for all analyzed cases there are observed the understated values of electron density in the topside part of the ionosonde profiles in compare with RO profiles. As the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC radio occultation measurements can make an important contribution to the investigation of the topside part of the ionosphere. In order to assess the ac-curacy of the COSMIC ionospheric electron density retrievals, coincidences of ionosonde data with COSMIC NmF2 values have been examined. NmF2 was calculated from the observed critical plasma frequency foF2 of the F2 layer. Values of foF2 have been scaled manually from ionograms for all considered time-location cases to avoid the evident risks related with using of the autoscaled data. The created scatter plots show a high degree of correlation between two independent estimates of NmF2. Also it was analyzed the variation of NmF2 for the considered seasons depending on day-time and night-time conditions. Also it was analyzed the total elec-tron content values calculated for the nearest ground-based GPS stations located in European region. To compare GPS TEC with RO and ionosondes' data these profiles were integrated. In general bottom parts of COSMIC and ionosondes' data are in a rather good agreement while the topside can be varied greatly that is the evidence of difference in the topside parts of these profiles. GPS TEC values are greater than COSMIC and ionosondes' data as TEC contains IEC and PEC. This procedure can be useful to estimate the impact of PEC into TEC. Results of the given comparisons can be important to validate the reliability of the COSMIC iono-spheric observations using the RO technique. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data. We are grateful to European Digital Upper Atmosphere Server (DIAS) for providing the ionosondes' products and to International GNSS Service (IGS) for GPS Data.

  3. The Behavior of Selected Diffuse Interstellar Bands with Molecular Fraction in Diffuse Atomic and Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Fan, Haoyu; Welty, Daniel E.; York, Donald G.; Sonnentrucker, Paule; Dahlstrom, Julie A.; Baskes, Noah; Friedman, Scott D.; Hobbs, Lewis M.; Jiang, Zihao; Rachford, Brian; Snow, Theodore P.; Sherman, Reid; Zhao, Gang

    2017-12-01

    We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form (f H2), with comparisons to the corresponding behavior of various known atomic and molecular species. The equivalent widths of the five “normal” DIBs (λλ5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to E B-V , show a “lambda-shaped” behavior: they increase at low f H2, peak at f H2 ˜ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca+, Ti+, and CH+ also decline for f H2 > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with f H2, and the trends exhibited by the three C2 DIBs (λλ4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with f H2 are accompanied by cosmic scatter, the dispersion at any given f H2 being significantly larger than the individual errors of measurement. The lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes aside from ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest W λ (5780)/W λ (5797) ratios, characterizing the so-called “sigma-zeta effect,” occur only at f H2 < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing f H2. In order of increasing environmental density, we find the λ6283.8 and λ5780.5 DIBs, the λ6196.0 DIB, the λ6613.6 DIB, the λ5797.1 DIB, and the C2 DIBs.

  4. Morphology of the winter anomaly in NmF2 and Total Electron Content

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Ratovsky, Konstantin; Yasyukevich, Anna; Klimenko, Maksim; Klimenko, Vladimir; Chirik, Nikolay

    2017-04-01

    We analyzed the winter anomaly manifestation in the F2 peak electron density (NmF2) and Total Electron Content (TEC) based on the observation data and model calculation results. For the analysis we used 1998-2015 TEC Global Ionospheric Maps (GIM) and NmF2 ground-based ionosonde observation data from and COSMIC, CHAMP and GRACE radio occultation data. We used Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) and International Reference Ionosphere model (IRI-2012). Based on the observation data and model calculation results we constructed the maps of the winter anomaly intensity in TEC and NmF2 for the different solar and geomagnetic activity levels. The winter anomaly intensity was found to be higher in NmF2 than in TEC according to both observation and modeling. In this report we show the similarity and difference in winter anomaly as revealed in experimental data and model results.

  5. Observations of neutral circulation at mid-latitudes during the Equinox Transition Study

    NASA Technical Reports Server (NTRS)

    Buonsanto, M. J.; Salah, J. E.; Miller, K. L.; Oliver, W. L.; Burnside, R. G.; Richards, P. G.

    1988-01-01

    Measurements of ion drift velocity made by the Millstone Hill incoherent scatter radar have been used to calculate the meridional neutral wind velocity during the Sept. 17 to 24, 1984 period. Strong daytime southward neutral surges were observed during the magnetically disturbed days of September 19 and 23, in contrast to the small daytime winds obtained as expected during the magnetically quiet days. The surge on September 19 was also seen at Arecibo. In addition, two approaches have been used to calculate the meridional wind component from the radar-derived height of the F-layer electron density peak. Results confirm the wind surge, particularly when the strong electric fields measured during the disturbed days are included in the calculations. The two approaches for the F-layer peak wind calculations are applied to the radar-derived electron density peak height as a function of latitude to study the variation of the southward daytime surges with latitude.

  6. The Ionosphere Real-Time Assimilative Model, IRTAM - A Status Report

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Galkin, Ivan; Huang, Xueqin; Vesnin, Artem; Bilitza, Dieter

    2014-05-01

    Ionospheric models are generally unable to correctly predict the effects of space weather events on the ionosphere. Taking advantage of today's real-time availability of measured electron density profiles of the bottomside ionosphere, we have developed a technique "IRTAM" to specify real-time foF2 and hmF2 global maps. The measured data arrive at the Lowell GIRO Data Center (LGDC) from some ~70 ionosonde stations of the Global Ionosphere Radio Observatory (GIRO) [Reinisch and Galkin, 2011], usually at a 15 min cadence, and are ingested in LGDC's databases (http://ulcar.uml.edu/DIDBase/). We use the International Reference Ionosphere (IRI) electron density model [Bilitza et al., 2011] as the background model. It is an empirical monthly median model that critically depends on the correct values of the F2 layer peak height hmF2 and density NmF2 (or critical frequency foF2). The IRI model uses the so-called CCIR (or URSI) coefficients for the specification of the median foF2 and hmF2 maps. IRTAM assimilates the measured GIRO data in IRI by "adjusting" the CCIR coefficients on-the-fly. The updated maps of foF2 and hmF2 for the last 24 hours before now-time are continuously displayed on http://giro.uml.edu/RTAM [Galkin et al., 2012]. The "adjusted" bottomside profiles can be extended to the topside by using the new Vary-Chap topside profile model [Nsumei et al., 2012] which extends the profile from hmF2 to the plasmasphere. References Bilitza D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The International Reference Ionosphere (IRI) today and in the future, J. Geodesy, 85:909-920, DOI 10.1007/s00190-010-0427-x Galkin, I. A., B. W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Sci., 47, RS0L07, doi:10.1029/2011RS004952. Nsumei, P., B. W. Reinisch, X. Huang, and D. Bilitza (2012), New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI Model and the GIRO real time data, Radio Sci., doi:10.1029/2012RS004989. Reinisch, B. W. and I. A. Galkin (2011), Global Ionospheric Radio Observatory (GIRO), Earth, Planets and Space, 63(4), 377-381.

  7. Quantification of Neutral Wind Variability in the Upper Thermosphere

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2000-01-01

    The overall objective of this grant was to: 1) Quantify thermospheric neutral wind behavior in the ionosphere. This was to be achieved by developing an improved empirical wind model. 2) Validating the procedure for obtaining winds from the height of the peak density. 3) Improving the model capabilities and making updated versions of the model available to other scientists. The approach is to use neutral winds derived from ionosonde measurements of the height of the peak electron density (h(sub m)F(sub 2)). One of the proposed first year tasks was to perform some validation studies on the method. Substantial progress has been made with regard to both the empirical model and the validation study. Funding from this grant has also enabled a number of fruitful collaborations with other researchers; one of the stated aims in the proposal. Graduate student Mayra Martinez has developed the mathematical formulation for the empirical wind model as part of her dissertation. As proposed, authors continued validation studies of the technique for determining winds from h(sub m)F(sub 2). They are submitted a paper to the Journal of Geophysical Research in December 1996 entitled "Therinospheric neutral winds at southern mid-latitudes: comparison of optical and ionosonde h(sub m)F(sub 2) methods. A second paper entitled "Ionospheric behavior at a southern mid-latitude in March 1995" has come out of the March 1995 data set and was published in The Journal of Geophysical Research. A new algorithm was developed. The ionosphere also have been modeled.

  8. Ce3+-doped LaF3 nanoparticles: Wet-chemical synthesis and photo-physical characteristics "optical properties of LaF3:Ce nanomaterials"

    NASA Astrophysics Data System (ADS)

    Tabatabaee, F.; Sabbagh Alvani, A. A.; Sameie, H.; Moosakhani, S.; Salimi, R.; Taherian, M.

    2014-01-01

    The most effective process parameters were determined to synthesize spherical LaF3 nanoparticles with controllable size based on ethylenediaminetetraacetic acid (EDTA) via co-precipitation technique. Thermogravimetricdifferential thermal analysis, X-ray diffraction, scanning electron microscopy, dynamic light scattering and FT-IR spectroscopy were used to characterize the resulting powders. Detailed investigations revealed that the optimal LaF3 host nano-material was obtained when NH4F was used as a fluoride source in the presence of EDTA at pH = 5. Furthermore, photoluminescence spectra showed an intense double emission peak at 289 and 302 nm for cerium-doped LaF3 nanocrystals excited at 253 nm, which was assigned to the well-known 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+ levels due to luminescence center mechanism. The experimental results indicate that the synthesized LaF3:0.05Ce powders with a band gap of 5.3 eV are promising phosphors for high density scintillators.

  9. Synthesis of Self-Assembled rGO-Co3O4 Nanoparticles in Nanorods Structure for Supercapacitor Application

    NASA Astrophysics Data System (ADS)

    Jana, Soumita; Singh, Neha; Bhattacharyya, Arnab Sankar; Singh, Gajendra Prasad

    2018-04-01

    A simple hydrothermal process was used to design self-assembled Co3O4 nanoparticles in nanorod structure in the presence of graphene oxide as a template. The as-prepared Co3O4 sample in a loose powder form was calcined at 450 °C to get the well-crystalline phase of the same compound. The obtained Co3O4 powder sample was characterized by using the powder XRD and SEM. The XRD pattern shows totally nine distinct reflection peaks of (111), (220), (311), (222), (400), (422), (511), (440), and (533) planes. The most intense peaks were chosen to evaluate the structural parameters. The lattice parameters (a), volume (V), and density (ρ) of the samples are 8.09 Å, 529.47 Å3, 6.06 g/cc, which are comparable to the value of lattice parameter (a = 8.056 Å), volume (V = 528.30 Å3), and density (ρ = 6.055 gm/cc) for bulk Co3O4. The average size of the Co3O4 nanoparticles is 14 nm which is smaller than the SEM size of 50 nm corresponding to the agglomeration of tiny particles. Further, the formation of Co3O4 nanoparticles were also confirmed by obtaining the band at 569, 1334,1337, 1566, and 3397 cm-1 in FTIR spectrum. Totally five characteristics peaks from Co3O4 at 182.57, 456.49, 505.84, 605.80, and 618.02 cm-1 and peaks from GO-Co3O4 at 182.57, 483.44, 505.84, 605.80, and 618.02 cm-1 corresponding to F2g, Eg, F2g, F2g, and Ag modes of the crystalline Co3O4, respectively, in the Raman spectra. In the case of GO-Co3O4 composite, low-intensity peaks of D and G bands are observed. The specific capacitance in rGO-Co3O4 nanocomposite is about 65.15 Fg-1.

  10. Arcsecond Resolution Mapping of Sulfur Dioxide Emission in the Circumstellar Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-02-01

    We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.

  11. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): NmF2 and hmF2 specification

    NASA Astrophysics Data System (ADS)

    Themens, David; Thayyil Jayachandran, P.

    2017-04-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes (Themens et al. 2014, Themens et al. 2016). These inaccuracies are believed to stem from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. For this purpose, we here introduce the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM), which incorporates all of the above datasets, as well as the older observation records, into a new climatological representation of the high latitude ionosphere. In this presentation, we introduce the NmF2 and hmF2 portions of the model, focusing on both climatological and storm-time representations, and present a validation of the new model with respect to ionosonde observations from four high latitude stations. A comparison with respect to IRI performance is also presented, where we see improvements by up to 70% in the representation of peak electron density through using the new E-CHAIM model. In terms of RMS errors, the E-CHAIM model is shown to represent a near-universal improvement over the IRI, sometimes by more than 1 MHz in foF2. For peak height, the E-CHAIM model demonstrates overall RMS errors of 13km at each test site compared to values of 18-35km for the IRI, depending on location. Themens, D.R., P. T. Jayachandran, et al. (2014). J. Geophys. Res. Space Physics, 119, 6689-6703, doi:10.1002/2014JA020052. Themens, D.R., and P.T. Jayachandran (2016). J. Geophys. Res. Space Physics, 121, doi:10.1002/2016JA022664.

  12. Causes of the mid-latitudinal daytime NmF2 semi-annual anomaly at solar minimum

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2018-04-01

    Ionospheric ionosonde and radar observations and theoretical calculations of the F2-layer peak altitude, hmF2, and number density, NmF2, over Millstone Hill during winter, spring, summer, and autumn geomagnetically quiet time periods at low solar activity are used to study the causes of the observed daytime NmF2 semi-annual anomaly. It follows from the model simulations that this anomalous phenomenon arises in the ionosphere mainly as a result of seasonal variations of the following atmospheric parameters: (1) the plasma drift along geomagnetic field lines due to corresponding changes in neutral wind components, (2) temperature and number densities of the neutral atmosphere, and (3) an optical thickness of the atmosphere caused by the dependence of the solar zenith angle on the day of the year for the same solar local time. Seasonal variations of the production rate unexcited O+ ions due to chemical reactions involving electronically excited O+ ions contribute to the formation of the NmF2 semi-annual anomaly during the predominant part of the existence time of this anomalous phenomenon. However, these seasonal variations are not significant, and this mechanism should be considered only as an additional source of the NmF2 semi-annual anomaly during its time of existence. The reactions of unexcited O+ ions with vibrationally excited N2 and O2 cause only weak changes of NmF2 and these changes are close in magnitude at a given solar local time during the winter, spring, summer, and autumn daytime conditions under consideration. Ignoring these reactions cannot produce a significant impact on the formation of the NmF2 semi-annual anomaly.

  13. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes.

    PubMed

    Kaur, Kuljeet; Zarzoso, Manuel; Ponce-Balbuena, Daniela; Guerrero-Serna, Guadalupe; Hou, Luqia; Musa, Hassan; Jalife, José

    2013-01-01

    Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (I(Na)) density at -40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (I(to)) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both I(Na) and I(to). In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased I(Na) density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. I(Na) density was -36.25±2.8 pA/pF in control, -59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and -58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, I(to) density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (Na(V)1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; -77%; p<0.01) and KCND2 (K(V)4.2; -50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in I(Na) was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel responsible for the transient outward current. The results provide new mechanistic insight into the electrical remodeling associated with myocardial injury.

  14. Investigation of mid-latitude electron density enhancement using total electron content measurements and FORMOSAT-3/COSMIC electron density profiles

    NASA Astrophysics Data System (ADS)

    Rajesh, P. K.; Nanan, Balan; Liu, Jann-Yenq; Lin, Charles C. H.; Chang, S. Y.; Chen, Chia-Hung

    This study investigates the mid-latitude electron density enhancement (MEDE) using global ionospheric map (GIM) total electron content (TEC) measurements and FORMOSAT-3/COSMIC (F3/C) electron density profiles. Diurnal, seasonal, latitudinal, and solar activity variations in the occurrence and strength of MEDE are examined using global GIM TEC data in the years 2002 and 2009. The results show that MEDE occurrence is pronounced during 2200-0400 LT, the feature also appears during day. The strength of MEDE maximizes around 0400 LT, and is very weak during daytime. The occurrence and strength show significant longitude dependence, and vary with season and solar activity. Concurrent F3/C electron density profiles also reveal enhancement of the peak electron density and total electron content. Further studies are carried out by examining the role of neutral wind in re-organizing the plasma using SAMI2 and HWM93 models. The results indicate that meridional neutral wind could cause the plasma to converge over mid-latitudes, and thus support in maintaining the enhancement.

  15. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene.

    PubMed

    Ren, Jun; Meng, Sheng; Wang, Yi-Lin; Ma, Xu-Cun; Xue, Qi-Kun; Kaxiras, Efthimios

    2011-05-21

    We investigate the atomic structure and electronic properties of monolayers of copper phthalocyanines (CuPc) deposited on epitaxial graphene substrate. We focus in particular on hexadecafluorophthalocyanine (F(16)CuPc), using both theoretical and experimental (scanning tunneling microscopy - STM) studies. For the individual CuPc and F(16)CuPc molecules, we calculated the electronic and optical properties using density functional theory (DFT) and time-dependent DFT and found a red-shift in the absorption peaks of F(16)CuPc relative to those of CuPc. In F(16)CuPc, the electronic wavefunctions are more polarized toward the electronegative fluorine atoms and away from the Cu atom at the center of the molecule. When adsorbed on graphene, the molecules lie flat and form closely packed patterns: F(16)CuPc forms a hexagonal pattern with two well-ordered alternating α and β stripes while CuPc arranges into a square lattice. The competition between molecule-substrate and intermolecular van der Waals interactions plays a crucial role in establishing the molecular patterns leading to tunable electron transfer from graphene to the molecules. This transfer is controlled by the layer thickness of, or the applied voltage on, epitaxial graphene resulting in selective F(16)CuPc adsorption, as observed in STM experiments. In addition, phthalocyanine adsorption modifies the electronic structure of the underlying graphene substrate introducing intensity smoothing in the range of 2-3 eV below the Dirac point (E(D)) and a small peak in the density of states at ∼0.4 eV above E(D). © 2011 American Institute of Physics.

  16. Ionospheric variations over Chinese EIA region using foF2 and comparison with IRI-2016 model

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Chakraborty, Monti; Pandey, R.

    2018-07-01

    In the present work, we have analyzed data of critical frequency of the F2 region (foF2) for the period, 2008-2013 over low latitude Chinese station Guangzhou (Geog. Lat. 23.10°N, Geog. Long. 113.40°E, dip, Lat. 13.49°N) and results thereof have been compared with IRI-2016 model. foF2 data set of the present study encompasses period of unusual and extended solar minimum, i.e., the years 2008-2009 and rising phase of solar cycle 24. IRI data have been obtained by choosing topside electron density profile IRI-NeQuick for two F peak models, CCIR and URSI. It is found that the general trend of variation in foF2 closely follows the trend of the solar flux during the period of study. A linear regression analysis gave a correlation coefficient of 0.98 which shows strong dependence of foF2 variation over solar flux variation. Semi-annual and annual oscillations are clearly brought out in the foF2 data using the Lomb-Scargle periodogram. A presence of semiannual and winter anomaly in observed as well as modeled foF2 at Guangzhou have found to be consistent throughout the period 2008-2013 irrespective of the phases of the solar activity. Our results also show the stronger presence of winter anomaly during the years of higher solar flux and it has been confirmed by normalizing the difference of winter to summer foF2 values for each year. Comparative results of ionosonde observation and IRI-2016 model show a significant discrepancy with regard to values of foF2 in different seasons and local time variations. IRI 2016 model underestimates the foF2 values in winter and equinoxes and overestimates foF2 values in summer. IRI modeled foF2 values using CCIR and URSI F peak models were found greater during forenoon hours and smaller during afternoon hours than the observed foF2 values throughout the period 2008-2013.

  17. Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.

    2014-03-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.

  18. Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Shouxin, E-mail: shouxincui@yahoo.co; Feng Wenxia; Hu Haiquan

    2010-04-15

    An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peakmore » near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.« less

  19. Modeling the Lower Part of the Topside Ionospheric Vertical Electron Density Profile Over the European Region by Means of Swarm Satellites Data and IRI UP Method

    NASA Astrophysics Data System (ADS)

    Pignalberi, A.; Pezzopane, M.; Rizzi, R.

    2018-03-01

    An empirical method to model the lower part of the ionospheric topside region from the F2 layer peak height to about 500-600 km of altitude over the European region is proposed. The method is based on electron density values recorded from December 2013 to June 2016 by Swarm satellites and on foF2 and hmF2 values provided by IRI UP (International Reference Ionosphere UPdate), which is a method developed to update the IRI model relying on the assimilation of foF2 and M(3000)F2 data routinely recorded by a network of European ionosonde stations. Topside effective scale heights are calculated by fitting some definite analytical functions (α-Chapman, β-Chapman, Epstein, and exponential) through the values recorded by Swarm and the ones output by IRI UP, with the assumption that the effective scale height is constant in the altitude range considered. Calculated effective scale heights are then modeled as a function of foF2 and hmF2, in order to be operationally applicable to both ionosonde measurements and ionospheric models, like IRI. The method produces two-dimensional grids of the median effective scale height binned as a function of foF2 and hmF2, for each of the considered topside profiles. A statistical comparison with Constellation Observing System for Meteorology, Ionosphere, and Climate/FORMOsa SATellite-3 collected Radio Occultation profiles is carried out to assess the validity of the proposed method and to investigate which of the considered topside profiles is the best one. The α-Chapman topside function displays the best performance compared to the others and also when compared to the NeQuick topside option of IRI.

  20. UTa 2O(S 2) 3Cl 6: A ribbon structure containing a heterobimetallic 5 d-5 f M 3 cluster

    NASA Astrophysics Data System (ADS)

    Wells, Daniel M.; Chan, George H.; Ellis, Donald E.; Ibers, James A.

    2010-02-01

    A new solid-state compound containing a heterobimetallic cluster of U and Ta, UTa 2O(S 2) 3Cl 6, has been synthesized and its structure has been characterized by single-crystal X-ray diffraction methods. UTa 2O(S 2) 3Cl 6 was synthesized from UCl 4 and Ta 1.2S 2 at 883 K. The O is believed to have originated in the Ta 1.2S 2 reactant. The compound crystallizes in the space group P1¯ of the triclinic system. The structure comprises a UTa 2 unit bridged by μ 2-S 2 and μ 3-O groups. Each Ta atom bonds to two μ 2-S 2, the μ 3-O, and two terminal Cl atoms. Each U atom bonds to two μ 2-S 2, the μ 3-O, and four Cl atoms. The Cl atoms bridge in pairs to neighboring U atoms to form a ribbon structure. The bond distances are normal and are consistent with formal oxidation states of +IV/+V/-II/-I/-I for U/Ta/O/S/Cl, respectively. The optical absorbance spectrum displays characteristic transition peaks near the absorption edge. Density functional theory was used to assign these peaks to transitions between S 1- valence-band states and empty U 5 f-6 d hybrid bands. Density-of-states analysis shows overlap between Ta 5 d and U bands, consistent with metal-metal interactions.

  1. Upper atmosphere and ionosphere of Mars.

    PubMed

    Donahue, T M

    1966-05-06

    It is argued that the single-layer ionosphere at 125 kilometers discovered in the Mariner IV occultation experiment is an Fl region coinciding with the ultraviolet photoionization peak. The CO(2) density there must be of the order of 10(11) molecules per cubic centimeter. Such a density is consistent with the properties of the lower atmosphere by Mariner IV anid the temperature model of Chamberlain and McElroy if the atmosphere is mainly CO(2) below 70 kilometers. The absence of an F2 region can be explained even if the density ratio of O to CO(2) is 100 at 230 kilometers on the basis of the rapid conversion of O(+) to O(2) by CO(2). Thus a model with an exospheric temperature of 400 degrees K, a modest degree of CO(2) dissociation, and diffusive separation above 70 kilometers is possible.

  2. Investigation of room temperature UV emission of ZnO films with different defect densities induced by laser irradiation.

    PubMed

    Zhao, Yan; Jiang, Yijian

    2010-08-01

    We studied the room temperature UV emission of ZnO films with different defect densities which is fabricated by KrF laser irradiation process. It is shown room temperature UV photoluminescence of ZnO film is composed of contribution from free-exciton (FX) recombination and its longitudinal-optical phonon replica (FX-LO) (1LO, 2LO). With increase of the defect density, the FX emission decreased and FX-LO emission increased dramatically; and the relative strengths of FX to FX-LO emission intensities determine the peak position and intensity of UV emission. What is more, laser irradiation with moderate energy density could induce the crystalline ZnO film with very flat and smooth surface. This investigation indicates that KrF laser irradiation could effectively modulate the exciton emission and surface morphology, which is important for the application of high performance of UV emitting optoelectronic devices. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor prepared by sol-gel method.

    PubMed

    Pan, Heng; Li, Xu; Zhang, Jinping; Guan, Li; Su, Hongxin; Yang, Zhiping; Teng, Feng

    2016-07-04

    A series of Eu2+ (0.0025≤ × ≤0.025) activated Sr2SiO4:xEu2+ (SSO:xEu2+) phosphors were synthesized via a sol-gel method. The phosphors were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. The differences between α' and β phase of SSO in the density of states and energy band gap were investigated. The energy gap of α'-SSO and β-SSO are 4.489 and 4.106 eV, respectively. While, two samples showed similar total and partial densities of states. Under the excitation by the ultra violet (UV) light (365 nm), the SSO:xEu2+ phosphor exhibited a green emission band from 400 to 700 nm, which was corresponding to the transition of 5d → 4f of Eu2+ ions. Two emission peaks at 464 and 532 nm could be obtained through Gauss fitting curves. The ratio of the blue to green emission peak decreased with the Eu2+ concentration and the peaks shifted regularly with it. The thermal quenching property was investigated and its activation energy was calculated. The results indicated that this phosphor could be a candidate of green phosphor for UV-based light-emitting diodes (LEDs).

  4. Protein quantification on dendrimer-activated surfaces by using time-of-flight secondary ion mass spectrometry and principal component regression

    NASA Astrophysics Data System (ADS)

    Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol

    2008-12-01

    Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.

  5. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  6. Temperature-dependence of L-type Ca(2+) current in ventricular cardiomyocytes of the Alaska blackfish (Dallia pectoralis).

    PubMed

    Kubly, Kerry L; Stecyk, Jonathan A W

    2015-12-01

    To lend insight into the overwintering strategy of the Alaska blackfish (Dallia pectoralis), we acclimated fish to 15 or 5 °C and then utilized whole-cell patch clamp to characterize the effects of thermal acclimation and acute temperature change on the density and kinetics of ventricular L-type Ca(2+) current (I Ca). Peak I Ca density at 5 °C (-1.1 ± 0.1 pA pF(-1)) was 1/8th that at 15 °C (-8.8 ± 0.6 pA pF(-1)). However, alterations of the Ca(2+)- and voltage-dependent inactivation properties of L-type Ca(2+) channels partially compensated against the decrease. The time constant tau (τ) for the kinetics of inactivation of I Ca was ~4.5 times greater at 5 °C than at 15 °C, and the voltage for half-maximal inactivation was shifted from -23.3 ± 1.0 mV at 15 °C to -19.8 ± 1.2 mV at 5 °C. These modifications increase the open probability of the channel and culminate in an approximate doubling of the L-type Ca(2+) window current, which contributes to approximately 15% of the maximal Ca(2+) conductance at 5 °C. Consequently, the charge density of I Ca (Q Ca) and the total Ca(2+) transferred through the L-type Ca(2+) channels (Δ[Ca(2+)]) were not as severely reduced at 5 °C as compared to peak I Ca density. In combination, the results suggest that while the Alaska blackfish substantially down-regulates I Ca with acclimation to low temperature, there is sufficient compensation in the kinetics of the L-type Ca(2+) channel to support the level of cardiac performance required for the fish to remain active throughout the winter.

  7. Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new Global Navigation Satellite Systems-LEO occultation missions

    NASA Astrophysics Data System (ADS)

    Hernández-Pajares, Manuel; Garcia-Fernández, Miquel; Rius, Antonio; Notarpietro, Riccardo; von Engeln, Axel; Olivares-Pulido, Germán.; Aragón-Àngel, Àngela; García-Rigo, Alberto

    2017-08-01

    The new radio-occultation (RO) instrument on board the future EUMETSAT Polar System-Second Generation (EPS-SG) satellites, flying at a height of 820 km, is primarily focusing on neutral atmospheric profiling. It will also provide an opportunity for RO ionospheric sounding, but only below impact heights of 500 km, in order to guarantee a full data gathering of the neutral part. This will leave a gap of 320 km, which impedes the application of the direct inversion techniques to retrieve the electron density profile. To overcome this challenge, we have looked for new ways (accurate and simple) of extrapolating the electron density (also applicable to other low-Earth orbiting, LEO, missions like CHAMP): a new Vary-Chap Extrapolation Technique (VCET). VCET is based on the scale height behavior, linearly dependent on the altitude above hmF2. This allows extrapolating the electron density profile for impact heights above its peak height (this is the case for EPS-SG), up to the satellite orbital height. VCET has been assessed with more than 3700 complete electron density profiles obtained in four representative scenarios of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in the United States and the Formosa Satellite Mission 3 (FORMOSAT-3) in Taiwan, in solar maximum and minimum conditions, and geomagnetically disturbed conditions, by applying an updated Improved Abel Transform Inversion technique to dual-frequency GPS measurements. It is shown that VCET performs much better than other classical Chapman models, with 60% of occultations showing relative extrapolation errors below 20%, in contrast with conventional Chapman model extrapolation approaches with 10% or less of the profiles with relative error below 20%.

  8. Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Rong, Mingzhe; Wang, Xiaohua; Wu, Junhui; Han, Guiquan; Han, Guohui; Lu, Yanhui; Yang, Aijun; Wu, Yi

    2017-07-01

    C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat) are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity) are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat) and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity), while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.

  9. Fast Faraday fading of long range satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.

  10. Ionospheric tomography over South Africa: Comparison of MIDAS and ionosondes measurements

    NASA Astrophysics Data System (ADS)

    Giday, Nigussie M.; Katamzi, Zama T.; McKinnell, Lee-Anne

    2016-01-01

    This paper aims to show the results of an ionospheric tomography algorithm called Multi-Instrument Data Analysis System (MIDAS) over the South African region. Recorded data from a network of 49-53 Global Positioning System (GPS) receivers over the South African region was used as input for the inversion. The inversion was made for April, July, October and December representing the four distinct seasons (Autumn, Winter, Spring and Summer respectively) of the year 2012. MIDAS reconstructions were validated by comparing maximum electron density of the F2 layer (NmF2) and peak height (hmF2) values predicted by MIDAS to those derived from three South African ionosonde measurements. The diurnal and seasonal trends of the MIDAS NmF2 values were in good agreement with the respective NmF2 values derived from the ionosondes. In addition, good agreement was found between the two measurements with minimum and maximum coefficients of determination (r2) between 0.84 and 0.96 in all the stations and validation days. The seasonal trend of the NmF2 values over the South Africa region has been reproduced using this inversion which was in good agreement with the ionosonde measurements. Moreover, a comparison of the International Reference Ionosphere (IRI-2012) model NmF2 values with the respective ionosonde derived NmF2 values showed to have higher deviation than a similar comparison between the MIDAS reconstruction and the ionosonde measurements. However, the monthly averaged hmF2 values derived from IRI 2012 model showed better agreement than the respective MIDAS reconstructed hmF2 values compared with the ionosonde derived hmF2 values.The performance of the MIDAS reconstruction was observed to deteriorate with increased geomagnetic conditions. MIDAS reconstructed electron density were slightly elevated during three storm periods studied (24 April, 15 July and 8 October) which was in good agreement with the ionosonde measurements.

  11. Investigation of the Electron Density Variation During the 21 August 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Dandenault, P. B.; Galkin, I. A.; Hamel, R.; Richards, P. G.

    2018-02-01

    This paper presents a comparison of modeled and measured electron densities for the 21 August 2017 solar eclipse across the USA. The location of the instrument was (43.81°N, 247.32°E) where the maximum obscuration of 99.6% occurred at 17.53 hr UT on 21 August. The solar apparent time was 9.96 hr, and the duration of the eclipse was 2.7 hr. It was found that if it is assumed that there are no chromosphere emissions at totality, 30% coronal emission remaining at totality gave the best fit to the electron density variation at 150 km. The 30% coronal emission estimate has uncertainties associated with respect to uncertainties in the solar spectrum, the measured electron density, and the amount of chromosphere emissions remaining at totality. The agreement between the modeled and measured electron densities is excellent at 150 km with the assumed 30% coronal emission at totality. At other altitudes, the agreement is very good, but the altitude profile would be improved if the model peak electron density (NmF2) decayed more slowly to better match the data. The minimum NmF2 in the model occurs 10 min after totality when it decreases to 0.55 from its noneclipse value. The minimum of the NmF2 data occurs between 6 and 10 min after totality but is 15% larger. The total electron content decreases to 0.65 of its preeclipse value. These relative changes agree well with those predicted by others prior to the eclipse.

  12. The imprint of f(R) gravity on weak gravitational lensing - II. Information content in cosmic shear statistics

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Nishimichi, Takahiro; Li, Baojiu; Higuchi, Yuichi

    2017-04-01

    We investigate the information content of various cosmic shear statistics on the theory of gravity. Focusing on the Hu-Sawicki-type f(R) model, we perform a set of ray-tracing simulations and measure the convergence bispectrum, peak counts and Minkowski functionals. We first show that while the convergence power spectrum does have sensitivity to the current value of extra scalar degree of freedom |fR0|, it is largely compensated by a change in the present density amplitude parameter σ8 and the matter density parameter Ωm0. With accurate covariance matrices obtained from 1000 lensing simulations, we then examine the constraining power of the three additional statistics. We find that these probes are indeed helpful to break the parameter degeneracy, which cannot be resolved from the power spectrum alone. We show that especially the peak counts and Minkowski functionals have the potential to rigorously (marginally) detect the signature of modified gravity with the parameter |fR0| as small as 10-5 (10-6) if we can properly model them on small (˜1 arcmin) scale in a future survey with a sky coverage of 1500 deg2. We also show that the signal level is similar among the additional three statistics and all of them provide complementary information to the power spectrum. These findings indicate the importance of combining multiple probes beyond the standard power spectrum analysis to detect possible modifications to general relativity.

  13. Faraday rotation measurements at Ootacamund

    NASA Technical Reports Server (NTRS)

    Sethia, G.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.

    1978-01-01

    The results of Faraday rotation measurements made at Ootacamund during ATS-6 phase II are presented. For summer and equinoctial months, even though no clear noon bite-out is observed in the variation of Faraday a decrease is observed in the rate of increase of rotation around 0900-1000 hours LT. This is attributed to the 'fountain effect' which is responsible for the noontime bite-out in F2-region peak electron density.

  14. Opposite Latitudinal Dependence of the Premidnight and Postmidnight Oscillations in the Electron Density of Midlatitude F Layer

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, Jin; Zhang, Shaodong; Deng, Zhongxin; Zhong, Dingkun; Wu, Chen; Jin, Han; Li, Yaxian

    2018-01-01

    The dense observation points of the oblique-incidence ionosonde network in North China make it possible to discover the ionospheric regional variations with relatively high spatial resolution. The ionosonde network and the Beijing digisonde are used to investigate the ionospheric nighttime oscillations in January and February 2011. The electron density enhancements occurring before and after midnight present the obvious opposite latitudinal dependence in the time-latitude maps, which are composed by the differential critical frequency of F2 layer. The premidnight enhancements (PRMEs) appeared earlier in the north and then moved to south. The postmidnight enhancements (POMEs) did the opposite. The data analysis shows that the PRME was a part of the large-scale traveling ionospheric disturbance (LSTID), which may be produced by gravity waves. The southward propagation of the LSTIDs is considered to form the positive latitudinal dependence of the wave peaks and troughs. The postmidnight F layer oscillation was composed by a single enhancement and a single decline following it. The westward electric field-induced E × B drift, which pushed the F layer to lower altitudes with higher recombination loss, was most likely to compress the plasma and produce the POMEs. Along with the continuously dropping of the layer, the recombination loss exceeded the density increase due to the compression effect and then the electron density decline appeared.

  15. Characterization of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.

    2011-10-01

    Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.

  16. Optical investigation of BaFe2(As0.77P0.23)2 : Spin-fluctuation-mediated superconductivity under pressure

    NASA Astrophysics Data System (ADS)

    Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.

    2017-06-01

    Temperature-dependent reflectivity measurements in the frequency range 75-8000 cm-1 were performed on BaFe2(As0.77P0.23)2 single crystals under pressure up to ˜5 GPa . The obtained optical conductivity spectra have been analyzed to extract the electron-boson spectral density α2F (Ω ) . A sharp resonance peak was observed in α2F (Ω ) upon the superconducting transition, persisting throughout the applied pressure range. The energy and temperature dependences of this peak are consistent with the superconducting gap opening. Furthermore, several similarities with other experimental probes such as inelastic neutron scattering (INS) [D. S. Inosov et al., Nat. Lett. 6, 178 (2010), 10.1038/nphys1483] give evidence for the coupling to a bosonic mode, possibly due to spin fluctuations. Moreover, electronic correlations have been calculated via spectral weight analysis, which revealed that the system stays in the strongly correlated regime throughout the applied pressure range. However, a comparison to the parent compound showed that the electronic correlations are slightly decreased with P doping. The investigation of the phase diagram obtained by our optical study under pressure also revealed the coexistence of the spin-density wave and the superconducting regions, where the coexistence region shifts to the lower pressure range with increasing P content. Moreover, the optimum pressure range, where the highest superconducting transition temperature has been obtained, shows a nonlinear decrease with increasing P content.

  17. Free flux flow in two single crystals of V3Si with differing pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2011-10-01

    Results of measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data have confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual electrical resistivity ratio, (ii) very low critical current densities Jc, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted down for the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). Large Lorentz forces are applied on mixed-state vortices via large currents, in order to induce the highly ordered free flux flow (FFF) phase, using experimental methods developed previously. The traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H) ˜ H/Hc2, presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes into account the effects of magnetic field on core size, and predict a clear deviation from the linear BS dependence. In this study, ρf(H) is confirmed to be consistent with predictions of KZ.

  18. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  19. The International Reference Ionosphere: Model Update 2016

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir

    2016-04-01

    The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.

  20. Gamma-glutamyltransferase fractions in human plasma and bile: characteristic and biogenesis.

    PubMed

    Fornaciari, Irene; Fierabracci, Vanna; Corti, Alessandro; Aziz Elawadi, Hassan; Lorenzini, Evelina; Emdin, Michele; Paolicchi, Aldo; Franzini, Maria

    2014-01-01

    Total plasma gamma-glutamyltransferase (GGT) activity is a sensitive, non-specific marker of liver dysfunction. Four GGT fractions (b-, m-, s-, f-GGT) were described in plasma and their differential specificity in the diagnosis of liver diseases was suggested. Nevertheless fractional GGT properties have not been investigated yet. The aim of this study was to characterize the molecular nature of fractional GGT in both human plasma and bile. Plasma was obtained from healthy volunteers; whereas bile was collected from patients undergoing liver transplantation. Molecular weight (MW), density, distribution by centrifugal sedimentation and sensitivity to both detergent (deoxycholic acid) and protease (papain) were evaluated. A partial purification of b-GGT was obtained by ultracentrifugation. Plasma b-GGT fraction showed a MW of 2000 kDa and a density between 1.063-1.210 g/ml. Detergent converted b-GGT into s-GGT, whereas papain alone did not produce any effect. Plasma m-GGT and s-GGT showed a MW of 1,000 and 200 kDa, and densities between 1.006-1.063 g/ml and 1.063-1.210 g/ml respectively. Both fractions were unaffected by deoxycholic acid, while GGT activity was recovered into f-GGT peak after papain treatment. Plasma f-GGT showed a MW of 70 kDa and a density higher than 1.21 g/ml. We identified only two chromatographic peaks, in bile, showing similar characteristics as plasma b- and f-GGT fractions. These evidences, together with centrifugal sedimentation properties and immunogold electronic microscopy data, indicate that b-GGT is constituted of membrane microvesicles in both bile and plasma, m-GGT and s-GGT might be constituted of bile-acid micelles, while f-GGT represents the free-soluble form of the enzyme.

  1. Performance evaluation of GIM-TEC assimilation of the IRI-Plas model at two equatorial stations in the American sector

    NASA Astrophysics Data System (ADS)

    Adebiyi, S. J.; Adebesin, B. O.; Ikubanni, S. O.; Joshua, B. W.

    2017-05-01

    Empirical models of the ionosphere, such as the International Reference Ionosphere (IRI) model, play a vital role in evaluating the environmental effect on the operation of space-based communication and navigation technologies. The IRI extended to Plasmasphere (IRI-Plas) model can be adjusted with external data to update its electron density profile while still maintaining the overall integrity of the model representations. In this paper, the performance of the total electron content (TEC) assimilation option of the IRI-Plas at two equatorial stations, Jicamarca, Peru (geographic: 12°S, 77°W, dip angle 0.8°) and Cachoeira Paulista, Brazil (Geographic: 22.7°S, 45°W, dip angle -26°), is examined during quiet and disturbed conditions. TEC, F2 layer critical frequency (foF2), and peak height (hmF2) predicted when the model is operated without external input were used as a baseline in our model evaluation. Results indicate that TEC predicted by the assimilation option generally produced smaller estimation errors compared to the "no extra input" option during quiet and disturbed conditions. Generally, the error is smaller at the equatorial trough than near the crest for both quiet and disturbed days. With assimilation option, there is a substantial improvement of storm time estimations when compared with quiet time predictions. The improvement is, however, independent on storm's severity. Furthermore, the modeled foF2 and hmF2 are generally poor with TEC assimilation, particularly the hmF2 prediction, at the two locations during both quiet and disturbed conditions. Consequently, IRI-Plas model assimilated with TEC value only may not be sufficient where more realistic instantaneous values of peak parameters are required.

  2. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  3. Similar Scaling Relations for the Gas Content of Galaxies Across Environments to z ∼ 3.5

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Scoville, Nick Z.; Martin, Christopher; Mobasher, Bahram; Diaz-Santos, Tanio; Shen, Lu

    2018-06-01

    We study the effects of the local environment on the molecular gas content of a large sample of log(M */M ⊙) ≳ 10 star-forming and starburst galaxies with specific star formation rates (sSFRs) on and above the main sequence (MS) to z ∼ 3.5. ALMA observations of the dust continuum in the COSMOS field are used to estimate molecular gas masses at z ≈ 0.5–3.5. We also use a local universe sample from the ALFALFA H I survey after converting it into molecular masses. The molecular mass (M ISM) scaling relation shows a dependence on z, M *, and sSFR relative to the MS, but no dependence on environmental overdensity Δ(M ISM ∝ Δ0.03). Similarly, gas mass fraction (f gas) and depletion timescale (τ) show no environmental dependence to z ∼ 3.5. At < z> ∼ 1.8, the average < {M}ISM}> , < {f}gas}> , and < τ > in densest regions is (1.6 ± 0.2) × 1011 M ⊙, 55 ± 2%, and 0.8 ± 0.1 Gyr, respectively, similar to those in the lowest density bin. Independent of the environment, f gas decreases and τ increases with increasing cosmic time. Cosmic molecular mass density (ρ) in the lowest density bins peaks at z ∼ 1–2, and this peak happens at z < 1 in densest bins. This differential evolution of ρ across environments is likely due to the growth of the large-scale structure with cosmic time. Our results suggest that the molecular gas content and the subsequent star formation activity of log(M */M ⊙) ≳ 10 star-forming and starburst galaxies is primarily driven by internal processes, and not by their local environment since z ∼ 3.5.

  4. Nonlinear acoustic experiments involving landmine detection: A connection between mesoscopic/nanoscale effects in geomaterials

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.

    2004-05-01

    The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like rocks (sandstone) or granular materials. Experiments are performed with an inert VS 1.6 anti-tank mine that is buried 3.6 cm deep in dry sifted loess soil. Airborne sound at two primary frequencies f1=120 Hz and f2=130 Hz undergo acoustic-to-seismic coupling. Interactions with the compliant mine and soil generate combination frequencies that, through scattering, can affect the vibration velocity at the surface. Profiles of the soil surface particle velocity at f1 and f2 and the nonlinearly generated f1-(f2-f1) component are characterized by a single peak. Doubly peaked profiles at 2f1+f2 and 2f2+f1 are attributed to the familiar mode shape of a timpani drum. Near resonance, the bending (a softening) of a family of tuning curves for the soil surface vibration over a landmine exhibits a linear relationship between the peak frequency and the corresponding peak particle velocity, which also exhibit hysteresis effects. [Work supported by U.S. Army Communications-Electronics Command RDEC, NVESD, Fort Belvoir, VA.

  5. Estimation of the characteristic parameters of the multilayered film model using the patterson differential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf'ev, S. B., E-mail: webmaster@ns.crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    The possibility of estimating the layered film structural parameters by constructing the autocorrelation function P{sub F}(z) (referred to as the Patterson differential function) for the derivative d{rho}/dz of electron density along the normal to the sample surface has been considered. An analytical expression P{sub F}(z) is presented for a multilayered film within the box model of the electron density profile. The possibilities of selecting structural information about layered films by analyzing the features of this function are demonstrated by model and real examples, in particular, by applying the method of shifted systems of peaks for the function P{sub F}(z).

  6. Resistance Switching Memory Characteristics of Si/CaF2/CdF2 Quantum-Well Structures Grown on Metal (CoSi2) Layer

    NASA Astrophysics Data System (ADS)

    Denda, Junya; Uryu, Kazuya; Watanabe, Masahiro

    2013-04-01

    A novel scheme of resistance switching random access memory (ReRAM) devices fabricated using Si/CaF2/CdF2/CaF2/Si quantum-well structures grown on metal CoSi2 layer formed on a Si substrate has been proposed, and embryonic write/erase memory operation has been demonstrated at room temperature. It has been found that the oxide-mediated epitaxy (OME) technique for forming the CoSi2 layer on Si dramatically improves the stability and reproducibility of the current-voltage (I-V) curve. This technology involves 10-nm-thick Co layer deposition on a protective oxide prepared by boiling in a peroxide-based solution followed by annealing at 550 °C for 30 min for silicidation in ultrahigh vacuum. A switching voltage of lower than 1 V, a peak current density of 32 kA/cm2, and an ON/OFF ratio of 10 have been observed for the sample with the thickness sequence of 0.9/0.9/2.5/0.9/5.0 nm for the respective layers in the Si/CaF2/CdF2/CaF2/Si structure. Results of surface morphology analysis suggest that the grain size of crystal islands with flat surfaces strongly affects the quality of device characteristics.

  7. ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Corey; Pudritz, Ralph; Klessen, Ralf

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction ( f {sub esc}) arising as a consequence of star cluster formation in a turbulent, 10{sup 6} M {sub ⊙} giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloudmore » boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f {sub esc} of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and f {sub esc} drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average f {sub esc} of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for f {sub esc} from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.« less

  8. High Confinement and High Density with Stationary Plasma Energy and Strong Edge Radiation Cooling in Textor-94

    NASA Astrophysics Data System (ADS)

    Messiaen, A. M.

    1996-11-01

    A new discharge regime has been observed on the pumped limiter tokamak TEXTOR-94 in the presence of strong radiation cooling and for different scenarii of additional hearing. The radiated power fraction (up to 90%) is feedback controlled by the amount of Ne seeded in the edge. This regime meets many of the necessary conditions for a future fusion reactor. Energy confinement increases with increasing densities (reminiscent of the Z-mode obtained at ISX-B) and as good as ELM-free H-mode confinement (enhancement factor verus ITERH93-P up to 1.2) is obtained at high densities (up to 1.2 times the Greenwald limit) with peaked density profiles showing a peaking factor of about 2 and central density values around 10^14cm-3. In experiments where the energy content of the discharges is kept constant with an energy feedback loop acting on the amount of ICRH power, stable and stationary discharges are obtained for intervals of more than 5s, i.e. 100 times the energy confinement time or about equal to the skin resistive time, even with the cylindrical q_α as low as 2.8 β-values up to the β-limits of TEXTOR-94 are achieved (i.e. β n ≈ 2 of and β p ≈ 1.5) and the figure of merit for ignition margin f_Hqa in these discharges can be as high as 0.7. No detrimental effects of the seeded impurity on the reactivity of the plasma are observed. He removal in these discharges has also been investigated. [1] Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association "EURATOM-Belgian State", Ecole Royale Militaire-Koninklijke Militaire School, Brussels, Belgium [2] Institut für Plasmaphysik, Forschungszentrum Jülich, GmbH, Association "EURATOM-KFA", Jülich, Germany [3] Fusion Energy Research Program, Mechanical Engineering Division, University of California at San Diego, La Jolla, USA [4] FOM Institüt voor Plasmafysica Rijnhuizen, Associatie "FOM-EURATOM", Nieuwegein, The Netherlands [*] Researcher at NFSR, Belgium itemize

  9. Electroencephalography Spectral Power Density in First-Episode Mania: A Comparative Study with Subsequent Remission Period.

    PubMed

    Güven, Sertaç; Kesebir, Sermin; Demirer, R Murat; Bilici, Mustafa

    2015-06-01

    Our aim in this study was to investigate spectral power density (PSD) in first-episode mania and subsequent remission period and to evaluate their difference. Sixty-nine consecutive cases referring to our hospital within the previous 1 year, who were evaluated as bipolar disorder manic episode according to The Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) at the first episode and had the informed consent form signed by first degree relatives, were included in this study. Exclusion criteria included having previous depressive episode, using drugs which could influence electroencephalographic activity before electroencephalography (EEG), and having previous neurological disease, particularly epilepsy, head trauma, and/or loss of consciousness. EEG records were obtained using a digital device in 16 channels; 23 surface electrodes were placed according to the International 10-20 system. Spectral power density (dbμV/Hz) of EEG signal provided information on the power carried out by EEG waves in defined frequancy range per unit frequency in the present study. A peak power value detected on the right with FP2P4 and on the left with F7T3 electrodes were found to be higher in the manic episode than in the remission period (p=0.018 and 0.025). In the remission period, in cases with psychotic symptoms during the manic period, F4C4 peak power value was found to be lower than that in cases with no psychotic findings during the manic period (p=0.027). There was no relation was found between YMRS scores and peak power scores. Electrophysiological corollary of mood episode is present from the onset of the disease, and it differs between the manic and remission periods of bipolar disorder. In the remission period, peak power values of PSD distinguish cases with psychotic findings from cases without psychotic findings when they were manic.

  10. Optimized in vivo detection of dopamine release using 18F-fallypride PET.

    PubMed

    Ceccarini, Jenny; Vrieze, Elske; Koole, Michel; Muylle, Tom; Bormans, Guy; Claes, Stephan; Van Laere, Koen

    2012-10-01

    The high-affinity D(2/3) PET radioligand (18)F-fallypride offers the possibility of measuring both striatal and extrastriatal dopamine release during activation paradigms. When a single (18)F-fallypride scanning protocol is used, task timing is critical to the ability to explore both striatal and extrastriatal dopamine release simultaneously. We evaluated the sensitivity and optimal timing of task administration for a single (18)F-fallypride PET protocol and the linearized simplified reference region kinetic model in detecting both striatal and extrastriatal reward-induced dopamine release, using human and simulation studies. Ten healthy volunteers underwent a single-bolus (18)F-fallypride PET protocol. A reward responsiveness learning task was initiated at 100 min after injection. PET data were analyzed using the linearized simplified reference region model, which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, reflecting task-induced D(2/3) ligand displacement, and volume-of-interest-based analysis were performed to localize areas with increased ligand displacement after task initiation, thought to be proportional to changes in endogenous dopamine release (γ parameter). Simulated time-activity curves for baseline and hypothetical dopamine release functions (different peak heights of dopamine and task timings) were generated using the enhanced receptor-binding kinetic model to investigate γ as a function of these parameters. The reward task induced increased ligand displacement in extrastriatal regions of the reward circuit, including the medial orbitofrontal cortex, ventromedial prefrontal cortex, and dorsal anterior cingulate cortex. For task timing of 100 min, ligand displacement was found for the striatum only when peak height of dopamine was greater than 240 nM, whereas for frontal regions, γ was always positive for all task timings and peak heights of dopamine. Simulation results for a peak height of dopamine of 200 nM showed that an effect of striatal ligand displacement could be detected only when task timing was greater than 120 min. The prefrontal and anterior cingulate cortices are involved in reward responsiveness that can be measured using (18)F-fallypride PET in a single scanning session. To measure both striatal and extrastriatal dopamine release, the height of dopamine released and task timing need to be considered in designing activation studies depending on regional D(2/3) density.

  11. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion

    NASA Astrophysics Data System (ADS)

    Rishbeth, H.; Müller-Wodarg, I. C. F.; Zou, L.; Fuller-Rowell, T. J.; Millward, G. H.; Moffett, R. J.; Idenden, D. W.; Aylward, A. D.

    2000-08-01

    The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2) at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP), without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down) motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs at high geographic latitudes, where the zenith angle effect becomes overwhelming and causes a midwinter depression of electron density, despite the enhanced atomic/molecular ratio. This leads to a semiannual variation of NmF2. A different situation exists in winter at longitudes near the magnetic poles, where the downwelling occurs at relatively low geographic latitudes so that solar radiation is strong enough to produce large values of NmF2. This circulation-driven mechanism provides a reasonably complete explanation of the observed pattern of F2 layer annual and semiannual quiet-day variations.

  12. MAVEN observations of dayside peak electron densities in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.

    2017-01-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.

  13. Global features of ionospheric slab thickness derived from JPL TEC and COSMIC observations

    NASA Astrophysics Data System (ADS)

    Huang, He; Liu, Libo

    2016-04-01

    The ionospheric equivalent slab thickness (EST) is the ratio of total electron content (TEC) to F2-layer peak electron density (NmF2), describing the thickness of the ionospheric profile. In this study, we retrieve EST from Jet Propulsion Laboratory (JPL) TEC data and NmF2 retrieved from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ionospheric radio occultation data. The diurnal, seasonal and solar activity variations of global EST are analyzed as the excellent spatial coverage of JPL TEC and COSMIC data. During solstices, daytime EST in the summer hemisphere is larger than that in the winter hemisphere, except in some high-latitude regions; and the reverse is true for the nighttime EST. The peaks of EST often appear at 0400 local time. The pre-sunrise enhancement in EST appears in all seasons, while the post-sunset enhancement in EST is not readily observed in equinox. The dependence of EST on solar activity is very complicated. Furthermore, an interesting phenomenon is found that EST is enhanced from 0° to 120° E in longitude and 30° to 75° S in latitude during nighttime, just to the east of Weddell Sea Anomaly, during equinox and southern hemisphere summer.

  14. Effect of freeze-thaw cycling on grain size of biochar.

    PubMed

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.

  15. Effect of freeze-thaw cycling on grain size of biochar

    PubMed Central

    Dugan, Brandon; Masiello, Caroline A.; Wahab, Leila M.; Gonnermann, Helge M.; Nittrouer, Jeffrey A.

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle. PMID:29329343

  16. Phase Coupling Between Spectral Components of Collapsing Langmuir Solitons in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    We present the high time resolution observations of one of the Langmuir wave packets obtained in the source region of a solar type III radio burst. This wave packet satisfies the threshold condition of the supersonic modulational instability, as well as the criterion of a collapsing Langmuir soliton, i.e., the spatial scale derived from its peak intensity is less than that derived from its short time scale. The spectrum of t his wave packet contains an intense spectral peak at local electron plasma frequency, f(sub pe) and relatively weaker peaks at 2f(sub pe) and 3f(sub pe). We apply the wavelet based bispectral analysis technique on this wave packet and compute the bicoherence between its spectral components. It is found that the bicoherence exhibits two peaks at (approximately f(sub pe), approximately f(sub pe)) and (approximately f(sub pe) approximately 2f(sub pe)), which strongly suggest that the spectral peak at 2f(sub pe) probably corresponds to the second harmonic radio emission, generated as a result of the merging of antiparallel propagating Langmuir waves trapped in the collapsing Langmuir soliton, and, the spectral peak at 3f(sub pe) probably corresponds to the third harmonic radio emission, generated as a result of merging of a trapped Langmuir wave and a second harmonic electromagnetic wave.

  17. The Hubble Deep UV Legacy Survey (HDUV): Survey Overview and First Results

    NASA Astrophysics Data System (ADS)

    Oesch, Pascal; Montes, Mireia; HDUV Survey Team

    2015-08-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. Here, we present a new HST WFC3/UVIS program, the Hubble Deep UV (HDUV) legacy survey. The HDUV is a 132 orbit program to obtain deep imaging in two filters (F275W and F336W) over the two CANDELS Deep fields. We will cover ~100 arcmin2, reaching down to 27.5-28.0 mag at 5 sigma. By directly sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents the reduced data products and catalogs which will be released to the community.

  18. UTa{sub 2}O(S{sub 2}){sub 3}Cl{sub 6}: A ribbon structure containing a heterobimetallic 5d-5f M{sub 3} cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Daniel M.; Chan, George H.; Ellis, Donald E.

    2010-02-15

    A new solid-state compound containing a heterobimetallic cluster of U and Ta, UTa{sub 2}O(S{sub 2}){sub 3}Cl{sub 6}, has been synthesized and its structure has been characterized by single-crystal X-ray diffraction methods. UTa{sub 2}O(S{sub 2}){sub 3}Cl{sub 6} was synthesized from UCl{sub 4} and Ta{sub 1.2}S{sub 2} at 883 K. The O is believed to have originated in the Ta{sub 1.2}S{sub 2} reactant. The compound crystallizes in the space group P1-bar of the triclinic system. The structure comprises a UTa{sub 2} unit bridged by mu{sub 2}-S{sub 2} and mu{sub 3}-O groups. Each Ta atom bonds to two mu{sub 2}-S{sub 2}, the mu{submore » 3}-O, and two terminal Cl atoms. Each U atom bonds to two mu{sub 2}-S{sub 2}, the mu{sub 3}-O, and four Cl atoms. The Cl atoms bridge in pairs to neighboring U atoms to form a ribbon structure. The bond distances are normal and are consistent with formal oxidation states of +IV/+V/-II/-I/-I for U/Ta/O/S/Cl, respectively. The optical absorbance spectrum displays characteristic transition peaks near the absorption edge. Density functional theory was used to assign these peaks to transitions between S{sup 1-} valence-band states and empty U 5f-6d hybrid bands. Density-of-states analysis shows overlap between Ta 5d and U bands, consistent with metal-metal interactions. - The UTa2O(S2)3Cl6 cluster with completed coordination sphere around uranium« less

  19. Silicon nitride and silicon etching by CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu

    2016-07-15

    Silicon nitride (SiN, where Si:N ≠ 1:1) films low pressure-chemical vapor deposited on Si substrates, Si films on Ge on Si substrates, and p-Si samples were exposed to plasma beams emanating from CH{sub 3}F/O{sub 2} or CH{sub 3}F/CO{sub 2} inductively coupled plasmas. Conditions within the plasma beam source were maintained at power of 300 W (1.9 W/cm{sup 3}), pressure of 10 mTorr, and total gas flow rate of 10 sccm. X-ray photoelectron spectroscopy was used to determine the thicknesses of Si/Ge in addition to hydrofluorocarbon polymer films formed at low %O{sub 2} or %CO{sub 2} addition on p-Si and SiN. Polymer film thickness decreasedmore » sharply as a function of increasing %O{sub 2} or %CO{sub 2} addition and dropped to monolayer thickness above the transition point (∼48% O{sub 2} or ∼75% CO{sub 2}) at which the polymer etchants (O and F) number densities in the plasma increased abruptly. The C(1s) spectra for the polymer films deposited on p-Si substrates appeared similar to those on SiN. Spectroscopic ellipsometry was used to measure the thickness of SiN films etched using the CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams. SiN etching rates peaked near 50% O{sub 2} addition and 73% CO{sub 2} addition. Faster etching rates were measured in CH{sub 3}F/CO{sub 2} than CH{sub 3}F/O{sub 2} plasmas above 70% O{sub 2} or CO{sub 2} addition. The etching of Si stopped after a loss of ∼3 nm, regardless of beam exposure time and %O{sub 2} or %CO{sub 2} addition, apparently due to plasma assisted oxidation of Si. An additional GeO{sub x}F{sub y} peak was observed at 32.5 eV in the Ge(3d) region, suggesting deep penetration of F into Si, under the conditions investigated.« less

  20. Thermoluminescence solid-state nanodosimetry—the peak 5A/5 dosemeter

    PubMed Central

    Fuks, E.; Horowitz, Y. S.; Horowitz, A.; Oster, L.; Marino, S.; Rainer, M.; Rosenfeld, A.; Datz, H.

    2011-01-01

    The shape of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100) following 90Sr/90Y beta irradiation, previously demonstrated to be dependent on the cooling rate used in the 400°C pre-irradiation anneal, is shown to be dependent on ionisation density in both naturally cooled and slow-cooled samples. Following heavy-charged particle high-ionisation density (HID) irradiation, the temperature of composite peak 5 decreases by ∼5°C and the peak becomes broader. This behaviour is attributed to an increase in the relative intensity of peak 5a (a low-temperature satellite of peak 5). The relative intensity of peak 5a is estimated using a computerised glow curve deconvolution code based on first-order kinetics. The analysis uses kinetic parameters for peaks 4 and 5 determined from ancillary measurements resulting in nearly ‘single-glow peak’ curves for both the peaks. In the slow-cooled samples, owing to the increased relative intensity of peak 5a compared with the naturally cooled samples, the precision of the measurement of the 5a/5 intensity ratio is found to be ∼15 % (1 SD) compared with ∼25 % for the naturally cooled samples. The ratio of peak 5a/5 in the slow-cooled samples is found to increase systematically and gradually through a variety of radiation fields from a minimum value of 0.13±0.02 for 90Sr/90Y low-ionisation density irradiations to a maximum value of ∼0.8 for 20 MeV Cu and I ion HID irradiations. Irradiation by low-energy electrons of energy 0.1–1.5 keV results in values between 1.27 and 0.95, respectively. The increasing values of the ratio of peak 5a/5 with increasing ionisation density demonstrate the viability of the concept of the peak 5a/5 nanodosemeter and its potential in the measurement of average ionisation density in a ‘nanoscopic’ mass containing the trapping centre/luminescent centre spatially correlated molecule giving rise to composite peak 5. PMID:21149323

  1. [Sap flux density in response to rainfall pulses for Pinus tabuliformis and Hippophae rhamnoides from mixed plantation in hilly Loess Plateau].

    PubMed

    Lu, Sen Bao; Chen, Yun Ming; Tang, Ya Kun; Wu, Xu; Wen, Jie

    2017-11-01

    Thermal dissipation probe (TDP) was used to continuously measure the sap flux density (F d ) of Pinus tabuliformis and Hippophae rhamnoides individuals in hilly Loess Plateau, from June to October 2015, and the environmental factors, i.e., photosynthetic active radiation (PAR), water vapor pressure deficit (VPD), and soil water content (SWC), were simultaneously monitored to clarify the difference of rainfall utilization between the two tree species in a mixed plantation. Using the methods of a Threshold-delay model, stepwise multiple regression analyses, and partial correlation analyses, this paper studied the process of F d in these two species in response to the rainfall pulses and then determined the effects of environmental factors on F d . The results showed that, with the increase of rainfall, the response percentages of F d in both P. tabuliformis and H. rhamnoides increased at first but then decreased; specifically, in the range of 0-1 mm rainfall, the F d of P. tabuliformis (-16.3%) and H. rhamnoides (-6.3%) clearly decreased; in the range of 1-5 mm rainfall, the F d of P. tabuliformis decreased (-0.4%), whereas that of H. rhamnoides significantly increased (9.0%). The lower rainfall thresholds (R L ) of F d for P. tabuliformis and H. rhamnoides were 6.4 and 1.9 mm, respectively, with a corresponding time-lag (τ) of 1.96 and 1.67 days. In the pre-rainfall period, the peak time of F d of P. tabuliformis converged upon 12:00-12:30 (70%), while the F d of H. rhamnoides peaked twice, between 10:30 and 12:00 (48%) and again between 16:00 and 16:30 (30%). In the post-rainfall period, the peak time of F d of P. tabuliformis converged upon 11:00-13:00 (40%), while that of H. rhamnoides peaked twice, between 12:00 and 13:00 (52%) and again between 16:30 and 17:00 (24%). Among the environmental factors, the rank order of factors associated with the F d of both P. tabuliformis and H. rhamnoides was PAR>VPD, before rainfall. However, the rank order of factors influencing the F d of P. tabuliformis was PAR>VPD>0-20 cm SWC (SWC 0-20 ), whereas this order was different for H. rhamnoides: SWC 0-20 >PAR >VPD, after rainfall. This mixed plantation of P. tabuliformis and H. rhamnoides trees had a high stability of water utilization.

  2. ISO Technical Specification for the Ionosphere -IRI Recent Activities

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo; Tamara, Gulyaeva

    ISO Technical Specification TS 16457 recommends the International Reference Ionosphere (IRI) for the specification of ionospheric densities and temperatures. We review the latest develop-ments towards improving the IRI model and the newest version of the model IRI-2010. IRI-2010 includes several important improvements and additions. This presentation introduces these changes and discusses their benefits. The changes affect primarily the density profiles in the bottomside ionosphere and the density and height of the F2 peak, the point of highest density in the ionosphere. An important new addition to the model is the inclusion of auroral boundaries and their movement with magnetic activity. We will also discuss the status of other ongoing IRI activities and some of the recent applications of the IRI model. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.

  3. Disturbance in the Tropical Ionosphere and Earth Magnetic Field Mensured on the Magnetic Equator Caused by Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Almeida, Pedro; Sobral, José; Resende, Laysa; Marcos Denardini, Clezio; Carlotto Aveiro, Henrique

    The focus of the present work is to monitor the disturbances in the equatorial F region caused by magnetic storms and comparatively to observe possible effects caused by the storms in the earth magnetics field measured on the ground, aiming to establish the events time occurrence order. The motivation for this work is due to the diversity of phenomena of scientific interest, which are observed in this region and also are capable to disturbance the transionospheric communication. The monitoring on the ionospheric plasma variation in the F region during and after the magnetics storms can generate indications of magnetosphere - ionosphere coupling effects. For this study we have used F region parameters measured by digital sounder installed at the Observatório Espacial de São Lú (2.33° S; 44.20° W; -0.5° DIP): foF2 (critical frequency o a ıs of F layer), hmF2 (real height of electronic density F layer peak) and h'F (minimum virtual height of F layer). For monitoring the disturbance in the magnetic field we have studied the H- and Z-component of the Earth magnetic field measured by magnetometers installed in the same site. The results are presented and discussed.

  4. The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. K.; Seddon, A. B.; Ferrari, M.; Montagna, M.; Santos, L. F.; Almeida, R. M.

    2003-11-01

    We show that the structure of transparent oxy-fluoride glass-ceramics formed by heat treatment of glasses of typical composition 32(SiO2):9(AlO1.5):31.5(CdF2):18.5(PbF2): 5.5(ZnF2):3.5(ErF3) mol% consists of ~ 12 nm diameter, Er3+-doped, β-PbF2 nano-crystals embedded in a silica-based glass network and connected to it via non-bridging O and F anions, or fluorine linkages such as Pb-F-Cd and Pb-F-Zn. It is proposed that the glass network structure is mostly chain-like and dominated by Si(O,F)4 tetrahedra with two bridging O and two non-bridging O and/or F atoms (Q2 units). SiO4 tetrahedra with zero and one bridging O (Q0 and Q1 units, respectively) are also present in the glass structure, in the approximate proportion Q0:Q1:Q2 = 1:1:3, a characteristic which appears to be of primary importance. The flexible, chain-like glass-network, with many broken bonds, results in easy accommodation of the Er3+-doped PbF2 nano-crystals, which are grown by heat-treatment of the precursor glass. The boson peak in the Raman spectrum of the precursor glass decreases in intensity upon ceramming and is partly converted to narrow crystalline peaks at lower frequency, consistent with the precipitation of PbF2 crystalline nano-particles. It is suggested that the boson peak involves localized vibrations of broken or stretched Pb-F bonds. The mean free path for these vibrations increases with ceramming, which involves partial crystallization of the glass network, resulting in a shift of the boson peak vibrations to lower-frequency crystalline peaks.

  5. Bottom side profiles for two close stations at the southern crest of the EIA: Differences and comparison with IRI-2012 and NeQuick2 for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Perna, L.; Venkatesh, K.; Pillat, V. G.; Pezzopane, M.; Fagundes, P. R.; Ezquer, R. G.; Cabrera, M. A.

    2018-01-01

    Bottom side electron density profiles for two stations at the southern crest of the Equatorial Ionization Anomaly (EIA), São José dos Campos (23.1°S, 314.5°E, dip latitude 19.8°S; Brazil) and Tucumán (26.9°S, 294.6°E, dip latitude 14.0°S; Argentina), located at similar latitude and separated by only 20° in longitude, have been compared during equinoctial, winter and summer months under low (year 2008, minimum of the solar cycle 23/24) and high solar activity (years 2013-2014, maximum of the solar cycle 24) conditions. An analysis of parameters describing the bottom side part of the electron density profile, namely the peak electron density NmF2, the height hmF2 at which it is reached, the thickness parameter B0 and the shape parameter B1, is carried out. Further, a comparison of bottom side profiles and F-layer parameters with the corresponding outputs of IRI-2012 and NeQuick2 models is also reported. The variations of NmF2 at both stations reveal the absence of semi-annual anomaly for low solar activity (LSA), evidencing the anomalous activity of the last solar minimum, while those related to hmF2 show an uplift of the ionosphere for high solar activity (HSA). As expected, the EIA is particularly visible at both stations during equinox for HSA, when its strength is at maximum in the South American sector. Despite the similar latitude of the two stations upon the southern crest of the EIA, the anomaly effect is more pronounced at Tucumán than at São José dos Campos. The differences encountered between these very close stations suggest that in this sector relevant longitudinal-dependent variations could occur, with the longitudinal gradient of the Equatorial Electrojet that plays a key role to explain such differences together with the 5.8° separation in dip latitude between the two ionosondes. Furthermore at Tucumán, the daily peak value of NmF2 around 21:00 LT during equinox for HSA is in temporal coincidence with an impulsive enhancement of hmF2, showing a kind of "elastic rebound" under the action of the EIA. IRI-2012 and NeQuick2 bottom side profiles show significant deviations from ionosonde observations. In particular, both models provide a clear underestimation of the EIA strength at both stations, with more pronounced differences for Tucumán. Large discrepancies are obtained for the parameter hmF2 for HSA during daytime at São José dos Campos, where clear underestimations made by both models are observed. The shape parameter B0 is quite well described by the IRI-2012 model, with very good agreement in particular during equinox for both stations for both LSA and HSA. On the contrary, the two models show poor agreements with ionosonde data concerning the shape parameter B1.

  6. Inherent length-scales of periodic solar wind number density structures

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Kepko, L.; Spence, H. E.

    2008-07-01

    We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.

  7. Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data

    NASA Astrophysics Data System (ADS)

    Shubin, V. N.; Karpachev, A. T.; Tsybulya, K. G.

    2013-11-01

    We propose a global median model SMF2 (Satellite Model of the F2 layer) of the ionospheric F2-layer height maximum (hmF2), based on GPS radio-occultation data for low solar activity periods (F10.7A<80). The model utilizes data provided by GPS receivers onboard satellites CHAMP (~100,000 hmF2 values), GRACE (~70,000) and COSMIC (~2,000,000). The data were preprocessed to remove cases where the absolute maximum of the electron density lies outside the F2 region. Ground-based ionospheric sounding data were used for comparison and validation. Spatial dependence of hmF2 is modeled by a Legendre-function expansion. Temporal dependence, as a function of Universal Time (UT), is described by a Fourier expansion. Inputs of the model are: geographical coordinates, month and F10.7A solar activity index. The model is designed for quiet geomagnetic conditions (Kр=1-2), typical for low solar activity. SMF2 agrees well with the International Reference Ionosphere model (IRI) in those regions, where the ground-based ionosonde network is dense. Maximal difference between the models is found in the equatorial belt, over the oceans and the polar caps. Standard deviations of the radio-occultation and Digisonde data from the predicted SMF2 median are 10-16 km for all seasons, against 13-29 km for IRI-2012. Average relative deviations are 3-4 times less than for IRI, 3-4% against 9-12%. Therefore, the proposed hmF2 model is more accurate than IRI-2012.

  8. Periodic Variations in Low-Latitudinal Ionosphere during Stratospheric Sudden Warming Event in 2016/2017 Winter

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, D.

    2017-12-01

    With datasets of electron density, neutral wind, ionosonde, neutral temperature, and geomagnetism, we studied the low-latitudinal ionosphere in East-Asia sector during Stratospheric Sudden Warming (SSW) Event in 2016/2017 winter, and some periodic variations in several parameters were revealed. A notable quasi-14.5-day (Q14.5D) period was detected in the strength and location of the northern equatorial ionospheric anomaly (EIA) crest shown with total electron content (TEC). As comparison, northern EIA crest in the American sector had similar characters. With data from Wuhan meteor radar and Yunnan MF radar, we found that, within altitude ranging from 80-100 km, wind field also showed above-mentioned periodic variation, which varied in different heights and stations. The Q14.5D period was also revealed in critical frequency (foF2) and peak altitude (hmF2) of F2 layer from two ionosonde stations in southern China. From electron density of Defense Meteorological Satellite Program (DMSP) and TEC of Metop-A, it was shown that this period component is also noticeable in the topside ionosphere above 800 km. However, this character is different in EEJ, of which the Morlet wavelet showed higher strength in quasi-7.5-day period compared to its Q14.5D component.

  9. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Gulick, S. P. S.; Morgan, J. V.; Gebhardt, C.; Kring, D. A.; Le Ber, E.; Lofi, J.; Nixon, C.; Poelchau, M.; Rae, A. S. P.; Rebolledo-Vieyra, M.; Riller, U.; Schmitt, D. R.; Wittmann, A.; Bralower, T. J.; Chenot, E.; Claeys, P.; Cockell, C. S.; Coolen, M. J. L.; Ferrière, L.; Green, S.; Goto, K.; Jones, H.; Lowery, C. M.; Mellett, C.; Ocampo-Torres, R.; Perez-Cruz, L.; Pickersgill, A. E.; Rasmussen, C.; Sato, H.; Smit, J.; Tikoo, S. M.; Tomioka, N.; Urrutia-Fucugauchi, J.; Whalen, M. T.; Xiao, L.; Yamaguchi, K. E.

    2018-08-01

    Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900-3700 m/s, 2.06-2.37 g/cm3, and 20-35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650-4350 m/s, density measurements of 2.26-2.37 g/cm3, and porosity measurements of 19-22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000-4200 m/s, 2.39-2.44 g/cm3, and 8-13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100-165 m on the top of the peak ring but 200 m in the central basin, suggesting that suevite flowed downslope from the collapsing central uplift during and after peak-ring formation, accumulating preferentially within the central basin.

  10. Properties of CoO doped in Glasses Prepared from Rice Hush Fly Ash in Thailand

    NASA Astrophysics Data System (ADS)

    Ruangtaweep, Y.; Kaewkhao, J.; Kirdsiri, K.; Kedkaew, C.; Limsuwan, P.

    2011-10-01

    In this work, properties of glass from local rice husk ash (RHA) in Thailand have been investigated. RHA was sintered in different temperature. Compositions and phases of RHA were analyzed by energy dispersive x-ray fluorescence spectrometer (EDXRF) and X-ray diffractometer (XRD). The glasses were melt from RHA in formula 20 Na2O : 1.0 Al2O3 : 13 B2O3 : 6.3 CaO : 0.2 Sb2O3 : 4.5 BaO : 55SiO2 (using RHA as a SiO2 source) The density values of all RHA glasses are comparable and larger than glass from pure SiO2 under same glass formula and preparing condition. These results are corresponding with refractive index values. The RHA glasses showing colorless with absorption edge in ultraviolet region were obtained. The dark blue color glasses were melted from RHA with different CoO concentration. From this part, not found to be the relation of density and refractive index of glass with CoO concentration in glass matrix. From absorption spectra, the absorption peak were appeared around 600 nm, and peak intensity are increased, with increase CoO, correspond to 4A2(4F) → 4T1(4P) state of Co2+ in tetrahedral symmetry.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.

    Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less

  12. Vibrational Properties of Anhydrous and Partially Hydrated Uranyl Fluoride

    DOE PAGES

    Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.; ...

    2017-01-01

    Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less

  13. Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan

    2017-12-01

    We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.

  14. Collocated ionosonde and dense GPS/GLONASS network measurements of midlatitude MSTIDs

    NASA Astrophysics Data System (ADS)

    Sherstyukov, R. O.; Akchurin, A. D.; Sherstyukov, O. N.

    2018-04-01

    To analyze midlatitude medium-scale travelling ionospheric disturbances (MSTIDs) over Kazan (55.5°N, 49°E), Russia, the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) were used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) are compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces was established. So F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the movement of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of additional cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. Analysis of F2 peak frequency variation shows that observed peak-to-peak values of TEC perturbation equal to 0.4 and 1 TECU correspond to the values of ΔN/N equal to 13% and 28%. The need for further research is evident.

  15. The Hubble Deep UV Legacy Survey (HDUV)

    NASA Astrophysics Data System (ADS)

    Montes, Mireia; Oesch, Pascal

    2015-08-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. Here, we present a new HST WFC3/UVIS program, the Hubble Deep UV (HDUV) legacy survey. The HDUV is a 132 orbit program to obtain deep imaging in two filters (F275W and F336W) over the two CANDELS Deep fields. We will cover ~100 arcmin2 sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents the reduced data products and catalogs which will be released to the community, reaching down to 27.5-28.0 mag at 5 sigma. By directly sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents reduced data products and catalogs which will be released to the community.

  16. Ionospheric electron density response to solar flares as viewed by Digisondes

    NASA Astrophysics Data System (ADS)

    Handzo, R.; Forbes, J. M.; Reinisch, Bodo

    2014-04-01

    Solar flares are explosive events on the Sun that release energetic particles, X-rays, EUV, and radio emissions that have an almost immediate impact on Earth's ionosphere-thermosphere (IT) system and/or on operational systems that are affected by IT conditions. To assess such impacts, it is a key that we know how the ionosphere is modified. An objective of this paper is to evaluate how digisondes might serve in this role. Toward this end we utilize data from the Millstone Hill digisonde to reveal the height versus time bottomside F region responses to three X-class flares (X28, X8.3, and X1.7) at a middle latitude site. In terms of percent increase with respect to a preflare hourly mean, the long-lived (> 15-30 min) responses to these flares maximize between about 150 and 250 km and measurably last ~0.75-1.5 h after flare maximum. The relative magnitudes of these responses are complicated by flare position on the solar disk, which determines how much of the EUV solar emissions are attenuated by the solar atmosphere. At Millstone Hill there was little measurable response to these flares near the F2 layer peak; however, at the magnetic equator location of Jicamarca, the F2 peak electron density increased by ~15-40%. Herein, all of these flare response characteristics are interpreted in terms of available modeling results. We propose that such digisonde data, in combination with first-principles models and high-resolution measurements of solar EUV flux emissions (e.g., from Solar Dynamics Observatory/EUV Variability Experiment), can lead us to a deeper understanding of the ionospheric photochemistry and dynamics that underlies a predictive capability.

  17. The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity

    PubMed Central

    Song, Weihua; Xiao, Yucheng; Chen, Hanying; Ashpole, Nicole M; Piekarz, Andrew D; Ma, Peilin; Hudmon, Andy; Cummins, Theodore R; Shou, Weinian

    2012-01-01

    The deletion of phenylalanine 1486 (F1486del) in the human cardiac voltage-gated sodium channel (hNav1.5) is associated with fatal long QT (LQT) syndrome. In this study we determined how F1486del impairs the functional properties of hNav1.5 and alters action potential firing in heterologous expression systems (human embryonic kidney (HEK) 293 cells) and their native cardiomyocyte background. Cells expressing hNav1.5-F1486del exhibited a loss-of-function alteration, reflected by an 80% reduction of peak current density, and several gain-of-function alterations, including reduced channel inactivation, enlarged window current, substantial augmentation of persistent late sodium current and an increase in ramp current. We also observed substantial action potential duration (APD) prolongation and prominent early afterdepolarizations (EADs) in neonatal cardiomyocytes expressing the F1486del channels, as well as in computer simulations of myocyte activity. In addition, lidocaine sensitivity was dramatically reduced, which probably contributed to the poor therapeutic outcome observed in the patient carrying the hNav1.5-F1486del mutation. Therefore, despite the significant reduction in peak current density, the F1486del mutation also leads to substantial gain-of-function alterations that are sufficient to cause APD prolongation and EADs, the predominant characteristic of LQTs. These data demonstrate that hNav1.5 mutations can have complex functional consequences and highlight the importance of identifying the specific molecular defect when evaluating potential treatments for individuals with prolonged QT intervals. PMID:22826127

  18. Opportunities for Utilizing the International Space Station for Studies of F2- Region Plasma Science and High Voltage Solar Array Interactions with the Plasma Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria; Wright, Kenneth; Craven, Paul; Koontz, Steven

    2010-01-01

    The near circular, 51.6deg inclination orbit of the International Space Station (ISS) is maintained within an altitude range of approximately 300 km to 400 km providing an ideal platform for conducting in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) is a suite of instruments installed on the ISS in August 2006 which includes a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). The primary purpose for deploying the FPMU is to characterize ambient plasma temperatures and densities in which the ISS operates and to obtain measurements of the ISS potential relative to the space plasma environment for use in characterizing and mitigating spacecraft charging hazards to the vehicle and crew. In addition to the engineering goals, data from the FPMU instrument package is available for collaborative multi-satellite and ground based instrument studies of the F-region ionosphere during both quiet and disturbed periods. Finally, the FPMU measurements supported by ISS engineering telemetry data provides a unique opportunity to investigate interactions of the ISS high voltage (160 volt) solar array system with the plasma environment. This presentation will provide examples of FPMU measurements along the ISS orbit including night-time equatorial plasma density depletions sampled near the peak electron density in the F2-region ionosphere, charging phenomenon due to interaction of the ISS solar arrays with the plasma environment, and modification of ISS charging due to visiting vehicles demonstrating the capabilities of the FPMU probes for monitoring mid and low latitude plasma processes as well as vehicle interactions with the plasma environment.

  19. Shock-absorbing effect of shoe insert materials commonly used in management of lower extremity disorders.

    PubMed

    Shiba, N; Kitaoka, H B; Cahalan, T D; Chao, E Y

    1995-01-01

    The efficacy of 3 shock-absorbing materials was compared by determining impact characteristics with a drop test method and also by testing the effect of each material when used as a shoe insert in 16 asymptomatic subjects. Peak vertical ground reaction force (F1, F2, F3) and temporal force factors (T1, T2, T3) were obtained with a force plate at a high-frequency sampling rate. Impact force, impact time, impact slope, and impact energy were determined. A standard weight was dropped from 3 heights on each material covering the force plate while reduction of peak force was compared. Impact force was attenuated most effectively by Insert 3 (polymeric foam rubber) and averaged 11% less than that in shoes without inserts. Impact time was increased for all 3 inserts. Impact slope and impact energy were reduced significantly in Insert 3. There was a significant difference in peak vertical force F1 for all 3 inserts, in vertical force F2 for Insert 2 (viscoelastic polymeric material), and in vertical force F3 for Insert 2. Drop-test studies showed that at all ball heights, the highest mean peak force was observed consistently in Insert 2.

  20. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  1. Online, automatic, ionospheric maps: IRI-PLAS-MAP

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Sezen, U.; Gulyaeva, T. L.; Cilibas, O.

    2015-04-01

    Global and regional behavior of the ionosphere is an important component of space weather. The peak height and critical frequency of ionospheric layer for the maximum ionization, namely, hmF2 and foF2, and the total number of electrons on a ray path, Total Electron Content (TEC), are the most investigated and monitored values of ionosphere in capturing and observing ionospheric variability. Typically ionospheric models such as International Reference Ionosphere (IRI) can provide electron density profile, critical parameters of ionospheric layers and Ionospheric electron content for a given location, date and time. Yet, IRI model is limited by only foF2 STORM option in reflecting the dynamics of ionospheric/plasmaspheric/geomagnetic storms. Global Ionospheric Maps (GIM) are provided by IGS analysis centers for global TEC distribution estimated from ground-based GPS stations that can capture the actual dynamics of ionosphere and plasmasphere, but this service is not available for other ionospheric observables. In this study, a unique and original space weather service is introduced as IRI-PLAS-MAP from http://www.ionolab.org

  2. Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture

    PubMed Central

    Holmes, D. F.; Lu, Y.; Purslow, P. P.; Kadler, K. E.; Bechet, D.; Wess, T. J.

    2012-01-01

    Scaling relationships have been formulated to investigate the influence of collagen fibril diameter (D) on age-related variations in the strain energy density of tendon. Transmission electron microscopy was used to quantify D in tail tendon from 1.7- to 35.3-mo-old (C57BL/6) male mice. Frequency histograms of D for all age groups were modeled as two normally distributed subpopulations with smaller (DD1) and larger (DD2) mean Ds, respectively. Both DD1 and DD2 increase from 1.6 to 4.0 mo but decrease thereafter. From tensile tests to rupture, two strain energy densities were calculated: 1) uE [from initial loading until the yield stress (σY)], which contributes primarily to tendon resilience, and 2) uF [from σY through the maximum stress (σU) until rupture], which relates primarily to resistance of the tendons to rupture. As measured by the normalized strain energy densities uE/σY and uF/σU, both the resilience and resistance to rupture increase with increasing age and peak at 23.0 and 4.0 mo, respectively, before decreasing thereafter. Multiple regression analysis reveals that increases in uE/σY (resilience energy) are associated with decreases in DD1 and increases in DD2, whereas uF/σU (rupture energy) is associated with increases in DD1 alone. These findings support a model where age-related variations in tendon resilience and resistance to rupture can be directed by subtle changes in the bimodal distribution of Ds. PMID:22837169

  3. 1.5-V-threshold-voltage Schottky barrier normally-off AlGaN/GaN high-electron-mobility transistors with f T/f max of 41/125 GHz

    NASA Astrophysics Data System (ADS)

    Hou, Bin; Ma, Xiaohua; Yang, Ling; Zhu, Jiejie; Zhu, Qing; Chen, Lixiang; Mi, Minhan; Zhang, Hengshuang; Zhang, Meng; Zhang, Peng; Zhou, Xiaowei; Hao, Yue

    2017-07-01

    In this paper, a normally-off AlGaN/GaN high-electron-mobility transistors (HEMT) fabricated using inductively coupled plasma (ICP) CF4 plasma recessing and an implantation technique is reported. A gate-to-channel distance of ˜10 nm and an equivalent negative fluorine sheet charge density of -1.21 × 1013 cm-2 extracted using a simple threshold voltage (V th) analytical model result in a high V th of 1.5 V, a peak transconductance of 356 mS/mm, and a subthreshold slope of 133 mV/decade. A small degradation of channel mobility leads to a high RF performance with f T/f max of 41/125 GHz, resulting in a record high f T × L g product of 10.66 GHz·µm among Schottky barrier AlGaN/GaN normally-off HEMTs with V th exceeding 1 V, to the best of our knowledge.

  4. WE-E-17A-01: Characterization of An Imaging-Based Model of Tumor Angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikarla, V; Jeraj, R

    2014-06-15

    Purpose: Understanding the transient dynamics of tumor oxygenation is important when evaluating tumor-vasculature response to anti-angiogenic therapies. An imaging-based tumor-vasculature model was used to elucidate factors that affect these dynamics. Methods: Tumor growth depends on its doubling time (Td). Hypoxia increases pro-angiogenic factor (VEGF) concentration which is modeled to reduce vessel perfusion, attributing to its effect of increasing vascular permeability. Perfused vessel recruitment depends on the existing perfused vasculature, VEGF concentration and maximum VEGF concentration (VEGFmax) for vessel dysfunction. A convolution-based algorithm couples the tumor to the normal tissue vessel density (VD-nt). The parameters are benchmarked to published pre-clinical datamore » and a sensitivity study evaluating the changes in the peak and time to peak tumor oxygenation characterizes them. The model is used to simulate changes in hypoxia and proliferation PET imaging data obtained using [Cu- 61]Cu-ATSM and [F-18]FLT respectively. Results: Td and VD-nt were found to be the most influential on peak tumor pO2 while VEGFmax was marginally influential. A +20 % change in Td, VD-nt and VEGFmax resulted in +50%, +25% and +5% increase in peak pO2. In contrast, Td was the most influential on the time to peak oxygenation with VD-nt and VEGFmax playing marginal roles. A +20% change in Td, VD-nt and VEGFmax increased the time to peak pO2 by +50%, +5% and +0%. A −20% change in the above parameters resulted in comparable decreases in the peak and time to peak pO2. Model application to the PET data was able to demonstrate the voxel-specific changes in hypoxia of the imaged tumor. Conclusion: Tumor-specific doubling time and vessel density are important parameters to be considered when evaluating hypoxia transients. While the current model simulates the oxygen dynamics of an untreated tumor, incorporation of therapeutic effects can make the model a potent tool for analyzing anti-angiogenic therapies.« less

  5. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  6. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Mifflin, Steve

    2004-04-23

    The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.

  7. Intramolecular sensitization of americium luminescence in solution: Shining light on short-lived forbidden 5f transitions

    DOE PAGES

    Sturzbecher-Hoehne, M.; Yang, P.; D'Aleo, A.; ...

    2016-03-10

    In this study, the photophysical properties and solution thermodynamics of water soluble trivalent americium (Am III) complexes formed with multidentate chromophore-bearing ligands, 3,4,3-LI(1,2-HOPO), Enterobactin, and 5-LIO(Me-3,2-HOPO), were investigated. The three chelators were shown to act as antenna chromophores for AmIII, generating sensitized luminescence emission from the metal upon complexation, with very short lifetimes ranging from 33 to 42 ns and low luminescence quantum yields (10 –3 to 10 –2%), characteristic of Near Infra-Red emitters in similar systems. The specific emission peak of Am III assigned to the 5D 1 → 7F 1 f–f transition was exploited to characterize the highmore » proton-independent stability of the complex formed with the most efficient sensitizer 3,4,3-LI(1,2-HOPO), with a log β 110 = 20.4 ± 0.2 value. In addition, the optical and solution thermodynamic features of these Am III complexes, combined with density functional theory calculations, were used to probe the influence of electronic structure on coordination properties across the f-element series and to gain insight into ligand field effects.« less

  8. Intramolecular sensitization of americium luminescence in solution: shining light on short-lived forbidden 5f transitions

    DOE PAGES

    Sturzbecher-Hoehne, M.; Yang, P.; D'Aleo, A.; ...

    2016-03-10

    In this study, the photophysical properties and solution thermodynamics of water soluble trivalent americium (Am III) complexes formed with multidentate chromophore-bearing ligands, 3,4,3-LI(1,2-HOPO), Enterobactin, and 5-LIO(Me-3,2-HOPO), were investigated. The three chelators were shown to act as antenna chromophores for Am III, generating sensitized luminescence emission from the metal upon complexation, with very short lifetimes ranging from 33 to 42 ns and low luminescence quantum yields (10 -3 to 10 -2%), characteristic of Near Infra-Red emitters in similar systems. The specific emission peak of AmIII assigned to the 5D 1 → 7F 1 f–f transition was exploited to characterize the highmore » proton-independent stability of the complex formed with the most efficient sensitizer 3,4,3-LI(1,2-HOPO), with a log β 110 = 20.4 ± 0.2 value. In addition, the optical and solution thermodynamic features of these Am III complexes, combined with density functional theory calculations, were used to probe the influence of electronic structure on coordination properties across the f-element series and to gain insight into ligand field effects.« less

  9. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  10. Peak-Flux-Density Spectra of Large Solar Radio Bursts and Proton Emission from Flares.

    DTIC Science & Technology

    1985-08-19

    of the microwave peak (Z 1000 sfu in U-bursts) served as an indicator that the energy release during the impulsive phase was sufficient to produce a... energy or wave- length tends to be prominent in all, and cautions about over-interpreting associa- tions/correlations observed in samples of big flares...Sung, L. S., and McDonald, F. B. (1975) The variation of solar proton energy spectra and size distribution with helio- longitude, Sol. Phys. 41: 189. 28

  11. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  12. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    PubMed

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  13. Analysis of the Vertical Ground Reaction Forces and Temporal Factors in the Landing Phase of a Countermovement Jump

    PubMed Central

    Ortega, Daniel Rojano; Rodríguez Bíes, Elisabeth C.; Berral de la Rosa, Francisco J.

    2010-01-01

    In most common bilateral landings of vertical jumps, there are two peak forces (F1 and F2) in the force-time curve. The combination of these peak forces and the high frequency of jumps during sports produce a large amount of stress in the joints of the lower limbs which can be determinant of injury. The aim of this study was to find possible relationships between the jump height and F1 and F2, between F1 and F2 themselves, and between F1, F2, the time they appear (T1 and T2, respectively) and the length of the impact absorption phase (T). Thirty semi-professional football players made five countermovement jumps and the highest jump of each player was analyzed. They were instructed to perform the jumps with maximum effort and to land first with the balls of their feet and then with their heels. All the data were collected using a Kistler Quattro Jump force plate with a sample rate of 500 Hz. Quattro Jump Software, v.1.0.9.0., was used. There was neither significant correlation between T1 and F1 nor between T1 and F2. There was a significant positive correlation between flight height (FH) and F1 (r = 0.584, p = 0.01) but no significant correlation between FH and F2. A significant positive correlation between F1 and T2 (r = 0.418, p < 0.05) and a significant negative correlation between F2 and T2 (r = -0.406, p < 0.05) were also found. There is a significant negative correlation between T2 and T (r = -0. 443, p < 0.05). T1 has a little effect in the impact absorption process. F1 increases with increasing T2 but F2 decreases with increasing T2. Besides, increasing T2, with the objective of decreasing F2, makes the whole impact absorption shorter and the jump landing faster. Key points In the landing phase of a jump there are always sev-eral peak forces. The combination of these peaks forces and the high frequency of jumps during sports produces a large amount of stress in the joints of the lower limbs which can be determinant of injury. In the most common two-footed landings usually appear two peak forces (F1 and F2) in the force-time curve and the second one is usually related to injury’s risk. In this article it is shown that increasing the time F2 appears decrease F2. Increasing landing times could be counterproductive with respect to the goals of the sport. In this article it is shown that increasing the time F2 appears makes, however, the whole impact absorption shorter in du-ration. PMID:24149697

  14. Multi-generational Impact of Maternal Overnutrition/Obesity in the Sheep on the Neonatal Leptin Surge in Granddaughters

    PubMed Central

    Shasa, Desiree R.; Odhiambo, John F.; Long, Nathan M.; Tuersunjiang, Nuermaimaiti; Nathanielsz, Peter W.; Ford, Stephen P.

    2014-01-01

    Background/Objectives We have reported that maternal overnutrition/obesity (OB) in sheep resulting from feeding 150% of National Research Council (NRC) requirements throughout gestation, leads to maternal hyperglycemia and hyperinsulinemia. Further, newborn lambs born to OB vs. control-fed (CON, 100% of NRC) ewes exhibited greater adiposity, increased blood cortisol, insulin and glucose and the elimination of the postnatal leptin spike seen in lambs born to CON ewes. This early postnatal leptin peak is necessary for development of hypothalamic circuits which program appetite in later life. This study evaluated the multigenerational impact of OB on insulin:glucose dynamics of mature female F1 offspring fed only to requirements throughout gestation, and on their lambs (F2 generation). Design and Methods Adult F1 female offspring born to OB (n=10) or CON (n=7) ewes were utilized. All F1 ewes were subjected to a glucose tolerance test at midgestation and late gestation. Jugular blood was obtained from F2 lambs at birth (day 1) through postnatal day 11, and plasma glucose, insulin, cortisol and leptin concentrations determined. Dual Energy X-ray Absorptiometry (DEXA) was utilized to determine bone mineral density (BMD), bone mineral content (BMC), lean tissue mass, and fat tissue mass. Results Fasted blood glucose and insulin concentrations were greater (P < 0.05) in OBF1 than CONF1 ewes at mid- and late gestation. Further, after glucose infusion, both glucose and insulin concentrations remained higher in OBF1 ewes (P < 0.05) than CONF1 ewes demonstrating greater insulin resistance. Blood concentrations of glucose, insulin, and cortisol, and adiposity were higher (P < 0.01) in OBF2 lambs than CONF2 lambs at birth. Importantly, OBF2 lambs failed to exhibit the early postnatal leptin peak exhibited by CONF2 lambs. Conclusions These data suggest that these OBF2 lambs are predisposed to exhibit the same metabolic alterations as their mothers, suggesting a multi-generational programming effect. PMID:25354845

  15. New Vary-Chap Profile of the Topside Ionosphere Electron Density Distribution for use with the IRI Model and the GIRO Real-Time Data

    NASA Technical Reports Server (NTRS)

    Nsumei, Patrick; Reinisch, Bodo W.; Huang, Xueqin; Bilitza, Dieter

    2012-01-01

    A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S1(h) and S2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(sub T) indicating the transition from an O(+) to an H(+)-dominated profile shape. The observed transition heights range from approx.500 km to 800 km.

  16. Low energy electron spectroscopy of C60 in collisions with fast bare ions: Observation of GDPR peak and its angular distribution

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Misra, D.; Chatterjee, S.; Kasthurirangan, S.; Agnihotri, A.; Tribedi, L. C.

    2009-11-01

    We report the first direct measurement of GDPR peak in heavy ion (4 MeV/u F9+) induced secondary electron DDCS (double differential cross section) spectrum of C60 fullerene. A peak corresponding to GDPR is seen at all angles and the angular distribution, showing a dip at 90°, is in contrast with ion-atom collisions, indicating plasmon oscillations along beam direction. A comparison has also been done between C60 and other gaseous targets as well as with state-of-the art theoretical models, based on density functional methods.

  17. GIM-TEC adaptive ionospheric weather assessment and forecast system

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.

    2013-09-01

    The Ionospheric Weather Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the Global Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical global maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the global maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the global W-index map establishing categories of the ionospheric weather from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the global ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.

  18. December anomaly in ionosphere using FORMOSAT-3/COSMIC electron density profiles

    NASA Astrophysics Data System (ADS)

    Dashnyam, G.; Lin, C. C. H.; Rajesh, P. K.; Lin, J. T.

    2017-12-01

    December anomaly in ionosphere refers to the observation of greater value of global average ionospheric peak electron density (NmF2) in December-January months than in June-July months. So far there has been no satisfactory explanation to account for this difference, which is also known as annual asymmetry, leading to the speculation that forcing from lower atmosphere may be important. In this work, FORMOSAT-3/COSMIC electron density profiles are used to investigate the characteristics of December anomaly at different local times and longitudes in varying levels of solar activity. The observations in the years 2008, 2009 and 2012 are used for the study. The results suggest that the anomaly exists in all the three years, and is pronounced during day. Detailed analysis is carried out using latitude-altitude electron density profiles at selected longitude sectors, revealing that neutral wind may play dominant role. SAMI2 model is used to further examine the role of neutral wind influencing the electron density in different solstices. Tidal decomposition of the wind is carried out to understand the dominant tidal components that give rise to the larger electron density in the December-January months.

  19. The impact of spherical symmetry assumption on radio occultation data inversion in the ionosphere: An assessment study

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Notarpietro, R.; Nava, B.

    2014-02-01

    'Onion-peeling' is a very common technique used to invert Radio Occultation (RO) data in the ionosphere. Because of the implicit assumption of spherical symmetry for the electron density (N(e)) distribution in the ionosphere, the standard Onion-peeling algorithm could give erroneous concentration values in the retrieved electron density profile. In particular, this happens when strong horizontal ionospheric electron density gradients are present, like for example in the Equatorial Ionization Anomaly (EIA) region during high solar activity periods. In this work, using simulated RO Total Electron Content (TEC) data computed by means of the NeQuick2 ionospheric electron density model and ideal RO geometries, we tried to formulate and evaluate an asymmetry level index for quasi-horizontal TEC observations. The asymmetry index is based on the electron density variation that a signal may experience along its path (satellite to satellite link) in a RO event and is strictly dependent on the occultation geometry (e.g. azimuth of the occultation plane). A very good correlation has been found between the asymmetry index and errors related to the inversion products, in particular those concerning the peak electron density NmF2 estimate and the Vertical TEC (VTEC) evaluation.

  20. In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.

    2002-01-01

    Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.

  1. Relationship between vertical ExB drift and F2-layer characteristics in the equatorial ionosphere at solar minimum conditions

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2012-07-01

    Equatorial and low-latitude electrodynamics plays a dominant role in determining the structure and dynamics of the equatorial and low-latitude ionospheric F-region. Thus, they constitute essential input parameters for quantitative global and regional modeling studies. In this work, hourly median value of ionosonde measurements namely, peak height F2-layer (hmF2), F2-layer critical frequency (foF2) and propagation factor M(3000)F2 made at near equatorial dip latitude, Ouagadougou, Burkina Faso (12oN, 1.5oW; dip: 1.5oN) and relevant F2-layer parameters such as thickness parameter (Bo), electron temperature (Te), ion temperature (Ti), total electron content (TEC) and electron density (Ne, at the fixed altitude of 300 km) provided by the International Reference Ionosphere (IRI) model for the longitude of Ouagadougou are contrasted with the IRI vertical drift model to explore in detail the monthly climatological behavior of equatorial ionosphere and the effects of equatorial vertical plasma drift velocities on the diurnal structure of F2-layer parameters. The analysis period covers four months representative of solstitial and equinoctial seasonal periods during solar minimum year of 1987 for geomagnetically quiet-day. We show that month-by-month morphological patterns between vertical E×B drifts and F2-layer parameters range from worst to reasonably good and are largely seasonally dependent. A cross-correlation analysis conducted between equatorial drift and F2-layer characteristics yield statistically significant correlations for equatorial vertical drift and IRI-Bo, IRI-Te and IRI-TEC, whereas little or no acceptable correlation is obtained with observational evidence. Assessment of the association between measured foF2, hmF2 and M(3000)F2 illustrates consistent much more smaller correlation coefficients with no systematic linkage. In general, our research indicates strong departure from simple electrodynamically controlled behavior.

  2. Effect of cadence selection on peak power and time of power production in elite BMX riders: A laboratory based study.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T; Bentley, Ian

    2017-07-01

    The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min -1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders' mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min -1 with lower peak power produced at 80 revs · min -1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η 2  = 0.960), 120 revs · min -1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η 2  = 0.970) and 140 revs · min -1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η 2  = 0.989). The shortest time to power production was attained at 120 revs · min -1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min -1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η 2  = 0.800) 100 revs · min -1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η 2  = 0.974) and 140 revs · min -1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η 2  = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.

  3. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata

    2007-02-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities <~0.1-0.3 Mpc-2. The dearth of E+A galaxies in dense environments confirms that E+A galaxies are most likely the products of galaxy-galaxy merging or interactions, rather than star-forming galaxies whose star formation has been quenched by processes unique to dense environments, such as ram-pressure stripping or galaxy harassment. We see a tentative peak in the number of E+A galaxies at Σ10 ~ 0.1-0.3 Mpc-2, which may represent the local galaxy density at which the rate of galaxy-galaxy merging or interaction rate peaks. Analysis of the spectra of our early-type galaxies with young stellar populations suggests that they have a stellar component dominated by F stars, ~1-4 Gyr old, together with a mature, metal-rich population characteristic of `typical' early-type galaxies. The young stars represent >~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type galaxies created in major mergers or interactions, and compare them with those early-types which have had the bulk of their stars in place since a much earlier epoch.

  4. Unusual Physical Properties of the Chicxulub Crater Peak Ring: Results from IODP/ICDP Expedition 364

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Gebhardt, C.; Gulick, S. P. S.; Le Ber, E.; Lofi, J.; Morgan, J. V.; Nixon, C.; Rae, A.; Schmitt, D. R.

    2017-12-01

    IODP/ICDP Expedition 364 Hole M0077A drilled into the peak ring of the Chicxulub impact crater, recovering core between 505.7 and 1334.7 m below the seafloor (mbsf). Physical property measurements include wireline logging data, a vertical seismic profile (VSP), Multi-Sensor Core Logger (MSCL) measurements, and discrete sample measurements. The Hole M0077A peak ring rocks have unusual physical properties. Across the boundary between post-impact sediment and crater breccia we measure a sharp decrease in velocities and densities, and an increase in porosity. Mean crater breccia values are 3000-3300 m/s, 2.14-2.15 g/cm3, and 31% for velocity, density, and porosity, respectively. This zone is also associated with a low-frequency reflector package on MCS profiles and a low-velocity layer in FWI images, both confirmed from the VSP dataset. The thin (24 m) crater melt unit has mean velocity measurements of 3800-4150 m/s, density measurements of 2.32-2.34 g/cm3, and porosity measurements of 20%; density and porosity values are intermediate between the overlying impact breccia and underlying granitic basement, while the velocity values are similar to those for the underlying basement. The Hole M0077A crater melt unit velocities and densities are considerably less than values of 5800 m/s and 2.68 g/cm3 measured at an onshore well located in the annular trough. The uplifted granitic peak ring materials have mean values of 4100-4200 m/s, 2.39-2.44 g/cm3, and 11% for compressional wave velocity, density, and porosity, respectively; these values differ significantly from typical granite which has higher velocities (5400-6000 m/s) and densities (2.62-2.67 g/cm3), and lower porosities (<1%). All Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable fracturing, and are consistent with numerical models for peak-ring formation.

  5. Free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2010-10-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data already confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) very low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predict a clear deviation from BS. In this study, ρf(H) is confirmed to be consistent with predictions of KZ, as will be discussed.

  6. Studies of Radiation-Induced Defects in Li2SiO3:Sm Phosphor Material

    NASA Astrophysics Data System (ADS)

    Singh, N.; Singh, Vijay; Watanabe, S.; Gundu Rao, T. K.; Chubaci, J. F. D.; Cano, N. F.; Pathak, M. S.; Singh, Pramod K.; Dhoble, S. J.

    2017-01-01

    Li2SiO3:Sm was synthesized by the solution combustion method. Powder x-ray diffraction technique was used to find the phase formation. Li2SiO3:Sm exhibits thermoluminescence (TL) peaks at approximately 140°C, 155°C, 190°C, 250°C, and 405°C. Three defect centers contribute to the observed electron spin resonance spectrum from the gamma irradiated phosphor. Center I with principal g-values g || = 2.0206 and g ⊥ = 2.0028 is identified as an O2 - ion while center II, with an isotropic g-factor 2.0039, is assigned to an F +-type center. Center III is assigned to a Ti3+ center. The Ti3+ center is related to the 250°C TL peak while the O2 - ion also correlates with the main TL peak at 250°C. An additional defect center is observed during thermal annealing experiments, and the center (assigned to F + center) seems to originate from an F center. The F center appears to be associated with the high temperature TL peak in a Li2SiO3:Sm phosphor. The luminescence spectrum reveals the dominant emission peaks at 605 (4G5/2 → 6H7/2) nm under the excitation wavelength of 402 nm.

  7. Ionospheric precursors to large earthquakes: A case study of the 2011 Japanese Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Kellerman, A. C.; Kane, T. A.; Dyson, P. L.; Norman, R.; Zhang, K.

    2013-09-01

    Researchers have reported ionospheric electron distribution abnormalities, such as electron density enhancements and/or depletions, that they claimed were related to forthcoming earthquakes. In this study, the Tohoku earthquake is examined using ionosonde data to establish whether any otherwise unexplained ionospheric anomalies were detected in the days and hours prior to the event. As the choices for the ionospheric baseline are generally different between previous works, three separate baselines for the peak plasma frequency of the F2 layer, foF2, are employed here; the running 30-day median (commonly used in other works), the International Reference Ionosphere (IRI) model and the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM). It is demonstrated that the classification of an ionospheric perturbation is heavily reliant on the baseline used, with the 30-day median, the IRI and the TIE-GCM generally underestimating, approximately describing and overestimating the measured foF2, respectively, in the 1-month period leading up to the earthquake. A detailed analysis of the ionospheric variability in the 3 days before the earthquake is then undertaken, where a simultaneous increase in foF2 and the Es layer peak plasma frequency, foEs, relative to the 30-day median was observed within 1 h before the earthquake. A statistical search for similar simultaneous foF2 and foEs increases in 6 years of data revealed that this feature has been observed on many other occasions without related seismic activity. Therefore, it is concluded that one cannot confidently use this type of ionospheric perturbation to predict an impending earthquake. It is suggested that in order to achieve significant progress in our understanding of seismo-ionospheric coupling, better account must be taken of other known sources of ionospheric variability in addition to solar and geomagnetic activity, such as the thermospheric coupling.

  8. Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro

    1990-11-01

    The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.

  9. MENTAT: A New Magnetic Meridional Neutral Wind Model for Earth's Thermosphere

    NASA Astrophysics Data System (ADS)

    Dandenault, P. B.

    2017-12-01

    We present a new model of thermosphere winds in the F region obtained from variations in the altitude of the peak density of the ionosphere (hmF2). The new Magnetic mEridional NeuTrAl Thermospheric (MENTAT) wind model produces magnetic-meridional neutral winds as a function of year, day of year, solar local time, solar flux, geographic latitude, and geographic longitude. The winds compare well with Fabry-Pérot Interferometer (FPI) wind observations and are shown to provide accurate specifications in regions outside of the observational database such as the midnight collapse of hmF2 at Arecibo, Puerto Rico. The model winds are shown to exhibit the expected seasonal, diurnal, and hourly behavior based on geophysical conditions. The magnetic meridional winds are similar to those from the well-known HWM14 model but there are important differences. For example, Townsville, Australia has a strong midnight collapse similar to that at Arecibo, but winds from HWM14 do not reproduce it. Also, the winds from hmF2 exhibit a moderate solar cycle dependence under certain conditions, whereas, HWM14 has no solar activity dependence. For more information, please visit http://www.mentatwinds.net/.

  10. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mustafa; Asadi, Maryam; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-02-01

    The first time pulsed base (OH-) electrogeneration to the cathodic electrodeposition of MnO2 in nitrate bath was applied and MnO2 nanorods were obtained. The deposition experiments were performed under a pulse current mode with typical on-times and off-times (ton = 10 ms and toff = 50 ms) and a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterization with XRD and FTIR revealed that the prepared MnO2 is composed of both α and γ phases. Morphological evaluations through SEM and TEM revealed that the prepared MnO2 contains nanorods of relative uniform structures (with an average diameter of 50 nm). The electrochemical measurements through cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures reveal an excellent capacitive behavior with specific capacitance values of 242, 167 and 98 F g-1 under the applied current densities of 2, 5 and 10 A g-1, respectively. Also, excellent long-term cycling stabilities of 94.8%, 89.1%, and 76.5% were observed after 1000 charge-discharge cycles at the current densities of 2, 5 and 10 A g-1.

  11. Fiber-optic thermometry using thermal radiation from Tm end doped SiO{sub 2} fiber sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Kentaro; Katsumata, Toru; Komuro, Shuji

    2014-04-15

    Fiber-optic thermometry based on temperature dependence of thermal radiation from Tm{sup 3+} ions was studied using Tm end doped SiO{sub 2} fiber sensor. Visible light radiation peaks due to f-f transition of Tm{sup 3+} ion were clearly observed at λ = 690 and 790 nm from Tm end doped SiO{sub 2} fibers sensor at the temperature above 600 °C. Thermal radiation peaks are assigned with f-f transition of Tm{sup 3+} ion, {sup 1}D{sub 2}-{sup 3}H{sub 6}, and {sup 1}G{sub 4}-{sup 3}H{sub 6}. Peak intensity of thermal radiation from Tm{sup 3+} ion increases with temperature. Intensity ratio of thermal radiation peaks atmore » λ = 690 nm against that at λ = 790 nm, I{sub 790/690}, is suitable for the temperature measurement above 750 °C. Two-dimensional temperature distribution in a flame is successfully evaluated by Tm end doped SiO{sub 2} fiber sensor.« less

  12. Graphene base heterojunction transistor: An explorative study on device potential, optimization, and base parasitics

    NASA Astrophysics Data System (ADS)

    Di Lecce, Valerio; Grassi, Roberto; Gnudi, Antonio; Gnani, Elena; Reggiani, Susanna; Baccarani, Giorgio

    2015-12-01

    The Graphene-Base Heterojunction Transistor (GBHT) is a novel device concept with a high potential for analog high-frequency RF operation, in which the current is due to both thermionic emission and tunneling. In this paper we study through numerical simulations the influence of previously uninvestigated aspects of Si- and Ge-based GBHTs-namely, crystallographic orientation and doping density values-on the device performance; a comparison with an aggressively scaled HBT structure is then reported. The simulations are carried out with an in-house developed code based on a 1-D quantum transport model within the effective mass approximation and the assumptions of ballistic transport with non-parabolic corrections and ideal semiconductor-graphene interface. We show that crystallographic orientation has a negligible effect on the GBHT performance. The doping density values in the GBHT emitter and collector regions can be tailored to maximize the device performance: the Si device shows better overall performance than the Ge one, yielding a peak cut-off frequency fT higher than 4 THz together with an intrinsic voltage gain above 10, or even higher fT at the cost of a lower gain. The Si-based GBHT can potentially outperform the SiGe HBT by a 2.8 higher fT . For a Si-based GBHT with a circular active region of diameter 50-100 nm, a theoretical balanced value for fT and fmax above 2 THz can be achieved, provided the base parasitics are carefully minimized.

  13. Estrogen Contributes to Gender Differences in Mouse Ventricular Repolarization

    PubMed Central

    Saito, Tomoaki; Ciobotaru, Andrea; Bopassa, Jean Chrisostome; Toro, Ligia; Stefani, Enrico; Eghbali, Mansoureh

    2010-01-01

    Rationale Fast-transient outward K+ (Ito,f) and ultra-rapid delayed rectifier K+ currents (IKur or IK,slow) contribute to mouse cardiac repolarization. Gender studies on these currents have reported conflicting results. Objective One key missing piece information in these studies is the animals’ estral stage. We decided to revisit gender-related differences in K+ currents, taking into consideration the females’ estral stage. Methods and Results We hypothesized that changes in estrogen levels during the estral cycle could play a role in determining the densities of K+ currents underlying ventricular repolarization. Peak total K+ current (IK,total) densities (pA/pF, at +40 mV) were much higher in males (48.6±3.0) than in females at estrus (27.2±2.3) but not at diestrus-2 (39.1±3.4). Underlying this change, Ito,f and IK,slow were lower in females at estrus vs males and diestrus-2 (IK,slow: male 21.9±1.8, estrus 14.6±0.6, diestrus-2 20.3±1.4; Ito,f: male 26.8±1.9, estrus 14.9±1.6, diestrus-2 22.1±2.1). The lower IK,slow in estrus was only due to IK,slow1 reduction without changes of IK,slow2. Estrogen treatment of ovariectomized mice decreased IK,total (46.4±3.0 to 28.4±1.6), Ito,f (26.6±1.6 to 12.8±1.0) and IK,slow (22.2±1.6 to 17.2±1.4). Transcript levels of Kv4.3 and Kv1.5 (underlying Ito,f and IK,slow, respectively) were lower in estrus vs. diestrus-2 and male. In ovariectomized mice, estrogen treatment resulted in downregulation of Kv4.3 and Kv1.5, but not Kv4.2, KChIP2 and Kv2.1 transcripts. K+ current reduction in high estrogenic conditions were associated with prolongation of the action potential duration and corrected QT interval. Conclusion Downregulation of Kv4.3 and Kv1.5 transcripts by estrogen are one mechanism defining gender-related differences in mouse ventricular repolarization. PMID:19608983

  14. On the mid-latitude ionospheric storm association with intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley Chukwudi; Ogbonna, Chinasa Edith

    2018-04-01

    The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤ 100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  15. A Study of Ionospheric Storm Association with Intense Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Okpala, K. C.

    2017-12-01

    The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  16. Electronic and magnetic properties of nonmetal atoms adsorbed ReS{sub 2} monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoou; Li, Qingfang, E-mail: qingfangli@nuist.edu.cn; Department of Physics, Nanjing University of Information Science and Technology, Nanjing 210044

    2015-08-14

    The stable configurations and electronic and magnetic properties of nonmetal atoms (H, N, P, O, S, F, and Cl) adsorbed ReS{sub 2} monolayers have been investigated by first-principles calculations. It is found that H, O, S, F, and Cl prefer to occupy the peak sites of S atoms, while both N and P atoms favor the valley sites of S atoms. The ReS{sub 2} sheet exhibits a good adsorption capability to nonmetal atoms. The reconstruction of the surface is pronounced in N- and P-adsorbed ReS{sub 2} monolayers. In H-adsorbed case, the Fermi level is pulled into the conduction band, whichmore » results in the semiconductor-metal transition. The same magnetic moment of 1μ{sub B} is found in the N-, P-, F-, and Cl-adsorbed ReS{sub 2} monolayers, while the mechanisms of forming magnetic moment for N (P)- and F (Cl)-adsorbed cases are different. In addition, the spatial extensions of spin density in P-, F-, and Cl-adsorbed cases are larger than that in N-adsorbed case, which is more suitable to achieve long-range magnetic coupling interaction at low defect concentrations. Our results provide insight for achieving metal-free magnetism and a tunable band gap for various electronic and spintronic devices based on ReS{sub 2}.« less

  17. Spontaneous voltage and current fluctuations in tissue cultured mouse dorsal root ganglion cells.

    PubMed

    Mathers, D A; Barker, J L

    1984-02-13

    Fetal mouse dorsal root ganglion (DRG) neurons were maintained in primary dissociated cell culture for periods of 7 days to 3 months. Intracellular recordings from these cells revealed the presence of spontaneous subthreshold potentials in 101/177 neurons studied. When measured at the resting membrane potential, these spontaneous voltage events took two forms: (a) high frequency potential fluctuations several millivolts in peak-to-peak amplitude and (b) small, discrete hyperpolarizations. Neurons exhibiting either type of event were designated as 'active' DRG cells. No spontaneous potentials were seen in DRG cells hyperpolarized to membrane voltages more negative than -64 +/- 11.5 mV (n = 5 cells). Under voltage-clamp conditions, the subthreshold potentials of active DRG cells were replaced by fluctuations in outward current. The power spectral density, S(f) of these current fluctuations was approximated by an equation of the form S(f) = (S(o)/[1 + (f/fc) alpha] where 2 less than or equal to a less than or equal to 3 and the half-power frequency fc = 11.3 +/- 3.1 Hz at 23 degrees C (n = 17 cells). The spontaneous voltage fluctuations of active DRG cells were abolished in Ca2+-free saline, and of the divalent metal cations Sr2+, Mg2+, Ba2+, Co2+ and Mn2+, only Sr2+ could substitute for Ca2+ in the maintenance of this activity. Tetraethylammonium ions (1-10 mM) reversibly blocked the spontaneous potentials, while caffeine (10 mM) increased the frequency of these events. The spontaneous voltage fluctuations were not dependent on the presence of spinal cord neurons in the culture plate, and they were also observed in cultured DRG cells derived from adult mice.

  18. Variations of Scale Height at F-Region Peak Based on Ionosonde Measurements during Solar Maximum over the Crest of Equatorial Ionization Anomaly Region

    PubMed Central

    Chuo, Yu-Jung

    2014-01-01

    Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048

  19. Plasma biomarkers of decreased vesicular storage distinguish Parkinson disease with orthostatic hypotension from the parkinsonian form of multiple system atrophy.

    PubMed

    Goldstein, David S; Kopin, Irwin J; Sharabi, Yehonatan; Holmes, Courtney

    2015-02-01

    Parkinson disease with orthostatic hypotension (PD + OH) and the parkinsonian form of multiple system atrophy (MSA-P) can be difficult to distinguish clinically. Recent studies indicate that PD entails a vesicular storage defect in catecholaminergic neurons. Although cardiac sympathetic neuroimaging by (18)F-dopamine positron emission tomography can identify decreased vesicular storage, this testing is not generally available. We assessed whether plasma biomarkers of a vesicular storage defect can separate PD + OH from MSA-P. We conceptualized that after F-dopamine injection, augmented production of F-dihydroxyphenylacetic acid (F-DOPAC) indicates decreased vesicular storage, and we therefore predicted that arterial plasma F-DOPAC would be elevated in PD + OH but not in MSA-P. We measured arterial plasma F-DOPAC after (18)F-dopamine administration (infused i.v. over 3 min) in patients with PD + OH (N = 12) or MSA-P (N = 21) and in healthy control subjects (N = 26). Peak F-DOPAC:dihydroxyphenylglycol (DHPG) was also calculated to adjust for effects of denervation on F-DOPAC production. Plasma F-DOPAC accumulated rapidly after initiation of (18)F-dopamine infusion. Peak F-DOPAC (5-10 min) in PD + OH averaged three times that in MSA-P (P < 0.0001). Among MSA-P patients, none had peak F-DOPAC > 300 nCi-kg/cc-mCi, in contrast with 7 of 12 PD + OH patients (χ(2) = 16.6, P < 0.0001). DHPG was lower in PD + OH (3.83 ± 0.36 nmol/L) than in MSA-P (5.20 ± 0.29 nmol/L, P = 0.007). All MSA-P patients had peak F-DOPAC:DHPG < 60, in contrast with 9 of 12 PD + OH patients (χ(2) = 17.5, P < 0.0001). Adjustment of peak F-DOPAC for DHPG increased test sensitivity from 58 to 81% at similar high specificity. After F-dopamine injection, plasma F-DOPAC and F-DOPAC:DHPG distinguish PD + OH from MSA-P.

  20. Anticipatory responses of catecholamines on muscle force production.

    PubMed

    French, Duncan N; Kraemer, William J; Volek, Jeff S; Spiering, Barry A; Judelson, Daniel A; Hoffman, Jay R; Maresh, Carl M

    2007-01-01

    Few data exist on the temporal relationship between catecholamines and muscle force production in vivo. The purpose of this study was to examine the influence of preexercise arousal on sympathoadrenal neurohormones on muscular force expression during resistance exercise. Ten resistance-trained men completed two experimental conditions separated by 7 days: 1) acute heavy resistance exercise protocol (AHREP; 6 x 10 repetitions parallel squats, 80% 1 repetition maximum) and 2) control (Cont; rest). Peak force (F(peak)) was recorded during a maximal isometric squat preceding each set and mean force (F(mean)) was measured during each set. Serial venous blood samples were collected before the AHREP and immediately preceding each set. Blood collection times were matched during Cont. Preexercise epinephrine (Epi), norepinephrine (NE), and dopamine (DA) increased (P or= 0.05) in muscular performance (F(peak), F(mean)) during AHREP and that five subjects (F(reducers)) had significant reductions in F(peak) and F(mean). Integrated area under the curve for Epi, NE, and F(peak) were greater (P < 0.02) for F(maintainers) than F(reducers). In conclusion, an anticipatory rise in catecholamines existed, which may be essential for optimal force production at the onset of exercise.

  1. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  2. 2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.

    PubMed

    Wang, Xuanye; Christopher, Jason W; Swan, Anna K

    2017-10-19

    Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.

  3. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  4. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  5. RF wave observations in beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1986-01-01

    The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.

  6. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    PubMed

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  7. Oblique H.F. radiowave propagation in the main trough region of the ionosphere

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Mitchell, V. B.

    1980-12-01

    The propagation of 7.335 MHz, CW signals over a 5212 km subauroral, west-east path is studied. Measurements and semiempirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low K sub p values; a sharp cut-off in low-power losses at a mean K sub p of 2.75 strongly implicates the trough in the propagation of these signals. It is shown that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.

  8. Tidal and near-inertial peak variations around the diurnal critical latitude

    NASA Astrophysics Data System (ADS)

    van Haren, Hans

    2005-12-01

    Spectra from historic long-term open-ocean moored current meter data between latitudes 0° < |$\\varphi$| < 45° reveal a significant drop in semidiurnal tidal band (D2) energy by ~50% at |$\\varphi$| ~ 25-27°, whilst the peak near the local inertial frequency f is increased by a factor of ~10 up to the level of D2-energy at |$\\varphi$| ~ 28-30°, where f coincides with diurnal frequencies. The increase in f-energy is accompanied by a red-shift of the peak frequency to 0.97 +/- 0.01f, or a poleward spreading of enhanced energy. This contrasts with more common blue-shift. The enhancement may be the result of sub-harmonic instability, as supported by sparse significant bicoherence at half-D2, although i) systematic enhancement of diurnal tidal frequencies, notably M1, was not observed, ii) the latitudes of low D2-energy and high f-energy do not coincide. This may be due to a mix of coupled and independent waves, whilst the poleward trapping of sub-f energy suggests non-traditional effects.

  9. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    PubMed

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  10. An MCNPX2.7.0 study of Bragg peak degradation owing to density heterogeneity patterns for a CGMH therapeutic proton beam

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-Chian; Tsai, Yi-Chun; Chen, Shih-Kuan; Wu, Shu-Wei; Tung, Chuan-Jong; Hong, Ji-Hong; Wang, Chun-Chieh; Lee, Chung-Chi

    2017-08-01

    The purpose of this study was to investigate the density heterogeneity pattern as a factor affecting Bragg peak degradation, including shifts in Bragg peak depth (ZBP), distal range (R80 and R20), and distal fall-off (R80-R20) using Monte Carlo N-Particles, eXtension (MCNPX). Density heterogeneities of different patterns with increasing complexity were placed downstream of commissioned proton beams at the Proton and Radiation Therapy Centre of Chang Gung Memorial Hospital, including one 150 MeV wobbling broad beam (10×10 cm2) and one 150 MeV proton pencil beam (FWHM of cross-plane=2.449 cm, FWHM of in-plane=2.256 cm). MCNPX 2.7.0 was used to model the transport and interactions of protons and secondary particles in density heterogeneity patterns and water using its repeated structure geometry. Different heterogeneity patterns were inserted into a 21×21×20 cm3 phantom. Mesh tally was used to track the dose distribution when the proton beam passed through the different density heterogeneity patterns. The results show that different heterogeneity patterns do cause different Bragg peak degradations owing to multiple Coulomb scattering (MCS) occurring in the density heterogeneities. A trend of increasing R20 and R80-R20 with increasing geometry complexity was observed. This means that Bragg peak degradation is mainly caused by the changes to the proton spectrum owing to MCS in the density heterogeneities. In contrast, R80 did not change considerably with different heterogeneity patterns, which indicated that the energy spectrum has only minimum effects on R80. Bragg peak degradation can occur both for a broad proton beam and a pencil beam, but is less significant for the broad beam.

  11. NmF2 Morphology during four-classes of solar and magnetic activity conditions at an African station around the EIA trough and comparison with IRI-2016 Map

    NASA Astrophysics Data System (ADS)

    Adebesin, B.; Rabiu, B.; Obrou, O. K.

    2017-12-01

    Better understanding of the electrodynamics between parameters used in describing the ionospheric layer and their solar and geomagnetic influences goes a long way in furthering the expansion of space weather knowledge. Telecommunication and scientific radar launch activities can however be interrupted either on a larger/smaller scales by geomagnetic activities which is susceptible to changes in solar activity and effects. Consequently, the ionospheric NmF2 electrodynamics was investigated for a station near the magnetic dip in the African sector (Korhogo, Geomagnetic: -1.26°N, 67.38°E). Data covering years 1996 and 2000 were investigated for four categories of magnetic and solar activities viz (i) F10.7 < 85 sfu, ap ≤ 7 nT (low solar quiet, LSQ); (ii) F10.7 < 85 sfu, ap > 7 nT (low solar disturbed, LSD); (iii) F10.7 > 150 sfu, ap ≤ 7 nT (high solar quiet, HSQ); and (iv) F10.7 > 150 sfu, ap > 7 nT (high solar disturbed, HSD). NmF2 revealed a pre-noon peak higher than the post-noon peak during high solar activity irrespective of magnetic activity condition and overturned during low solar activity. Higher NmF2 peak amplitude however characterise disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum pre-/post-noon peaks appeared in equinox season. June solstice noon-time bite out lagged other seasons by 1-2 h. Daytime variability increases with increasing magnetic activity. Equinox/June solstice recorded the highest pre-sunrise/post-sunset peak variability magnitudes with the lowest emerging in June solstice/equinox for all solar and magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period; while the range is similar for daytime observations. The noon-time trough characteristics is not significant in the IRI NmF2 pattern during high solar activity but evident during low solar conditions. IRI-2016 map performed best during disturbed activity conditions especially for F10.7 < 85 sfu, ap > 7 nT condition.

  12. An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF Bz condition

    DOE PAGES

    Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...

    2016-05-26

    Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less

  13. Strides made in understanding space weather at Earth

    NASA Astrophysics Data System (ADS)

    Buonsanto, M. J.; Fuller-Rowell, T. J.

    Disturbances on the Sun can produce dramatic effects in the space environment surrounding the Earth. Energetic particle effects become more intense and pose a hazard to astronauts and damage spacecraft electronics; satellite lifetimes are shortened by increased atmospheric drag, and communications and navigation are disrupted by the changing plasma environment.“Space weather” has become the modern idiom for these effects, and periods of high activity are called geomagnetic storms. During a storm the ionosphere can be severely altered. A typical episode may reveal either a large decrease (negative phase) or increase (positive phase) in the normal daily peak ion density (NmF2) or total electron content (TEC). These changes in ion density are sometimes called ionospheric storms, and often persist for more than a day after a period of high geomagnetic activity.

  14. Electron acceleration in downward auroral field-aligned currents

    NASA Astrophysics Data System (ADS)

    Cran-McGreehin, Alexandra P.; Wright, Andrew N.

    2005-10-01

    The auroral downward field-aligned current is mainly carried by electrons accelerated up from the ionosphere into the magnetosphere along magnetic field lines. Current densities are typically of the order of a few μ Am-2, and the associated electrons are accelerated to energies of several hundred eV up to a few keV. This downward current has been modeled by Temerin and Carlson (1998) using an electron fluid. This paper extends that model by describing the electron populations via distribution functions and modeling all of the F region. We assume a given ion density profile, and invoke quasi-neutrality to solve for the potential along the field line. Several important locations and quantities emerge from this model: the ionospheric trapping point, below which the ionospheric population is trapped by an ambipolar electric field; the location of maximum E∥, of the order of a few mVm-1, which lies earthward of the B/n peak; the acceleration region, located around the B/n peak, which normally extends between altitudes of 500 and 3000 km; and the total potential increase along the field line, of the order of a few hundred V up to several kV. The B/n peak is found to be the central factor determining the altitude and magnitude of the accelerating potential required. Indeed, the total potential drop is found to depend solely on the equilibrium properties in the immediate vicinity of the B/n peak.

  15. On electrical and interfacial properties of iron and platinum Schottky barrier diodes on (111) n-type Si0.65Ge0.35

    NASA Astrophysics Data System (ADS)

    Hamri, D.; Teffahi, A.; Djeghlouf, A.; Chalabi, D.; Saidane, A.

    2018-04-01

    Current-voltage (I-V), capacitance-voltage-frequency (C-V-f) and conductance-voltage-frequency (G/ω-V-f) characteristics of Molecular Beam Epitaxy (MBE)-deposited Fe/n-Si0.65Ge0.35 (FM1) and Pt/n-Si0.65Ge0.35(PM2) (111) orientated Schottky barrier diodes (SBDs) have been investigated at room-temperature. Barrier height (ΦB0), ideality factor (n) and series resistance (RS) were extracted. Dominant current conduction mechanisms were determined. They revealed that Poole-Frenkel-type conduction mechanism dominated reverse current. Differences in shunt resistance confirmed the difference found in leakage current. Under forward bias, quasi-ohmic conduction is found at low voltage regions and space charge-limited conduction (SCLC) at higher voltage regions for both SBDs. Density of interface states (NSS) indicated a difference in interface reactivity. Distribution profiles of series resistance (RS) with bias gives a peak in depletion region at low-frequencies that disappears with increasing frequencies. These results show that interface states density and series resistance of Schottky diodes are important parameters that strongly influence electrical properties of FM1 and PM2 structures.

  16. Thermophysical and radiation properties of high-temperature C4F8-CO2 mixtures to replace SF6 in high-voltage circuit breakers

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Cressault, Yann; Teulet, Philippe

    2018-03-01

    C4F8-CO2 mixtures are one of the potential substitutes to SF6 in high-voltage circuit breakers. However, the arc quenching ability of C4F8-CO2 mixtures is still unknown. In order to provide the necessary basic data for the further investigation of arc quenching performance, the compositions, thermodynamic properties, transport coefficients, and net emission coefficients (NEC) of various C4F8-CO2 mixtures are calculated at temperatures of 300-30 000 K in this work. The thermodynamic properties are presented as the product of mass density and specific heat, i.e., ρCp. The transport coefficients include electrical conductivity, viscosity, and thermal conductivity. The atomic and molecular radiation are both taken into account in the calculation of NEC. The comparison of the properties between SF6 and C4F8-CO2 mixtures is also discussed to find their differences. The results of compositions show that C4F8-CO2 mixtures have a distinctive advantage over other alternative gases e.g., CF3I and C3F8, because the dissociative product (i.e., C4F6) of C4F8 at low temperatures has a very high dielectric strength. This is good for an arc quenching medium to endure the arc recovery phase. Compared with SF6, C4F8-CO2 mixtures present lower ρCp at temperatures below 2800 K and larger thermal conductivity above 2800 K. Based on the position of peaks in thermal conductivity, we predict that the cooling of C4F8-CO2 arc will be slowed down at higher temperatures than that of SF6 arc. It is also found that the mixing of CO2 shows slight effects on the electrical conductivity and NEC of C4F8-CO2 mixtures.

  17. A statistical study on the F2 layer vertical variation during nighttime medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Jeong, Se-Heon

    2017-03-01

    A statistical study on the relationship between the perturbation component (ΔTEC (total electron content)) and the F2 layer peak height (hmF2) during nighttime medium-scale traveling ionospheric disturbances is presented. The results are obtained by using a time-dependent computerized ionospheric tomography (CIT) technique. This was realized by using slant total electron content observations from a dense Global Positioning System receiver network over Japan (with more than 1000 receivers), together with a multiplicative algebraic reconstruction technique. Reconstructions from CIT were validated by using ionosonde and occultation measurements. A total of 36 different time snapshots of the ionosphere when medium-scale traveling ionospheric disturbances (MSTIDs) were eminent were analyzed. These were obtained from a data set covering years from 2011 to 2014. The reconstructed surface wavefronts of ΔTEC and hmF2 structure were found to be aligned along the northwest-southeast direction. These results confirm that nighttime MSTIDs are driven by electrodynamic forces related to Perkins instability which explains the northwest-southeast wavefront alignment based on the F region electrodynamics. Furthermore, from the statistical analysis hmF2 varied quasiperiodically in altitude with dominant peak-to-peak amplitudes between 10 and 40 km. In addition, ΔTEC and hmF2 were 60% anticorrelated.

  18. Focusing of shock waves induced by optical breakdown in water

    PubMed Central

    Sankin, Georgy N.; Zhou, Yufeng; Zhong, Pei

    2008-01-01

    The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F1) and second foci (F2) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F1, which generates a spherically diverging shock wave with a peak pressure of 2.1–5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36–65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F2, has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 μs, followed by a trailing tensile wave of −3.3 MPa peak pressure and 0.2 μs pulse duration. The −6 dB beam size of the focused shock wave field is 1.6×0.2 mm2 along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F2. General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model. PMID:18537359

  19. Underwater Sound Radiation from Large Raindrops

    DTIC Science & Technology

    1991-09-01

    decreasing shape of the impact spectrum, one must pick a reference point rather that a peak value to compare one drop with another. For comparison of...34 1. Type I Bubble Spectral Density and Peak Pressure ............... 34 2. Type II Bubble Average Spectral Densities at 1 m on Axis (20 C...32 Table 4. TYPE II BUBBLE AVERAGE PEAK SPECTRAL DENSITY SU M M A RY ............................................. 39 Table 5. SUMMARY

  20. Ionosphere dynamics in the auroral zone during the magnetic storm of March 17-18, 2015

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Sergeeva, M. A.

    2016-11-01

    A comprehensive study of the ionospheric processes encountered during the superstorm which started on March 17th 2015 has been carried out using magnetometer, ionosonde, riometer, ionospheric tomography and an all-sky camera installed in the observatory of Sodankylä, Finland. The storm manifested a number of interesting features. From 12:00 on March 17 there was a significant decrease of critical frequencies foF2 and intensive sporadic Es layers were observed. During the disturbance, there was a lack of variation of the X-component of the magnetic field at times, but the absorption level measured by the riometer was high. A comparison of the electron density distributions for the quiet and disturbed days as shown in the tomography data were very different. Where results were available at the same times, the tomographic foF2 values coincided with the ;real; foF2 values from the ionosonde. Where the ionosonde data was missing due to absorption, the tomographic foF2 values were used instead. The keograms from the all-sky camera showed that during disturbed days the aurorae manifested themselves as bright discrete forms. It was shown that the peaks of absorption due to particle precipitation seen by the riometer coincided in time with the brightenings of aurorae seen on the keograms.

  1. Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.

    2018-02-01

    We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.

  2. Analysis of laser produced plasmas of gold in the 1-7 nm region

    NASA Astrophysics Data System (ADS)

    Li, Bowen; Higashiguchi, Takeshi; Otsuka, Takamitsu; Yugami, Noboru; Dunne, Padraig; Kilbane, Deirdre; Sokell, Emma; O'Sullivan, Gerry

    2014-04-01

    Extreme ultraviolet (EUV) spectra from gold laser produced plasmas were recorded in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a range of power densities. The maximum focused peak power density was 9.5 × 1013 W cm-2 for the former and 5.3 × 1012 W cm-2 for the latter. Two intense quasicontinuous intensity bands resulting from n = 4-n = 4 and n = 4-n = 5 unresolved transition arrays dominate the 4-5.5 and 1.5-3.6 nm regions of both spectra. Comparison with atomic structure calculations performed with the Cowan suite of atomic structure codes as well as consideration of previous experimental and theoretical results aided identification of the most prominent features in the spectra. For the ns spectrum, the highest ion stage that could be identified from the n = 4-n = 5 arrays was Au28+ while for the ps plasma the presence of significantly higher stages was deduced and lines due to 4d104f-4d94f2 transitions in Ag-like Au32+ give rise to the strongest observed features within the n = 4-n = 4 array while in the n = 4-n = 5 array it was possible to identify a number of previously unidentified spectral features as resulting from 4f-5g transitions in the spectra of Au XX to Au XXXIII.

  3. High temperature insulation materials for reradiative thermal protection systems

    NASA Technical Reports Server (NTRS)

    Hughes, T. A.

    1972-01-01

    Results are presented of a two year program to evaluate packaged thermal insulations for use under a metallic radiative TPS of a shuttle orbiter vehicle. Evaluations demonstrated their survival for up to 100 mission reuse cycles under shuttle acoustic and thermal loads with peak temperatures of 1000 F, 1800 F, 2000 F, 2200 F and 2500 F. The specimens were composed of low density refractory fiber felts, packaged in thin gage metal foils. In addition, studies were conducted on the venting requirements of the packages, salt spray resistance of the metal foils, and the thermal conductivity of many of the insulations as a function of temperature and ambient air pressure. Data is also presented on the radiant energy transport through insulations, and back-scattering coefficients were experimentally determined as a function of source temperature.

  4. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. Whilemore » their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.« less

  5. First-principles study of the Kondo physics of a single Pu impurity in a Th host

    DOE PAGES

    Zhu, Jian -Xin; Albers, R. C.; Haule, K.; ...

    2015-04-23

    Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5f electrons and the heavy actinides that have localized 5f electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantummore » Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal. With the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. We show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu - 5f hybridization with the ligands at the surface.« less

  6. Influence of substrate type on transport properties of superconducting FeSe0.5Te0.5 thin films

    NASA Astrophysics Data System (ADS)

    Yuan, Feifei; Iida, Kazumasa; Langer, Marco; Hänisch, Jens; Ichinose, Ataru; Tsukada, Ichiro; Sala, Alberto; Putti, Marina; Hühne, Ruben; Schultz, Ludwig; Shi, Zhixiang

    2015-06-01

    FeSe0.5Te0.5 thin films were grown by pulsed laser deposition on CaF2, LaAlO3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe0.5Te0.5 bulk and the substrate shows no influence on the lattice parameters of the films, whereas the type of substrate affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density Jc(θ) at θ = 180° (H||c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no Jc(θ) peaks for H||c were observed in films on CaF2 and LaAlO3. Jc(θ) can be scaled successfully for both films without c-axis correlated defects by the anisotropic Ginzburg-Landau approach with appropriate anisotropy ratio γJ. The scaling parameter γJ is decreasing with decreasing temperature, which is different from what we observed in FeSe0.5Te0.5 films on Fe-buffered MgO substrates.

  7. Lack of age-specific influence on leg blood flow during incremental calf plantar-flexion exercise in men and women.

    PubMed

    Reilly, Heather; Lane, Louise M; Egaña, Mikel

    2018-05-01

    Age-related exercising leg blood flow (LBF) responses during dynamic knee-extension exercise and forearm blood flow responses during handgrip exercise are preserved in normally active men but attenuated in activity-matched women. We explored whether these age- and sex-specific effects are also apparent during isometric calf plantar-flexion incremental exercise. Normally active young men (YM, n = 15, 24 ± 2 years), young women (YW, n = 8, 22 ± 1 years), older men (OM, n = 13, 70 ± 7 years) and older women (OW, n = 10, 64 ± 7 years) were tested. LBF was measured between contractions using venous occlusion plethysmography. Peak force obtained was higher (P < 0.05) in men compared with women and in young compared with older individuals. However, peak LBF (YM; 971 ± 328 ml min -1 , OM; 985 ± 504 ml min -1 , YW; 844 ± 366 ml min -1 , OW; 960 ± 244 ml min -1 ) and peak leg vascular conductance [LVC = LBF/(MAP + hydrostatic pressure)] responses (YM; 6.0 ± 1.8 ml min -1  mmHg -1 , OM; 5.5 ± 2.8 ml min -1  mmHg -1 , YW; 5.3 ± 2.1 ml min -1  mmHg -1 , OW; 5.5 ± 1.6 ml min -1 mmHg -1 ) were similar among the four groups. Furthermore, the hyperaemic (YM; 8.8 ± 3.7 ml min -1  %F peak -1 OM; 8.3 ± 5.4 ml min -1  %F peak -1 , YW; 8.2 ± 3.5 ml min -1  %F peak -1 , OW; 9.6 ± 2.2 ml min -1  %F peak -1 ) and vasodilatory responses (YM; 0.053 ± 0.020 ml min -1  mmHg -1  %F peak -1 , OM; 0.048 ± 0.028 ml min -1  mmHg -1  %F peak -1 , YW; 0.051 ± 0.019 ml min -1  mmHg -1  %F peak -1 , OW; 0.055 ± 0.014 ml min -1  mmHg -1  %F peak -1 ) were not different among the four groups. These results were accompanied by similar resting LBF responses among groups and were not affected when data were normalised to estimated leg muscle mass. Our results demonstrate that exercising LBF responses during isometric incremental calf muscle exercise are preserved in older men and women, suggesting that the previously observed age-related attenuations in leg and forearm hyperaemia among women may be muscle-group specific.

  8. Dependences of the density of M 1- x R x F2 + x and R 1- y M y F3- y single crystals ( M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-01

    The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.

  9. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    PubMed

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated. Relationships between basal beating rate and L-type Ca 2+ current and funny current ( I f ) density are uncovered, along with a positive relationship between I f and delayed rectifier K + current. Links are shown between the response to Ca 2+ cycling blockade and I f density.

  10. Comparison of quartz standards for X-ray diffraction analysis: HSE A9950 (Sikron F600) and NIST SRM 1878.

    PubMed

    Chisholm, Jim

    2005-06-01

    A further comparison of the Health and Safety Executive (HSE) standard quartz, A9950 (Sikron F600), and the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1878, standard respirable alpha-quartz, has been carried out for the four principal diffraction peaks. In the earlier comparison by Jeyaratnam and Nagar (1993, Ann Occup Hyg; 37: 167-79), the standards were both treated in ways which might change the particle size distribution and therefore the proportion of crystalline quartz. The two standards have now been compared in the most direct way possible with the minimum of sample treatment. There are no significant differences in the diffraction peak positions for the two standards. Nor do the peak area intensities differ significantly. The peak height intensities are consistently and significantly higher for Sikron F600 than for NIST SRM 1878. The particle size broadening of the diffraction peaks is evidently greater for NIST 1878, whose mass median diameter is quoted as 1.6 microm against 2.6 microm for Sikron F600. Taking the certified reference value for SRM 1878 as 95.5 +/- 1.1% crystalline quartz, the HSE standard A9950 (Sikron F600) contains 96.3 +/- 1.4% crystalline quartz based on a comparison of peak area intensities. On the same basis but using peak height intensities, the nominal crystalline quartz content of A9950 (Sikron F600) is 101.2 +/- 1.8%. Results obtained by comparison of quartz standards may not be generally applicable because of the effect of sample treatment on particle size and crystalline quartz content.

  11. Earth's magnetic field effect on MUF calculation and consequences for hmF2 trend estimates

    NASA Astrophysics Data System (ADS)

    Elias, Ana G.; Zossi, Bruno S.; Yiğit, Erdal; Saavedra, Zenon; de Haro Barbas, Blas F.

    2017-10-01

    Knowledge of the state of the upper atmosphere, and in particular of the ionosphere, is essential in several applications such as systems used in radio frequency communications, satellite positioning and navigation. In general, these systems depend on the state and evolution of the ionosphere. In all applications involving the ionosphere an essential task is to determine the path and modifications of ray propagation through the ionospheric plasma. The ionospheric refractive index and the maximum usable frequency (MUF) that can be received over a given distance are some key parameters that are crucial for such technological applications. However, currently the representation of these parameters are in general simplified, neglecting the effects of Earth's magnetic field. The value of M(3000)F2, related to the MUF that can be received over 3000 km is routinely scaled from ionograms using a technique which also neglects the geomagnetic field effects assuming a standard simplified propagation model. M(3000)F2 is expected to be affected by a systematic trend linked to the secular variations of Earth's magnetic field. On the other hand, among the upper atmospheric effects expected from increasing greenhouse gases concentration is the lowering of the F2-layer peak density height, hmF2. This ionospheric parameter is usually estimated using the M(3000)F2 factor, so it would also carry this ;systematic trend;. In this study, the geomagnetic field effect on MUF estimations is analyzed as well as its impact on hmF2 long-term trend estimations. We find that M(3000)F2 increases when the geomagnetic field is included in its calculation, and hence hmF2, estimated using existing methods involving no magnetic field for M(3000)F2 scaling, would present a weak but steady trend linked to these variations which would increase or compensate the few kilometers decrease ( 2 km per decade) expected from greenhouse gases effect.

  12. Comprehensive study on compositional modification of Tb3+ doped zinc phosphate glass

    NASA Astrophysics Data System (ADS)

    Yaacob, S. N. S.; Sahar, M. R.; Sazali, E. S.; Mahraz, Zahra Ashur; Sulhadi, K.

    2018-07-01

    Series of glass composition (60-x) P2O5 -40 ZnO -(x) Tb2O3 where x = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol % are prepared by conventional melt quenching technique. X-Ray Diffraction (XRD), FTIR, UV-Vis-NIR and the photoluminescence (PL) spectroscopy are used to characterize the physical, structural and optical behavior of the glass sample. The XRD pattern confirms the amorphous nature and DTA verified the thermal stability of all the glass samples. Glass with 1.5 mol % of Tb2O3 possesses the highest thermal stability. Glass density is found to increase proportionally with increasing amount of Tb3+ while the molar volume behaves reversely. Six main IR absorption bands centered at about 540, 748, 891, 1085 and 1294 cm- 1 are evidenced. The UV-Vis NIR absorption spectra reveals the absorption center band at about 540, 376, 488 and 1920 nm corresponding to the absorption from 7F6 ground state to various excited state of Tb3+ ion. The optical band gaps for direct and indirect transition are in the range 4.53-5.07 eV and 4.30 eV-4.56 eV respectively. The Urbach energy decreases with the increasing concentration of Tb2O3. The PL emission spectra reveals several prominent peaks at 413, 435, 457, 488, 540, 585 and 620 nm due to electronic transition from 5D3→7F5, 5D3→7F4, 5D3→7F3, 5D4→7F6, 5D4→7F5, 5D4→7F3 and 5D4→7F5 respectively.

  13. Properties of micro-arc oxidation coatings on aluminum alloy at different negative peak current densities

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian

    2018-05-01

    Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.

  14. A case against an X-shaped structure in the Milky Way young bulge

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    2016-09-01

    Context. A number of recent papers have claimed the discovery of an X-shape structure in the bulge of our Galaxy in the population of the red clumps. Aims: We endeavor to analyze the stellar density of bulge stars in the same regions using a different stellar population that is characteristic of the young bulge (≲ 5 Gyr). Particularly, we use F0-F5 main-sequence stars with distances derived through photometric parallax. Methods: We extract these stars from extinction-corrected color-magnitude diagrams in the near-infrared of VISTA-VVV data in some bulge regions and calculate the densities along the line of sight. We take the uncertaintity in the photometric parallax and the contamination of other sources into account, and we see that these errors do not avoid the detection of a possible double peak along some lines of sight as expected for a X-shape bulge if it existed. Results: Only a single peak in the density distribution along the line of sight is observed, so apparently there is no X-shape structure for this population of stars. Nonetheless, the effects of the dispersion of absolute magnitudes in the selected population might be an alternative explanation, although in principle these effects are insufficient to explain this lack of double peak according to our calculations. Conclusions: The results of the present paper do not demonstrate that previous claims of X-shaped bulge using only red clump stars are incorrect, but there are apparently some puzzling questions if we want to maintain the validity of both the red-clump results and the results of this paper.

  15. 19F and 31P magic-angle spinning nuclear magnetic resonance of antimony(III)-doped fluorapatite phosphors: Dopant sites and spin diffusion

    NASA Astrophysics Data System (ADS)

    Moran, Liam B.; Berkowitz, Jeffery K.; Yesinowski, James P.

    1992-03-01

    Phosphors based on calcium fluorapatite [Ca5F(PO4)3] doped with small amounts of Sb3+ as an activator are used in most fluorescent lamps. We have used quantitative 19F and 31P magic-angle spinning nuclear magnetic resonance (MAS-NMR) to study seven samples of calcium fluorapatite containing 0.0-3.0 wt % Sb3+ in order to determine the site of antimony substitution. The 31P MAS-NMR spectra of fluorapatite containing 3.0, 2.1, and 1.3 wt % antimony contain a single sharp peak at 2.8 ppm indistinguishable from undoped fluorapatite, and show no additional peaks attributable to the influence of antimony. The 31P MAS-NMR spectra of the model compounds SbPO4, Sr1.03Ca8.97F2(PO4)6, Sr5F(PO4)3, and Ba5F(PO4)3 were also obtained. The 19F MAS-NMR spectra of the antimony-doped samples exhibit, in addition to the main peak at 64.0 ppm (downfield from C6F6) arising from unperturbed fluorapatite, a shoulder at 65.6 ppm, and a sharp peak at 68.6 ppm. The measured spin-lattice relaxation times T1 of these antimony-related peaks are equal in all cases to that of the main peak in a given sample, and vary from 129 to 378 sec, indicating that these peaks arise from apatitic fluoride ions perturbed by antimony. Quantitative studies reveal that the 68.6-ppm peak arises from two fluoride ions and the 65.6-ppm shoulder from one fluoride ion per Sb3+ ion incorporated into the lattice. The selective population anti-z and rate of transfer to adjacent nuclei (SPARTAN) pulse sequence used to measure spin diffusion by selectively inverting the 68.6-ppm peak reveals the presence of cross-relaxation to the main peak at 64.0 ppm, but not to the shoulder at 65.6 ppm. Each Sb3+ ion thus appears to be perturbing fluoride ions in at least two different chains. An additional peak at 73.1 ppm observed in some samples is assigned to a second type of antimony(III) substitution, with a single fluoride ion perturbed by each antimony ion. The results in total provide detailed support for a substitution model in which antimony(III) occupies a phosphate site in the apatite lattice, with a SbO3-3 group replacing a PO3-4 group. Two types of substitution at this site appear to occur, depending upon which oxygen atom is replaced by the antimony lone electron pair.

  16. Luminescence and scintillation properties of BaF2sbnd Ce transparent ceramic

    NASA Astrophysics Data System (ADS)

    Luo, Junming; Sahi, Sunil; Groza, Michael; Wang, Zhiqiang; Ma, Lun; Chen, Wei; Burger, Arnold; Kenarangui, Rasool; Sham, Tsun-Kong; Selim, Farida A.

    2016-08-01

    Cerium doped Barium Fluoride (BaF2sbnd Ce) transparent ceramic was fabricated and its luminescence and scintillation properties were studied. The photoluminescence shows the emission peaks at 310 nm and 323 nm and is related to the 5d-4f transitions in Ce3+ ion. Photo peak at 511 keV and 1274 keV were obtained with BaF2sbnd Ce transparent ceramic for Na-22 radioisotopes. Energy resolution of 13.5% at 662 keV is calculated for the BaF2sbnd Ce transparent ceramic. Light yield of 5100 photons/MeV was recorded for BaF2sbnd Ce(0.2%) ceramic and is comparable to its single crystal counterpart. Scintillation decay time measurements shows fast component of 58 ns and a relatively slow component of 434 ns under 662 keV gamma excitation. The slower component in BaF2sbnd Ce(0.2%) ceramic is about 200 ns faster than the STE emission in BaF2 host and is associated with the dipole-dipole energy transfer from the host matrix to Ce3+ luminescence center.

  17. Effect of different exposure compounds on urinary kinetics of aluminium and fluoride in industrially exposed workers.

    PubMed Central

    Pierre, F; Baruthio, F; Diebold, F; Biette, P

    1995-01-01

    OBJECTIVE--To conduct a field study to obtain information on the urinary concentrations of aluminium (Al) and fluoride (F-) depending on the different compounds exposed to in the aluminum industry. METHODS--16 workers from one plant that produced aluminium fluoride (AlF3), and from two plants that produced aluminium electrolytically by two different processes participated in the study for one working week. Pollutants were monitored by eight hour personal sampling every day, and urine samples were collected during the week. Al and F- were analysed in both atmospheric and urine samples by atomic absorption spectrometry and an ion selective electrode. RESULTS--The principal results show different characteristics of kinetic curves of Al and F- excretion in workers with different exposures. Some characteristics of excretory peaks were linked to specific exposures--for instance, after exposure to AlF3 there was one delayed Al peak associated with one delayed F- peak about eight hours after the end of the daily shift, and after mixed exposure to HF and AlF3, two F- peaks were noted, one fast peak at the end of the shift and another delayed peak at 10 hours synchronised with an Al peak. In one of the electrolysis plants, the exposure to Al and F- compounds led to the simultaneous excretion of Al and F- peaks, either as a single peak or two individual ones depending on the type of technology used on site (open or enclosed potlines). The average estimated half life of Al was 7.5 hours, and of F- about nine hours. Quantitative relations between excretion and exposure showed an association between the F- atmospheric limit value of 2.5 mg/m3 with a urinary F- concentration of 6.4 mg/g creatinine at the end of the shift, a peak of 7.4 mg/g creatinine, and 7.4 mg excreted a day. For Al, the exposure to 1.36 mg/m3 during the shift corresponded to a urinary concentration at the end of the shift of 200 microgram/g creatinine. Daily excretion of 200 micrograms corresponded to an exposure to 0.28 mg/m3. CONCLUSION--Particular differences in the behaviour of Al and F- in urine depended upon the original molecular form in the pollutant. These results reinforce the principle that, in biological monitoring, the sampling strategy and the choice of limit value should be dependent on kinetic data that take the exposure compound of the element in question into account. PMID:7627317

  18. Comparison of free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Gapud, Albert A.; Moraes, Sunhee; Thompson, James R.; Christen, David K.; Reyes, Arneil P.

    2011-03-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3 Si are presented. Magnetization and transport data confirm the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which also has higher critical current density Jc (H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf (H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predicts a deviation from BS. In this study, ρf (H) is confirmed to be consistent with predictions of KZ, as will be discussed. Funded by Research Corporation and the National Science Foundation.

  19. Comparative evaluation of NeQuick and IRI models over Polar Regions

    NASA Astrophysics Data System (ADS)

    Pietrella, Marco; Nava, Bruno; Pezzopane, Michael; Migoya-Orue, Yenca; Scotto, Carlo

    2016-04-01

    In the framework of the AUSPICIO (AUtomatic Scaling of Polar Ionograms and Cooperative Ionospheric Observations) project, the ionograms recorded at Hobart (middle latitude), Macquarie Island, Livingstone Island and Comandante Ferraz (middle-high latitude) and those recorded at the ionospheric observatories of Casey, Mawson, Davis, and Scott Base (Antarctic Polar Circle), have been taken into account to study the capability of NeQuick-2 and IRI-2012 models in predicting the behavior of the ionosphere, mainly in the polar region. In particular, the applicability of NeQuick-2 and IRI-2012 models was evaluated under two different modes: a) as assimilative models ingesting the foF2 and hmF2 measurements obtained from the electron density profiles provided by the Adaptive Ionospheric Profiler (AIP); b) as climatological models taking as input F10.7 solar activity index. The results obtained from the large number of comparisons made for each ionospheric observatory when NeQuick-2 and IRI-2012 models work according to the two modes above mentioned, reveal that the best description of the ionosphere electron density at the polar regions is provided when peak parameter data are ingested in near-real-time into NeQuick-2 and IRI-2012 models which, indeed, are not always able to represent efficiently the behavior of the ionosphere over the polar regions when operating in long term prediction mode. The statistical analysis results expressed in terms of root mean square errors (r.m.s.e.) for each ionospheric observatory show that, outside the Antarctic Polar Circle (APC), NeQuick-2 performance is better than the IRI-2012 performance; on the contrary, inside the APC IRI-2012 model performs better than NeQuick-2.

  20. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears

    NASA Astrophysics Data System (ADS)

    Konrad-Martin, Dawn; Neely, Stephen T.; Keefe, Douglas H.; Dorn, Patricia A.; Cyr, Emily; Gorga, Michael P.

    2002-04-01

    DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2=4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1=L2+10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.

  1. Comparison of plasmaspheric electron content over sea and land using Jason-2 observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Cherniak, Iurii; Zakharenkova, Irina

    2016-07-01

    The Global Ionospheric Maps of Total Electron Content, GIM-TEC, may suffer from model assumptions, in particular, over the oceans where relatively few measurements are available due to a scarcity of ground-based GPS receivers network only on seashores and islands which involve more assumptions or interpolations imposed on GIM mapping techniques. The GPS-derived TEC represents the total electron content integrated through the ionosphere, iTEC, and the plasmasphere, pTEC. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. Derivation of a sea/land proportion of total electron content from the new source of the satellite-based measurements would allow improve the mapping GIM-TEC products and their assimilation by the ionosphere-plasmasphere IRI-Plas model. In this context the data of Jason-2 mission provided through the NOAA CLASS Website (http://www.nsof.class.noaa.gov/saa/products/catSearch) present a unique database of pTEC measured through the plasmasphere over the Jason-2 orbit (1335 km) to GPS orbit (20,200 km) which become possible from GPS receivers placed onboard of Jason-2 with a zenith looking antenna that can be used not only for precise orbit determination (POD), but can also provide new data on the plasma density distribution in the plasmasphere. Special interest represents possibility of the potential increase of the data volume in two times due to the successful launch of the Jason-3 mission on 17 January 2016. The present study is focused on a comparison of plasmasphere electron content, pTEC, over the sea and land with a unique data base of the plasmasphere electron content, pTEC, using measurements onboard Jason-2 satellite during the solar minimum (2009) and solar maximum (2014). Slant TEC values were scaled to estimate vertical pTEC using a geometric factor derived by assuming the plasma occupies a spherical thin shell at 1400 km. The elevation angle cut-off was selected as 40 deg. Global distribution of POD TEC values has been presented in the form of pTEC maps, that were made by projecting the pTEC values on the Earth from the ionosphere pierce point at the shell altitude. Along the satellite pass for each epoch we have pTEC values for several linked LEO-GPS simultaneously, that can be binned and averaged into map cells. Results of pTEC maps analysis in terms of local time, season and solar activity are presented in the paper.

  2. Nonlinear acoustic experiments involving landmine detection: Connections with mesoscopic elasticity and slow dynamics in geomaterials, Part III

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Sabatier, James M.

    2005-09-01

    In nonlinear acoustic detection schemes, airborne sound at two primary tones, f1, f2 (closely spaced near an 80-Hz resonance) excites the soil surface over a buried landmine. Due to soil wave interactions with the landmine, a scattered surface profile can be measured by a geophone. Profiles at f1, f2, f1-(f2-f1) and f2+(f2-f1) exhibit single peaks; those at 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) involve higher order mode shapes for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Results are similar to nonlinear mesoscopic/nanoscale effects that are observed in granular solids like Berea sandstone. New experiments show that first sweeping up through resonance and then immediately sweeping back down result in different tuning curve behavior that might be explained by ``slow dynamics'' where an effective modulus reduction persists following periods of high strain. Results are similar to those described by TenCate et al. [Phys. Rev. Lett. 85, 1020-1023 (2000)]. [Work supported by U.S. Army RDECOM CERDEC, NVESD.

  3. Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin

    2015-08-01

    Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.

  4. Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Ramachandran, S. P.; Ravi, G.; Ganesh, V.; Guduru, Ramesh K.; Yuvakkumar, R.

    2018-01-01

    In this study, uniform iron manganese trioxide (FeMnO3) microspheres were characterized as electrode for supercapacitor applications. The microspheres were synthesized by hydrothermal method in the presence of different molar ratios of sucrose. X-ray diffraction pattern confirmed that the obtained microsphere has body-centered lattice structure of space group 1213(199). The Raman peak observed at 640 cm-1 might be attributed to the stretching mode of vibration of Mn-O bonds perpendicular to the direction of MnO6 octahedral double chains. The photoluminescence peak at the 536 nm corresponded to Fe2+ ions in FeMnO3 lattice point of body-centered cubic structure. The characteristic strong infrared (IR) bands observed at 669 cm-1 corresponded to Fe-O stretching. The electrochemical characterization of the obtained FeMnO3 products could be understood by carrying out cyclic voltammeter, electroimpedance spectra, and galvanostatic charging and discharge studies in a three-cell setup that demonstrates the exceptional specific capacitance of 773.5 F g-1 at a scan rate of 10 mV s-1 and 763.4 F g-1 at a current density of 1 A g-1.

  5. Development of electrochemical super capacitors for EMA applications

    NASA Technical Reports Server (NTRS)

    Kosek, J. A.; Dunning, T.; Laconti, A. B.

    1995-01-01

    In a NASA SBIR Phase I program (Contract No. NAS8-40119), Giner, Inc. evaluated the feasibility of fabricating an all-solid-ionomer multicell electrochemical capacitor having a unit cell capacitance greater than 2 F/sq cm and a repeating element thickness of 6 mils. This capacitor can possibly be used by NASA as a high-rate energy source for electromechanical actuator (EMA) activation for advanced space missions. The high unit cell capacitance and low repeating element thickness will allow for the fabrication of a low-volume, low-weight device, favorable characteristics for space applications. These same characteristics also make the capacitor attractive for terrestrial applications, such as load-leveling batteries or fuel cells in electric vehicle applications. Although the projected energy densities for electrochemical capacitors are about two orders of magnitude lower than that of batteries, the high-power-density characteristics of these devices render them as potentially viable candidates for meeting pulse or peak electrical power requirements for some anticipated aerospace mission scenarios, especially those with discharge times on the millisecond to second time scale. On a volumetric or gravimetric basis, the advantages of utilizing electrochemical capacitors rather than batteries for meeting the peak power demands associated with a specific mission scenario will largely depend upon the total and pulse durations of the power peaks. The effect of preparation conditions on RuO(x), the active component in an all-solid-ionomer electrochemical capacitor, was evaluated during this program. Methods were identified to prepare RuO(x) having a surface areagreater than 180 sq m/g, and a capacitance of greater than 2 F/sq cm. Further efforts to reproducibly obtain these high-surface-area materials in scaled-up batches will be evaluated in Phase 2. During this Phase 1 program we identified a superior Nafion 105 membrane, having a film thickness of 5 mils, that showed excellent performance in our all-solid-ionomer capacitors and resulted in electrochemical capacitors with a repeating element thickness of 8 mils. We are currently working with membrane manufacturers to obtain a high performance membrane in less than 3 mil thickness to obtain a repeating element thickness of 6 mils or less. A 10-cell all-solid ionomer capacitor stack, with each cell having a 222 sq cm active area, was fabricated and evaluated as part of the Phase 1 program. Further Scale-up of a high-energy-density stack is plannedin Phase 2.

  6. Method for disclosing invisible physical properties in metal-ferroelectric-insulator-semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Sakai, Shigeki; Zhang, Wei; Takahashi, Mitsue

    2017-04-01

    In metal-ferroelectric-insulator-semiconductor gate stacks of ferroelectric-gate field effect transistors (FeFETs), it is impossible to directly obtain curves of polarization versus electric field (P f-E f) in the ferroelectric layer. The P f-E f behavior is not simple, i.e. the P f-E f curves are hysteretic and nonlinear, and the hysteresis curve width depends on the electric field scan amplitude. Unless the P f-E f relation is known, the field E f strength cannot be solved when the voltage is applied between the gate meal and the semiconductor substrate, and thus P f-E f cannot be obtained after all. In this paper, the method for disclosing the relationships among the polarization peak-to-peak amplitude (2P mm_av), the electric field peak-to-peak amplitude (2E mm_av), and the memory window (E w) in units of the electric field is presented. To get P mm_av versus E mm_av, FeFETs with different ferroelectric-layer thicknesses should be prepared. Knowing such essential physical parameters is helpful and in many cases enough to quantitatively understand the behavior of FeFETs. The method is applied to three groups. The first one consists of SrBi2Ta2O9-based FeFETs. The second and third ones consist of Ca x Sr1-x Bi2Ta2O9-based FeFETs made by two kinds of annealing. The method can clearly differentiate the characters of the three groups. By applying the method, ferroelectric relationships among P mm_av, E mm_av, and E w are well classified in the three groups according to the difference of the material kinds and the annealing conditions. The method also evaluates equivalent oxide thickness (EOT) of a dual layer of a deposited high-k insulator and a thermally-grown SiO2-like interfacial layer (IL). The IL thickness calculated by the method is consistent with cross-sectional image of the FeFETs observed by a transmission electron microscope. The method successfully discloses individual characteristics of the ferroelectric and the insulator layers hidden in the gate stack of a FeFET.

  7. Synthesis of gold nanoparticles on multi-walled carbon nanotubes (Au-MWCNTs) via deposition precipitation method

    NASA Astrophysics Data System (ADS)

    Zulikifli, Farah Wahida Ahmad; Yazid, Hanani; Halim, Muhammad Zikri Budiman Abdul; Jani, Abdul Mutalib Md

    2017-09-01

    Carbon nanotubes (CNTs) have received impressive consideration as support materials of noble metal catalysts in heterogeneous catalysis due to their good mechanical strength, large surface area and good durability under harsh conditions. The interaction between CNTs and noble metal nanoparticles (NPs) gives an unusual unique microstructure properties and or modification of the electron density of the noble metal clusters, and enhances the catalytic activity. In this study, the MWCNTs were first treated with a mixture of concentrated sulfuric and nitric acid by sonication to improve its dispersibility and to introduce the carboxylic (-COOH) groups on CNTs surfaces. Gold nanoparticles (Au NPs) on multiwalled carbon nanotubes (MWCNTs) were synthesized by the deposition precipitation (DP) method as this method is simpler, low cost, and excellent method. Then, the effect of reducing agent (NaBH4) on gold distribution on the support of MWCNTs was also studied. Dispersion test, Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) are all used to characterize the functionalized MWCNTs (fCNTs) and the Au NPs-fCNTs catalyst. There are three important peaks in functionalized MWCNTs which correspond to C=O, O-H, and C-O absorption peaks, as a result of the oxidation of COOH groups on the surface of CNTs. The absorption band at 1717 cm-1 is corresponded to C=O stretching of COOH, while the absorption bands at 3384 cm-1 and 1011cm-1 are associated with O-H bending and C-O stretching, respectively. Surface morphology of Au NPs-fCNTs R4 and Au NPs- fCNTs WR catalyst by FESEM showed that the Au NPs of 19.22 ± 2.33 nm and 23.05 ± 2.57 nm size were successfully deposited on CNTs, respectively.

  8. Experimental observation of left polarized wave absorption near electron cyclotron resonance frequency in helicon antenna produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2013-01-15

    Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at differentmore » critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.« less

  9. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors.

    PubMed

    Balasingam, Suresh Kannan; Lee, Jae Sung; Jun, Yongseok

    2015-09-21

    We report the synthesis of few-layered MoSe2 nanosheets using a facile hydrothermal method and their electrochemical charge storage behavior. A systematic study of the structure and morphology of the as-synthesized MoSe2 nanosheets was performed. The downward peak shift in the Raman spectrum and the high-resolution transmission electron microscopy images confirmed the formation of few-layered nanosheets. The electrochemical energy-storage behavior of MoSe2 nanosheets was also investigated for supercapacitor applications in a symmetric cell configuration. The MoSe2 nanosheet electrode exhibited a maximum specific capacitance of 198.9 F g(-1) and the symmetric device showed 49.7 F g(-1) at a scan rate of 2 mV s(-1). A capacitance retention of approximately 75% was observed even after 10 000 cycles at a high charge-discharge current density of 5 A g(-1). The two-dimensional MoSe2 nanosheets exhibited a high specific capacitance and good cyclic stability, which makes it a promising electrode material for supercapacitor applications.

  10. New Data on the Topside Electron Density Distribution

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.

    2001-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  11. Generation of strongly coupled plasmas by high power excimer laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yongxiang; Liu, Jingru; Zhang, Yongsheng; Hu, Yun; Zhang, Jiyan; Zheng, Zhijian; Ye, Xisheng

    2013-05-01

    (ultraviolet). To generate strongly coupled plasmas (SCP) by high power excimer laser, an Au-CH-Al-CH target is used to make the Al sample reach the state of SCP, in which the Au layer transforms laser energy to X-ray that heating the sample by volume and the CH layers provides necessary constraints. With aid of the MULTI-1D code, we calculate the state of the Al sample and its relationship with peak intensity, width and wavelength of laser pulses. The calculated results suggest that an excimer laser with peak intensity of the magnitude of 1013W/cm2 and pulse width being 5ns - 10ns is suitable to generate SCP with the temperature being tens of eV and the density of electron being of the order of 1022/cm-3. Lasers with shorter wavelength, such as KrF laser, are preferable.

  12. Photoluminescence, thermoluminescence glow curve and emission characteristics of Y2O3:Er3+ nanophosphor.

    PubMed

    N J, Shivaramu; B N, Lakshminarasappa; K R, Nagabhushana; H C, Swart; Fouran, Singh

    2018-01-15

    Nanocrystalline Er 3+ doped Y 2 O 3 crystals were prepared by a sol gel technique. X-ray diffraction (XRD) patterns showed the cubic structure of Y 2 O 3 and the crystallite size was found to be ~25nm. Optical absorption showed absorption peaks at 454, 495 and 521nm. These peaks are attributed to the 4 F 3/2 + 4 F 5/2 , 4 F 7/2 and 2 H 11/2 + 4 S 3/2 transitions of Er 3+ . Under excitation at 378nm, the appearance of strong green (520-565nm) down conversion emission assigned to the ( 2 H 11/2, 4 S 3/2 )→ 4 I 15/2 transition and the feeble red (650-665nm) emission is assigned to the 4 F 9/2 → 4 I 15/2 transition. The color chromaticity coordinates showed emission in the green region. The strong green emission of Y 2 O 3 :Er 3+ nanophosphor may be useful for applications in solid compact laser devices. Thermoluminescence (TL) studies of γ-irradiated Y 2 O 3 :Er 3+ showed a prominent TL glow peak maximum at 383K along with a less intense shoulder peak at ~425K and a weak glow at 598K. TL emission peaks with maxima at 545, 490, 588 and 622nm for the doped sample were observed at a temperature of 383K and these emissions were due to defect related to the host material. TL kinetic parameters were calculated by a glow curve deconvolution (GCD) method and the obtained results are discussed in detail for their possible usage in high dose dosimetry. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Photoluminescence, thermoluminescence glow curve and emission characteristics of Y2O3:Er3 + nanophosphor

    NASA Astrophysics Data System (ADS)

    N. J., Shivaramu; B. N., Lakshminarasappa; K. R., Nagabhushana; H. C., Swart; Fouran, Singh

    2018-01-01

    Nanocrystalline Er3 + doped Y2O3crystals were prepared by a sol gel technique. X-ray diffraction (XRD) patterns showed the cubic structure of Y2O3 and the crystallite size was found to be 25 nm. Optical absorption showed absorption peaks at 454, 495 and 521 nm. These peaks are attributed to the 4F3/2 + 4F5/2, 4F7/2 and 2H11/2 + 4S3/2 transitions of Er3 +. Under excitation at 378 nm, the appearance of strong green (520-565 nm) down conversion emission assigned to the (2H11/2,4S3/2) → 4I15/2 transition and the feeble red (650-665 nm) emission is assigned to the 4F9/2 → 4I15/2 transition. The color chromaticity coordinates showed emission in the green region. The strong green emission of Y2O3:Er3 + nanophosphor may be useful for applications in solid compact laser devices. Thermoluminescence (TL) studies of γ-irradiated Y2O3:Er3 + showed a prominent TL glow peak maximum at 383 K along with a less intense shoulder peak at 425 K and a weak glow at 598 K. TL emission peaks with maxima at 545, 490, 588 and 622 nm for the doped sample were observed at a temperature of 383 K and these emissions were due to defect related to the host material. TL kinetic parameters were calculated by a glow curve deconvolution (GCD) method and the obtained results are discussed in detail for their possible usage in high dose dosimetry.

  14. Functional overreaching: the key to peak performance during the taper?

    PubMed

    Aubry, Anaël; Hausswirth, Christophe; Louis, Julien; Coutts, Aaron J; LE Meur, Yann

    2014-09-01

    The purpose of this study is to examine whether performance supercompensation during taper is maximized in endurance athletes after experiencing overreaching during an overload training (OT) period. Thirty-three trained male triathletes were assigned to either OT (n = 23) or normal training groups (n = 10, CTL) during 8 wk. Cycling performance and maximal oxygen uptake (V˙O2max) were measured after 1 wk of moderate training, a 3-wk period of OT, and then each week during 4-wk taper. Eleven of the 23 subjects from the OT group were diagnosed as functionally overreached (F-OR) after the overload period (decreased performance with concomitant high perceived fatigue), whereas the 12 other subjects were only acutely fatigued (AF) (no decrease in performance). According to qualitative statistical analysis, the AF group demonstrated a small to large greater peak performance supercompensation than the F-OR group (2.6% ± 1.1%) and the CTL group (2.6% ± 1.6%). V˙O2max increased significantly from baseline at peak performance only in the CTL and AF groups. Of the peak performances, 60%, 83%, and 73% occurred within the two first weeks of taper in CTL, AF, and OR, respectively. Ten cases of infection were reported during the study with higher prevalence in F-OR (70%) than that in AF (20%) and CTL (10%). This study showed that 1) greater gains in performance and V˙O2max can be achieved when higher training load is prescribed before the taper but not in the presence of F-OR; 2) peak performance is not delayed during taper when heavy training loads are completed immediately prior; and 3) F-OR provides higher risk for training maladaptation, including increased infection risks.

  15. Nonlinear acoustic experiments involving landmine detection: Connections with mesoscopic elasticity and slow dynamics in geomaterials

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Fenneman, Douglas J.; Sabatier, James M.

    2004-10-01

    The vibration interaction between the top-plate of a buried VS 1.6 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. In nonlinear detection schemes, airborne sound at two primary frequencies f1 and f2 (chosen several Hz apart on either side of resonance) undergo acoustic-to-seismic coupling. Interactions with the compliant mine and soil generate combination frequencies that, through scattering, can effect the vibration velocity at the surface. Profiles at f1, f2, f1-(f2-f1) and f2+(f2-f1) exhibit a single peak while profiles at 2f1-(f2-f1), f1+f2 and 2f2+(f2-f1) are attributed to higher order mode shapes. Near resonance (~125 Hz for a mine buried 3.6 cm deep), the bending (softening) of a family of increasing amplitude tuning curves (involving the surface vibration over the landmine) exhibits a linear relationship between the peak particle velocity and corresponding frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Work supported by U.S. Army RDECOM, CERDEC, NVESD, Fort Belvoir, VA.

  16. An external shock origin of GRB 141028A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, J. Michael; Bégué, Damien; Ryde, Felix

    The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the γ-ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron νF ν peak to an analytic model derived considering the emission of a relativistic blast wave expanding into an external medium. The prediction of the model for the νF ν peak evolution matches well with the observations. We observe the blast wave transitioning into the deceleration phase. Furthermore, we assume the expansion of the blastmore » wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the νF ν peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. In conclusion, while the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.« less

  17. An external shock origin of GRB 141028A

    DOE PAGES

    Burgess, J. Michael; Bégué, Damien; Ryde, Felix; ...

    2016-05-05

    The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the γ-ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron νF ν peak to an analytic model derived considering the emission of a relativistic blast wave expanding into an external medium. The prediction of the model for the νF ν peak evolution matches well with the observations. We observe the blast wave transitioning into the deceleration phase. Furthermore, we assume the expansion of the blastmore » wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the νF ν peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. In conclusion, while the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.« less

  18. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying wave instrument (e.g. OGO, ISEE 1, DE 1, POLAR, CLUSTER, Van Allen Probes). The method can be easily extended to make tomographic measurements of magnetospheric electron and ion density by analyzing a series of whistlers observed along the satellite orbit.

  19. New observations on the pressure dependence of luminescence from Eu2+-doped MF2 (M = Ca, Sr, Ba) fluorides.

    PubMed

    Su, Fu Hai; Chen, Wei; Ding, Kun; Li, Guo Hua

    2008-05-29

    The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors.

  20. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.

    PubMed

    Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P

    2013-09-01

    We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.

  1. Global Characteristics of the Correlation and Time Lag Between Solar and Ionospheric Parameters in the 27-day Period

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Dieter,Bilitza; Ki-Weon,Seo

    2012-01-01

    The 27-day variations of topside ionosphere are investigated using the in-situ electron density measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the two satellite systems orbit at the altitudes of approx. 370 km and approx. 480 km, respectively, the satellite data sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a 27-day period, the electron density measurements from the satellites are in good agreements with the solar flux, except during the solar minimum period. The time delays are mostly 1-2 day and represent the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar flux and in-situ satellite measurements show poor correlations in the (magnetic) equatorial region, which are not found from the ground measurements of vertically-integrated electron content. We suggest that the most plausible cause for the poor correlation is the vertical movement of ionization due to atmospheric dynamic processes that is not controlled by the solar extreme ultraviolet radiation.

  2. Estimation of Mesospheric Densities at Low Latitudes Using the Kunming Meteor Radar Together With SABER Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na

    2018-04-01

    Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming meteor radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the meteor radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the meteor radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the meteor velocity on the meteor radar peak detection height. We find that a 1 km/s difference in the vertical meteor velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the meteor radar density and the velocity-corrected peak height indicates that the meteor radar density estimates accurately reflect changes in neutral atmospheric density and that meteor peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located meteor radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.

  3. Use of quantitative ultrasonography in differentiating osteomalacia from osteoporosis: preliminary study.

    PubMed

    Luisetto, G; Camozzi, V; De Terlizzi, F

    2000-04-01

    The aim of this work was to use ultrasonographic technology to differentiate osteoporosis from osteomalacia on the basis of different patterns of the graphic trace. Three patients with osteomalacia and three with osteoporosis, all with the same lumbar spine bone mineral density, were studied. The velocity of the ultrasound beam in bone was measured by a DBM Sonic 1,200/I densitometer at the proximal phalanges of the hands in all the patients. The ultrasound beam velocity was measured when the first peak of the waveform reached a predetermined minimum amplitude value (amplitude-dependent speed of sound) as well as at the lowest point prior to the first and second peaks, before they reached the predetermined minimum amplitude value (first and second minimum speeds of sound). The graphic traces were further analyzed by Fourier analysis, and both the main frequency (f0) and the width of the peak centered in the f0 (full width at half maximum) were measured. The first and second minimum speeds of sound were significantly lower in the patients with osteomalacia than in the osteoporosis group. The first minimum speed of sound was 2,169 +/- 73 m/s in osteoporosis and 1,983 +/- 61 m/s in osteomalacia (P < 0.0001); the second minimum peak speed of sound was 1,895 +/-59 m/s in osteoporosis and 1,748 +/- 38 m/s in osteomalacia (P < 0.0001). The f0 was similar in the two groups (osteoporosis, 0.85 +/- 0.14 MHz; osteomalacia, 0.9 +/- 0.22 MHz; P = 0.72), and the full width at half maximum was significantly higher in the osteomalacia patients (0.52 +/- 0.14 MHz) than in the osteoporosis patients (0.37 +/- 0.15 MHz) (P = 0.022). This study confirms that ultrasonography is a promising, noninvasive method that could be used to differentiate osteoporosis from osteomalacia, but further studies should be carried out before this method can be introduced into clinical practice.

  4. Automatic cardiac cycle determination directly from EEG-fMRI data by multi-scale peak detection method.

    PubMed

    Wong, Chung-Ki; Luo, Qingfei; Zotev, Vadim; Phillips, Raquel; Chan, Kam Wai Clifford; Bodurka, Jerzy

    2018-03-31

    In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing inaccurate period detection. Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from each of the estimated cycle. The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with the scan duration reduced to half a minute. Additionally, the algorithm gives a figure of merit to evaluate the reliability of the detection accuracy. The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm fmrib_qrsdetect implemented in EEGLAB. The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for ECG recordings for BCG artifact removal. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Comparing peak and submaximal cardiorespiratory responses during field walking tests with incremental cycle ergometry in COPD.

    PubMed

    Hill, Kylie; Dolmage, Thomas E; Woon, Lynda; Coutts, Debbie; Goldstein, Roger; Brooks, Dina

    2012-02-01

    Field and laboratory-based tests are used to measure exercise capacity in people with COPD. A comparison of the cardiorespiratory responses to field tests, referenced to a laboratory test, is needed to appreciate the relative physiological demands. We sought to compare peak and submaximal cardiorespiratory responses to the 6-min walk test, incremental shuttle walk test and endurance shuttle walk test with a ramp cycle ergometer test (CET) in patients with COPD. Twenty-four participants (FEV(1) 50 ± 14%; 66.5 ± 7.7 years; 15 men) completed four sessions, separated by ≥24 h. During an individual session, participants completed either two 6-min walk tests, incremental shuttle walk tests, endurance shuttle walk tests using standardized protocols, or a single CET, wearing a portable gas analysis unit (Cosmed K4b(2)) which included measures of heart rate and arterial oxygen saturation (SpO(2)). Between tests, no difference was observed in the peak rate of oxygen uptake (F(3,69) = 1.2; P = 0.31), end-test heart rate (F(2,50) = 0.6; P = 0.58) or tidal volume (F(3,69) = 1.5; P = 0.21). Compared with all walking tests, the CET elicited a higher peak rate of carbon dioxide output (1173 ± 350 mL/min; F(3,62) = 4.8; P = 0.006), minute ventilation (48 ± 17 L/min; F(3,69) = 10.2; P < 0.001) and a higher end-test SpO(2) (95 ± 4%; F(3,63) = 24.9; P < 0.001). In patients with moderate COPD, field walking tests elicited a similar peak rate of oxygen uptake and heart rate as a CET, demonstrating that both self- and externally paced walking tests progress to high intensities. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  6. Postprandial gastrointestinal blood flow, oxygen consumption and heart rate in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Eliason, Erika J; Higgs, David A; Farrell, Anthony P

    2008-04-01

    The present study is the first to simultaneously and continuously measure oxygen consumption (MO(2)) and gastrointestinal blood flow (q(gi)) in fish. In addition, while it is the first to compare the effects of three isoenergetic diets on q(gi) in fish, no significant differences among diets were found for postprandial MO(2), q(gi) or heart rate (f(H)) in rainbow trout, Oncorhynchus mykiss. Postprandial q(gi), f(H) and MO(2) were significantly elevated above baseline levels by 4 h. Postprandial q(gi) peaked at 136% above baseline after 11 h, f(H) peaked at 110% above baseline after 14 h and MO(2) peaked at 96% above baseline after 27 h. Moreover, postprandial MO(2) remained significantly elevated above baseline longer than q(gi) (for 41 h and 30 h, respectively), perhaps because most of the increase in MO(2) associated with feeding is due to protein handling, a process that continues following the absorption of nutrients which is thought to be the primary reason for the elevation of q(gi). In addition to the positive relationships found between postprandial MO(2) and q(gi) and between postprandial MO(2) and f(H), we discovered a novel relationship between postprandial q(gi) and f(H).

  7. Topics in global convergence of density estimates

    NASA Technical Reports Server (NTRS)

    Devroye, L.

    1982-01-01

    The problem of estimating a density f on R sup d from a sample Xz(1),...,X(n) of independent identically distributed random vectors is critically examined, and some recent results in the field are reviewed. The following statements are qualified: (1) For any sequence of density estimates f(n), any arbitrary slow rate of convergence to 0 is possible for E(integral/f(n)-fl); (2) In theoretical comparisons of density estimates, integral/f(n)-f/ should be used and not integral/f(n)-f/sup p, p 1; and (3) For most reasonable nonparametric density estimates, either there is convergence of integral/f(n)-f/ (and then the convergence is in the strongest possible sense for all f), or there is no convergence (even in the weakest possible sense for a single f). There is no intermediate situation.

  8. Abnormal distribution of low-latitude ionospheric electron density during November 2004 superstorm as reconstructed by 3-D CT technique from IGS and LEO/GPS observations

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Ma, S.; Xu, J.; Xiong, C.; Yan, W.; Luhr, H.; Jakowski, N.

    2010-12-01

    Using time-dependent 3-D tomography method, the electron density distributions in the mid- and low-latitude ionosphere are reconstructed from GPS observations of joint ground-based IGS network and onboard CHAMP/GRACE satellites during November 2004 super-storm. For LEO satellite-based GPS receiving, both the occultation TEC data and that along the radio propagation paths above the LEO are used. The electron density images versus latitude/altitude/longitude are reconstructed for different sectors of America/Asia/Europe and produced every hour. The reconstructed electron densities are validated by satellite in situ measurements of CHAMP Langmuir probe and GRACE Ka-band SST (low-low satellite-to-satellite tracking) derived electron density averaged between the two satellites, as well as by CIT simulations. It reveals some very interesting storm-time structures of Ne distributions, such as top-hat-like F2-3 double layer and column-like enhanced electron densities (CEED). The double layer structure appeared over a large latitude range from about -30 degree to 20 degree along East-Asian/Australia longitudes before local noon, looking like one additional smaller EIA structure standing above the usual one of EIA. It is consistent with the F-3 layer observed by ionosonde at an Australian low-latitude station. The CEED are found just 1-2 hours before the minimum of Dst and in the longitudinal sector about 157 E. They extend from the topside ionosphere toward plasmasphere, reaching at least about 2000 km as high. Their footprints stand on the two peaks of the EIA. This CEED is also seen in the image of 30.4 nm He ++ radiation by IMAGE, showing a narrow channel of enhanced density extending from afternoon ionosphere to plasmsphere westward. The forming mechanism of CEED and its relationship with SED and plasmaspheric plumes are worthy of further study. Acknowledgement: This work is supported by NSFC (No.40674078).

  9. Tritium release from neutron-irradiated Li 2O sintered pellets: porosity dependence

    NASA Astrophysics Data System (ADS)

    Tanifuji, Takaaki; Yamaki, Daiju; Takahashi, Tadashi; Iwamoto, Akira

    2000-12-01

    The tritium release behaviour from sintered Li 2O pellets of various densities (71-98.5% theoretical density, T.D.) has been investigated by heating tests at a constant rate. It is shown that the tritium release rate depends on porosity at densities above 87% T.D., while no dependence was observed at densities below 86% T.D. The tritium release process is thought to consist of three stages described as follows: (1) the liberation of tritium trapped at point defects due to their recovery (peak at around 570 K); (2) the advection through interconnected pores via adsorption and desorption on their inner walls and diffusion in the gas phase of interconnected pores (peak at around 620 K); (3) the dissolution and release of tritium trapped in closed pores (peaks at around 700, 830 and 1000 K).

  10. Maximal oxygen uptake and cardiorespiratory response to maximal 400-m free swimming, running and cycling tests in competitive swimmers.

    PubMed

    Rodríguez, F A

    2000-06-01

    This study compared the cardiorespiratory response of trained swimmers to 400-m unimpeded front crawl swimming (SW), treadmill running (TR) and ergometer cycling (EC) maximal exercise tests, and evaluated the validity and specificity of a method to measure maximal aerobic power in swimming. Two series of experiments were conducted. In series A (n=15), comparisons were made between VO2peak and other cardiorespiratory variables in three maximal tests: after 400-m SW, and during incremental TR and EC. In series B, VO2 peak and related variables were measured after SW and during EC (n=33). No significant differences were observed between VO2peak and VE in the three modes of exercise, although SW values tended to be higher. After SW, maximal ventilatory response was characterized by higher tidal volumes (VT) and lower respiratory rates (fR) as compared with TR and EC. The highest heart rate values (fH) were also observed in TR, followed by EC and SW. In series B, no significant differences were observed either in peak VO2 or VE, but fH was also lower in SW. A maximal 400-m unimpeded freestyle SW test yields essentially equal or nonsignificantly higher peak VO2 and VE values than during maximal TR or EC tests in trained swimmers. The specific maximal cardiorespiratory response to the SW test is characterized by higher VT, lower fR, and lower fH. Breath-by-breath measurements during the immediate recovery after a 400-m voluntary maximal swim is proposed as a valid and specific test for directly measuring maximal metabolic parameters and evaluating specific maximal aerobic power in swimming.

  11. Investigating the capability of ToF-SIMS to determine the oxidation state of Ce

    NASA Astrophysics Data System (ADS)

    Seed Ahmed, H. A. A.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    The capability of time of flight secondary ion mass spectrometry (ToF-SIMS) to determine the oxidation state of Ce ions doped in a phosphor was investigated. Two samples of SiO2:Ce (4 mol%) with known Ce3+/Ce4+ relative concentrations were subjected to ToF-SIMS measurements. The spectra were very similar and no significant differences in the relative peak intensities were observed that would readily allow one to distinguish Ce3+ from Ce4+. Although ToF-SIMS was therefore not useful to distinguish the charge state of Ce ions doped in this phosphor material, the idea in principle was also tested on two other samples, namely CeF3 and CeF4 These contain Ce as part of the host (i.e. much higher concentration) and are fluorides, which is significant because ToF-SIMS has previously been reported to be able to distinguish Eu2+ from Eu3+ in Eu doped Sr5(PO4)3F phosphor. The spectrum of CeF4 contained a small peak related to Ce4+ which was not observed in the CeF3 spectrum, yet the peak related to the Ce3+ ions was found to be much more intense in the spectrum of CeF4 than CeF3, showing that the ToF-SIMS signals cannot be directly interpreted as retaining the charge state of the ions in the original material. Nevertheless, the significant differences in the Ce-related peaks in the ToF-SIMS spectra from CeF3 and CeF4 show that the charge state of Ce may be distinguished. This study shows that while in principle ToF-SIMS may be used to distinguish the charge state of Ce ions, this depends on the sample and it would not be easy to interpret the spectra without a standard or reference.

  12. Design and performance of a pulse transformer based on Fe-based nanocrystalline core.

    PubMed

    Yi, Liu; Xibo, Feng; Lin, Fuchang

    2011-08-01

    A dry-type pulse transformer based on Fe-based nanocrystalline core with a load of 0.88 nF, output voltage of more than 65 kV, and winding ratio of 46 is designed and constructed. The dynamic characteristics of Fe-based nanocrystalline core under the impulse with the pulse width of several microseconds were studied. The pulse width and incremental flux density have an important effect on the pulse permeability, so the pulse permeability is measured under a certain pulse width and incremental flux density. The minimal volume of the toroidal pulse transformer core is determined by the coupling coefficient, the capacitors of the resonant charging circuit, incremental flux density, and pulse permeability. The factors of the charging time, ratio, and energy transmission efficiency in the resonant charging circuit based on magnetic core-type pulse transformer are analyzed. Experimental results of the pulse transformer are in good agreement with the theoretical calculation. When the primary capacitor is 3.17 μF and charge voltage is 1.8 kV, a voltage across the secondary capacitor of 0.88 nF with peak value of 68.5 kV, rise time (10%-90%) of 1.80 μs is obtained.

  13. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2017-03-01

    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  14. Thermoluminescence dosimetry features of DY and Cu doped SrF2 nanoparticles under gamma irradiation.

    PubMed

    Zahedifar, M; Sadeghi, E; Kashefi Biroon, M; Harooni, S; Almasifard, F

    2015-11-01

    Dy and Cu-doped SrF2 nanoparticles (NPs) were synthesized by using co-precipitation method and their possible application to solid state dosimetry were studied and compared to that of pure SrF2 NPs. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used for sample characterization. The highest thermoluminescence (TL) response of SrF2:Dy and SrF2:Cu NPs were found respectively at 0.5 and 0.7mol% of Dy and Cu impurities. Seven overlapping glow peaks at 384, 406, 421, 449, 569, 495, 508K and three component glow peaks at 381, 421 and 467K were identified respectively for SrF2:Dy and SrF2:Cu NPs employing Tm-Tstop and computerized glow curve deconvolution (CGCD) methods. The TL sensitivity of SrF2:Dy is approximately the same as that of LiF:Mg,Ti (TLD-100) cheeps. Linear dose response were observed for the SrF2:Dy and SrF2:Cu NPs up to the absorbed doses of 1kGy and 10kGy correspondingly. Regarding other dosimetry characteristics of the produced NPs such as fading, reproducibility and thermal treatment, Dy and Cu doped SrF2 NPs recommend for high dose TL dosimetry applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of Halide Flux on Physicochemical Properties of MgCl2-Based Molten Salts for Accelerating Zirconium Production: Thermodynamic Assessment

    NASA Astrophysics Data System (ADS)

    Shin, Jae Hong; Park, Joo Hyun

    2016-09-01

    The effective halide flux additive for increasing the density of MgCl2 mixture and for decreasing the activity of MgCl2 was investigated in order to improve the reaction efficiency between gaseous ZrCl4 and fresh Mg melt to produce zirconium sponge. Thermochemical computation using FactSageTM software was primarily carried out, followed by the experimental confirmation. The addition of CaCl2, BaCl2, MgF2, and CaF2 to the molten MgCl2 increases the density of the melts, indicating that these halide additives can be a candidate to increase the density of the MgCl2-based molten salts. Among them, BaCl2, MgF2, and CaF2 are the useful additives. The activity of MgCl2 can be reduced by the addition of BaCl2, KCl, NaCl, MgF2, and CaF2, among which the CaF2 is the most effective additive to reduce the activity of MgCl2 with the strongest negative deviation from an ideality. Thus, the addition of CaF2 to the MgCl2, forming the MgCl2-CaF2 binary melt, is the most effective way not only to increase the density of the melt but also to decrease the activity of MgCl2, which was experimentally confirmed. Consequently, the production rate of zirconium sponge by magnesiothermic reduction process can be accelerated by the addition of CaF2.

  16. Asymmetric underlap spacer layer enabled nanoscale double gate MOSFETs for design of ultra-wideband cascode amplifiers

    NASA Astrophysics Data System (ADS)

    Roy, Debapriya; Biswas, Abhijit

    2017-10-01

    Using extensive numerical analysis we investigate effects of asymmetric sidewall spacers on various device parameters of 20-nm double gate MOSFETs associated with analog/RF applications. Our studies show that the device with underlap drain-side spacer length LED of 10 nm and source-side spacer length LES of 5 nm shows improvement in terms of the peak value of transconductance efficiency, voltage gain Av, unity-gain cut-off frequency fT and maximum frequency of oscillations fMAX by 8.6%, 51.7%, 5% and 10.3%, respectively compared to the symmetric 5 nm underlap spacer device with HfO2 spacer of dielectric constant k = 22. Additionally, a higher spacer dielectric constant increases the peak Av while decreasing both peak fT and fMAX. The detailed physical insight is exploited to design a cascode amplifier which yields an ultra-wide gain bandwidth of 2.48 THz at LED = 10 nm with a SiO2 spacer.

  17. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    PubMed

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  18. The gluon density of the proton at low x from a QCD analysis of F2

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    We present a QCD analysis of the proton structure function F2 measured by the H1 experiment at HERA, combined with data from previous fixed target experiments. The gluon density is extracted from the scaling violations of F2 in the range 2 · 10 -4 < x < 3 · 10 -2 and compared with an approximate solution of the QCD evolution equations. The gluon density is found to rise steeply with decreasing x.

  19. Experimental observation of charge-shift bond in fluorite CaF2.

    PubMed

    Stachowicz, Marcin; Malinska, Maura; Parafiniuk, Jan; Woźniak, Krzysztof

    2017-08-01

    On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å -1 , a quantitative experimental charge density distribution has been obtained for fluorite (CaF 2 ). The atoms-in-molecules integrated experimental charges for Ca 2+ and F - ions are +1.40 e and -0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca 2+ ...F - and F - ...F - contacts revealed the character of these interactions. The Ca 2+ ...F - interaction is clearly a closed shell and ionic in character. However, the F - ...F - interaction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca 2+ ...F - bonded radii - measured as distances from the centre of the ion to the critical point - are 1.21 Å for the Ca 2+ cation and 1.15 Å for the F - anion. These values are in a good agreement with the corresponding Shannon ionic radii. The F - ...F - bond path and bond critical point is also found in the CaF 2 crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.

  20. Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Scarponi, F.; Fioretto, D.; Giordano, V. M.; Monaco, G.

    2012-12-01

    We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008), 10.1080/14786430802317586]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.

  1. Luminescence analysis of SrGa2 Si2 O8 : RE3+ (RE = Dy, Tm) phosphors.

    PubMed

    R Kadukar, Monali; Dhoble, S J; Sahu, A K; Nayar, V; Sailaja, S; Reddy, B Sudhakar

    2017-03-01

    This article reports on the luminescence properties of rare earth (Dy 3 + and Tm 3 + )ions doped SrGa 2 Si 2 O 8 phosphor were studied. SrGa 2 Si 2 O 8 phosphors weresynthesizedby employing solid state reaction method.From the measured X-ray diffraction (XRD) pattern of the samplemonoclinic phase structure has been observed. Thermoluminescenceand Mechanoluminescence properties of the γ-ray irradiated samples have been studied. Photoluminescence spectra of Dy 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 348 nm,and it shows two emission bands at 483 and 574 nm due to 4 F 9 /2  →  6 H 15 /2 and 4 F 9 /2  →  6 H 13 /2 transitions respectively. Whereas the photoluminescence spectra of Tm 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 359 nm and it exhibits two emission bands at 454 and 472 nm due to 1 D 2  →  3 F 4 and 1 G 4  →  3 H 6 transitions respectively. In thermoluminescence study, γ-irradiatedthermoluminescence glow curve of SrGa 2 Si 2 O 8 :Dy 3 + phosphor shows two well defined peaks at 293 °C (peak1)and 170 °C (peak2) whereas thermoluminescence glow curve of SrGa 2 Si 2 O 8 :Tm 3 + phosphor shows peaks at 292 °C (peak1) and 184 °C (peak2) indicating that two sets of traps are being activated within the particular temperature range and the trapping parameters associated with the prominent glow peaks of SrGa 2 Si 2 O 8 :Dy 3 + and SrGa 2 Si 2 O 8 :Tm 3 + are calculated using Chen's peak shape and initial rise method.From the Mechanoluminescence study, only one glow peak has been observed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Fluctuations of population density in Bornean orangutans (Pongo pygmaeus morio) related to fruit availability in the Danum Valley, Sabah, Malaysia: a 10-year record including two mast fruitings and three other peak fruitings.

    PubMed

    Kanamori, Tomoko; Kuze, Noko; Bernard, Henry; Malim, Titol Peter; Kohshima, Shiro

    2017-01-01

    We investigated the population density of Bornean orangutans (Pongo pygmaeus morio) and fruit availability for 10 years (2005-2014), in primary lowland dipterocarp forests in the Danum Valley, Sabah, Malaysia. During the research period, two mast fruitings and three other peak fruiting events of different scales occurred in the study area. The orangutan population density, estimated every 2 months by the marked nest count method, changed between 0.3 and 4.4 ind/km 2 and the mean population density was 1.3 ind/km 2  ± SE 0.1 (n = 56). The population density increased markedly during mast and peak fruiting periods. A significant positive correlation was observed between the population density and fruit availability in the study period (Spearman, R = 0.3, P < 0.01, n = 56). During non-fruiting periods, however, no significant correlation was observed between them. These results suggest that the spatial difference in fruit availability during mast and peak fruiting periods was larger than during non-fruiting periods, and many orangutans temporarily moved to the study site from the surrounding areas seeking fruit.

  3. Perceptual and cerebro-spinal responses to graded innocuous and noxious stimuli following aerobic exercise.

    PubMed

    Micalos, P S; Harris, J; Drinkwater, E J; Cannon, J; Marino, F E

    2015-11-01

    The aim of this study was to evaluate the effect of aerobic exercise on perceptual and cerebro-spinal responses to graded electrocutaneous stimuli. The design comprised 2 x 30 min of cycling exercise at 30% and 70% of peak oxygen consumption (VO2 peak) on separate occasions in a counter-balanced order in 10 healthy participants. Assessment of nociceptive withdrawal reflex threshold (NWR-T), pain threshold (PT), and somatosensory evoked potentials (SEPs) to graded electrocutaneous stimuli were performed before and after exercise. Perceptual magnitude ratings and SEPs were compared at 30%PT, 60%PT, 100%PT before (Pre), 5 min after (Post1), and 15 min after (Post2) aerobic exercise. There was no difference in the NWR-T and the PT following exercise at 30% and 70% of VO2 peak. ANOVA for the perceptual response within pooled electrocutaneous stimuli show a significant main effect for time (F2,18=5.41, P=0.01) but no difference for exercise intensity (F1,9=0.02, P=0.88). Within-subject contrasts reveal trend differences between 30%PT and 100%PT for Pre-Post1 (P=0.09) and Pre-Post2 (P=0.02). ANOVA for the SEPs peak-to-peak signal amplitude (N1-P1) show significant main effect for time (F2,18=4.04, P=0.04) but no difference for exercise intensity (F1,9=1.83, P=0.21). Pairwise comparisons for time reveal differences between Pre-Post1 (P=0.06) and Pre-Post2 (P=0.01). There was a significant interaction for SEPs N1-P1 between exercise intensity and stimulus intensity (F2,18=3.56, P=0.05). These results indicate that aerobic exercise did not increase the electrocutaneous threshold for pain and the NWR-T. Aerobic exercise attenuated perceptual responses to innocuous stimuli and SEPs N1-P1 response to noxious stimuli.

  4. The luminescence of nanoscale Y2Si2O7:Eu3+ materials.

    PubMed

    Lu, Shaozhe; Zhang, Jishen; Zhang, Jiahua

    2010-03-01

    The Y2Si2O7:Eu3+ sample was prepared with the sol-gel method. The Y2O3:EU3 was dispersed in SiO2, and the complex Y2Si2O7:Eu3+ particles were synthesized at high annealing temperature. The sample consisted of nearly spherical particles with an average size about 60 nm. The ultraviolet excitation spectra and emission spectra were measured. The sample excited by short ultraviolet light showed strongly red luminescence and fine monochromaticity. The luminescence was strongest from the 5D0 --> 7F2 electric dipole transition located at 611 nm. The excitation spectra of Y2Si2O7:Eu3+ excited with ultraviolet lights showed that the peak of the Eu(3+)-O2- charge transition band located at about 240 nm. During monitoring of different emission peaks of 5D0 --> 7F2, the charge transition band in the excitation spectra shifted, and the relative intensity of emission spectra changed obviously under the excitation of different ultraviolet wavelengths. These results confirmed that the Eu3+ could be excited with ultraviolet radiation of different wavelengths. At low temperature, using Eu3+ ions as fluorescence probes, we monitored the emission peaks of 5D0 --> 7F1 and 5D0 --> 7F2 transitions and measured the excitation spectra of 7F0 --> 5D0, 5D0 --> 7F1, and 5D0 --> 7F2 site-selective excitation spectra. These results indicated that Eu3+ ions are located in different local environments in the Y2Si2O7 host.

  5. The ionosphere of Europe and North America before the magnetic storm of October 28, 2003

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.; Macdugall, J. W.; Pyatkova, A. V.

    2006-05-01

    The X17 solar flare occurred on October 28, 2003, and was followed by the X10 flare on October 29. These flares caused very strong geomagnetic storms (Halloween storms). The aim of the present study is to compare the variations in two main ionospheric parameters ( foF2 and hmF2) at two chains of ionosondes located in Europe and North America for the period October 23-28, 2003. This interval began immediately before the storm of October 28 and includes its commencement. Another task of the work is to detect ionospheric precursors of the storm or substorm expansion phase. An analysis is based on SPIDR data. The main results are as follows. The positive peak of δ foF2 (where δ is the difference between disturbed and quiet values) is observed several hours before the magnetic storm or substorm commencement. This peak can serve as a disturbance precursor. The amplitude of δ foF2 values varies from 20 to 100% of the foF2 values. The elements of similarity in the variations in the δ foF2 values at two chains are as follows: (a) the above δ foF2 peak is as a rule observed simultaneously at two chains before the disturbance; (b) the δ foF2 variations are similar at all midlatitude (or, correspondingly, high-latitude) ionosondes of the chain. The differences in the δ foF2 values are as follows: (a) the effect of the main phase and the phase of strong storm recovery at one chain differs from such an effect at another chain; (b) the manifestation of disturbances at high-latitude stations of the chain differ from the manifestations at midlatitude stations. The δ hmF2 variations are approximately opposite to the δ foF2 variations, and the δ hmF2 values lie in the interval 15-25% of the hmF2 values. The performed study is useful and significant in studying the problems of the space weather, especially in a short-term prediction of ionospheric disturbances caused by magnetospheric storms or substorms.

  6. The relationship between the plasmapause and outer belt electrons

    DOE PAGES

    Goldstein, J.; Baker, D. N.; Blake, J. B.; ...

    2016-09-01

    Here, we quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15–20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8–7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm –3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1–2 R E inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 R E of the moving plasmapause.more » Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24 h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index F p, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15–20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5 day period).« less

  7. Dependences of the density of M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} single crystals (M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, N. I., E-mail: sorokin@ns.crys.ras.ru; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-15

    The density of single crystals of nonstoichiometric phases Ba{sub 1-x}La{sub x}F{sub 2+x} (0 {<=} x {<=} 0.5) and Sr{sub 0.8}La{sub 0.2-x}Lu{sub x}F{sub 2.2} (0 {<=} x {<=} 0.2) with the fluorite (CaF{sub 2}) structure type and R{sub 1-y}Sr{sub y}F{sub 3-y} (R = Pr, Nd; 0 {<=} y {<=} 0.15) with the tysonite (LaF{sub 3}) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement themore » composition control of single crystals of superionic conductors M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} in practice, calibration graphs of X-ray density in the MF{sub 2}-RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.« less

  8. Author Correction: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings.

    PubMed

    Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsáki, György; Devinsky, Orrin; Parra, Lucas C; Liu, Anli

    2018-02-28

    It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version of the paper we incorrectly calibrated the computational models to 1 mA peak-to-peak, rather than 1 mA peak amplitude. This means that we divided by a value twice as large as we should have. The correct estimated fields are therefore twice as large as shown in the original Fig. 2 and Supplementary Figure 11. The corrected figures are now properly calibrated to 1 mA peak amplitude. Furthermore, the sentence in the first paragraph of the Results section 'Intensity ranged from 0.5 to 2.5 mA (current density 0.125-0.625 mA mA/cm 2 ), which is stronger than in previous reports', should have read 'Intensity ranged from 0.5 to 2.5 mA peak to peak (peak current density 0.0625-0.3125 mA/cm 2 ), which is stronger than in previous reports.' These errors do not affect any of the Article's conclusions.

  9. Sensitivity of the 6300 A twilight airglow to neutral composition

    NASA Technical Reports Server (NTRS)

    Melendez-Alvira, D. J.; Torr, D. G.; Richards, P. G.; Swift, W. R.; Torr, M. R.; Baldridge, T.; Rassoul, H.

    1995-01-01

    The field line interhemispheric plasma (FLIP) model is used to study the 6300 A line intensity measured during three morning twilights from the McDonald Observatory in Texas. The Imaging Spectrometric Observatory (ISO) measured the 6300 A intensity during the winter of 1987 and the spring and summer of 1988. The FLIP model reproduces the measured intensity and its variation through the twilight well on each day using neutral densities from the MSIS-86 empirical model. This is in spite of the fact that different component sources dominate the integrated volume emission rate on each of the days analyzed. The sensitivity of the intensity to neutral composition is computed by varying the N2, O2, and O densities in the FLIP model and comparing to the intensity computed with the unmodified MSIS-86 densities. The ion densities change self-consistently. Thus the change in neutral composition also changes the electron density. The F2 peak height is unchanged in the model runs for a given day. The intensity changes near 100 deg SZA are comparable to within 10% when either (O2), (N2), or (O) is changed, regardless of which component source is dominant. There is strong sensitivity to changes in (N2) when dissociative recombination is dominant, virtually no change in the nighttime (SZA greater than or equal to 108 deg) intensity with (O2) doubled, and sensitivity of over 50% to doubling or halving (O) at night. When excitation by conjugate photoelectrons is the dominant nighttime component source, the relative intensity change with (O) doubled or halved is very small. This study shows the strong need for simultaneous measurements of electron density and of emissions proportional to photoelectron fluxes if the 6300 A twilight airglow is to be used to retrieve neutral densities.

  10. Evolution of ionosphere-thermosphere (IT) parameters in the cusp region related to ion upflow events

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2017-04-01

    In this study we investigate the relationships of various IT parameters with the intensity of vertical ion flow. Our study area is the ionospheric cusp region in the northern hemisphere. The approach uses superposed epoch analysis (SEA) method, centered alternately on peaks of the three different variables: neutral density enhancement, vertical plasma flow, and electron temperature. Further parameters included are large-scale field-aligned currents (LSFACs) and thermospheric zonal wind velocity profiles over magnetic latitude (MLat), which are centered at the event time and location. The dependence on the interplanetary magnetic field (IMF) By component orientation and the local (Lloyd) season is of particular interest. Our investigations are based on CHAMP and DMSP (F13 and F15) satellite observations and the OMNI online database collected during the years 2002-2007. The three Lloyd seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). A period of 130 days corresponds to the time needed by CHAMP to sample all local times. The SEA MLat profiles with respect to neutral density enhancement and vertical plasma flow peaks show no significant but only slight (decreasing towards local summer) seasonal variations for both IMF By orientations. The latitude profiles of median LSFACs show a clear dependence on the IMF By orientation. As expected, the maximum and minimum values of LSFAC amplitudes are increasing towards local summer for both IMF By signs. With respect to zero epoch latitude, FAC peaks appear equatorward (negative MLat) related to Region 1 (R1) and poleward (positive MLat) to Region 0 (R0) FACs. However, there is an imbalance between the amplitudes of LSFACs, depending on the current latitude. R1 currents are systematically stronger than R0 FACs. A somewhat different distribution of density enhancements and large-scale FACs emerges when the SEA is centered on electron temperature peaks. As expected, the background electron temperature increases towards summer and shows no dependence on the IMF By orientation. In contrast to the previous sorting the mass density enhancement shows a dependence on the IMF By sign and increases towards local summer in case of IMF By<0. As before LSFAC peak values are increasing towards local summer, but there is no clear latitudinal profile of upward and downward FACs. We think that intense precipitation of soft electrons (<100 eV) cause the electron temperature enhancement in the cusp region. But there is no direct dependence on the FAC intensity. But for neutral density enhancement and vertical plasma flow the combination of Joule heating and soft electron precipitation, causing electron temperature and conductivity enhancements, are required.

  11. Impurity optical absorption spectra of ZnGa 2Se 4:Ni 2+ single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Wha-Tek; Jin, Moon-Seog; Cheon, Seung-Ho; Kim, Yong-Geun; Park, Byong-Seo

    1990-04-01

    The optical absorption of single crystals of ZnGa 2Se 4:Ni 2+ grown by the chemical transport reaction method was investigated in the temperature region 20-300 K. In the single crystals the impurity optical absorption peaks due to the transitions 3T1( 3F) → 3T2( 3F), 3T1( 3F) → 3A2( 3F) and 3T1( 3F) → 3T1( 3P) of the Ni 2+ ions sited in the host lattice of the ZnGa 2Se 4 single crystal with Td symmetry appeared at 4444, 7874 and 11 600 cm -1, respectively. The crystal-field parameter and the Racah parameter were given by Dq = 340 cm -1 and B = 615 cm -1, respectively. The peak due to the transition 3T1( 3F) → 3T1( 3P) split into four levels by first order spin-orbit-coupling effects of Ni 2+ ions in the lower temperature below 150 K. The spin-orbit-coupling parameter was found to be λ = -400 cm -1.

  12. Influence of surface interactions on folding and forced unbinding of semiflexible chains.

    PubMed

    Barsegov, V; Thirumalai, D

    2005-11-24

    We have investigated the folding and forced unbinding transitions of adsorbed semiflexible polymer chains using theory and simulations. These processes describe, at an elementary level, a number of biologically relevant phenomena that include adhesive interactions between proteins and tethering of receptors to cell walls. The binding interface is modeled as a solid surface, and the wormlike chain (WLC) is used for the semiflexible chain (SC). Using Langevin simulations, in the overdamped limit we examine the ordering kinetics of racquet-like and toroidal structures in the presence of an attractive interaction between the surface and the polymer chain. For a range of interactions, temperature, and the persistence length, l(p), we obtained the monomer density distribution, n(x), (x is the perpendicular distance of a tagged chain end from the surface) for all of the relevant morphologies. There is a single peak in n(x) inside the range of attractive forces, b, for chains in the extended conformations, whereas in racquet and toroidal structures there is an additional peak at x approximately b. The simulated results for n(x) are in good agreement with theory. The formation of toroids on the surface appears to be a first-order transition as evidenced by the bimodal distribution in n(x). The theoretical result underestimates the simulated n(x) for x < b and follows n(x) closely for x >/= b; the calculated density agrees exactly with n(x) in the range x < b. The chain-surface interaction is probed by subjecting the surface structures to a pulling force, f. The average extension, x( f), as a function of f exhibits a sigmoidal profile with sharp all-or-none transition at the unfolding force threshold f = f(c) which increases for more structured states. Simulated x(f) compare well with the theoretical predictions. The critical force, f(c), is a function of l(s)/l(c) for a fixed temperature, where l(c) and l(s) are the length scales that express the strength of the intramolecular and SC-surface attraction, respectively. For a fixed l(s), f(c) increases as l(p) decreases.

  13. Nonlinear Acoustic Experiments Involving Landmine Detection: Connections with Mesoscopic Elasticity and Slow Dynamics in Geomaterials

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Sabatier, James M.

    2006-05-01

    The vibration interaction between the top-plate of a buried VS 2.2 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. When airborne sound at two primary frequencies f1 and f2 (closely spaced near resonance) undergo acoustic-to-seismic coupling, (A/S), interactions with the mine and soil generate combination frequencies | n f1 ± m f2 | which affect the surface vibration velocity. Profiles at f1, f2, f1 -(f2 - f1) and f2 +(f2 - f1) exhibit single peaks whereas other combination frequencies may involve higher order modes. A family of increasing amplitude tuning curves, involving the surface vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding resonant frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. New experiments for a buried VS 1.6 anti-tank landmine and a "plastic drum head" mine simulant behave similarly. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Support by U.S. Army RDECOM CERDEC, NVESD, Fort Belvoir, VA.

  14. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  15. Probing the defect nanostructure of helium and proton tracks in LiF:Mg,Ti using optical absorption: Implications to track structure theory calculations of heavy charged particle relative efficiency

    NASA Astrophysics Data System (ADS)

    Eliyahu, I.; Horowitz, Y. S.; Oster, L.; Weissman, L.; Kreisel, A.; Girshevitz, O.; Marino, S.; Druzhyna, S.; Biderman, S.; Mardor, I.

    2015-04-01

    A major objective of track structure theory (TST) is the calculation of heavy charged particle (HCP) induced effects. Previous calculations have been based exclusively on the radiation action/dose response of the released secondary electrons during the HCP slowing down. The validity of this presumption is investigated herein using optical absorption (OA) measurements on LiF:Mg,Ti (TLD-100) samples following irradiation with 1.4 MeV protons and 4 MeV He ions at levels of fluence from 1010 cm-2 to 2 × 1014 cm-2. The major bands in the OA spectrum are the 5.08 eV (F band), 4.77 eV, 5.45 eV and the 4.0 eV band (associated with the trapping structure leading to composite peak 5 in the thermoluminescence (TL) glow curve). The maximum intensity of composite peak 5 occurs at a temperature of ∼200 °C in the glow curve and is the glow peak used for most dosimetric applications. The TST calculations use experimentally measured OA dose response following low ionization density (LID) 60Co photon irradiation over the dose-range 10-105 Gy for the simulation of the radiation action of the HCP induced secondary electron spectrum. Following proton and He irradiation the saturation levels of concentration for the F band and the 4.77 eV band are approximately one order of magnitude greater than following LID irradiation indicating enhanced HCP creation of the relevant defects. Relative HCP OA efficiencies, ηHCP, are calculated by TST and are compared with experimentally measured values, ηm, at levels of fluence from 1010 cm-2 to 1011 cm-2 where the response is linear due to negligible track overlap. For the F band, values of ηm/ηHCP = 2.0 and 2.6 for the He ions and protons respectively arise from the neglect of enhanced Fluorine vacancy/F center creation by the HCPs in the TST calculations. It is demonstrated that kinetic analysis simulating LID F band dose response with enhanced Fluorine vacancy creation, and incorporated into the TST calculation, can lead to values of ηm = ηHCP. On the other hand, the values of ηm/ηHCP for the 4.0 eV band are much less than unity at 0.18 for the protons and <0.12 for the He ions. These very low values suggest that the 4.0 eV trapping structure is either destroyed or de-populated, perhaps by local heating/thermal spike/Coulomb explosion, during the HCP slowing down. These HCP induced processes are believed to be absent or greatly reduced during LID irradiation. The large deviations of ηm/ηHCP from unity for both the F band and especially the 4.0 eV band demonstrate that conventional TST which attempts to predict HCP induced radiation effects from the exclusive action of the released secondary electrons is woefully inadequate.

  16. A sex-specific relationship between capillary density and anaerobic threshold

    PubMed Central

    Robbins, Jennifer L.; Duscha, Brian D.; Bensimhon, Daniel R.; Wasserman, Karlman; Hansen, James E.; Houmard, Joseph A.; Annex, Brian H.; Kraus, William E.

    2009-01-01

    Although both capillary density and peak oxygen consumption (V̇o2) improve with exercise training, it is difficult to find a relationship between these two measures. It has been suggested that peak V̇o2 may be more related to central hemodynamics than to the oxidative potential of skeletal muscle, which may account for this observation. We hypothesized that change in a measure of submaximal performance, anaerobic threshold, might be related to change in skeletal muscle capillary density, a marker of oxidative potential in muscle, with training. Due to baseline differences among these variables, we also hypothesized that relationships might be sex specific. A group of 21 subjects completed an inactive control period, whereas 28 subjects (17 men and 11 women) participated in a 6-mo high-intensity exercise program. All subjects were sedentary, overweight, and dyslipidemic. Potential relationships were assessed between change in capillary density with both change in V̇o2 at peak and at anaerobic threshold with exercise training. All variables and relationships were assessed for sex-specific effects. Change in peak V̇o2 was not related to change in capillary density after exercise training in either sex. Men had a positive correlation between change in V̇o2 at anaerobic threshold and change in capillary density with exercise training (r = 0.635; P < 0.01), whereas women had an inverse relationship (r = −0.636; P < 0.05) between the change in these variables. These findings suggest that, although enhanced capillary density is associated with training-induced improvements in submaximal performance in men, this relationship is different in women. PMID:19164774

  17. A sex-specific relationship between capillary density and anaerobic threshold.

    PubMed

    Robbins, Jennifer L; Duscha, Brian D; Bensimhon, Daniel R; Wasserman, Karlman; Hansen, James E; Houmard, Joseph A; Annex, Brian H; Kraus, William E

    2009-04-01

    Although both capillary density and peak oxygen consumption (Vo(2)) improve with exercise training, it is difficult to find a relationship between these two measures. It has been suggested that peak Vo(2) may be more related to central hemodynamics than to the oxidative potential of skeletal muscle, which may account for this observation. We hypothesized that change in a measure of submaximal performance, anaerobic threshold, might be related to change in skeletal muscle capillary density, a marker of oxidative potential in muscle, with training. Due to baseline differences among these variables, we also hypothesized that relationships might be sex specific. A group of 21 subjects completed an inactive control period, whereas 28 subjects (17 men and 11 women) participated in a 6-mo high-intensity exercise program. All subjects were sedentary, overweight, and dyslipidemic. Potential relationships were assessed between change in capillary density with both change in Vo(2) at peak and at anaerobic threshold with exercise training. All variables and relationships were assessed for sex-specific effects. Change in peak Vo(2) was not related to change in capillary density after exercise training in either sex. Men had a positive correlation between change in Vo(2) at anaerobic threshold and change in capillary density with exercise training (r = 0.635; P < 0.01), whereas women had an inverse relationship (r = -0.636; P < 0.05) between the change in these variables. These findings suggest that, although enhanced capillary density is associated with training-induced improvements in submaximal performance in men, this relationship is different in women.

  18. Magnetospheric convection and the high-latitude F2 ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.

    1974-01-01

    Behavior of the polar ionospheric F layer as it is convected through the cleft, over the polar cap, and through the nightside F layer trough zone is investigated. Passage through the cleft adds approximately 200,000 ions per cu cm in the vicinity of the F2 peak and redistributes the ionization above approximately 400-km altitude to conform with an increased electron temperature. The redistribution of ionization above 400-km altitude forms the 'averaged' plasma ring seen at 1000-km altitude. The F layer is also raised by approximately 20 km in altitude by the convection electric field. The time required for passage across the polar cap (25 deg) is about the same as that required for the F layer peak concentration to decay by e. The F layer response to passage through the nightside soft electron precipitation zone should be similar to but less than its response to passage through the cleft.

  19. Characterization of a maximum-likelihood nonparametric density estimator of kernel type

    NASA Technical Reports Server (NTRS)

    Geman, S.; Mcclure, D. E.

    1982-01-01

    Kernel type density estimators calculated by the method of sieves. Proofs are presented for the characterization theorem: Let x(1), x(2),...x(n) be a random sample from a population with density f(0). Let sigma 0 and consider estimators f of f(0) defined by (1).

  20. Reproduction of Acacia koa after Fire

    Treesearch

    Paul G. Scowcroft; Hulton B. Wood

    1976-01-01

    The abundance, distribution, growth, and mortality of koa (Acacia koa Gray) seedlings after fires were monitored periodically on two burned areas on Oahu for 2.5 years. On one area, seedling density peaked at 95,300/ha 6 months after the fire; 21 months later it had declined to 18,500/ha. On the other area, peak seedling density occurred at 2 -...

  1. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer

    NASA Astrophysics Data System (ADS)

    Ikai, Masamichi; Tokito, Shizuo; Sakamoto, Youichi; Suzuki, Toshiyasu; Taga, Yasunori

    2001-07-01

    One of the keys to highly efficient phosphorescent emission in organic light-emitting devices is to confine triplet excitons generated within the emitting layer. We employ "starburst" perfluorinated phenylenes (C60F42) as a both hole- and exciton-block layer, and a hole-transport material 4,4',4″-tri(N-carbazolyl) triphenylamine as a host for the phosphorescent dopant dye in the emitting layer. A maximum external quantum efficiency reaches to 19.2%, and keeps over 15% even at high current densities of 10-20 mA/cm2, providing several times the brightness of fluorescent tubes for lighting. The onset voltage of the electroluminescence is as low as 2.4 V and the peak power efficiency is 70-72 lm/W, promising for low-power display devices.

  2. Solubility of reduced C-O-H volatiles in basalt as a function of fCO: Implications for the early Earth, the moon, and Mars

    NASA Astrophysics Data System (ADS)

    Armstrong, L. S.; Hirschmann, M. M.

    2013-12-01

    Magmatic C-O-H volatiles influence the evolution of planetary atmospheres and, when precipitated and stored in solidified mantles, the dynamical evolution of planetary interiors. In the case of the Earth, the fO2 of the mantle near the end of core formation should have been ~IW-2, and subsequently increased to present-day values [1]. In experiments with fO2 ≤ IW, a variety of reduced volatile species have been found dissolved in magmas, including H2, CH4, CO, Fe(CO)5 and possibly Fe(CO)62+. However, there remains significant disagreement regarding the identity and concentrations of these volatiles in natural magmas, as well as their dependencies on intensive variables (T, P, fO2, fCO, fH2)[2-6]. Previous experiments document the importance of CO-related species [2,6], but were conducted over a limited range of fCO and had potentially interfering effects from poorly controlled variations in H2O. We aim to experimentally determine the solubility of C-O-H volatiles in basaltic magmas under reduced, C-saturated conditions while minimizing water content. The relationship between volatile speciation, fO2, and fCO at 1.2 GPa and 1400°C are constrained, laying the groundwork for a more extensive study at a range of conditions relevant to the interiors of the terrestrial planets and the moon. Both MORB and a martian basalt were studied, contained in Pt-C capsules with Fe × Pt × Si metal added to generate reducing conditions and to monitor fO2. A nominal amount of H2O is unavoidable in experimental charges, but was minimized by drying capsules prior to welding. Phase compositions were determined by electron microprobe and volatile concentrations were measured by FTIR spectroscopy. In preliminary experiments with fO2 of IW-0.70 to +1.75 (corresponding to log fCO of 3.3-4.5), H2O and CO2 concentrations as determined by FTIR are 113-13283 and 12-721 ppm, respectively. Most experiments also display a small FTIR peak at 2205 cm-1, whereas the most reduced experiments lack this peak but have peaks at 3370 and/or 1615 cm-1. The 2205 cm-1 peak was previously observed in similar experiments [6], and attributed to a C=O bond, possibly in the Fe-carbonyl Fe(CO)62+ [7]. The normalized intensity of the 2205 cm-1 peak is zero at IW -0.70 and increases with greater fO2 and fCO. This suggests that over a small fO2 and fCO range with the CCO buffer as an upper limit, CO-bearing species account for a portion of the dissolved C in reduced, graphite-saturated magmas. These volatiles could play an important role in martian magmatism, in the early Earth's mantle post-core formation, and in more oxidized regions of the lunar mantle. However, the fO2 during terrestrial core formation would have been too low for CO2 or the CO-bearing species to dissolve in a magma ocean. Ongoing work will extend the study to more reducing conditions and determine total C and H2O concentrations by SIMS. References: [1] Frost et al. (2008) Phil. Trans. R. Soc. A 366, 4315-4337. [2] Wetzel D. et al. (2013) PNAS, doi:10.1073/pnas.1219266110. [3] Dasgupta et al. (2013) GCA 102, 191-212. [4] Hirschmann et al. (2012) EPSL 345, 38-48. [5] Ardia et al. (2013) GCA 114, 52-71. [6] Stanley et al. (in review), GCA. [7] Bley et al. (1997) Inorg. Chem. 36, 158-160.

  3. AN EXTERNAL SHOCK ORIGIN OF GRB 141028A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, J. Michael; Bégué, Damien; Ryde, Felix

    The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the γ -ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron νF{sub ν} peak to an analytic model derived considering the emission of a relativistic blast wave expanding into an external medium. The prediction of the model for the νF{sub ν} peak evolution matches well with the observations. We observe the blast wave transitioning into the deceleration phase. Furthermore, we assume the expansion of themore » blast wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the νF{sub ν} peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.« less

  4. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  5. Crystal growth and scintillation properties of potassium strontium bromide

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Wei, H.; Melcher, C. L.

    2015-08-01

    In this work, potassium strontium bromide activated with divalent europium, (KSr2Br5:Eu) has been studied. It has a monoclinic crystal structure and a density of 3.98 g/cm3. Two single crystals of KSr2Br5 doped with 5% Eu2+, with diameters of 13 mm and 22 mm, were grown in a two zone transparent furnace via the Bridgman technique. The X-ray excited emission spectrum consisted of a single peak at ∼427 nm due to the 5d-4f transition in Eu2+. The measured light yield and energy resolution at 662 keV was 75,000 ph/MeV and 3.5%. At low energies KSr2Br5:Eu 5% also displays good energy resolution, 6.7% at 122 keV and 7.9% at 59.5 keV.

  6. Synthesis and dopamine transporter imaging in rhesus monkeys with fluorine-18 labeled FECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keil, R.; Hoffman, J.M.; Eschima, D.

    1996-05-01

    Parkinson`s patients have been shown to suffer a 60-80% loss of dopamine transporters in the substantia nigra and striatum. Dopamine transporter ligands labeled with fluorine-18 (t {1/2}=110 min) are attractive probes for measuring the density of dopamine transporter sites n the striatum for the diagnosis and evaluation of Parkinson`s patients by PET. We have synthesized (Ki = 32 nM vs RTI-55), fluorine-18 labeled 2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)-8-(3-fluoropropyl)nortropane (FECT), with favorable kinetics as a potential dopamine transporter PET imaging agent. Treatment of 2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)nortropane (1) with 1-bromo-2-fluoroethane (2) in CH3CN at 80{degrees}C gave FECT (3). [F-18]FECT (3) was prepared by treating 1,2-ditosyloxyethane (4) with NCAmore » K[F-18]/K222 (365 mCi) for 5 min in CH3CN at 85{degrees}C to give [F-18] 1-fluoro-2-tosyloxyethane (5) (175 mCi)in 59% E.O.B. yield. Coupling of [F-18] 5 with 1 in DMF at 135 {degrees}C for 45 min gave [F-18]FECT (41 mCi) in 25% yield E.O.B. following HPLC purification in a total synthesis time of 122 min. [F-18] 5 was >99% radiochemically pure with a specific activity of 5 Ci/{mu}mole. Following intravenous administration to a rhesus monkey [F-18]FECT (8.13 mCi) showed a peak uptake at 30 min in the striatum (S) followed by a slow clearance and a rapid washout from the cerebellum to afford a high S/C ratio = 11.0 at 125 min. Radio-HPLC analysis of the ether extracts form plasma samples for radioactive metabolites detected only the presence of [F-18]FECT. These results suggest that FECT is an Research supported by DOE.« less

  7. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  8. Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross

    2016-08-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 860 successful probes. Phenetic clustering analysis revealed that the array could distinguish between palms of different origins in a way consistent with pedigree records. Genome-wide linkage disequilibrium declined more slowly for the commercial populations (ranging from 120 kb at r(2) = 0.43 to 146 kb at r(2) = 0.50) when compared with the semi-wild populations (19.5 kb at r(2) = 0.22). Genetic fixation mapping comparing the semi-wild and commercial population identified 321 selective sweeps. A genome-wide association study (GWAS) detected a significant peak on chromosome 2 associated with the polygenic component of the shell thickness trait (based on the trait shell-to-fruit; S/F %) in tenera palms. Testing of a genomic selection model on the same trait resulted in good prediction accuracy (r = 0.65) with 42% of the S/F % variation explained. The first high-density SNP genotyping array for oil palm has been developed and shown to be robust for use in genetic studies and with potential for developing early trait prediction to shorten the oil palm breeding cycle. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  9. Bimetallic Co-Mn Perovskite Fluorides as Highly-Stable Electrode Materials for Supercapacitors.

    PubMed

    Shi, Wei; Ding, Rui; Li, Xudong; Xu, Qilei; Ying, Danfeng; Huang, Yongfa; Liu, Enhui

    2017-11-02

    Bimetallic Co-Mn perovskite fluorides (KCo x Mn 1-x F 3 , denoted as K-Co-Mn-F) with various Co/Mn ratios (1:0, 12:1, 6:1, 3:1, 1:1, 1:3, 0:1) were prepared through a one-pot solvothermal strategy and further used as electrode materials for supercapacitors. The optimal K-Co-Mn-F candidate (Co/Mn=6:1) showed a size range of 0.1-1 μm and uniform elemental distribution; exhibiting small changes in XRD peaks and XPS binding energy in comparison to the bare K-Co-F and K-Mn-F, due to the structural/electronic effects. Owing to the stronger synergistic effect of Co/Mn redox species, the K-Co-Mn-F (Co/Mn=6:1) electrode exhibited superior specific capacity and rate behavior (113-100 C g -1 at 1-16 Ag -1 ) together with excellent cycling stability (118 % for 5000 cycles at 8 Ag -1 ), and the activated carbon (AC)//K-Co-Mn-F (Co/Mn=6:1) asymmetric capacitor showed superior energy and power densities (8.0-2.4 Wh kg -1 at 0.14-8.7 kW kg -1 ) along with high cycling stability (90 % for 10 000 cycles at 5 Ag -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. LSWS linked with the low-latitude Es and its implications for the growth of the R-T instability

    NASA Astrophysics Data System (ADS)

    Joshi, L. M.

    2016-07-01

    A comprehensive investigation of spread F irregularities over the Indian sector has been carried out using VHF radar and ionosonde observations. Two different categories of spread F observations, one where the onset of the range spread F (RSF) was concurrent with the peak h'F (category 1) and another where the RSF onset happened ~90 min after the peak h'F time (category 2), are presented. RSF in category 2 was preceded by the presence of oblique echoes in ionograms, indicating the irregularity genesis westward of Sriharikota. The average peak h'F in category 1 was ~30 km higher than that in category 2 indicating the presence of standing large-scale wave structure (LSWS). Occurrence of the blanketing Es during 19:30 to 20:30 Indian Standard Time in category 1 (category 2) was 0% (>50%). Model computation is also carried out to further substantiate the observational results. Model computation indicates that zonal variation of low-latitude Es can generate zonal modulation in the F layer height rise. It is found that the modulation of the F layer height, linked with the low-latitude Es, assists the equatorial spread F onset by modifying both the growth rate of the collisional Rayleigh-Taylor (R-T) instability and also its efficiency. A predominant presence of low-latitude Es has been observed, but the increase in the F layer height and the R-T instability growth in the evening hours will maximize with complete absence of low-latitude Es. A new mechanism for the generation of LSWS and its implications on R-T instability is discussed.

  11. Sleep spindle alterations in patients with Parkinson's disease

    PubMed Central

    Christensen, Julie A. E.; Nikolic, Miki; Warby, Simon C.; Koch, Henriette; Zoetmulder, Marielle; Frandsen, Rune; Moghadam, Keivan K.; Sorensen, Helge B. D.; Mignot, Emmanuel; Jennum, Poul J.

    2015-01-01

    The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients with Parkinson's disease (PD). Five sleep experts manually identified SS at a central scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score, and by using a group consensus rule, 901 SS were identified and characterized by their (1) duration, (2) oscillation frequency, (3) maximum peak-to-peak amplitude, (4) percent-to-peak amplitude, and (5) density. Between-group comparisons were made for all SS characteristics computed, and significant changes for PD patients vs. control subjects were found for duration, oscillation frequency, maximum peak-to-peak amplitude and density. Specifically, SS density was lower, duration was longer, oscillation frequency slower and maximum peak-to-peak amplitude higher in patients vs. controls. We also computed inter-expert reliability in SS scoring and found a significantly lower reliability in scoring definite SS in patients when compared to controls. How neurodegeneration in PD could influence SS characteristics is discussed. We also note that the SS morphological changes observed here may affect automatic detection of SS in patients with PD or other neurodegenerative disorders (NDDs). PMID:25983685

  12. Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties

    NASA Astrophysics Data System (ADS)

    Barbieri, E. M. S.; Lima, E. P. C.; Cantarino, S. J.; Lelis, M. F. F.; Freitas, M. B. J. G.

    2014-12-01

    In this work, Co(OH)2 and Co3O4 films have been obtained using a solution to leach the cathodes of spent Li-ion batteries. The Co(OH)2 is electrodeposited onto conductive glass by the application of -0.85 V, with a charge density of 20 C cm-2, and its efficiency is found to be 66.67%. The Co3O4 film is obtained by heat treatment of the Co(OH)2 film at 450 °C for 3 h, in an air atmosphere, with a conversion efficiency of 64.29%. The cyclic voltammetry of Co(OH)2, in KOH 1.0 mol L-1 shows: three anodic peaks in the first cycle associated with the oxidation of Co(OH)2 to Co3O4, the conversion of Co3O4 into CoOOH, and the formation of CoOOH to CoO2 and the oxidation of water. The absence of cathodic peaks shows that oxidation from Co(OH)2 to CoO2 is an irreversible process. For the Co3O4 electrode, this verifies the existence of a redox pair associated with reversible oxidation of the Co3O4 to CoO2. The Co3O4 obtains a charge efficiency of 77% for the first 10 cycles (1.0 mV s-1) and a specific capacitance of 31.2 F g-1 (1.0 mV s-1) and 10.5 F g-1 (10 mV s-1). Co3O4 films have promising applications as pseudocapacitors.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Targove, J.D.

    The columnar microstructure of most thermally evaporated thin films detrimentally affects many of their properties through a reduction in packing density. In this work, the author investigated ion-assisted deposition as a means of disrupting this columnar growth for a number of coating materials. A Kaufman hot-cathode ion source bombarded thermally evaporated films with low-energy (<1000 eV) positive ions during deposition in a cryopumped box coater. The author investigated MgF/sub 2/, Na/sub 3/AlF/sub 6/, AlF/sub 3/, LaF/sub 3/,CeF/sub 3/,NdF/sub 3/,Al/sub 2/O/sub 3/, and AlN. Argon ion bombardment of the fluoride coatings increased their packing densities dramatically. He achieved packing densities nearmore » unity without significant absorption for MgF/sub 2/,LaF/sub 3/, and NdF/sub 3/, while Na/sub 3/AlF/sub 6/,AlF/sub 3/, and CeF/sub 3/ began to absorb before unity packing density could be achieved. Fluorine was preferentially sputtered by the ion bombardment, creating anion vacancies. The films adsorbed water vapor and hydroxyl radicals from the residual chamber atmosphere. These filled the vacancy sites, eliminating absorption in the visible, but the oxygen complexes caused increased absorption in the ultraviolet. For LaF/sub 3/ and NdF/sub 3/, a sufficient amount of oxygen caused a phase transformation from the fluoride phase to an oxyfluoride phase.« less

  14. PET Quantification of the Norepinephrine Transporter in Human Brain with (S,S)-18F-FMeNER-D2.

    PubMed

    Moriguchi, Sho; Kimura, Yasuyuki; Ichise, Masanori; Arakawa, Ryosuke; Takano, Harumasa; Seki, Chie; Ikoma, Yoko; Takahata, Keisuke; Nagashima, Tomohisa; Yamada, Makiko; Mimura, Masaru; Suhara, Tetsuya

    2017-07-01

    Norepinephrine transporter (NET) in the brain plays important roles in human cognition and the pathophysiology of psychiatric disorders. Two radioligands, ( S , S )- 11 C-MRB and ( S , S )- 18 F-FMeNER-D 2 , have been used for imaging NETs in the thalamus and midbrain (including locus coeruleus) using PET in humans. However, NET density in the equally important cerebral cortex has not been well quantified because of unfavorable kinetics with ( S , S )- 11 C-MRB and defluorination with ( S , S )- 18 F-FMeNER-D 2 , which can complicate NET quantification in the cerebral cortex adjacent to the skull containing defluorinated 18 F radioactivity. In this study, we have established analysis methods of quantification of NET density in the brain including the cerebral cortex using ( S , S )- 18 F-FMeNER-D 2 PET. Methods: We analyzed our previous ( S , S )- 18 F-FMeNER-D 2 PET data of 10 healthy volunteers dynamically acquired for 240 min with arterial blood sampling. The effects of defluorination on the NET quantification in the superficial cerebral cortex was evaluated by establishing a time stability of NET density estimations with an arterial input 2-tissue-compartment model, which guided the less-invasive reference tissue model and area under the time-activity curve methods to accurately quantify NET density in all brain regions including the cerebral cortex. Results: Defluorination of ( S , S )- 18 F-FMeNER-D 2 became prominent toward the latter half of the 240-min scan. Total distribution volumes in the superficial cerebral cortex increased with the scan duration beyond 120 min. We verified that 90-min dynamic scans provided a sufficient amount of data for quantification of NET density unaffected by defluorination. Reference tissue model binding potential values from the 90-min scan data and area under the time-activity curve ratios of 70- to 90-min data allowed for the accurate quantification of NET density in the cerebral cortex. Conclusion: We have established methods of quantification of NET densities in the brain including the cerebral cortex unaffected by defluorination using ( S , S )- 18 F-FMeNER-D 2 These results suggest that we can accurately quantify NET density with a 90-min ( S , S )- 18 F-FMeNER-D 2 scan in broad brain areas. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  15. Radiation damage and sensitization effects on thermoluminescence of LiF:Mg,Ti (TLD-700)

    NASA Astrophysics Data System (ADS)

    Farag, M. A.; Sadek, A. M.; Shousha, Hany. A.; El-Hagg, A. A.; Atta, M. R.; Kitis, G.

    2017-09-01

    The radiation damage effects and enhancement the thermoluminescence (TL) efficiency of LiF:Mg,Ti (TLD-700)dosimeters via sensitization method were discussed. Attempts to eliminate the effects of damage and sensitization were made using different types of annealing processes. The results showed that after irradiating the dosimeters with dose > 250 Gy of 60Co gamma source, damage effects were observed. The sensitivity of the total area under the curve was decreased by a factor of ∼0.5 after irradiation at a pre-test dose of 2 kGy. However, the effects of radiation damage on each glow-peak are different. The glow-peak 2 was the only peak that was not affected by the high-dose irradiation. It has been shown that the degree of the radiation damage effect is related to the maximum dose-response function, f(D)max of the glow-peak. In general, significant radiation damage effects were observed for the glow-peaks of high f(D)max . Post-irradiation anneal at 280 °C for 30 min causes dramatic effects on the shape of the glow-curve and as well as on the sensitivity of the dosimeters. An increasing by a factor of ∼35 in the sensitivity of the total area under the curve was observed at a pre-test dose of 2 kGy. Improving the sensitivity of peak 7 by a factor of∼22 was the dominant factor in increasing the sensitivity of the dosimeters. On the other hand, an increasing by factors of ∼2.5 and ∼4 was found for peaks 2 and 5 respectively. On the other hand, a decreasing by a factor ∼0.5 was observed for peaks 3 and 4. At pre-test dose levels >250 Gy, a very strange and high intensity tail was observed in the high-temperature region of the glow-curves. The readout anneal was not enough to remove this tail. While, the furnace anneal could eliminate the sensitization effects but not the radiation damage effects on the sensitivity of the dosimeters.

  16. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  17. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics

    NASA Astrophysics Data System (ADS)

    Adhikarla, Vikram; Jeraj, Robert

    2016-05-01

    Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (~30%) as compared to tissue vasculature density (~10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (~30-40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (~5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [64Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for analysing tumour response to anti-angiogenic therapies.

  18. Combined Raman and SEM study on CaF2 formed on/in enamel by APF treatments.

    PubMed

    Tsuda, H; Jongebloed, W L; Stokroos, I; Arends, J

    1993-01-01

    Raman spectra containing the distinct band at 322 cm-1 due to CaF2 or CaF2-like material formed in/on fluoridated bovine enamel were recorded using a micro-Raman spectrograph. Due to increasing levels of background fluorescence with increasing thickness of enamel, the Raman measurements were carried out on thin regions of wedged enamel sections. The distribution of the CaF2 or CaF2-like material was estimated using a simple model. The results indicate that 1/3 of the total CaF2 was concentrated within the narrow depth < 2 microns with high CaF2 concentrations (> 10 wt%), and that the majority of the CaF2 was distributed over the depths up to 26 microns (1 wt% CaF2). SEM observations on fractured fluoridated enamel confirmed that morphological changes were present in the depth range comparable to that of the high CaF2 concentration region expected from the Raman analysis. In deeper regions where lower concentration (< 10%) but a large amount of CaF2 was still expected, the SEM images failed to distinguish between the normal and fluoridated enamel. After KOH treatment, the Raman spectra did not show evidence of the CaF2 peak and the SEM micrographs also confirmed the removal of globules. The peak position of the Raman band of the CaF2 formed by the fluoridation was identical to that of pure CaF2. However, the linewidth was 23 cm-1 (FWHM) and a factor of 2 broader than that of pure CaF2 (12 cm-1). This implies that the lattice dynamics of the CaF2 formed by fluoridation is different from of pure CaF2, and that the material formed is 'CaF2-like' or 'disordered CaF2'.

  19. Surface Peroneal Nerve Stimulation in Lower Limb Hemiparesis: Effect on Quantitative Gait Parameters

    PubMed Central

    Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas D.; Buurke, Jaap H.; IJzerman, Maarten J.; Chae, John

    2015-01-01

    Objective To evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation (PNS) versus usual care (UC) via quantitative gait analysis. Design Randomized controlled clinical trial. Setting Teaching hospital of academic medical center. Participants 110 chronic stroke survivors (> 12-wks post-stroke) with unilateral hemiparesis. Interventions Subjects were randomized to a surface PNS device or UC intervention. Subjects were treated for 12-wks and followed for 6-months post-treatment. Main Outcome Measures Spatiotemporal, kinematic, and kinetic parameters of gait. Results Cadence (F3,153=5.81, p=.012), stride length (F3,179=20.01, p<.001), walking speed (F3,167=18.2, p<.001), anterior posterior ground reaction force (F3,164=6.61, p=.004), peak hip power in pre-swing (F3,156=8.76, p<.001), and peak ankle power at push-off (F3,149=6.38, p=.005) all improved with respect to time. However, peak ankle DF in swing (F3,184=4.99, p=.031) worsened. In general, the greatest change for all parameters occurred during the treatment period. There was no significant treatment group by time interaction effects for any of the spatiotemporal, kinematic, or kinetic parameters. Conclusions Gait training with PNS and usual care was associated with improvements in peak hip power in pre-swing and peak ankle power at push-off, which may have resulted in improved cadence, stride length, and walking speed; however, there were no differences between treatment groups. Both treatment groups also experienced a decrease in peak ankle DF in swing, though the clinical implications of this finding are unclear. PMID:25802966

  20. Improved reliability from a plasma-assisted metal-insulator-metal capacitor comprising a high-k HfO2 film on a flexible polyimide substrate.

    PubMed

    Meena, Jagan Singh; Chu, Min-Ching; Kuo, Shiao-Wei; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-03-20

    We have used a sol-gel spin-coating process to fabricate a new metal-insulator-metal (MIM) capacitor comprising a 10 nm-thick high-k thin dielectric HfO(2) film on a flexible polyimide (PI) substrate. The surface morphology of this HfO(2) film was investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free film growth had occurred on the film surface. After oxygen (O(2)) plasma pretreatment and subsequent annealing at 250 degrees C, the film on the PI substrate exhibited a low leakage current density of 3.64 x 10(-9) A cm(-2) at 5 V and a maximum capacitance density of 10.35 fF microm(-2) at 1 MHz. The as-deposited sol-gel film was completely oxidized when employing O(2) plasma at a relatively low temperature (ca. 250 degrees C), thereby enhancing the electrical performance. We employed X-ray photoelectron spectroscopy (XPS) at both high and low resolution to examine the chemical composition of the film subjected to various treatment conditions. The shift of the XPS peaks towards higher binding energy, revealed that O(2) plasma treatment was the most effective process for the complete oxidation of hafnium atoms at low temperature. A study of the insulator properties indicated the excellent bendability of our MIM capacitor; the flexible PI substrate could be bent up to 10(5) times and folded to near 360 degrees without any deterioration in its electrical performance.

  1. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    PubMed

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Particle in cell simulation of peaking switch for breakdown evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less

  3. Day-to-day ionospheric variability due to lower atmosphere perturbations

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yudin, V. A.; Roble, R. G.

    2013-12-01

    Ionospheric day-to-day variability is a ubiquitous feature, even in the absence of appreciable geomagnetic activities. Although meteorological perturbations have been recognized as an important source of the variability, it is not well represented in previous modeling studies, and the mechanism is not well understood. This study demonstrates that TIME-GCM (Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model) constrained in the stratosphere and mesosphere by the hourly Whole Atmosphere Community Climate Model (WACCM) simulations is capable of reproducing observed features of day-to-day variability in the thermosphere-ionosphere. Realistic weather patterns in the lower atmosphere in WACCM was specified by Modern Era Retrospective reanalysis for Research and Application (MERRA). The day-to-day variations in mean zonal wind, migrating and non-migrating tides in the thermosphere, vertical and zonal ExB drifts, and ionosphere F2 layer peak electron density (NmF2) are examined. The standard deviations of the drifts and NmF2 display local time and longitudinal dependence that compare favorably with observations. Their magnitudes are 50% or more of those from observations. The day-to-day thermosphere and ionosphere variability in the model is primarily caused by the perturbations originated in lower atmosphere, since the model simulation is under constant solar minimum and low geomagnetic conditions.

  4. Experimental characterization of a coaxial plasma accelerator for a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Hock, C.; Iberler, M.; Manegold, T.; Schönlein, A.; Jacoby, J.

    2015-04-01

    We report experimental results of a single coaxial plasma accelerator in preparation for a colliding plasma experiment. The utilized device consisted of a coaxial pair of electrodes, accelerating the plasma due to J ×B forces. A pulse forming network, composed of three capacitors connected in parallel, with a total capacitance of 27 μF was set up. A thyratron allowed to switch the maximum applied voltage of 9 kV. Under these conditions, the pulsed currents reached peak values of about 103 kA. The measurements were performed in a small vacuum chamber with a neutral-gas prefill at gas pressures between 10 Pa and 14 000 Pa. A gas mixture of ArH2 with 2.8% H2 served as the discharge medium. H2 was chosen in order to observe the broadening of the Hβ emission line and thus estimate the electron density. The electron density for a single plasma accelerator reached peak values on the order of 1016 cm-3 . Electrical parameters, inter alia inductance and resistance, were determined for the LCR circuit during the plasma acceleration as well as in a short circuit case. Depending on the applied voltage, the inductance and resistance reached values ranging from 194 nH to 216 nH and 13 mΩ to 23 mΩ, respectively. Furthermore, the plasma velocity was measured using a fast CCD camera. Plasma velocities of 2 km/s up to 17 km/s were observed, the magnitude being highly correlated with gas pressure and applied voltage.

  5. Hydrophobic polymer covered by a grating electrode for converting the mechanical energy of water droplets into electrical energy

    NASA Astrophysics Data System (ADS)

    Helseth, L. E.; Guo, X. D.

    2016-04-01

    Water contact electric harvesting has a great potential as a new energy technology for powering small-scale electronics, but a better understanding of the dynamics governing the conversion from mechanical to electrical energy on the polymer surfaces is needed. Important questions are how current correlates with droplet kinetic energy and what happens to the charge dynamics when a large number of droplets are incident on the polymer simultaneously. Here we address these questions by studying the current that is generated in an external electrical circuit when water droplets impinge on hydrophobic fluorinated ethylene propylene film containing a grating electrode on the back side. Droplets moving down an inclined polymer plane exhibit a characteristic periodic current time trace, and it is found that the peak current scales with sine of the inclination angle. For single droplets in free fall impinging onto the polymer, it is found that the initial peak current scales with the height of the free fall. The transition from individual droplets to a nearly continuous stream was investigated using the spectral density of the current signal. In both regimes, the high frequency content of the spectral density scales as f -2. For low frequencies, the low frequency content at low volume rates was noisy but nearly constant, whereas for high volume rates an increase with frequency is observed. It is demonstrated that the output signal from the system exposed to water droplets from a garden hose can be rectified and harvested by a 33 μF capacitor, where the stored energy increases at a rate of about 20 μJ in 100 s.

  6. A mechanical protocol to replicate impact in walking footwear.

    PubMed

    Price, Carina; Cooper, Glen; Graham-Smith, Philip; Jones, Richard

    2014-01-01

    Impact testing is undertaken to quantify the shock absorption characteristics of footwear. The current widely reported mechanical testing method mimics the heel impact in running and therefore applies excessive energy to walking footwear. The purpose of this study was to modify the ASTM protocol F1614 (Procedure A) to better represent walking gait. This was achieved by collecting kinematic and kinetic data while participants walked in four different styles of walking footwear (trainer, oxford shoe, flip-flop and triple-density sandal). The quantified heel-velocity and effective mass at ground-impact were then replicated in a mechanical protocol. The kinematic data identified different impact characteristics in the footwear styles. Significantly faster heel velocity towards the floor was recorded walking in the toe-post sandals (flip-flop and triple-density sandal) compared with other conditions (e.g. flip-flop: 0.36±0.05 ms(-1) versus trainer: 0.18±0.06 ms(-1)). The mechanical protocol was adapted by altering the mass and drop height specific to the data captured for each shoe (e.g. flip-flop: drop height 7 mm, mass 16.2 kg). As expected, the adapted mechanical protocol produced significantly lower peak force and accelerometer values than the ASTM protocol (p<.001). The mean difference between the human and adapted protocol was 12.7±17.5% (p<.001) for peak acceleration and 25.2±17.7% (p=.786) for peak force. This paper demonstrates that altered mechanical test protocols can more closely replicate loading on the lower limb in walking. This therefore suggests that testing of material properties of footbeds not only needs to be gait style specific (e.g. running versus walking), but also footwear style specific. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effects of Stable and Unstable Resistance Training in an Altered-G Environment on Muscle Power.

    PubMed

    Zemková, E; Oddsson, L

    2016-04-01

    The study evaluated the effect of 4 weeks of combined resistance-balance training and resistance training alone in a 90° tilted environment on muscle power. Two groups of healthy young subjects performed leg extensions while in a supine position, either on a firm surface along a linear track or on an unstable surface requiring mediolateral balancing movements. Power and force during squats were measured at isokinetic velocities of 10 and 35 deg/s. Results showed significantly greater gains in peak force (44.1%; F(1,21)=8.876, p=0.026), mean force (58.6%; F(1,21)=16.136, p=0.013), peak power (58.7%; F(1,21)=18.754, p=0.009), and mean power (59.2%; F(1,21)=23.114, p=0.007) at the velocity of 35 deg/s after stable than unstable resistance training. However, there were no significant between-groups differences in pre-post training gains in peak force (10.4%; F(1,21)=1.965, p=0.74), mean force (10.3%; F(1,21)=1.889, p=0.80), peak power (12.9%; F(1,21)=2.980, p=0.49), and mean power (19.1%; F(1,21)=3.454, p=0.36) during squats at the velocity of 10 deg/s. Resistance exercises under stable conditions performed in a 90° tilted environment are more effective in the improvement of high velocity muscle power than their use in combination with balance exercises. Such training may be applicable in pre- and in-flight exercise regimens for astronauts and in functional rehabilitation of bed-ridden patients. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  9. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  10. Spectral analysis of optical emission of microplasma in sea water

    NASA Astrophysics Data System (ADS)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  11. High peak current acceleration of narrow divergence ions beams with the BELLA-PW laser

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Treffert, Franziska; Bulanov, Stepan; Bin, Jianhui; Nakamura, Kei; Gonsalves, Anthony; Toth, Csaba; Park, Jaehong; Roth, Markus; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    We present a parameter study of ion acceleration driven by the BELLA-PW laser. The laser repetition rate of 1Hz allowed for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 petawatt. Further, the long focal length geometry of the experiment (f\\65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory.

  12. Thermoluminescent response of TLD-100 irradiated with 20 keV electrons and the use of radiochromic dye films for the fluence determination

    NASA Astrophysics Data System (ADS)

    Mercado-Uribe, H.; Brandan, M. E.

    2004-07-01

    We have measured the LiF:Mg,Ti (TLD-100) fluence response and supralinearity function to 20 keV electrons in the fluence interval between 5 × 10 9 and 4 × 10 12 cm -2. TLD-100 shows linear response up to 2 × 10 10 cm -2, followed by supralinearity and saturation after 10 12 cm -2. Peak 5 is slightly supralinear, f( n) max=1.1±0.1, while high temperature peaks reach up to f( n) max≈8. Peak 5 saturates at n≈1×10 11 cm -2, fluence smaller than any of the saturating fluences of the high temperature peaks. We have also measured the glow curve shape of TLD-100 irradiated with 40 keV electrons, beta particles from a 90Sr/ 90Y source and 1.3 and 6.0 MeV electrons from accelerators. Results are interesting and unexpected in that, for a given macroscopic dose, electrons show a smaller relative contribution of high-temperature peaks with respect to peak 5 than heavy ions or X- and γ-rays. The 20 and 40 keV electron irradiations were performed with a scanning electron microscope using radiochromic dye film to measure fluence. Since film calibrations were performed using 60Co γ-rays which expose the totality of the film volume, the use of this method with low energy electrons required to develop a formalism that takes into account the sensitive thickness of the film in relation to the range of the incident particles.

  13. Upconversion of Tm3+ ions in BaY2F8

    NASA Astrophysics Data System (ADS)

    Ruan, Yongfeng; Tsuboi, Taiju

    1999-06-01

    Up-conversion of red light with wavelength of 660 nm in Tm3+-doped BaY2F8 powder results in the two violet luminescence bands with peaks at 417 and 430 nm and two blue luminescence bands with peaks at 455 and 470 nm. The two violet bands are observed to be stronger than the blue bands. The blue luminescence is also observed by pumping with 993 nm light. The up-conversion is explained by a multiple excited state absorption process.

  14. Within-field spatial distribution of Megacopta cribraria (Hemiptera: Plataspidae) in soybean (Fabales: Fabaceae).

    PubMed

    Seiter, Nicholas J; Reay-Jones, Francis P F; Greene, Jeremy K

    2013-12-01

    The recently introduced plataspid Megacopta cribraria (F.) can infest fields of soybean (Glycine max (L.) Merrill) in the southeastern United States. Grid sampling in four soybean fields was conducted in 2011 and 2012 to study the spatial distribution of M. cribraria adults, nymphs, and egg masses. Peak oviposition typically occurred in early August, while peak levels of adults occurred in mid-late September. The overall sex ratio was slightly biased at 53.1 ± 0.2% (SEM) male. Sweep samples of nymphs were biased toward late instars. All three life stages exhibited a generally aggregated spatial distribution based on Taylor's power law, Iwao's patchiness regression, and spatial analysis by distance indices (SADIE). Interpolation maps of local SADIE aggregation indices showed clusters of adults and nymphs located at field edges, and mean densities of adults were higher in samples taken from field edges than in those taken from field interiors. Adults and nymphs were often spatially associated based on SADIE, indicating spatial stability across life stages.

  15. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo.

    PubMed

    Grote, Stefan; Noeldeke, Tatjana; Blauth, Michael; Mutschler, Wolf; Bürklein, Dominik

    2013-06-07

    Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (Densi - Probe®). We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD) and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dualenergy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher's Ztransformation. Moreover, linear regression analysis was carried out. The unpaired Student's t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm(2) (±0.17 g/cm(2)), followed by the upper neck region with 0.546 g/cm(2) (±0.16 g/cm(2)), trochanteric region with 0.685 g/cm(2) (±0.19 g/cm(2)) and the femoral neck with 0.813 g/cm(2) (±0.2 g/cm(2)). Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm). Load to failure was 4050.2 N (±1586.7 N). The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001). The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001). A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.

  16. Effects of Ga substitution in Ce:Tb3Ga x Al5- x O12 single crystals for scintillator applications

    NASA Astrophysics Data System (ADS)

    Nakauchi, Daisuke; Okada, Go; Kawano, Naoki; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-02-01

    Bulk single crystals of Ce-doped Tb3Ga x Al5- x O12 (x = 0-4) were successfully synthesized by the floating zone method. The samples exhibit photoluminescence and scintillation with an intense broad emission due to the 5d-4f transitions of Ce3+ peaking around 550 nm as well as a few sharp peaks due to the 4f-4f transitions of Tb3+. Pulse height spectrum measurements under 137Cs γ-ray irradiation demonstrated a clear photoabsorption peak, in which the scintillation light yields were estimated to be 57,000 (x = 0), 28,000 (x = 1), 19,000 (x = 2), and 10,000 (x = 3) photons/MeV. Afterglow level can be suppressed with an appropriate addition of Ga, in which the optimum concertation is x = 2 leading an afterglow level of 23 ppm.

  17. Comment on ``heating rate effects in thermoluminescent glow-peaks''

    NASA Astrophysics Data System (ADS)

    Horowitz, Y.

    1993-12-01

    In a recent article, Kitis et al. [Nucl. Instr. and Meth. B 73 (1993) 367] discuss the effect of heating rate on three well-known thermoluminescence (TL) glow peaks; the 110°C glow peak of Norwegian quartz, the 210°C "dosimetry" glow peak of LiF:Mg,Ti (peak 5 in TLD-700) and the 250°C glow peak of natural Cap 2 : MBLE. The authors state that they focus their attention on "single, well-separated, glow peaks" in order to "test the theory", presumably charge detrapping kinetic theory. To achieve this rather elusive goal for the 210°C peak in LiF:Mg,Ti, the authors employ a 140°C/60 min post-irradiation anneal to depopulate the low temperature peaks. There is, however, substantial evidence in the TL literature over the past three decades that an anneal of this duration at elevated temperatures induces various thermally activated clustering and precipitation processes leading to trap modification and possible creation of new traps.

  18. Deprotonation effect of tetrahydrofuran-2-carbonitrile buffer gas dopant in ion mobility spectrometry.

    PubMed

    Fernandez-Maestre, Roberto; Meza-Morelos, Dairo; Wu, Ching

    2016-06-15

    When dopants are introduced into the buffer gas of an ion mobility spectrometer, spectra are simplified due to charge competition. We used electrospray ionization to inject tetrahydrofuran-2-carbonitrile (F, 2-furonitrile or 2-furancarbonitrile) as a buffer gas dopant into an ion mobility spectrometer coupled to a quadrupole mass spectrometer. Density functional theory was used for theoretical calculations of dopant-ion interaction energies and proton affinities, using the hybrid functional X3LYP/6-311++(d,p) with the Gaussian 09 program that accounts for the basis set superposition error; analytes structures and theoretical calculations with Gaussian were used to explain the behavior of the analytes upon interaction with F. When F was used as a dopant at concentrations below 1.5 mmol m(-3) in the buffer gas, ions were not observed for α-amino acids due to charge competition with the dopant; this deprotonation capability arises from the production of a dimer with a high formation energy that stabilized the positive charge and created steric hindrance that deterred the equilibrium with analyte ions. F could not completely strip other compounds of their charge because they either showed steric hindrance at the charge site that deterred the approach of the dopant (2,4-lutidine, and DTBP), formed intramolecular bonds that stabilized the positive charge (atenolol), had high proton affinity (2,4-lutidine, DTBP, valinol and atenolol), or were inherently ionic (tetraalkylammonium ions). This selective deprotonation suggests the use of F to simplify spectra of complex mixtures in ion mobility and mass spectrometry in metabolomics, proteomics and other studies that generate complex spectra with thousands of peaks. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. films on silicon at different annealing temperatures

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Zhou, Chunlan; Zhang, Xiang; Zhang, Peng; Dou, Yanan; Wang, Wenjing; Cao, Xingzhong; Wang, Baoyi; Tang, Yehua; Zhou, Su

    2013-03-01

    Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density ( Q f) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q f can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Q f obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Q f. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiO x /Si interface region decreased with increased temperature. Measurement results of Q f proved that the Al vacancy of the bulk film may not be related to Q f. The defect density in the SiO x region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.

  20. Local ionospheric electron density reconstruction from simultaneous ground-based GNSS and ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Stankov, S. M.; Warnant, R.; Stegen, K.

    2009-04-01

    The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution in the local ionosphere. LIEDR is primarily designed to operate in real time for service applications, and, if sufficient data from solar and geomagnetic observations are available, to provide short-term forecast as well. For research applications and further development of the system, a post-processing mode of operation is also envisaged. In essence, the reconstruction procedure consists in the following. The high-precision ionosonde measurements are used for directly obtaining the bottom part of the electron density profile. The ionospheric profiler for the lower side (i.e. below the density peak height, hmF2) is based on the Epstein layer functions using the known values of the critical frequencies, foF2 and foE, and the propagation factor, M3000F2. The corresponding bottom-side part of the total electron content is calculated from this profile and is then subtracted from the GPS TEC value in order to obtain the unknown portion of the TEC in the upper side (i.e. above the hmF2). Ionosonde data, together with the simultaneously-measured TEC and empirically obtained O+/H+ ion transition level values, are all required for the determination of the topside electron density scale height. The topside electron density is considered as a sum of the constituent oxygen and hydrogen ion densities with unknown vertical scale heights. The latter are calculated by solving a system of transcendental equations that arise from the incorporation of a suitable ionospheric profiler (Chapman, Epstein, or Exponential) into formulae describing ionospheric conditions (plasma quasi-neutrality, ion transition level). Once the topside scale heights are determined, the construction of the vertical electron density distribution in the entire altitude range is a straightforward process. As a by-product of the described procedure, the value of the ionospheric slab thickness can be easily computed. To be able to provide forecast, additional information about the current solar and geomagnetic activity is needed. For the purpose, observations available in real time -- at the Royal Institute of Meteorology (RMI), the Royal Observatory of Belgium (ROB), and the US National Oceanic and Atmospheric Administration (NOAA) -- are used. Recently, a new hybrid model for estimating and predicting the local magnetic index K has been developed. This hybrid model has the advantage of using both, ground-based (geomagnetic field components) and space-based (solar wind parameters) measurements, which results in more reliable estimates of the level of geomagnetic activity - current and future. The described reconstruction procedure has been tested on actual measurements at the RMI Dourbes Geophysics Centre (coordinates: 50.1N, 4.6E) where a GPS receiver is collocated with a digital ionosonde (code: DB049, type: Lowell DGS 256). Currently, the nominal time resolution between two consecutive reconstructions is set to 15 minutes with a forecast horizon for each reconstruction of up to 60 minutes. Several applications are envisaged. For example, the ionospheric propagation delays can be estimated and corrected much easier if the electron density profile is available at a nearby location on a real-time basis. Also, both the input data and the reconstruction results can be used for validation purposes in ionospheric models, maps, and services. Recent studies suggest that such ionospheric monitoring systems can help research/services related to aircraft navigation, e.g. for development of the ‘ionospheric threat' methodology.

  1. Optical emission spectroscopic studies and comparisons of CH{sub 3}F/CO{sub 2} and CH{sub 3}F/O{sub 2} inductively coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, Qiaowei; Kaler, Sanbir; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu

    2015-03-15

    A CH{sub 3}F/CO{sub 2} inductively coupled plasma (ICP), sustained in a compact plasma reactor, was investigated as a function of power (5–400 W) and feed gas composition, at a pressure of 10 mTorr, using optical emission spectroscopy and rare gas actinometry. Number densities of H, F, and O increased rapidly between 74% and 80% CO{sub 2}, ascribed to the transition from polymer-covered to polymer-free reactor walls, similar to that found previously in CH{sub 3}F/O{sub 2} ICPs at 48% O{sub 2}. Below 40% O{sub 2} or CO{sub 2}, relative emission intensity ratios were almost identical for most key species in CH{sub 3}F/O{submore » 2} and CH{sub 3}F/CO{sub 2} ICPs except for higher OH/Xe (a qualitative measure of OH and H{sub 2}O densities) over the full range of CH{sub 3}F/O{sub 2} composition. The number density of H, F, and O increased with power in CH{sub 3}F/CO{sub 2} (20%/80%) plasmas (polymer-free walls), reaching 4.0, 0.34, and 1.6 × 10{sup 13}/cm{sup 3}, respectively, at 300 W. The CO number density increased with power and was estimated, based on self-actinometry, to be 8.8 × 10{sup 13}/cm{sup 3} at 300 W. The CO{sub 2} number density was independent of power below 40 W (where very little decomposition occurred), and then decreased rapidly with increasing power, reaching 2.8 × 10{sup 13}/cm{sup 3} at 300 W, corresponding to 83% dissociation. Films deposited on p-Si, 10 cm from the open, downstream end of the plasma reactor, were analyzed by x-ray photoelectron spectroscopy. Between 10% and 40% CO{sub 2} or O{sub 2} addition to CH{sub 3}F, film deposition rates fell and O content in the films increased. Faster deposition rates in CH{sub 3}F/CO{sub 2} plasmas were ascribed mainly to a larger thermodynamic driving force to form solid carbon, compared with CH{sub 3}F/O{sub 2} plasmas. Oxygen content in the films increased with increasing CO{sub 2} or O{sub 2} addition, but for the same deposition rate, no substantial differences were observed in the composition of the films.« less

  2. Effect of cryogenic temperature on spectroscopic and laser properties of Er,La:SrF2-CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Nakladov, Andrei N.; Osiko, Vjatcheslav V.

    2016-03-01

    The laser and spectroscopic properties of crystal Er,La:SrF2-CaF2 at temperature range 80 - 300 K, which is appropriate for generation of radiation around 2.7 um is presented. The sample of Er,La:SrF2-CaF2 (concentration Er(0.04), La(0.12):Ca(0.77)Sr(0.07)) had plan-parallel face-polished faces without anti-reflection coatings (thickness 8.2 mm). During spectroscopy and laser experiments the Er,La:SrF2-CaF2 was attached to temperature controlled copper holder and it was placed in vacuum chamber. The transmission and emission spectra of Er,La:SrF2-CaF2 together with the fluorescence decay time were measured in dependence on temperature. The excitation of Er,La:SrF2-CaF2 was carried out by a laser diode radiation (pulse duration 5 ms, repetition rate 20 Hz, pump wavelength 973 nm). Laser resonator was hemispherical, 140 mm in length with at pumping mirror (HR @ 2.7 µm) and spherical output coupler (r = 150 mm, R = 95 % @ 2.5 - 2.8 µm). Tunability of laser at 80 K in range 2690 - 2765 nm was obtained using MgF2 birefringent filter. With decreasing temperature of sample the fluorescence lifetime of manifold 4I11/2 (upper laser level) became shorter and intensity of up-conversion radiation was increasing. The highest slope efficiency with respect to absorbed power was 2.3 % at 80 K. The maximum output of peak amplitude power was 0.3 W at 80 K, i.e. 1.5 times higher than measured this value at 300 K. The wavelength generated by Er,La:SrF2-CaF2 laser (2.7 µm) is relatively close to absorption peak of water (3 µm) and so, one of the possible usage should be in medicine and spectroscopy.

  3. Dramatic changes of the thermosphere and ionosphere caused by the quasi-two-day wave forcing

    NASA Astrophysics Data System (ADS)

    Yue, J.; Wang, W.

    2013-12-01

    Traveling planetary waves, such as the quasi-two-day wave (QTDW), are one essential element of the mesosphere and lower thermosphere dynamics. These planetary waves have been observed to cause strong ionospheric day-to-day variations. However, the mechanisms of this effect either by penetrating directly into the thermosphere or by perturbing the dynamo electrodynamics have not been determined. We employ the NCAR TIME-GCM to simulate the interaction between traveling planetary waves and mean wind or tides, and the impact of this interaction on the ionospheric E-region dynamo, F-region plasma density, thermospheric density and O/N2. In particular, as shown in Figure 1, the TEC decreases by 20-30% during a strong QTDW event in the lower thermosphere from the TIME-GCM output. We find a simultaneously 20-30% decrease of O/N2 in the F2 peak in Figure 2. Therefore, the changes of the thermosphere general circulation, neutral temperature and eddy diffusivity are investigated to account for the O/N2 decrease. Because the QTDW dissipates in the lower thermosphere and drive the mean wind westward, the general circulation patterns are altered and the upwelling is enhanced. On the other hand, the QTDW interacts strongly with tides in the mesosphere and lower thermosphere, consequently changing the wind dynamo in the E-region. The effects of these interactions on the changes of the thermosphere and ionosphere will be reported. Decrease of TEC by the QTDW forcing Change of O/N2 by the QTDW forcing

  4. Seasonal and Solar Activity Variations of f3 Layer and StF-4 F-Layer Quadruple Stratification) Near the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Tardelli, A.; Fagundes, P. R.; Pezzopane, M.; Kavutarapu, V.

    2016-12-01

    The ionospheric F-layer shape and electron density peak variations depend on local time, latitude, longitude, season, solar cycle, geomagnetic activity, and electrodynamic conditions. In particular, the equatorial and low latitude F-layer may change its shape and peak height in a few minutes due to electric fields induced by propagation of medium-scale traveling ionospheric disturbances (MSTIDs) or thermospheric - ionospheric coupling. This F-layer electrodynamics feature characterizing the low latitudes is one of the most remarkable ionospheric physics research field. The study of multiple-stratification of the F-layer has the initial records in the mid of the 20th century. Since then, many studies were focused on F3 layer. The diurnal, seasonal and solar activity variations of the F3 layer characteristics have been investigated by several researchers. Recently, investigations on multiple-stratifications of F-layer received an important boost after the quadruple stratification (StF-4) was observed at Palmas (10.3°S, 48.3°W; dip latitude 5.5°S - near equatorial region), Brazil (Tardelli & Fagundes, JGR, 2015). This study present the latest findings related with the seasonal and solar activity characteristics of the F3 layer and StF-4 near the equatorial region during the period from 2002 to 2006. A significant connection between StF-4 and F3 layer has been noticed, since the StF-4 is always preceded and followed by an F3 layer appearance. However, the F3 layer and StF-4 present different seasonal and solar cycle variations. At a near equatorial station Palmas, the F3 layer shows the maximum and minimum occurrence during summer and winter seasons respectively. On the contrary, the StF-4 presents the maximum and minimum occurrence during winter and summer seasons respectively. While the F3 layer occurrence is not affected by solar cycle, the StF-4 appearance is instead more frequent during High Solar Activity (HSA).

  5. Internal Friction of Austenitic Fe-Mn-C-Al Alloys

    NASA Astrophysics Data System (ADS)

    Lee, Young-Kook; Jeong, Sohee; Kang, Jee-Hyun; Lee, Sang-Min

    2017-12-01

    The internal friction (IF) spectra of Fe-Mn-C-Al alloys with a face-centered-cubic (fcc) austenitic phase were measured at a wide range of temperature and frequency ( f) to understand the mechanisms of anelastic relaxations occurring particularly in Fe-Mn-C twinning-induced plasticity steels. Four IF peaks were observed at 346 K (73 °C) (P1), 389 K (116 °C) (P2), 511 K (238 °C) (P3), and 634 K (361 °C) (P4) when f was 0.1 Hz. However, when f increased to 100 Hz, whereas P1, P2, and P4 disappeared, only P3 remained without the change in peak height, but with the increased peak temperature. P3 matches well with the IF peak of Fe-high Mn-C alloys reported in the literature. The effects of chemical composition and vacancy (v) on the four IF peaks were also investigated using various alloys with different concentrations of C, Mn, Al, and vacancy. As a result, the defect pair responsible for each IF peak was found as follows: a v-v pair for P1, a C-v pair for P2, a C-C pair for P3, and a C-C-v complex (major effect) + a Mn-C pair (minor effect) for P4. These results showed that the IF peaks of Fe-Mn-C-Al alloys reported previously were caused by the reorientation of C in C-C pairs, not by the reorientation of C in Mn-C pairs.

  6. [Aging-related ionic remodeling of L-type voltage dependent calcium channel in left atria of canine].

    PubMed

    Zhou, Xian-hui; Zhang, Jian; Gan, Tian-yi; Xu, Guo-jun; Tang, Bao-peng

    2012-04-01

    To investigate aging-related ionic remodeling of L-type voltage dependent calcium channel (LVDCC) in left atria of canine. Seven adult (2.0 - 2.5 years) and 10 aged (> 8 years) dogs were used. The current of LVDCC was recorded by patch clamp technique in the whole cell mode. The action potential duration (APD(90)), amplitude of action potential plateau (APA), I(Ca-L) peak current density of LVDCC were recorded. The mRNA and protein expressions of α1c subunit (Ca(V1.2)), sarcoplasmic reticulum Ca(2+)-ATPase (SECRA(2)), Calpain-I, ryanodine receptor (RYR(2)) were detected by quantitative RT-PCR and Western blot, respectively. I(Ca-L) peak current density [(-8.11 ± 0.54) pA/pF vs. (-14.04 ± 0.82) pA/pF, P < 0.05] was significantly reduced and action potential duration to 90% repolarization (APD(90)) significantly prolonged [(340.5 ± 10.1) ms vs. (320.0 ± 7.9) ms, P < 0.05] in aged group than in adult group. The mRNA gene expression level of Ca(V1.2) was significantly lower (0.90 ± 0.35 vs. 2.38 ± 0.40, P < 0.05) while mRNA expression of RYR(2) was significantly higher (4.39 ± 4.68 vs. 1.49 ± 1.69, P < 0.05) in the aged dogs than in the adult dogs. mRNA expression of SECRA(2) and Calpain-I was similar between the two groups. Similarly, the protein expression level of Ca(V1.2) was significantly lower (0.13 ± 0.10 vs. 0.29 ± 0.12, P < 0.05) while the protein expression level of RYR(2) was significantly higher (0.18 ± 0.21 vs. 0.08 ± 0.36, P < 0.05) in the aged dogs than in the adult dogs. Again, protein expression of SECRA(2), PLN(1) and Calpain-I was similar between the two groups. These data suggest that aging could induce mRNA and protein expression changes of Ca(V1.2) and RYR(2) of LVDCC which might serve as the molecular basis of I(Ca-L) remodeling in aged dogs and might be linked to the increased likelihood of developing atrial fibrillation (AF) in aged dogs.

  7. Improvement in Fruit and Vegetable Consumption Associated with More Favorable Energy Density and Nutrient and Food Group Intake, but not Kilocalories.

    PubMed

    Thompson, Debbe; Ferry, Robert J; Cullen, Karen W; Liu, Yan

    2016-09-01

    Children generally do not consume adequate amounts of fruits and vegetables (F/V). Eating more F/V can improve energy density and overall diet quality. Our aim was to investigate whether improvements in F/V consumption were associated with improvements in energy density, total calories, and dietary components related to F/V. We performed secondary analyses of dietary data from a successful four-group randomized controlled trial promoting F/V. Data were collected at baseline, immediately after gameplay, and 3 months post intervention. Preadolescent child-parent dyads (n=400) were recruited. Eligibility criteria were 4th- or 5th-grade child (approximately 9 to 11 years old) with Internet access and a parent willing to participate in the intervention. Complete dietary data were collected on 387 of the 400 child participants. The videogame was available online on a secure, password-protected website. Dietary intake was assessed with three unannounced dietary recalls collected at each data-collection period via telephone by trained staff using Nutrition Data System for Research software. Energy density and F/V, nutrient, and food consumption were calculated. A 4×3 (group by time) repeated measures analysis of covariance with mixed-effect linear models was used. Covariates included child's sex, race/ethnicity, and total energy intake as well as parent's age and household education. Energy was excluded as a covariate in the energy density and energy models. Significant changes occurred in energy density. A significant interaction (group by time) was observed (F6, 515=2.40; P<0.05) in energy density from food only, while a significant time effect was observed for energy density from all foods and beverages (F2, 388=13.75; P<0.0001). Desirable changes were also observed in F/V-related dietary components. Increasing F/V consumption improved energy density and diet quality considerably in preadolescent children. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  8. Increasing the Life of a Xenon-Ion Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard

    2007-01-01

    A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.

  9. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors.

    PubMed

    Deori, Kalyanjyoti; Ujjain, Sanjeev Kumar; Sharma, Raj Kishore; Deka, Sasanka

    2013-11-13

    Cubic spinel Co3O4 nanoparticles with spherical (0D) and hexagonal platelet (2D) morphologies were synthesized using a simple solvothermal method by tuning the reaction time. XRD and HRTEM analyses revealed pure phase with growth of Co3O4 particles along [111] and [110] directions. UV-vis studies showed two clear optical absorption peaks corresponding to two optical band gaps in the range of 400-500 nm and 700-800 nm, respectively, related to the ligand to metal charge transfer events (O(2-) → Co(2+,3+)). Under the electrochemical study in two electrode assembly system (Co3O4/KOH/Co3O4) without adding any large area support or a conductive filler, the hexagonal platelet Co3O4 particles exhibited comparatively better characteristics with high specific capacitance (476 F g(-1)), energy density 42.3 Wh kg(-1) and power density 1.56 kW kg(-1) at current density of 0.5 Ag(-1), that suited for potential applications in supercapacitors. The observed better electrochemical properties of the nanoporous Co3O4 particles is attributed to the layered platelet structural arrangement of the hexagonal platelet and the presence of exceptionally high numbers of regularly ordered pores.

  10. Likelihood-based modification of experimental crystal structure electron density maps

    DOEpatents

    Terwilliger, Thomas C [Sante Fe, NM

    2005-04-16

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  11. Global Investigation of the Mg Atom and ion Layers using SCIAMACHY/Envisat Observations between 70 km and 150 km Altitude and WACCM-MG Model Results

    NASA Technical Reports Server (NTRS)

    Langowski, M.; vonSavigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, Diego; Sinnhuber, M.; Aikin, A. C.

    2014-01-01

    Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82 deg. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm(exp-3) and 2000 cm(exp-3). Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40 deg and densities at the peak altitude range from 500 cm(exp-3) to 6000 cm(exp-3). The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However, there are the following minor differences: there is no latitudinal dependence of the peak altitude for WACCM and the density maximum, passing the equatorial region during equinox conditions, is not reduced as for SCIAMACHY.

  12. New comparisons of ISR and RO data with the model IRI-Plas

    NASA Astrophysics Data System (ADS)

    Maltseva, Olga; Mozhaeva, Natalya; Zhbankov, Gennadii

    2012-07-01

    Space Weather events lead to strong changes in peak parameters of the ionosphere. These parameters, foF2 and hmF2, define the N(h)-profile, which is known to include bottom side and topside parts. Numerous studies have shown that adaptation of the IRI model to the experimental values of foF2 and hmF2 gave a good agreement between experimental and model N(h)-profiles of the bottom side ionosphere. This is not about the topside N(h)-profile. To improve the situation measurements of the total electron content TEC are involved. This work is devoted to the use of peak parameters with the TEC during Space Weather events for the evaluation of propagation conditions in both the bottom side and the topside ionosphere, based on the model IRI-Plas. To assess how well the model N(h)-profile matches the experimental one, the model IRI-Plas is tested according to the Incoherent Scatter Radars and the Radio Occultation measurements in various parts of the globe and at different levels of solar activity. The experimental N(h)-profiles are compared with profiles for the original model, the model adapted to the foF2 and hmF2, and for a model with full adaptation (including the TEC). The best fit is obtained in the European region, so the SW variations of peak parameters and N(h)-profiles are studied on the example of the European area. The IRI-Plas model allows to estimate the relative contributions of each region (bottom side BOT, topside TOP and plasmaspheric PL parts) in the value of the TEC. As the analysis of two W- and Wp-indexes (Gulyaeva, 2008; Gulyaeva and Stanislawska, 2008) is shown, TEC-storms occur in 2 times more likely than foF2-storms. This testifies that the variations of parts BOT, TOP and PL in the TEC are different. It determines different variations of N(h)-profiles. Results are given for several types of SW-events, in particular, for the strong positive and negative disturbances, when the variations of TEC and foF2 are of the same sign and the corresponding perturbation covers all regions of the ionosphere. Particular attention is paid to variations of peak parameters and N(h)-profiles during weak and moderate disturbances and bursts of TEC in long period of low activity, when the TEC and foF2 variations and variations of different parts of TEC are in the opposite phase.

  13. Reproduction and population dynamics of Mastomys natalensis Smith, 1834 in an agricultural landscape in the Western Usambara Mountains, Tanzania.

    PubMed

    Makundi, Rhodes H; Massawe, Apia W; Mulungu, Loth S

    2007-12-01

    The multimammate rat, Mastomys natalensis Smith 1834, is a dominant species in agro-ecosystems in Sub-Saharan Africa, but adapts quickly to changes in non-agricultural landscape, particularly woodlands and forests. In this study we report on reproduction and population dynamics of M. natalensis in deforested high elevation localities in the Usambara Mountains, north-east Tanzania. We conducted Capture-Mark-Recapture studies in 2002-2004, and established that reproduction of M. natalensis takes place in the extended wet season between February and June, and the population density peaks in June-August. Reproduction cease in July to January and population density drops from July onwards. Reproduction and population density fluctuations are linked to the duration and amount of rainfall. In years when rainfall was below average and the wet season was short, the population density was significantly lower (below 10 animals/ha and 60 animals/ha in 2003 and 2004 respectively, compared to >100 animals/ha in 2002 when rainfall was above the seasonal average) (F(df 2,13)= 9.092, p < 0.01 for in between years variations and F(df 12,15)= 5.389, p < 0.01 for effect of cumulative annual rainfall on population density). These densities were much lower than in the lowland savannah habitats in central and southwest Tanzania. A comparison between the farmland/fallow mosaic fields and agro-forestry areas showed higher population densities in the former, which have similarities to the preferred habitats in the lowland savannahs. The increasing abundance of M. natalensis in the Usambara could have some consequences: M. natalensis is major pest and is involved in the plague cycle in the western Usambara Mountains. Mastomys natalensis is also a strong competitor and the impact on endemic rodent species, e.g. Lophuromys flavopunctatus and Praomys delectorum is unknown.

  14. Design and fabrication of low power GaAs/AlAs resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Md Zawawi, Mohamad Adzhar; Missous, Mohamed

    2017-12-01

    A very low peak voltage GaAs/AlAs resonant tunneling diode (RTD) grown by molecular beam epitaxy (MBE) has been studied in detail. Excellent growth control with atomic-layer precision resulted in a peak voltage of merely 0.28 V (0.53 V) in forward (reverse) direction. The peak current density in forward bias is around 15.4 kA/cm2 with variation of within 7%. As for reverse bias, the peak current density is around 22.8 kA/cm2 with 4% variation which implies excellent scalability. In this work, we have successfully demonstrated the fabrication of a GaAs/AlAs RTD by using a conventional optical lithography and chemical wet-etching with very low peak voltage suitable for application in low dc input power RTD-based sub-millimetre wave oscillators.

  15. Quantum calculations for one-dimensional cooling of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, E.; Doery, M.; Bergeman, T.

    1993-05-01

    We report theoretical velocity distributions for sub-Doppler laser cooling of metastable He*(2{sup 3}S), calculated with the Density Matrix and Monte Carlo Wavefunction approaches. For low-field (B = 50 mG) magnetic-field induced laser cooling on the 2{sup 3}S {yields} (2{sup 3}P, J = 2) transition ({lambda} = 1083 nm), we get a narrow, sub-Doppler structure, consisting of three, {approximately}1 photon recoil wide peaks, spaced {approximately}1 recoil apart. With increasing field, this three-peak structure develops into two velocity-selective resonance (VSR) peaks, each {approximately}2 recoils wide. For the 2{sup 3}S {yields} (3{sup 3}P, J = 2) transition ({lambda} 389 nm), VSR peaks aremore » predicted to appear at low field without the third, central peak, which only develops at higher field (B = 200 mG). Additional computations deal with polarization-gradient cooling. In general, we find that for one-dimensional cooling calculations, the Density Matrix method is more efficient than the Monte Carlo Wavefunction approach. Experiments are currently under way to test the results.« less

  16. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Nemanich, Robert J.

    2014-09-01

    The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) dilutedmore » in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460 °C with activation energies (E{sub d}) of 51 ± 3 and 87 ± 5 kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475 °C and E{sub d} of 110 ± 5 kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585 °C with second order kinetics and E{sub d} of 62 ± 3 and 270 ± 10 kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption exhibited an additional high temperature peak at 910 °C with E{sub d} = 370 ± 10 kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d} = 535 ± 40 kJ/mol that is consistent with the activation energy for direct sublimation of AlN.« less

  17. High-Pressure Measurements of Temperature and CO2 Concentration Using Tunable Diode Lasers at 2 μm.

    PubMed

    Cai, Tingdong; Gao, Guangzhen; Wang, Minrui; Wang, Guishi; Liu, Ying; Gao, Xiaoming

    2016-03-01

    A sensor for simultaneous measurements of temperature and carbon dioxide (CO2) concentration at elevated pressure is developed using tunable diode lasers at 2 µm. Based on some selection rules, a CO2 line pair at 5006.140 and 5010.725 cm(-1) is selected for the TDL sensor. In order to ensure the accuracy and rapidity of the sensor, a quasi-fixed-wavelength WMS is employed. Normalization of the 2f signal with the 1f signal magnitude is used to remove the need for calibration and correct for transmission variation due to beam steering, mechanical misalignments, soot, and windows fouling. Temperatures are obtained from comparison of the background-subtracted 1f-normalized WMS-2f signals ratio and a 1f-normalized WMS-2f peak values ratio model. CO2 concentration is inferred from the 1f-normalized WMS-2f peak values of the CO2 transition at 5006.140 cm(-1). Measurements of temperature and CO2 concentration are carried out in static cell experiments (P = 1-10 atm, T = 500-1200 K) to validate the accuracy and ability of the sensor. The results show that accuracy of the sensor for temperature and CO2 concentration are 1.66% temperature and 3.1%, respectively. All the measurements show the potential utility of the sensor for combustion diagnose at elevated pressure. © The Author(s) 2016.

  18. Girth pressure measurements reveal high peak pressures that can be avoided using an alternative girth design that also results in increased limb protraction and flexion in the swing phase.

    PubMed

    Murray, Rachel; Guire, Russell; Fisher, Mark; Fairfax, Vanessa

    2013-10-01

    Girths are frequently blamed for veterinary and performance problems, but research into girth/horse interaction is sparse. The study objectives were (1) to determine location of peak pressure under a range of girths, and (2) to compare horse gait between the horse's standard girth and a girth designed to avoid detected peak pressure locations. In the first part of the study, and following validation procedures, a calibrated pressure mat placed under the girth of 10 horses was used to determine the location of peak pressures. A girth was designed to avoid peak pressure locations (Girth F). In the second part, 20 elite horses/riders with no lameness or performance problem were ridden in Girth F and their standard girth (Girth S) in a double blind crossover design. Pressure mat data were acquired from under the girths. High speed video was captured and forelimb and hindlimb protraction, maximal carpal and tarsal flexion during flight were determined in trot. In standard girths, peak pressures were located over the musculature behind the elbow. Pressure mat results revealed that the maximum forces with Girth S were 22% (left) and 14% (right) greater than Girth F, and peak pressures were 76% (left) and 98% (right) greater (P<0.01 for all). On gait evaluation, Girth F was associated with 6-11% greater forelimb protraction, 10-20% greater hindlimb protraction, 4% greater carpal flexion, and 3% greater tarsal flexion than Girth S (P<0.01 for all). Peak pressures were located where horses tend to develop pressure sores. Girth F reduced peak pressures under the girth, and improved limb protraction and carpal/ tarsal flexion, which may reflect improved posture and comfort. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-01

    The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.

  20. Spectroscopic properties and mechanisms of superbroadband lasing from fluorine(2)(+)** color centers in lithium fluoride

    NASA Astrophysics Data System (ADS)

    Jenkins, Neil Wayne

    2000-12-01

    A temperature-dependent spectroscopic analysis of the color center laser medium, LiF:F2+**, is presented. Special attention is devoted to the well-known thermal- and photo-stable F2 +** color center as well as a new F2+**- like color center, conclusively discovered in this work. The standard F2 +** color center is shown to have l0abs. = 615 nm and peak emission near l0ems. = 906 nm. This new F2+**-like color center is found to have a peak absorption near l0abs. = 812 nm and peak emission near l0ems. = 1080 nm. Justification for the association of this new center with F2+**-Iike color centers is explained in the text. Standard F2+** color centers have kinetics of fluorescence lifetime of τ13K = 32 ns, τ300 K = 21 ns, for a quantum efficiency of fluorescence, η = 66%. Concerning the new F2+**-like color center, the 13 K lifetime was found to be τ ~ 5 ns. We show that Alexandrite laser radiation can simultaneously excite the absorption bands of both F2 +**-like centers in their region of spectral overlap. The resulting emission from both centers is the mechanism responsible for the superbroadband range of tunability, ~800-1300 nm, from this laser medium at room temperature. By using the results of the spectroscopic analysis, theoretical calculations are performed to develop a superbroadband laser based on this active medium. A super broadband laser provides laser emission that coincides with nearly the entire fluorescence bands of the material. This type of laser is made possible with the use of a novel laser cavity described in the text. This superbroadband laser was successfully realized under 633 run excitation from a Raman shifted (D2) second harmonic output of a Q-switched, Nd:YAG laser. Comparison of the experimental results from the LIF:F2 +** superbroadband laser show good agreement with the theoretical calculations for both spectral output and temporal signatures. It is also shown that with further technological developments, this crystal is the heart of a potential ultrabroadband, near-IR laser; frequency doubling this fundamental output will realize a truly white-light laser.

  1. Mass-yield distributions of fission products in bremsstrahlung-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kim, K.

    2018-01-01

    The cumulative yields of various fission products within the 77-153 mass regions in the 2.5-GeV bremsstrahlung-induced fission of 232Th have been determined by using the recoil catcher and an off-line γ-ray spectrometric technique at the Pohang Accelerator Laboratory, Korea. The mass-yield distributions were obtained from the cumulative yields after charge-distribution corrections. The peak-to-valley (P /V ) ratio, the average value of light mass ( ) and heavy mass ( ), and the average postfission number of neutrons ( expt) were obtained from the mass yield of the 232Th(γ ,f ) reaction. The present and literature data in the 232Th(γ ,f ) reaction were compared with the similar data in the 238U(γ ,f ) reaction at various excitation energies to examine the role of potential energy surface and the effect of standard I and standard II asymmetric modes of fission. It was found that (i) even at the bremsstrahlung end-point energy of 2.5 GeV, the mass-yield distribution in the 232Th(γ ,f ) reaction is triple humped, unlike 238U(γ ,f ) reaction, where it is double humped. (ii) The peak-to-valley (P /V ) ratio decreases with the increase of excitation energies. However, the P /V ratio of the 232Th(γ ,f ) reaction is always lower than that of the 238U(γ ,f ) reaction due to the presence of a third peak in the former. (iii) In both the 232Th(γ ,f ) and 238U(γ ,f ) reactions, the nuclear structure effect almost vanishes at the bremsstrahlung end-point energies of 2.5-3.5 GeV.

  2. Peak oxygen uptake, ventilatory efficiency and QRS-duration predict event free survival in patients late after surgical repair of tetralogy of Fallot.

    PubMed

    Müller, Jan; Hager, Alfred; Diller, Gerhard-Paul; Derrick, Graham; Buys, Roselien; Dubowy, Karl-Otto; Takken, Tim; Orwat, Stefan; Inuzuka, Ryo; Vanhees, Luc; Gatzoulis, Michael; Giardini, Alessandro

    2015-10-01

    Patients with repaired tetralogy of Fallot (ToF) have an increased long-term risk of cardiovascular morbidity and mortality. Risk stratification in this population is difficult. Initial evidence suggests that cardiopulmonary exercise testing (CPET) may be helpful to risk-stratify patients with repaired ToF. We studied 875 patients after surgical repair for ToF (358 females, age 25.5 ± 11.7 year, range 7-75 years) who underwent CPET between 1999 and 2009. During a mean follow-up of 4.1 ± 2.6 years after CPET, 30 patients (3.4%) died or had sustained ventricular tachycardia (VT). 225 patients (25.7%) had other cardiac related events (emergency admission, surgery, or catheter interventions). On multivariable Cox regression-analysis, %predicted peak oxygen uptake (V˙O2 %) (p=0.001), resting QRS duration (p=0.030) and age (p<0.001) emerged as independent predictors of mortality or sustained VT. Patients with a peak V˙O2 ≤ 65% of predicted and a resting QRS duration ≥ 170 ms had a 11.4-fold risk of death or sustained VT. Ventilatory efficiency expressed as V˙E/V˙CO2 slope (p<0.001), peak V˙O2 % (p=.001), QRS duration (p=.001) and age (p=0.046) independently predicted event free survival. V˙E/V˙CO2 slope ≥ 31.0, peak V˙O2 % ≤ 65% and QRS duration ≥ 170 ms were the cut-off points with best sensitivity and specificity to detect an unfavorable outcome. CPET is an important predictive tool that may assist in the risk stratification of patients with ToF. Subjects with a poor exercise capacity in addition to a prolonged QRS duration have a substantially increased risk for death or sustained ventricular tachycardia, as well as for cardiac-related hospitalizations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Assessment of the magnetic field exposure due to the battery current of digital mobile phones.

    PubMed

    Jokela, Kari; Puranen, Lauri; Sihvonen, Ari-Pekka

    2004-01-01

    Hand-held digital mobile phones generate pulsed magnetic fields associated with the battery current. The peak value and the waveform of the battery current were measured for seven different models of digital mobile phones, and the results were applied to compute approximately the magnetic flux density and induced currents in the phone-user's head. A simple circular loop model was used for the magnetic field source and a homogeneous sphere consisting of average brain tissue equivalent material simulated the head. The broadband magnetic flux density and the maximal induced current density were compared with the guidelines of ICNIRP using two various approaches. In the first approach the relative exposure was determined separately at each frequency and the exposure ratios were summed to obtain the total exposure (multiple-frequency rule). In the second approach the waveform was weighted in the time domain with a simple low-pass RC filter and the peak value was divided by a peak limit, both derived from the guidelines (weighted peak approach). With the maximum transmitting power (2 W) the measured peak current varied from 1 to 2.7 A. The ICNIRP exposure ratio based on the current density varied from 0.04 to 0.14 for the weighted peak approach and from 0.08 to 0.27 for the multiple-frequency rule. The latter values are considerably greater than the corresponding exposure ratios 0.005 (min) to 0.013 (max) obtained by applying the evaluation based on frequency components presented by the new IEEE standard. Hence, the exposure does not seem to exceed the guidelines. The computed peak magnetic flux density exceeded substantially the derived peak reference level of ICNIRP, but it should be noted that in a near-field exposure the external field strengths are not valid indicators of exposure. Currently, no biological data exist to give a reason for concern about the health effects of magnetic field pulses from mobile phones.

  4. Relations for lipid bilayers. Connection of electron density profiles to other structural quantities.

    PubMed Central

    Nagle, J F; Wiener, M C

    1989-01-01

    Three relations are derived that connect low angle diffraction/scattering results obtained from lipid bilayers to other structural quantities of interest. The first relates the area along the surface of the bilayer, the measured specific volume, and the zeroth order structure factor, F(0). The second relates the size of the trough in the center of the electron density profile, the volume of the terminal methyl groups, and the volume of the methylene groups in the fatty acid chains. The third relates the size of the headgroup electron density peak, the volume of the headgroup, and the volumes of water and hydrocarbon in the headgroup region. These relations, which are easily modified for neutron diffraction, are useful for obtaining structural quantities from electron density profiles obtained by fitting model profiles to measured low angle x-ray intensities. PMID:2713444

  5. Large-Scale Structure of Subauroral Polarization Streams During the Main Phase of a Severe Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    He, Fei; Zhang, Xiao-Xin; Wang, Wenbin; Liu, Libo; Ren, Zhi-Peng; Yue, Xinan; Hu, Lianhuan; Wan, Weixing; Wang, Hui

    2018-04-01

    In this study, we present multisatellite observations of the large-scale structures of subauroral polarization streams (SAPS) during the main phase of a severe geomagnetic storm that occurred on 31 March 2001. Observations by the Defense Meteorological Satellite Program F12 to F15 satellites indicate that the SAPS were first generated around the dusk sector at the beginning of the main phase. The SAPS channel then expanded toward the midnight sector and moved to lower latitudes as the main phase progressed. The peak velocity, latitudinal width, latitudinal alignment, and longitudinal span of the SAPS channel were highly dynamic during the storm main phase. The large westward velocities of the SAPS were located in the region of low electron densities, associated with low ionospheric conductivity. The large-scale structures of the SAPS also corresponded closely to those of the region-2 field-aligned currents, which were mainly determined by the azimuthal pressure gradient of the ring current.

  6. Enantioselective separation and online affinity chromatographic characterization of R,R- and S,S-fenoterol.

    PubMed

    Beigi, Farideh; Bertucci, Carlo; Zhu, Weizhong; Chakir, Khalid; Wainer, Irving W; Xiao, Rui-Ping; Abernethy, Darrell R

    2006-11-01

    rac-Fenoterol is a beta2-adrenoceptor agonist (beta2-AR) used in the treatment of asthma. It has two chiral centers and is marketed as a racemic mixture of R,R'- and S,S'-fenoterol (R-F and S-F). Here we report the separation of the R-F and S-F enantiomers and the evaluation of their binding to and activation of the beta2-AR. R-F and S-F were separated from the enantiomeric mixture by chiral chromatography and absolute configuration determined by circular dichroism. Beta2-AR binding was evaluated using frontal affinity chromatography with a stationary phase containing immobilized membranes from HEK-293 cells that express human beta2-AR and standard membrane binding studies using the same membranes. The effect of R-F and S-F on cardiomyocyte contractility was also investigated using freshly isolated adult rat cardiomyocytes. Chiral chromatography of rac-fenoterol yielded separated peaks with an enantioselectivity factor of 1.21. The less retained peak was assigned the absolute configuration of S-F and the more retained peak R-F. Frontal chromatography using membrane-bound beta2-AR as the stationary phase and rac-3H-fenoterol as a marker ligand showed that addition of increasing concentrations of R-F to the mobile phase produced concentration-dependent decreases in rac-3H-fenoterol retention, while similar addition of S-F produced no change in rac-3H-fenoterol retention. The calculated dissociation constant of R-F was 472 nM and the number of available binding sites 176 pmol/column, which was consistent with the results from the membrane binding study 460 +/- 55 nM (R-F) and 109,000 +/- 10,400 nM (S-F). In the cardiomyocytes, R-F increased maximum contractile response from (265 +/- 11.6)% to (306 +/- 11.8)% of resting cell length (P < 0.05) and reduced EC50 from -7.0 +/- 0.270 to -7.1 +/- 0.2 log[M] (P < 0.05), while S-F had no significant effect. Previous studies have shown that rac-fenoterol acts as an apparent beta2-AR/G(s) selective agonist and fully restores diminished beta2-AR contractile response in cardiomyocytes from failing hearts of spontaneously hypertensive rats (SHR). Here we report the separation of the enantiomers of rac-fenoterol and that R-F is the active component of rac-fenoterol. Further evaluation of R-F will determine if it has enhanced selectivity and specificity for beta2-AR/G(s) activation and if it can be used in the treatment of congestive heart failure. Published 2006 Wiley-Liss, Inc.

  7. Influence of the irradiation temperature on the dosimetric and high temperature TL peaks of Al2O3:C.

    PubMed

    Molnar, G; Benabdesselam, M; Borossay, J; Iacconi, P; Lapraz, D; Akselrod, M

    2002-01-01

    The TL glow curves of Al2O3:C crystals have been investigated as a function of the irradiation temperature. The nature of the observed TL peaks has been studied by optical annealing. The filling of traps was found strongly dependent on the irradiation temperature in the case of UV exposure, which has been explained by the temperature dependence of the photoionisation of F centres. This latter phenomenon could have a part in the luminescence quenching and UV bleaching of F centres.

  8. Charge Order in (TMTTF)2TaF6 by Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oka, Yuki; Matsunaga, Noriaki; Nomura, Kazushige; Kawamoto, Atsuhi; Yamamoto, Kaoru; Yakushi, Kyuya

    2015-11-01

    We have performed infrared spectroscopy in (TMTTF)2TaF6 (TMTTF: tetramethyltetrathiafulvalene) to investigate the relationship between the charge order (CO) state and the antiferromagnetic (AF) insulating ground state. A clear peak splitting corresponding to the charge disproportionation was observed below the CO transition temperature. We estimated the degree of charge disproportionation, Δρ = ρrich - ρpoor, as 0.28e from the peak splitting and found that the CO state coexists with the AF state and there is no charge redistribution below the AF transition.

  9. Preparation of high density heavy metal fluoride glasses with extended ultraviolet and infra red ranges, and such high density heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Martin, Steven W. (Inventor); Huebsch, Jesse (Inventor)

    2001-01-01

    A heavy metal fluoride glass composition range (in mol percent) consisting essentially of: (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24)InF.sub.3 or GaF.sub.3.(4-16)CdF.sub.2.(6-24)YbF.sub.3.(4-22)ZnF.sub.2. In an alternative embodiment, a heavy metal fluoride glass composition range (in mol percent) comprises (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24) of (0-24)InF.sub.3, (0-24)GaF.sub.3 and (0-19)AlF.sub.3.(1-16)CdF.sub.2.(6-24)YbF.sub.3.(4-26)ZnF.sub.2. A preferred heavy metal fluoride glass produced in accordance with the present invention comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.7InF.sub.3.5GaF.sub.3.10CdF.sub.2.18YbF.sub.3. 16ZnF.sub.2. A preferred heavy metal fluoride glass has maximum thickness of most preferably about 3 mm. Another preferred heavy metal fluoride glass comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.12AlF.sub.3.10CdF.sub.2.18YbF.sub.3.16ZnF.sub.2.

  10. First-principles calculation on electronic structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng

    The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eumore » concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state decrease with increasing Eu concentrations. • Both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. • The deduced emission wavelength is in good agreement with experimental value.« less

  11. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).

    PubMed

    Hirao, Ayako; Ehlers, Ralf-Udo

    2010-01-01

    For improvement of mass production of the rhabditid biocontrol nematodes Steinernema carpocapsae and Steinernema feltiae in monoxenic liquid culture with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, the effect of the initial nematode inoculum density on population development and final concentration of dauer juveniles (DJs) was investigated. Symbiotic bacterial cultures are pre-incubated for 1 day prior to inoculation of DJs. DJs are developmentally arrested and recover development as a reaction to food signals provided by their symbionts. After development to adults, the nematodes produce DJ offspring. Inoculum density ranged from 1 to 10 x 10(3) DJ per milliliter for S. carpocapsae and 1 to 8 x 10(3) DJs per milliliter for S. feltiae. No significant influence of the inoculum density on the final DJ yields in both nematode species was recorded, except for S. carpocapsae cultures with a parental female density <2 x 10(3) DJs per milliliter, in which the yields increased with increasing inoculation density. A strong negative response of the parental female fecundity to increasing DJ inoculum densities was recorded for both species with a maximum offspring number per female of >300 for S. carpocapsae and almost 200 for S. feltiae. The compensative adaptation of fecundity to nematode population density is responsible for the lack of an inoculum (or parental female) density effect on DJ yields. At optimal inoculation density of S. carpocapsae, offspring were produced by the parental female population, whereas S. feltiae always developed a F1 female population, which contributed to the DJ yields and was the reason for a more scattered distribution of the yields. The F1 female generation was accompanied by a second peak in X. bovienii density. The optimal DJ inoculum density for S. carpocapsae is 3-6 x 10(3) DJs per milliliter in order to obtain >10(3) parental females per milliliter. Density-dependent effects were neither observed on the DJ recovery nor on the sex ratio in the parental adult generation. As recovery varied between different batches, assessment of the recovery of inoculum DJ batches is recommended. S. feltiae was less variable in DJ recovery usually reaching >90%. The recommended DJ inoculum density is >5 x 10(3) DJs per milliliter to reach >2 x 10(3) parental females per milliliter. The mean yield recorded for S. carpocapsae was 135 x 10(3) and 105 x 10(3) per mililiter for S. feltiae.

  12. Different subcellular localization of neurotensin-receptor and neurotensin-acceptor sites in the rat brain dopaminergic system.

    PubMed

    Schotte, A; Rostène, W; Laduron, P M

    1988-04-01

    The subcellular localization of neurotensin-receptor sites (NT2 sites) and neurotensin-acceptor sites (NT1 sites) was studied in rat caudate-putamen by isopycnic centrifugation in sucrose density gradients. [3H]Neurotensin binding to NT2 sites occurred as a major peak at higher sucrose densities, colocalized with [3H]dopamine uptake, and as a small peak at a lower density; whereas binding to NT1 sites occurred as a single large peak at an intermediate density. 6-Hydroxydopamine lesions of the median forebrain bundle resulted in a total loss of NT2 sites in the caudate-putamen but did not affect NT2 sites in the nucleus accumbens and the olfactory tubercle. NT1 sites were not affected. Kainic acid injections into the rat caudate-putamen led to a partial decrease of NT1 sites in this region 5 days later. After a few weeks they returned to normal. Therefore NT2 sites are probably associated with presynaptic nigrostriatal dopaminergic terminals in the caudate-putamen but not in the nucleus accumbens and the olfactory tubercle. A possible association of NT1 sites with glial cells is suggested.

  13. Structural investigations of sol-gel derived silicate gels using Eu 3+ ion-probe luminescence

    NASA Astrophysics Data System (ADS)

    Secu, C. E.; Predoi, D.; Secu, M.; Cernea, M.; Aldica, G.

    2009-09-01

    Undoped and Eu 3+-doped CaF 2-SiO 2 gels were prepared by the sol-gel method and their optical properties have been studied. The UV-VIS-NIR absorption and photoluminescence spectra have shown the bands typical for the Eu 3+ ions transitions. When the Eu-doped gel is annealed at temperatures up to 800 °C (i.e. above the CaF 2 crystallisation peak at ˜460 °C) the photoluminescence spectra intensity increase, the 590 nm (5D→7F) and 620 nm (5D→7F) luminescence bands become comparable and a structuring of the 620 nm band is observed. The phonon sidebands peaks associated with the 5F→7D transition of the Eu 3+ ion were observed at around 1000 and 620 cm -1 and have been assigned to the Si-O and Ca-O bonds, respectively. A phonon sideband signal in the range of 300-400 cm -1 was attributed to Ca-F bonds in the precipitated CaF 2 phase. From the optical absorption, photoluminescence and phonon sidebands spectra we have concluded that in the gels annealed at 800 °C, the Eu 3+ ions are incorporated into the silica network and in the precipitated CaF 2 phase.

  14. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    NASA Astrophysics Data System (ADS)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling calculations are underway.

  15. Spatio-temporal characteristics of the Equatorial Ionization Anomaly (EIA) in the East African region via ionospheric tomography during the year 2012

    NASA Astrophysics Data System (ADS)

    Kassa, T.; Damtie, B.; Bires, A.; Yizengaw, E.; Cilliers, P.

    2015-01-01

    We present the characteristics of the EIA in the East African sector inferred from ground-based GPS receivers via ionospheric tomography during the year 2012. For the analysis, we developed and used a 2D ionospheric tomography imaging software based on Bayesian inversion approach. To reconstruct ionospheric electron density form slant Total Electron Content (sTEC) measurements, we selected a chain of ten ground-based GPS receivers with stations' codes and geomagnetic coordinates: ARMI (3.03 °S, 109.29 °E), DEBK (4.32 °N, 109.48 °E), ASOS (1.14 °N, 106.16 °E), NEGE (3.60 °S, 111.35 °E), SHIS (3.26 °N, 110.62 °E), ASAB (4.91 °N, 114.34 °E), SHEB (7.36 °N, 110.60 °E), EBBE (9.54 °S, 104.10 °E), DODM (16.03 °S, 109.04 °E) & NAMA (11.49 °N, 113.60 °E). The temporal, spatial and storm-time characteristics of the EIA and the hourly, day-to-day and seasonal variations of the maximum electron density of F2 region (NmF2) at 15.29°S geomagnetic latitude are presented. We found that the magnitude of the peak and the width/thickness of the EIA pronounced during the equinox and weakened during the solstice seasons at 2100 LT. It is also observed that the EIA persisted for longer time in equinox season than the solstice season. The spatial appearance of the northern and southern anomalies are observed starting from 6.12 ° N and 10 ° S respectively along geomagnetic latitude during equinox season. The EIA is localized between 180 km and 450 km along the altitude during December solstice. The analysis on the NmF2 demonstrated a significant dependence on local time, day and season of the year. We also investigated the storm response of the EIA for the magnetic storm of Day Of the Year (DOY) 274-276. It is observed that the disturbance dynamo related composition change (O/N2 ratio) resulted in a well-developed EIA with an increase in the peak and the width of the EIA at 2100 LT on DOY 275 (main phase of the storm) compared to 274 (initial phase of the storm) and 276 (recovery phase of the storm).

  16. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yunhee; Lee, Jeong-Eun; Bourke, Tyler L.

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Classmore » II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.« less

  17. Ionospheric irregularity characteristics from quasiperiodic structure in the radio wave scintillation

    NASA Astrophysics Data System (ADS)

    Chen, K. Y.; Su, S. Y.; Liu, C. H.; Basu, S.

    2005-06-01

    Quasiperiodic (QP) diffraction pattern in scintillation patches has been known to highly correlate with the edge structures of a plasma bubble (Franke et al., 1984). A new time-frequency analysis method of Hilbert-Huang transform (HHT) has been applied to analyze the scintillation data taken at Ascension Island to understand the characteristics of corresponding ionosphere irregularities. The HHT method enables us to extract the quasiperiodic diffraction signals embedded inside the scintillation data and to obtain the characteristics of such diffraction signals. The cross correlation of the two sets of diffraction signals received by two stations at each end of Ascension Island indicates that the density irregularity pattern that causes the diffraction pattern should have an eastward drift velocity of ˜130 m/s. The HHT analysis of the instantaneous frequency in the QP diffraction patterns also reveals some frequency shifts in their peak frequencies. For the QP diffraction pattern caused by the leading edge of the large density gradient at the east wall of a structured bubble, an ascending note in the peak frequency is observed, and for the trailing edge a descending note is observed. The linear change in the transient of the peak frequency in the QP diffraction pattern is consistent with the theory and the simulation result of Franke et al. Estimate of the slope in the transient frequency provides us the information that allows us to identify the locations of plasma walls, and the east-west scale of the irregularity can be estimated. In our case we obtain about 24 km in the east-west scale. Furthermore, the height location of density irregularities that cause the diffraction pattern is estimated to be between 310 and 330 km, that is, around the F peak during observation.

  18. Synthesis and thermoluminescence characteristics of γ-irradiated K3Ca2(SO4)3F:Eu or Ce fluoride

    NASA Astrophysics Data System (ADS)

    Poddar, Anuradha; Gedam, S. C.; Dhoble, S. J.

    2015-05-01

    New halophosphor K3Ca2(SO4)3F activated by Eu and Ce has been synthesized by a co-precipitation method and characterized according to its thermoluminescence. The formation of traps in rare earth doped K3Ca2(SO4)3F and the effects of γ-radiation dose on the glow curve are discussed. The glow curve of K3Ca2(SO4)3F:Ce shows a prominent single peak at 150°C, whereas K3Ca2(SO4)3F:Eu and K3Ca2(SO4)3F:Ce,Eu at 142°C and 192°C, respectively. A single glow peak indicates that there is only one set of trap being activated within the particular temperature range. The presented phosphors are also studied because of its fading, reusability and trapping parameters. There was just 2% fading during a period of 10 days, indicating no serious fading problem. Trapping parameters such as order of kinetics (b), activation energy (E) and frequency factor (S) were calculated by using Chen's half-width method. The observations presented in this paper are good for lamp phosphors as well as solid-state dosimeter.

  19. Evaluation of the difference in the rate coefficients of F2 + NOx (x = 1 or 2) → F + FNOx by the stereochemical arrangement using the density functional theory.

    PubMed

    Tajima, Satomi; Hayashi, Toshio; Hori, Masaru

    2015-02-26

    The rate coefficient of F2 + NO → F + FNO is 2 to 5 orders of magnitude higher than that of F2 + NO2 → F + FNO2 even though bond energies of FNO and FNO2 only differ by ∼0.2 eV. To understand the cause of having different rate coefficients of these two reactions, the change in total energies was calculated by varying the stereochemical arrangement of F2 with respect to NOx (x = 1 or 2) by the density functional theory (DFT), using CAM-B3LYP/6-311 G+(d) in the Gaussian program. The permitted approaching angle between the x-axis and the plane consisting of O, N, F, and ϕ plays a key role to restrict the reaction of NO2 and F2 compared to the reaction of NO and F2. This restriction in the reaction space is considered to be the main cause of different rate coefficients depending on the selection of x = 1 or 2 of the reaction of F2 + NOx → F + FNOx, which was also confirmed by the difference in Si etch rate using the F formed by those reactions.

  20. Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies

    NASA Astrophysics Data System (ADS)

    Schievano, Andrea; Colombo, Alessandra; Grattieri, Matteo; Trasatti, Stefano P.; Liberale, Alessandro; Tremolada, Paolo; Pino, Claudio; Cristiani, Pierangela

    2017-02-01

    A new type of floating microbial fuel cell (fMFC) was developed for power supply of remote environmental sensors and data transmission. Ten operating fMFCs generated a cell potential in the range 100-800 mV depending on the external resistance applied. Power production peaked around 3-3.5 mW (power density of 22-28 mW m-2 cathode) after about 20-30 days of start-up period. The average of daily electrical energy harvested ranged between 10 and 35 mWh/d. Long-term performances were ensured in the presence of dense rice plants (Oryza Sativa). A power management system, based on a step-up DC/DC converter and a low-power data transmission system via SIGFOX™ technology, have been set up for the fMFCs. The tested fMFCs systems allowed to: i) harvest produced energy, ii) supply electronic devices (intermittent LED-light and a buzzer); iii) transmit remote data at low speed (three message of 12 bites each, in 6 s). Several 'floating garden' MFCs were set in the context of demonstrative events at EXPO2015 world exposition held in Milan between May-October 2015. Some of the 'floating garden' MFCs were operating for more than one year.

  1. InP tunnel junctions for InP/InGaAs tandem solar cells

    NASA Technical Reports Server (NTRS)

    Vilela, Mauro F.; Freundlich, Alex; Renaud, P.; Medelci, N.; Bensaoula, A.

    1996-01-01

    We report, for the first time, an epitaxially grown InP p(+)/n(++) tunnel junction. A diode with peak current densities up to 1600 A/cm and maximum specific resistivities (Vp/Ip - peak voltage to peak current ratio) in the range of 10(exp -4)Omega cm(exp 2) is obtained. This peak current density is comparable to the highest results previously reported for lattice matched In(0.53)Ga(0.47)As tunnel junctions. Both results were obtained using chemical beam epitaxy (CBE). In this paper we discuss the electrical characteristics of these tunnel diodes and how the growth conditions influence them.

  2. Variability of footprint ridge density and its use in estimation of sex in forensic examinations.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Pathania, Annu; Sharma, Ruchika; DiMaggio, John A

    2015-10-01

    The present study deals with a comparatively new biometric parameter of footprints called footprint ridge density. The study attempts to evaluate sex-dependent variations in ridge density in different areas of the footprint and its usefulness in discriminating sex in the young adult population of north India. The sample for the study consisted of 160 young adults (121 females) from north India. The left and right footprints were taken from each subject according to the standard procedures. The footprints were analysed using a 5 mm × 5 mm square and the ridge density was calculated in four different well-defined areas of the footprints. These were: F1 - the great toe on its proximal and medial side; F2 - the medial ball of the footprint, below the triradius (the triradius is a Y-shaped group of ridges on finger balls, palms and soles which forms the basis of ridge counting in identification); F3 - the lateral ball of the footprint, towards the most lateral part; and F4 - the heel in its central part where the maximum breadth at heel is cut by a perpendicular line drawn from the most posterior point on heel. This value represents the number of ridges in a 25 mm(2) area and reflects the ridge density value. Ridge densities analysed on different areas of footprints were compared with each other using the Friedman test for related samples. The total footprint ridge density was calculated as the sum of the ridge density in the four areas of footprints included in the study (F1 + F2 + F3 + F4). The results show that the mean footprint ridge density was higher in females than males in all the designated areas of the footprints. The sex differences in footprint ridge density were observed to be statistically significant in the analysed areas of the footprint, except for the heel region of the left footprint. The total footprint ridge density was also observed to be significantly higher among females than males. A statistically significant correlation is shown in the ridge densities among most areas of both left and right sides. Based on receiver operating characteristic (ROC) curve analysis, the sexing potential of footprint ridge density was observed to be considerably higher on the right side. The sexing potential for the four areas ranged between 69.2% and 85.3% on the right side, and between 59.2% and 69.6% on the left side. ROC analysis of the total footprint ridge density shows that the sexing potential of the right and left footprint was 91.5% and 77.7% respectively. The study concludes that footprint ridge density can be utilised in the determination of sex as a supportive parameter. The findings of the study should be utilised only on the north Indian population and may not be internationally generalisable. © The Author(s) 2014.

  3. Optimizing a 18F-NaF and 18F-FDG cocktail for PET assessment of metastatic castration-resistant prostate cancer

    PubMed Central

    Simoncic, Urban; Perlman, Scott; Liu, Glenn; Jeraj, Robert

    2015-01-01

    Background The 18F-NaF/18F-FDG cocktail PET/CT imaging has been proposed for patients with osseous metastases. This work aimed to optimize the cocktail composition for patients with metastatic castrate-resistant prostate cancer (mCRPC). Materials and methods Study was done on 6 patients with mCRPC that had analyzed a total of 26 lesions. Patients had 18F-NaF and 18F-FDG injections separated in time. Dynamic PET/CT imaging recorded uptake time course for both tracers into osseous metastases. 18F-NaF and 18F-FDG uptakes were decoupled by kinetic analysis, which enabled calculation of 18F-NaF and 18F-FDG Standardized Uptake Value (SUV) images. Peak, mean and total SUVs were evaluated for both tracers and all visible lesions. The 18F-NaF/18F-FDG cocktail was optimized under the assumption that contribution of both tracers to the image formation should be equal. SUV images for combined 18F-NaF/18F-FDG cocktail PET/CT imaging were generated for cocktail compositions with 18F-NaF:18F-FDG ratio varying from 1:8 to 1:2. Results The 18F-NaF peak and mean SUVs were on average 4-5 times higher than the 18F-FDG peak and mean SUVs, with inter-lesion coefficient-of-variations (COV) of 20%. 18F-NaF total SUV was on average 7 times higher than the 18F-FDG total SUV. When the 18F-NaF:18F-FDG ratio changed from 1:8 to 1:2, typical SUV on generated PET images increased by 50%, while change in uptake visual pattern was hardly noticeable. Conclusion The 18F-NaF/18F-FDG cocktail has equal contributions of both tracers to the image formation when the 18F-NaF:18F-FDG ratio is 1:5. Therefore we propose this ratio as the optimal cocktail composition for mCRPC patients. We also urge to strictly control the 18F-NaF/18F-FDG cocktail composition in any 18F-NaF/18F-FDG cocktail PET/CT exams. PMID:26378490

  4. Evaluating the B-cell density with various activation functions using White Noise Path Integral Approach

    NASA Astrophysics Data System (ADS)

    Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.

    2015-06-01

    A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.

  5. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation - Non-destructive analysis of the AFIP-1 fuel plates

    NASA Astrophysics Data System (ADS)

    Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  6. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.

    2011-12-01

    The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.

  7. Age affects sleep microstructure more than sleep macrostructure.

    PubMed

    Schwarz, Johanna F A; Åkerstedt, Torbjörn; Lindberg, Eva; Gruber, Georg; Fischer, Håkan; Theorell-Haglöw, Jenny

    2017-06-01

    It is well known that the quantity and quality of physiological sleep changes across age. However, so far the effect of age on sleep microstructure has been mostly addressed in small samples. The current study examines the effect of age on several measures of sleep macro- and microstructure in 211 women (22-71 years old) of the 'Sleep and Health in Women' study for whom ambulatory polysomnography was registered. Older age was associated with significantly lower fast spindle (effect size f 2  = 0.32) and K-complex density (f 2  = 0.19) during N2 sleep, as well as slow-wave activity (log) in N3 sleep (f 2  = 0.21). Moreover, total sleep time (f 2  = 0.10), N3 sleep (min) (f 2  = 0.10), rapid eye movement sleep (min) (f 2  = 0.11) and sigma (log) (f 2  = 0.05) and slow-wave activity (log) during non-rapid eye movement sleep (f 2  = 0.09) were reduced, and N1 sleep (f 2  = 0.03) was increased in older age. No significant effects of age were observed on slow spindle density, rapid eye movement density and beta power (log) during non-rapid eye movement sleep. In conclusion, effect sizes indicate that traditional sleep stage scoring may underestimate age-related changes in sleep. © 2017 European Sleep Research Society.

  8. Measurement of the Total Kinetic Energy Release (TKE) in 232 Th(n,f) with En = 2.59 - 87.31 MeV

    NASA Astrophysics Data System (ADS)

    King, Jonathan; Yanez, Ricardo; Barrett, Jonathan; Loveland, Walter; Tovesson, Fredrik; Fotiades, Nick; Lee, Hye Young

    2015-04-01

    Experimental results for the Total Kinetic Energy Release (TKE) of 232 Th(n,f) with En = 2.59 - 87.31 MeV will be presented. The experiment was performed at the 15R beamline at the Weapons Neutron Research(WNR) facility at LANL-LANSCE. WNR provides a white spectrum of neutrons peaking at 2 MeV and reaching up to 800 MeV, with neutron energies being deduced from measurements of the neutron time of flight (TOF). A thin-backed 232 ThF4 target of 2 cm diameter with a thorium areal density of 178.9 μg/cm2 was placed between two arrays of Hammamatsu PIN diodes (active area 4 cm2 each). The beam was collimated to 1 cm diameter. The target was placed 45 degrees off of the beam axis, with the detectors at 60 degrees and 120 degrees from the beam axis. Over 25,000 fission fragment coincidence events were recorded, allowing for sixteen energy bins between 2.59 and 87.31 MeV. We believe that this will be the most comprehensive published measurement of the TKE for 232 Th(n,f) with En = 2.59 - 87.31 MeV. This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the USDoE under Grant DE-FG06-97ER41026. This work has benefited from the use of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. This facility is funded by the USDoE under DOE Contract No. DE-AC52-06NA25396.

  9. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by μ-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  10. Simultaneous response of NmF2 and GPS-TEC to storm events at Ilorin

    NASA Astrophysics Data System (ADS)

    Joshua, B. W.; Adeniyi, J. O.; Oladipo, O. A.; Doherty, P. H.; Adimula, I. A.; Olawepo, A. O.; Adebiyi, S. J.

    2018-06-01

    A comparative study of both TEC and NmF2 variations during quiet and disturbed conditions has been investigated using simultaneous measurements from dual frequency Global Positioning System (GPS) receiver and a DPS-4 Digisonde co-located at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip. - 7.9°). The results of the quiet time variations of the two parameters show some similarities as well as differences in their structures. The values of both parameters generally increase during the sunrise period attaining a peak around the noon and then decaying towards the night time. The onset time of the sunrise growth is observed to be earlier in TEC than in NmF2. The rate of decay of TEC was observed to be faster than that of the NmF2 in most cases. Also, the noon 'bite-outs', leading to the formation of pre-noon and post-noon peaks, are prominent in the NmF2 structure and was hardly noticed in TEC. Results of the variations of both TEC and NmF2 during the 5 April, 10 May and 3 August 2010 geomagnetic storm events showed a simultaneous deviations of both parameters from the quiet time behavior. The magnitude of the deviations is however most pronounced in NmF2 structure than in TEC. We also found that the enhancement observed in the two parameters during the storm events generally corresponds to decrease in hmF2.

  11. Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Maute, A.

    2015-12-01

    Variability of the midlatitude ionosphere and thermosphere during the 2009 and 2013 sudden stratosphere warmings (SSWs) is investigated in the present study using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. Both the COSMIC observations and TIME-GCM simulations reveal perturbations in the F region peak height (hmF2) at Southern Hemisphere midlatitudes during SSW time periods. The perturbations are ˜20-30 km, which corresponds to 10-20% variability of the background mean hmF2. The TIME-GCM simulations and COSMIC observations of the hmF2 variability are in overall good agreement, and the simulations can thus be used to understand the physical processes responsible for the hmF2 variability. Through comparison of simulations with and without the migrating semidiurnal lunar tide (M2), we conclude that the midlatitude hmF2 variability is primarily driven by the propagation of the M2 into the thermosphere where it modulates the field-aligned neutral winds, which in turn raise and lower the F region peak height. Though there are subtle differences, the consistency of the behavior between the 2009 and 2013 SSWs suggests that variability in the Southern Hemisphere midlatitude ionosphere and thermosphere is a consistent feature of the SSW impact on the upper atmosphere.

  12. Enhanced phosphorescence in N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes

    NASA Astrophysics Data System (ADS)

    Wang, Meiyuan; Zhang, Xia; Hao, Zhendong; Ren, Xinguang; Luo, Yongshi; Wang, Xiaojun; Zhang, Jiahua

    2010-07-01

    A bluish-green color long-lasting phosphorescent phosphor of N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes are prepared with the chemical component formula Ba 2SiO 4:0.01Eu 2+ - xSi 3N 4 - 2BaCO 3 ( x = 0.1 to 1.0) by the conventional high-temperature solid-state method. The phosphorescence and fluorescence properties as a function of Si 3N 4 content and temperature are investigated. The emission spectra show a single broad band peaking at 505 nm, which are ascribed to the 4f 65d 1 → 4f 7 transition of Eu 2+. Thermoluminescence (TL) glow-curves show that Ba 2SiO 4:0.01Eu 2+ without N holds a high-temperature peak at 417 K. With increasing the content of Si 3N 4, the phosphorescence grows super-linearly and some new TL peaks appear at low temperatures of about 400, 355, 365, and 335 K. These peaks are ascribed to the formation of new traps related to N substitution for O.

  13. Doping evolution of the second magnetization peak and magnetic relaxation in (B a1 -xKx ) F e2A s2 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Zhou, Lin; Sun, Kewei; Straszheim, Warren E.; Tanatar, Makariy A.; Prozorov, Ruslan; Lograsso, Thomas A.

    2018-02-01

    We present a thorough study of doping dependent magnetic hysteresis and relaxation characteristics in single crystals of (B a1 -xKx ) F e2A s2 (0.18 ≤x ≤1 ). The critical current density Jc reaches maximum in the underdoped sample x =0.26 and then decreases in the optimally doped and overdoped samples. Meanwhile, the magnetic relaxation rate S rapidly increases and the flux creep activation barrier U0 sharply decreases in the overdoped sample x =0.70 . These results suggest that vortex pinning is very strong in the underdoped regime, but it is greatly reduced in the optimally doped and overdoped regime. Transmission electron microscope (TEM) measurements reveal the existence of dislocations and inclusions in all three studied samples x =0.38 , 0.46, and 0.65. An investigation of the paramagnetic Meissner effect (PME) suggests that spatial variations in Tc become small in the samples x =0.43 and 0.46, slightly above the optimal doping levels. Our results support that two types of pinning sources dominate the (B a1 -xKx ) F e2A s2 crystals: (i) strong δl pinning, which results from the fluctuations in the mean free path l and δ Tc pinning from the spatial variations in Tc in the underdoped regime, and (ii) weak δ Tc pinning in the optimally doped and overdoped regime.

  14. High-peak-power microwave pulses: effects on heart rate and blood pressure in unanesthetized rats.

    PubMed

    Jauchem, J R; Frei, M R

    1995-10-01

    Exposure sources capable of generating high-peak-power microwave pulses, with relatively short pulse widths, have recently been developed. Studies of the effect of these sources on the cardiovascular systems of animals have not been reported previously. We exposed 14 unanesthetized male Sprague-Dawley rats to 10 high-peak-power microwave pulses generated by a transformer-energized megawatt pulsed output (TEMPO) microwave source, at frequencies ranging from 1.2-1.8 GHz. Peak power densities were as high as 51.6 kW/cm2. At 14 d prior to irradiation, the animals were implanted with chronic aortic cannulae. With appropriate shielding of the transducer, blood pressure recordings were obtained during microwave pulsing. In a preliminary series of exposures at 1.7-1.8 GHz (peak power density 3.3-6.5 kW/cm2), an immediate but transient increase in mean arterial blood pressure (significant) and decrease in heart rate (non-significant) were observed. A loud noise was associated with each pulse produced by the TEMPO; this factor was subsequently attenuated. In a second series of exposures at 1.2-1.4 GHz (peak power density 14.6-51.6 kW/cm2), there were no significant changes in mean arterial blood pressure or heart rate during microwave exposure. The earlier significant increase in blood pressure that occurred during microwave exposure appeared to be related to the sharp noise produced by the TEMPO source. After appropriate sound attenuation, there were no significant effects of exposure to the microwave pulses.

  15. Evaluation in Monkey of Two Candidate PET Radioligands, [11C]RX-1 and [18F]RX-2, for Imaging Brain 5-HT4 Receptors

    PubMed Central

    LOHITH, TALAKAD G.; XU, RONG; TSUJIKAWA, TETSUYA; MORSE, CHERYL L.; ANDERSON, KACEY B.; GLADDING, ROBERT L.; ZOGHBI, SAMI S.; FUJITA, MASAHIRO; INNIS, ROBERT B.; PIKE, VICTOR W.

    2014-01-01

    The serotonin subtype-4 (5-HT4) receptor, which is known to be involved physiologically in learning and memory, and pathologically in Alzheimer’s disease, anxiety and other neuropsychiatric disorders – has few radioligands readily available for imaging in vivo. We have previously reported two novel 5-HT4 receptor radioligands, namely [methoxy-11C](1-butylpiperidin-4-yl)methyl 4-amino-3-methoxybenzoate; [11C]RX-1) and the [18F]3-fluoromethoxy analog ([18F]RX-2), and in this study we evaluated them by PET in rhesus monkey. Brain scans were performed at baseline, receptor preblock or displacement conditions using SB 207710, a 5-HT4 receptor antagonist, on the same day for [11C]RX-1 and on different days for [18F]RX-2. Specific-to-nondisplaceable ratio (BPND) was measured with the simplified reference tissue model from all baseline scans. To determine specific binding, total distribution volume (VT) was also measured in some monkeys by radiometabolite-corrected arterial input function after ex vivo inhibition of esterases from baseline and blocked scans. Both radioligands showed moderate to high peak brain uptake of radioactivity (2–6 SUV). Regional BPND values were in the rank order of known 5-HT4 receptor distribution with a trend for higher BPND values from [18F]RX-2. One-tissue compartmental model provided good fits with well identified VT values for both radioligands. In the highest 5-HT4 receptor density region, striatum, 50–60% of total binding was specific. The VT in receptor-poor cerebellum reached stable values by about 60 min for both radioligands indicating little influence of radiometabolites on brain signal. In conclusion, both [11C]RX-1 and [18F]RX-2 showed positive attributes for PET imaging of brain 5-HT4 receptors, validating the radioligand design strategy. PMID:25088028

  16. A study of the physics and chemistry of TMC-1

    NASA Technical Reports Server (NTRS)

    Pratap, P.; Dickens, J. E.; Snell, R. L.; Miralles, M. P.; Bergin, E. A.; Irvine, W. M.; Schloerb, F. P.

    1997-01-01

    We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE GERONIMO,G.; FRIED, J.; FROST, E.

    We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detectormore » process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.« less

  18. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  19. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  20. Phonon spectra and the one-phonon and two-phonon densities of states of UO2 and PuO2

    NASA Astrophysics Data System (ADS)

    Poplavnoi, A. S.; Fedorova, T. P.; Fedorov, I. A.

    2017-04-01

    The vibrational spectra of uranium dioxide UO2 and plutonium dioxide PuO2, as well as the one-phonon densities of states and thermal occupation number weighted two-phonon densities of states, have been calculated within the framework of the phenomenological rigid ion model. It has been shown that the acoustic and optical branches of the spectra are predominantly determined by vibrations of the metal and oxygen atoms, respectively, because the atomic masses of the metal and oxygen differ from each other by an order of magnitude. On this basis, the vibrational spectra can be represented in two Brillouin zones, i.e., in the Brillouin zone of the crystal and the Brillouin zone of the oxygen sublattice. In this case, the number of optical branches decreases by a factor of two. The two-phonon densities of states consist of two broad structured peaks. The temperature dependences of the upper peak exhibit a thermal broadening of the phonon lines L01 and L02 in the upper part of the optical branches. The lower peak is responsible for the thermal broadening of the lowest two optical (T02, T01) and acoustic (LA, TA) branches.

  1. XPS study of the surface chemistry of UO2 (111) single crystal film

    NASA Astrophysics Data System (ADS)

    Maslakov, Konstantin I.; Teterin, Yury A.; Popel, Aleksej J.; Teterin, Anton Yu.; Ivanov, Kirill E.; Kalmykov, Stepan N.; Petrov, Vladimir G.; Springell, Ross; Scott, Thomas B.; Farnan, Ian

    2018-03-01

    A (111) air-exposed surface of UO2 thin film (150 nm) on (111) YSZ (yttria-stabilized zirconia) before and after the Ar+ etching and subsequent in situ annealing in the spectrometer analytic chamber was studied by XPS technique. The U 5f, U 4f and O 1s electron peak intensities were employed for determining the oxygen coefficient kO = 2 + x of a UO2+x oxide on the surface. It was found that initial surface (several nm) had kO = 2.20. A 20 s Ar+ etching led to formation of oxide UO2.12, whose composition does not depend significantly on the etching time (up to 180 s). Ar+ etching and subsequent annealing at temperatures 100-380 °C in vacuum was established to result in formation of stable well-organized structure UO2.12 reflected in the U 4f XPS spectra as high intensity (∼28% of the basic peak) shake-up satellites 6.9 eV away from the basic peaks, and virtually did not change the oxygen coefficient of the sample surface. This agrees with the suggestion that a stable (self-assembling) phase with the oxygen coefficient kO ≈ 2.12 forms on the UO2 surface.

  2. Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

    NASA Astrophysics Data System (ADS)

    Kim, Vitaly P.; Hegai, Valery V.; Liu, Jann Yenq; Ryu, Kwangsun; Chung, Jong-Kyun

    2017-12-01

    The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a time- varying irregular vertical Coulomb field presumably produced on the Earth’s surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of 20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of 7×105 more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

  3. Impact of the definition of peak standardized uptake value on quantification of treatment response.

    PubMed

    Vanderhoek, Matt; Perlman, Scott B; Jeraj, Robert

    2012-01-01

    PET-based treatment response assessment typically measures the change in maximum standardized uptake value (SUV(max)), which is adversely affected by noise. Peak SUV (SUV(peak)) has been recommended as a more robust alternative, but its associated region of interest (ROI(peak)) is not uniquely defined. We investigated the impact of different ROI(peak) definitions on quantification of SUV(peak) and tumor response. Seventeen patients with solid malignancies were treated with a multitargeted receptor tyrosine kinase inhibitor resulting in a variety of responses. Using the cellular proliferation marker 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), whole-body PET/CT scans were acquired at baseline and during treatment. (18)F-FLT-avid lesions (∼2/patient) were segmented on PET images, and tumor response was assessed via the relative change in SUV(peak). For each tumor, 24 different SUV(peaks) were determined by changing ROI(peak) shape (circles vs. spheres), size (7.5-20 mm), and location (centered on SUV(max) vs. placed in highest-uptake region), encompassing different definitions from the literature. Within each tumor, variations in the 24 SUV(peaks) and tumor responses were measured using coefficient of variation (CV), standardized deviation (SD), and range. For each ROI(peak) definition, a population average SUV(peak) and tumor response were determined over all tumors. A substantial variation in both SUV(peak) and tumor response resulted from changing the ROI(peak) definition. The variable ROI(peak) definition led to an intratumor SUV(peak) variation ranging from 49% above to 46% below the mean (CV, 17%) and an intratumor SUV(peak) response variation ranging from 49% above to 35% below the mean (SD, 9%). The variable ROI(peak) definition led to a population average SUV(peak) variation ranging from 24% above to 28% below the mean (CV, 14%) and a population average SUV(peak) response variation ranging from only 3% above to 3% below the mean (SD, 2%). The size of ROI(peak) caused more variation in intratumor response than did the location or shape of ROI(peak). Population average tumor response was independent of size, shape, and location of ROI(peak). Quantification of individual tumor response using SUV(peak) is highly sensitive to the ROI(peak) definition, which can significantly affect the use of SUV(peak) for assessment of treatment response. Clinical trials are necessary to compare the efficacy of SUV(peak) and SUV(max) for quantification of response to therapy.

  4. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  5. The 6300 A O/1-D/ airglow and dissociative recombination

    NASA Technical Reports Server (NTRS)

    Wickwar, V. B.; Cogger, L. L.; Carlson, H. C.

    1974-01-01

    Measurements of night-time 6300 A airglow intensities at the Arecibo Observatory have been compared with dissociative recombination calculations based on electron densities derived from simultaneous incoherent backscatter measurements. The agreement indicates that the nightglow can be fully accounted for by dissociative recombination. The comparisons are examined to determine the importance of quenching, heavy ions, ionization above the F-layer peak, and the temperature parameter of the model atmosphere. Comparable fits between the observed and calculated intensities are found for several available model atmospheres. The least-squares fitting process, used to make the comparisons, produces comparable fits over a wide range of combinations of neutral densities and of reaction constants. Yet, the fitting places constraints upon the possible combinations; these constraints indicate that the latest laboratory chemical constants and densities extrapolated to a base altitude are mutually consistent.

  6. Radiation damage in Tb-implanted CaF 2 observed by channeling and luminescence measurements

    NASA Astrophysics Data System (ADS)

    Aono, K.; Kumagai, M.; Iwaki, M.; Aoyagi, Y.; Namba, S.

    1993-06-01

    The effects of 100 keV Tb ion implantation in CaF 2 single crystals have been investigated using Rutherford backscattering/channeling technique and luminescence spectra during ion implantation, depending on ion doses. Terbium ions were implanted into (111)-cut CaF 2 single crystals in random directions with doses ranging from 1 × 10 13 to 1 × 10 17 Tb +/cm 2 at -100°C, 25°C and 100°C. The luminescence signals were measured by 100 keV Ar ion beam irradiation at room temperature to Tb-implanted specimens in order to detect the ionic state of Tb. Two broad emission peaks (near 380 and 545 nm) in visible regions were observed, originating from Tb 3+ in CaF 2. The same luminescence was also observed even during Tb implantation to CaF 2. The luminescence near 380 nm is identified as an emission of 5D 3→ 7F 6 and that near 545 nm is 5D 4→ 7F 5. The emission peak intensities depend on ion dose. Channeling measurements suggest that most of the Tb atoms occupy substitutional lattice sites. Intensities of luminescence and Tb depth profiles depend on the target temperature. In conclusion, implanted Tb atoms occupy Ca lattice sites and emit green luminescence light.

  7. The statistics of peaks of Gaussian random fields. [cosmological density fluctuations

    NASA Technical Reports Server (NTRS)

    Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.

  8. HD 54272, a classical λ Bootis star and γ Doradus pulsator

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Skarka, M.; Holdsworth, D. L.; Smalley, B.; West, R. G.

    2014-05-01

    We detect the second known λ Bootis star (HD 54272) which exhibits γ Doradus-type pulsations. The star was formerly misidentified as a RR Lyrae variable. The λ Bootis stars are a small group (only 2 per cent) of late B to early F-type, Population I stars which show moderate to extreme (up to a factor 100) surface underabundances of most Fe-peak elements and solar abundances of lighter elements (C, N, O, and S). The photometric data from the Wide Angle Search for Planets (WASP) and All Sky Automated Survey (ASAS) projects were analysed. They have an overlapping time base of 1566 d and 2545 d, respectively. Six statistically significant peaks were identified (f1 = 1.410 116 d-1, f2 = 1.283 986 d-1, f3 = 1.293 210 d-1, f4 = 1.536 662 d-1, f5 = 1.157 22 d-1 and f6 = 0.226 57 d-1). The spacing between f1 and f2, f1 and f4, f5 and f2 is almost identical. Since the daily aliasing is very strong, the interpretation of frequency spectra is somewhat ambiguous. From spectroscopic data, we deduce a high rotational velocity (250 ± 25 km s-1) and a metal deficiency of about -0.8 to -1.1 dex compared to the Sun. A comparison with the similar star, HR 8799, results in analogous pulsational characteristics but widely different astrophysical parameters. Since both are λ Bootis-type stars, the main mechanism of this phenomenon, selective accretion, may severely influence γ Doradus-type pulsations.

  9. Free factor XIII activation peptide (fAP-FXIII) is a regulator of factor XIII activity via factor XIII-B.

    PubMed

    Dodt, Johannes; Pasternack, Ralf; Seitz, Rainer; Volkers, Peter

    2016-02-01

    In a factor XIIIa (FXIIIa) generation assay with recombinant FXIII-A2 (rFXIII-A2 ) free FXIII activation peptide (fAP-FXII) prolonged the time to peak (TTP) but did not affect the area under the curve (AUC) or concentration at peak (CP). Addition of recombinant factorXIII-B2 (rFXIII-B2 ) restored the characteristics of the FXIIIa generation parameters (AUC, TTP and CP) to those observed for plasma FXIII (FXIII-A2 B2 ). FXIII-A2 B2 reconstituted from rFXIII-A2 and rFXIII-B2 showed a similar effect on AUC, TTP and CP in the presence of fAP-FXII as observed for plasma FXIII-A2 B2 , indicating a role for FXIII-B in this observation. An effect of fAP-FXIII on thrombin, the proteolytic activator of FXIII, was excluded by thrombin generation assays and clotting experiments. In a purified system, fAP-FXIII did not interfere with the FXIIIa activity development of thrombin-cleaved rFXIII-A2 (rFXIII-A2 ') also excluding direct inhibition of FXIIIa. However, FXIIIa activity development of FXIII-A2 'B2 was inhibited in a concentration-dependent manner by fAP-FXIII, indicating that an interaction between AP-FXIII and FXIII-B2 contributes to the overall stability of FXIII-A2 'B2 . In addition to its well-known role, FXIII-B also contributes to FXIII-A2 B2 stability or dissociation depending on fAP-FXIII and calcium concentrations. © 2015 John Wiley & Sons Ltd.

  10. Discrimination of intonation contours by adolescents with cochlear implants.

    PubMed

    Holt, Colleen M; McDermott, Hugh J

    2013-12-01

    Differences in fundamental frequency (F0) contour peak alignment contribute to the perception of pitch accents in speech intonation. The present study assessed the discrimination of differences in F0 contour peak alignment by adolescent users of cochlear implants (CIs). In Experiment 1, subjects discriminated between rise-fall F0 contours located early in the syllable and those aligned late. Recorded utterances with manipulated F0 were used as stimuli and all subjects wore a unilateral CI. In Experiment 2, bilaterally-implanted subjects repeated Experiment 1 in the bilateral condition. Twenty-one CI users aged 12-21 years participated. A normally-hearing control group (n = 20) also completed Experiment 1. Listeners with normal hearing (NH) could discriminate between F0 peaks differing by 80 ms or more. Results varied among the CI users, with only four users displaying a pattern of results similar to that of the NH listeners. Sixteen CI users responded inconsistently or at chance levels (p > 0.05; binomial test). Ten CI users who were bilaterally implanted completed the tests in unilateral and bilateral listening conditions. Results suggest that CI users may have difficulty discriminating between F0 alignment and that use of bilateral implants did not provide an advantage to discrimination.

  11. Abundance, biomass and caloric content of Chukchi Sea bivalves and association with Pacific walrus (Odobenus rosmarus divergens) relative density and distribution in the northeastern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Young, Jordann K.; Black, Bryan A.; Clarke, Janet T.; Schonberg, Susan V.; Dunton, Kenneth H.

    2017-10-01

    The northeastern Chukchi Sea is a shallow subarctic shelf ecosystem that supports a substantial benthic infaunal community of which bivalves are a major component. We assessed the patterns in population abundance, biomass, and caloric content of ten dominant bivalve taxa in relation to the distribution of the upper trophic level consumer Pacific walrus (Odobenus rosmarus divergens). Bivalves were collected over four cruises in the northeastern Chukchi Sea (2009, 2010, 2012, 2013). Our samples were largely dominated by calorie-dense, deposit-feeding species, including Macoma spp., Ennucula tenuis, Nuculana spp. and Yoldia spp. Weight-frequency distributions were strongly right-skewed for most taxa, though some showed evidence of a bimodal distribution. Caloric densities as measured through bomb calorimetry significantly differed among taxa (ANOVA F = 32.57, df = 9, p-value<0.001), and whole animal wet weight was found to be a reliable predictor of whole animal caloric content. Bivalve populations and peak caloric densities were centered on and to the southeast of Hanna Shoal, which coincided with peak Pacific walrus relative density (walruses per km surveyed) from July through October. Significant differences in mean caloric values were found between areas with and without walruses present (student's t-test, t=-2.9088, df = 252.24, p-value = 0.003952), as well as between areas with low and high walrus relative densities in the pooled annual dataset and in each individual month except October (ANOVA, p-value<0.05). The high-calorie deposit feeders that dominate these bivalve communities preferentially consume food sources, such as sea ice algae, that are likely to be affected by shifting sea ice dynamics. As such, continued warming has the potential to alter bivalve communities in the northeastern Chukchi Sea, which may have profound implications for upper trophic levels.

  12. 431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Growden, Tyler A.; Zhang, Weidong; Brown, Elliott R.; Storm, David F.; Hansen, Katurah; Fakhimi, Parastou; Meyer, David J.; Berger, Paul R.

    2018-01-01

    We report on the design and fabrication of high current density GaN/AlN double barrier resonant tunneling diodes grown via plasma assisted molecular-beam epitaxy on bulk GaN substrates. A quantum-transport solver was used to model and optimize designs with high levels of doping and ultra-thin AlN barriers. The devices displayed repeatable room temperature negative differential resistance with peak-to-valley current ratios ranging from 1.20 to 1.60. A maximum peak tunneling current density (Jp) of 431 kA/cm2 was observed. Cross-gap near-UV (370-385 nm) electroluminescence (EL) was observed above +6 V when holes, generated from a polarization induced Zener tunneling effect, recombine with electrons in the emitter region. Analysis of temperature dependent measurements, thermal resistance, and the measured EL spectra revealed the presence of severe self-heating effects.

  13. On the problem of detection of seismo-ionospheric phenomena by multi-instrumental radiophysical observations

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina; Shagimuratov, Irk; Suslova, Olga

    2012-07-01

    Analysis of the previous works on lithosphere-ionosphere interactions confirmed the necessity to use simultaneous observations from several independent diagnostics tools in order to raise the reliability of the observed seismo-ionospheric effects. The influence on the ionosphere from below is weaker in comparison with effects of solar or geomagnetic origin. Due to this reason it is very actual the problem of detection of seismo-ionospheric anomalies on the background of strong regular and quasi-regular variation of space weather parameters. For the given research we use integrated processing of the ionospheric data from different sources: total electron content (TEC) data obtained on the basis of regular GPS observations of IGS stations located in Sakhalin and Japan regions, ionospheric E and F2 layers peak parameters, derived from data of Japan ionosonde network and electron density profiles, obtained by FORMOSAT-3/COSMIC radio occultation measurements. As a case-study it was analyzed the Nevelsk earthquake (M 6.2) that took place at the Far East of Russian Federation on August 2, 2007. On July 29, 2007, several days prior to earthquake, the characteristic anomaly was found out as the day-time significant enhancement of TEC at the vicinity of earthquake. This enhancement reached the maximal value of 4-6 TECU in absolute values, that is 40-50% to the background conditions, and it was situated very close to the epicenter position. The noticeable enhancement of F2 peak critical frequency (foF2) was observed over Wakkanai ionosonde. For the evening hours (19-22 LT) it reached the value of 6.8-7.7 MHz whereas monthly median was 5.3-5.7 MHz. This foF2 increase was coincided in time with the appearance of TEC anomaly in TEC maps over the considered region (taken from GIMs IONEX). In order to separate seismo-ionospheric perturbations from geomagnetic disturbances it was done the comparative analysis of the revealed ionospheric effect possibly related with seismic activity and ionosphere changes during geomagnetic storms which took place during July and August of 2007. We acknowledge the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC data, IGS community for GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  14. The shape of the cosmic X-ray background: nuclear starburst discs and the redshift evolution of AGN obscuration

    NASA Astrophysics Data System (ADS)

    Gohil, R.; Ballantyne, D. R.

    2018-04-01

    A significant number of active galactic nuclei (AGNs) are observed to be hidden behind dust and gas. The distribution of material around AGNs plays an important role in modelling the cosmic X-ray background (CXB), especially the fraction of type 2 AGNs (f2). One of the possible explanations for obscuration in Seyfert galaxies at intermediate redshifts is dusty starburst discs. We compute the two-dimensional (2D) hydrostatic structure of 768 nuclear starburst discs (NSDs) under various physical conditions and also the distribution of column density along the line of sight (NH) associated with these discs. Then the NH distribution is evolved with redshift by using the redshift-dependent distribution function of input parameters. Parameter f2 shows a strong positive evolution up to z = 2, but only a weak level of enhancement at higher z. The Compton-thin and Compton-thick AGN fractions associated with these starburst regions increase ∝ (1 + z)δ, where δ is estimated to be 1.12 and 1.45, respectively. The reflection parameter Rf associated with column density NH ≥ 1023.5 cm-2 extends from 0.13 at z = 0 to 0.58 at z = 4. A CXB model employing this evolving NH distribution indicates that more compact (Rout < 120 pc) NSDs provide a better fit to the CXB. In addition to `Seyfert-like' AGNs obscured by nuclear starbursts, we predict that 40-60 per cent of quasars must be Compton-thick to produce a peak of the CXB spectrum within the observational uncertainty. The predicted total number counts of AGNs in 8-24 keV bands are in fair agreement with observations from the Nuclear Spectroscopic Telescope Array (NuSTAR).

  15. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls.

    PubMed

    Youssef, Hala; Groussard, Carole; Lemoine-Morel, Sophie; Pincemail, Joel; Jacob, Christophe; Moussa, Elie; Fazah, Abdallah; Cillard, Josiane; Pineau, Jean-Claude; Delamarche, Arlette

    2015-02-01

    This study aimed to determine whether aerobic training could reduce lipid peroxidation and inflammation at rest and after maximal exhaustive exercise in overweight/obese adolescent girls. Thirty-nine adolescent girls (14-19 years old) were classified as nonobese or overweight/obese and then randomly assigned to either the nontrained or trained group (12-week multivariate aerobic training program). Measurements at the beginning of the experiment and at 3 months consisted of body composition, aerobic fitness (VO2peak) and the following blood assays: pre- and postexercise lipid peroxidation (15F2a-isoprostanes [F2-Isop], lipid hydroperoxide [ROOH], oxidized LDL [ox-LDL]) and inflammation (myeloperoxidase [MPO]) markers. In the overweight/ obese group, the training program significantly increased their fat-free mass (FFM) and decreased their percentage of fat mass (%FM) and hip circumference but did not modify their VO2peak. Conversely, in the nontrained overweight/obese group, weight and %FM increased, and VO2peak decreased, during the same period. Training also prevented exercise-induced lipid peroxidation and/or inflammation in overweight/obese girls (F2-Isop, ROOH, ox-LDL, MPO). In addition, in the trained overweight/obese group, exercise-induced changes in ROOH, ox-LDL and F2-Isop were correlated with improvements in anthropometric parameters (waist-to-hip ratio, %FM and FFM). In conclusion aerobic training increased tolerance to exercise-induced oxidative stress in overweight/obese adolescent girls partly as a result of improved body composition.

  16. [Preparation and photoluminescence study of Er3+ : Y2O3 transparent ceramics].

    PubMed

    Luo, Jun-ming; Li, Yong-xiu; Deng, Li-ping

    2008-10-01

    Y2O3 acted as the matrix material, which was doped with different concentrations of Er3+, Er3+ : Y2O3 nanocrystalline powder was prepared by co-precipitation method, and Er3+ : Y2O3 transparent ceramics was fabricated by vacuum sintering at 1700 degrees C, 1 x 10(-3) Pa for 8 h. By using the X-ray diffraction (D/MAX-RB), transmission electron microscopy(Philips EM420), automatic logging spectrophotometer(DMR-22), fluorescence analyzer (F-4500) and 980 nm diode laser, the structural, morphological and luminescence properties of the sample were investigated. The results show that Er3+ dissolved completely in the Y2O3 cubic phase, the precursor was amorphous, weak diffraction peaks appeared after calcination at 400 degrees C, and if calcined at 700 degrees C, the precursor turned to pure cubic phase. With increasing the calcining temperature, the diffraction peaks became sharp quickly, and when the calcining temperature reached 1100 degrees C, the diffraction peaks became very sharp, indicating that the grains were very large. The particles of Er+ : Y2O3 is homogeneous and nearly spherical, the average diameter of the particles is in the range of 40-60 nm after being calcined at 1000 degrees C for 2 h. The relative density of Er3+ : Y2O3 transparent ceramics is 99.8%, the transmittance of the Er2+ : Y2O3 transparent ceramics is markedly lower than the single crystal at the short wavelength, but the transmittance is improved noticeably with increasing the wavelength, and the transmittance exceeds 60% at the wavelength of 1200 nm. Excited under the 980 nm diode laser, there are two main up-conversion emission bands, green emission centers at 562 nm and red emission centers at 660 nm, which correspond to (4)S(3/2) / (2)H(11/2) - (4)I(15/2) and (4)F(9/2) - (4)I(15/2) radiative transitions respectively. By changing the doping concentrations of Er3+, the color of up-conversion luminescence can be tuned from green to red gradually. The luminescence intensity is not reinforce with the increase in the concentration, so the doping concentration of Er3+ should not exceed 2%. If the doping concentration of Er3+ exceeds the range, the concentration has very small effect on the improvement of luminescence intensity.

  17. Optical and electrical properties of TiOPc doped Alq3 thin films

    NASA Astrophysics Data System (ADS)

    Ramar, M.; Suman, C. K.; Tyagi, Priyanka; Srivastava, R.

    2015-06-01

    The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq3 and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10-5 cm2/Vs. The Cole-Cole plots shows that the TiOPc doped Alq3 thin film can be represented by a single parallel resistance RP and capacitance CP network with a series resistance RS (10 Ω). The value of RP and CP at zero bias was 1587 Ω and 2.568 nF respectively. The resistance RP decreases with applied bias whereas the capacitance CP remains almost constant.

  18. Retrospective cytological evaluation of indeterminate thyroid nodules according to the British Thyroid Association 2014 classification and comparison of clinical evaluation and outcomes

    PubMed Central

    Giusti, Massimo; Massa, Barbara; Balestra, Margherita; Calamaro, Paola; Gay, Stefano; Schiaffino, Simone; Turtulici, Giovanni; Zupo, Simonetta; Monti, Eleonora; Ansaldo, Gianluca

    2017-01-01

    The cytology of 130 indeterminate nodules (Thy 3) was retrospectively reviewed according to the British Thyroid Association 2014 classification. Nodules were divided into Thy 3a (atypical features) and Thy 3f (follicular lesion) categories. Histology was available as a reference for 97 nodules. Pre-surgical evaluations comprised biochemical tests, color-Doppler ultrasonography (US), semi-quantitative elastography-US (USE), contrast-enhanced US (CEUS), and mutation analysis from cytological slides. Thyroid malignancy was the final diagnosis for 19% of surgically-treated nodules. No statistically significant difference in the risk of malignancy was found between Thy 3a (26%) and Thy 3f (14%) nodules. Histology of the Thy 3a and Thy 3f nodules showed a higher incidence of Hurtle cell adenomas in Thy 3f (29%) than in Thy 3a (3%) nodules (P=0.01). The only pre-surgical difference concerned the BRAF V600E mutation, which was positive in some Thy 3a but not in any Thy 3f nodules (P=0.04). Receiver-operating characteristic (ROC) analysis was used to obtain cut-off values from US (score), USE (ELX 2/1 strain index), and CEUS (time-to-peak index and peak index) data. The cut-off values were similar for Thy 3a and Thy 3f nodules. Data showed that malignancy can be suspected if the US score is >2, ELX 1/2 strain index >1, time-to-peak index >1, and peak index <1. In a sub-group of 24 revised nodules (12 Thy 3a and 12 Thy 3f) with histology as a reference, the diagnostic power of cumulative pre-surgical analysis by means of US, USE, and CEUS showed high positive and negative predictive values (83% and 100%, respectively) for the presence of malignancy in Thy 3a and Thy 3f nodules. In conclusion, in our series of revised Thy 3 nodules, malignancy was low and displayed no significant differences between Thy 3a and Thy 3f categories. The use of cut-offs based on histology as a reference could reduce surgery. Our data support the conviction that, in mutation-negative Thy 3a and Thy 3f nodules, observation should be the first choice when not all instrumental results are suspect. PMID:28681580

  19. 133Cs-NMR Study on the Ground State of the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, K.; Goto, T.; Manaka, H.; Miura, Y.

    2018-03-01

    We have investigated the hyperfine coupling between Cs and Cr on the S = 3/2 equilateral triangular spin tube CsCrF4, utilizing 133Cs-NMR. At paramagnetic state above 80 K, we have obtained spectra containing a single peak, which reflects the single crystallographic Cs site. From the temperature dependence of the peak shift and peak width, we evaluated effective values of the isotropic and the anisotropic part of hyperfine coupling. The latter was compared with the calculated dipole contribution. Using obtained parameters with assumed spin structure, we tried to reproduce the broadened spectrum in the ordered state at 2.0 K. The preliminary analysis shows the 120-degree structure does not accord with the observed spectra at the ordered state.

  20. Neuronal oxidative injury and dendritic damage induced by carbofuran: Protection by memantine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ramesh C.; Milatovic, Snjezana; Dettbarn, Wolf-D.

    Carbamate insecticides mediate their neurotoxicity by acetylcholinesterase (AChE) inactivation. Male Sprague-Dawley rats acutely intoxicated with the carbamate insecticide carbofuran (1.5 mg/kg, sc) developed hypercholinergic signs within 5-7 min of exposure, with maximal severity characterized by seizures within 30-60 min, lasting for about 2 h. At the time of peak severity, compared with controls, AChE was maximally inhibited (by 82-90%), radical oxygen species (ROS) markers (F{sub 2}-isoprostanes, F{sub 2}-IsoPs; and F{sub 4}-neuroprostanes, F{sub 4}-NeuroPs) were elevated 2- to 3-fold, and the radical nitrogen species (RNS) marker citrulline was elevated 4- to 8-fold in discrete brain regions (cortex, amygdala, and hippocampus). Inmore » addition, levels of high-energy phosphates (HEPs) were significantly reduced (ATP, by 43-56%; and phosphocreatine, by 37-48%). Values of total adenine nucleotides and total creatine compounds declined markedly (by 41-56% and 35-45%, respectively), while energy charge potential remained unchanged. Quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant decreases in dendritic lengths (by 64%) and spine density (by 60%). Pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist memantine (18 mg/kg, sc), in combination with atropine sulfate (16 mg/kg, sc), significantly attenuated carbofuran-induced changes in AChE activity and levels of F{sub 2}-IsoPs and F{sub 4}-NeuroPs, declines in HEPs, as well as the alterations in morphology of hippocampal neurons. MEM and ATS pretreatment also protected rats from carbofuran-induced hypercholinergic behavioral activity, including seizures. These findings support the involvement of ROS and RNS in seizure-induced neuronal injury and suggest that memantine by preventing carbofuran-induced neuronal hyperactivity blocks pathways associated with oxidative damage in neurons.« less

  1. The Jovian ionospheric E region

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Fox, J. L.

    1991-02-01

    A model of the Jovian ionosphere was constructed, that includes direct photoionization of hydrocarbon molecules. A high-resolution solar spectrum was synthesized from Hinteregger's solar maximum spectrum (F79050N), and high-resolution cross sections for photoabsorption by H2 bands in the range 842 to 1116 A were constructed. Two strong solar lines and about 30 percent of the continuum flux between 912 and 1116 A penetrate below the methane homopause despite strong absorption by CH4 and H2. It is found that hydrocarbons (mainly C2H2 are ionized at a maximum rate of 55/cu cm per sec at 320 km above the ammonia cloud tops. The hydrocarbon ions produced are quickly converted to more complex hydrocarbon ions through reactions with CH4, C2H2, C2H6, and C2H4. It is found that a hydrocarbon ion layer is formed near 320 km that is about 50 km wide with a peak density in excess of 10,000/cu cm.

  2. Partial detachment of high power discharges in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Beurskens, M.; Casali, L.; Dunne, M.; Eich, T.; Giannone, L.; Herrmann, A.; Maraschek, M.; Potzel, S.; Reimold, F.; Rohde, V.; Schweinzer, J.; Viezzer, E.; Wischmeier, M.; the ASDEX Upgrade Team

    2015-05-01

    Detachment of high power discharges is obtained in ASDEX Upgrade by simultaneous feedback control of core radiation and divertor radiation or thermoelectric currents by the injection of radiating impurities. So far 2/3 of the ITER normalized heat flux Psep/R = 15 MW m-1 has been obtained in ASDEX Upgrade under partially detached conditions with a peak target heat flux well below 10 MW m-2. When the detachment is further pronounced towards lower peak heat flux at the target, substantial changes in edge localized mode (ELM) behaviour, density and radiation distribution occur. The time-averaged peak heat flux at both divertor targets can be reduced below 2 MW m-2, which offers an attractive DEMO divertor scenario with potential for simpler and cheaper technical solutions. Generally, pronounced detachment leads to a pedestal and core density rise by about 20-40%, moderate (<20%) confinement degradation and a reduction of ELM size. For AUG conditions, some operational challenges occur, like the density cut-off limit for X-2 electron cyclotron resonance heating, which is used for central tungsten control.

  3. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  4. Nonlinear acoustic experiments for landmine detection: the significance of the top-plate normal modes

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Alberts, W. C. K., II; Sabatier, James M.

    2004-09-01

    In nonlinear acoustic detection experiments involving a buried inert VS 2.2 anti-tank landmine, airborne sound at two closely spaced primary frequencies f1 and f2 couple into the ground and interact nonlinearly with the soil-top pressure plate interface. Scattering generates soil vibration at the surface at the combination frequencies | m f1 +- n f2 | , where m and n are integers. The normal component of the particle velocity at the soil surface has been measured with a laser Doppler velocimeter (LDV) and with a geophone by Sabatier et. al. [SPIE Proceedings Vol. 4742, (695-700), 2002; Vol. 5089, (476-486), 2003] at the gravel lane test site. Spatial profiles of the particle velocity measured for both primary components and for various combination frequencies indicate that the modal structure of the mine is playing an important role. Here, an experimental modal analysis is performed on a VS 1.6 inert anti-tank mine that is resting on sand but is not buried. Five top-plate mode shapes are described. The mine is then buried in dry finely sifted natural loess soil and excited at f1 = 120 Hz and f2 = 130 Hz. Spatial profiles at the primary components and the nonlinearly generated f1 - (f2 - f1) component are characterized by a single peak. For the 2f1+f2 and 2f2 + f1 components, the doubly peaked profiles can be attributed to the familiar mode shape of a timpani drum (that is shifted lower in frequency due to soil mass loading). Other nonlinear profiles appear to be due to a mixture of modes. This material is based upon work supported by the U. S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate under Contract DAAB15-02-C-0024.

  5. Modeling the behavior of ionosphere above Millstone Hill during the September 21-27, 1998 storm

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Liu, Libo; Wan, Weixing; Zhang, Shun-Rong

    2004-08-01

    A theoretical ionospheric model is employed to investigate the ionospheric behavior as observed by the incoherent-scatter radar (ISR) at Millstone Hill during the September 21-27, 1998 storm. The observed NmF2 presented a significant negative phase on September 25, and a G condition (hmF2<200km) was also observed. The model results based on the standard input parameters (climatological model values) are in good agreement with the observed electron densities under quiet conditions, but there are large discrepancies during disturbed periods. The exospheric temperature Tex, neutral winds, atomic oxygen density [O] and molecular nitrogen density [N2], and solar flux are inferred from the ISR ion temperature profiles and from the electron density profiles. Our calculated results show that the maximum Tex is higher than 1700K, and an averaged decrease in [O] is a factor of 2.2 and an increase in [N2] at 300km is about 1.8 times for the disturbed day, September 25, relative to the quiet day level. Therefore, the large change of [N2]/[O] ratio gives a good explanation for the negative phase at Millstone Hill during this storm. Furthermore, at the disturbed nighttime the observations show a strong NmF2 decrease, accompanied by a significant hmF2 increase after the sudden storm commencement (SSC). Simulations are carried out based on the inferred Tex. It is found that the uplift of F2 layer during the period from sunset to post-midnight is mainly associated with the large equatorward winds, and a second rise in hmF2 after midnight results from the depleted Ne in the bottom-side of F2 layer due to the increased recombination, while the ``midnight collapse'' of hmF2 is attributed to the large-scale traveling atmospheric disturbances.

  6. The effects of the magnitude of the modulation field on electroreflectance spectroscopy of undoped-n+ type doped GaAs

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.

    1998-01-01

    The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.

  7. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.

  8. The second peak effect and vortex pinning mechanisms in Ba(Fe,Ni)2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Arabi, H.; Wang, X. L.

    2017-09-01

    Vortex pinning mechanisms have been studied systematically in BaFe1.9Ni0.1As2 single crystal as a function of temperature and magnetic field. The obtained shielding current density, Js, showed a second peak in the intermediate magnetic field range at high temperatures. The temperature dependence of the shielding current density, Js(T), was analysed within the collective pinning model at different magnetic fields. It was found that the second peak reflects the coexistence of both δl pinning, reflecting spatial variation in the mean free path (l), and δTc pinning, reflecting spatial variation in the superconducting critical temperature (Tc) at low temperature and low magnetic fields in BaFe1.9Ni0.1As2 single crystal. The results clearly show that pinning mechanism effects are strongly temperature and magnetic field dependent, and the second peak effect is more powerful at higher temperatures and magnetic fields. It was also found that the magnetic field mainly controls the pinning mechanism effect.

  9. Silicon-Based Quantum MOS Technology Development

    DTIC Science & Technology

    2000-03-07

    resonant interband tunnel diodes were demonstrated with peak current density greater than 104 A/cm2; peak-to-valley current ratio exceeding 2 was...photon emission reduce the peak-to-valley current ratio and device performance. Therefore, interband tunnel devices should be more resilient to...Comparison of bipolar interband tunnel and optical devices: (a) Esaki diode biased into the valley current region and (b) optical light emitter. The Esaki

  10. Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass

    NASA Astrophysics Data System (ADS)

    Mhareb, M. H. A.; Hashim, S.; Ghoshal, S. K.; Alajerami, Y. S. M.; Saleh, M. A.; Dawaud, R. S.; Razak, N. A. B.; Azizan, S. A. B.

    2014-11-01

    Enhancing the up-conversion efficiency of borate glass via optimized doping of rare earth ions is an ever-ending quest in lasing glass. Neodymium (Nd3+) doped Lithium Magnesium Borate (LMB) glasses are prepared using the melt-quenching method. X-ray diffraction (XRD), Fourier transformed infrared (FTIR), UV-Vis-NIR absorption and Photoluminescence (PL) spectroscopic characterizations are made to examine the influence of Nd3+ concentration on physical properties and optical properties. Nd3+ contents dependent density, molar volume, refractive index, ion concentration, Polaron radius, inter nuclear distance, field strength, energy band gap and oscillator strength are calculated. XRD patterns confirm the amorphous nature of all glasses and the FTIR spectra reveal the presence of BO3 and BO4 functional groups. UV-Vis-IR spectra exhibit ten prominent bands centered at 871, 799, 741, 677, 625, 580, 522, 468, 426, 349 nm corresponding to the transitions from the ground state to 4F3/2, (4F5/2 + 2H9/2), (4F7/2 + 4S3/2), 4F9/2, 2H11/2, (4G5/2 + 2G7/2), (2K13/2 + 4G7/2 + 4G9/2), (2G9/2 + 2D3/2 + 2P3/2), (2P1/2 + 2D5/2), (4D3/2 + 4D5/2) excited states, respectively. A hyper-sensitive transition related to (4G5/2 + 2G7/2) level is evidenced at 580 nm. The room temperature up-conversion emission spectra at 800 nm excitation displays three peaks centered at 660, 610 and 540 nm. Glass with 0.5 mol% of Nd3+ showing an emission enhancement by a factor to two is attributed to the energy transfer between Mg2+ and Nd3+ ions. Our results suggest that these glasses can be nominated for solid state lasers and other photonic devices.

  11. GNSS derived TEC data ingestion into IRI 2012

    NASA Astrophysics Data System (ADS)

    Migoya-Orué, Yenca; Nava, Bruno; Radicella, Sandro; Alazo-Cuartas, Katy

    2015-04-01

    Experimental vertical total electron content (VTEC) data given by Global Ionospheric Maps (GIM) has been ingested into the IRI version 2012, aiming to obtain grids of effective input parameter values that allow to minimize the difference between the experimental and modeled vertical TEC. Making use of the experience gained with the technique of model adaptation applied to NeQuick (Nava et al., 2005), it has been found possible to compute IRI world grids of effective ionosphere index parameters (IG). The IG grids thus obtained can be interpolated in space and time to calculate with IRI the 3D electron density at any location and also the TEC along any ground-to-satellite ray-path for a given epoch. In this study, the ingestion technique is presented and a posteriori validation, along with an assessment of the capability of the 'ingested' IRI to reproduce the ionosphere day-to-day foF2 variability during disturbed and quiet periods. The foF2 values retrieved are compared with data from about 20 worldwide ionosondes for selected periods of high (year 2000) and moderate to low solar activity (year 2006). It was found that the use of the ingestion scheme enhances the performance of the model when compared with its standard use based on solar activity drivers (R12 and F10.7), especially for high solar activity. As an example, the mean and standard deviation of the differences between experimental and reconstructed F2-peak values for April of year 2000 is 0.09 and 1.28 MHz for ingested IRI, compared to -0.81 and 1.27 MHz (IRI with R12 input) and -0.02 and 1.46 MHz (IRI with F10.7 input).

  12. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with decreasing of the temperature. The results of the investigations in this work confirmed that the present Dy-doped lanthanum calcium phosphate oxide and oxyfluoride glasses perform high potential for using as efficient luminescence materials for solid-state lighting applications, especially for white LEDs. Furthermore, the oxyfluoride glass sample provides more luminescence potential than the oxide glass sample.

  13. Excitons emissions and Raman scattering of ZnO nanoparticles embedded in BaF2 matrices by reactive magnetron sputtering.

    PubMed

    Zang, C H; Su, J F; Liu, Y C; Tang, C J; Fang, S J; Zhang, D M; Zhang, Y S

    2011-11-01

    ZnO nanoparticles embedded in BaF2 matrix were fabricated by rf magnetic sputtering technology. The optical properties of high quality ZnO nanoparticles, thermally post treated in a N2 atmosphere, were investigated by temperature-dependence photoluminescence measurement. Free exciton and localized exciton were observed at the low temperature. Free exciton peak was at 3.374 eV and localized exciton peak was at 3.420 eV, dominating the PL spectrum at 77 K. Free exciton transition was observed at 3.310 eV at room temperature, whereas the localized exciton transition was at 3.378 eV. The multiple-phonon Raman scattering spectrum showed that ZnO nanoparticles embedded in BaF2 matrix had a large deformation energy originated from lattice mismatch between ZnO and BaF2 matrix. Analysis of the fitting results from the temperature dependence of FWHM of ZnO exciton illustrated that the large value of gamma(ph) was good qualitative agreement with the large deformation potential.

  14. Spatial and Temporal Variation in Tadpole Communities in Neotropical Montane Streams.

    NASA Astrophysics Data System (ADS)

    Brenes, R.; Lips, K. R.

    2005-05-01

    Tadpoles transfer nutrients and energy between environments and amphibian declines are likely to affect this process. As the first step in determining amphibian production, we quantified seasonal and microhabitat variation in abundance and diversity of tadpoles at two sites: pre and post-decline. We quantified density of all tadpole species in riffles, runs, and pools monthly for a year. Three species occurred at the decline site (average density = 0.0026 ± 0.0034 m-2), and 10 of 11 species occurred year-round at the healthy site (2.80 ± 4.37 m-2). Tadpole abundance varied seasonally, with more tadpoles (X2=270.23, 10 d.f., p<0.001) at lower densities (0.50 m-2 ± 0.58) during the rainy season than during the dry season (5.10 m-2 ± 5.31; t = 3.079, 10 d.f., P= 0.01). Microhabitats differed in overall density (leaf packs, 1.044 ± 1.17 m-2; riffles, 0.04 ± 0.013 m-2, pools 0.38 ± 0.005 m-2; isolated pools 2.09 ± 1.03 m-2). Riffles and pools had a diverse tadpole assemblage, but leaf packs and isolated pools were dominated by Hyalinobatrachium colymbiphyllum (3.74 ± 1.86 m-2, F= 13.47, p=0.01) and Colostethus flotator (9.35 ± 4.56 m-2, F=32.77, p=0.002), respectively. High abundance, density, prevalence, and persistence suggest an important role for tadpoles in these ecosystems.

  15. Evidence for a π junction in Nb/Ni 0.96V0.04/Nb trilayers revealed by superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Steers, Stanley; Peters, Bryan; Yang, F. Y.; Lemberger, T. R.

    2016-07-01

    We report measurements of the superfluid density, λ-2(T ) , in ferromagnet-on-superconductor (F/S) bilayers and S/F/S' trilayers comprising Nb with Ni, Py, CoFe, and NiV ferromagnets. Bilayers provide information about F/S interface transparency and the T dependence of λ-2 that inform interpretation of trilayer data. The Houzet-Meyer theory accounts well for the measured dependence of λ-2(0 ) and Tc of F/S bilayers on thickness of F layer, dF, except that λ-2(0 ) is slightly under expectations for CoFe/Nb bilayers. For Nb/F/Nb' trilayers, we are able to extract Tc and and λ-2 for both Nb layers when F is thick enough to weaken interlayer coupling. The lower "Tc" is actually a crossover identified by onset of superfluid in the lower-Tc Nb layer. For Nb/NiV/Nb' trilayers, λ-2(0 ) versus dF for both Nb layers has a minimum followed by a recovery, suggestive of a π junction.

  16. Effect of F ions on physical and optical properties of fluorine substituted zinc arsenic tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kareem Ahmmad, Shaik; kondaul, Edu; Rahman, Syed

    2015-02-01

    The effect of substitution of fluoride ions for oxide ions on the physical and optical properties of glass system (20-x) ZnO-xZnF2-40As2O3-40TeO2 where x = 0, 4, 8,12,16,20 mole % were investigated. The samples prepared by melt quenching method under controlled condition. The amorphous nature of these glasses was checked by X-ray diffraction technique. The density was measured according to Archimedes principle. The room temperature absorption spectra of all glass samples were determined using UV-Vis-NIR spectrometer. The thermal behaviour, glass transition temperature and stability of glass samples were studied by a differential scanning calorimetric (DSC). The density reduction of present glasses with ZnF2 concentrations may be due to the low density of ZnF2 compared with that of ZnO. Breaking the oxide network, the cross linking degree of the glass former could be reduced which results in decrease of both Tg and Tx. In the present glass system when F ions replaced by oxygen ions UV-Vis absorption cut-off wavelength decreases. This resulted form the conversion of structural unit in the glass from TeO4 to Te(O,F)4 and then to Te(O, F)3.

  17. Turbulence of electrostatic electron cyclotron harmonic waves observed by Ogo 5.

    NASA Technical Reports Server (NTRS)

    Oya, H.

    1972-01-01

    Analysis of VLF emissions that have been observed near 3/2, 5/2, and 7/2 f sub H by Ogo 5 in the magnetosphere (f sub H is the electron cyclotron frequency) in the light of the mechanism used for the diffuse plasma resonance f sub Dn observed by Alouette 2 and Isis 1. The VLF emission is considered to be generated by nonlinear coupling mechanisms in certain portions of the observation as the f sub Dn is enhanced by its association with nonlinear wave-particle interaction of the electrostatic electron cyclotron harmonic wave, including the instability due to the nonlinear inverse Landau damping mechanism in the turbulence. The difference between the two observations is in the excitation mechanism of the turbulence; the turbulence in the plasma trough detected by Ogo 5 is due to natural origins, whereas the ionospheric topside sounder makes the plasma wave turbulence artificially by submitting strong stimulation pulses. Electron density values in the plasma trough are deduced by applying the f sub Dn-f sub N/f sub H relationship obtained from the Alouette 2 experiment as well as by applying the condition for the wave-particle nonlinear interactions. The electron density values reveal good agreement with the ion density values observed simultaneously by the highly sensitive ion mass spectrometer.

  18. One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates.

    PubMed

    Wan, Dehui; Chen, Hsuen-Li; Tseng, Shao-Chin; Wang, Lon A; Chen, Yung-Pin

    2010-01-26

    In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).

  19. TL and PL studies on cubic fluoroperovskite single crystal (KMgF3: Eu2+, Ce3+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2014-04-01

    The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF3 and CeF3) Co-doped KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu2+ at 360 nm attributed to the f → f transition (6P7/2→8S7/2) could only be observed due to the energy transfer from Ce3+ to Eu2+.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro, Ruy; Perelson, Alan S; Smith, Amber M

    Relatively little is known about the viral factors contributing to the lethality of the 1918 pandemic, although its unparalleled virulence was likely due in part to the newly discovered PB1-F2 protein. This protein, while unnecessary for replication, increases apoptosis in monocytes, alters viral polymerase activity in vitro, and produces enhanced inflammation and increased secondary pneumonia in vivo. However, the effects the PB1-F2 protein have in vivo remain unclear. To address the mechanisms involved, we intranasally infected groups of mice with either influenza A virus PR8 or a genetically engineered virus that expresses the 1918 PB1-F2 protein on a PR8 background,more » PR8-PB1-F2(1918). Mice inoculated with PR8 had viral concentrations peaking at 72 hours, while those infected with PR8-PB1-F2(1918) reached peak concentrations earlier, 48 hours. Mice given PR8-PB1-F2(1918) also showed a faster decline in viral loads. We fit a mathematical model to these data to estimate parameter values and select the best model. This model supports a lower viral clearance rate and higher infected cell death rate with the PR8-PB1-F2(1918) virus, although the viral production rate may also be higher. We hypothesize that the higher PR8-PB1-F2(1918) viral titers early in an infection are due to both an increase in viral production with decreased viral clearance, and that the faster decline in the later stages of infection result from elevated cell death rates. We discuss the implications these mechanisms have during an infection with a virus expressing a virulent PBI-F2 on the possibility of a pandemic and on the importance of antiviral treatments.« less

  1. Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic–clonic seizures

    PubMed Central

    Rhodes, Thomas H; Vanoye, Carlos G; Ohmori, Iori; Ogiwara, Ikuo; Yamakawa, Kazuhiro; George, Alfred L

    2005-01-01

    Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel α1 subunit (NaV1.1), are associated with genetic forms of epilepsy, including generalized epilepsy with febrile seizures plus (GEFS+ type 2), severe myoclonic epilepsy of infancy (SMEI) and related conditions. Several missense SCN1A mutations have been identified in probands affected by the syndrome of intractable childhood epilepsy with generalized tonic–clonic seizures (ICEGTC), which bears similarity to SMEI. To test whether ICEGTC arises from molecular mechanisms similar to those involved in SMEI, we characterized eight ICEGTC missense mutations by whole-cell patch clamp recording of recombinant human SCN1A heterologously expressed in cultured mammalian cells. Two mutations (G979R and T1709I) were non-functional. The remaining alleles (T808S, V983A, N1011I, V1611F, P1632S and F1808L) exhibited measurable sodium current, but had heterogeneous biophysical phenotypes. Mutant channels exhibited lower (V983A, N1011I and F1808L), greater (T808S) or similar (V1611F and P1632S) peak sodium current densities compared with wild-type (WT) SCN1A. Three mutations (V1611F, P1632S and F1808L) displayed hyperpolarized conductance–voltage relationships, while V983A exhibited a strong depolarizing shift in the voltage dependence of activation. All mutants except T808S had hyperpolarized shifts in the voltage dependence of steady-state channel availability. Three mutants (V1611F, P1632S and F1808L) exhibited persistent sodium current ranging from ∼1–3% of peak current amplitude that was significantly greater than WT-SCN1A. Several mutants had impaired slow inactivation, with V983A showing the most prominent effect. Finally, all of the functional alleles exhibited reduced use-dependent channel inhibition. In summary, SCN1A mutations associated with ICEGTC result in a wide spectrum of biophysical defects, including mild-to-moderate gating impairments, shifted voltage dependence and reduced use dependence. The constellation of biophysical abnormalities for some mutants is distinct from those previously observed for GEFS+ and SMEI, suggesting possible, but complex, genotype–phenotype correlations. PMID:16210358

  2. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    NASA Astrophysics Data System (ADS)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  3. Effects of the midnight temperature maximum observed in the thermosphere-ionosphere over the northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.

    2017-08-01

    The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in the MTM generation. From February to April and from September to December, the h'F and the hmF2 showed an increase around 18:00-20:00 LT within a range between 300 and 550 km and reached a minimal height of about 200-300 km close to midnight; then the layer rose again by about 40 km or, sometimes, remained at constant height. Furthermore, during the winter months, the h'F and hmF2 showed a different behavior; the signature of the pre-reversal enhancement did not appear as in other months and the heights did not exceed 260 and 350 km. Our observation indicated that the midnight collapse of the F region was a consequence of the MTM in the meridional wind that was reflected in the height of the F region. Lastly, the behavior of the OI6300 showed, from February to April and from September to December, an increase in intensity around midnight or 1 h before, which was associated with the MTM, whereas, from May to August, the relative intensity was more intense in the early evening and decayed during the night.

  4. Comparison of ionospheric F2 peak parameters foF2 and hmF2 with IRI2001 at Hainan

    NASA Astrophysics Data System (ADS)

    Wang, X.; Shi, J. K.; Wang, G. J.; Gong, Y.

    2009-06-01

    Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.

  5. Influences of CO2 increase, solar cycle variation, and geomagnetic activity on airglow from 1960 to 2015

    NASA Astrophysics Data System (ADS)

    Huang, Tai-Yin

    2018-06-01

    Variations of airglow intensity, Volume Emission Rate (VER), and VER peak height induced by the CO2 increase, and by the F10.7 solar cycle variation and geomagnetic activity were investigated to quantitatively assess their influences on airglow. This study is an extension of a previous study by Huang (2016) covering a time period of 55 years from 1960 to 2015 and includes geomagnetic variability. Two airglow models, OHCD-90 and MACD-90, are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow for this study. Overall, our results demonstrate that airglow intensity and the peak VER variations of the three airglow emissions are strongly correlated, and in phase, with the F10.7 solar cycle variation. In addition, there is a linear trend, be it increasing or decreasing, existing in the airglow intensities and VERs due to the CO2 increase. On other hand, airglow VER peak heights are strongly correlated, and out of phase, with the Ap index variation of geomagnetic activity. The CO2 increase acts to lower the VER peak heights of OH(8,3) airglow and O(1S) greenline by 0.2 km in 55 years and it has no effect on the VER peak height of O2(0,1) atmospheric band.

  6. Developmental cardiorespiratory physiology of the air-breathing tropical gar, Atractosteus tropicus.

    PubMed

    Burggren, Warren W; Bautista, Gil Martinez; Coop, Susana Camarillo; Couturier, Gabriel Márquez; Delgadillo, Salomón Páramo; García, Rafael Martínez; González, Carlos Alfonso Alvarez

    2016-10-01

    The physiological transition to aerial breathing in larval air-breathing fishes is poorly understood. We investigated gill ventilation frequency (f G ), heart rate (f H ), and air breathing frequency (f AB ) as a function of development, activity, hypoxia, and temperature in embryos/larvae from day (D) 2.5 to D30 posthatch of the tropical gar, Atractosteus tropicus, an obligate air breather. Gill ventilation at 28°C began at approximately D2, peaking at ∼75 beats/min on D5, before declining to ∼55 beats/min at D30. Heart beat began ∼36-48 h postfertilization and ∼1 day before hatching. f H peaked between D3 and D10 at ∼140 beats/min, remaining at this level through D30. Air breathing started very early at D2.5 to D3.5 at 1-2 breaths/h, increasing to ∼30 breaths/h at D15 and D30. Forced activity at all stages resulted in a rapid but brief increase in both f G and f H , (but not f AB ), indicating that even in these early larval stages, reflex control existed over both ventilation and circulation prior to its increasing importance in older fishes. Acute progressive hypoxia increased f G in D2.5-D10 larvae, but decreased f G in older larvae (≥D15), possibly to prevent branchial O 2 loss into surrounding water. Temperature sensitivity of f G and f H measured at 20°C, 25°C, 28°C and 38°C was largely independent of development, with a Q 10 between 20°C and 38°C of ∼2.4 and ∼1.5 for f G and f H , respectively. The rapid onset of air breathing, coupled with both respiratory and cardiovascular reflexes as early as D2.5, indicates that larval A. tropicus develops "in the fast lane." Copyright © 2016 the American Physiological Society.

  7. Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Yang, Ronggui; Zhang, Yong; Zhang, Peihong; Xue, Yu

    2011-05-01

    The electronic band structures of Ce3Te4 have been studied using the first-principles density-functional theory calculations. It is found that the density of states of Ce3Te4 has a very high delta-shaped peak appearing 0.21 eV above the Fermi level, which mainly comes from the f orbital electrons of the rare-earth element Ce. Using the simple theory proposed by Mahan and Sofo, [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], we obtain an ideal value of zT=13.5 for Ce3Te4 at T=1200 K, suggesting that the rare-earth chalcogenide Ce3Te4 could be a promising high efficiency high temperature thermoelectric material.

  8. Mapping low-frequency carbon radio recombination lines towards Cassiopeia A at 340, 148, 54, and 43 MHz

    NASA Astrophysics Data System (ADS)

    Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.

    2018-04-01

    Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.

  9. Qiliqiangxin Affects L Type Ca2+ Current in the Normal and Hypertrophied Rat Heart

    PubMed Central

    Wei, Yidong; Liu, Xiaoyu; Hou, Lei; Che, Wenliang; The, Erlinda; Jhummon, Muktanand Vikash

    2012-01-01

    Qiliqiangxin capsule is newly developed Chinese patent drug and proved to be effective and safe for the treatment of patients with chronic heart failure. We compared the effects of different dose Qiliqiangxin on L type Ca2+ current (I Ca-L) between normal and hypertrophied myocytes. A total of 40 healthy Sprague—Dawley rats were used in the study. The rats were randomly divided into two groups (control group and hypertrophy group). Cardiac hypertrophy was induced by pressure overload produced by partial ligation of the abdominal aorta. The control group was the sham-operated group. After 1 month, cardiac ventricular myocytes were isolated from the hearts of rats. Ventricular myocytes were exposed to 10 and 50 μmol/L Qiliqiangxin, and whole cell patch-clamp technique was used to study the effects of Qiliqiangxin on I Ca-L. The current densities of I Ca-L were similar in control group (−12.70 ± 0.53 pA/pF, n = 12) and in hypertrophy group (−12.39 ± 0.62 pA/pF, n = 10). They were not statistically significant. 10 and 50 μmol/L Qiliqiangxin can decrease I Ca-L peak current 48.6%±16.8% and 59.0%±4.4% in control group. However, the peak current was only reduced 16.73%±8.03% by 50 μmol/L Qiliqiangxin in hypertrophied myocytes. The inhibited action of Qiliqiangxin on I Ca-L of hypertrophy group was lower than in control group. Qiliqiangxin affected L-type Ca2+ channel and blocked I Ca-L, as well as affected cardiac function finally. Qiliqiangxin has diphasic action that is either class IV antiarrhythmic agent or the agent of effect cardiac function. PMID:22536279

  10. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O 2 -reduction states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia Patricia

    2015-11-26

    During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O 2 to 2H 2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth -MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O 2 reduction was found in a double conformation: Glu451a (~7 Åmore » from the TNC) and Glu451b (~4.5 Å from the TNC). A positive peak of electron density above 3.5σ in anF o-F c map for Glu451a O ε2 indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth -MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth -MCO-C1–8) with different X-ray-absorbed doses allowed the observation of different O 2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.« less

  11. Measurement of the deuteron structure function F2 in the resonance region and evaluation of its moments

    NASA Astrophysics Data System (ADS)

    Osipenko, M.; Ricco, G.; Simula, S.; Battaglieri, M.; Ripani, M.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Nefedov, G.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2006-04-01

    Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasielastic peak up to the invariant mass of the final-state hadronic system W≃2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasielastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behavior of the higher twist contribution suggests a partial cancelation of different higher twists entering into the expansion with opposite signs. This cancelation, found also in the proton moments, is a manifestation of the “duality” phenomenon in the F2 structure function.

  12. F-15 inlet/engine test techniques and distortion methodologies studies. Volume 2: Time variant data quality analysis plots

    NASA Technical Reports Server (NTRS)

    Stevens, C. H.; Spong, E. D.; Hammock, M. S.

    1978-01-01

    Time variant data quality analysis plots were used to determine if peak distortion data taken from a subscale inlet model can be used to predict peak distortion levels for a full scale flight test vehicle.

  13. Preparative Isolation and Purification of Flavone C-Glycosides from the Leaves of Ficus microcarpa L. f by Medium-Pressure Liquid Chromatography, High-Speed Countercurrent Chromatography, and Preparative Liquid Chromatography

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Zhu, Licai; Xie, Huichun; Li, Hang; He, Junting; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-performance liquid chromatography (perp-HPLC), high-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavone C-glycosides from the crude extract of leaves of Ficus microcarpae L. f. HSCCC separation was performed on a two-phase solvent system composed of methyl tert- butyl ether - ethyl acetate – 1-butanol – acetonitrile – 0.1% aqueous trifluoroacetic acid at a volume ratio of 1:3:1:1:5. Partially resolved peak fractions from HSCCC separation were further purified by preparative HPLC. Four well-separated compounds were obtained and their purities were determined by HPLC. The purities of these peaks were 97.28%, 97.20%, 92.23%, and 98.40%.. These peaks were characterized by ESI-MSn. According to the reference, they were identified as orientin (peak I), isovitexin-3″-O-glucopyranoside (peak II), isovitexin (peak III), and vitexin (peak IV), yielded 1.2 mg, 4.5 mg, 3.3 mg, and 1.8 mg, respectively. PMID:20190866

  14. Study of the second magnetization peak and the pinning behaviour in Ba(Fe0.935Co0.065)2As2 pnictide superconductor

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Sefat, A. S.; Salem-Sugui, S., Jr.

    2017-12-01

    Isothermal magnetic field dependence of magnetization and magnetic relaxation measurements were performed for the H\\parallel {{c}} axis on a single crystal of Ba(Fe0.935 Co0.065)2As2 pnictide superconductor having T c = 21.7 K. The second magnetization peak (SMP) for each isothermal M(H) was observed in a wide temperature range from T c to the lowest temperature of measurement (2 K). The magnetic field dependence of relaxation rate R(H), showed a peak (H spt) between H on (onset of SMP in M(H)) and H p (peak field of SMP in M(H)), which is likely to be related to a vortex-lattice structural phase transition, as suggested in the literature for a similar sample. In addition, the magnetic relaxation measured for magnetic fields near H spt showed some noise, which might be the signature of the structural phase transition of the vortex lattice. Analysis of the magnetic relaxation data using Maley’s criterion and the collective pinning theory suggested that the SMP in the sample was due to the collective (elastic) to plastic creep crossover, which was also accompanied by a rhombic to square vortex lattice phase transition. Analysis of the pinning force density suggested a single dominating pinning mechanism in the sample, which did not showing the usual δ {l} and δ {T}{{c}} nature of pinning. The critical current density (J c), estimated using the Bean critical state model, was found to be 5 × 105 A cm- 2 at 2 K in the zero magnetic field limit. Surprisingly, the maximum of the pinning force density was not responsible for the maximum value of the critical current density in the sample.

  15. [Relationships between electrophysiological characteristic of speech evoked auditory brainstem response and Mandarin monosyllable discriminative ability at different hearing impairment].

    PubMed

    Fu, Q Y; Liang, Y; Zou, A; Wang, T; Zhao, X D; Wan, J

    2016-04-07

    To investigate the relationships between electrophysiological characteristic of speech evoked auditory brainstem response(s-ABR) and Mandarin phonetically balanced maximum(PBmax) at different hearing impairment, so as to provide more clues for the mechanism of speech cognitive behavior. Forty-one ears in 41 normal hearing adults(NH), thirty ears in 30 conductive hearing loss patients(CHL) and twenty-seven ears in 27 sensorineural hearing loss patients(SNHL) were included in present study. The speech discrimination scores were obtained by Mandarin phonemic-balanced monosyllable lists via speech audiometric software. Their s-ABRs were recorded with speech syllables /da/ with the intensity of phonetically balanced maximum(PBmax). The electrophysiological characteristic of s-ABR, as well as the relationships between PBmax and s-ABR parameters including latency in time domain, fundamental frequency(F0) and first formant(F1) in frequency domain were analyzed statistically. All subjects completed good speech perception tests and PBmax of CHL and SNHL had no significant difference (P>0.05), but both significantly less than that of NH (P<0.05). While divided the subjects into three groups by 90%

  16. Traces of charge density waves in NbS2

    NASA Astrophysics Data System (ADS)

    Leroux, Maxime; Cario, Laurent; Bosak, Alexei; Rodière, Pierre

    2018-05-01

    Among transition metal dichalcogenides (TMD), NbS2 is often considered as the archetypal compound that does not have a charge density wave (CDW) in any of its polytypes. By comparison, close isoelectronic compounds such as NbSe2, TaS2, and TaSe2 all have CDW in at least one polytype. Here we report traces of CDW in the 2H polytype of NbS2, using diffuse x-ray scattering measurements at 77 K and room temperature. We observe 12 extremely weak satellite peaks located at ±13.9° from a⃗* and b⃗* around each Bragg peak in the (h ,k ,0 ) plane. These satellite peaks are commensurate with the lattice via 3 q ⃗-q ⃗'=a⃗*,where q ⃗' is the 120° rotation of q ⃗, and define two √{13 }a ×√{13 }a superlattices in real space. These commensurate wave vectors and tilt angle are identical to those of the CDW observed in the 1T polytype of TaS2 and TaSe2. To understand this similarity and the faintness of the peaks, we discuss possible sources of local 1T polytype environment in bulk 2H-NbS2 crystals.

  17. An empirical model of the topside plasma density around 600 km based on ROCSAT-1 and Hinotori observations

    NASA Astrophysics Data System (ADS)

    Huang, He; Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2015-05-01

    It is an urgent task to improve the ability of ionospheric empirical models to more precisely reproduce the plasma density variations in the topside ionosphere. Based on the Republic of China Satellite 1 (ROCSAT-1) observations, we developed a new empirical model of topside plasma density around 600 km under relatively quiet geomagnetic conditions. The model reproduces the ROCSAT-1 plasma density observations with a root-mean-square-error of 0.125 in units of lg(Ni(cm-3)) and reasonably describes the temporal and spatial variations of plasma density at altitudes in the range from 550 to 660 km. The model results are also in good agreement with observations from Hinotori, Coupled Ion-Neutral Dynamics Investigations/Communications/Navigation Outage Forecasting System satellites and the incoherent scatter radar at Arecibo. Further, we combined ROCSAT-1 and Hinotori data to improve the ROCSAT-1 model and built a new model (R&H model) after the consistency between the two data sets had been confirmed with the original ROCSAT-1 model. In particular, we studied the solar activity dependence of topside plasma density at a fixed altitude by R&H model and find that its feature slightly differs from the case when the orbit altitude evolution is ignored. In addition, the R&H model shows the merging of the two crests of equatorial ionization anomaly above the F2 peak, while the IRI_Nq topside option always produces two separate crests in this range of altitudes.

  18. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko

    2018-03-01

    Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.

  19. Resonant scattering of light from a glass/Ag/MgF2/air system with rough interfaces and supporting guided modes in attenuated total reflection.

    PubMed

    Ramírez-Duverger, Aldo S; Gaspar-Armenta, Jorge A; García-Llamas, Raúl

    2003-08-01

    We report experimental results of the resonant scattering of light from a prism-glass/Ag/MgF2/air system with use of the attenuated total reflection technique for p and s polarized light. Two MgF2 film thicknesses were used. The system with the thinner dielectric layer supports two transverse magnetic (TM) and two transverse electric (TE) guided modes at a wavelength of 632.8 nm, and the system with the thicker dielectric layer supports three TM and three TE guided modes. In both cases we found dips in the specular reflection as a function of incident angle that is due to excitation of guided modes in the MgF2 film. The scattered light shows peaks at angles corresponding to the measured excitation of the guided modes. These peaks are due to single-order scattering and occur for any angle of the incident light. All features in the scattering response are enhanced in resonance conditions, and the efficiency of injecting light into the guide is reduced.

  20. Peak effect in untwinned YBa 2Cu 3O 7-δ single crystals

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.

    1994-12-01

    We report on the observation of a weak effect of the critical current density in untwinned YBa 2Cu 3O 7-δ single crystals of different purity, using a low frequency torsion pendulum. We construct the peak effect line and the irreversibility line.

  1. Frictional Heating of Ions In The F2-region of The Ionosphere

    NASA Astrophysics Data System (ADS)

    Zhizhko, G. O.; Vlasov, V. G.

    Auroral electron beams unstable on the Cherenkov resonance are stabilized by large- scale inhomogeneity of the plasma density during all their way from the acceleration region to the E-region of the ionosphere. The generation of plasma waves by beam is possible only in the region of small plasma density gradients, that always is the area of the F2-region maximum. Thus, collective dissipation of the electron beam energy occurs in the local region with the length about several tens of kilometers. This leads to the intensive heating of the electrons(up to temperatures about 10000 K) and will give origin to the ion upflows with velocity about 1 km/s and density about 109 cm-2 s-1. These flows can result in the ion frictional heating. At the same time ion temperatures reach the values about 5000 K. A numerical simulation of the ion frictional heating in the presence of collective elec- tron heating in the high-latitude F2-region of the ionosphere was performed. The sim- ulation has shown that the most critical parameter for the occurence of the ion fric- tional heating was the the steepness of the plasma density profile above the F2-region maximum.

  2. Chronic Plantarflexor Stretching During Ankle Immobilization Helps Preserve Calf Girth, Plantarflexion Peak Torque, and Ankle Dorsiflexion Motion.

    PubMed

    Wilson, Samantha; Christensen, Bryan; Gange, Kara; Todden, Christopher; Hatterman-Valenti, Harlene; Albrecht, Jay M

    2017-09-27

    Chronic plantarflexor (PF) stretching during ankle immobilization helps preserve calf girth, plantarflexion peak torque, and ankle dorsiflexion (DF) motion. Immobilization can lead to decreases in muscle peak torque, muscle size, and joint ROM. Recurrent static stretching during a period of immobilization may reduce the extent of these losses. To investigate the effects of chronic static stretching on PF peak torque, calf girth, and DF range of motion (ROM) after two weeks of ankle immobilization. Randomized controlled clinical trial. Athletic training facility. Thirty-six healthy college-aged (19.81±2.48) females. Subjects were randomly assigned to one of three groups: control group, immobilized group (IM), and immobilized plus stretching group (IM+S). Each group participated in a familiarization period, a pre-test, and, two weeks later, a post-test. The IM group and IM+S group wore the Aircast FP Walker for two weeks on the left leg. During this time, the IM+S group participated in a stretching program, which consisted of two 10-minute stretching procedures each day for the 14 days. One-way ANOVA was used to determine differences in the change of ankle girth, PF peak torque, and DF ROM between groups with an α level of < 0.05. A significant difference was noted between groups in girth (F 2,31 =5.64, P=0.009), DF ROM (F 2,31 =26.13, P<0.0001), and PF peak torque (F 2,31 =7.74, P=0.002). Post-hoc testing also showed a significance difference between change in calf girth of the control group compared to the IM group (P=0.007) and a significant difference in change of peak torque in the IM+S group and the IM group (P=0.001). Also, a significant difference was shown in DF ROM between the control group and IM+S group (P=0.006), the control group and the IM group (P<0.0001), and the IM+S group and the IM group (P<0.0001). Chronic static stretching during two weeks of immobilization may decrease the loss of calf girth, ankle PF peak torque, and ankle DF ROM.

  3. Double KS0 photoproduction off the proton at CLAS

    NASA Astrophysics Data System (ADS)

    Chandavar, S.; Goetz, J. T.; Hicks, K.; Keller, D.; Kunkel, M. C.; Paolone, M.; Weygand, D. P.; Adhikari, K. P.; Adhikari, S.; Akbar, Z.; Ball, J.; Balossino, I.; Barion, L.; Bashkanov, M.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, F.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Filippi, A.; Fradi, A.; Gavalian, G.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Glazier, D. I.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jenkins, D.; Johnston, S.; Joo, K.; Joosten, S.; Kabir, M. L.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Riser, D.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Sokhan, D.; Smith, G. D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Ungaro, M.; Voutier, E.; Wei, X.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; CLAS Collaboration

    2018-02-01

    The f0(1500 ) meson resonance is one of several contenders to have significant mixing with the lightest glueball. This resonance is well established from several previous experiments. Here we present the first photoproduction data for the f0(1500 ) via decay into the KS0KS0 channel using the CLAS detector. The reaction γ p →fJp →KS0KS0p , where J =0 ,2 , was measured with photon energies from 2.7-5.1 GeV. A clear peak is seen at 1500 MeV in the background subtracted invariant mass spectra of the two kaons. This is enhanced if the measured four-momentum transfer to the proton target is restricted to be less than 1.0 GeV2. By comparing data with simulations, it can be concluded that the peak at 1500 MeV is produced primarily at low t , which is consistent with a t -channel production mechanism.

  4. Two-Dimensional Polymer Synthesized via Solid-State Polymerization for High-Performance Supercapacitors.

    PubMed

    Liu, Wei; Ulaganathan, Mani; Abdelwahab, Ibrahim; Luo, Xin; Chen, Zhongxin; Rong Tan, Sherman Jun; Wang, Xiaowei; Liu, Yanpeng; Geng, Dechao; Bao, Yang; Chen, Jianyi; Loh, Kian Ping

    2018-01-23

    Two-dimensional (2-D) polymer has properties that are attractive for energy storage applications because of its combination of heteroatoms, porosities and layered structure, which provides redox chemistry and ion diffusion routes through the 2-D planes and 1-D channels. Here, conjugated aromatic polymers (CAPs) were synthesized in quantitative yield via solid-state polymerization of phenazine-based precursor crystals. By choosing flat molecules (2-TBTBP and 3-TBQP) with different positions of bromine substituents on a phenazine-derived scaffold, C-C cross coupling was induced following thermal debromination. CAP-2 is polymerized from monomers that have been prepacked into layered structure (3-TBQP). It can be mechanically exfoliated into micrometer-sized ultrathin sheets that show sharp Raman peaks which reflect conformational ordering. CAP-2 has a dominant pore size of ∼0.8 nm; when applied as an asymmetric supercapacitor, it delivers a specific capacitance of 233 F g -1 at a current density of 1.0 A g -1 , and shows outstanding cycle performance.

  5. New Data Source for Studying and Modelling the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert

    2001-01-01

    The existing uncertainties about density profiles in the topside ionosphere, i.e., in the height regime from hmF2 to approx. 2000 km, requires the search for new data sources. Millions of ionograms had been recorded by the ISIS and Alouette satellites in the sixties and seventies, that never were analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. This paper shows how the digital ionograms are processed and the electron density profiles (from satellite orbit altitude, 1400 km for ISIS-2, down to the F peak) are calculated. The most difficult part of the task is the automatic scaling of the echo traces in the ISIS ionograms. Unlike the ionograms from modern ionosondes, the ISIS ionograms do not identify the wave polarization of the different echo traces, so physical logic must be applied to identify the ordinary ()) and extraordinary (X) traces, and this is not always successful. Characteristic resonance features seen in the topside ionograms occur at the gyro and plasma frequencies. An elaborate scheme was developed to identify these resonance frequencies in order to determine the local plasma and gyrofrequencies. This information helps in the identification of the O and X traces, and it provides the starting density of the electron density profile. The inversion of the echo traces into electron density profiles uses the same modified Chebyshev polynomial fitting technique that is successfully applied in the ground-based Digisonde network. The automatic topside ionogram scaler with true height algorithm TOPIST is successfully scaling approx. 70% of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The home page for the ISIS project is at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. It provides access to as of January 2001, 3000,000 digitized ISIS ionogram data and to related software. A search page lets users select data location, time, and a host of other search criteria. The automated processing of the ISIS ionograms will begin later this year and the electron density profiles will be made available from the project home page. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  6. Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation

    NASA Astrophysics Data System (ADS)

    Gan, Quan; Wang, Wenbing; Yue, Jia; Liu, Hanli; Chang, Loren C.; Zhang, Shaodong; Burns, Alan; Du, Jian

    2016-10-01

    The Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to theoretically study the 6 day wave effects on the ionosphere. By introducing a 6 day perturbation with zonal wave number 1 at the model lower boundary, the TIME-GCM reasonably reproduces the 6 day wave in temperature and horizontal winds in the mesosphere and lower thermosphere region during the vernal equinox. The E region wind dynamo exhibits a prominent 6 day oscillation that is directly modulated by the 6 day wave. Meanwhile, significant local time variability (diurnal and semidiurnal) is also seen in wind dynamo as a result of altered tides due to the nonlinear interaction between the 6 day wave and migrating tides. More importantly, the perturbations in the E region neutral winds (both the 6 day oscillation and tidal-induced short-term variability) modulate the polarization electric fields, thus leading to the perturbations in vertical ion drifts and ionospheric F2 region peak electron density (NmF2). Our modeling work shows that the 6 day wave couples with the ionosphere via both the direct neutral wind modulation and the interaction with atmospheric tides.

  7. A simple model of the effects of the mid-latitude total ion trough in the bottomside F layer on HF radiowave propagation

    NASA Astrophysics Data System (ADS)

    Lockwood, M.

    1981-06-01

    Observations of the amplitudes and Doppler shifts of received HF radio waves are compared with model predictions made using a two-dimensional ray-tracing program. The signals are propagated over a sub-auroral path, which is shown to lie along the latitudes of the mid-latitude trough at times of low geomagnetic activity. Generalizing the predictions to include a simple model of the trough in the density and height of the F2 peak enables the explanation of the anomalous observed diurnal variations. The behavior of received amplitude, Doppler shift, and signal-to-noise ratio as a function of the K sub p index value, the time of day, and the season (in 17 months of continuous recording) is found to agree closely with that predicted using the statistical position of the trough as deduced from 8 years of Alouette satellite soundings. The variation in the times of the observation of large signal amplitudes with the K sub p value and the complete absence of such amplitudes when it exceeds 2.75 are two features that implicate the trough in these effects.

  8. The effect of wave-particle interactions on the polar wind O{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barakat, A.R.; Barghouthi, I.A.

    1994-10-15

    The escape of the polar wind plasma is an important element in the ionosphere-magnetosphere coupling. Both theory and observations indicate that the wave-particle interactions (WPI) play a significant role in the dynamics of ion outflow along open geomagnetic field lines. A Monte Carlo simulation was developed in order to include the effect of the WPI in addition to the factors that are traditionally included in the {open_quote}classical{close_quote} polar wind (i.e. gravity, electrostatic field, and divergence of geomagnetic field lines). The ion distribution function (f{sub j}), as well as the profiles of its moments (density, drift velocity, temperature, etc.) were foundmore » for different levels of WPI, that is, for different values of the normalized diffusion rate in the velocity space (D{sub {perpendicular}{sub j}}). Although the model included O{sup +}, H{sup +} and electrons, the authors presented only the results related to the O{sup +} ions. They found that (1) both the density and drift velocity of O{sup +} increased with the WPI strength, and consequently, the O{sup +} escape flux was enhanced by a factor of up to 10{sup 5}; (2) The O{sup +} ions could be energized up to a few electron volts; (3) for moderate and high levels of WPI (D{sub {perpendicular}}(O{sup +})>1), the distribution function f(O{sup +}) displayed very pronounced conic features at altitudes around 3R{sub E}. Finally, the interplay between the downward body force, the upward mirror force, and the perpendicular heating resulted in the formation of the {open_quotes}pressure cooker{close_quotes} effect. This phenomena explained some interesting features of their solution, such as, the peak in the O{sup +} temperature, and the formation of {open_quotes}ears{close_quotes} and conics for f(O{sup +}) around 2.5R{sub E}. 10 refs., 2 figs.« less

  9. Use of MgF2 and LiF photocathodes in the extreme ultraviolet.

    NASA Technical Reports Server (NTRS)

    Lapson, L. B.; Timothy, J. G.

    1973-01-01

    The photoelectric yields of 2000-A thick samples of MgF2 and LiF have been measured at wavelengths in the range from 1216 to 461 A. Peak values of 43 and 34%, respectively, were obtained at wavelengths around 550 A at 45 deg incidence. Coating the cathode of a channel electron multiplier with 3000 A of MgF2 produced no significant deterioration in the electrical properties and increased the sensitivity by factors of 1.62, 2.76, and 2.60 at wavelengths of 742, 584, and 461 A, respectively. Since the stability of response of the MgF2 photocathodes appears to be equal to that of conventional metallic and semiconducting cathodes, it is concluded that MgF2 would be a practical, high-efficiency photocathode for use in the extreme ultraviolet.

  10. Passivation effect of Cl, F and H atoms on CuIn0.75Ga0.25Se2 (1 1 2) surface

    NASA Astrophysics Data System (ADS)

    Qi, Rong-fei; Wang, Zhao-hui; Tang, Fu-ling; Agbonkina, Itohan C.; Xue, Hong-tao; Si, Feng-juan; Ma, Sheng-ling; Wang, Xiao-ka

    2018-06-01

    Using the first-principles calculations within the density functional-theory (DFT) framework, we theoretically investigated the surface reconstruction, surface states near the Fermi level and their passivation on CuIn0.75Ga0.25Se2 (1 1 2) (CIGS) surface by chlorine, fluorine and hydrogen. Surface reconstruction appears on CIG-terminated CIGS (1 1 2) surface and it is a self-passivation. For the locations of Cl, F and H atoms adsorbing on Se-terminated CIGS (1 1 2) surface, four high symmetry adsorption sites: top sites, bridge sites, hexagonal close-packed (hcp) sites and faced centered cubic (fcc) sites were studied respectively. With the coverage of 0.5 monolayer (ML), Cl, F and H adatoms energetically occupy the top sites on the CIGS (112) surface. The corresponding adsorption energies were -2.20 eV, -3.29 eV, -2.60 eV, respectively. The bond length and electronic properties were analyzed. We found that the surface state density near the Fermi level was markedly diminished for 0.5 ML Cl, F and H adsorption on Se-terminated CIGS (1 1 2) surface at top sites. It was also found that H can more efficiently passivate the surface state density than Cl and F atoms, and the effect of adsorption of Cl atoms is better than that of F.

  11. Molecular properties of metal difluorides and their interactions with CO2 and H2O molecules: a DFT investigation.

    PubMed

    Arokiyanathan, Agnes Lincy; Lakshmipathi, Senthilkumar

    2017-11-18

    A computational study of metal difluorides (MF 2 ; M = Ca to Zn) and their interactions with carbon dioxide and water molecules was performed. The structural parameter values obtained and the results of AIM analysis and energy decomposition analysis indicated that the Ca-F bond is weaker and less ionic than the bonds in the transition metal difluorides. A deformation density plot revealed the stablizing influence of the Jahn-Teller effect in nonlinear MF 2 molecules (e.g., where M= Sc, Ti, Cr). An anaysis of the metal K-edge peaks of the difluorides showed that shifts in the edge energy were due to the combined effects of the ionicity, effective nuclear charge, and the spin state of the metal. The interactions of CO 2 with ScF 2 (Scc3 geometry) and TiF 2 (Tic2 geometry) caused CO 2 to shift from its usual linear geometry to a bent geometry (η 2 (C=O) binding mode), while it retained its linear geometry (η 1 (O) binding mode) when it interacted with the other metal difluorides. Energy decomposition analysis showed that, among the various geometries considered, the Scc3 and Tic2 geometries possessed the highest interaction energies and orbital interaction energies. Heavier transition metal difluorides showed stronger affinities for H 2 O, whereas the lighter transition metal (Sc and Ti) difluorides preferred CO 2 . Overall, the results of this study suggest that fluorides of lighter transition metals with partially filled d orbitals (e.g., Sc and Ti) could be used for CO 2 capture under moist conditions. Graphical abstract Interaction of metal difluorides with carbon dioxide and water.

  12. Constraining f (R ) Gravity Theory Using Weak Lensing Peak Statistics from the Canada-France-Hawii-Telescope Lensing Survey

    NASA Astrophysics Data System (ADS)

    Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui

    2016-07-01

    In this Letter, we report the observational constraints on the Hu-Sawicki f (R ) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |fR 0| for n =1 . The 95% C.L. is log10|fR 0|<-4.82 given WMAP9 priors on (Ωm , As ). With Planck15 priors, the corresponding result is log10|fR 0|<-5.16 .

  13. Summary of reactor plant conditions during L2-2 pre-LOCE maneuver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, F.Y.; Yarbrough, W.M.; Cannon, J.W.

    1979-04-26

    This document presents the experimental results obtained during the pre-Loss of Coolant Experiment (LOCE) manuever and the core conditions prior to the L2-2 LOCE. The peak linear heat rate prior to the blowdown was 8.04 kW/ft, the primary coolant mass flow rate was 1.539 Mlbm/hr, the hot leg temperature was 585.9/sup 0/F, and the core ..delta..T was 42/sup 0/F. These conditions satisfied the requirements specified for the L2-2 LOCE except for the hot leg temperature being 12/sup 0/F below the desired 598/sup 0/F.

  14. Population influences on tornado reports in the United States

    USGS Publications Warehouse

    Anderson, C.J.; Wikle, C.K.; Zhou, Q.; Royle, J. Andrew

    2007-01-01

    The number of tornadoes reported in the United States is believed to be less than the actual incidence of tornadoes, especially prior to the 1990s, because tornadoes may be undetectable by human witnesses in sparsely populated areas and areas in which obstructions limit the line of sight. A hierarchical Bayesian model is used to simultaneously correct for population-based sampling bias and estimate tornado density using historical tornado report data. The expected result is that F2-F5 compared with F0-F1 tornado reports would vary less with population density. The results agree with this hypothesis for the following population centers: Atlanta, Georgia; Champaign, Illinois; and Des Moines, Iowa. However, the results indicated just the opposite in Oklahoma. It is hypothesized that the result is explained by the misclassification of tornadoes that were worthy of F2-F5 rating but were classified as F0-F1 tornadoes, thereby artificially decreasing the number of F2-F5 and increasing the number of F0-F1 reports in rural Oklahoma.

  15. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury

    PubMed Central

    Castro, Angela M.; Lupu, Traian S.; Weinheimer, Carla; Smith, Craig; Kovacs, Attila

    2016-01-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice). Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. PMID:26747503

  16. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury.

    PubMed

    House, Stacey L; Castro, Angela M; Lupu, Traian S; Weinheimer, Carla; Smith, Craig; Kovacs, Attila; Ornitz, David M

    2016-03-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice). Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. Copyright © 2016 the American Physiological Society.

  17. Full synergistic effect of hydrothermal NiCo2O4 nanosheets/CuCo2O4 nanocones supported on Ni foam for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wen, Shiyang; Liu, Yu; Bai, Hongye; Shao, Rong; Xu, Wei; Shi, Weidong

    2018-06-01

    In this work, a series of NiCo2O4/CuCo2O4 composites were prepared by a two-step hydrothermal method. The optimized NiCo2O4/CuCo2O4 electrode shows more than 5 times area capacitance (4.97 F cm-2) than pure NiCo2O4 at the current density of 1 mA cm-2. The best performance of sample assembled an asymmetric supercapacitor could reach up to 42 F g-1 at the current density of 1 A g-1. In addition, the maximum energy density of 15 W h kg-1 was achieved with the power density of 814 W kg-1. The as-prepared active electrode material also reveals excellent cycling stability with 90.6% capacitance retention after 5000 cycles. These results indicate potential application in developing energy storage devices with high energy density power density.

  18. High-power-density, high-energy-density fluorinated graphene for primary lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong

    2018-03-01

    Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx) with superior performance through a direct gas fluorination. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1073 Wh kg-1 and an excellent power density of 21460 W kg-1 at a high current density of 10 A g-1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  19. Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Khorrami, Gh. H.; Kompany, A.; Yazdi, Sh. Tabatabai

    2017-12-01

    In this study, F-doped vanadium oxide thin films with doping levels up to 60 at % were prepared by spray pyrolysis method on glass substrates. To measure the electrochemical properties, some films were deposited on fluorine-tin oxide coated glass substrates. The effect of F-doping on the structural, electrical, optical and electrochemical properties of vanadium oxide samples was investigated. The X-ray diffractographs analysis has shown that all the samples grow in tetragonal β-V2O5 phase structure with the preferred orientation of [200]. The intensity of (200) peak belonging to β-V2O5 phase was strongest in the undoped vanadium oxide film. The scanning electron microscopy images show that the samples have nanorod- and nanobelt-shaped structure. The size of the nanobelts in the F-doped vanadium oxide films is smaller than that in the pure sample and the width of the nanobelts increases from 30 to 70 nm with F concentration. With increasing F-doping level from 10 to 60 at %, the resistivity, the transparency and the optical band gap decrease from 111 to 20 Ω cm, 70 to 50% and 2.4 to 2.36 eV, respectively. The cyclic voltammogram (CV) results show that the undoped sample has the most extensive CV and by increasing F-doping level from 20 to 60 at %, the area of the CV is expanded. The anodic and cathodic peaks in F-doped samples are stronger.

  20. Terahertz Oscillations of Hot Electrons in Graphene

    DTIC Science & Technology

    2015-01-01

    half the frequency ?F = 2?eF/~?OP , where 2?/?F is the time taken for carriers to accelerate ballistically to the optic phonon...resonance. Such resonance occurs at about half the frequency ωF = 2πeF/~ωOP , where 2π/ωF is the time taken for carriers to accelerate ballistically to the ... The current density on the plane is given by, Jx(t) = −4evF ∑ ~k f(~k, t) cos(φ), (2.16) where φ is the angle between ~k and the kx axis. Figure

  1. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stránský, Pavel; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, México, D.F.; Macek, Michal

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. --more » Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.« less

  2. Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li 2VO 2F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng

    Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li 2VO 2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li 2VO 2F are optimized. The thermal stability of Li 2VO 2F, which is related to the safetymore » of a battery is studied by thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li 2VO 2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less

  3. Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li 2VO 2F

    DOE PAGES

    Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng; ...

    2017-05-24

    Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li 2VO 2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li 2VO 2F are optimized. The thermal stability of Li 2VO 2F, which is related to the safetymore » of a battery is studied by thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li 2VO 2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less

  4. Structure, thermal, and impedance study of a new organic-inorganic hybrid [(CH2)7(NH3)2]CoCl4

    NASA Astrophysics Data System (ADS)

    Mostafa, M. F.; El-khiyami, Sh. S.; Alal, S. K.

    2018-07-01

    [(CH2)7(NH3)2]CoCl4 crystallizes in the triclinic system, space group P-1 with two molecules per asymmetric unit cell (Z = 2). The unit cell dimensions are a = 7.3107 (2) Å, b = 10.1841 (3) Å, c = 11.2690 (4) Å, α = 66.81 (2), β = 78.85 (12), and γ = 87.66 (2). The unit cell volume and the calculated density are 756.11 (4) Å3 and 1.463 Mg m-3, respectively. The structure of the hybrid is characterized by alternating layers of inorganic [CoCl4]2- anion and heptane diammonium cation. The organic hydrocarbon layers are packed in a stacked herring-bone manner with hydrogen bonds to the halide ions. The lattice potential energy Upot and the cation molecular volume V+ are 1856.2 kJ/mol and 0.37 nm3, respectively. DSC showed a compound (broad) peak at T1 = 331 K, T2 = 328 K with total entropy ΔS = 36.2 J/K. mol, and a λ-like endothermic peak at T3 = 296 K (ΔS = 24.9 J/K. mol). Dielectric properties are investigated at different temperatures and frequencies [260 K < T < 360 K and 0.06 kHz < f < 60 kHz, respectively]. Super-linear power law is observed for the AC conductivity, which is analyzed based on the jump relaxation model.

  5. Spectroscopic and theoretical investigation of the electronic states of layered perovskite oxyfluoride S r2Ru O3F2 thin films

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2018-06-01

    We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.

  6. Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).

    PubMed

    Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen

    2015-12-14

    The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.

  7. Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.

    PubMed

    Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján

    2013-08-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Quasi-two-day wave coupling of the mesosphere and lower thermosphere-ionosphere in the TIME-GCM: Two-day oscillations in the ionosphere

    NASA Astrophysics Data System (ADS)

    Yue, Jia; Wang, Wenbin; Richmond, Arthur D.; Liu, Han-Li

    2012-07-01

    The Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to simulate the quasi-two-day wave (QTDW) modulation of the ionospheric dynamo and electron density. The QTDW can directly penetrate into the lower thermosphere and modulate the neutral winds at a period of two days. The QTDW modulation of the tidal amplitudes is not evident. The QTDW in zonal and meridional winds results in a quasi-two-day oscillation (QTDO) of the dynamo electric fields at southern midlatitudes, which is mapped into the conjugate northern magnetic midlatitudes. The QTDO of the electric fields in the E region is transmitted along the magnetic field lines to the F region and leads to the QTDOs of the vertical ion drift and total electron content (TEC) at low and mid latitudes. The QTDO of the vertical ion drift near the magnetic equator leads to the 2-day oscillation of the fountain effect. The QTDO of the TEC has two peaks at ±25 magnetic latitude (Mlat) and one near the dip equator. The equatorial peak is nearly out of phase with the ones at ±25 Mlat. The vertical ion drift at midlatitudes extends the QTDW response of the TEC to midlatitudes from the Equatorial Ionospheric Anomaly (EIA). Most differently from previous reports, we discover that the QTDW winds couple into the F region ionosphere through both the fountain effect and the middle latitude dynamos.

  9. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Cao, Nhai The

    1993-01-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.

  10. Microbial synthesis of Flower-shaped gold nanoparticles.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-09-01

    The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical.

  11. Orbital-Dependent Density Functionals for Chemical Catalysis

    DTIC Science & Technology

    2011-02-16

    E2 and SN2 Reactions: Effects of the Choice of Density Functional, Basis Set, and Self-Consistent Iterations," Y. Zhao and D. G. Truhlar, Journal...for  the  anti-­‐ E2,  syn-­‐E2,  and   SN2  pathways  of  the  reactions  of  F-­‐  and  Cl-­‐  with  CH3CH2F  and

  12. Free flux flow: a probe into the field dependence of vortex core size in clean single crystals

    NASA Astrophysics Data System (ADS)

    Gapud, A. A.; Gafarov, O.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2012-02-01

    The free-flux-flow (FFF) phase has been attained successfully in a number of clean, weak-pinning, low-anisotropy, low-Tc, single-crystal samples as a unique probe into type II superconductivity that is independent of composition. The ``clean'' quality of the samples have been confirmed by reversible magnetization, high residual resistivity ratio, and low critical current densities Jc with a re-entrant ``peak'' effect in Jc(H) just below the critical field Hc2. The necessity of high current densities presented technical challenges that had been successfully addressed, and FFF is confirmed by a field-dependent ohmic state that is also well below the normal state. In these studies, the FFF resistivity ρf(H) has been measured in order to observe the field-dependent core size of the quantized magnetic flux vortices as modeled recently by Kogan and Zelezhina (KZ) who predicted a specific deviation from Bardeen-Stephen flux flow, dependent on normalized temperature and scattering parameter λ. The compounds studied are: V3Si, LuNi2B2C, and NbSe2, and results have shown consistency with the KZ model. Other applications of this method could also be used to probe normal-state properties, especially for the new iron arsenides, as will be discussed.

  13. Optical and Structural Properties of Ion-implanted InGaZnO Thin Films Studied with Spectroscopic Ellipsometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Woo; Jeong, Pil Seong; Choi, Suk-Ho; Lee, Hosun; Kong, Bo Hyun; Koun Cho, Hyung

    2009-11-01

    Amorphous InGaZnO (IGZO) thin films were grown using RF sputtering deposition at room temperature and their corresponding dielectric functions were measured. In order to reduce defects and increase carrier concentrations, we examined the effect of forming gas annealing and ion implantation. The band gap energy increased with increasing forming gas annealing temperature. We implanted the IGZO thin films with F- ions in order to decrease oxygen vacancies. For comparison, we also implanted InO- ions. Transmission electron microscopy showed that the amorphous phase undergoes transformation to a nanocrystalline phase due to annealing. We also observed InGaZnO4 nanocrystals having an In-(Ga/Zn) superlattice structure. As the annealing temperature increased, the optical gap energy increased due to crystallization. After annealing, we observed an oxygen-vacancy-related 1.9 eV peak for both unimplanted and InO-implanted samples. However, F- ion implantation substantially reduced the amplitude of the 1.9 eV peak, which disappeared completely at a F fluence of 5×1015 cm-2. We observed other defect-related peaks at 3.6 and 4.2 eV after annealing, which also disappeared after F implantation.

  14. Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.

    PubMed

    Schroeder, Melanie; Eames, Christopher; Tompsett, David A; Lieser, Georg; Islam, M Saiful

    2013-12-21

    Lithium iron fluoride materials have attracted recent interest as cathode materials for lithium ion batteries. The electrochemical properties of the high energy density Li(x)FeF6 (x = 2, 3, 4) materials have been evaluated using a combination of potential-based and DFT computational methods. Voltages of 6.1 V and 3.0 V are found for lithium intercalation from Li2FeF6 to α-Li3FeF6 and α-Li3FeF6 to Li4FeF6 respectively. The calculated density of states indicate that Li2FeF6 possesses metallic states that become strongly insulating after lithium intercalation to form α-Li3FeF6. The large energy gain associated with this metal-insulator transition is likely to contribute to the associated large voltage of 6.1 V. Molecular dynamics simulations of lithium diffusion in α-Li3FeF6 at typical battery operating temperatures indicate high lithium-ion mobility with low activation barriers. These results suggest the potential for good rate performance of lithium iron fluoride cathode materials.

  15. Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth

    NASA Astrophysics Data System (ADS)

    Cemin, Felipe; Tsukamoto, Makoto; Keraudy, Julien; Antunes, Vinícius Gabriel; Helmersson, Ulf; Alvarez, Fernando; Minea, Tiberiu; Lundin, Daniel

    2018-06-01

    High power impulse magnetron sputtering (HiPIMS) has already demonstrated great potential for synthesizing the high-energy crystalline phase of titanium dioxide (rutile TiO2) due to large quantities of highly energetic ions present in the discharge. In this work, it is shown that the metastable anatase phase can also be obtained by HiPIMS. The required deposition conditions have been identified by systematically studying the phase formation, microstructure and chemical composition as a function of mode of target operation as well as of substrate temperature, working pressure, and peak current density. It is found that films deposited in the metal and transition modes are predominantly amorphous and contain substoichiometric TiO x compounds, while in compound mode they are well-crystallized and present only O2‑ ions bound to Ti4+, i.e. pure TiO2. Anatase TiO2 films are obtained for working pressures between 1 and 2 Pa, a peak current density of ~1 A cm‑2 and deposition temperatures lower than 300 °C. Rutile is favored at lower pressures (<1 Pa) and higher peak current densities (>2 A cm‑2), while amorphous films are obtained at higher pressures (5 Pa). Microstructural characterization of selected films is also presented.

  16. Molecular cascade Auger decays following Si KL23L23 Auger transitions in SiCl4

    NASA Astrophysics Data System (ADS)

    Suzuki, I. H.; Bandoh, Y.; Mochizuki, T.; Fukuzawa, H.; Tachibana, T.; Yamada, S.; Takanashi, T.; Ueda, K.; Tamenori, Y.; Nagaoka, S.

    2016-08-01

    Cascade Si LVV Auger electron spectra at the photoexcitation of the Si 1s electron in a SiCl4 molecule have been measured using an electron spectrometer combined with monochromatized undulator radiation. In the instance of the resonant excitation of the Si 1s electron into the vacant molecular orbital a peak with high yield is observed at about 106 eV, an energy considerably higher than the energies of the normal LVV Auger electron. This peak is presumed to originate from the participator decay from the state with two 2p holes and one excited electron into the state with one 2p hole and one valence hole. Following the normal KL23L23 Auger transition, the cascade spectrum shows several peak structures, e.g. 63 eV, 76 eV and 91 eV. The peak at 91 eV is probably assigned to the second step Auger decay into states having a 2p hole together with two valence holes. These findings are similar to experimental results of SiF4. The former two peaks (63 eV and 76 eV) are ascribed to Auger transitions of Si atomic ions produced through molecular ion dissociation after the first step cascade decays, although the peak heights of atomic ions are lower than those of SiF4.

  17. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.

  18. TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis

    2012-08-10

    Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to bemore » determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.« less

  19. NiF2 Cathodes For Rechargeable Na Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Halpert, Gerald

    1992-01-01

    Use of NiF2 cathodes in medium-to-high-temperature rechargeable sodium batteries increases energy and power densities by 25 to 30 percent without detracting from potential advantage of safety this type of sodium battery offers over sodium batteries having sulfur cathodes. High-energy-density sodium batteries with metal fluoride cathodes used in electric vehicles and for leveling loads on powerlines.

  20. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

Top