Sample records for f2alpha regulates cytokine

  1. Acetylsalicylic acid regulates MMP-2 activity and inhibits colorectal invasion of murine B16F0 melanoma cells in C57BL/6J mice: effects of prostaglandin F(2)alpha.

    PubMed

    Tsai, Chin-Shaw Stella; Luo, Shue-Fen; Ning, Chung-Chu; Lin, Chien-Liang; Jiang, Ming-Chung; Liao, Ching-Fong

    2009-08-01

    Epidemiological studies indicate that acetylsalicylic acid may reduce the risk of mortality due to colon cancers. Metastasis is the major cause of cancer death. Matrix metalloproteinases (MMPs) play important roles in tumor invasion regulation, and prostaglandin F(2)alpha (PGF(2)alpha) is a key stimulator of MMP production. Thus, we investigated whether acetylsalicylic acid regulated MMP activity and the invasion of cancer cells and whether PGF(2)alpha attenuated acetylsalicylic acid-inhibited invasion of cancer cells. Gelatin-based zymography assays showed that acetylsalicylic acid inhibited the MMP-2 activity of B16F0 melanoma cells. Matrigel-based chemoinvasion assays showed that acetylsalicylic acid inhibited the invasion of B16F0 cells. Acetylsalicylic acid can inhibit PGF(2)alpha synthesis and PGF(2)alpha is a key stimulator of MMP-2 production. Our data showed that PGF(2)alpha treatment attenuated the acetylsalicylic acid-inhibited invasion of B16F0 cells. In animal experiments, acetylsalicylic acid reduced colorectal metastasis of B16F0 cells in C57BL/6J mice by 44%. Our results suggest that PGF(2)alpha is a therapeutic target for metastasis inhibition and acetylsalicylic acid may possess anti-metastasis ability.

  2. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cytokine dysregulation in AIDS: in vivo overexpression of mRNA of tumor necrosis factor-alpha and its correlation with that of the inflammatory cytokine GRO.

    PubMed

    Dezube, B J; Pardee, A B; Beckett, L A; Ahlers, C M; Ecto, L; Allen-Ryan, J; Anisowicz, A; Sager, R; Crumpacker, C S

    1992-01-01

    The human immunodeficiency virus establishes an intimate interaction with the immune system. The virus can use cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (Il-1), to regulate its own expression by modifying the normal immunoregulatory network. We demonstrate that mRNA of the cytokine TNF-alpha from peripheral blood mononuclear cells is overexpressed in virtually all patients with AIDS who do not have active opportunistic infections compared with uninfected volunteers (p < 0.0001). This overexpression correlates with elevated mRNA levels of the recently discovered GRO (p < 0.05), a cytokine involved in the inflammatory response.

  4. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes.

    PubMed

    Zellmer, Sebastian; Schmidt-Heck, Wolfgang; Godoy, Patricio; Weng, Honglei; Meyer, Christoph; Lehmann, Thomas; Sparna, Titus; Schormann, Wiebke; Hammad, Seddik; Kreutz, Clemens; Timmer, Jens; von Weizsäcker, Fritz; Thürmann, Petra A; Merfort, Irmgard; Guthke, Reinhard; Dooley, Steven; Hengstler, Jan G; Gebhardt, Rolf

    2010-12-01

    The cellular basis of liver regeneration has been intensely investigated for many years. However, the mechanisms initiating hepatocyte "plasticity" and priming for proliferation are not yet fully clear. We investigated alterations in gene expression patterns during the first 72 hours of C57BL/6N mouse hepatocyte culture on collagen monolayers (CM), which display a high basal frequency of proliferation in the absence of cytokines. Although many metabolic genes were down-regulated, genes related to mitogen-activated protein kinase (MAPK) signaling and cell cycle were up-regulated. The latter genes showed an overrepresentation of transcription factor binding sites (TFBS) for ETF (TEA domain family member 2), E2F1 (E2F transcription factor 1), and SP-1 (Sp1 transcription factor) (P < 0.001), all depending on MAPK signaling. Time-dependent increase of ERK1/2 phosphorylation occurred during the first 48 hours (and beyond) in the absence of cytokines, accompanied by an enhanced bromodeoxyuridine labeling index of 20%. The MEK inhibitor PD98059 blunted these effects indicating MAPK signaling as major trigger for this cytokine-independent proliferative response. In line with these in vitro findings, liver tissue of mice challenged with CCl(4) displayed hepatocytes with intense p-ERK1/2 staining and nuclear SP-1 and E2F1 expression. Furthermore, differentially expressed genes in mice after partial hepatectomy contained overrepresented TFBS for ETF, E2F1, and SP-1 and displayed increased expression of E2F1. Cultivation of murine hepatocytes on CM primes cells for proliferation through cytokine-independent activation of MAPK signaling. The transcription factors ETF, E2F1, and SP-1 seem to play a pronounced role in mediating proliferation-dependent differential gene expression. Similar events, but on a shorter time-scale, occur very early after liver damage in vivo. Copyright © 2010 American Association for the Study of Liver Diseases.

  5. Effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression in primary cultures of normal rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraud, B.; Balavoine, S.; Feldmann, G.

    1996-04-01

    While the effects of insulin, dexamethasone and cytokines on {alpha}{sub 1}-acid glycoprotein gene expression have been investigated in various hepatoma cell lines, the individual and combined effects of these components on the expression of this gene have been rarely studied in cultured normal rat hepatocytes. In this cell model, we have shown that mRNA levels of {alpha}{sub 1}-acid glycoprotein were not decreased at least during the first 24 h of culture under basal conditions. During these short-term cultures, the expression of {alpha}{sub 1}-acid glycoprotein in normal hepatocytes showed a high degree of responsiveness to dexamethasone alone (20-fold increase) and tomore » dexamethasone associated with various cytokines (interleukin-1{beta}, interleukin-6 and tumor necrosis factor {alpha}) with a 40 to 100-fold increase depending on the cytokine. Insulin alone did not modify {alpha}{sub 1}-acid glycoprotein mRNA; however, this hormone exerted a positive effect (about 50% increase) in the presence of dexamethasone or dexamethasone with cytokines. These results indicate that the regulation of {alpha}{sub 1}-acid glycoprotein in cultured normal rat hepatocytes presents major differences when compared to reported observations in rat hepatoma cell lines. 49 refs., 2 figs., 2 tabs.« less

  6. JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells

    PubMed Central

    Wolf, Alexandra; Eulenfeld, René; Gäbler, Karoline; Rolvering, Catherine; Haan, Serge; Behrmann, Iris; Denecke, Bernd; Haan, Claude; Schaper, Fred

    2013-01-01

    The identification of a constitutively active JAK2 mutant, namely JAK2-V617F, was a milestone in the understanding of Philadelphia chromosome-negative myeloproliferative neoplasms. The JAK2-V617F mutation confers cytokine hypersensitivity, constitutive activation of the JAK-STAT pathway, and cytokine-independent growth. In this study we investigated the mechanism of JAK2-V617F-dependent signaling with a special focus on the activation of the MAPK pathway. We observed JAK2-V617F-dependent deregulated activation of the multi-site docking protein Gab1 as indicated by constitutive, PI3K-dependent membrane localization and tyrosine phosphorylation of Gab1. Furthermore, we demonstrate that PI3K signaling regulates MAPK activation in JAK2-V617F-positve cells. This cross-regulation of the MAPK pathway by PI3K affects JAK2-V617F-specific target gene induction, erythroid colony formation, and regulates proliferation of JAK2-V617F-positive patient cells in a synergistically manner. PMID:24069558

  7. [Cardiovascular effects of prostaglandin F 2 alpha in early pregnancy].

    PubMed

    Retzke, U; Schwarz, R

    1976-01-01

    In 10 normotensive healthy early pregnant women cardiovascular studies were done before, during and after the intravenous administration of prostaglandin F2alpha with the method of quantitative sphygmometry. Arterial blood pressure was measured graphically with an automatic sphygmomanometer unit. Velocity of aortic pulse wave was determined directly on the principle of exact electronic timing. Prostaglandin F2alpha was infused with electric pump in the dosage of 6, 5, 13 and 26 mug per minute for 30 minutes in each case. Arterial blood pressure is nearly constant. Heart rate, the elasticity coefficient of the arteries E' and total peripheral resistance decreases significantly. Stroke volume, cardiac output, work and power of the heart increases significantly. Nevertheless there are no contra-indications on the part of cardiovascular system for using prostaglandin F2alpha for induction of abortion

  8. Receptor-selective retinoids implicate retinoic acid receptor alpha and gamma in the regulation of bmp-2 and bmp-4 in F9 embryonal carcinoma cells.

    PubMed

    Rogers, M B

    1996-01-01

    The effect of retinoids on malignant cells and embryos indicates that retinoids influence the expression of growth factors or alter the response of cells to growth factors. The bone morphogenetic proteins, Bmp-2 and Bmp-4, are candidates for such growth factors because retinoic acid (RA) treatment of F9 embryonal carcinoma cells induced Bmp-2 mRNA, while simultaneously repressing Bmp-4 levels. Also, recombinant Bmp-2 affected the growth and differentiation of these cells. Regulation of each gene was concentration dependent and required continuous RA treatment. The short half-lives of the Bmp-2 (75 +/- 11 min) and Bmp-4 (70 +/- 4 min) mRNAs suggest that their abundance is primarily controlled at the transcriptional level. To determine which RA receptor (RAR) controls bmp-2 and bmp-4 expression, F9 cells were exposed to various receptor-selective retinoids. RAR alpha- and gamma-selective retinoids induced Bmp-2 and repressed Bmp-4 equally as well as all-trans RA. In contrast, a RAR beta-selective retinoid had little effect on Bmp-2 induction but repressed Bmp-4. A RAR alpha-selective antagonist inhibited all-trans RA stimulation of Bmp-2, although not as dramatically as a RAR beta gamma-selective antagonist. No differences were observed between Bmp levels in all-trans RA and 9-cis RA-treated cells, indicating that the RXRs play little part in controlling these genes. The results are consistent with RAR alpha and gamma-controlled Bmp-2 and Bmp-4 regulation.

  9. TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k

    NASA Technical Reports Server (NTRS)

    Li, Yi-Ping; Lecker, Stewart H.; Chen, Yuling; Waddell, Ian D.; Goldberg, Alfred L.; Reid, Michael B.

    2003-01-01

    In some inflammatory diseases, TNF-alpha is thought to stimulate muscle catabolism via an NF-kappaB-dependent process that increases ubiquitin conjugation to muscle proteins. The transcriptional mechanism of this response has not been determined. Here we studied the potential role of UbcH2, a ubiquitin carrier protein and homologue of murine E220k. We find that UbcH2 is constitutively expressed by human skeletal and cardiac muscles, murine limb muscle, and cultured myotubes. TNF-alpha stimulates UbcH2 expression in mouse limb muscles in vivo and in cultured myotubes. The UbcH2 promoter region contains a functional NF-kappaB binding site; NF-kappaB binding to this sequence is increased by TNF-alpha stimulation. A dominant negative inhibitor of NF-kappaB activation blocks both UbcH2 up-regulation and the increase in ubiquitin-conjugating activity stimulated by TNF-alpha. In extracts from TNF-alpha-treated myotubes, ubiquitin-conjugating activity is limited by UbcH2 availability; activity is inhibited by an antiserum to UbcH2 or a dominant negative mutant of UbcH2 and is enhanced by wild-type UbcH2. Thus, UbcH2 up-regulation is a novel response to TNF-alpha/NF-kappaB signaling in skeletal muscle that appears to be essential for the increased ubiquitin conjugation induced by this cytokine.

  10. Bimatoprost and prostaglandin F(2 alpha) selectively stimulate intracellular calcium signaling in different cat iris sphincter cells.

    PubMed

    Spada, Clayton S; Krauss, Achim H-P; Woodward, David F; Chen, June; Protzman, Charles E; Nieves, Amelia L; Wheeler, Larry A; Scott, David F; Sachs, George

    2005-01-01

    Bimatoprost is a synthetic analog of prostaglandin F(2 alpha) ethanolamide (prostamide F(2 alpha)), and shares a pharmacological profile consistent with that of the prostamides. Like prostaglandin F(2 alpha) carboxylic acid, bimatoprost potently lowers intraocular pressure in dogs, primates and humans. In order to distinguish its mechanism of action from prostaglandin F(2 alpha), fluorescence confocal microscopy was used to examine the effects of bimatoprost, prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) on calcium signaling in resident cells of digested cat iris sphincter, a tissue which exhibits contractile responses to both agonists. Constant superfusion conditions obviated effective conversion of bimatoprost. Serial challenge with 100 nM bimatoprost and prostaglandin F(2 alpha) consistently evoked responses in different cells within the same tissue preparation, whereas prostaglandin F(2 alpha) and 17-phenyl prostaglandin F(2 alpha) elicited signaling responses in the same cells. Bimatoprost-sensitive cells were consistently re-stimulated with bimatoprost only, and prostaglandin F(2 alpha) sensitive cells could only be re-stimulated with prostaglandin F(2 alpha). The selective stimulation of different cells in the same cat iris sphincter preparation by bimatoprost and prostaglandin F(2 alpha), along with the complete absence of observed instances in which the same cells respond to both agonists, strongly suggests the involvement of distinct receptors for prostaglandin F(2 alpha) and bimatoprost. Further, prostaglandin F(2 alpha) but not bimatoprost potently stimulated calcium signaling in isolated human embryonic kidney cells stably transfected with the feline- and human-prostaglandin F(2 alpha) FP-receptor and in human dermal fibroblast cells, and only prostaglandin F(2 alpha) competed with radioligand binding in HEK-feFP cells. These studies provide further evidence for the existence of a bimatoprost-sensitive receptor that is distinct from

  11. Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma.

    PubMed

    Wallace, Alison E; Sales, Kurt J; Catalano, Roberto D; Anderson, Richard A; Williams, Alistair R W; Wilson, Martin R; Schwarze, Jurgen; Wang, Hongwei; Rossi, Adriano G; Jabbour, Henry N

    2009-07-15

    The prostaglandin F(2alpha) (PGF(2alpha)) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF(2alpha) signaling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue compared with normal endometrium and localized to glandular epithelium, endothelium, and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100 nmol/L PGF(2alpha) increased CXCL1 promoter activity, mRNA, and protein expression, and these effects were abolished by cotreatment of cells with FP antagonist or chemical inhibitors of Gq, epidermal growth factor receptor, and extracellular signal-regulated kinase. Similarly, CXCL1 was elevated in response to 100 nmol/L PGF(2alpha) in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalized to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF(2alpha)-treated FPS cells stimulated neutrophil chemotaxis, which could be abolished by CXCL1 protein immunoneutralization of the conditioned media or antagonism of CXCR2. Finally, xenograft tumors in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared with tumors arising from wild-type cells or following treatment of mice bearing FPS tumors with CXCL1-neutralizing antibody. In conclusion, our results show a novel PGF(2alpha)-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis.

  12. C/EBP beta regulation of the tumor necrosis factor alpha gene.

    PubMed Central

    Pope, R M; Leutz, A; Ness, S A

    1994-01-01

    Activated macrophages contribute to chronic inflammation by the secretion of cytokines and proteinases. Tumor necrosis factor alpha (TNF alpha) is particularly important in this process because of its ability to regulate other inflammatory mediators in an autocrine and paracrine fashion. The mechanism(s) responsible for the cell type-specific regulation of TNF alpha is not known. We present data to show that the expression of TNF alpha is regulated by the transcription factor C/EBP beta (NF-IL6). C/EBP beta activated the TNF alpha gene promoter in cotransfection assays and bound to it at a site which failed to bind the closely related protein C/EBP alpha. Finally, a dominant-negative version of C/EBP beta blocked TNF alpha promoter activation in myeloid cells. Our results implicate C/EBP beta as an important regulator of TNF alpha by myelomonocytic cells. Images PMID:7929820

  13. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mameli, Giuseppe; Astone, Vito; Khalili, Kamel

    Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1more » promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNF{alpha}, interferon-{gamma}, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-{beta} is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNF{alpha} had the ability to activate the ERVWE1 promoter through an NF-{kappa}B-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNF{alpha} enhances the binding of the p65 subunit of NF-{kappa}B, to its cognate site within the promoter. The effect of TNF{alpha} is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNF{alpha}-mediated induction of syncytin-1 in multiple sclerosis.« less

  14. Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression.

    PubMed

    Liang, Yanbin; Li, Chen; Guzman, Victor M; Evinger, Albert J; Protzman, Charles E; Krauss, Achim H-P; Woodward, David F

    2003-07-18

    Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog

  15. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling.

    PubMed

    Feener, Edward P; Rosario, Felicia; Dunn, Sarah L; Stancheva, Zlatina; Myers, Martin G

    2004-06-01

    Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr(221) and Tyr(570) as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by cytokine treatment of cultured cells, and this stimulation required Jak2 kinase activity. While we observed no gross alteration of signaling upon mutation of Tyr(221), Tyr(570) lies within the inhibitory JH2 domain of Jak2, and mutation of this site (Jak2(Y570F)) results in constitutive Jak2-dependent signaling in the absence of cytokine stimulation and enhances and prolongs Jak2 activation during cytokine stimulation. Mutation of Tyr(570) does not alter the ability of SOCS3 to bind or inhibit Jak2, however. Thus, the phosphorylation of Tyr(570) in vivo inhibits Jak2-dependent signaling independently of SOCS3-mediated inhibition. This Tyr(570)-dependent mechanism of Jak2 inhibition likely represents an important mechanism by which cytokine function is regulated.

  16. [Intra-amniotic administration of prostaglandin F 2 alpha, 12-methyl-prostaglandin F 2 alpha and hypertonic sodium chloride solution for induction of abortion in second-trimester pregnancy].

    PubMed

    Persianinov, L S; Chernukha, E A

    1975-01-01

    The authors had performed comperative studies of the effect of the induction of abortion in late pregnancy according to the medical indications by intra-amniotic injection of 20% hypertonic NaCl saline in 26 pregnant patients, of 25 mg prostaglandin F2alpha with 6 hours' intervals in 25 patients, a single dose injection of 40 mg PGF2alpha in 27 cases and single dose injection of 2,5 mg 15-me-PGF2alpha given to 25 patients. The highest success rate was obtained with the single dose injection of 2,5 mg 15-me-PGF2alpha and the lowest success rate was obtained with 25 mg prostaglandin F2alpha with 6 hours' intervals. Despite of rather high procentage of success rate in using the hypertonic NaCl saline, this method is more dangerous in the moment of the injection of saline and complications during the abortion (water intoxication, necrosis of tissue, coagulation defects and other). The most frequently incountered side-effects in using PGs were vomiting and diarhea. Histologic examinations of the placenta revealed massive bleedings, at frequency rate being the same for prostaglandins and the hypertonic saline. The degree of isoimmunisation was lower with prostaglandins than with hypertonic NaCl saline, despite of the late dates of pregnancy termination. The intro-amniotic injection of the small volume solution of 15-me-PGF2alpha or PGF2alpha is more simpler and easier from the technical point of view than any methodic recommended for using saline and at the same time it is more effective.

  17. Cytokine production in peripheral blood cells of patients with differentiated thyroid cancer: elevated Th2/Th9 cytokine production before and reduced Th2 cytokine production after radioactive iodine therapy.

    PubMed

    Simonovic, Snezana Zivancevic; Mihaljevic, Olgica; Majstorovic, Ivana; Djurdjevic, Predrag; Kostic, Irena; Djordjevic, Olivera Milosevic; Teodorovic, Ljiljana Mijatovic

    2015-01-01

    Cytokines play a key role in the regulation of cells of the immune system and also have been implicated in the pathogenesis of malignant diseases. The aim of this study was to evaluate cytokine profiles in patients with differentiated thyroid cancer (DTC) before and 7 days after radioactive iodine (131-I) therapy. Cytokine levels were determined in supernatants obtained from phytohemagglutinin-stimulated whole blood cultures of 13 patients with DTC and 13 control subjects. The concentrations of selected cytokines: Th1-interferon gamma (IFN-γ), interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α); Th2-interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 13 (IL-13) and interleukin 10 (IL-10); Th9-interleukin-9 (IL-9); and Th17-interleukin 17 (IL-17A) were measured using multiplex cytokine detection systems for Human Th1/Th2/Th9/Th17/Th22. We have shown that peripheral blood cells of DTC patients produce significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. The 131-I therapy led to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Despite this, the calculated cytokine ratios (Th1/Th2) in DTC patients before and 7 days after 131-I therapy were not different from those in healthy subjects. DTC patients have significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. There is no influence of hypothyroidism or stage of disease on cytokine production in DTC patients before 131-I therapy. The radioactive 131-I therapy leads to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Additional studies are needed to determine the significance of these findings.

  18. Expression of biologically active human interferon alpha 2 in aloe vera

    USDA-ARS?s Scientific Manuscript database

    We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...

  19. Prostaglandin F(2alpha) stimulates tyrosine phosphorylation of phospholipase C-gamma1.

    PubMed

    Husain, Shahid; Jafri, Farahdiba

    2002-10-11

    In this study, we investigated the ability of prostaglandin F(2alpha) (PGF(2alpha)) to induce tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) in cat iris sphincter smooth muscle (CISM) cells. PGF(2alpha)(1 microM) stimulated PLC-gamma1 tyrosine phosphorylation in a time- and dose-dependent manner with a maximum increase of 3-fold at 0.5min. The protein tyrosine kinase inhibitors, genistein, and tyrphostin A-25, blocked the stimulatory effects of PGF(2alpha), suggesting involvement of protein tyrosine kinase activity in the physiological actions of the PGF(2alpha). Furthermore, PGF(2alpha)-induced p42/p44 MAP kinase activation was also completely blocked by protein tyrosine kinase inhibitors. In summary, these findings show that PGF(2alpha) stimulates tyrosine phosphorylation of PLC-gamma1 in CISM cells and indicate that PGF(2alpha)-stimulated tyrosine phosphorylation is responsible for an early signal transduction event.

  20. A cytokine axis regulates elastin formation and degradation

    PubMed Central

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  1. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thusmore » releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.« less

  2. Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease.

    PubMed

    Cavagnero, Kellen; Doherty, Taylor A

    2017-08-01

    The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.

  3. Dietary (n-3) fatty acids reduce plasma F2-isoprostanes but not prostaglandin F2alpha in healthy humans.

    PubMed

    Nälsén, Cecilia; Vessby, Bengt; Berglund, Lars; Uusitupa, Matti; Hermansen, Kjeld; Riccardi, Gabrielle; Rivellese, Angela; Storlien, Len; Erkkilä, Arja; Ylä-Herttuala, Seppo; Tapsell, Linda; Basu, Samar

    2006-05-01

    (n-3) Fatty acids are unsaturated and are therefore easily subject to oxidization; however, they have several beneficial health effects, which include protection against cardiovascular diseases. The aim of this study was to investigate whether (n-3) fatty acids, with a controlled fat quality in the background diet, affect nonenzymatic and enzymatic lipid peroxidation and antioxidant status in humans. A total of 162 men and women in a multicenter study (The KANWU study) were randomly assigned to a diet containing a high proportion of saturated fatty acids or monounsaturated fatty acids (MUFA) for 3 mo. Within each diet group, there was a second random assignment to supplementation with fish-oil capsules [3.6 g (n-3) fatty acids/d] or placebo. Biomarkers of nonenzymatic and enzymatic lipid peroxidation in vivo were determined by measuring 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) and prostaglandin F(2alpha) (PGF(2alpha)) concentrations in plasma at baseline and after 3 mo. Antioxidant status was determined by measuring plasma antioxidant capacity with an enhanced chemiluminescence assay. The plasma 8-iso-PGF(2alpha) concentration was significantly decreased after 3 mo of supplementation with (n-3) fatty acids (P = 0.015), whereas the PGF(2alpha) concentration was not affected. The antioxidant status was not affected by supplementation of (n-3) fatty acids, but was improved by the background diet with a high proportion of MUFA. We conclude that supplementation with (n-3) fatty acids decreases nonenzymatic free radical-catalyzed isoprostane formation, but does not affect cyclooxygenase-mediated prostaglandin formation.

  4. Tumor Necrosis Factor-Alpha Stimulates Cytokine Expression and Transient Sensitization of Trigeminal Nociceptive Neurons

    PubMed Central

    Durham, Zachary L.; Hawkins, Jordan L.; Durham, Paul L.

    2016-01-01

    Objective Elevated levels of tumor necrosis factor-alpha (TNF-α) in the capsule of the temporomandibular joint (TMJ) are implicated in the underlying pathology of temporomandibular disorders (TMD). TMD are a group of conditions that result in pain in the TMJ and/or muscles of mastication, and are associated with significant social and economic burdens. The goal of this study was to investigate the effect of elevated TNF-α levels in the TMJ capsule on nocifensive behavioral response to mechanical stimulation of trigeminal neurons and regulation of cytokines within the trigeminal ganglion. Design Male Sprague-Dawley rats were injected bilaterally in the TMJ capsule with TNF-α and changes in nocifensive head withdrawal responses to mechanical stimulation of cutaneous tissue directly over the capsule was determined using von Frey filaments. Cytokine levels in trigeminal ganglia were determined by protein array analysis at several time points post injection and correlated to nocifensive behavior. Results TNF-α caused a significant increase in the average number of nocifensive responses when compared to naive and vehicle treated animals 2 hours post injection, but levels returned to control levels at 24 hours. Based on array analysis, the levels of eight cytokines were significantly elevated above vehicle control levels at 2 hours following TNF-α injection, but all eight had returned to the vehicle control levels after 24 hours. Conclusions Our findings provide evidence that elevated levels of TNF-α in the joint capsule, which is reported to occur in TMD, promotes nociception in trigeminal ganglia neurons via a mechanism that temporally correlates with differential regulation of several cytokines. PMID:27836101

  5. The role of cyclooxygenase-2 and inflammatory cytokines in pain induction of herniated lumbar intervertebral disc.

    PubMed

    Miyamoto, H; Saura, R; Harada, T; Doita, M; Mizuno, K

    2000-04-01

    Lumbar disc herniation (LDH) is the disease which is the major cause of radiculopathy. In terms of the pathogenesis of disease, it is reported that prostaglandinE2 (PGE2) plays an important role to induce radiculopathy. Arachidonate cascade, which is the process of PGE2 synthesis, is mainly regulated by two kinds of enzymes, phospholipaseA2 (PLA2) and cyclooxy genase (COX). Previously, PLA2 was recognized as the rate-limiting enzyme of this cascade, and some authors reported the clinical significance of PLA2 at the site of LDH concerning the radicular pain. Recently, COX was elucidated to consist of 2 types of isoform, a constitutive form of COX-1 and an inducible form of COX-2. COX-2 has been focused as a key enzyme to regulate PGE2 synthesis and plays an important role in inflammation, because COX-2 was induced in many types of cells by the stimulation of inflammatory cytokines such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha). However, it is not fully discussed whether or not, COX-2 is induced in lumbar disc tissue and if it plays a significant role in the pathogenesis of LDH. To clarify the role of COX-2 in the pathomechanism of radiculopathy of LDH, we have investigated the expression of COX-2, IL-1 beta and TNF alpha in herniated lumbar disc tissue. Immunohistologically, they were detected in the cytosol of chondrocytes constituting the disc tissue. RT-PCR showed that herniated lumbar disc-derived cells expressed mRNA of COX-2, IL-1 beta and TNF alpha in the presence of inflammatory cytokines in vitro. The disc-derived cells also produced much PGE2 by stimulating of inflammatory cytokines at the same time and this PGE2 production was distinctly suppressed by a selective inhibitor of COX-2, 6-methoxy-2-naphtyl acetic acids (6MNA). These results suggest that COX-2 and inflammatory cytokines might play a causative role in the radiculopathy of LDH through upregulating PGE2 synthesis.

  6. F-prostanoid receptor regulation of fibroblast growth factor 2 signaling in endometrial adenocarcinoma cells.

    PubMed

    Sales, Kurt J; Boddy, Sheila C; Williams, Alistair R W; Anderson, Richard A; Jabbour, Henry N

    2007-08-01

    Prostaglandin (PG) F(2alpha) is a potent bioactive lipid in the female reproductive tract, and exerts its function after coupling with its heptahelical G-protein-coupled receptor [F-series-prostanoid (FP) receptor] to initiate cell signaling and target gene transcription. In the present study, we found elevated expression of fibroblast growth factor (FGF) 2, FGF receptor 1 (FGFR1), and FP receptor, colocalized within the neoplastic epithelial cells of endometrial adenocarcinomas. We investigated a role for PGF(2alpha)-FP receptor interaction in modulating FGF2 expression and signaling using an endometrial adenocarcinoma cell line stably expressing the FP receptor to the levels detected in endometrial adenocarcinomas (FPS cells) and endometrial adenocarcinoma tissue explants. PGF(2alpha)-FP receptor activation rapidly induced FGF2 mRNA expression, and elevated FGF2 protein expression and secretion into the culture medium in FPS cells and endometrial adenocarcinoma explants. The effect of PGF(2alpha) on the expression and secretion of FGF2 could be abolished by treatment of FPS cells and endometrial tissues with an FP receptor antagonist (AL8810) and inhibitor of ERK (PD98059). Furthermore, we have shown that FGF2 can promote the expression of FGF2 and cyclooxygenase-2, and enhance proliferation of endometrial adenocarcinoma cells via the FGFR1 and ERK pathways, thereby establishing a positive feedback loop to regulate neoplastic epithelial cell function in endometrial adenocarcinomas.

  7. Plasma Cytokine Levels in Astronauts Before and after Spaceflight

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Aggarwal, Barat B.; Feiveson, Alan H.; Hammond, Dinne K.; Castro, Victoria A.; Stowe, Raymond; Pierson Duane L.

    2008-01-01

    Space flight is a unique experience and results in adverse effects on human physiology. Changes have been reported in various physiological systems, including musculoskeletal, neurovestibular, cardiovascular, endocrine, immunity and increased latent viral reactivation as well as others. The potential mechanisms behind these changes are not fully understood. Various cytokines such as IL-1, IL-6, TNF and chemokines have been linked to several of these changes, like muscle loss, bone loss, fatigue, sleep deprivation and viral reactivation. Eighteen astronauts (15 M and 3 F) from 8 spaceflights and 10 healthy age-matched adults (6 M, 4 F) were included in the present study. A panel of 21 plasma cytokines was analyzed with the Luminex 100 to measure the cytokines in these subjects 10 days before the flight (L-10), 2-3 hour after landing (R+0), 3 days after landing (R+3), and at their annual medical exam (AME). IL-10, IL-1, IFN-alpha, MCP-1 and IP-10 increased significantly at L-10 as compared with AME levels. IL-6 and IFN-alpha showed significant increases at R + 0 (P less than .05) over their baseline levels (AME). Cytokine levels at R+3 were not significantly different from R+0. IL-10 and IL-6 have been reported to increase in during viral reactivation. These data show that there was a shift from TH1 to TH2 cytokines L-10 and R+0. We also studied viral reactivation in 10 of the 18 subjects included in the present study before, during, and after space flight. Increased salivary varicella zoster virus (VZV) shedding in these subjects was found either during or after the mission. VZV shedding correlated with the increased levels of cytokines especially IL-10 and IL-6. Overall, our data suggests that cytokines may play an important role in regulating adverse changes in astronauts, and further studies are needed to fully understand the mechanism.

  8. Th1, Th2, and Th17 Cytokine Involvement in Thyroid Associated Ophthalmopathy

    PubMed Central

    Shen, Jie; Li, Zhangfang; Li, Wenting; Ge, Ying; Xie, Min; Lv, Meng; Fan, Yanfei; Chen, Zhi; Zhao, Defu; Han, Yajuan

    2015-01-01

    To determine serum cytokine profiles in Graves' disease (GD) patients with or without active and inactive thyroid associated ophthalmopathy (TAO), we recruited 65 subjects: 10 GD only (without TAO), 25 GD + active TAO, 20 GD + TAO, and 10 healthy controls. Liquid chip assay was used to measure serum Th1/Th2/Th17 cytokines including IFN-γ (interferon-gamma), TNF-α (tumor necrosis factor-alpha), IL-1α (interleukin-1 alpha), IL-1Ra (IL-1 receptor antagonist), IL-2, IL-4, IL-6, and IL-17 and two chemokines: RANTES (regulated upon activation, normal T cell expressed and secreted) and IP-10 (IFN-γ-induced protein 10). Serum levels of TSH (thyroid stimulating hormone) receptor autoantibodies (TRAb) were measured using an enzyme linked immunosorbent assay. Compared with healthy controls, TAO patients showed significantly elevated serum levels of IFN-γ, TNF-α, IL-1α, IL-4, IL-6, IL-17, and IP-10. Comparing active and inactive TAO, serum Th1 cytokines IFN-γ and TNF-α were elevated in active TAO, while serum Th2 cytokine IL-4 was elevated in inactive TAO. Serum Th17 cytokine IL-17 was elevated in GD but reduced in both active and inactive TAO. A positive correlation was found between TRAb and IFN-γ, TNF-α, IL-1α, IL-2, IL-4, and IL-6. Taken together, serum Th1/Th2/Th17 cytokines and chemokines reflect TAO disease activity and may be implicated in TAO pathogenesis. PMID:26089587

  9. Th2 LCR is essential for regulation of Th2 cytokine genes and for pathogenesis of allergic asthma.

    PubMed

    Koh, Byung Hee; Hwang, Soo Seok; Kim, Joo Young; Lee, Wonyong; Kang, Min-Jong; Lee, Chun Geun; Park, Jung-Won; Flavell, Richard A; Lee, Gap Ryol

    2010-06-08

    Previous studies have shown that Th2 cytokine genes on mouse chromosome 11 are coordinately regulated by the Th2 locus control region (LCR). To examine the in vivo function of Th2 LCR, we generated CD4-specific Th2 LCR-deficient (cLCR KO) mice using Cre-LoxP recombination. The number of CD4 T cells in the cLCR KO mouse was comparable to that in wild-type mice. The expression of Th2 cytokines was dramatically reduced in in vitro-stimulated naïve CD4 T cells. Deletion of the LCR led to a loss of general histone H3 acetylation and histone H3-K4 methylation, and demethylation of DNA in the Th2 cytokine locus. Upon ovalbumin challenge in the mouse model of allergic asthma, cLCR KO mice exhibited marked reduction in the recruitment of eosinophils and lymphocytes in the bronchoalveolar lavage fluid, serum IgE level, lung airway inflammation, mucus production in the airway walls, and airway hyperresponsiveness. These results directly demonstrate that the Th2 LCR is critically important in the regulation of Th2 cytokine genes, in chromatin remodeling of the Th2 cytokine locus, and in the pathogenesis of allergic asthma.

  10. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    PubMed

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Tyrosine kinase inhibitors suppress prostaglandin F2alpha-induced phosphoinositide hydrolysis, Ca2+ elevation and contraction in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Abdel-Latif, A A

    1998-11-06

    We investigated the effects of the protein tyrosine kinase inhibitors, genistein, tyrphostin 47, and herbimycin on prostaglandin F2alpha- and carbachol-induced inositol-1,4,5-trisphosphate (IP3) production, [Ca2+]i mobilization and contraction in cat iris sphincter smooth muscle. Prostaglandin F2alpha and carbachol induced contraction in a concentration-dependent manner with EC50 values of 0.92 x 10(-9) and 1.75 x 10(-8) M, respectively. The protein tyrosine kinase inhibitors blocked the stimulatory effects of prostaglandin F2alpha, but not those evoked by carbachol, on IP3 accumulation, [Ca2+]i mobilization and contraction, suggesting involvement of protein tyrosine kinase activity in the physiological actions of the prostaglandin. Daidzein and tyrphostin A, inactive negative control compounds for genistein and tyrphostin 47, respectively, were without effect. Latanoprost, a prostaglandin F2alpha analog used as an antiglaucoma drug, induced contraction and this effect was blocked by genistein. Genistein (10 microM) markedly reduced (by 67%) prostaglandin F2alpha-stimulated increase in [Ca2+]i but had little effect on that of carbachol in cat iris sphincter smooth muscle cells. Vanadate, a potent inhibitor of protein tyrosine phosphatase, induced a slow gradual muscle contraction in a concentration-dependent manner with an EC50 of 82 microM and increased IP3 generation in a concentration-dependent manner with an EC50 of 90 microM. The effects of vanadate were abolished by genistein (10 microM). Wortmannin, a myosin light chain kinase inhibitor, reduced prostaglandin F2alpha- and carbachol-induced contraction, suggesting that the involvement of protein tyrosine kinase activity may lie upstream of the increases in [Ca2+]i evoked by prostaglandin F2alpha. Further studies aimed at elucidating the role of protein tyrosine kinase activity in the coupling mechanism between prostaglandin F2alpha receptor activation and increases in intracellular Ca2+ mobilization and

  12. Oral immunization with F4 fimbriae and CpG formulated with carboxymethyl starch enhances F4-specific mucosal immune response and modulates Th1 and Th2 cytokines in weaned pigs.

    PubMed

    Delisle, Benjamin; Calinescu, Carmen; Mateescu, Mircea Alexandru; Fairbrother, John Morris; Nadeau, Éric

    2012-01-01

    F4 fimbriae are a potential candidate for an oral subunit vaccine for prevention of post-weaning diarrhea in swine due to infection with F4-positive enterotoxigenic Escherichia coli. However, large quantities of F4 fimbriae are required to induce a specific antibody response. The aim of the present study was to evaluate the effect of supplementation of F4 fimbriae with Cytosine-phosphate-Guanosine-oligodeoxynucleotide (CpG-A D19) or with complete cholera toxin (CT) as adjuvants on the F4-specific antibody response and cytokine production in weaned pigs following oral administration of F4 fimbrial antigen formulated with Carboxymethyl Starch (CMS). Oral dosage forms of F4 fimbriae alone or supplemented with CpG-A D19 or with CT were formulated with CMS as monolithic tablets, obtained by direct compression, and administered to weaned pigs. Blood and faecal samples were collected to determine the systemic and mucosal immune status of animals at various times until necropsy. During necropsy, contents of the jejunum and ileum were collected for determination of mucosal F4 specific antibodies. Segments of jejunum and ileum were also used to measure mRNA cytokine production. The presence of CpG in the formulation of the fimbriae significantly increased F4-specific immunoglobulin (Ig) IgM and IgG levels in intestinal secretions, and enhanced Th1 (Interferon-gamma / IFN-γ, Tumour Necrosis Factor-alpha / TNF-α, Interleukin-12p40 / IL-12p40, IL-1β) and Th2 (IL-4, IL-6) cytokine production in intestinal tissues. Supplementation with CT did not result in induction of F4-specific antibodies in secretions, although a significant Th1 response (IFN-α, IFN-γ, IL-18) was detected in tissues. Neither F4-specific systemic antibodies, nor intestinally secreted IgA were detected throughout the immunization trial for all groups. CpG-A D19 appeared to be a promising adjuvant for an oral F4 subunit vaccine formulated with CMS excipient as monolithic tablets. This matrix afforded gastro

  13. Continuous extraovular administration of prostaglandin F2alpha for midtrimester abortion.

    PubMed

    Lauersen, N H; Wilson, K H

    1974-09-15

    Midtrimester abortion was successfully induced in 74 of 76 patients by a continuous extraovular administration of (PGF2alpha) prostaglandin F2alpha via a constant-infusion pump. 2 patients in the 13th-14th weeks of gestation failed to abort despite good uterine activity. The mean abortion time for successful inductions was 16.21 hours. Parous patients aborted somewhat faster than nulliparous patients, but the difference was not statistically significant. All patients were monitored throughout the abortion procedure, and uterine activity was calculated and analyzed. Uterine activity developed within 15 minutes of PGF2alpha instillation and showed the characteristic uterine response to PGs with a sharp rise in intrauterine tonus. The gastrointestinal side effects in this series were much less than those reported for intraamniotic instillation of PG, and there was good patient tolerance of the procedure. The main complication of extraovular administration of PGF2alpha for midtrimester abortion was endometritis, which occurred in 7 patients. The patients who developed endometritis had, as a group, longer abortion times (mean=28 hours). 3 patients with severe preeclampsia and intrauterine death in the third trimester also had successfully induced labor with extraovular administration of PGF2alpha. The method of PGF2alpha administration in the series was found to have a high success rate, good patient tolerance, and fewer side effects than when abortion was induced by intraamniotic instillation of PGF2alpha.

  14. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors.

    PubMed

    Jing, Xin; Infante, Jorge; Nachtman, Ronald G; Jurecic, Roland

    2008-09-01

    FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3 and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. FLRF was overexpressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF overexpression on EML cell differentiation into myeloerythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells overexpressing FLRF were examined with Western and immunoprecipitation. Remarkably, overexpression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines erythropoietin (EPO) and interleukin-3 (IL-3), and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, EPO, and RA receptor-alpha (RARalpha) in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, EPO, and RARalpha receptors in EML and BaF3 cells, and that FLRF-mediated downregulation of these receptors is ligand binding-independent. The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myeloerythroid lineages.

  15. Suppressor of Cytokine Signaling 2 Negatively Regulates NK Cell Differentiation by Inhibiting JAK2 Activity

    PubMed Central

    Kim, Won Sam; Kim, Mi Jeong; Kim, Dong Oh; Byun, Jae-Eun; Huy, Hangsak; Song, Hae Young; Park, Young-Jun; Kim, Tae-Don; Yoon, Suk Ran; Choi, Eun-Ji; Jung, Haiyoung; Choi, Inpyo

    2017-01-01

    Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine responses. Although recent reports have shown regulatory roles for SOCS proteins in innate and adaptive immunity, their roles in natural killer (NK) cell development are largely unknown. Here, we show that SOCS2 is involved in NK cell development. SOCS2−/− mice showed a high frequency of NK cells in the bone marrow and spleen. Knockdown of SOCS2 was associated with enhanced differentiation of NK cells in vitro, and the transplantation of hematopoietic stem cells (HSCs) into congenic mice resulted in enhanced differentiation in SOCS2−/− HSCs. We found that SOCS2 could inhibit Janus kinase 2 (JAK2) activity and JAK2-STAT5 signaling pathways via direct interaction with JAK2. Furthermore, SOCS2−/− mice showed a reduction in lung metastases and an increase in survival following melanoma challenge. Overall, our findings suggest that SOCS2 negatively regulates the development of NK cells by inhibiting JAK2 activity via direct interaction. PMID:28383049

  16. Effect of proinflammatory cytokines on PIGA- hematopoiesis.

    PubMed

    Kulkarni, Shashikant; Bessler, Monica

    2003-09-01

    Blood cells from patients with paroxysmal nocturnal hemoglobinuria lack glycosyl phosphatidylinositol (GPI)-linked proteins, due to a somatic mutation in the X-linked PIGA gene. It is believed that clonal expansion of PIGA- blood cells is due to a survival advantage in the hostile marrow environment of aplastic anemia. Here we investigated the effects of inhibitory cytokines in mice genetically engineered to have blood cells deficient in GPI-linked proteins. The effect of inhibitory cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], macrophage inflammatory protein-1 alpha [MIP-1alpha], and transforming growth factor-beta1 [TGF-beta1]) was investigated, using clonogenic assays, competitive repopulation, and in vivo induction of proinflammatory cytokines by double-stranded RNA. The expression of Fas on progenitor cells and its up-regulation by inhibitory cytokines were analyzed by flow cytometry. TNF-alpha, IFN-gamma, MIP-1alpha, and TGF-beta1 suppressed colony formation in a dose-dependent fashion that was similar for PIGA+ and PIGA- blood bone marrow cells. Competitive repopulation of bone marrow cells cultured in IFN-gamma and TNF-alpha resulted in a comparable ability of PIGA+ and PIGA- hematopoietic stem cells to reconstitute hematopoiesis. Fas expression was minimal on PIGA+ and PIGA- progenitor cells and was up-regulated to the same extent in response to IFN-gamma and TNF-alpha as assessed by Fas antibody-mediated apoptosis. Similarly, in vivo induction of proinflammatory cytokines by double-stranded RNA had no effect on the proportion of circulating PIGA- blood cells. These results indicate that PIGA+ and PIGA- hematopoietic progenitor cells respond similarly to inhibitory cytokines, suggesting that other factors are responsible for the clonal expansion of paroxysmal nocturnal hemoglobinuria cells.

  17. [Cytokines and malaria. A study of TNF-alpha, IL1-beta, IL6 and IL2R in 28 patients].

    PubMed

    Nicolas, P; Hovette, P; Merouze, F; Touze, J E; Martet, G

    1994-01-01

    Authors have studied TNF alpha, IL1 bêta, IL6 and RIL2s in 28 malaria illness patients. Increased levels of TNF, IL1 bêta and RIL2s in serum, are observed on admission to hospital. These cytokine levels are decreased, eight days later, after patients are treated. In discussion, TNF levels as a prognosis component is evocated.

  18. Proinflammatory effect of sodium 4-phenylbutyrate in deltaF508-cystic fibrosis transmembrane conductance regulator lung epithelial cells: involvement of extracellular signal-regulated protein kinase 1/2 and c-Jun-NH2-terminal kinase signaling.

    PubMed

    Roque, Telma; Boncoeur, Emilie; Saint-Criq, Vinciane; Bonvin, Elise; Clement, Annick; Tabary, Olivier; Jacquot, Jacky

    2008-09-01

    Sodium 4-phenylbutyrate (4-PBA) has attracted a great deal of attention in cystic fibrosis (CF) pathology due to its capacity to traffic DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) to the cell membrane and restore CFTR chloride function at the plasma membrane of CF lung cells in vitro and in vivo. Using two different DeltaF508-CFTR lung epithelial cell lines (CFBE41o- and IB3-1 cells, characterized with DeltaF508-homozygous and heterozygous genotype, respectively) in vitro, 4-PBA induced an increase of proinflammatory cytokine interleukin (IL)-8 production in a concentration-dependent manner. This 4-PBA-induced IL-8 production was associated with a strong reduction of proteasome and nuclear factor-kappaB transcriptional activities in the two DeltaF508-CFTR lung cells either in a resting state or after tumor necrosis factor-alpha stimulation. In contrast, a strong increase of activator protein-1 transcriptional activity was observed. The inhibition of extracellular signal-regulated protein kinase 1/2 (ERK1/2) by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) and c-Jun-NH(2)-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) by anthra[1,9-cd] pyrazol-6 (2H)-one (SP600125), respectively, was associated with a reduction (2-3.5-fold) of IL-8 production in both DeltaF508-CFTR lung cell lines treated with 4-PBA. No significant change of IL-8 production was observed after an inhibition of p38 MAPK with 4-[4-(4-fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol (SB202190). Therefore, we suggest that inhibition of both ERK1/2 and JNK signaling may be a means to strongly reduce 4-PBA-induced IL-8 production in combination with 4-PBA treatment to restore CFTR Cl(-) channel function in lung epithelial cells of patients with CF.

  19. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis.

    PubMed

    Cooker, Laurinda A; Peterson, Darryl; Rambow, Joann; Riser, Melisa L; Riser, Rebecca E; Najmabadi, Feridoon; Brigstock, David; Riser, Bruce L

    2007-07-01

    Connective tissue growth factor (CCN2) is a profibrotic factor acting downstream and independently of TGF-beta to mediate renal fibrosis. Although inflammation is often involved in the initiation and/or progression of fibrosis, the role of inflammatory cytokines in regulation of glomerular CCN2 expression, cellular proliferation, and extracellular matrix accumulation is unknown. We studied two such cytokines, TNF-alpha and IFN-gamma, for their effects on cultured mesangial cells in the presence or absence of TGF-beta, as a model for progressive renal fibrosis. Short-term treatment with TNF-alpha, like TGF-beta, significantly increased secreted CCN2 per cell, but unlike TGF-beta inhibited cellular replication. TNF-alpha combined with TGF-beta further increased CCN2 secretion and mRNA levels and reduced proliferation. Surprisingly, however, TNF-alpha treatment decreased baseline collagen type I protein and mRNA levels and largely blocked their stimulation by TGF-beta. Long-term treatment with TGF-beta or TNF-alpha alone no longer increased CCN2 protein levels. However, the combination synergistically increased CCN2. IFN-gamma had no effect on either CCN2 or collagen activity and produced a mild inhibition of TGF-beta-induced collagen only at a high concentration (500 U/ml). In summary, we report a strong positive regulatory role for TNF-alpha, but not IFN-gamma, in CCN2 production and secretion, including that driven by TGF-beta. The stimulation of CCN2 release by TNF-alpha, unlike TGF-beta, is independent of cellular proliferation and not linked to increased collagen type I accumulation. This suggests that the paradigm of TGF-beta-driven CCN2 with subsequent collagen production may be overridden by an as yet undefined inhibitory mechanism acting either directly or indirectly on matrix metabolism.

  20. Lrrk2 and alpha-synuclein are co-regulated in rodent striatum.

    PubMed

    Westerlund, Marie; Ran, Caroline; Borgkvist, Anders; Sterky, Fredrik H; Lindqvist, Eva; Lundströmer, Karin; Pernold, Karin; Brené, Stefan; Kallunki, Pekka; Fisone, Gilberto; Olson, Lars; Galter, Dagmar

    2008-12-01

    LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.

  1. Transformation of arachidonate into 6-oxoprostaglandin F1 alpha, thromboxane B2 and prostaglandin E2 by sheep lung microsomal fraction.

    PubMed Central

    Tai, H H; Yuan, B; Wu, A T

    1978-01-01

    In the presence of haemoglobin and isoproterenol, the microsomal fraction of sheep lung catalysed the conversion of arachidonate predominantly into thromboxane B2 and to a lesser extent into 6-oxoprostaglandin F1alpha. Very little prostaglandin E2 and prostaglandin F2alpha were formed. If reduced glutathione was added in combination with haemoglobin and isoproterenol, the synthesis of prostaglandin E2 was favoured over that of thromboxane B2 and 6-oxoprostaglandin F1alpha. The identities of these products were confirmed by t.l.c. and by combined g.l.c.-mass spectrometry. These results indicate that microsomal fraction of sheep lung possesses active prostaglandin synthase, prostacyclin synthase and thromboxane synthase activities. PMID:637853

  2. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    PubMed

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  3. Withaferin A Associated Differential Regulation of Inflammatory Cytokines.

    PubMed

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.

  4. Withaferin A Associated Differential Regulation of Inflammatory Cytokines

    PubMed Central

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases. PMID:29479354

  5. Cytokine appearance and effects of anti-tumor necrosis factor alpha antibodies in a neonatal rat model of group B streptococcal infection.

    PubMed Central

    Teti, G; Mancuso, G; Tomasello, F

    1993-01-01

    Cytokines are suspected of playing an important role in the pathophysiology of septic shock. This study was undertaken to determine whether tumor necrosis factor alpha (TNF-alpha) induces the production of other cytokines and mediates mortality in a neonatal rat model of sepsis caused by group B streptococci (GBS). We have measured TNF-alpha, interleukin-1 alpha (IL-1 alpha), interleukin-6 (IL-6), and gamma interferon (IFN-gamma) levels in neonatal rats infected with different strains (H738, 259, and 90) and doses (1 50% lethal dose [LD50] and 5 90% lethal doses [LD90]) of type III GBS. TNF-alpha and IL-6 were detected by the L929 cytotoxicity and the B9 proliferation assays, respectively, in serial plasma samples. IL-1 alpha and IFN-gamma were measured in spleen homogenates by enzyme-linked immunosorbent assay kits by using antibodies raised against the corresponding mouse cytokines. Plasma TNF-alpha levels significantly rose above baseline values within 12 h after intraperitoneal challenge with 5 LD90 of GBS strain H738, corresponding to 3 x 10(3) CFU. A mean peak TNF-alpha concentration of 232 +/- 124 U/ml was reached at 20 h. Peak IL-1 alpha and IL-6 levels of 766 +/- 404 U/g and 1,033 +/- 520 U/ml, respectively, were reached at 24 h after bacterial challenge. Maximal spleen concentrations of IFN-gamma (449 +/- 283 U/g) were measured at 36 h. Concentrations of TNF-alpha, but not other cytokines, remained significantly elevated at 72 h, a time when mortality approached 100%. Significant correlations were found between concentrations of each of the cytokines tested and the logs of CFU concentrations in the blood. In order to ascertain whether TNF-alpha influenced the production of other cytokines, rat pups received two injections of anti-murine TNF-alpha or normal rabbit serum at 2 h before and at 26 h after challenge with live GBS. Plasma TNF-alpha bioactivity was undetectable in anti-TNF-alpha-treated animals, while IL-6 and IFN-gamma, but not IL-1 alpha

  6. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1{beta}, IL-2, IL-6), interferon (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oralmore » SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1{beta}, IL-2, IL-6, IFN-{gamma} and TNF-{alpha} and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1{beta}, IFN-{gamma} and TNF-{alpha} was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-{alpha} mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.« less

  7. Plasma Cytokine Concentrations Indicate In-vivo Hormonal Regulation of Immunity is Altered During Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Crician, Brian E.; Zwart, Sara R.; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather A.; Pierson, Duane; Sams, Clarence F.; Smith, Scott M.

    2013-01-01

    Background: Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 3-5 times during flight (depending on mission duration), at landing and 30 days post-landing. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (<10 pg/ml) were observed at baseline (launch minus 180) for innate inflammatory cytokines or adaptive regulatory cytokines, however IL-1ra and several chemokines were constitutively present. An increase in the plasma concentration IL-8, IL-1ra, Tpo, CCL4, CXCL5, TNF(alpha), GM-CSF and VEGF was observed associated with spaceflight. Significant post-flight increases were observed for IL-6 and CCL2. No significant alterations were observed during or following spaceflight for adaptive/T-regulatory cytokines (IL-2, IFN(gamma), IL-17, IL4, IL-5, IL-10). Conclusions: This pattern of cytokine dysregulation suggests multiple physiological adaptations persist during flight, including inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation.

  8. Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 {alpha}/{beta} TCR-double positive cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozaki, Hirofumi; Itonori, Saki; Sugita, Mutsumi

    2008-08-29

    Interferon (IFN)-{gamma} and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- {gamma} and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of {alpha}-galactosylceramide ({alpha}-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by {alpha}-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 {alpha}/{beta} TCR-double positive cells in splenocytes. Administration of a mixture of {alpha}-GalCer and AGLs affected the stimulation of {alpha}-GalCer and generally induced a subtle Th1more » bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation.« less

  9. Cytokines and bullous pemphigoid.

    PubMed

    D'Auria, L; Cordiali Fei, P; Ameglio, F

    1999-06-01

    This report reviews the data presented in the literature concerning the presence and levels of different cytokines in sera, lesional tissue or blister fluids of patients with bullous pemphigoid. The list of cytokines analysed includes 21 molecules: interleukins (IL)-1 => 8, IL-10 => 13, IL-15, granulocyte-monocyte-colony stimulating factor (GM-CSF), interferon-gamma (IFN-gamma), oncostatin-M (OSM), regulated upon activation normal T cell expressed and presumably secreted (RANTES), transforming growth factor-beta 1 (TGF-beta 1), tumor necrosis factor-alpha (TNF-alpha) and vascular endothelial growth factor (VEGF). Basic information regarding the functions of these cytokines and their possible involvement in the pathogenetic steps of the disease, such as autoantigen expression, autoantibody induction, complement activation, local cell recruitment and stimulation, resident cell activation, release of various effector molecules and tissue damage are also reported. A specific function for each cytokine in bullous pemphigoid induction cannot be still defined, however, the literature attributes a major role to IL-1, IL-4, IL-5, IL-6, IL-8 and IFN-gamma. On the basis of significant (direct or inverse) correlations found between disease intensity and the blister fluid/serum levels, the following cytokines IL-7, IL-15, RANTES, VEGF and TNF-alpha, besides those previously mentioned, may also be involved in this disease.

  10. p27Kip1 regulates alpha-synuclein expression

    PubMed Central

    Gallastegui, Edurne; Domuro, Carla; Serratosa, Joan; Larrieux, Alejandra; Sin, Laura; Martinez, Jonatan; Besson, Arnaud; Morante-Redolat, José Manuel; Orlando, Serena; Aligue, Rosa; Fariñas, Isabel; Pujol, María Jesús; Bachs, Oriol

    2018-01-01

    Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, indicating that p27 and p21 collaborate in the repression of α-SYN transcription. We demonstrated that this repression is mediated by the transcription factor E2F4 and the member of the retinoblastoma protein family p130 and that it is dependent of Cdk activity. Chromatin immunoprecipitation analysis revealed specific binding sites for p27, p21 and E2F4 in the proximal α-SYN gene promoter. Finally, luciferase assays revealed a direct action of p27, p21 and E2F4 in α-SYN gene expression. Our findings reveal for the first time a negative regulatory mechanism of α-SYN expression, suggesting a putative role for cell cycle regulators in the etiology of synucleinopathies. PMID:29662651

  11. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1}more » knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is

  12. Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans.

    PubMed

    van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T

    2000-10-16

    Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.

  13. Mitogen-activated protein kinase inhibitors suppress prostaglandin F(2alpha)-induced myosin-light chain phosphorylation and contraction in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Gao, G; Abdel-Latif, A A

    2000-10-27

    The purpose of this study was to investigate the potential role of mitogen-activated protein (MAP) kinase in contraction by monitoring MAP kinase phosphorylation (activation) and contraction during agonist stimulation of cat iris sphincter smooth muscle. Changes in tension in response to prostaglandin F(2alpha), latanoprost, a prostaglandin F(2alpha) analog used as an anti-glaucoma drug, and carbachol were recorded isometrically, and MAP kinase activation was monitored by Western blot using a phosphospecific p42/p44 MAP kinase antibody. We found that treatment of the muscle with 2'-Amino-3'-methoxyflavone (PD98059) (10 microM), a specific inhibitor of MAP kinase kinase (MEK), inhibited significantly prostaglandin F(2alpha)- and latanoprost-induced phosphorylation and contraction, but had little effect on those evoked by carbachol. Prostaglandin F(2alpha) increased MAP kinase phosphorylation in a concentration-dependent manner with EC(50) value of 1.1 x 10(-8) M and increased contraction with EC(50) of 0.92 x 10(-9) M. The MAP kinase inhibitors PD98059, Apigenin and 1,4-Diamino-2,3-dicyano-1, 4bis(2-aminophenylthio)butadiene (UO126) inhibited prostaglandin F(2alpha)-induced contraction in a concentration-dependent manner with IC(50) values of 2.4, 3.0 and 4.8 microM, respectively. PD98059 had no effect on prostaglandin F(2alpha)- or on carbachol-stimulated inositol-1,4,5-trisphosphate (IP(3)) production. In contrast, the MAP kinase inhibitor inhibited prostaglandin F(2alpha)-induced myosin-light chain (MLC) phosphorylation, but had no effect on that of carbachol. N-[2-(N-(4-Chloro-cinnamyl)-N-methylaminomethyl)phenyl]-N-[2- hydroxyethyl]-4-methoxybenzenesulfonamide (KN-93) (10 microM), a Ca(2+)-calmodulin-dependent protein kinase inhibitor, and Wortmannin (10 microM), an MLC kinase inhibitor, inhibited significantly (by 80%) prostaglandin F(2alpha)- and carbachol-induced contraction. It can be concluded that in this smooth muscle p42/p44 MAP kinases are involved in

  14. Cell to cell contact through ICAM-1-LFA-1 and TNF-alpha synergistically contributes to GM-CSF and subsequent cytokine synthesis in DBA/2 mice induced by 1,3-beta-D-Glucan SCG.

    PubMed

    Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2006-04-01

    SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice are potently induced by SCG to produce interferon- gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12p70 (IL-12p70), and that GM-CSF plays a key biologic role among these cytokines. In this study, we investigated the contribution of cell-cell contact and soluble factors to cytokine induction by SCG in DBA/2 mice. Cell-cell contact involving intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) was an essential step for the induction of GM-CSF and IFN-gamma by SCG but not for the induction of TNF-alpha or IL-12p70 by SCG. SCG directly induced adherent splenocytes to produce TNF-alpha and IL-12p70. GM-CSF was required for the induction of TNF-alpha by SCG, and in turn, TNF-alpha enhanced the release of GM-CSF and thereby augmented the induction of IL-12p70 and IFN-gamma by SCG. Neutralization of IL-12 significantly inhibited the induction of IFN-gamma by SCG. We concluded that induction of GM-CSF production by SCG was mediated through ICAM-1 and LFA-1 interaction, GM-CSF subsequently contributed to further cytokine induction by SCG, and reciprocal actions of the cytokines were essential for enhancement of the overall response to SCG in DBA/2 mice.

  15. [New concepts on the role of cytokines in the central nervous system].

    PubMed

    Jacque, C; Tchélingérian, J L

    1994-11-01

    Initially described as modulatory molecules in the peripheral immune system and during haematopoiesis, several cytokines also play a role in the brain. Their synthesis in the central nervous system (CNS) is not due solely to glial cell activation or invading immune cells. On the one hand, several functions of central neurons are modulated by cytokines such as IL-1, TNF alpha, IL-2 and IL-6. Thus, IL-1 and TNF alpha modulate the synthesis of several neuromediators and modify ion influxes. IL-2 regulates the effects of central dopaminergic neurons on cholinergic, noradrenergic, serotoninergic and glutamatergic functions. On the other hand, neurons have recently been shown to be able to synthesize some of these cytokines under specific traumatic conditions. For example, a lesion to the hippocampus induces neuronal synthesis of IL-1 alpha and TNF alpha. This induction through neuronal circuits may operate at a distance in contrast to the glial reaction operating only locally. The recent demonstration of the expression by central neurons of receptors specific for these cytokines support a potentially crucial role for these molecules in brain function. Some data emerge in the literature demonstrating a potent expression of cytokines in the central nervous system in numerous pathological situations. Then, it appears that, at the interface between nervous and immune systems, cytokines may bear a pivotal role in the development of specific symptoms in neuroimmune diseases.

  16. Regulation of Mouse NK Cell Development and Function by Cytokines

    PubMed Central

    Marçais, Antoine; Viel, Sébastien; Grau, Morgan; Henry, Thomas; Marvel, Jacqueline; Walzer, Thierry

    2013-01-01

    Natural Killer (NK) cells are innate lymphocytes with an important role in the early defense against intracellular pathogens and against tumors. Like other immune cells, almost every aspects of their biology are regulated by cytokines. Interleukin (IL)-15 is pivotal for their development, homeostasis, and activation. Moreover, numerous other activating or inhibitory cytokines such as IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, Transforming growth factor-β (TGFβ) and type I interferons regulate their activation and their effector functions at different stages of the immune response. In this review we summarize the current understanding on the effect of these different cytokines on NK cell development, homeostasis, and functions during steady-state or upon infection by different pathogens. We try to delineate the cellular sources of these cytokines, the intracellular pathways they trigger and the transcription factors they regulate. We describe the known synergies or antagonisms between different cytokines and highlight outstanding questions in this field of investigation. Finally, we discuss how a better knowledge of cytokine action on NK cells could help improve strategies to manipulate NK cells in different clinical situations. PMID:24376448

  17. Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3-beta-D-glucan SCG in DBA/2 mice in vitro.

    PubMed

    Harada, Toshie; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2004-08-01

    Sparassis crispa Fr. is an edible/medicinal mushroom that recently became cultivable in Japan. SCG is a major 6-branched 1,3-beta-D-glucan in S. crispa showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice strongly react with SCG to produce interferon-gamma (IFN-gamma). In this study, cytokines induced by SCG were screened and found to be IFN-gamma, tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12 (IL-12p70). The addition of recombinant murine GM-CSF (rMuGM-CSF) to spleen cell cultures from various strains of mice synergistically enhanced IFN-gamma, TNF-alpha and IL-12p70 in the presence of SCG. In contrast, neutralizing GM-CSF using anti-GM-CSF monoclonal antibody (mAb) significantly inhibited IFN-gamma, TNF-alpha, and IL-12p70 elicited by SCG. We conclude that GM-CSF is a key molecule for cytokine induction by beta-glucan, and GM-CSF induction by SCG is the specific step in DBA/2 mice in vitro.

  18. Assessment of Apical Expression of Alpha-2 Integrin, Heat Shock Protein, and Proinflammatory and Immunoregulatory Cytokines in Response to Endodontic Infection.

    PubMed

    Bambirra, Wilson; Maciel, Kamilla Faria; Thebit, Marcela Marçal; de Brito, Luciana Carla Neves; Vieira, Leda Quercia; Sobrinho, Antônio Paulino Ribeiro

    2015-07-01

    The purpose of this study was to examine alpha-2 integrin, molecular mediators, cytokines, and chemokines from cells in periapical interstitial fluid from root canal infections before and after the reduction of the bacterial load using a cleaning procedure. Subjects included 20 patients referred to the School of Dentistry at the Universidade Federal de Minas Gerais (Belo Horizonte, Minas Gerais, Brazil). Clinical samples were taken from teeth with pulp necrosis, and no patients had acute periapical symptoms at the time of the appointments. After cleaning and drying, 3 paper points were introduced into the root canal, passing passively through the root apex (2 mm) into the periapical tissues for 1 minute. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions using real-time polymerase chain reaction. Significantly lower levels of tumor necrosis factor alpha, chemokine ligand 5 (CCL5), chemokine ligand 2/monocyte chemotactic protein 1 (CCL2/MCP-1), and interleukin (IL)-8 in teeth with restrained bacterial loads (second collection) compared with the first collection were observed (P < .05). Similarly, the messenger RNA expression of the integrins secreted phosphoprotein 1 (SSP1)/ostepontin and focal adhesion kinase (FAK) decreased in samples from the second collection (P < .05). The messenger RNA for the regulatory cytokine IL-10 was significant higher in samples from the second collection (day 7) compared with the first collection (day 0) (P < .05). Messenger RNA expression of IL-1β, IL-17A, interferon gamma, alpha-2 integrin, and Hsp47/SERPINH1 were similar at both time points (P > .05). These findings suggest that after reducing the root canal bacterial load a decrease in the inflammatory response took place in the periapical lesions. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Tilmicosin and tylosin have anti-inflammatory properties via modulation of COX-2 and iNOS gene expression and production of cytokines in LPS-induced macrophages and monocytes.

    PubMed

    Cao, Xing-Yuan; Dong, Mei; Shen, Jian-Zhong; Wu, Bei-Bei; Wu, Cong-Ming; Du, Xiang-Dang; Wang, Zhuo; Qi, Yi-Tao; Li, Bing-Yu

    2006-05-01

    Macrolides have been reported to modify the host immune and inflammatory responses both in vivo and in vitro. We examined the in vitro effect of the macrolides tilmicosin and tylosin, which are only used in the veterinary clinic, on the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and cytokines by lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and mouse peripheral blood mononuclear cells (PBMCs). Compared with 5 microg/mL, tilmicosin and tylosin concentrations of 10 microg/mL and 20 microg/mL significantly decreased the production of 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), PGE(2), NO, tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta and IL-6, and increased IL-10 production. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression were also significantly reduced. These results support the opinion that macrolides may exert an anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process.

  20. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  1. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.

    PubMed

    Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo

    2009-06-01

    Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than

  2. The proinflammatory cytokines IL-1beta and TNF-alpha induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2-ETS1 pathway.

    PubMed

    Gao, Beixue; Calhoun, Karen; Fang, Deyu

    2006-01-01

    The overgrowth of synovial tissues is critical in the pathogenesis of rheumatoid arthritis (RA). The expression of Synoviolin (SYN), an E3 ubiquitin ligase, is upregulated in arthritic synovial fibroblasts and is involved in the overgrowth of synovial cells during RA. However, the molecular mechanisms involved in the elevated SYN expression are not known. Here, we found that SYN expression is elevated in the synovial fibroblasts from mice with collagen-induced arthritis (CIA). The proinflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha) induce SYN expression in mouse synovial fibroblasts. Cultivation of mouse synovial fibroblasts with IL-1beta activates mitogen-activated protein kinases, including extra-cellular signal-regulated kinase (Erk), JNK (c-Jun N-terminal kinase), and p38, while only Erk-specific inhibitor blocks IL-1beta-induced SYN expression. Expression of transcription factor ETS1 further enhances IL-1beta-induced SYN expression. The dominant negative ETS1 mutant lacking the transcription activation domain inhibits SYN expression in a dose-dependent manner. The activation of both Erk1/2 and ETS1 is increased in the CIA synovial fibroblasts. Inhibition of Erk activation reduces ETS1 phosphorylation and SYN expression. Our data indicate that the proinflammatory cytokines IL-1beta and TNF-alpha induce the overgrowth of synovial cells by upregulating SYN expression via the Erk1/-ETS1 pathway. These molecules or pathways could therefore be potential targets for the treatment of RA.

  3. Blister fluid cytokines in cutaneous inflammatory bullous disorders.

    PubMed

    Rhodes, L E; Hashim, I A; McLaughlin, P J; Friedmann, P S

    1999-07-01

    Cytokines are important regulators of immune and inflammatory reactions in the skin, and may contribute to inflammatory blister induction. We examined the profiles of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) in fluid of spontaneous blisters in the immune-based inflammatory disorders bullous pemphigoid (8 patients), allergic contact dermatitis (5 patients) and toxic epidermal necrolysis (5 patients). These were compared with levels in 9 patients with burns, i.e. inflammatory blisters of non-immune aetiology, and 4 patients with blisters of physical origin. Very high levels of IL-6 were found in bullous pemphigoid and toxic epidermal necrolysis (p<0.001) compared with non-inflammatory and burn blisters. TNF-alpha levels were high in bullous pemphigoid and burns, but undetectable in non-inflammatory blisters. The pattern in bullous pemphigoid (very high IL-6, high TNF-alpha) differed substantially from toxic epidermal necrolysis (very high IL-6, low TNF-alpha), while burns and allergic contact dermatitis showed lesser elevation of both cytokines. Hence, differences in cytokine profiles were identified, although the relevance to underlying pathomechanisms is uncertain.

  4. Developmental regulation by cytokines of bone marrow-derived dendritic cells and epidermal Langerhans cells.

    PubMed

    Yamaguchi, Y

    1998-01-01

    Dendritic cells (DC) are specialized antigen-presenting cells involved in T cell-mediated immune responses. Differentiation and functional maturation of the DC are now known to be regulated by various cytokines, including TGF-beta1. The experiments of this study examined the effect of other cytokines, such as IL-4, IL-10 and IL-6, on the differentiation and maturation of bone marrow (BM)-derived DC (BM-DC) and epidermal Langerhans cells (LC). When IL-6 or IL-10 was added to cultures of BM cells in the presence of GM-CSF, both cytokines, as in the case of TGF-beta1, suppressed the maturation of DC in terms of the expression of adhesion and costimulatory molecules and T cell-stimulating activity. In contrast, IL-4 was not suppressive but rather supportive for the differentiation of DC. However, these suppressive cytokines hardly counteracted the maturation-inducing activity of TNF-alpha when added to cultures of immature DC. In addition, they appeared to block the overmaturation of DC, which is characterized by a loss of MHC class II molecules. Regarding LC maturation in epidermal cell cultures, IL-6 and IL-10 were inhibitory for the expression of CD86 and CD80 in a dose-dependent fashion. Unlike BM-DC, LC maturation was slightly enhanced by TGF-beta1. The protein antigen-presentation by LC to Th1 clone was not affected by IL-6, but slightly reduced by IL-10. These results suggest that each cytokine contributes to regulate the differentiation and maturation of DC at a different developmental stage.

  5. Proinflammatory cytokine levels in fibromyalgia patients are independent of body mass index.

    PubMed

    Hernandez, Maria E; Becerril, Enrique; Perez, Mayra; Leff, Philippe; Anton, Benito; Estrada, Sergio; Estrada, Iris; Sarasa, Manuel; Serrano, Enrique; Pavon, Lenin

    2010-06-03

    Fibromyalgia (FM) is characterized by chronic, widespread muscular pain and tenderness and is generally associated with other somatic and psychological symptoms. Further, circulatory levels of proinflammatory cytokines (IL-1beta, TNF-alpha, and IL-6) may be altered in FM patients, possibly in association with their symptoms. Recently, rises in BMI have been suggested to contribute to increased circulating levels of proinflammatory cytokines in FM patients. Our aim was to measure the circulatory levels of proinflammatory cytokines to determine the influence of BMI on these levels in FM patients and healthy volunteers (HVs). In Spanish FM patients (n = 64) and HVs (n = 25), we measured BMI and serum concentrations of proinflammatory cytokines by capture ELISA. There were significant differences in BMI levels between FM patients (26.40 +/- 4.46) and HVs (23.64 +/- 3.45) and significant increase in IL-6 in FM patients (16.28 +/- 8.13 vs 0.92 +/- 0.32 pg/ml) (P < 0.001). IL-1beta and TNF-alpha decreased in FM patients compared with HVs. By ANCOVA, there was no significant association between BMI and TNF-alpha (F = 0.098, p = 0.75) or IL-6 (F = 0.221, p = 0.63) levels in FM patients. Our analysis in FM patients of BMI as a covariate of proinflammatory cytokines levels showed that serum TNF-alpha and IL-6 levels are independent of BMI. Further studies are necessary to dissect these findings and their implication in future therapeutic approaches for FM patients.

  6. Temporal Regulation by Innate Type 2 Cytokines in Food Allergies.

    PubMed

    Graham, Michelle T; Andorf, Sandra; Spergel, Jonathan M; Chatila, Talal A; Nadeau, Kari C

    2016-10-01

    Food allergies (FAs) are a growing epidemic in western countries with poorly defined etiology. Defined as an adverse immune response to common food allergens, FAs present heterogeneously as a single- or multi-organ response that ranges in severity from localized hives and angioedema to systemic anaphylaxis. Current research focusing on epithelial-derived cytokines contends that temporal regulation by these factors impact initial sensitization and persistence of FA responses upon repeated food allergen exposure. Mechanistic understanding of FA draws insight from a myriad of atopic conditions studied in humans and modeled in mice. In this review, we will highlight how epithelial-derived cytokines initiate and then potentiate FAs. We will also review existing evidence of the contribution of other atopic diseases to FA pathogenesis and whether FA symptoms overlap with other atopic diseases.

  7. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to proinflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages.

    PubMed

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2015-02-15

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl, and Mer (TAM) receptors in regulating chronic pattern recognition receptor stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and proinflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGF-β-dependent TAM upregulation in human macrophages, which, in turn, upregulated suppressor of cytokine signaling 3 expression. Restoring suppressor of cytokine signaling 3 expression under TAM knockdown conditions restored chronic NOD2-mediated proinflammatory cytokine downregulation. In contrast to the upregulated proinflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, musculoaponeurotic fibrosarcoma oncogene homolog K, and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for

  8. Prostaglandin E and F2 alpha receptors in human myometrium during the menstrual cycle and in pregnancy and labor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannopoulos, G.; Jackson, K.; Kredentser, J.

    The binding of prostaglandins E1 and F2 alpha has been studied in the human myometrium and cervix during the menstrual cycle and in the myometrium of pregnant patients at term before and during labor. Tritium-labeled prostaglandin E1 and F2 alpha binding was saturable and reversible. Scatchard analysis of tritium-labeled prostaglandin E1 binding was linear, which suggests a single class of high-affinity binding sites with an estimated apparent equilibrium dissociation constant of 2.5 to 5.4 nmol/L and inhibitor affinities of 0.9, 273, 273, and 217 nmol/L for prostaglandins E2, A1, B1, and F2 alpha, respectively. Scatchard analysis of tritium-labeled prostaglandin F2more » alpha, binding was also linear, but the affinity of these binding sites was much lower, with an average dissociation constant of 50 nmol/L and inhibitor affinities of 1.6, 2.2, and 11.2 nmol/L for prostaglandins E1, E2, and A1, respectively. In nonpregnant patients, the concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were similar in the myometrium during the proliferative and secretory phases of the menstrual cycle, but the concentration of these sites was much lower in the cervix. The concentration of the tritium-labeled prostaglandin E1 binding sites was significantly lower in the myometrium of pregnant patients at term than in the myometrium of nonpregnant patients. The concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were not significantly different in the upper and lower myometrium of pregnant patients at term or in the myometrium of such patients before and during labor. The concentrations of the tritium-labeled prostaglandin F2 alpha binding sites during the menstrual cycle and in pregnancy at term were similar to those of tritium-labeled prostaglandin E1 binding sites.« less

  9. Transcriptional regulation by retinoic acid of interleukin-2 alpha receptors in human B cells.

    PubMed Central

    Bhatti, L; Sidell, N

    1994-01-01

    In this study, we demonstrated that retinoic acid (RA) up-regulated interleukin-2 receptor-alpha (IL-2R alpha) expression on two human B-cell lines, IE8.6 and SKW6.4. Deleted forms of the human IL-2R alpha promoter linked to the bacterial chloramphenicol acetyltransferase reporter gene were transfected into IE8.6 cells in order to define RA-responsive regulatory domains. Experiments using the -1.6 kb construct, which contains all known regulatory regions in the IL-2R alpha promoter, indicated that RA could induce IL-2R alpha promoter activity. The basal activity of the -471 construct was initially low, but was markedly enhanced by the addition of RA. Deletion of promoter sequences between -471 and -317 resulted in a significant augmentation of basal promoter activity and abolished promoter induction by RA. This finding revealed a requirement for sequences 5' of base -317 for RA-induced promoter activation, raising the possibility of the presence of both a RA response element and a negative regulatory element (NRE) upstream of base -317. Transfection studies with internal deletion mutants with the putative NRE removed resulted in increases in basal promoter activity and unresponsiveness to RA similar to the -317 construct. In contrast, an internal deletion mutant with the NRE intact had low basal activity and was inducible by RA similar to the -471 construct. Taken together, our results suggested that RA-induced activation of the IL-2R alpha promoter was through changes in the function of a NRE present between bases -400 and -368. This 31-base pair element may interact with an adjacent RA-responsive regulatory site as well as being responsible for down-regulation of basal IL-2R alpha expression under certain conditions. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8157276

  10. Pattern of cytokine receptors expressed by human dendritic cells migrated from dermal explants.

    PubMed Central

    Larregina, A T; Morelli, A E; Kolkowski, E; Sanjuan, N; Barboza, M E; Fainboim, L

    1997-01-01

    Different reasons account for the lack of information about the expression of cytokine receptors on human dendritic cells (DC): (a) DC are a trace population; (b) the proteolytic treatment used to isolate DC may alter enzyme-sensitive epitopes; and (c) low numbers of receptors per cell. In the present work the expression of cytokine receptors was analysed by flow cytometry on the population of dermal DC (DDC) that spontaneously migrate from short-term culture dermal explants. DDC obtained after dermal culture were CD1alow, CD1b+, CD1c+, human leucocyte antigen (HLA)-DR+, CD11chigh, CD11b+ and CD32+. The DC lineage was confirmed by ultrastructural analysis. DDC expressed interleukin (IL)-1R type 1 (monoclonal antibody (mAb) hIL-1R1-M1; and 6B5); IL-1R type 2 (mAb hIL-1R2-M22); IL-2R alpha chain (mAb anti-Tac; and hIL-2R-M1) and IL-2R gamma chain (mAb 3B5; and AG14C). DDC did not stain for IL-2R beta chain using four mAbs recognizing two different epitopes of IL-2R beta (mAb 2R-B; Mik-beta 1; and CF1; Mik-beta 3, respectively). DDC were also positive for the cytokine binding chains (alpha chains) of IL-3R (mAb 9F5); IL-4R (mAb hIL-4R-M57; and S456C9); and IL-7R (mAb hIL-7R-M20; and R3434). DDC showed low levels of IL-6R alpha chain (mAb B-F19; B-R6; and B-E23) and its signal transducer gp130 (mAb A2; and B1). DDC strongly expressed interferon-gamma receptor (IFN-gamma R) (mAb GIR-208) and were negative for IL-8R (mAb B-G20; and B-F25). All DDC were highly positive for granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) alpha chain (mAb hGM-CSFR-M1; SC06; SC04, and 8G6) and to a lesser extent for the common beta chain of GM-CSFR, IL-3R and IL-5R (mAb 3D7). On the other hand, reactivity was not found for granulocyte colony-stimulating factor receptor (G-CSFR) (mAb hGCSFR-M1) nor macrophage colony-stimulating factor receptor (M-CSFR) (mAb 7-7A3-17) confirming the DC lineage of DDC. As previously reported for lymphoid DC, DDC expressed tumour necrosis

  11. Early transcriptome responses of the bovine midcycle corpus luteum to prostaglandin F2a includes cytokine signaling

    USDA-ARS?s Scientific Manuscript database

    In ruminants, prostaglandin F2alpha (PGF2a)-mediated luteolysis is essential prior to estrous cycle resumption, and is a target for improving fertility. To deduce early PGF2a-provoked changes in the corpus luteum a short time-course (0.5–4 h) was performed on cows at midcycle. A microarray-determin...

  12. Prostaglandin F2alpha-induced estrus in ewes exhibiting estrous cycles of different duration.

    PubMed

    Cárdenas, Horacio; Wiley, Todd M; Pope, William F

    2004-07-01

    Effects of prostaglandin F(2alpha) (PGF(2alpha)), administered during the mid-luteal phase of the estrous cycle, were examined in ewes exhibiting estrous cycles classified as short (< or =16.5 days, short-cycle ewes, n = 10) or long (> or =18 days, long-cycle ewes, n = 9) based on the durations of two estrous cycles (cycles -2 and -1) before treatment. The ewes received (i.m.) 20mg of PGF(2alpha) on day 10 of the third estrous cycle (cycle 0) followed, 36 h later, by 25 microg of gonadotropin releasing hormone (GnRH) to time the events of ovulation. Duration of subsequent estrous cycles +1 and +2 were recorded, and then the ewes were treated with the same combination of PGF(2alpha) and GnRH beginning on day 10 of estrous cycle +3. Ovaries were recovered 6h after GnRH administration to assess development of pre-ovulatory follicles. The proportion of ewes that exhibited estrus after PGF(2alpha) and GnRH treatment on cycle 0 was not different (P > 0.05) between short- and long-cycle ewes. Onset of estrus occurred sooner (P < 0.05) after PGF(2alpha) injection in short-cycle ewes than in long-cycle ewes (1.9 +/- 0.1 days and 2.3 +/- 0.1 days, duration of cycle 0 was 11.9 and 12.3 days, respectively). Duration of estrous cycle +1 was 1.2 days longer (P < 0.01) than cycle -1 in short-cycle ewes. However, duration of estrous cycle +1 did not change (P > 0.05) after PGF(2alpha) and GnRH administration in ewes having long cycles. Pre-ovulatory follicles did not differ (P > 0.05) in numbers, diameter, layers of granulosa cells nor concentrations of progesterone and estradiol-17beta in follicular fluid between short- and long-cycle ewes after PGF(2alpha) and GnRH treatment. In conclusion, ewes having short or long estrous cycles responded differently to PGF(2alpha) and GnRH treatment with respect to the interval to onset of estrus and duration of the subsequent estrous cycle.

  13. Catabolism of 6-ketoprostaglandin F1alpha by the rat kidney cortex.

    PubMed

    Pace-Asciak, C R; Domazet, Z; Carrara, M

    1977-05-25

    Homogenates of the rat kidney cortex converted 5,8,9,11,12,14,15-hepta-tritiated 6-ketoprostaglandin F 1alpha into one major product identified by gas chromatography-mass spectrometry of the methoxime-methyl ester trimethylsilyl ether derivative as 6,15-diketo-9,11-dihydroxyprost-13-enoic acid. The sequence of derivatisation i.e. methoximation prior to methylation, was crucial as methylation of 15-keto catabolites of the E, F and 6-keto-F series affords degradation products. The corresponding 15-keto-13,14-dihydro catabolite was formed in much smaller quantities. Time course studies indicated that 6-keto-prostaglandin F1alpha was catabolised at a slower rate (about 2-5 fold) than prostaglandin F1alpha. The catabolic activity was blocked by NADH.

  14. Fertility of male rats treated with 15(S)-15-methyl prostaglandin F2 alpha methyl ester-containing silastic implants.

    PubMed

    Kimball, F A; Frielink, R D; Porteus, S E

    1978-01-01

    Male Spraque-Dawley rats receiving implants of silicone rubber discs containing 1% or 2% 15(S)-15-methyl prostaglandin F2 alpha methyl ester (15-Me-PGF 2 alpha) or no prostaglandin were tested in successive breeding trials for potency and fertility. One week after implantation, discs containing 1% 15-Me-PGF2 alpha reduced potency and fertility, which returned 2 weeks after implantation. Animals receiving implants of the 2% discs were apparently impotent the 1st week following implantation; potency returned before full fertility returned 11 weeks after implantation.

  15. In vitro and in vivo expression of interleukin-1alpha and tumor necrosis factor-alpha mRNA in pemphigus vulgaris: interleukin-1alpha and tumor necrosis factor-alpha are involved in acantholysis.

    PubMed

    Feliciani, C; Toto, P; Amerio, P; Pour, S M; Coscione, G; Shivji, G; Wang, B; Sauder, D N

    2000-01-01

    Keratinocyte-derived cytokines have been implicated in the pathogenesis of a number of skin diseases. In this study we examined the possible role of keratinocyte-derived cytokines in the development of acantholysis in pemphigus vulgaris. Nineteen patients with pemphigus vulgaris, demonstrating the characteristic clinical, pathologic, and immunopathologic findings were studied. In situ immunolabeling demonstrated the presence of two cytokines interleukin-1alpha and tumor necrosis factor-alpha, in lesional and perilesional areas. Results were confirmed by reverse transcriptase-polymerase chain reaction, demonstrating overexpression of both cytokines in vivo. To study the role of these cytokines in the pathogenesis of pemphigus vulgaris both in vitro and in vivo studies were performed. The results of the in vitro study demonstrated that pemphigus vulgaris IgG induced interleukin-1alpha and tumor necrosis factor-alpha mRNA in the skin. The potential pathogenic role of these mediators was demonstrated by a blocking study using antibodies against human interleukin-1alpha and tumor necrosis factor-alpha in keratinocytes cultures. A combination of anti-interleukin-1alpha and anti-tumor necrosis factor-alpha antibodies inhibited in vitro pemphigus vulgaris IgG induced acantholysis. To confirm the role of interleukin-1 and tumor necrosis factor-alpha in pemphigus, we utilized passive transfer studies using interleukin-1 deficient mice (ICE-/-, interleukin-1beta-/-) and tumor necrosis factor-alpha receptor deficient mice (TNFR1R2-/-). Both groups demonstrated a decreased susceptibility to the passive transfer of pemphigus. Our data support the role of cytokines interleukin-1 and tumor necrosis factor-alpha in the pathogenesis of pemphigus vulgaris.

  16. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule.

    PubMed Central

    Barrett, A J; Brown, M A; Sayers, C A

    1979-01-01

    alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not

  17. Partial agonist clonidine mediates alpha(2)-AR subtypes specific regulation of cAMP accumulation in adenylyl cyclase II transfected DDT1-MF2 cells.

    PubMed

    Limon-Boulez, I; Bouet-Alard, R; Gettys, T W; Lanier, S M; Maltier, J P; Legrand, C

    2001-02-01

    alpha2-Adrenergic receptor (alpha(2)-AR) activation in the pregnant rat myometrium at midterm potentiates beta(2)-AR stimulation of adenylyl cyclase (AC) via Gbetagamma regulation of the type II isoform of adenylyl cyclase. However, at term, alpha(2)-AR activation inhibits beta(2)-AR stimulation of AC. This phenomenon is associated with changes in alpha(2)-AR subtype expression (midterm alpha(2A/D)-AR > alpha(2B)-AR; term alpha(2B) >or =alpha(2A/D)-AR), without any change in ACII mRNA, suggesting that alpha(2A/D)- and alpha(2B)-AR differentially regulate beta(2)-cAMP production. To address this issue, we have stably expressed the same density of alpha(2A/D)- or alpha(2B)-AR with AC II in DDT1-MF2 cells. Clonidine (partial agonist) increased beta(2)-AR-stimulated cAMP production in alpha(2A/D)-AR-ACII transfectants but inhibited it in alpha(2B)-AR-ACII transfectants. In contrast, epinephrine (full agonist) enhanced beta(2)-stimulated ACII in both alpha(2A)- and alpha(2B)-ACII clonal cell lines. 4-Azidoanilido-[alpha-(32)P]GTP-labeling of activated G proteins indicated that, in alpha(2B)-AR transfectants, clonidine activated only Gi(2), whereas epinephrine, the full agonist, effectively coupled to Gi(2) and Gi(3). Thus, partial and full agonists selectively activate G proteins that lead to drug specific effects on effectors. Moreover, these data indicate that Gi(3) activation is required for potentiation of beta(2)-AR stimulation of AC by alpha(2A/D) and alpha(2B)-AR in DDT1-MF2 cells. This may reflect an issue of the amount of Gbetagamma released upon receptor activation and/or betagamma composition of Gi(3) versus Gi(2).

  18. Different cytokine response of primary colonic epithelial cells to commensal bacteria.

    PubMed

    Lan, Jing-Gang; Cruickshank, Sheena-Margaret; Singh, Joy-Carmelina-Indira; Farrar, Mark; Lodge, James-Peter-Alan; Felsburg, Peter-John; Carding, Simon-Richard

    2005-06-14

    To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1alpha/beta and betadefensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2alpha expression, respectively. TNFalpha, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo.

  19. Geraniol suppresses prostate cancer growth through down-regulation of E2F8.

    PubMed

    Lee, Sanghoon; Park, Yu Rang; Kim, Su-Hwa; Park, Eun-Jung; Kang, Min Ji; So, Insuk; Chun, Jung Nyeo; Jeon, Ju-Hong

    2016-10-01

    Geraniol, an acyclic dietary monoterpene, has been found to suppress cancer survival and growth. However, the molecular mechanism underlying the antitumor action of geraniol has not been investigated at the genome-wide level. In this study, we analyzed the microarray data obtained from geraniol-treated prostate cancer cells. Geraniol potently altered a gene expression profile and primarily down-regulated cell cycle-related gene signatures, compared to linalool, another structurally similar monoterpene that induces no apparent phenotypic changes. Master regulator analysis using the prostate cancer-specific regulatory interactome identified that the transcription factor E2F8 as a specific target molecule regulates geraniol-specific cell cycle signatures. Subsequent experiments confirmed that geraniol down-regulated E2F8 expression and the knockdown of E2F8 was sufficient to suppress cell growth by inducing G 2 /M arrest. Epidemiological analysis showed that E2F8 is up-regulated in metastatic prostate cancer and associated with poor prognosis. These results indicate that E2F8 is a crucial transcription regulator controlling cell cycle and survival in prostate cancer cells. Therefore, our study provides insight into the role of E2F8 in prostate cancer biology and therapeutics. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Age-related pulmonary emphysema in mice lacking alpha/beta hydrolase domain containing 2 gene.

    PubMed

    Jin, Shoude; Zhao, Gang; Li, Zhenghua; Nishimoto, Yuki; Isohama, Yoichiro; Shen, Jingling; Ito, Takaaki; Takeya, Motohiro; Araki, Kimi; He, Ping; Yamamura, Ken-ichi

    2009-03-06

    The alpha/beta hydrolase family genes have been identified as down-regulated genes in human emphysematous lungs. Although proteins in the alpha/beta hydrolase family generally act as enzymes, such as lipases, the specific functions of the Abhd2 protein are unknown. To examine the role of Abhd2 in the lung, we analyzed Abhd2 deficient mice obtained by gene trap mutagenesis. Abhd2 was expressed in the alveolar type II cells. Abhd2 deficiency resulted in a decreased level of phosphatidylcholine in the bronchoalveolar lavage. These mice developed spontaneous gradual progression of emphysema, due to increased macrophage infiltration, increased inflammatory cytokines, a protease/anti-protease imbalance and enhanced apoptosis. This phenotype is more akin to the pace of emphysema that develops in humans. Our findings suggest that derangement in alveolar phospholipid metabolism can induce emphysema, and that Abhd2 plays a critical role in maintaining lung structural integrity.

  1. Pro-Inflammatory Cytokines in Psychiatric Disorders in Children and Adolescents: A Review.

    PubMed

    Miłkowska, Paulina; Popko, Katarzyna; Demkow, Urszula; Wolańczyk, Tomasz

    2017-04-30

    Cytokines are a large group of small proteins which play a significant role in cell signaling and regulate a variety of processes in organisms, including proliferation and differentiation of many cells, mediation in defense reactions and regulation of hematopoiesis. Cytokines can be divided into those with pro- and those with anti-inflammatory properties. In the group of pro-inflammatory cytokines the most important are: IL-1 beta, IL-6, TNF-alpha, and IFN-gamma. Pro-inflammatory cytokines might be involved in the pathophysiology of many psychiatric conditions in adults, but their role in children and adolescents is less clear. The aim of this article is to demonstrate the patterns of pro-inflammatory cytokines in children and adolescents.

  2. Pro-inflammatory Cytokines in Psychiatric Disorders in Children and Adolescents: A Review.

    PubMed

    Miłkowska, Paulina; Popko, Katarzyna; Demkow, Urszula; Wolańczyk, Tomasz

    2017-01-01

    Cytokines are a large group of small proteins which play a significant role in cell signaling and regulate a variety of processes in organisms, including proliferation and differentiation of many cells, mediation in defense reactions and regulation of hematopoiesis. Cytokines can be divided into those with pro- and those with anti-inflammatory properties. In the group of pro-inflammatory cytokines the most important are: IL-1 beta, IL-6, TNF-alpha, and IFN-gamma. Pro-inflammatory cytokines might be involved in the pathophysiology of many psychiatric conditions in adults, but their role in children and adolescents is less clear. The aim of this article is to demonstrate the patterns of pro-inflammatory cytokines in children and adolescents.

  3. alpha2-chimaerin, a Cdc42/Rac1 regulator, is selectively expressed in the rat embryonic nervous system and is involved in neuritogenesis in N1E-115 neuroblastoma cells.

    PubMed

    Hall, C; Michael, G J; Cann, N; Ferrari, G; Teo, M; Jacobs, T; Monfries, C; Lim, L

    2001-07-15

    Neuronal differentiation involves Rac and Cdc42 GTPases. alpha-Chimaerin, a Rac/Cdc42 regulator, occurs as alpha1- and alternatively spliced Src homology 2 (SH2) domain-containing alpha2-isoforms. alpha2-chimaerin mRNA was highly expressed in the rat embryonic nervous system, especially in early postmitotic neurons. alpha1-chimaerin mRNA was undetectable before embryonic day 16.5. Adult alpha2-chimaerin mRNA was restricted to neurons within specific brain regions, with highest expression in the entorhinal cortex. alpha2-chimaerin protein localized to neuronal perikarya, dendrites, and axons. The overall pattern of alpha2-chimaerin mRNA expression resembles that of cyclin-dependent kinase regulator p35 (CDK5/p35) which participates in neuronal differentiation and with which chimaerin interacts. To determine whether alpha2-chimaerin may have a role in neuronal differentiation and the relevance of the SH2 domain, the morphological effects of both chimaerin isoforms were investigated in N1E-115 neuroblastoma cells. When plated on poly-lysine, transient alpha2-chimaerin but not alpha1-chimaerin transfectants formed neurites. Permanent alpha2-chimaerin transfectants generated neurites whether or not they were stimulated by serum starvation, and many cells were enlarged. Permanent alpha1-chimaerin transfectants displayed numerous microspikes and contained F-actin clusters, a Cdc42-phenotype, but generated few neurites. In neuroblastoma cells, alpha2-chimaerin was predominantly soluble with some being membrane-associated, whereas alpha1-chimaerin was absent from the cytosol, being membrane- and cytoskeleton-associated, paralleling their subcellular distribution in brain. Transient transfection with alpha2-chimaerin mutated in the SH2 domain (N94H) generated an alpha1-chimaerin-like phenotype, protein partitioned in the particulate fraction, and in NGF-stimulated pheochromocytoma cell line 12 (PC12) cells, neurite formation was inhibited. These results indicate a role for

  4. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    PubMed

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  5. Splanchnic Th(2) and Th(1) cytokine redistribution in microsurgical cholestatic rats.

    PubMed

    García-Dominguez, José; Aller, María-Angeles; García, Cruz; de Vicente, Felipe; Corcuera, Maria-Teresa; Gómez-Aguado, Fernando; Alonso, María José; Vara, Elena; Arias, Jaime

    2010-08-01

    Long-term extrahepatic cholestasis in the rat induces ductular proliferation and fibrosis in the liver, portal hypertension, splenomegaly, portosystemic collateral circulation, and ascites. These splanchnic alterations could have an inflammatory pathophysiology. We measured serum levels of hepatobiliary injury markers and the acute phase proteins, alpha-1-major acid protein (alpha(1)-MAP) and alpha-1-acid glycoprotein (alpha(1)-GPA) in rats 6 wk after microsurgical extrahepatic cholestasis. We also assayed Th(1) (TNF-alpha and IL-1beta) and Th(2) (IL-4 and IL-10) cytokine levels in the liver, ileum, spleen, and mesenteric lymph complex by enzyme-linked immunosorbent assay (ELISA) techniques. Liver fibrosis was measured by Sirius red stain and by using an image system computer-assisted method and mast cell liver infiltration by Giemsa stain. The cholestatic rats showed an increase (P<0.001) in serum levels of bile acids, total and direct bilirubin, AST, ALT, AST/ALT index, gamma-GT, alkaline phosphatase, alpha(1)- MAP, alpha(1)-GPA, and LDH (P<0.05) in relation to sham-operated rats. TNF-alpha, IL-1beta, IL-4, and IL-10 increased in the ileum (P<0.01) and mesenteric lymph complex (P<0.001), and decreased in the liver (P<0.001). A marked bile proliferation associated with fibrosis (P<0.001) and mast cell infiltration was also shown in the liver of cholestatic rats. The splanchnic redistribution of cytokines, with an increase of Th(1) and Th(2) production in the small bowel and in the mesenteric lymph complex, supports the key role of inflammatory mechanisms in rats with secondary biliary fibrosis. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Correlations among body temperature, plasma progesterone, cortisol and prostaglandin F2alpha of the periparturient bitch.

    PubMed

    Veronesi, M C; Battocchio, M; Marinelli, L; Faustini, M; Kindahl, H; Cairoli, F

    2002-06-01

    The results of this study suggest that, besides the irrelevant role of body temperature measurement to predict the impending parturition in the bitch, progesterone and 15-ketodihydroprostaglandin F2alpha plasma level records could be more suitable to detect the approaching whelping in this species. More interesting was the statistically significant substantial increase in body temperature beginning 12 h after the onset of parturition. Therefore, if any significant increase in body temperature is recorded at the end of pregnancy without the beginning of the expulsion of fetuses, it could indicate problems at parturition. In this study, cortisol levels increased significantly at the time of delivery and remained high 12 h after the beginning of parturition, decreasing within 36 h after the onset of whelping. 15-ketodihydro-prostaglandin F2alpha levels increased significantly 24 h before parturition and again at the onset of whelping. Progesterone levels decreased significantly, starting 24 h before the onset of whelping and remained low after delivery.

  7. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  8. Cytokine gene polymorphism [tumor necrosis factor-alpha (-308), IL-10 (-1082), IL-6 (-174), IL-17F, 1RaVNTR] in pediatric patients with primary immune thrombocytopenia and response to different treatment modalities.

    PubMed

    Mokhtar, Galila M; El-Beblawy, Nagham M S; Adly, Amira A; Elbarbary, Nancy S; Kamal, Tarek M; Hasan, Esraa M

    2016-04-01

    To evaluate the association between development, progression, and response to therapy among patients with immune thrombocytopenia (ITP) and different cytokine gene polymorphisms known to be related to autoimmunity [tumor necrosis factor (TNF)-alpha, interleukin (IL)-10, IL-6, IL-17, IL-1Ra]. A total of 50 pediatric patients with ITP (20 newly diagnosed, 30 chronic) and 50 healthy controls were investigated via PCR-restriction fragment length polymorphism analysis for cytokine gene polymorphism. Compared with controls, all patients showed a higher frequency of IL-6-174 CC [P = 0.0001, odds ratio (OR) = 7.048, 95% confidence interval (CI) = 2.18-22.7], higher GA genotype of TNF-α (-308) (P = 0.001, OR = 6.469, 95% CI = 2.0-20.9), higher CC genotype of IL-17F (P = 0.0001, OR = 55.545, 95% CI = 14.4-213.2), higher GG of IL-10-1082 (P = 0.029, OR = 3.6, 95% CI = 1.08-12.18), and A1A2 genotype of IL-1Ra (P = 0.039, OR = 2.374, 95% CI = 1.03-5.4). IL-10 GA and IL-1Ra A1A1 genotypes were higher among chronic patients (P = 0.042, P = 0.001 respectively) compared with newly diagnosed ones. Best platelet response to steroid treatment was found among GC genotype of IL-6 (-174) and GG genotype of IL-10 (-1082) in all patients with ITP. This suggests that previously mentioned cytokine gene polymorphisms possibly contribute to the susceptibility of acquisition of childhood ITP. Furthermore, GA genotype of IL-10 and A1A1 genotype of IL-1Ra polymorphisms are associated with increased risk of chronic ITP. IL-6 (-174) and IL-10 (-1082) genes might play a role in the effectiveness of steroid therapy among patients with ITP.

  9. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1 alpha-hydroxylase knockout mice.

    PubMed

    Hoenderop, Joost G J; Chon, Helena; Gkika, Dimitra; Bluyssen, Hans A R; Holstege, Frank C P; St-Arnaud, Rene; Braam, Branko; Bindels, Rene J M

    2004-02-01

    Pseudovitamin D deficiency rickets (PDDR) is an autosomal disease, characterized by undetectable levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), rickets and secondary hyperparathyroidism. Mice in which the 25-hydroxyvitamin D3-1 alpha-hydroxylase (1 alpha-OHase) gene was inactivated, presented the same clinical phenotype as patients with PDDR. cDNA Microarray technology was used on kidneys of 1 alpha-OHase knockout mice to study the expression profile of renal genes in this Ca2+-related disorder. Genome wide molecular events that occur during the rescue of these mice by high dietary Ca2+ intake were studied by the use of 15K cDNA microarray chips. 1 alpha-OHase knockout mice fed a normal Ca2+ diet developed severe hypocalcemia, rickets and died with an average life span of 12 +/- 2 weeks. Intriguingly, 1 alpha-OHase-/- mice supplemented with an enriched Ca2+ diet were normocalcemic and not significantly different from wild-type mice. Inactivation of the 1 alpha-OHase gene resulted in a significant regulation of +/- 1000 genes, whereas dietary Ca2+ supplementation of the 1 alpha-OHase-/- mice revealed +/- 2000 controlled genes. Interestingly, 557 transcripts were regulated in both situations implicating the involvement in the dietary Ca2+-mediated rescue mechanism of the 1 alpha-OHase-/- mice. Conspicuous regulated genes encoded for signaling molecules like the PDZ-domain containing protein channel interacting protein, FK binding protein type 4, kinases, and importantly Ca2+ transporting proteins including the Na+-Ca2+ exchanger, calbindin-D28K and the Ca2+ sensor calmodulin. Dietary Ca2+ intake normalized disturbances in the Ca2+ homeostasis due to vitamin D deficiency that were accompanied by the regulation of a subset of renal genes, including well-known renal Ca2+ transport protein genes, but also genes not previously identified as playing a role in renal Ca2+ handling.

  10. Anti-lipoteichoic acid antibodies enhance release of cytokines by monocytes sensitized with lipoteichoic acid.

    PubMed Central

    Mancuso, G; Tomasello, F; Ofek, I; Teti, G

    1994-01-01

    Lipoteichoic acid (LTA) from gram-positive bacteria can stimulate monocytes to produce cytokines. To ascertain whether aggregation of LTA receptors can contribute to this effect, human monocytes were sensitized with LTA from Streptococcus pyogenes, washed, and treated with anti-LTA antibodies. The addition of anti-LTA antibodies or F(ab')2 fragments markedly enhanced the aggregation of LTA receptors, as evidenced by indirect immunofluorescence and the release of tumor necrosis factor alpha and interleukin-1 beta. These findings suggest that aggregation of LTA receptors of monocytes is required for triggering marked cytokine responses. PMID:8132355

  11. Cytokine-like factor-1, a novel soluble protein, shares homology with members of the cytokine type I receptor family.

    PubMed

    Elson, G C; Graber, P; Losberger, C; Herren, S; Gretener, D; Menoud, L N; Wells, T N; Kosco-Vilbois, M H; Gauchat, J F

    1998-08-01

    In this report we describe the identification, cloning, and expression pattern of human cytokine-like factor 1 (hCLF-1) and the identification and cloning of its murine homologue. They were identified from expressed sequence tags using amino acid sequences from conserved regions of the cytokine type I receptor family. Human CLF-1 and murine CLF-1 shared 96% amino acid identity and significant homology with many cytokine type I receptors. CLF-1 is a secreted protein, suggesting that it is either a soluble subunit within a cytokine receptor complex, like the soluble form of the IL-6R alpha-chain, or a subunit of a multimeric cytokine, e.g., IL-12 p40. The highest levels of hCLF-1 mRNA were observed in lymph node, spleen, thymus, appendix, placenta, stomach, bone marrow, and fetal lung, with constitutive expression of CLF-1 mRNA detected in a human kidney fibroblastic cell line. In fibroblast primary cell cultures, CLF-1 mRNA was up-regulated by TNF-alpha, IL-6, and IFN-gamma. Western blot analysis of recombinant forms of hCLF-1 showed that the protein has the tendency to form covalently linked di- and tetramers. These results suggest that CLF-1 is a novel soluble cytokine receptor subunit or part of a novel cytokine complex, possibly playing a regulatory role in the immune system and during fetal development.

  12. Serum leptin and cytokines in whole blood in relation to clinical and nutritional status in cystic fibrosis.

    PubMed

    Schmitt-Grohé, Sabina; Hippe, Valerie; Igel, Michael; von Bergmann, Klaus; Posselt, Hans G; Krahl, Andreas; Smaczny, Christina; Wagner, Thomas O F; Nikolaizik, Wilfried; Lentze, Michael J; Zielen, Stefan

    2006-08-01

    Leptin plays an important role in the energy balance and may be affected by hormonal and metabolic derangement associated with chronic disease. The aim of this study was to assess the correlation between leptin, proinflammatory cytokines and nutritional status with regard to clinical status in homozygous delta F 508 cystic fibrosis patients. Patients with mild (Shwachman score 71-100 points, group A) disease were compared with those with moderate disease (Shwachman score 41-55 points, group B) and age-matched controls (group C, n = 22). Leptin was assessed by enzyme-linked immunosorbent assay and cytokines (interleukin-8, tumor necrosis factor alpha) before and after stimulation with 5 ng lipopolysaccharide by a chemiluminescent immunometric assay. Twenty-two patients were recruited for each group (median A/B/C forced expiratory volume in 1 second 80%/59%/-; median age 12/13.5/12.5 years). Leptin (median 3.25/2.65/3.3 pg/mL; P = 0.083) and body mass index were lower (group A/B/C 18.55/16.75/20.5 kg/m(2); P = 0.023), but dietary intake was significantly higher (group A/B/C 50.5/68/43 kcal/kg body weight; P = 0.026) in moderate disease. Cytokines before stimulation with lipopolysaccharide were highest in moderate disease, but there was no significant difference after stimulation (interleukin-8 median A/B/C before--15/25.1/8.0 pg/mL, P < 0.005; after--570.5/573.5/415.5 pg/mL, not significant; tumor necrosis factor alpha median A/B/C 43/56/30 pg/mL, P < 0.0001; 580/427/720.5 pg/mL, not significant.). There is a physiological regulation of leptin even in more advanced states of disease with significantly lower body mass index than controls. However, our data do not support the idea of elevated cytokine levels inducing anorexia in homozygous delta F 508 cystic fibrosis patients.

  13. Role of cytokines and testosterone in regulating lean body mass and resting energy expenditure in HIV-infected men.

    PubMed

    Roubenoff, Ronenn; Grinspoon, Steven; Skolnik, Paul R; Tchetgen, Eric; Abad, Leslie; Spiegelman, Donna; Knox, Tamsin; Gorbach, Sherwood

    2002-07-01

    Although catastrophic weight loss is no longer common in HIV-infected men, we hypothesized that a more gradual process of cachexia [loss of lean body mass (LBM) without severe weight loss, often accompanied by elevated resting energy expenditure (REE)] is still common and is driven by excessive production of the catabolic cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). We performed a longitudinal analysis of an ongoing cohort study of nutritional status in 172 men with HIV infection. LBM loss of >1 kg occurred in 35% of the cohort, and LBM loss of >5% occurred in 12.2% over 8 mo of observation, but classical wasting (loss of approximately 10% of weight) was rare (2%). Both TNF-alpha (-150 g LBM. ng(-1) x ml(-1), P < 0.02) and IL-1 beta production (-130 g LBM x ng(-1) x ml(-1), P < 0.01) by peripheral blood mononuclear cells predicted loss of LBM. A rise in REE of >200 kcal/day was found in 17.7% of the subjects regardless of weight change. IL-1 beta (+9 kcal/day per ng/ml, P < 0.002) and TNF-alpha (+10 kcal/day per ng/ml, P < 0.02) production predicted Delta REE. Serum free testosterone was inversely associated with TNF-alpha production and was not an independent predictor of either Delta LBM or Delta REE after adjustment for cytokine production. Even though weight loss was rare in this cohort of patients treated with highly active antiretroviral therapy, loss of LBM was common and was driven by catabolic cytokines and not by inadequate dietary intake or hypogonadism.

  14. Radiosynthesis binding affinity and biodistribution of 3-[F-18]fluoro-N-({alpha},{alpha},{alpha}-trifluoro-m-tolyl)piperazine (FTFMPP), a radioligand for the Serotonin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishani, E.; Cristel, M.E.; McCarthy, T.J.

    1996-05-01

    The serotonin agonist N({alpha},{alpha},{alpha}-trifluoro-m-tolyl)piperazine (TFMPP) is a potent ligand for the serotonin system. Angelini and co-workers previously synthesized the c.a [F-18]TFMPP but the low specific activity (less than 0.2GBq/mmol) limited the application of this ligand. We have recently reported the formation of phenylpiperazines by a novel alumina supported bis-alkylation. We report the application of this method and biological evaluation of 3-[F-18]FTFMPP, a fluoro derivative of TFMPP. Reaction of [F-18]fluoride with 3,5-dinitrobenzotrifluoride gave the 3-[F-18]fluoro-5-nitrobenzotrifluoride in 70% yield. Reduction of the nitro group with Raney nickel and hydrazine hydrate gave the [F-18]aniline derivative in 70% yield. Finally, the phenylpiperazine was constructedmore » by reaction of the [F-18]aniline derivative with bis-2-bromoethyl-N-(ethoxy carbonyl)amine on basic alumina (pH=9) as a solid support. After extraction of the activity with basic MeOH and HPLC purification on normal phase the final product- [F-18]FTFMPP was obtained in 50% yield (98% radiochemical purity). The specific activity of the final product was 100GBq/mmol. The binding affinity of FTFMPP to 5-HT receptor was determined (Ki = 80-100 nM) and found to be similar to the binding affinity of the TFMPP (160-180 nM). The biodistribution of [F-18]FTFMPP was performed in rats.« less

  15. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F.

    PubMed Central

    Bandara, L R; Buck, V M; Zamanian, M; Johnston, L H; La Thangue, N B

    1993-01-01

    It is widely believed that the cellular transcription factor DRTF1/E2F integrates cell cycle events with the transcription apparatus because during cell cycle progression in mammalian cells it interacts with molecules that are important regulators of cellular proliferation, such as the retinoblastoma tumour suppressor gene product (pRb), p107, cyclins and cyclin-dependent kinases. Thus, pRb, which negatively regulates early cell cycle progression and is frequently mutated in tumour cells, and the Rb-related protein p107, bind to and repress the transcriptional activity of DRTF1/E2F. Viral oncoproteins, such as adenovirus E1a and SV40 large T antigen, overcome such repression by sequestering pRb and p107 and in so doing are likely to activate genes regulated by DRTF1/E2F, such as cdc2, c-myc and DHFR. Two sequence-specific DNA binding proteins, E2F-1 and DP-1, which bind to the E2F site, contain a small region of similarity. The functional relationship between them has, however, been unclear. We report here that DP-1 and E2F-1 exist in a DNA binding complex in vivo and that they bind efficiently and preferentially as a heterodimer to the E2F site. Moreover, studies in yeast and Drosophila cells indicate that DP-1 and E2F-1 interact synergistically in E2F site-dependent transcriptional activation. Images PMID:8223441

  16. Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea.

    PubMed

    Popko, K; Gorska, E; Potapinska, O; Wasik, M; Stoklosa, A; Plywaczewski, R; Winiarska, M; Gorecka, D; Sliwinski, P; Popko, M; Szwed, T; Demkow, U

    2008-12-01

    Obesity is one of the most commonly identified factors for the obstructive sleep apnea syndrome (OSAS). Adipose tissue is the source of many cytokines, among them there are IL-6, IL-1, and TNF-alpha. The level of inflammatory cytokines increases in people with OSAS and obesity. The aim of this study was to evaluate the distribution of genotypes in inflammatory cytokine genes in people with obesity-related OSAS. The examined group consisted of 102 person with obesity related-OSAS and 77 normal weight person without OSAS. Genotyping of DNA sequence variation was carried out by restriction enzyme (IL-1: Taq I, IL-6: Lwe I, TNF-alpha: Nco I) analysis of PCR amplified DNA. The study revealed a significant correlation between polymorphism located in the promoter region of inflammatory cytokine genes and obesity-related OSAS.

  17. Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages.

    PubMed

    Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N

    2004-12-01

    The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.

  18. Short-term regulation of the alpha-ketoglutarate dehydrogenase complex by energy-linked and some other effectors.

    PubMed

    Strumilo, S

    2005-07-01

    The question of regulation of alpha-ketoglutarate dehydrogenase complex (KGDHC) has been considered in the biochemical literature very rarely. Moreover, such information is not usually accurate, especially in biochemical textbooks. From the mini-review of research works published during the last 25 years, the following basic view is clear: a) animal KGDHC is very sensitive to ADP, P(i), and Ca2+; b) these positive effectors increase manifold the affinity of KGDHC to alpha-ketoglutarate; c) KGDHC is inhibited by ATP, NADH, and succinyl-CoA; d) the ATP effect is realized in several ways, probably mainly via opposition versus ADP activation; e) NADH, besides inhibiting dihydrolipoamide dehydrogenase component competitively versus NAD+, decreases the affinity of alpha-ketoglutarate dehydrogenase to substrate and inactivates it; f) thioredoxin protects KGDHC from self-inactivation during catalysis; g) bacterial and plant KGDHC is activated by AMP instead of ADP. These main effects form the basis of short-term regulation of KGDHC.

  19. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile

    PubMed Central

    DeFuria, Jason; Belkina, Anna C.; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R.; Markham, Douglas; Strissel, Katherine J.; Watkins, Amanda A.; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S.; McDonnell, Marie E.; Apovian, Caroline; Denis, Gerald V.; Nikolajczyk, Barbara S.

    2013-01-01

    Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell–null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell–null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D. PMID:23479618

  20. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    PubMed

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  1. GammadeltaT cells positively regulate contact sensitivity (CS) reaction via modulation of INF-gamma, IL-12 and TNF-alpha production.

    PubMed

    Strzepa, Anna; Majewska-Szczepanik, Monika; Szczepanik, Marian

    2013-01-01

    The gammadeltaT cells were identified as positive as well as negative regulators of immune responses. They take part in pathogen clearance, modulation of innate and adaptive immunity as well as in healing and tissue maintenance. The course of many pathological conditions such as collagen induced arthritis (CIA), experimental autoimmune encephalomyelitis (EAE) and airway hyperresponsiveness is positively regulated by gammadeltaT cells. It was shown previously that contact sensitivity (CS), an example of antigen-specific cell-mediated immune response, is also positively regulated by gammadeltaT cells. The current work confirmed the regulatory function of gammadeltaT cells in CS response as their depletion with anti-TCRdelta monoclonal antibody and complement significantly decreased adoptive transfer of the CS reaction. In vitro study showed that removal of gammadeltaT cells with magnetic beads significantly decreased the production of the proinflammatory cytokines IFN-gamma, IL-12 and TNF-alpha. Reconstitution of gammadeltaT-depleted cells with gammadeltaT-enriched cells restored cytokine production, proving the reversibility of the investigated process. In summary, gammadeltaT cells positively regulate the CS reaction via modulation of proinflammatory cytokine production.

  2. Oxytocin induces prostaglandin F2 alpha release in pregnant cows: influence of gestational age and oxytocin receptor concentrations.

    PubMed

    Fuchs, A R; Rollyson, M K; Meyer, M; Fields, M J; Minix, J M; Randel, R D

    1996-03-01

    Brahman cows with known breeding dates received i.v. injections of either 10 or 100 IU oxytocin (OT) on Days 50, 150, 250, or 280 of gestation (n = 6 for each stage). Concentrations of the prostaglandin (PG) F2 alpha metabolite, 13,14-dihydro-15-keto-prostaglandin (PGFM), and OT were measured in samples of peripheral plasma collected at 15-min intervals for 1 h before and 1 h after treatment and then at 30-min intervals for 3 h. Plasma progesterone was measured daily for 14 days after OT injections on Days 50 and 250 of gestation. The increase in plasma OT after injection was dose-dependent (p = 0.001) but not affected by stage of gestation. Plasma PGFM increased after OT in a dose- and stage-dependent manner (p = 0.0001). At Day 280, the increase in plasma PGFM after 100 IU OT was sevenfold greater than at Day 50. Plasma progesterone declined significantly during the 7th to 12th days postinjection and returned to normal pregnancy values by the 14th day (4.4 +/- 0.3 ng/ml) except in two cows treated on Day 50 of gestation that later aborted. In these, plasma progesterone was significantly lower, 2.6 +/- 0.1 ng/ml. In a second experiment, the concentration of OT receptors was determined in endometrium collected from purebred Angus or Hereford cows slaughtered on Days 50, 150, 250, and 280 of gestation (n = 3 or 4 at each stage). Endometrial concentrations of OT receptor changed as a function of gestational age, increasing sixfold from Day 50 to Day 280, which was parallel to the increase by OT of plasma PGFM. Thus, endometrial OT receptors are functionally coupled to PGF2 alpha release during pregnancy, and their concentration determines the magnitude of OT-induced PGF2 alpha release during gestation. Consequently, endogenous OT is a factor in the regulation of PGF2 alpha release from the bovine uterus during pregnancy and parturition.

  3. Aging increases amyloid beta-peptide-induced 8-iso-prostaglandin F2alpha release from rat brain.

    PubMed

    Brunetti, Luigi; Michelotto, Barbara; Orlando, Giustino; Recinella, Lucia; Di Nisio, Chiara; Ciabattoni, Giovanni; Vacca, Michele

    2004-01-01

    In order to investigate whether amyloid beta-peptide-induced oxidative damage in the brain could be related to aging, we studied the release of 8-iso-prostaglandin (PG)F2alpha, a stable marker of cellular oxidative stress, in brain synaptosomes from Wistar rats of different ages (3, 6, 12, 18 months old), both basally and after amyloid beta-peptide (1-40) perfusion. We found that basal release of 8-iso-PGF2alpha was not significantly different among all age groups of rats. Either phospholipase A2 activation induced by calcium ionophore A23187 (10 nM) or amyloid beta-peptide (5 microM) did not modify isoprostane release, when these substances were used alone. In contrast, amyloid beta-peptide (1-5 microM) preincubation caused a dose-dependent increase of A23187-stimulated 8-iso-PGF2alpha release in each age group, which was also strikingly correlated to aging of rats. Furthermore, ferric ammonium sulfate stimulates isoprostane production to levels comparable to those induced by amyloid beta-peptide. In conclusion, although 8-iso-PGF2alpha production from rat brain synaptosomes is independent from aging in the basal state, aging renders neurons more vulnerable to amyloid beta-peptide-induced oxidative toxicity.

  4. Interleukin (IL)-33 and the IL-1 Family of Cytokines-Regulators of Inflammation and Tissue Homeostasis.

    PubMed

    Vasanthakumar, Ajithkumar; Kallies, Axel

    2017-11-03

    Cytokines play an integral role in shaping innate and adaptive immune responses. Members of the interleukin (IL)-1 family regulate a plethora of immune-cell-mediated processes, which include pathogen defense and tissue homeostasis. Notably, the IL-1 family cytokine IL-33 promotes adaptive and innate type 2 immune responses, confers viral protection and facilitates glucose metabolism and tissue repair. At the cellular level, IL-33 stimulates differentiation, maintenance, and function of various immune cell types, including regulatory T cells, effector CD4 + and CD8 + T cells, macrophages, and type 2 innate lymphoid cells (ILC2s). Other IL-1 family members, such as IL-1β and IL-18 promote type 1 responses, while IL-37 limits immune activation. Although IL-1 cytokines play critical roles in immunity and tissue repair, their deregulated expression is often linked to autoimmune and inflammatory diseases. Therefore, IL-1 cytokines are regulated tightly by posttranscriptional mechanisms and decoy receptors. In this review, we discuss the biology and function of IL-1 family cytokines, with a specific focus on regulation and function of IL-33 in immune and tissue homeostasis. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Tissue-specific and hormonally regulated expression of a rat alpha 2u globulin gene in transgenic mice.

    PubMed Central

    Soares, V da C; Gubits, R M; Feigelson, P; Costantini, F

    1987-01-01

    To investigate the tissue-specific and hormonal regulation of the rat alpha 2u globulin gene family, we introduced one cloned member of the gene family into the mouse germ line and studied its expression in the resulting transgenic mice. Alpha 2u globulingene 207 was microinjected on a 7-kilobase DNA fragment, and four transgenic lines were analyzed. The transgene was expressed at very high levels, specifically in the liver and the preputial gland of adult male mice. The expression in male liver was first detected at puberty, and no expression was detected in female transgenic mice. This pattern of expression is similar to the expression of endogenous alpha 2u globulin genes in the rat but differs from the expression of the homologous mouse major urinary protein (MUP) gene family in that MUPs are synthesized in female liver and not in the male preputial gland. We conclude that these differences between rat alpha 2u globulin and mouse MUP gene expression are due to evolutionary differences in cis-acting regulatory elements. The expression of the alpha 2u globulin transgene in the liver was abolished by castration and fully restored after testosterone replacement. The expression could also be induced in the livers of female mice by treatment with either testosterone or dexamethasone, following ovariectomy and adrenalectomy. Therefore, the cis-acting elements responsible for regulation by these two hormones, as well as those responsible for tissue-specific expression, are closely linked to the alpha 2u globulin gene. Images PMID:2446121

  6. Effects of a single administration of prostaglandin F2alpha, or a combination of prostaglandin F2alpha and prostaglandin E2, or placebo on fertility variables in dairy cows 3-5 weeks post partum, a randomized, double-blind clinical trial.

    PubMed

    Hirsbrunner, Gaby; Burkhardt, Heinz W; Steiner, Adrian

    2006-12-21

    Delayed uterine involution has negative effects on the fertility of cows; use of prostaglandin F2alpha alone as a single treatment has not been shown to consistently improve fertility. Combined administration of PGF2alpha and PGE2 increased uterine pressure in healthy cows. We hypothesized, that the combination of both prostaglandins would accelerate uterine involution and have, therefore, a positive effect on fertility variables. In commercial dairy farming, the benefit of a single post partum combined prostaglandin treatment should be demonstrated. 383 cows from commercial dairy farms were included in this study. Uterine size and secretion were evaluated at treatment 21-35 days post partum and 14 days later. Cows were randomly allocated to one of three treatment groups: PGF2alpha and PGE2, PGF2alpha or placebo. For every animal participating in the study, the following reproduction variables were recorded: Interval from calving to first insemination, days open, number of artificial inseminations (AI) to conception; subsequent treatment of uterus, subsequent treatment of ovaries. Plasma progesterone level at time of treatment was used as a covariable. For continuous measurements, analysis of variance was performed. Fisher's exact test for categorical non-ordered data and exact Kruskal-Wallis test for ordered data were used; pairwise group comparisons with Bonferroni adjustment of significance level were performed. There was no significant difference among treatment groups in uterine size. Furthermore, there was no significant difference among treatments concerning days open, number of AI, and subsequent treatment of uterus and ovaries. Days from calving to first insemination tended to be shorter for cows with low progesterone level given PGF2alpha and PGE2 in combination than for the placebo-group (P = 0.024). The results of this study indicate that the administration of PGF2alpha or a combination of PGF2alpha and PGE2 21 to 35 days post partum had no beneficial

  7. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis.

    PubMed

    Meager, A; Wadhwa, M; Dilger, P; Bird, C; Thorpe, R; Newsom-Davis, J; Willcox, N

    2003-04-01

    We have screened for spontaneous anticytokine autoantibodies in patients with infections, neoplasms and autoimmune diseases, because of their increasingly reported co-occurrence. We tested for both binding and neutralizing autoantibodies to a range of human cytokines, including interleukin-1alpha (IL-1alpha), IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, interferon-alpha2 (IFN-alpha2), IFN-omega, IFN-beta, IFN-gamma, tumour necrosis factor alpha (TNF-alpha), transforming growth factor beta-1 (TGF-beta1) and granulocyte-macrophage colony stimulating factor (GM-CSF), in plasmas or sera. With two notable exceptions described below, we found only occasional, mostly low-titre, non-neutralizing antibodies, mainly to GM-CSF; also to IL-10 in pemphigoid. Strikingly, however, high-titre, mainly IgG, autoantibodies to IFN-alpha2, IFN-omega and IL-12 were common at diagnosis in patients with late-onset myasthenia gravis (LOMG+), thymoma (T) but no MG (TMG-) and especially with both thymoma and MG together (TMG+). The antibodies recognized other closely related type I IFN-alpha subtypes, but rarely the distantly related type I IFN-beta, and never (detectably) the unrelated type II IFN-gamma. Antibodies to IL-12 showed a similar distribution to those against IFN-alpha2, although prevalences were slightly lower; correlations between individual titres against each were so modest that they appear to be entirely different specificities. Neither showed any obvious correlations with clinical parameters including thymoma histology and HLA type, but they did increase sharply if the tumours recurred. These antibodies neutralized their respective cytokine in bioassays in vitro; although they persisted for years severe infections were surprisingly uncommon, despite the immunosuppressive therapy also used in most cases. These findings must hold valuable clues to autoimmunizing mechanisms in paraneoplastic autoimmunity.

  8. Influence of thermal quenching on the thermostimulated processes in alpha-Al2O3. Role of F and F+ centres.

    PubMed

    Vincellér, S; Molnár, G; Berkane-Krachai, A; Iacconi, P

    2002-01-01

    Anion deficient alpha-Al2O3 is highly sensitive to ionising radiations and is widely used as a thermoluminescence and optically stimulated luminescence dosemeter in environmental monitoring. Two types of alpha alumina were studied and it was observed that both were affected by thermal quenching of luminescence. This effect, which manifests itself by the decay of the TL response when the heating rate increases, can be described by the Mott-Seitz theory. It was observed that thermostimulated exoemission response increased when the heating rate increased, whereas thermostimulated conductivity remained constant. However, none of the available theories could explain the dependence of the F- centre emission on the heating rate. A model is proposed to describe simultaneously the various thermally stimulated processes.

  9. Uroepithelial cells are part of a mucosal cytokine network.

    PubMed Central

    Hedges, S; Agace, W; Svensson, M; Sjögren, A C; Ceska, M; Svanborg, C

    1994-01-01

    This study compared the cytokine production of uroepithelial cell lines in response to gram-negative bacteria and inflammatory cytokines. Human kidney (A498) and bladder (J82) epithelial cell lines were stimulated with either Escherichia coli Hu734, interleukin 1 alpha (IL-1 alpha), or tumor necrosis factor alpha (TNF-alpha). Supernatant samples were removed, and the RNA was extracted from cells at 0, 2, 6, and 24 h. The secreted cytokine levels were determined by bioassay or immunoassay; mRNA was examined by reverse transcription-PCR. The two cell lines secreted IL-6 and IL-8 constitutively. IL-6 and IL-8 mRNA were constitutively produced in both cell lines; IL-1 beta mRNA was detected in J82 cells. IL-1 alpha induced significantly higher levels of IL-6 secretion than did E. coli Hu734 or TNF-alpha. IL-1 alpha and TNF-alpha induced significantly higher levels of IL-8 secretion than did E. coli Hu734. Secreted IL-1 beta was not detected; IL-1 alpha and TNF-alpha were not detected above the levels used for stimulation. IL-1 alpha, IL-1 beta, IL-6, and IL-8 mRNAs were detected in both cell lines after exposure to the stimulants. TNF-alpha mRNA was occasionally detected in the J82 cell line after TNF-alpha stimulation. Cytokine (IL-6 and IL-8) and control (glyceraldehyde 3-phosphate dehydrogenase [G3PDH] and beta-actin) mRNA concentrations were quantitated with internal PCR standards. Cytokine mRNA levels relative to beta-actin mRNA levels were the highest in E. coli-stimulated cells. In comparison, the cytokine mRNA levels relative to G3PDH mRNA levels were the highest in IL-1 alpha-stimulated cells. beta-Actin mRNA levels decreased after bacterial stimulation but not after cytokine stimulation, while G3PDH mRNA levels increased in response to all of the stimulants tested. These results suggested that E. coli Hu734 lowered the beta-actin mRNA levels in uroepithelial cells, thus distorting the IL-6 and IL-8 mRNA levels relative to this control. In summary, E. coli IL

  10. Effects of prostaglandin F(2alpha)and carbachol on MAP kinases, cytosolic phospholipase A(2)and arachidonic acid release in cat iris sphincter smooth muscle cells.

    PubMed

    Husain, S; Abdel-Latif, A A

    2001-05-01

    The signal transduction pathways initiated by Ca(2+)-mobilizing agonists, such as prostaglandin F(2alpha)(PGF(2alpha)) and carbachol (CCh), leading to activation of cytosolic phospholipase A(2)(cPLA(2)) and arachidonic acid (AA) release in a wide variety of tissues remain obscure. To further define the role of protein kinases in receptor mediated stimulation of cPLA(2)and consequently AA release we have investigated the role of mitogen-activated protein (MAP) kinases and protein kinase C (PKC) in PGF(2alpha)- and CCh-induced cPLA(2)phosphorylation and AA release in cat iris sphincter smooth muscle (CISM) cells. The cells were prelabeled with [(3)H]AA for 24 hr and incubated in the absence or presence of the agonist for 5-10 min as indicated. MAP kinases activities and cPLA(2)phosphorylation were determined in immunoprecipitates obtained by using anti-p38 MAP kinase and anti-cPLA(2)antibodies. We found that: (a) PGF(2alpha)and CCh increased p38 MAP kinase activity by 197 and 215%, respectively, and increased p42/p44 MAP kinase activity by 200 and 125%, respectively. (b) SB202190, a p38 MAP kinase specific inhibitor, inhibited PGF(2alpha)- and CCh-induced cPLA(2)phosphorylation by 92 and 85%, respectively, and AA release by 62 and 78%, respectively. (c) PD98059, a p42/p44 MAP kinase inhibitor, inhibited CCh-induced cPLA(2)phosphorylation by 70% and AA release by 71%, but had no effect on that of PGF(2alpha). (d) Inhibition of PKC activity by RO 31-8220 inhibited both PGF(2alpha)- and CCh-stimulation of p38 MAP kinase, p42/p44 MAP kinases and cPLA(2)phosphorylation. We conclude from these results that in CISM cells PGF(2alpha)-induced cPLA(2)phosphorylation and AA release is mediated through p38 MAP kinase, but not through p42/p44 MAP kinases, whereas that of CCh is mediated through both p38 MAP kinase and p42/p44 MAP kinases. These effects of PGF(2alpha)and CCh are regulated by the MAP kinases in a PKC-dependent manner. Studies aimed at elucidating the role of

  11. Cytokine profile in canine immune-mediated polyarthritis and osteoarthritis.

    PubMed

    Hegemann, N; Wondimu, A; Kohn, B; Brunnberg, L; Schmidt, M F G

    2005-01-01

    The purpose of this study was to determine the cytokine profile in 21 dogs with canine immune-mediated polyarthritis (IMA) and 15 dogs with osteoarthritis (OA) caused by cranial cruciate ligament rupture (CCLR). The mRNA expression of interleukin (IL)-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, interferon (IFN)-gamma, transforming growth factor (TGF)-beta, and tumour necrosis factor (TNF)-alpha were analysed in synovial fluid by semi-quantitative RT-PCR, while TNF-alpha protein was determined by L929 cytotoxicity assay. The frequency of lymphocytes was analysed using FACScan. Both disorders reveal a similar cytokine expression pattern, except for significant lower IL-1beta expression in OA. Th1 cytokines IL-2 and IFN-gamma were detected, while IL-4 was nearly absent in IMA and OA. Furthermore, the bioassay demonstrates a significantly higher production of TNF-alpha in synovial fluid of dogs with IMA, compared to dogs with OA (p < 0.05). The frequency of CD4+, CD8+ and MHC class II+ cells was relatively higher in synovial fluids compared to peripheral blood in IMA. These findings reveal that the difference between the cytokine pattern of canine IMA and OA seems to be rather quantitative than qualitative. Both joint disorders show predominance of pro-inflammatory cytokines and absence of TH2 cytokine expression, indicating the potential of IL-4 for a gene therapeutic approach.

  12. TNF-{alpha} upregulates the A{sub 2B} adenosine receptor gene: The role of NAD(P)H oxidase 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Hilaire, Cynthia; Koupenova, Milka; Carroll, Shannon H.

    2008-10-24

    Proliferation of vascular smooth muscle cells (VSMC), oxidative stress, and elevated inflammatory cytokines are some of the components that contribute to plaque formation in the vasculature. The cytokine tumor necrosis factor-alpha (TNF-{alpha}) is released during vascular injury, and contributes to lesion formation also by affecting VSMC proliferation. Recently, an A{sub 2B} adenosine receptor (A{sub 2B}AR) knockout mouse illustrated that this receptor is a tissue protector, in that it inhibits VSMC proliferation and attenuates the inflammatory response following injury, including the release of TNF-{alpha}. Here, we show a regulatory loop by which TNF-{alpha} upregulates the A{sub 2B}AR in VSMC in vitromore » and in vivo. The effect of this cytokine is mimicked by its known downstream target, NAD(P)H oxidase 4 (Nox4). Nox4 upregulates the A{sub 2B}AR, and Nox inhibitors dampen the effect of TNF-{alpha}. Hence, our study is the first to show that signaling associated with Nox4 is also able to upregulate the tissue protecting A{sub 2B}AR.« less

  13. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Congjun; Evans, Chheng-Orn; Stevens, Victoria L.

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNAmore » staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.« less

  14. Effects of Mind-Body Training on Cytokines and Their Interactions with Catecholamines.

    PubMed

    Jang, Joon Hwan; Park, Hye Yoon; Lee, Ui Soon; Lee, Kyung-Jun; Kang, Do-Hyung

    2017-07-01

    Mind-body training (MBT) may control reactions to stress and regulate the nervous and immune systems. The present study was designed to assess the effects of MBT on plasma cytokines and their interactions with catecholamines. The study group consisted of 80 subjects who practice MBT and a control group of 62 healthy subjects. Plasma catecholamine (norepinephrine, NE; epinephrine, E; and dopamine, DA) and cytokine (TNF-alpha, IL-6, IFN-gamma, and IL-10) levels were measured, and the differences between the MBT and control groups and the interactions of cytokines with catecholamines were investigated. A significant increase in IL-10+IFN-gamma was found in females of the MBT group compared with controls. Also, a significant increase of IL-10 (anti-inflammatory cytokine) in the MBT group was shown in a specific condition in which TNF-alpha and IL-6 (pro-inflammatory cytokines) are almost absent (≤1 ng/L) compared with controls. In the MBT group, significant positive correlations were found between IL-10 and the NE/E ratio and between IL-10 and the DA/E ratio, whereas the control group did not show any such correlations. MBT may increase IL-10, under specific conditions such as a decrease of pro-inflammatory cytokines or E, which may regulate the stress response and possibly contribute to effective and beneficial interactions between the nervous and immune systems.

  15. Chorionic gonadotropin regulates the transcript level of VHL, p53, and HIF-2alpha in human granulosa lutein cells.

    PubMed

    Herr, D; Keck, C; Tempfer, C; Pietrowski, Detlef

    2004-12-01

    The ovarian corpus luteum plays a critical role in reproduction being the primary source of circulating progesterone. After ovulation the corpus luteum is build by avascular granulosa lutein cells through rapid vascularization regulated by gonadotropic hormones. The present study was performed to investigate whether this process might be influenced by the human chorionic gonadotropin (hCG)-dependent expression of different tumor suppressor genes and hypoxia dependent transcription factors. RNA was isolated from cultured granulosa lutein cells, transcribed into cDNA, and the transcript level of following genes were determined: RB-1, VHL, NF-1, NF-2, Wt-1, p53, APC, and hypoxia inducible factor-1 (HIF-1), -2, and -3alpha. Additionally, the influence of hCG on the expression of VHL, p53, and HIf2alpha were investigated. We demonstrate that in human granulosa lutein cells the tumor suppressor genes RB-1, VHL, NF-1, NF-2, Wt-1, p53, and APC and the hypoxia dependent transcription factors HIF-1alpha, -2alpha, and -3alpha are expressed. In addition, we showed that hCG regulates the expression of p53, VHL, and HIF-2alpha. Our results indicate that hCG may determine the growth and development of the corpus luteum by mediating hypoxic and apoptotic pathways in human granulosa lutein cells. Copyright 2004 Wiley-Liss, Inc.

  16. Expression of protease-activated receptor (PAR)-2, but not other PARs, is regulated by inflammatory cytokines in rat astrocytes.

    PubMed

    Sokolova, Elena; Aleshin, Stepan; Reiser, Georg

    2012-02-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS) and are believed to play an important role in normal brain functioning as well as in development of various inflammatory and neurodegenerative disorders. Pathological conditions cause altered expression of PARs in brain cells and therefore altered responsiveness to PAR activation. The exact mechanisms of regulation of PAR expression are not well studied. Here, we evaluated in rat astrocytes the influence of LPS, pro-inflammatory cytokines TNFα and IL-1β and continuous PAR activation by PAR agonists on the expression levels of PARs. These stimuli are important in inflammatory and neurological disorders, where their levels are increased. We report that LPS as well as cytokines TNFα and IL-1β affected only the PAR-2 level, but their effects were opposite. LPS and TNFα increased the functional expression of PAR-2, whereas IL-1β down-regulated the functional response of PAR-2. Agonists of PAR-1 specifically increased mRNA level of PAR-2, but not protein level. Transcript levels of other PARs were not changed after PAR-1 activation. Stimulation of the cells with PAR-2 or PAR-4 agonists did not alter PAR levels. We found that up-regulation of PAR-2 is dependent on PKC activity, mostly via its Ca²⁺-sensitive isoforms. Two transcription factors, NFκB and AP-1, are involved in up-regulation of PAR-2. These findings provide new information about the regulation of expression of PAR subtypes in brain cells. This is of importance for targeting PARs, especially PAR-2, for the treatment of CNS disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.

    PubMed

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-12-03

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.

  18. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    PubMed

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  19. Effect of mineral trioxide aggregate on cytokine production by peritoneal macrophages.

    PubMed

    Rezende, T M B; Vargas, D L; Cardoso, F P; Sobrinho, A P R; Vieira, L Q

    2005-12-01

    To test the effect of two commercial brands of grey mineral trioxide aggregate (ProRoot and MTA-Angelus) on cytokine production by M1 and M2 inflammatory macrophages. M1 (from C57BL/6 mice) and M2 peritoneal inflammatory macrophages (from C57BL/6 IL12p40-/- mice) were obtained and cultured in vitro in the presence of MTA. The cellular viability and the production of tumour necrosis factor-alpha, interleukin (IL)-12 and IL-10 in response to stimulation with interferon-gamma and Fusobacterium nucleatum or Peptostreptococcus anaerobius were evaluated. Data were analysed by Mann-Whitney, Kruskal-Wallis and anova tests. The cements did not interfere with cellular viability or with cytokine production by either type of macrophage. However, M2 macrophages produced higher levels of IL-10 when stimulated with F. nucleatum than M1 macrophages (P < 0.05). The brands of MTA evaluated did not interfere in the cytokine response by M1 or M2 macrophages to the two bacteria tested. However, a difference in cytokine production between the two types of macrophages was found.

  20. Effects of 15(S)-15-methyl prostaglandin F2 alpha methyl ester-containing silastic discs in male rats.

    PubMed

    Kimball, F A; Frielink, R D; Porteus, S E

    1978-01-01

    Silicone rubber discs containing 15(S)-15-methyl prostaglandin F2 alpha ester (15-Me-PGF2 alpha) in the matrix were implanted in the left side of the scrotums of Sprague-Dawley rats. The effect of 1% and 2% drug concentration was examined for 10, 20, or 28 days and compared with the effects of Silastic discs containing no prostaglandin. The discs containing prostaglandin reduced mean testicular and accessory gland weights. Histologically the testes and epididymides showed decreased or absent spermatogenic elements and hypertrophy of the interstitial cell masses in comparison with other cells. Implanted prostaglandin significantly depressed serum testosterone, luteinizing hormone, and follicle-stimulating hormone (FSH) concentrations when 15-Me-PGF2 alpha plasma concentrations exceeded 2 ng/ml. Hormone concentrations returned to control values as drug concentrations declined. FSH concentrations significantly exceeded control values 10 and 20 days after implantation, when prostaglandin concentration was nondetectable. The acute suppression of all three hormones suggest that 15-Me-PGF2 alpha either may act directly on the tests to suppress testosterone production or may suppress testosterone production or may suppress gonadotropin secretion, resulting in depressed testosterone output.

  1. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) mediates repression of TNF-{alpha} by decreasing levels of acetylated histone H3 and H4 at its promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engdahl, Ryan; Monroy, M. Alexandra; Temple University School of Medicine, Department of Anatomy and Cell Biology, 3400 North Broad Street, Philadelphia, PA 19140

    2007-07-20

    Prostaglandin metabolite 15-Deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) is known to inhibit a number of pro-inflammatory cytokines as well as being a ligand for nuclear receptor PPAR{gamma}. We investigated the ability of 15d-PGJ2 to inhibit TNF-{alpha} gene expression through mechanisms that involve histone modification. Pretreatment with 15d-PGJ2 (10 {mu}M) inhibited LPS-stimulated TNF-{alpha} mRNA in THP-1 monocytes or PMA-differentiated cells to nearly basal levels. A specific PPAR{gamma} ligand, GW1929, failed to inhibit LPS-induced TNF-{alpha} mRNA expression nor did a PPAR{gamma} antagonist, GW9662, alter the repression of TNF-{alpha} mRNA in LPS-stimulated cells pretreated with 15d-PGJ2 suggesting a PPAR{gamma}-independent inhibition of TNF-{alpha} mRNA in THP-1more » cells. Transfection studies with a reporter construct and subsequent treatment with 15d-PGJ2 demonstrated a dose-dependent inhibition of the TNF-{alpha} promoter. Additional studies demonstrated that inhibition of histone deacetylases with trichostatin A (TSA) or overexpression of histone acetyltransferase CBP could overcome 15d-PGJ2-mediated repression of the TNF-{alpha} promoter, suggesting that an important mechanism whereby 15d-PGJ2 suppresses a cytokine is through factors that regulate histone modifications. To examine the endogenous TNF-{alpha} promoter, chromatin immunoprecipitations (ChIP) were performed. ChIP assays demonstrated that LPS stimulation induced an increase in histone H3 and H4 acetylation at the TNF-{alpha} promoter, which was reduced in cells pretreated with 15d-PGJ2. These results highlight the ability of acetylation and deacetylation factors to affect the TNF-{alpha} promoter and demonstrate that an additional important mechanism whereby 15d-PGJ2 mediates TNF-{alpha} transcriptional repression by altering levels of acetylated histone H3 and H4 at its promoter.« less

  2. The Drosophila cytokine Unpaired 2 regulates physiological homeostasis by remotely controlling Insulin secretion

    PubMed Central

    Rajan, Akhila; Perrimon, Norbert

    2012-01-01

    In Drosophila the fat body (FB), a functional analog of the vertebrate adipose tissue, is the 'nutrient sensor' that conveys the nutrient status to the insulin producing cells (IPCs) in the fly brain to release insulin-like peptides (Dilps). Dilp secretion in turn regulates energy balance and promotes systemic growth. We identify Unpaired2 (Upd2), a protein with similarities to type I cytokines, as a secreted factor produced by the FB in the ‘fed’ state. When upd2 function is perturbed specifically in the FB, it results in a systemic reduction in growth and alters energy metabolism. Upd2 activates JAK/STAT signaling in a population of GABAergic neurons that project onto the IPCs. This activation relieves the inhibitory tone of the GABAergic neurons on the IPCs, resulting in the secretion of Dilps. Strikingly, we find that human Leptin, can rescue the upd2 mutant phenotypes, suggesting that Upd2 is the functional homolog of Leptin. PMID:23021220

  3. Prostaglandin production by melanocytic cells and the effect of alpha-melanocyte stimulating hormone.

    PubMed

    Nicolaou, Anna; Estdale, Sian E; Tsatmali, Marina; Herrero, Daniel Pascual; Thody, Anthony J

    2004-07-16

    Prostaglandins are potent mediators of the inflammatory response and are also involved in cancer development. In this study, we show that human melanocytes and FM55 melanoma cells express cyclooxygenase-1 and -2 (COX-1 and -2) and thus have the capability to produce prostaglandins. The FM55 cells produced predominantly PGE2 and PGF2alpha, whereas the HaCaT keratinocyte cell line produced mainly PGE2. The anti-inflammatory peptide, alpha-melanocyte stimulating hormone (alpha-MSH), reduced prostaglandin production in FM55 and HaCaT cells and reversed the effect of the pro-inflammatory cytokine TNF-alpha in the former. These results indicate that melanocytes produce prostaglandins and that alpha-MSH, by inhibiting this response, may play an important role in regulating inflammatory responses in the skin.

  4. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-kappaB activation.

    PubMed

    Selvaraj, Suresh K; Prasadarao, Nemani V

    2005-08-01

    Phagocytes are well-known effectors of the innate immune system to produce proinflammatory cytokines and chemokines such as tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, and IL-8 during infections. Here, we show that infection of monocytes with wild-type Escherichia coli K1, which causes meningitis in neonates, suppresses the production of cytokines and chemokines (TNF-alpha, regulated on activation, normal T expressed and secreted, macrophage-inflammatory protein-1beta, IL-1beta, and IL-8). In contrast, infection of monocytes with a mutant E. coli, which lacks outer membrane protein A (OmpA- E. coli) resulted in robust production of cytokines and chemokines. Wild-type E. coli K1 (OmpA+ E. coli) prevented the phosphorylation and its degradation of inhibitor of kappaB, thereby blocking the translocation of nuclear factor (NF)-kappaB to the nucleus. OmpA+ E. coli-infected cells, subsequently subjected to lipopolysaccharide challenge, were crippled severely in their ability to activate NF-kappaB to induce cytokine/chemokine production. Selective inhibitors of the extracellular signal-regulated kinase (ERK) 1/2 pathway and p38 mitogen-activated protein kinase (MAPK), but not Jun N-terminal kinase, significantly reduced the activation of NF-kappaB and the production of cytokines and chemokines induced by OmpA- E. coli, indicating a role for these kinases in the NF-kappaB/cytokine pathway. It is interesting that the phosphorylation of ERK 1/2 and p38 MAPK was notably reduced in monocytes infected with OmpA+ E. coli when compared with monocytes infected with OmpA- E. coli, suggesting that the modulation of upstream events common for NF-kappaB and MAPKs by the bacterium is possible. The ability of OmpA+ E. coli K1 to inhibit the macrophage response temporarily may enable bacterial survival and growth within the host for the onset of meningitis by E. coli K1.

  5. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.

    PubMed

    Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W

    2004-10-01

    The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.

  6. The Jak-STAT pathway stimulated by interferon alpha or interferon beta.

    PubMed

    Horvath, Curt M

    2004-11-23

    Type I interferons, such as interferon alpha and interferon beta (IFN-alpha and beta), signal through a Janus kinase (Jak) to signal transduction and activator of transcription (STAT) pathway to stimulate gene expression. In response to ligand binding, the receptors dimerize, Jaks phosphorylate STAT1 and STAT2, which then dimerize and interact with a third transcriptional regulator IFN regulatory factor 9 (IRF9) to stimulate gene expression. IFN-alpha is the main innate antiviral cytokine and is essential for effective immune response to viral infection. The animation shows activation of STAT-responsive gene expression in response to type I IFNs.

  7. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes.

    PubMed

    Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J

    1999-03-01

    Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.

  8. Synergistic regulation of the acute phase protein SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines.

    PubMed

    Liu, Quan-Sheng; Nilsen-Hamilton, Marit; Xiong, Si-Dong

    2003-10-25

    SIP24/24p3 is a secreted murine acute phase protein which has been speculated to play an anti-inflammatory role in vivo. Recently SIP24/24p3 has been found to be able to specifically induce apoptosis in leukocytes. By using (35)S metabolic labeling method, we studied the regulation of SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines IL-6 and TNF-alpha in cultured Balb/c 3T3 and BNL cells. The following results were observed: (1) dexamethasone induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells, the induction was more significant in BNL cells; (2) dexamethasone and IL-6 synergistically induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells; (3) in Balb/c 3T3 cells dexamethasone and TNF-alpha acted synergistically to induce the expression of SIP24/24p3, whereas in BNL cells dexamethasone and TNF-alpha induced the expression of SIP24/24p3 in an additive manner; (4) dexamethasone and IL-6/TNF-alpha acted synergistically in Balb/c 3T3 cells and additively in BNL cells to induce the expression of SIP24/24p3. The inducibility of SIP24/24p3 by multiple factors will help to explain its highly specific expression in vivo. The difference in the expression patterns of SIP24/24p3 in different cell types is also suggestive to its expression and regulation in hepatic and extrahepatic tissues. Finally, the fact that SIP24/24p3 protein can be induced by both pro-inflammatory as well as anti-inflammatory factors is indicative of the important role of SIP24/24p3 in the entire acute phase response process.

  9. Dysregulation of in vitro cytokine production by monocytes during sepsis.

    PubMed Central

    Munoz, C; Carlet, J; Fitting, C; Misset, B; Blériot, J P; Cavaillon, J M

    1991-01-01

    The production by monocytes of interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) in intensive care unit (ICU) patients with sepsis syndrome (n = 23) or noninfectious shock (n = 6) is reported. Plasma cytokines, cell-associated cytokines within freshly isolated monocytes and LPS-induced in vitro cytokine production were assessed at admission and at regular intervals during ICU stay. TNF alpha and IL-6 were the most frequently detected circulating cytokines. Despite the fact that IL-1 alpha is the main cytokine found within monocytes upon in vitro activation of cells from healthy individuals, it was very rarely detected within freshly isolated monocytes from septic patients, and levels of cell-associated IL-1 beta were lower than those of TNF alpha. Cell-associated IL-1 beta and TNF alpha were not correlated with corresponding levels in plasma. Upon LPS stimulation, we observed a profound decrease of in vitro IL-1 alpha production by monocytes in all patients, and of IL-1 beta, IL-6, and TNF alpha in septic patients. This reduced LPS-induced production of cytokines was most pronounced in patients with gram-negative infections. Finally, monocytes from survival patients, but not from nonsurvival ones recovered their capacity to produce normal amounts of cytokines upon LPS stimulation. In conclusion, our data indicate an in vivo activation of circulating monocytes during sepsis as well as in noninfectious shock and suggest that complex regulatory mechanisms can downregulate the production of cytokines by monocytes during severe infections. Images PMID:1939659

  10. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  11. Human monocytes and gingival fibroblasts release tumor necrosis factor-alpha, interleukin-1 alpha and interleukin-6 in response to particulate and soluble fractions of Prevotella melaninogenica and Fusobacterium nucleatum.

    PubMed

    Rossano, F; Rizzo, A; Sanges, M R; Cipollaro de L'Ero, G; Tufano, M A

    1993-01-01

    In this study we provide evidence that structural and soluble components of periodontopathogenic bacteria, such as Prevotella melaninogenica and Fusobacterium nucleatum, induce the release of cytokines in vitro known to cause in vivo necrotic inflammatory phenomena and bone resorption (tumor necrosis factor-alpha, interleukin-1 alpha and interleukin-6). Human monocytes and gingival fibroblasts were cultivated in vitro in the presence of both particulate and soluble bacterial fractions. A dose-dependent production of tumor necrosis factor-alpha by monocytes and gingival fibroblasts was observed in the presence of fractions of P. melaninogenica and F. nucleatum. Interleukin-1 alpha was produced in approximately the same quantities in the presence of soluble fractions of either P. melaninogenica or F. nucleatum, but in greater quantities in response to particulate fractions of P. melaninogenica. Monocytes released larger amounts of interleukin-1 alpha (about 3000 pg/ml) than gingival fibroblasts (about 1500 pg/ml). Interleukin-6 was released in greater quantities by monocytes in the presence of the pellet fraction of P. melaninogenica (about 5.5 ng/ml), but gingival fibroblasts released larger amounts of interleukin-6, especially in the presence of particulate and soluble components of F. nucleatum (about 12 ng/ml). The ability to induce the release of these cytokines notably increases the pathogenic potential of the bacteria involved in the damage of periodontal tissue.

  12. Allergen-induced cytokine production, atopic disease, IgE, and wheeze in children.

    PubMed

    Contreras, J Paola; Ly, Ngoc P; Gold, Diane R; He, Hongzhen; Wand, Mathew; Weiss, Scott T; Perkins, David L; Platts-Mills, Thomas A E; Finn, Patricia W

    2003-12-01

    The early childhood allergen-induced immune responses associated with atopic disease and IgE production in early life are not well understood. We assessed the relationship of allergen-induced cytokine production by PBMCs to both atopic disease and to IgE increase in a cohort of children with a parental history of allergy or asthma (n = 112) at a median of 2 years of age. We examined cockroach (Bla g 1)-induced, house dust mite (Der f 1)-induced, and cat (Fel d 1)-induced cytokine secretion, including secretion of IFN-gamma, IL-13, IL-10, and TNF-alpha. We investigated whether distinct cytokine patterns associated with atopic disease can be detected in immune responses of children. PBMCs were isolated, and allergen-induced cytokine secretion was analyzed by means of ELISA. Atopic disease was defined as physician- or nurse-diagnosed eczema or hay fever. Increased IgE was defined as an IgE level of greater than 35 U/mL to dust mite, cockroach, cat, and egg white or a total IgE level of 60 U/mL or greater. Compared with children without atopic disease, children with atopic disease had lower Der f 1 (P =.005) and Bla g 2 (P =.03) allergen-induced IFN-gamma levels. Compared with children without increased IgE (n = 95), those with increased IgE (n = 16) had higher Der f 1-induced (P =.006) and Fel d 1-induced (P =.005) IL-13 levels and lower Bla g 2-induced (P =.03) IFN-gamma levels. Compared with children with neither atopic disease nor repeated wheeze, children with both atopic disease and repeated wheeze had lower levels of allergen-induced IFN-gamma (P =.01 for Der f 1 and P =.02 for Bla g 2) cytokine secretion. In young children at risk for asthma or allergy, decreased allergen-induced IFN-gamma secretion is associated with atopic disease and, in some cases, with increased IgE levels. Increased allergen-induced IL-13 secretion is most strongly associated with early life increase of IgE.

  13. Effects of a single administration of prostaglandin F2alpha, or a combination of prostaglandin F2alpha and prostaglandin E2, or placebo on fertility variables in dairy cows 3–5 weeks post partum, a randomized, double-blind clinical trial

    PubMed Central

    Hirsbrunner, Gaby; Burkhardt, Heinz W; Steiner, Adrian

    2006-01-01

    Background Delayed uterine involution has negative effects on the fertility of cows; use of prostaglandin F2alpha alone as a single treatment has not been shown to consistently improve fertility. Combined administration of PGF2alpha and PGE2 increased uterine pressure in healthy cows. We hypothesized, that the combination of both prostaglandins would accelerate uterine involution and have, therefore, a positive effect on fertility variables. In commercial dairy farming, the benefit of a single post partum combined prostaglandin treatment should be demonstrated. Methods 383 cows from commercial dairy farms were included in this study. Uterine size and secretion were evaluated at treatment 21–35 days post partum and 14 days later. Cows were randomly allocated to one of three treatment groups: PGF2alpha and PGE2, PGF2alpha or placebo. For every animal participating in the study, the following reproduction variables were recorded: Interval from calving to first insemination, days open, number of artificial inseminations (AI) to conception; subsequent treatment of uterus, subsequent treatment of ovaries. Plasma progesterone level at time of treatment was used as a covariable. For continuous measurements, analysis of variance was performed. Fisher's exact test for categorical non-ordered data and exact Kruskal-Wallis test for ordered data were used; pairwise group comparisons with Bonferroni adjustment of significance level were performed. Results There was no significant difference among treatment groups in uterine size. Furthermore, there was no significant difference among treatments concerning days open, number of AI, and subsequent treatment of uterus and ovaries. Days from calving to first insemination tended to be shorter for cows with low progesterone level given PGF2alpha and PGE2 in combination than for the placebo-group (P = 0.024). Conclusion The results of this study indicate that the administration of PGF2alpha or a combination of PGF2alpha and PGE2 21 to

  14. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to explore further the effects of space flight on cyotokines and cytokine-directed immunological function. Among the tests carried out are interferon-alpha production, interferon-gamma production, interleukin-1 and -2 production, signal transduction in neutrophils, signal transduction in monocytes, and monocyte phagocytic activity. The experiments will be performed using peripheral blood obtained from human subjects. It is our intent to eventually carry out these experiments using astronauts as subjects to determine the effects of space flight on cytokine production and activity. However, these subjects are not currently available. Until they become available, we will carry out these experiments using subjects maintained in the bed-rest model for microgravity.

  15. E3 ligase FLRF (Rnf41) regulates differentiation of hematopoietic progenitors by governing steady-state levels of cytokine and retinoic acid receptors

    PubMed Central

    Jing, Xin; Infante, Jorge; Nachtman, Ronald G.; Jurecic, Roland

    2008-01-01

    Objective FLRF (Rnf41) gene was identified through screening of subtracted cDNA libraries form murine hematopoietic stem cells and progenitors. Subsequent work has revealed that FLRF acts as E3 ubiquitin ligase, and that it regulates steady-state levels of neuregulin receptor ErbB3, and participates in degradation of IAP protein BRUCE and parkin. The objective of this study was to start exploring the role of FLRF during hematopoiesis. Methods FLRF was over-expressed in a murine multipotent hematopoietic progenitor cell line EML, which can differentiate into almost all blood cell lineages, and in pro-B progenitor cell line BaF3. The impact of FLRF over-expression on EML cell differentiation into myelo-erythroid lineages was studied using hematopoietic colony-forming assays. The interaction of FLRF with cytokine receptors and receptor levels in control cells and EML and BaF3 cells over-expressing FLRF were examined with Western and immunoprecipitation. Results Remarkably, over-expression of FLRF significantly attenuated erythroid and myeloid differentiation of EML cells in response to cytokines Epo and IL-3, and retinoic acid (RA), and resulted in significant and constitutive decrease of steady-state levels of IL-3, Epo and RA receptor RARα in EML and BaF3 cells. Immunoprecipitation has revealed that FLRF interacts with IL-3, Epo and RARα receptors in EML and BaF3 cells, and that FLRF-mediated down-regulation of these receptors is ligand binding-independent. Conclusions The results of this study have revealed new FLRF-mediated pathway for ligand-independent receptor level regulation, and support the notion that through maintaining basal levels of cytokine receptors, FLRF is involved in the control of hematopoietic progenitor cell differentiation into myelo-erythroid lineages. PMID:18495327

  16. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    PubMed

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  17. Rapid quantitative analysis of 8-iso-prostaglandin-F(2alpha) using liquid chromatography-tandem mass spectrometry and comparison with an enzyme immunoassay method.

    PubMed

    Dahl, Jeffrey H; van Breemen, Richard B

    2010-09-15

    A rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the measurement of urinary 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), a biomarker of lipid peroxidation. Because urine contains numerous F(2) prostaglandin isomers, each with identical mass and similar mass spectrometric fragmentation patterns, chromatographic separation of 8-iso-PGF(2alpha) from its isomers is necessary for its quantitative analysis using MS/MS. We were able to achieve this separation using an isocratic LC method with a run time of less than 9min, which is at least threefold faster than previous methods, while maintaining sensitivity, accuracy, precision, and reliability. The limits of detection and quantitation were 53 and 178pg/ml urine, respectively. We compared our method with a commercially available affinity purification and enzyme immunoassay kit and found both assays to be in agreement. Despite the high sensitivity of the enzyme immunoassay method, it is more expensive and has a narrower dynamic range than LC-MS/MS. Our method was optimized for rapid measurement of 8-iso-PGF(2alpha) in urine, and it is ideally suited for clinical sample analysis. 2010 Elsevier Inc. All rights reserved.

  18. [Membrane-bound cytokine and feedforward regulation].

    PubMed

    Wu, Ke-Fu; Zheng, Guo-Guang; Ma, Xiao-Tong; Song, Yu-Hua

    2013-10-01

    Feedback and feedforward widely exist in life system, both of them are the basic processes of control system. While the concept of feedback has been widely used in life science, feedforward regulation was systematically studied in neurophysiology, awaiting further evidence and mechanism in molecular biology and cell biology. The authors put forward a hypothesis about the feedforward regulation of membrane bound macrophage colony stimulation factor (mM-CSF) on the basis of their previous work. This hypothesis might provide a new direction for the study on the biological effects of mM-CSF on leukemia and solid tumors, and contribute to the study on other membrane bound cytokines.

  19. Alpha-2-macroglobulin and hyaluronic acid as fibromarkers in patients with chronic hepatitis C.

    PubMed

    Pitekova, B; Kupcova, V; Uhlikova, E; Mojto, V; Turecky, L

    2017-01-01

    Liver fibrosis is the final common pathway of chronic liver diseases of various etiology. From the practical standpoint, it would be ideal to have a noninvasive fibromarker. The aim of our study was to investigate the levels of alpha-2-macroglobulin, potential fibromarker, in correlation to histological staging and another potential fibromarker, hyaluronic acid, in patients with chronic hepatitis C. Population groups in this study consisted of 51 healthy volunteers and 54 patients with chronic hepatitis C. Liver biopsies were obtained under ultrasound guidance. Alpha-2-macroglobulin was determined by electroimmunodiffusion and hyaluronic acid with enzyme-linked binding protein assay. Both potential fibromarkers, alpha-2-macroglobulin and hyaluronic acid, were increased in patients with chronic hepatitis C. The alpha-2-macroglobulin levels were not significantly increased in the groups F0-F1. In the groups F2-F4, alpha-2-macroglobulin levels were significantly higher than in the control group. The changes of hyaluronic acid were similar to changes of alpha-2-macroglobulin. Regression analysis showed a significant correlation between hyaluronic acid and alpha-2-macroglobulin levels. According to the results of our study, it can be concluded that alpha-2-macroglobulin and hyaluronic acid might be useful markers of liver fibrosis (Tab. 2, Ref. 15).

  20. Cytokines in the sera of patients with pemphigus vulgaris: interleukin-6 and tumour necrosis factor-alpha levels are significantly increased as compared to healthy subjects and correlate with disease activity.

    PubMed

    D'Auria, L; Bonifati, C; Mussi, A; D'Agosto, G; De Simone, C; Giacalone, B; Ferraro, C; Ameglio, F

    1997-12-01

    Cytokine serum levels, when detectable, are currently measured in many disease states, both to evaluate a possible pathogenetic involvement of such molecules and for clinical purposes. No data are currently available on the cytokine levels in the sera of patients with pemphigus vulgaris (PV), a rare bullous disease of autoimmune origin. This study presents data concerning the levels of 13 different cytokines assayed in the sera of 25 patients affected with PV as compared with 20 healthy subjects using high sensitivity ELISA kits. Of the 13 molecules analyzed, no differences in the levels of most cytokines were observed between pemphigus and control sera, with the exception of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). Serum TNF-alpha and IL-6 levels were found to be significantly higher in PV patients than in normal controls (p < 0.001). Furthermore, the levels of the two cytokines decreased after one month of corticosteroid therapy. A significant correlation was found between the serum levels of both TNF-alpha and IL-6 and the number of lesions for each patient (p < 0.001). The data presented support an involvement of at least IL-6 and TNF-alpha in the biological modifications associated with PV manifestations.

  1. Inflammatory cytokine response to exercise in alpha-1-antitrypsin deficient COPD patients ‘on’ or ‘off’ augmentation therapy

    PubMed Central

    2014-01-01

    Background There is still limited information on systemic inflammation in alpha-1-antitrypsin-deficient (AATD) COPD patients and what effect alpha-1-antitrypsin augmentation therapy and/or exercise might have on circulating inflammatory cytokines. We hypothesized that AATD COPD patients on augmentation therapy (AATD + AUG) would have lower circulating and skeletal muscle inflammatory cytokines compared to AATD COPD patients not receiving augmentation therapy (AATD-AUG) and/or the typical non-AATD (COPD) patient. We also hypothesized that cytokine response to exercise would be lower in AATD + AUG compared to AATD-AUG or COPD subjects. Methods Arterial and femoral venous concentration and skeletal muscle expression of TNFα, IL-6, IL-1β and CRP were measured at rest, during and up to 4-hours after 50% maximal 1-hour knee extensor exercise in all COPD patient groups, including 2 additional groups (i.e. AATD with normal lung function, and healthy age-/activity-matched controls). Results Circulating CRP was higher in AATD + AUG (4.7 ± 1.6 mg/dL) and AATD-AUG (3.3 ± 1.2 mg/dL) compared to healthy controls (1.5 ± 0.3 mg/dL, p < 0.05), but lower in AATD compared to non-AATD-COPD patients (6.1 ± 2.6 mg/dL, p < 0.05). TNFα, IL-6 and IL-1β were significantly increased by 1.7-, 1.7-, and 4.7-fold, respectively, in non-AATD COPD compared to AATD COPD (p < 0.05), and 1.3-, 1.7-, and 2.2-fold, respectively, compared to healthy subjects (p < 0.05). Skeletal muscle TNFα was on average 3–4 fold greater in AATD-AUG compared to the other groups (p < 0.05). Exercise showed no effect on these cytokines in any of our patient groups. Conclusion These data show that AATD COPD patients do not experience the same chronic systemic inflammation and exhibit reduced inflammation compared to non-AATD COPD patients. Augmentation therapy may help to improve muscle efflux of TNFα and reduce muscle TNFα concentration, but showed no

  2. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats

    PubMed Central

    Xue, Jing; Zempleni, Janos

    2013-01-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine binding protein MeCP2, and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other’s deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signaling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signaling. PMID:24007195

  3. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed Central

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-01-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364

  4. Regulation of PPAR{gamma} function by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewedmore » with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.« less

  5. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    PubMed Central

    Foster, Meika; Samman, Samir

    2012-01-01

    In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057

  6. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  7. Tamm-Horsfall Protein Regulates Circulating and Renal Cytokines by Affecting Glomerular Filtration Rate and Acting as a Urinary Cytokine Trap*

    PubMed Central

    Liu, Yan; El-Achkar, Tarek M.; Wu, Xue-Ru

    2012-01-01

    Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this “trapping” effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity. PMID:22451664

  8. Cytokines TNF-α, IL-6, IL-17F, and IL-4 Differentially Affect Osteogenic Differentiation of Human Adipose Stem Cells

    PubMed Central

    Bravenboer, Nathalie

    2016-01-01

    During the initial stages of bone repair, proinflammatory cytokines are released within the injury site, quickly followed by a shift to anti-inflammatory cytokines. The effect of pro- and anti-inflammatory cytokines on osteogenic differentiation of mesenchymal stem cells is controversial. Here, we investigated the effect of the proinflammatory cytokines TNF-α, IL-6, IL-8, and IL-17F and the anti-inflammatory cytokine IL-4 on proliferation and osteogenic differentiation of human adipose stem cells (hASCs). hASCs were treated with TNF-α, IL-6, IL-8, IL-17F, or IL-4 (10 ng/mL) for 72 h mimicking bone repair. TNF-α reduced collagen type I gene expression but increased hASC proliferation and ALP activity. IL-6 also strongly enhanced ALP activity (18-fold), as well as bone nodule formation by hASCs. IL-8 did not affect proliferation or osteogenic gene expression but reduced bone nodule formation. IL-17F decreased hASC proliferation but enhanced ALP activity. IL-4 enhanced osteocalcin gene expression and ALP activity but reduced RUNX2 gene expression and bone nodule formation. In conclusion, all cytokines studied have both enhancing and reducing effects on osteogenic differentiation of hASCs, even when applied for 72 h only. Some cytokines, specifically IL-6, may be suitable to induce osteogenic differentiation of mesenchymal stem cells as a strategy for enhancing bone repair. PMID:27667999

  9. Neutral buoyancy and sleep-deprived serum factors alter expression of cytokines regulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Gorczynski, Reginald M.; Gorczynski, Christopher P.; Gorczynski, Laura Y.; Hu, Jiang; Lu, Jin; Manuel, Justin; Lee, Lydia

    2005-05-01

    We examined expression of genes associated with cytokine production, and genes implicated in regulating bone metabolism, in bone stromal and osteoblast cells incubated under standard ground conditions and under conditions of neutral buoyancy, and in the presence/absence of serum from normal or sleep-deprived mice. We observed a clear interaction between these two conditions (exposure to neutral buoyancy and serum stimulation) in promoting enhanced osteoclastogenesis. Both conditions independently altered expression of a number of cytokines implicated in the regulation of bone metabolism. However, using stromal cells from IL-1 and TNF α cytokine r KO mice, we concluded that the increased bone loss under microgravity conditions was not primarily cytokine mediated.

  10. Group 4 transition metal CH2=MF2, CHF=MF2, and HC/MF3 complexes formed by C-F activation and alpha-fluorine transfer.

    PubMed

    Lyon, Jonathan T; Andrews, Lester

    2007-06-11

    Group 4 transition metal methylidene difluoride complexes (CH2=MF2) are formed by the reaction of methylene fluoride with laser-ablated metal atoms and are isolated in an argon matrix. Isotopic substitution of the CH2F2 precursor and theoretical computations (B3LYP and CCSD) confirm product identifications and assignments. Our calculations indicate that the CH2=MF2 complexes have near C2v symmetry and are considerably more stable than other possible products (CH2(mu-F)MF and CHF=MHF). The primary reaction exothermicity provides more than enough energy to activate the initial bridge-bonded CH2(mu-F)MF products on the triplet potential energy surface to complete an alpha-F transfer to form the very stable CH2=MF2 products. Analogous experiments with CHF3 produce CHF=TiF2, which is not distorted at the C-H bond, whereas the heavier group 4 metals form lower-energy triplet HC/MF3 complexes, which contain weak degenerate C(p)-M(d) pi-bonding interactions. Comparisons are made with the CH2=MHF methylidene species, which showed considerable agostic distortions.

  11. Effect of postponed treatment with an anti-tumour necrosis factor (TNF) F(ab')2 fragment on endotoxin-induced cytokine and neutrophil responses in chimpanzees.

    PubMed Central

    van der Poll, T; Levi, M; ten Cate, H; Jansen, J; Biemond, B J; Haagmans, B L; Eerenberg, A; van Deventer, S J; Hack, C E; ten Cate, J W

    1995-01-01

    TNF is considered to be an intermediate factor in endotoxin-induced release of other cytokines and endotoxin-induced neutrophil degranulation. Little is known about the effect of postponed treatment with anti-TNF in primate endotoxin models. To assess the effect of delayed treatment with anti-TNF in endotoxaemia, six healthy adult chimpanzees were intravenously injected with Escherichia coli endotoxin (4 ng/kg). In three of these animals the administration of endotoxin was followed after 30 min by a bolus i.v. injection of the anti-TNF F(ab')2 fragment MAK 195F (0.1 mg/kg). Post-treatment with MAK 195F completely prevented the appearance of TNF activity in serum elicited by endotoxin, and markedly reduced the rises in the serum concentrations of IL-6 and IL-8. In addition, the endotoxin-induced increases in the type I and type II soluble TNF receptors were also profoundly inhibited by MAK 195F, suggesting that TNF is involved in the release of its own soluble receptors in endotoxaemia. Neutrophilic leucocytosis was not affected by MAK 195F. In contrast, MAK 195F did significantly abrogate neutrophil degranulation, as measured by the plasma concentrations of lactoferrin. These results indicate that treatment with anti-TNF 30 min after the administration of endotoxin is still effective in attenuating the induction of the cytokine network and of neutrophil degranulation. PMID:7697917

  12. Distinct Th1, Th2 and Treg cytokines balance in chronic periapical granulomas and radicular cysts.

    PubMed

    Teixeira-Salum, Tatiana Beber; Rodrigues, Denise Bertulucci Rocha; Gervásio, Aurélia M; Souza, Cássio J A; Rodrigues, Virmondes; Loyola, Adriano Motta

    2010-03-01

    Periapical lesions are a host response that involves immune reaction to prevent dissemination of bacteria from an infected root canal. The purpose of this study was to evaluate the levels of nitric oxide (NO), IL-4, TGF-beta, tumor necrosis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma) in chronic periapical lesions and to determine their possible association with clinical and radiographic parameters. Seventeen human radicular cysts and 30 periapical granulomas were used in this study. Cytokines and NO were assessed by enzyme-linked immunosorbent assay and by the Griess reaction respectively confirmed by immunohistochemical. TNF-alpha and IFN-gamma were detected in 10% of granulomas and in 41.2% and 70% of radicular cysts. IL-4 was reactive in 24% of cysts, and TGF-beta was positive in all samples. Patients with tenderness showed significantly higher levels of IFN-gamma and IL-4 (P < 0.05). Swelling was associated with high levels of TNF-alpha, IFN-gamma, and IL-4 (P < 0.05). Lesions presenting bone resorption were associated with high levels of NO (P < 0.05). Periapical granulomas display a regulatory environment characterized by high TGF-beta and low inflammatory cytokine levels, while radicular cysts has mist Th1 and Th2 inflammatory reaction with the presence of IFN-gamma, TNF-alpha, and IL-4.

  13. Calcium metabolism in cows receiving an intramuscular injection of 1,25-dihydroxyvitamin D3 combined with prostaglandin F(2alpha) closely before parturition.

    PubMed

    Yamagishi, Norio; Ayukawa, Yu; Lee, Inhyung; Oboshi, Kenji; Naito, Yoshihisa

    2005-06-01

    To determine the effect of exogenous 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] combined with induced parturition on calcium (Ca) metabolism, cows received a single intramuscular injection of 1,25(OH)2D3 and prostaglandin F(2alpha) (PGF(2alpha)) closely before calving. Ten late-pregnant, multiparous Holstein cows were assigned to 1,25(OH)2D3 group (five treated with both 1,25(OH)2D3 and PGF(2alpha)) and control group (five treated with PGF(2alpha)). 1,25(OH)2D3 group showed an increase in plasma Ca concentration around parturition, whereas control group revealed a decrease in plasma Ca level. Plasma Ca concentration in 1,25(OH)2D3 group were significantly higher than that in control group during -0.5 to 3 days after parturition.

  14. Involvement of the Clock Gene Rev-erb alpha in the Regulation of Glucagon Secretion in Pancreatic Alpha-Cells

    PubMed Central

    Vieira, Elaine; Marroquí, Laura; Figueroa, Ana Lucia C.; Merino, Beatriz; Fernandez-Ruiz, Rebeca; Nadal, Angel; Burris, Thomas P.; Gomis, Ramon; Quesada, Ivan

    2013-01-01

    Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60–70% inhibition) in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05) and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold) and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001). High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05). AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01) and glucagon release (p<0.05). These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway. PMID:23936124

  15. Effects of geldanamycin and thalidomide on the Th1/Th2 cytokine balance in mice subjected to operative trauma.

    PubMed

    Nakano, Takumi; Araki, Keijiro; Nakatani, Hajime; Kobayashi, Michiya; Sugimoto, Takeki; Furuya, Yasuo; Matsuoka, Takanori; Jin, Toufeng; Hanazaki, Kazuhiro

    2007-04-01

    Persistence of postoperative immune dysfunction is a critical problem because it increases the risk of serious infectious complications. The mechanisms of the immune dysfunction that occur initially after non-thermal operative injury remain to be fully elucidated. Two mouse models of operative trauma (simple laparotomy to represent minor operative injury and ileocecal resection to represent major operative injury) were used to define the characteristics of initial cytokine synthesis. Geldanamycin and thalidomide were independently added intraperitoneally before and after operative injury to examine the effect on postoperative immune dysfunction. Mice were sacrificed at scheduled times (3, 6, 12, and 24 h after operative injury) and TNF-alpha, IL-2, IL-4, and IL-10 were analyzed. Spleen was used for intracellular cytokines and RT-PCR. Sera were used for ELISA. Major operative injury caused an initial upregulation of IL-10 synthesis with delayed synthesis of TNF-alpha and IL-2. Minor operative injury caused an early induction of IL-2 synthesis preceded by an initial induction of IL-4 synthesis. GA caused a specific early upregulation of TNF-alpha mRNA expression and intracellular TNF-alpha synthesis. The GA and THD groups showed early serum IL-2 production with reduction of IL-10 mRNA expression and intracellular IL-10 synthesis in the early post-operative phase. Major and minor operative injury showed different Th1/Th2 cytokine patterns in the initial post-operative period. Geldanamycin and thalidomide improved the Th1/Th2 imbalance independently after major operative injury.

  16. Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.

    PubMed

    Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira

    2007-01-01

    It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.

  17. Telfairia occidentalis Hook.f. - associated haematopoietic effect is mediated by cytokines but independent of testosterone: A preliminary report.

    PubMed

    Salman, Toyin Mohammed; Alagbonsi, Isiaka Abdullateef; Feyitimi, Abdul-Rahuf Aderemi; Ajayi, Peter O

    2018-04-24

    Telfairia occidentalis Hook.f. (TO) is popular in Nigeria for the ethnopharmacological use of its leaves to improve haematological parameters in normal and anaemic subjects. Cytokines are well-known to regulate haematopoiesis. However, their involvement in TO-associated haematopoietic effect is not known and necessitated this study. Twenty-five (25) male rats were randomly divided into 3 oral treatment groups as follows: Group 1 (control, n=5) received 0.2 ml/kg normal saline for 14 days. Groups 2 and 3 (n= 10 each) were subdivided into 2 (n=5) and received 100 mg/kg and 200 mg/kg of aqueous extract of TO respectively for 7 or 14 days. TO had dose- and duration-dependent effects on the estimated parameters. Both doses of TO increased the RBC, WBC and erythropoietin concentrations at 14 but not 7 days. Moreover, its 100 mg/kg increased haemoglobin, neutrophil, and interleukin-3 concentrations at 7 days, while 200 mg/kg increased PCV and neutrophils at 14 days, lymphocytes at 7 days, and haemoglobin at both durations. The haematopoietic effect of TO might be partly mediated by cytokines (interleukin-3 and erythropoietin) but independent of testosterone. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Regulation of PGE2 signaling pathways and TNF-alpha signaling pathways on the function of bone marrow-derived dendritic cells and the effects of CP-25.

    PubMed

    Li, Ying; Sheng, Kangliang; Chen, Jingyu; Wu, Yujing; Zhang, Feng; Chang, Yan; Wu, Huaxun; Fu, Jingjing; Zhang, Lingling; Wei, Wei

    2015-12-15

    This study was to investigate PGE2 and TNF-alpha signaling pathway involving in the maturation and activation of bone marrow dendritic cells (DCs) and the effect of CP-25. Bone marrow DCs were isolated and stimulated by PGE2 and TNF-alpha respectively. The markers of maturation and activation expressed on DCs, such as CD40, CD80, CD83, CD86, MHC-II, and the ability of antigen uptake of DCs were analyzed by flow cytometry. The proliferation of T cells co-cultured with DCs, the signaling pathways of PGE2-EP4-cAMP and TNF-alpha-TRADD-TRAF2-NF-κB in DCs were analyzed. The results showed that both PGE2 and TNF-alpha up-regulated the expressions of CD40, CD80, CD83, CD86, and MHC-II, decreased the antigen uptake of DCs, and DCs stimulated by PGE2 or TNF-alpha could increase T cell proliferation. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased significantly the expressions of CD40, CD80, CD83, CD86 and MHC-II, increased the antigen uptake of DCs, and suppressed T cell proliferation induced by DCs. PGE2 increased the expressions of EP4, NF-κB and down-regulated cAMP level of DCs. TNF-alpha could also up-regulate TNFR1, TRADD, TRAF2, and NF-κB expression of DCs. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased the expressions of EP4 and NF-κB, increased cAMP level in DCs stimulated by PGE2. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) also could down-regulate significantly TNFR1, TRADD, TRAF2, and NF-κB expression in DCs stimulated by TNF-alpha. These results demonstrate that PGE2 and TNF-alpha could enhance DCs functions by mediating PGE2-EP4-cAMP pathway, TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathway respectively. CP-25 might inhibit the function of DCs through regulating PGE2-EP4-cAMP and TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Synergistic immunosuppression by candida in HIV infection: a cytokine based analysis.

    PubMed

    Bajaj, J S; Singh, A; Aggarwal, S K; Chattopadhya, D; Baveja, U K

    2000-03-01

    Candida is a common opportunistic pathogen in HIV infection and is regarded a signal infection for progression to AIDS. Cytokine imbalances between Th1/Th2 groups have been described in both candida and HIV infections. A study was undertaken to assess the role of candida in furthering immunosuppression in HIV infection based on cytokine levels and CD4 cell counts. 30 Indian subjects were enrolled; 10 HIV positive patients with and 10 without mucosal candidiasis and 10 age matched controls. Th1 cytokines; interleukin (IL) 2, IL 12 and interferon (IFN) gamma, Th2 cytokines; IL 4, IL 6, IL 10 and tumor necrosis factor (TNF) alpha with CD 4 cell counts were estimated using ELISA in all subjects. CD4 cell counts were reduced in both patient groups as compared to controls; significantly more in patients with both HIV and candida infections. There was a decrease in Th1 cytokine levels in all patients; lower levels of Th1 cytokines were seen in patients with both infections. Among the Th2 cytokines, there was a significant increase in the levels of IL 6, IL 10 and TNF alpha in both patient groups; IL 10 and TNF alpha values were significantly raised in patients with dual HIV and candida infections as compared to the other patients. There was no difference in IL 4 values across the subject groups. A positive correlation between CD4 cell counts and Th1 cytokine levels and a negative correlation with Th2 cytokines were noted; these were stronger in patients with both HIV and candidiasis. Thus, there was a Th1/Th2 cytokine imbalance with CD4 cell count reduction in all HIV infected patients, which was more pronounced in patients with both infections. It can be concluded that, owing to the depressed CD4 cell count and Th1 response and increased Th2 cytokines in patients with both candidiasis and HIV as compared to patients with only HIV candidiasis may have a synergistic immunosuppressive effect with HIV in patients with dual infections.

  20. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding

    PubMed Central

    Hymowitz, Sarah G.; Filvaroff, Ellen H.; Yin, JianPing; Lee, James; Cai, Liping; Risser, Philip; Maruoka, Miko; Mao, Weiguang; Foster, Jessica; Kelley, Robert F.; Pan, Guohua; Gurney, Austin L.; de Vos, Abraham M.; Starovasnik, Melissa A.

    2001-01-01

    The proinflammatory cytokine interleukin 17 (IL-17) is the founding member of a family of secreted proteins that elicit potent cellular responses. We report a novel human IL-17 homolog, IL-17F, and show that it is expressed by activated T cells, can stimulate production of other cytokines such as IL-6, IL-8 and granulocyte colony-stimulating factor, and can regulate cartilage matrix turnover. Unexpectedly, the crystal structure of IL-17F reveals that IL-17 family members adopt a monomer fold typical of cystine knot growth factors, despite lacking the disulfide responsible for defining the canonical ‘knot’ structure. IL-17F dimerizes in a parallel manner like neurotrophins, and features an unusually large cavity on its surface. Remarkably, this cavity is located in precisely the same position where nerve growth factor binds its high affinity receptor, TrkA, suggesting further parallels between IL-17s and neurotrophins with respect to receptor recognition. PMID:11574464

  1. Early immune response and regulation of IL-2 receptor subunits

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto

    2005-01-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and

  2. Early immune response and regulation of IL-2 receptor subunits.

    PubMed

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J B; Cogoli, Augusto

    2005-09-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and

  3. [Concentration of proinflammatory cytokines (TNF-alpha, IL-8) in the cerebrospinal fluid and the course of bacterial meningitis].

    PubMed

    Bociaga-Jasik, Monika; Garlicki, Aleksander; Kalinowska-Nowak, Anna; Mach, Tomasz

    2004-01-01

    Bacterial meningitis is still associated with high mortality rate and severe neurological sequels. The aim of the study was to assess correlation between concentration of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-8) in the cerebrospinal fluid (CSF) and patient condition described on the basis of Glasgow Coma Scale (GCS), changes in the CSF (pleocytosis, protein and glucose level), mortality rate and occurrence of neurological complications. 42 patients with bacterial meningitis have been analysed. Control group consisted of 25 patients with viral meningitis and 23 patients without meningitis. In analysed group with bacterial meningitis the correlation between number of scores aggregated by patients in GCS and outcome has been observed. Concentration of TNF-alpha, IL-1 beta, IL-8 in CSF of patient with bacterial meningitis was significantly higher (mean value; 705.2 pg/ml, 401.1 pg/ml and 1696.0 pg/ml) than in control group (viral meningitis: 7.93 pg/ml, 31.89 pg/ml, 405.28 pg/ml, without meningitis: 0.38 pg/ml, 2.55 pg/ml, 32.56 pg/ml). Negative correlation between concentration of investigated cytokines in the CSF of patient with bacterial meningitis and GCS has been observed. Furthermore TNF-alpha and IL-8 levels correlated with pleocytosis, and protein and glucose levels, whereas IL-1 beta correlated with pleocytosis and protein level in CSF. Connection between TNF-alpha and IL-1 beta but not IL-8 level and outcome of bacterial meningitis has been observed. High TNF-alpha in the CSF (median value 953 pg/ml) was associated with significant risk of patient death. IL-1 beta has been better prognostic indicator. Patients who developed neurological sequels had median value of IL-1 beta level 401.3 pg/ml, and those who died had 585.9 pg/ml vs 244.7 pg/ml in the group who survived without any complications. Analysis of the ROC curve-revealed, that concentration of IL-1 beta > or = 289.9 pg/ml with 88.9% sensitivity and 67.7% specifity differentiate cases who

  4. [Determination of prostaglandin F2alpha release in the rat spinal cord upon hydroxyl free radical damage by high performance liquid chromatography].

    PubMed

    Li, L

    1997-05-01

    As prostaglandin F2alpha is present in biological materials, and plays an important physiological role at trace level in the living body, then, highly sensitive determination of PGs is required. Various fluorescence derivatization reagents have been proposed for the determination of PGs. The 3-bromomethyl-6,7-methylenedioxyl-1-methyl-2(1H)-quinoxalinone was found to be a highly sensitive fluorescence derivatization reagent for PGF2alpha in HPLC with a detectable limit of 10-15 fmol for PGF2alpha. In this work we optimized its reaction conditions. Thus the PGF2alpha was extracted from the microdialysates with ethyl acetate at pH 3.0-3.5 following which the extracts were evaporated to dryness. The residue was derivatized by adding acetonitrile, KHCO3, Br-DMEQ and 18-crown-6-ether at 50 degrees C for 30min in the dark. The corresponding fluorescent derivatives produced were separated on a C8 column (Phase-Sep Ltd.), 5microm, 4.6mm x 150mm. Stepwise elution with different ratios of A and B was carried out. 30:10:60 of CHsCN:CH3OH:H2O constituted A solution and 35:30:35 made B solution. The A/B (97/3) was first run for 25 min and A/B (50/50) for the next 15min. Then the column was equilibrated with A/B (97/3) for 20min before the next sample injected. Fluorescence detector was used at lambdaEX 370nm and lambdaEM 455nm, and flow-rate of 2.0mL/min. Because the most evidence for a role of free radicals in tissue damage is indirect, we attempt to determine whether OH causes release of arachidonic acid products in vivo. We did this by (1) generating OH radical in vivo in rat spinal cord by administering H2O2 and FeCl2/EDTA through two parallel microdialysis fibers so they mixed in the cord, and (2) analyzing PGF2alpha in microdialysates in response to OH generation by HPLC. We utilized dialysis fibers of < or = 220microm external diameter including their coating except for a 2mm dialysis zone which was coated with a thin layer of silicon rubber. When the animal was clamped

  5. The effect of inhibition of prostaglandin F2 alpha synthesis on placental expulsion in the ewe.

    PubMed

    Chassagne, M; Barnouin, J

    1993-04-01

    Five ewes were injected with two doses of a nonsteroidal anti-inflammatory drug (NSAI), lysine acetyl salicylate, at birth of their first lamb and one hour later, and five others were injected once only, at birth of their first lamb. A control group of six animals was constituted. The times needed for fetal expulsion and placental release were recorded. The peripheral plasma PgF2 alpha (as PGFM) levels were measured prepartum during the seven last days of gestation, at parturition, then 1 h, 2 h and 12 h after lambing. The results were compared among and within treatment groups. They indicate that the physiological increase in peripheral PGFM levels starts two days before lambing and that the level peaks at lambing. The normal decrease after parturition is emphasized by NSAI injections as detected 1 h and 2 h posttreatment (p < 0.01). The NSAI drug is short-acting as revealed by the lower PGFM levels in twice-treated animals 2 h after birth compared to once treated animals and the similar low levels in all three groups 12 h after birth. The fetal membranes were expelled normally in all treated and nontreated animals, but the time needed for placental expulsion in ewes injected with two doses of NSAI was longer than in controls (p < 0.05). A negative correlation (p < 0.05) was found between plasma PGFM levels measured two hours after lambing and the time needed for fetal membrane expulsion. PgF2 alpha appears to have a role in placental release in the ewe.

  6. The effect of inhibition of prostaglandin F2 alpha synthesis on placental expulsion in the ewe.

    PubMed Central

    Chassagne, M; Barnouin, J

    1993-01-01

    Five ewes were injected with two doses of a nonsteroidal anti-inflammatory drug (NSAI), lysine acetyl salicylate, at birth of their first lamb and one hour later, and five others were injected once only, at birth of their first lamb. A control group of six animals was constituted. The times needed for fetal expulsion and placental release were recorded. The peripheral plasma PgF2 alpha (as PGFM) levels were measured prepartum during the seven last days of gestation, at parturition, then 1 h, 2 h and 12 h after lambing. The results were compared among and within treatment groups. They indicate that the physiological increase in peripheral PGFM levels starts two days before lambing and that the level peaks at lambing. The normal decrease after parturition is emphasized by NSAI injections as detected 1 h and 2 h posttreatment (p < 0.01). The NSAI drug is short-acting as revealed by the lower PGFM levels in twice-treated animals 2 h after birth compared to once treated animals and the similar low levels in all three groups 12 h after birth. The fetal membranes were expelled normally in all treated and nontreated animals, but the time needed for placental expulsion in ewes injected with two doses of NSAI was longer than in controls (p < 0.05). A negative correlation (p < 0.05) was found between plasma PGFM levels measured two hours after lambing and the time needed for fetal membrane expulsion. PgF2 alpha appears to have a role in placental release in the ewe. PMID:8490813

  7. Proinflammatory cytokine levels in patients with conversion disorder.

    PubMed

    Tiyekli, Utkan; Calıyurt, Okan; Tiyekli, Nimet Dilek

    2013-06-01

    It was aimed to evaluate the relationship between proinflammatory cytokine levels and conversion disorder both commonly known as stress regulated. Baseline proinflammatory cytokine levels-[Tumour necrosis factor alpha (TNF-α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6)]-were evaluated with enzyme-linked immunosorbent assay in 35 conversion disorder patients and 30 healthy controls. Possible changes in proinflammatory cytokine levels were evaluated again, after their acute phase in conversion disorder patients. Statistically significant decreased serum TNF-α levels were obtained in acute phase of conversion disorder. Those levels increased after acute conversion phase. There were no statistically significant difference observed between groups in serum IL-1β and (IL-6) levels. Stress associated with conversion disorder may suppress immune function in acute conversion phase and may have diagnostic and therapeutic value.

  8. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko E; Pillay, Balakrishna; McKinnon, Lyle R; Pillay, Manormoney

    2018-04-01

    M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A dynamic alpha-beta inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening.

    PubMed

    Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E

    2005-09-01

    L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.

  10. Anthelmintic Therapy Modifies the Systemic and Mycobacterial Antigen-Stimulated Cytokine Profile in Helminth-Latent Mycobacterium tuberculosis Coinfection.

    PubMed

    Anuradha, Rajamanickam; Munisankar, Saravanan; Bhootra, Yukthi; Dolla, Chandrakumar; Kumaran, Paul; Nutman, Thomas B; Babu, Subash

    2017-04-01

    Helminth infections are known to modulate cytokine responses in latent tuberculosis (LTB). However, very few studies have examined whether this modulation is reversible upon anthelmintic therapy. We measured the systemic and mycobacterial (TB) antigen-stimulated levels of type 1, type 2, type 17, and regulatory cytokines in individuals with LTB and with or without coexistent Strongyloides stercoralis infection before and after anthelmintic therapy. Our data reveal that individuals with LTB and coexistent S. stercoralis infection have significantly lower levels of systemic and TB antigen-stimulated type 1 (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and type 17 (IL-17A and/or IL-17F) cytokines and significantly higher levels of systemic but not TB antigen-stimulated type 2 (IL-4 and IL-5) and regulatory (transforming growth factor beta [TGF-β]) cytokines. Anthelmintic therapy resulted in significantly increased systemic levels of type 1 and/or type 17 cytokines and in significantly decreased systemic levels of type 2 and regulatory (IL-10 and TGF-β) cytokines. In addition, anthelmintic therapy resulted in significantly increased TB antigen-stimulated levels of type 1 cytokines only. Our data therefore confirm that the modulation of systemic and TB antigen-stimulated cytokine responses in S. stercoralis -LTB coinfection is reversible (for the most part) by anthelmintic treatment. Copyright © 2017 American Society for Microbiology.

  11. Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.

    PubMed

    Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R

    2017-01-01

    Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.

  12. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    PubMed

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the

  13. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.

    PubMed

    Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun

    2008-10-01

    Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.

  14. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs.

    PubMed

    Daudelin, Jean-François; Lessard, Martin; Beaudoin, Frédéric; Nadeau, Eric; Bissonnette, Nathalie; Boutin, Yvan; Brousseau, Jean-Philippe; Lauzon, Karoline; Fairbrother, John Morris

    2011-05-23

    This study evaluated the effect of the probiotics Pediococcus acidilactici and Saccharomyces cerevisiae boulardii on the intestinal colonization of O149 enterotoxigenic Escherichia coli harbouring the F4 (K88) fimbriae (ETEC F4) and on the expression of ileal cytokines in weaned pigs. At birth, different litters of pigs were randomly assigned to one of the following treatments: 1) control without antibiotics or probiotics (CTRL); 2) reference group in which chlortetracycline and tiamulin were added to weanling feed (ATB); 3) P. acidilactici; 4) S. cerevisiae boulardii; or 5) P. acidilactici + S. cerevisiae boulardii. Probiotics were administered daily (1 × 10(9) CFU per pig) during the lactation period and after weaning (day 21). At 28 days of age, all pigs were orally challenged with an ETEC F4 strain, and a necropsy was performed 24 h later. Intestinal segments were collected to evaluate bacterial colonization in the small intestine and ileal cytokine expressions. Attachment of ETEC F4 to the intestinal mucosa was significantly reduced in pigs treated with P. acidilactici or S. cerevisiae boulardii in comparison with the ATB group (P = 0.01 and P = 0.03, respectively). In addition, proinflammatory cytokines, such as IL-6, were upregulated in ETEC F4 challenged pigs treated with P. acidilactici alone or in combination with S. cerevisiae boulardii compared with the CTRL group. In conclusion, the administration of P. acidilactici or S. cerevisiae boulardii was effective in reducing ETEC F4 attachment to the ileal mucosa, whereas the presence of P. acidilactici was required to modulate the expression of intestinal inflammatory cytokines in pigs challenged with ETEC F4.

  15. Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery.

    PubMed

    Kruse, Robert; Essén-Gustavsson, Birgitta; Fossum, Caroline; Jensen-Waern, Marianne

    2008-08-12

    Knowledge of the cytokine response at infection with Brachyspira hyodysenteriae can help understanding disease mechanism involved during swine dysentery. Since this knowledge is still limited the aim of the present study was to induce dysentery experimentally in pigs and to monitor the development of important immunoregulatory cytokines in blood collected at various stages of the disease. Ten conventional pigs (~23 kg) were orally inoculated with Brachyspira hyodysenteriae B204T. Eight animals developed muco-haemorrhagic diarrhoea with impaired general body condition. Blood was sampled before inoculation and repeatedly during acute dysentery and recovery periods and cytokine levels of IL-1beta, IL-6, Il-10, TNF-alpha and IFN-gamma were measured by ELISA. IL-1beta was increased at the beginning of the dysentery period and coincided with the appearance of Serum amyloid A and clinical signs of disease. TNF-alpha increased in all animals after inoculation, with a peak during dysentery, and IL-6 was found in 3 animals during dysentery and in the 2 animals that did not develop clinical signs of disease. IL-10 was found in all sick animals during the recovery period. IFN-gamma was not detected on any occasion. B. hyodysenteriae inoculation induced production of systemic levels of IL-1beta during the dysentery period and increased levels of IL-10 coincided with recovery from dysentery.

  16. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is amore » key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.« less

  17. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma*

    PubMed Central

    Scott, Milcah C.; Sarver, Aaron L.; Tomiyasu, Hirotaka; Cornax, Ingrid; Van Etten, Jamie; Varshney, Jyotika; O'Sullivan, M. Gerard; Subramanian, Subbaya; Modiano, Jaime F.

    2015-01-01

    We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma. PMID:26378234

  18. The Rac-GAP alpha2-chimaerin regulates hippocampal dendrite and spine morphogenesis.

    PubMed

    Valdez, Chris M; Murphy, Geoffrey G; Beg, Asim A

    2016-09-01

    Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness.

    PubMed

    Ben-Simon, Eti; Podlipsky, Ilana; Okon-Singer, Hadas; Gruberger, Michal; Cvetkovic, Dean; Intrator, Nathan; Hendler, Talma

    2013-03-01

    The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  1. Identification of Cytokines and Signaling Proteins Differentially Regulated by Sumatriptan/Naproxen

    PubMed Central

    Vause, Carrie V; Durham, Paul L

    2011-01-01

    Summary Objectives The goal of this study was to use protein array analysis to investigate temporal regulation of stimulated cytokine expression in trigeminal ganglia and spinal trigeminal nuclei in response to cotreatment of sumatriptan and naproxen sodium or individual drug. Background Activation of neurons and glia in trigeminal ganglia and spinal trigeminal nuclei leads to increased levels of cytokines that promote peripheral and central sensitization, which are key events in migraine pathology. While recent clinical studies have provided evidence that a combination of sumatriptan and naproxen sodium is more efficacious in treating migraine than either drug alone, it is not well understood why the combination therapy is superior to monotherapy. Methods Male Sprague Dawley rats were left untreated (control), injected with capsaicin, or pre-treated with sumatriptan/naproxen, sumatriptan, or naproxen for 1 hour prior to capsaicin. Trigeminal ganglia and spinal trigeminal nuclei were isolated 2 and 24 hours after capsaicin or drug treatment and levels of 90 proteins were determined using a RayBio® Label-Based Rat Antibody Array. Results Capsaicin stimulated a >3-fold increase in expression of the majority of cytokines in trigeminal ganglia at 2 hours that was sustained at 24 hours. Significantly, treatment with sumatriptan/naproxen almost completely abolished the stimulatory effects of capsaicin at 2 and 24 hours. Capsaicin stimulated >3-fold expression of more proteins in spinal trigeminal nuclei at 24 hours when compared to 2 hours. Similarly, sumatriptan/naproxen abolished capsaicin stimulation of proteins in spinal trigeminal nuclei at 2 hours and greatly suppressed protein expression 24 hours post capsaicin injection. Interestingly, treatment with sumatriptan alone suppressed expression of different cytokines in trigeminal ganglia and spinal trigeminal nuclei than repressed by naproxen sodium. Conclusion We found that the combination of sumatriptan

  2. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.

    PubMed

    Ramachandran, Shyam; Osterhaus, Samantha R; Parekh, Kalpaj R; Jacobi, Ashley M; Behlke, Mark A; McCray, Paul B

    2016-12-02

    We previously reported that delivery of a microRNA-138 mimic or siRNA against SIN3A to cultured cystic fibrosis (ΔF508/ΔF508) airway epithelia partially restored ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR)-mediated cAMP-stimulated Cl - conductance. We hypothesized that dissecting this microRNA-138/SIN3A-regulated gene network would identify individual proteins contributing to the rescue of ΔF508-CFTR function. Among the genes in the network, we rigorously validated candidates using functional CFTR maturation and electrolyte transport assays in polarized airway epithelia. We found that depletion of the ubiquitin ligase SYVN1, the ubiquitin/proteasome system regulator NEDD8, or the F-box protein FBXO2 partially restored ΔF508-CFTR-mediated Cl - transport in primary cultures of human cystic fibrosis airway epithelia. Moreover, knockdown of SYVN1, NEDD8, or FBXO2 in combination with corrector compound 18 further potentiated rescue of ΔF508-CFTR-mediated Cl - conductance. This study provides new knowledge of the CFTR biosynthetic pathway. It suggests that SYVN1 and FBXO2 represent two distinct multiprotein complexes that may degrade ΔF508-CFTR in airway epithelia and identifies a new role for NEDD8 in regulating ΔF508-CFTR ubiquitination. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Phase II trial of interleukin 2, interferon alpha, and 5-fluorouracil in metastatic renal cell cancer: a cytokine working group study.

    PubMed

    Dutcher, J P; Logan, T; Gordon, M; Sosman, J; Weiss, G; Margolin, K; Plasse, T; Mier, J; Lotze, M; Clark, J; Atkins, M

    2000-09-01

    The purpose of this study was to evaluate the potential efficacy of alternating two outpatient regimens for the treatment of metastatic renal cell cancer. These regimens consisted of 4 weeks of recombinant interleukin 2 (rIL-2) plus IFN-alpha2B followed by 4 weeks of 5-fluorouracil plus IFN-alpha2B. Fifty patients meeting eligibility criteria of previous Cytokine Working Group studies were treated on an outpatient basis. Patients received s.c. rIL-2 (Proleukin; Chiron, Emeryville, CA) during weeks 1-4 of the 8-week regimen. During weeks 1 and 4, the dosage for rIL-2 was 10 MIU/m2 twice daily on days 3-5, and the dosage for IFN-alpha2B (Intron; Schering Plough, Kenilworth, NJ) was 6 MIU/m2 on day 1. During weeks 2 and 3, the dosage for rIL-2 was 5 MIU/m2 on days 1, 3, and 5, and the dosage for IFN-alpha2B was 6 MIU/m2 on days 1, 3, 5. During weeks 5-8, 5-fluorouracil (750 mg/m2) was administered once weekly by i.v. infusion, and IFN-alpha2B (9 MIU/mZ) was administered as a s.c. injection three times weekly. Throughout the treatment, an assessment of quality of life was made and a symptom-distress scale was evaluated. There were two patients with complete responses (CRs) and seven with partial responses (PRs) for an objective response rate of 18% (95% confidence interval, 10-25). The median response duration was 8 months (range, 3-51+ months). The CRs lasted 5 months and 51+ months and the PRs ranged from 3+ to 18 months. After completing at least one course of treatment, eight patients (three with PR, one with minor response, four with stable disease) became CRs after surgery for remaining metastatic disease. Six remain alive at 43+ to 53+ months, and 5 remain disease-free since surgery. The median survival of the study group is 17.5 months, with a maximal follow-up of 53+ months. The range in survival is 1-53+ months. Toxicity was primarily constitutional. and treatment modifications were designed to maintain toxicity at grade 2/3. The most common toxicities during

  4. Effect of bone marrow-derived CD11b(+)F4/80 (+) immature dendritic cells on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis.

    PubMed

    Fu, Jingjing; Zhang, Lingling; Song, Shanshan; Sheng, Kangliang; Li, Ying; Li, Peipei; Song, Shasha; Wang, Qingtong; Chu, Jianhong; Wei, Wei

    2014-05-01

    To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.

  5. Fanconi anemia protein, FANCG, is a phosphoprotein and is upregulated with FANCA after TNF-alpha treatment.

    PubMed

    Futaki, M; Watanabe, S; Kajigaya, S; Liu, J M

    2001-02-23

    Fanconi anemia (FA) is a genetic syndrome characterized by bone marrow failure, birth defects, and a predisposition to malignancy. At this time, six FA genes have been identified, and several gene products have been found to interact in a protein complex. FA cells appear to overexpress the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). We therefore examined the effects of TNF-alpha on the regulation of FA complementation group proteins, FANCG and FANCA. We found that treatment with TNF-alpha induced FANCG protein expression. FANCA was induced concurrently with FANCG, and the FANCA/FANCG complex was increased in the nucleus following TNF-alpha treatment. Inactivation of inhibitory kappa B kinase-2 modulated the expression of FANCG. We also found that both nuclear and cytoplasmic FANCG fractions were phosphorylated. These results show that FANCG is a phosphoprotein and suggest that the cellular accumulation of FA proteins is subject to regulation by TNF-alpha signaling.

  6. miR-451 regulates dendritic cell cytokine responses to influenza infection1

    PubMed Central

    Rosenberger, Carrie M.; Podyminogin, Rebecca L.; Navarro, Garnet; Zhao, Guo-Wei; Askovich, Peter S.; Weiss, Mitchell J.; Aderem, Alan

    2012-01-01

    MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production. PMID:23169590

  7. Anti-inflammatory effect of resveratrol on TNF-{alpha}-induced MCP-1 expression in adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jian; Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Science, Jiangsu Province Diabetes Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029; Yong Wei

    2008-05-02

    Chronic low-grade inflammation characterized by adipose tissue macrophage accumulation and abnormal cytokine production is a key feature of obesity and type 2 diabetes. Adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, induced by cytokines, has been shown to play an essential role in the early events during macrophage infiltration into adipose tissue. In this study we investigated the effects of resveratrol upon both tumor necrosis factor (TNF)-{alpha}-induced MCP-1 gene expression and its underlying signaling pathways in 3T3-L1 adipoctyes. Resveratrol was found to inhibit TNF-{alpha}-induced MCP-1 secretion and gene transcription, as well as promoter activity, which based on down-regulation of TNF-{alpha}-induced MCP-1 transcription. Nuclearmore » factor (NF)-{kappa}B was determined to play a major role in the TNF-{alpha}-induced MCP-1 expression. Further analysis showed that resveratrol inhibited DNA binding activity of the NF-{kappa}B complex and subsequently suppressed NF-{kappa}B transcriptional activity in TNF-{alpha}-stimulated cells. Finally, the inhibition of MCP-1 may represent a novel mechanism of resveratrol in preventing obesity-related pathologies.« less

  8. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs

    USDA-ARS?s Scientific Manuscript database

    The temporal pattern and gender effect of immune and stress hormone responses to a lipopolysaccharide (LPS) challenge were assessed using a pig model. Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 increased in a time-dependent manner f...

  9. Lymphatic function is regulated by a coordinated expression of lymphangiogenic and anti-lymphangiogenic cytokines

    PubMed Central

    Zampell, Jamie C.; Avraham, Tomer; Yoder, Nicole; Fort, Nicholas; Yan, Alan; Weitman, Evan S.

    2012-01-01

    Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function. PMID:21940662

  10. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition.

    PubMed

    Bassit, R A; Curi, R; Costa Rosa, L F B P

    2008-08-01

    The effect of creatine supplementation upon plasma levels of pro-inflammatory cytokines: Interleukin (IL) 1 beta and IL-6, Tumor Necrosis Factor alpha (TNFalpha), and Interferon alpha (INF alpha) and Prostaglandin E(2) (PGE(2)) after a half-ironman competition were investigated. Eleven triathletes, each with at least three years experience of participation in this sport were randomly divided between the control and experimental groups. During 5 days prior to competition, the control group (n = 6) was supplemented with carbohydrate (20 g x d(-1)) whereas the experimental group (n = 5) received creatine (20 g x d(-1)) in a double-blind trial. Blood samples were collected 48 h before and 24 and 48 h after competition and were used for the measurement of cytokines and PGE(2). Forty-eight hours prior to competition there was no difference between groups in the plasma concentrations (pg x ml(-1), mean +/- SEM) of IL-6 (7.08 +/- 0.63), TNFalpha (76.50 +/- 5.60), INF alpha (18.32 +/- 1.20), IL-1 beta (23.42 +/- 5.52), and PGE(2) (39.71 +/- 3.8). Twenty-four and 48 h after competition plasma levels of TNFalpha, INF alpha, IL-1 beta and PGE(2) were significantly increased (P < 0.05) in both groups. However, the increases in these were markedly reduced following creatine supplementation. An increase in plasma IL-6 was observed only after 24 h and, in this case, there was no difference between the two groups. Creatine supplementation before a long distance triathlon competition may reduce the inflammatory response induced by this form of strenuous of exercise.

  11. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  12. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling

    PubMed Central

    Boniface, Katia; Bak-Jensen, Kristian S.; Li, Ying; Blumenschein, Wendy M.; McGeachy, Mandy J.; McClanahan, Terrill K.; McKenzie, Brent S.; Kastelein, Robert A.; de Waal Malefyt, René

    2009-01-01

    Prostaglandins, particularly prostaglandin E2 (PGE2), play an important role during inflammation. This is exemplified by the clinical use of cyclooxygenase 2 inhibitors, which interfere with PGE2 synthesis, as effective antiinflammatory drugs. Here, we show that PGE2 directly promotes differentiation and proinflammatory functions of human and murine IL-17–producing T helper (Th17) cells. In human purified naive T cells, PGE2 acts via prostaglandin receptor EP2- and EP4-mediated signaling and cyclic AMP pathways to up-regulate IL-23 and IL-1 receptor expression. Furthermore, PGE2 synergizes with IL-1β and IL-23 to drive retinoic acid receptor–related orphan receptor (ROR)-γt, IL-17, IL-17F, CCL20, and CCR6 expression, which is consistent with the reported Th17 phenotype. While enhancing Th17 cytokine expression mainly through EP2, PGE2 differentially regulates interferon (IFN)-γ production and inhibits production of the antiinflammatory cytokine IL-10 in Th17 cells predominantly through EP4. Furthermore, PGE2 is required for IL-17 production in the presence of antigen-presenting cells. Hence, the combination of inflammatory cytokines and noncytokine immunomodulators, such as PGE2, during differentiation and activation determines the ultimate phenotype of Th17 cells. These findings, together with the altered IL-12/IL-23 balance induced by PGE2 in dendritic cells, further highlight the crucial role of the inflammatory microenvironment in Th17 cell development and regulation. PMID:19273625

  13. Agaricus bisporus powder improved cutaneous mucosal and serum immune parameters and up-regulated intestinal cytokines gene expression in common carp (Cyprinus carpio) fingerlings.

    PubMed

    Khodadadian Zou, Hassan; Hoseinifar, Seyed Hossein; Kolangi Miandare, Hamed; Hajimoradloo, Abdolmajid

    2016-11-01

    The aim of the present study was to investigate immunomodulatory effects of Agaricus bisporus, white bottom mushroom powder (WBMP) on common carp (Cyprinus carpio) fingerlings. Carps were fed on different levels of WBMP (0, 0.5, 1 and 2%) for 8 weeks and at the end of feeding trial, skin mucus immune parameters (total Ig, lysozyme and protease activity), cytokines gene expression (TNF-alpha, IL1b, IL8) in intestine as well as serum non-specific immune parameters (total Ig, lysozyme and ACH50) were measured. The results showed significant dose dependent increase of skin mucus immune parameters in carps fed WBMP (P < 0.05). While, no significant difference was observed between 0.5% WBMP and control group (P > 0.05). In case of serum non-specific immune parameters, except lysozyme activity, other parameters (Ig total and ACH50) were significantly affected by dietary inclusion of WBMP (P < 0.05). Also, evaluation of cytokines gene expression in the intestine of carps revealed remarkable up-regulation of TNF-alpha in fish fed 2% WBMP supplemented diet compared other treatment (P < 0.05). Likewise, IL1b gene expression was significantly increased in 1 and 2% WBMP treatments compared to the 0.5% WBMP and control groups (P < 0.05). IL8 gene expression was not affected by inclusion of WBMP in carp diet (P > 0.05). Furthermore, feeding on WBMP supplemented diet significantly improved growth performance (P < 0.05). These results indicated that WBMP can be considered as a promising immunostimulants in early stage of common carp culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity

    PubMed Central

    Daigle, J Gavin; Krishnamurthy, Karthik; Ramesh, Nandini; Casci, Ian; Monaghan, John; McAvoy, Kevin; Godfrey, Earl W; Daniel, Dianne C.; Johnson, Edward M.; Monahan, Zach; Shewmaker, Frank; Pasinelli, Piera; Pandey, Udai Bhan

    2016-01-01

    Amyotrophic lateral Sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA binding proteins, have been linked to ALS pathology. Recently, Pur-alpha a DNA/RNA binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics. PMID:26728149

  15. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    PubMed Central

    Smith, Judith A.

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis. PMID:29556237

  16. Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds.

    PubMed

    Nanjo, Yohei; Asatsuma, Satoru; Itoh, Kimiko; Hori, Hidetaka; Mitsui, Toshiaki; Fujisawa, Yukiko

    2004-06-01

    Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.

  17. Regulation and functions of inflammasome-mediated cytokines in Helicobacter pylori infection.

    PubMed

    Tran, Le Son; Chonwerawong, Michelle; Ferrero, Richard L

    Persistent stomach infection with Helicobacter pylori causes chronic mucosal inflammation (gastritis), which is widely recognized as an essential precursor to gastric cancer. The IL-1 interleukin family cytokines IL-1β and IL-18 have emerged as central mediators of mucosal inflammation. Here, we review the regulation and functions of these cytokines in H. pylori-induced inflammation and carcinogenesis. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Tilapia Hepcidin 2-3 Peptide Modulates Lipopolysaccharide-induced Cytokines and Inhibits Tumor Necrosis Factor-α through Cyclooxygenase-2 and Phosphodiesterase 4D*

    PubMed Central

    Rajanbabu, Venugopal; Pan, Chieh-Yu; Lee, Shang-Chun; Lin, Wei-Ju; Lin, Ching-Chun; Li, Chung-Leung; Chen, Jyh-Yih

    2010-01-01

    The antimicrobial peptide, tilapia hepcidin (TH) 2-3, belongs to the hepcidin family, and its antibacterial function has been reported. Here, we examined the TH2-3-mediated regulation of proinflammatory cytokines in bacterial endotoxin lipopolysaccharide (LPS)-stimulated mouse macrophages. The presence of TH2-3 in LPS-stimulated cells reduced the amount of tumor necrosis factor (TNF)-α secretion. From a microarray, real-time polymerase chain reaction (PCR), and cytokine array studies, we showed down-regulation of the proinflammatory cytokines TNF-α, interleukin (IL)-1α, IL-1β, IL-6, and the prostaglandin synthesis gene, cyclooxygenase (COX)-2, by TH2-3. Studies with the COX-2-specific inhibitor, melaxicam, and with COX-2-overexpressing cells demonstrated the positive regulation of TNF-α and negative regulation of cAMP degradation-specific phosphodiesterase (PDE) 4D by COX-2. In LPS-stimulated cells, TH2-3 acts like melaxicam and down-regulates COX-2 and up-regulates PDE4D. The reduction in intracellular cAMP by TH2-3 or melaxicam in LPS-stimulated cells supports the negative regulation of PDE4D by COX-2 and TH2-3. This demonstrates that the inhibition of COX-2 is among the mechanisms through which TH2-3 controls TNF-α release. At 1 h after treatment, the presence of TH2-3 in LPS-stimulated cells had suppressed the induction of pERK1/2 and prevented the LPS-stimulated nuclear accumulation of NF-κB family proteins of p65, NF-κB2, and c-Rel. In conclusion, TH2-3 inhibits TNF-α and other proinflammatory cytokines through COX-2-, PDE4D-, and pERK1/2-dependent mechanisms. PMID:20675368

  19. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role inmore » cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. - Highlights: • Alpha-syntrophin (SNTA) is expressed in 3T3-L1adipocytes. • SNTA knock-down in preadipocytes has no effect on adipogenesis. • Mature 3T3-L1 differentiated from cells with low SNTA form small lipid droplets. • SCD1 and MnSOD are reduced in adipocytes with low SNTA. • SCD1 knock-down does not alter triglyceride levels.« less

  20. Functional coupling of rat myometrial alpha 1-adrenergic receptors to Gh alpha/tissue transglutaminase 2 during pregnancy.

    PubMed

    Dupuis, Morgan; Lévy, Arlette; Mhaouty-Kodja, Sakina

    2004-04-30

    Gh alpha protein, which exhibits both transglutaminase and GTPase activities, represents a new class of GTP-binding proteins. In the present study, we characterized Gh alpha in rat uterine smooth muscle (myometrium) and followed its expression during pregnancy by reverse transcription-PCR and Western blot. We also measured transglutaminase and GTP binding functions and used a smooth muscle cell line to evaluate the role of Gh alpha in cell proliferation. The results show that pregnancy is associated with an up-regulation of Gh alpha expression at both the mRNA and protein level. Gh alpha induced during pregnancy is preferentially localized to the plasma membrane. This was found associated with an increased ability of plasma membrane preparations to catalyze Ca(2+)-dependent incorporation of [(3)H]putrescine into casein in vitro. In the cytosol, significant changes in the level of immunodetected Gh alpha and transglutaminase activity were seen only at term. Activation of alpha1-adrenergic receptors (alpha1-AR) enhanced photoaffinity labeling of plasma membrane Gh alpha. Moreover, the level of alpha1-AR-coupled Gh alpha increased progressively with pregnancy, which parallels the active period of myometrial cell proliferation. Overexpression of wild type Gh alpha in smooth muscle cell line DDT1-MF2 increased alpha1-AR-induced [(3)H]thymidine incorporation. A similar response was obtained in cells expressing the transglutaminase inactive mutant (C277S) of Gh alpha. Together, these findings underscore the role of Gh alpha as signal transducer of alpha1-AR-induced smooth muscle cell proliferation. In this context, pregnant rat myometrium provides an interesting physiological model to study the mechanisms underlying the regulation of the GTPase function of Gh alpha

  1. Regulation and Function of Cytokines That Predict Prostate Cancer Metastasis

    DTIC Science & Technology

    2013-10-01

    role of Stat3 activation and p53 intracellular signaling downstream of these cytokines commonly seem to differentialy regulate invasion and... active surveillance. The issue is an important one given the potential for attempts at local curative therapy (whether it be surgery, radiation or...down regulated in the recurrent population, is critical to the communication with MSC in eliciting anti-tumor activity . However, the goals this year

  2. Cytokine expression in severe pneumonia: a bronchoalveolar lavage study.

    PubMed

    Montón, C; Torres, A; El-Ebiary, M; Filella, X; Xaubet, A; de la Bellacasa, J P

    1999-09-01

    To assess the cytokine expression (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-1beta, and IL-6) in severe pneumonia, both locally (in the lungs) and systemically (in blood). Prospective sequential study with bronchoalveolar lavage (BAL) and blood sampling. Six-bed respiratory intensive care unit of a 1,000-bed teaching hospital. Thirty mechanically ventilated patients (>48 hrs) were allocated to either the pneumonia group (n = 20) or a control group (n = 10). Protected specimen brush and BAL samples for quantitative cultures, and serum and BAL fluid TNF-alpha, IL-1beta, and IL-6 levels were measured on days 1, 3, and 7. In the control group, the procedure was done on day 1 only. Serum TNF-alpha levels were significantly higher in patients with pneumonia compared with controls (35 +/- 4 vs. 17 +/- 3 pg/mL, respectively, p = .001). IL-6 levels in serum and BAL fluid were higher in pneumonia than in control patients (serum, 837 +/- 260 vs. 94 +/- 35 pg/mL, respectively, p = .017; BAL fluid, 1176 +/- 468 vs. 234 +/- 83 pg/mL, respectively, p = .05). On days 1, 3, and 7 in patients with pneumonia, IL-1beta levels turned out to be higher in BAL fluid than in serum (71 +/- 17 vs. 2 +/-1 pg/mL on day 1; 49 +/- 8 vs. 6 +/- 2 pg/mL on day 3; and 47 +/- 16 vs. 3 +/- 2 pg/mL on day 7 for BAL fluid and serum, respectively, p < .05). No significant correlation between BAL fluid cytokine levels and lung bacterial burden was shown in presence of antibiotic treatment. Although no clear relationship was found between BAL fluid and serum cytokines and mortality, there was a trend toward higher serum IL-6 levels in nonsurvivors (1209 +/- 433 pg/mL) with pneumonia compared with survivors (464 +/- 260 pg/mL). In addition, serum TNF-alpha and IL-6 correlated with multiple organ failure score (r2 = .36, p = .004 for both) and with lung injury score (r2 = .30, p = .01, and r2 = .22, p = .03, for TNF-alpha and IL-6, respectively). The present study describes the lung and

  3. Mechanical stimulation of skeletal muscle increases prostaglandin F2(alpha) synthesis and cyclooxygenase activity by a pertussis toxin sensitive mechanism

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Solerssi, Rosa; Chromiak, Joseph

    1992-01-01

    Repetitive mechanical stimulation of differentiated skeletal muscle in tissue culture increases the production of prostaglandin F(sub 2(alpha)), an anabolic stimulator of myofiber growth. Within 4 h of initiating mechanical activity, the activity of cyclooxygenase, a regulatory enzyme in prostaglandin synthesis, was increased 82% (P is less than .005), and this increase was maintained for at least 24 h. Kinetic analysis of the stretch-activated cyclooxygenase indicated a two to three-fold decrease in the enzyme's K(sub m) with no change in V(sub max). The stretch-induced increase in enzymatic activity was not inhibited by cycloheximide, was independent of cellular electrical activity (tetrodotoxin-insensitive), but was prevented by the G protein inhibitor pertussis toxin. Pertussis toxin also inhibited the stretch-induced increases in PGF(sub 2(alpha)) production, and cell growth. It is concluded that stretch of skeletal muscle increases the synthesis of the anabolic modulator PGF(sub 2(alpha)) by a G protein-dependent process which involves activation of cyclooxygenase by a posttranslational mechanism.

  4. Trefoil factor 3 (TFF3) from human breast milk activates PAR-2 receptors, of the intestinal epithelial cells HT-29, regulating cytokines and defensins.

    PubMed

    Barrera, G J; Tortolero, G Sanchez

    2016-01-01

    Trefoil factors are effector molecules in gastrointestinal tract physiology. Each one improves healing of the gastrointestinal tract. Trefoil factors may be grouped into three classes: the gastric peptides (TFF1), spasmolytic peptide (TFF2) and intestinal trefoil factor (TFF3). Significant amounts of TFF3 are present in human breast milk. Previously, we have reported that trefoil factor 3 isolated from human breast milk produces down regulation of cytokines and promotes human beta defensins expression in intestinal epithelial cells. This study aimed to determine the molecular mechanism involved. Here we showed that the presence of TFF3 strongly correlated with protease activated receptors 2 (PAR-2) activation in human intestinal cells. Intracellular calcium ((Ca2+)i)mobilization was induced by the treatment with: 1) TFF3, 2) synthetic PAR-2 agonist peptide. The co-treatment with a synthetic PAR-2 antagonist peptide and TFF3 eliminates the latter's effect. Additionally, we demonstrated the existence of interactions among TFF3 and PAR-2 receptors through far Western blot and co-precipitation. Finally, down regulation of PAR-2 by siRNA resulted in a decrease of TFF3 induced intracellular (Ca2+)i mobilization, cytokine regulation and defensins expression. These findings suggest that TFF3 activates intestinal cells through PAR-2 (Fig. 4, Ref. 19).

  5. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    PubMed

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Production of cytokines and stimulation of resistance to viral infection in human leukocytes by Scutellaria baicalensis flavones.

    PubMed

    Błach-Olszewska, Zofia; Jatczak, Bogna; Rak, Anna; Lorenc, Maria; Gulanowski, Bogdan; Drobna, Agnieszka; Lamer-Zarawska, Eliza

    2008-09-01

    Extracts of Scutellaria baicalensis display a wide spectrum of antiviral activity. It was of great interest to check the effect of baicalein and wogonin preparations on two important mechanisms of innate immunity: the secretion of cytokines and the natural resistance of human leukocytes to viral infection. To study the effect of S. baicalensis extracts on interferons (IFNs), tumor necrosis factor alpha (TNF-alpha), and interleukin (IL) production and virus replication, uninfected and vesicular stomatitis virus (VSV)-infected human peripheral blood leukocytes (PBLs) were used. Four pulverized preparations obtained from roots of Scutellaria and a Sigma-Aldrich preparation of purified baicalein were used in the study. RPMI extracts containing different amounts of baicalein and wogonin were used to study the effect on VSV replication in PBLs. PBLs express ex vivo individually differentiated cytokine-dependent resistance/innate immunity to viral infections. The degree of resistance was estimated on the basis of VSV replication in PBLs. The results obtained indicate that baicalein- and wogonin-containing extracts modulate cytokine production, that is inhibit IFN-alpha and IFN-gamma and stimulate TNF-alpha and IL (IL-12, IL-10) production. They also augment the resistance of PBLs to VSV. Extract from S. baicalensis containing baicalein and wogonin regulates the innate antiviral immunity by modulation of cytokine production and stimulation of human leukocyte resistance.

  8. Saponin Inhibits Hepatitis C Virus Propagation by Up-regulating Suppressor of Cytokine Signaling 2

    PubMed Central

    Kang, Sang-Min; Min, Saehong; Son, Kidong; Lee, Han Sol; Park, Eun Mee; Ngo, Huong T. T.; Tran, Huong T. L.; Lim, Yun-Sook; Hwang, Soon B.

    2012-01-01

    Saponins are a group of naturally occurring plant glycosides which possess a wide range of pharmacological properties, including anti-tumorigenic and antiviral activities. To investigate whether saponin has anti-hepatitis C virus (HCV) activity, we examined the effect of saponin on HCV replication. HCV replication was efficiently inhibited at a concentration of 10 µg/ml of saponin in cell culture grown HCV (HCVcc)-infected cells. Inhibitory effect of saponin on HCV replication was verified by quantitative real-time PCR, reporter assay, and immunoblot analysis. In addition, saponin potentiated IFN-α-induced anti-HCV activity. Moreover, saponin exerted antiviral activity even in IFN-α resistant mutant HCVcc-infected cells. To investigate how cellular genes were regulated by saponin, we performed microarray analysis using HCVcc-infected cells. We demonstrated that suppressor of cytokine signaling 2 (SOCS2) protein level was distinctively increased by saponin, which in turn resulted in inhibition of HCV replication. We further showed that silencing of SOCS2 resurrected HCV replication and overexpression of SOCS2 suppressed HCV replication. These data imply that saponin inhibits HCV replication via SOCS2 signaling pathway. These findings suggest that saponin may be a potent therapeutic agent for HCV patients. PMID:22745742

  9. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling.

    PubMed

    Ii, Masayuki; Matsunaga, Naoko; Hazeki, Kaoru; Nakamura, Kazuyo; Takashima, Katsunori; Seya, Tsukasa; Hazeki, Osamu; Kitazaki, Tomoyuki; Iizawa, Yuji

    2006-04-01

    Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.

  10. The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin.

    PubMed

    Mazzochi, Christopher; Bubien, James K; Smith, Peter R; Benos, Dale J

    2006-03-10

    The activity of the amiloride-sensitive epithelial sodium channel (ENaC) is modulated by F-actin. However, it is unknown if there is a direct interaction between alpha-ENaC and actin. We have investigated the hypothesis that the actin cytoskeleton directly binds to the carboxyl terminus of alpha-ENaC using a combination of confocal microscopy, co-immunoprecipitation, and protein binding studies. Confocal microscopy of Madin-Darby canine kidney cell monolayers stably transfected with wild type, rat isoforms of alpha-, beta-, and gamma-ENaC revealed co-localization of alpha-ENaC with the cortical F-actin cytoskeleton both at the apical membrane and within the subapical cytoplasm. F-actin was found to co-immunoprecipitate with alpha-ENaC from whole cell lysates of this cell line. Gel overlay assays demonstrated that F-actin specifically binds to the carboxyl terminus of alpha-ENaC. A direct interaction between F-actin and the COOH terminus of alpha-ENaC was further corroborated by F-actin co-sedimentation studies. This is the first study to report a direct and specific biochemical interaction between F-actin and ENaC.

  11. Multiple Inflammatory Cytokines Converge to Regulate CD8+ T cell Expansion and Function During Tuberculosis

    PubMed Central

    Booty, Matthew G.; Nunes-Alves, Cláudio; Carpenter, Stephen M.; Jayaraman, Pushpa; Behar, Samuel M.

    2015-01-01

    The differentiation of effector CD8+ T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. Here, we define three signals regulating CD8+ T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild type and cytokine receptor knockout CD8+ T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks post-infection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8+ T cell expansion in the lungs. We next determined if these cytokines directly promote CD8+ T cell priming or are required only for expansion in the lungs. Utilizing retrogenic CD8+ T cells specific for the Mtb antigen TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8+ T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have non-redundant roles supporting pulmonary CD8+ T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8+ T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8+ T cell regulation during tuberculosis. PMID:26755819

  12. The Predominant CD4+ Th1 Cytokine Elicited to Chlamydia trachomatis Infection in Women Is Tumor Necrosis Factor Alpha and Not Interferon Gamma

    PubMed Central

    Gupta, Kanupriya; Ogendi, Brian M. O.; Bakshi, Rakesh K.; Kapil, Richa; Press, Christen G.; Sabbaj, Steffanie; Lee, Jeannette Y.

    2017-01-01

    ABSTRACT Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine. PMID:28100498

  13. New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents.

    PubMed

    Nakajima, Tadashi; Matsugi, Takeshi; Goto, Wakana; Kageyama, Masaaki; Mori, Nobuaki; Matsumura, Yasushi; Hara, Hideaki

    2003-12-01

    To find new prostanoid FP-receptor agonists possessing potent ocular-hypotensive effects with minimal side effects, we evaluated the agonistic activities of newly synthesized prostaglandin F(2alpha) derivatives for the prostanoid FP-receptor both in vitro and in vivo. The iris constrictions induced by the derivatives and their effects on melanin content were examined using cat isolated iris sphincters and cultured B16 melanoma cells, respectively. The effects of derivative ester forms on miosis and intraocular pressure (IOP) were evaluated in cats and cynomolgus monkeys, respectively. Of these derivatives, 6 out of 12 compounds were more potent iris constrictors, with EC(50) values of 0.6 to 9.4 nM, than a carboxylic acid of latanoprost (EC(50)=13.6 nM). A carboxylic acid of latanoprost (100 microM) significantly increased the melanin content of cultured B16 melanoma cells, but some 15,15-difluoro derivatives, such as AFP-157 and AFP-172, did not. Topically applied AFP-168, AFP-169 and AFP-175 (isopropyl ester, methyl ester and ethyl ester forms, respectively, of AFP-172) induced miosis in cats more potently than latanoprost. AFP-168 (0.0005%) reduced IOP to the same extent as 0.005% latanoprost (for at least 8 h). These findings indicate that 15,15-difluoroprostaglandin F(2alpha) derivatives, especially AFP-168, have more potent prostanoid FP-receptor agonistic activities than latanoprost. Hence, AFP-168 may be worthy of further evaluation as an ocular-hypotensive agent.

  14. Influenza A virus PB1-F2 protein expression is regulated in a strain-specific manner by sequences located downstream of the PB1-F2 initiation codon

    USDA-ARS?s Scientific Manuscript database

    Translation of influenza A virus PB1-F2 occurs in a second open reading frame (ORF) of the PB1 gene segment. PB1-F2 has been implicated in regulation of polymerase activity, immunopathology, susceptibility to secondary bacterial infection, and induction of apoptosis. Experimental evidence of PB1-F2 ...

  15. Molecular Signatures of Peripheral Blood Mononuclear Cells during Chronic Interferon-alpha Treatment: Relationship with Depression and Fatigue

    PubMed Central

    Felger, Jennifer C.; Cole, Steve W.; Pace, Thaddeus W. W.; Hu, Fang; Woolwine, Bobbi J.; Doho, Gregory H.; Raison, Charles L.; Miller, Andrew H.

    2012-01-01

    Background Interferon (IFN)-alpha treatment for infectious disease and cancer causes high rates of depression and fatigue, and has been used to investigate the impact of inflammatory cytokines on brain and behavior. However, little is known about the transcriptional impact of chronic IFN-alpha on immune cells in vivo and its relationship to IFN-alpha-induced behavioral changes. Methods Genome-wide transcriptional profiling was performed on peripheral blood mononuclear cells from 21 patients with chronic hepatitis C either awaiting IFN-alpha therapy (n=10) or at 12 weeks of IFN-alpha treatment (n=11). Results Significance analysis of microarray data identified 252 up-regulated and 116 down-regulated gene transcripts. Of up-regulated genes, 2'-5'-oligoadenylate synthetase 2 (OAS2), a gene linked to chronic fatigue syndrome (CFS), was the only gene that was differentially expressed in patients with IFN-alpha-induced depression/fatigue, and correlated with depression and fatigue scores at 12 weeks (r=0.80, p=0.003 and r=0.70, p=0.017, respectively). Promoter-based bioinformatic analyses linked IFN-alpha-related transcriptional alterations to transcription factors involved in myeloid differentiation, IFN-alpha signaling, AP1 and CREB/ATF pathways, which were derived primarily from monocytes and plasmacytoid dendritic cells. IFN-alpha-treated patients with high depression/fatigue scores demonstrated up-regulation of genes bearing promoter motifs for transcription factors involved in myeloid differentiation, IFN-alpha and AP1 signaling, and reduced prevalence of motifs for CREB/ATF, which has been implicated in major depression. Conclusions Depression and fatigue during chronic IFN-alpha administration were associated with alterations in the expression (OAS2) and transcriptional control (CREB/ATF) of genes linked to behavioral disorders including CFS and major depression, further supporting an immune contribution to these diseases. PMID:22152193

  16. N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells.

    PubMed

    Hashimoto, S; Gon, Y; Matsumoto, K; Takeshita, I; Horie, T

    2001-01-01

    1. We have previously shown that tumour necrosis factor-alpha (TNF-alpha) activates p38 mitogen-activated protein (MAP) kinase to produce interleukin-8 (IL-8) by human pulmonary vascular endothelial cells. Reactive oxygen species (ROS) including H(2)O(2) generated by TNF-alpha can act as signalling intermediates for cytokine induction; therefore, scavenging ROS by anti-oxidants is important for the regulation of cytokine production. However, the effect of N-acetylcysteine (NAC), which acts as a precursor of glutathione (GSH) synthesis, on TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells has not been determined. To clarify these issues, we examined the effect of NAC on TNF-alpha-induced activation of p38 MAP kinase, MAP kinase kinase (MKK) 3 and MKK6 which are upstream regulators of p38 MAP kinase, and p38 MAP kinase-mediated IL-8 production. 2. Human pulmonary vascular endothelial cells that had been preincubated with NAC were stimulated with TNF-alpha and then the activation of p38 MAP kinase and MKK3/MKK6 in the cells and IL-8 concentrations in the culture supernatants were determined. 3. Intracellular GSH levels increased in NAC-treated cells. 4. NAC attenuated TNF-alpha-induced activation of p38 MAP kinase and MKK3/MKK6. 5. NAC attenuated p38 MAP kinase-mediated IL-8 production by TNF-alpha-stimulated cells. 6. These results indicate that the cellular reduction and oxidation (redox) regulated by intracellular GSH is critical for TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells, and we emphasize that anti-oxidant therapy is an important strategy for the treatment of acute lung injury.

  17. Salivary cytokine response in the aftermath of stress: An emotion regulation perspective.

    PubMed

    Newton, Tamara L; Fernandez-Botran, Rafael; Lyle, Keith B; Szabo, Yvette Z; Miller, James J; Warnecke, Ashlee J

    2017-09-01

    Elevated inflammation in the context of stress has been implicated in mental and physical health. Approaching this from an emotion regulation perspective, we tested whether the salivary cytokine response to stress is dampened by using distraction to minimize opportunity for poststressor rumination. Healthy young adults were randomized to an acute stressor: modified Trier Social Stress Test (TSST, Study 1) or angry memory retrieval (Study 2). Within each study, participants were randomized to poststressor condition-rest or distraction-at a 3:1 ratio. Saliva, collected before and 40 min after the end of each stressor, was assayed for proinflammatory cytokines (PICs): interleukin-1β (IL-1β), TNF-α, and IL-6. Both stressors increased all PICs, and both provoked negative emotion. At 40 min post-TSST, salivary PIC increases did not differ between distraction and rest, but correlated positively with emotional reactivity to stress. At 40 min after memory retrieval, IL-1β increases and intrusive rumination were lower during distraction than rest, but did not correlate with emotional reactivity. Trait rumination and interference control mechanisms, also measured, played little role in PIC increases. Overall, after some stressors, some salivary cytokine responses are lower during distraction than rest. The roles of specific emotions, emotional intensity, and poststressor timing of saliva collection in this finding require clarification. Furthermore, the possibility of two affective paths to inflammation in the context of stress-one sensitive to opportunities for early occurring emotion regulation (as reflected in emotional reactivity), and one sensitive to late-occurring emotion regulation (as reflected in distraction after stress)-deserves attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Up-regulation of Bcl-2 through hyperbaric pressure transfection of TGF-beta1 ameliorates ischemia-reperfusion injury in rat cardiac allografts.

    PubMed

    Grünenfelder, Jürg; Miniati, Douglas N; Murata, Seiichiro; Falk, Volkmar; Hoyt, E Grant; Robbins, Robert C

    2002-02-01

    Oxidative stress after ischemia-reperfusion of cardiac allografts leads to activation of cardiomyocytes and production of cytokines. Bcl-2, an inhibitor of the apoptotic pathway, also has strong antioxidant properties. Ischemia-reperfusion injury after transplantation leads to decreased bcl-2 and increased tumor necrosis factor (TNF)-alpha levels. Transforming growth factor (TGF)-beta1 is known to attenuate ischemia-reperfusion injury and inhibits apoptosis of myofibroblasts. We hypothesize that TGF-beta1, prevents bcl-2 cleavage and increased TNF-alpha production. Rat PVG donor hearts were heterotopically transplanted into ACI recipients. Donor hearts were procured and assigned to groups: (1) intracoronary TGF-beta1 (200 ng/ml) perfusion and pressure at 78 psi for 45 minutes (n = 4); (2) intracoronary TGF-beta1 perfusion and incubation for 45 minutes without pressure (n = 4), (3) saline perfusion and incubation for 45 minutes without pressure (n = 4). Hearts were procured 4 hours after transplantation and analyzed by reverse transcriptase-polymerase chain reaction for bcl-2 mRNA expression, ELISA for TNF-alpha, and for myeloperoxidase activity (MPO). Bcl-2 decreased in untreated animals (bcl-2:G3PDH ratio = 0.85 +/- 0.73 vs 1.16 +/- 0.11, not significant [NS]), whereas TNF-alpha increased to 669.99 +/- 127.09 vs 276.84 +/- 73.65 pg/mg total protein in controls (p < 0.003). In TGF-beta(1) pressure-treated hearts, bcl-2 was up-regulated (2.49 +/- 0.6 vs 1.16 +/- 0.11, controls, p < 0.005), whereas TNF-alpha was unchanged (396.1 +/- 100.38 vs 276.84 +/- 73.65 pg/mg, NS). Hearts treated with TGF-beta1 and pressure showed significant up-regulation of bcl-2 compared with hearts treated with TGF-beta1 without pressure (2.49 +/- 0.6 vs 1.17 +/- 0.6, p < 0.02). MPO showed no differences. Bcl-2 is down-regulated and TNF-alpha up-regulated in this model of ischemia-reperfusion injury. Furthermore, TGF-beta1 is linked to this process and ameliorates reperfusion injury by up-regulating

  19. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    PubMed

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  20. Protein kinase C delta overexpressing transgenic mice are resistant to chemically but not to UV radiation-induced development of squamous cell carcinomas: a possible link to specific cytokines and cyclooxygenase-2.

    PubMed

    Aziz, Moammir H; Wheeler, Deric L; Bhamb, Bhushan; Verma, Ajit K

    2006-01-15

    Protein kinase C delta (PKCdelta), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is among the novel PKCs (delta, epsilon, and eta) expressed in mouse epidermis. We reported that FVB/N transgenic mice that overexpress ( approximately 8-fold) PKCdelta protein in basal epidermal cells and cells of the hair follicle are resistant to the development of both skin papillomas and squamous cell carcinoma (SCC) elicited by 7,12-dimethylbenz(a)anthracene initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion protocol. We now present that PKCdelta overexpression in transgenic mice failed to suppress the induction of SCC developed by repeated exposures to UV radiation (UVR), the environmental carcinogen linked to the development of human SCC. Both TPA and UVR treatment of wild-type mice (a) increased the expression of proliferating cell nuclear antigen (PCNA) and apoptosis; (b) stimulated the expression of cytokines tumor necrosis factor-alpha (TNF-alpha), granulocyte macrophage colony-stimulating factor (GM-CSF), and granulocyte CSF (G-CSF); and (c) increased cyclooxygenase-2 (COX-2) expression and expression of phosphorylated Akt (p-Akt), p38, extracellular signal-regulated kinase-1 (ERK1), and ERK2. PKCdelta overexpression in transgenic mice enhanced TPA-induced but not UVR-induced apoptosis and suppressed TPA-stimulated but not UVR-stimulated levels of cell PCNA, cytokines (TNF-alpha, G-CSF, and GM-CSF), and the expression of COX-2, p-Akt, and p38. The results indicate that UVR-mediated signal transduction pathway to the induction of SCC does not seem to be sensitive to PKCdelta overexpression. The proapoptotic activity of PKCdelta coupled with its ability to suppress TPA-induced expression of proinflammatory cytokines, COX-2 expression, and the phosphorylation of Akt and p38 may play roles in the suppression of TPA-promoted development of SCC.

  1. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    PubMed Central

    Williams, C M; Coleman, J W

    1995-01-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs. Images Figure 1 Figure 2 Figure 3 PMID:7490125

  2. Cytokines as a predictor of clinical response following hip arthroscopy: minimum 2-year follow-up.

    PubMed

    Shapiro, Lauren M; Safran, Marc R; Maloney, William J; Goodman, Stuart B; Huddleston, James I; Bellino, Michael J; Scuderi, Gaetano J; Abrams, Geoffrey D

    2016-08-01

    Hip arthroscopy in patients with osteoarthritis has been shown to have suboptimal outcomes. Elevated cytokine concentrations in hip synovial fluid have previously been shown to be associated with cartilage pathology. The purpose of this study was to determine whether a relationship exists between hip synovial fluid cytokine concentration and clinical outcomes at a minimum of 2 years following hip arthroscopy. Seventeen patients without radiographic evidence of osteoarthritis had synovial fluid aspirated at time of portal establishment during hip arthroscopy. Analytes included fibronectin-aggrecan complex as well as a multiplex cytokine array. Patients completed the modified Harris Hip Score, Western Ontario and McMaster Universities Arthritis Index and the International Hip Outcomes Tool pre-operatively and at a minimum of 2 years following surgery. Pre and post-operative scores were compared with a paired t-test, and the association between cytokine values and clinical outcome scores was performed with Pearson's correlation coefficient with an alpha value of 0.05 set as significant. Sixteen of seventeen patients completed 2-year follow-up questionnaires (94%). There was a significant increase in pre-operative to post-operative score for each clinical outcome measure. No statistically significant correlation was seen between any of the intra-operative cytokine values and either the 2-year follow-up scores or the change from pre-operative to final follow-up outcome values. No statistically significant associations were seen between hip synovial fluid cytokine concentrations and 2-year follow-up clinical outcome assessment scores for those undergoing hip arthroscopy.

  3. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha

    PubMed Central

    Senior, Alan E.; Muharemagi, Alma; Wilke-Mounts, Susan

    2008-01-01

    Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, competent in nucleotide binding, and had normal N-terminal sequence. In F1-subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiment showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming, and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector. PMID:17176112

  4. Synthesis of methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside and methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside.

    PubMed

    Jain, R K; Dubey, R; Abbas, S A; Matta, K L

    1987-03-15

    Treatment of methyl 3-O-benzyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-alpha-D- mannopyranoside (1) with tert-butyldiphenylsilyl chloride in N,N-dimethylformamide afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-(2,3,4,6-tetra-O-acetyl -alpha-D- mannopyranosyl)-alpha-D-mannopyranoside (2). Oxidation of 2 with pyridinium chlorochromate, followed by reduction of the carbonyl group, and subsequent O-deacetylation afforded methyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-O-alpha-D-mannopyranosyl- alpha-D- talopyranoside (5). Cleavage of the tert-butyldiphenylsilyl group of 5 with tetrabutylammonium fluoride in oxolane, followed by hydrogenolysis, gave methyl 2-O-alpha-D-mannopyranosyl-alpha-D-talopyranoside (7). O-Deacetylation of 1 gave methyl 3-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (8). Treatment of 8 with tert-butyldiphenylsilyl chloride afforded a 6,6'-disilyl derivative, which was converted into a 2',3'-O-isopropylidene derivative, and then further oxidized with pyridinium chlorochromate. The resulting diketone was reduced and removal of the protecting groups gave methyl 2-O-alpha-D-talopyranosyl-alpha-D-talopyranoside (15). The structures of both 7 and 15 were established by 13C-n.m.r. spectroscopy.

  5. Transcriptomic and bioinformatics analysis of the early time-course of the response to prostaglandin F2 alpha in the bovine corpus luteum

    USDA-ARS?s Scientific Manuscript database

    RNA expression analysis was performed on the corpus luteum tissue at five time points after prostaglandin F2 alpha treatment of midcycle cows using an Affymetrix Bovine Gene v1 Array. The normalized linear microarray data was uploaded to the NCBI GEO repository (GSE94069). Subsequent statistical ana...

  6. Successful treatment by double-filtration plasmapheresis of a patient with bullous pemphigoid: effects in vivo on transcripts of several genes for chemokines and cytokines in peripheral blood mononuclear cells.

    PubMed

    Hatano, Y; Katagiri, K; Arakawa, S; Umeki, T; Takayasu, S; Fujiwara, S

    2003-03-01

    The involvement of various cytokines and chemokines has been reported in the pathogenesis of bullous pemphigoid (BP). Double-filtration plasmapheresis (DFPP) is an effective treatment for BP but the mechanism of action remains unclear. Using semiquantitative reverse transcription-polymerase chain reaction, we examined levels of transcripts for various cytokines and chemokines in freshly isolated peripheral blood mononuclear cells in a patient with BP before and after DFPP treatment. DFPP was performed four times. Relative levels of transcripts for interleukin (IL)-8, macrophage inflammatory protein (MIP)-1alpha and IL-5, and the ratio of relative levels of transcripts for IL-4 and interferon (IFN)-gamma, were higher, before treatment, than in healthy controls, and decreased when the extent of the lesions was reduced. Relative levels of transcripts for tumour necrosis factor (TNF)-alpha and IL-4 also decreased with regression of lesions, although they were similar to or lower than the corresponding levels in healthy individuals. When eruptions recurred, relative levels of transcripts for IL-8, MIP-1alpha, RANTES (regulated upon activation normal T cell expressed and secreted), IL-2, IFN-gamma and TNF-alpha were very much higher than those prior to the recurrence, while relative levels of mRNAs for IL-4 and IL-5 did not increase. Relative levels of transcripts for IL-8, MIP-1alpha, TNF-alpha and IL-2 were lower at the end of each individual DFPP and after the four treatments than at the beginning of treatment. Our observations suggest that cytokines and chemokines produced in mononuclear cells play important roles in the pathogenesis of BP and that regulation of their expression might be involved in the therapeutic effects of DFPP in BP.

  7. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system.

    PubMed

    Lee, Ryan H; Mills, Elizabeth A; Schwartz, Neil; Bell, Mark R; Deeg, Katherine E; Ruthazer, Edward S; Marsh-Armstrong, Nicholas; Aizenman, Carlos D

    2010-01-12

    Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with a number of severe and prevalent neurodevelopmental disorders, including autism spectrum disorder, schizophrenia and Down syndrome. Although several studies have shown that cytokines have potent effects on neural function, their role in neural development is still poorly understood. In this study, we investigated the link between abnormal cytokine levels and neural development using the Xenopus laevis tadpole visual system, a model frequently used to examine the anatomical and functional development of neural circuits. Using a test for a visually guided behavior that requires normal visual system development, we examined the long-term effects of prolonged developmental exposure to three pro-inflammatory cytokines with known neural functions: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha. We found that all cytokines affected the development of normal visually guided behavior. Neuroanatomical imaging of the visual projection showed that none of the cytokines caused any gross abnormalities in the anatomical organization of this projection, suggesting that they may be acting at the level of neuronal microcircuits. We further tested the effects of TNF-alpha on the electrophysiological properties of the retinotectal circuit and found that long-term developmental exposure to TNF-alpha resulted in enhanced spontaneous excitatory synaptic transmission in tectal neurons, increased AMPA/NMDA ratios of retinotectal synapses, and a decrease in the number of immature synapses containing only NMDA receptors, consistent with premature maturation and stabilization of these synapses. Local interconnectivity within the tectum also appeared to remain widespread, as shown by increased recurrent polysynaptic activity, and was similar to what is seen in more immature, less refined tectal circuits. TNF-alpha treatment also enhanced the overall growth of tectal cell

  8. Desialylation of glycoconjugates on the surface of monocytes activates the extracellular signal-related kinases ERK 1/2 and results in enhanced production of specific cytokines.

    PubMed

    Stamatos, Nicholas M; Curreli, Sabrina; Zella, Davide; Cross, Alan S

    2004-02-01

    Modulation of the sialic acid content of cell-surface glycoproteins and glycolipids influences the functional capacity of cells of the immune system. The role of sialidase(s) and the consequent desialylation of cell surface glycoconjugates in the activation of monocytes have not been established. In this study, we show that desialylation of glycoconjugates on the surface of purified monocytes using exogenous neuraminidase (NANase) activated extracellular signal-regulated kinase 1/2 (ERK 1/2), an intermediate in intracellular signaling pathways. Elevated levels of phosphorylated ERK 1/2 were detected in desialylated monocytes after 2 h of NANase treatment, and increased amounts persisted for at least 2 additional hours. Desialylation of cell surface glycoconjugates also led to increased production of interleukin (IL)-6, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta by NANase-treated monocytes that were maintained in culture. Neither increased levels of phosphorylated ERK 1/2 nor enhanced production of cytokines were detected when NANase was heat-inactivated before use, demonstrating the specificity of NANase action. Treatment of monocytes with gram-negative bacterial lipopolysaccharide (LPS) also led to enhanced production of IL-6, MIP-1alpha, and MIP-1beta. The amount of each of these cytokines that was produced was markedly increased when monocytes were desialylated with NANase before exposure to LPS. These results suggest that changes in the sialic acid content of surface glycoconjugates influence the activation of monocytes.

  9. Ca2+ permeability through rat cloned alpha9-containing nicotinic acetylcholine receptors.

    PubMed

    Fucile, Sergio; Sucapane, Antonietta; Eusebi, Fabrizio

    2006-04-01

    We investigated the functional properties of rat alpha9 and alpha9alpha10 nicotinic acetylcholine receptors (nAChRs) expressed by transient transfection in the rat GH4C1 cell line, using both Ca(2+) imaging and whole-cell recording. Acute applications of ACh generated short-delay fast-rising and quick-decaying Ca(2+) transients, suppressed in Ca(2+)-free medium and invariably accompanied by the activation of whole-cell inward currents. The mean amplitude of ACh-induced currents was as small as -16 pA in alpha9 subunit cDNA-transfected GH4C1 cells (alpha9-GH4C1), while they were much larger (range: -150 to -300 pA) in alpha9alpha10 subunit cDNAs-transfected GH4C1 cells (alpha9alpha10-GH4C1). Currents were not activated by nicotine, were blocked by methyllycaconitine and were ACh concentration-dependent. Because the Ca(2+) permeability of alpha9-containing nAChRs has been estimated in immortalized cochlear UB/OC-2 mouse cells, we also characterized the ACh-induced responses in these cells. Unlike alpha9- and alpha9alpha10-GH4C1 cells, UB/OC-2 cells responded to ACh with both long-delay methyllycaconitine-insensitive whole-cell currents and long-lasting Ca(2+) transients, the latter being detected in the absence of Ca(2+) in the extracellular medium and being suppressed by the Ca(2+)-ATPase inhibitor thapsigargin, known to deplete IP(3)-sensitive stores. These results indicated the involvement of muscarinic nAChRs and the lack of functional ACh-gated receptor channels in UB/OC-2 cells. Thus, we measured the fractional Ca(2+) current (P(f), i.e. the percentage of total current carried by Ca(2+) ions) in alpha9alpha10-GH4C1, obtaining a P(f) value of 22 +/- 4%; this is the largest value estimated to date for a ligand-gated receptor channel. The physiological role played by Ca(2+) entry through alpha9-containing nAChRs gated by ACh is discussed.

  10. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    PubMed

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  11. Multiple Inflammatory Cytokines Converge To Regulate CD8+ T Cell Expansion and Function during Tuberculosis.

    PubMed

    Booty, Matthew G; Nunes-Alves, Cláudio; Carpenter, Stephen M; Jayaraman, Pushpa; Behar, Samuel M

    2016-02-15

    The differentiation of effector CD8(+) T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. In this study, we define three signals regulating CD8(+) T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild-type and cytokine receptor knockout CD8(+) T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks postinfection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8(+) T cell expansion in the lungs. We next determined if these cytokines directly promote CD8(+) T cell priming or are required only for expansion in the lungs. Using retrogenic CD8(+) T cells specific for the M. tuberculosis Ag TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8(+) T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have nonredundant roles supporting pulmonary CD8(+) T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8(+) T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8(+) T cell regulation during tuberculosis. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Serial measurement of serum cytokines, cytokine receptors and neopterin in leprosy patients with reversal reactions.

    PubMed

    Faber, W R; Iyer, A M; Fajardo, T T; Dekker, T; Villahermosa, L G; Abalos, R M; Das, P K

    2004-09-01

    Serum levels of cytokines (IL-4, IL-5, IFN-gamma, TNF-alpha), cytokine receptors (TNFR I and II) and one monokine (neopterin) were estimated in seven leprosy patients to establish disease associated markers for reversal reactions (RR). Sera were collected at diagnosis of leprosy, at the onset of reversal reaction and at different time points during and at the end of prednisone treatment of reactions. It was expected that the serum cytokine and monokine profile before and at different time points during reactions would provide guidelines for the diagnosis and monitoring of reversal reactions in leprosy. The cytokines and cytokine receptors were measured by ELISA, whereas a radioimmunoassay was used for neopterin measurement. Six of the seven patients showed increased levels of neopterin either at the onset of RR or 1 month thereafter, and levels declined on prednisone treatment to that seen at the time of diagnosis without reactions. No consistent disease associated cytokine profile was observed in these patients. Interestingly, serum TNF-alpha levels were increased in the same patients even after completion of prednisone treatment, indicating ongoing immune activity. In conclusion, this study demonstrates that despite cytokines levels in leprosy serum being inconsistent in relation to reversal reactions, serum neopterin measurement appears to be an useful biomarker in monitoring RR patients during corticosteroid therapy.

  13. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukasaki, Masayuki; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp; Suzuki, Dai

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- andmore » dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.« less

  14. Inflammation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors.

    PubMed

    Mejías-Luque, R; Lindén, S K; Garrido, M; Tye, H; Najdovska, M; Jenkins, B J; Iglesias, M; Ernst, M; de Bolós, C

    2010-03-25

    Infection of gastric mucosa by Helicobacter pylori induces an inflammatory response with increased levels of proinflammatory cytokines. Among them, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 induce the activation of signaling pathways that regulate genes expression, such as MUC2 and MUC4 intestinal mucins ectopically detected in gastric tumors. This study evaluated if the predominant inflammatory cell type correlates with MUC2 and MUC4 expression in human intestinal gastric tumors (n=78). In addition, we analyzed the regulatory effects of the associated inflammatory signaling pathways on their expression in gastric cancer cell lines, and in a mouse model with hyperactivated STAT3 signaling pathway. Tumors with predominant lymphoplasmocytic infiltrate (chronic inflammation), presented higher levels of MUC2 and were more differentiated than tumors with predominant polymorphonuclear infiltrate (acute inflammation). These differences can be attributed to specific cytokines, because TNF-alpha and IL-1beta induced MUC2 but no MUC4 expression in gastric cancer cell lines. The two groups of tumors expressed similar levels of MUC4 that correlated with the expression of STAT3 transcription factor, implicated in the activation of genes through the IL-6 pathway. In gastric tissues from gp130(+/+), gp130(Y757F/Y757F) and gp130(Y757F/Y757F) Stat3(-/+) mice, Muc2 was not detected, whereas Muc4 was found in the gastric tumors developed in the gp130(Y757F/Y757F) mice, with hyperactivated STAT3. These data indicate that the signaling pathways associated with the inflammatory response can modulate the expression of MUC2 and MUC4 intestinal mucin genes, in human and mouse gastric tumors.

  15. Inflammatory bowel disease: the role of inflammatory cytokine gene polymorphisms.

    PubMed Central

    Balding, Joanna; Livingstone, Wendy J; Conroy, Judith; Mynett-Johnson, Lesley; Weir, Donald G; Mahmud, Nasir; Smith, Owen P

    2004-01-01

    The mechanisms responsible for development of inflammatory bowel disease (IBD) have not been fully elucidated, although the main cause of disease pathology is attributed to up-regulated inflammatory processes. The aim of this study was to investigate frequencies of polymorphisms in genes encoding pro-inflammatory and anti-inflammatory markers in IBD patients and controls. We determined genotypes of patients with IBD (n= 172) and healthy controls (n= 389) for polymorphisms in genes encoding various cytokines (interleukin (IL)-1beta, IL-6, tumour necrosis factor (TNF), IL-10, IL-1 receptor antagonist). Association of these genotypes to disease incidence and pathophysiology was investigated. No strong association was found with occurrence of IBD. Variation was observed between the ulcerative colitis study group and the control population for the TNF-alpha-308 polymorphism (p= 0.0135). There was also variation in the frequency of IL-6-174 and TNF-alpha-308 genotypes in the ulcerative colitis group compared with the Crohn's disease group (p= 0.01). We concluded that polymorphisms in inflammatory genes are associated with variations in IBD phenotype and disease susceptibility. Whether the polymorphisms are directly involved in regulating cytokine production, and consequently pathophysiology of IBD, or serve merely as markers in linkage disequilibrium with susceptibility genes remains unclear. PMID:15223609

  16. Macrophage Pro-Inflammatory Response to Francisella novicida Infection Is Regulated by SHIP

    PubMed Central

    Parsa, Kishore V. L; Ganesan, Latha P; Rajaram, Murugesan V. S; Gavrilin, Mikhail A; Balagopal, Ashwin; Mohapatra, Nrusingh P; Wewers, Mark D; Schlesinger, Larry S; Gunn, John S; Tridandapani, Susheela

    2006-01-01

    Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL)-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP) is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida–induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida–induced cytokine production through the inhibition of NFκB. Consistently, macrophages lacking SHIP displayed enhanced NFκB-driven gene transcription, whereas overexpression of SHIP led to decreased NFκB activation. Thus, we propose that SHIP negatively regulates F. novicida–induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFκB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia. PMID:16848641

  17. Effects of medicinal cake-separated moxibustion on plasma 6-keto-PGF1alpha and TXB2 contents in the rabbit of hyperlipemia.

    PubMed

    Xiaorong, Chang; Jie, Yan; Zenghui, Yue; Jing, Shen; Yaping, Lin; Shouxiang, Yi; Xiangping, Cao

    2005-06-01

    Hyperlipemia rabbit models established with high cholesterol and fat diet were treated with direct moxibustion and medicinal cake-separated moxibustion. The post-treatment plasma 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha) and thromboxane B2 (TXB2) contents were determined by radioimmunoassay. Results indicated that the plasma 6-keto-PGF1alpha content significantly increased, the TXB2 level decreased (P < 0.05) and the TXB2 /6-keto-PGF1alpha ratio also decreased (P < 0.01) in the medicinal cake-separated moxibustion group as compared with those in the model group respectively, but there was no significant difference between the medicinal cake-separated moxibustion group and the direct moxibustion group (P > 0.05), suggesting that both the medicinal cake-separated moxibustion and direct moxibustion can regulate the plasma 6-keto-PGF1alpha and TXB2 contents, and the TXB2/6-keto-PGF1alpha ratio with similar actions, and have a certain protective action on endothelial cells of the aorta in the rabbit of hyperlipemia.

  18. Membrane remodeling, an early event in benzo[alpha]pyrene-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence

    2010-02-15

    Benzo[alpha]pyrene (B[alpha]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[alpha]P-induced apoptotic process. In this study, we report that B[alpha]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[alpha]P exposure. B[alpha]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[alpha]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[alpha]P-related H{submore » 2}O{sub 2} formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[alpha]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[alpha]P altered the composition of plasma membrane microstructures through AhR and H{sub 2}O{sub 2} dependent-regulation of lipid biosynthesis. In F258 cells, the B[alpha]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.« less

  19. AMPKα2 regulates expression of estrogen-related receptor alpha, a metabolic transcription factor related to heart failure development

    PubMed Central

    Hu, Xinli; Xu, Xin; Lu, Zhongbing; Zhang, Ping; Fassett, John; Zhang, Ying; Xin, Yi; Hall, Jennifer L.; Viollet, Benoit; Bache, Robert J.; Huang, Yimin; Chen, Yingjie

    2011-01-01

    The normal expression of myocardial mitochondrial enzymes is essential to maintain the cardiac energy reserve and facilitate responses to stress, but the molecular mechanisms to maintain myocardial mitochondrial enzyme expression have been elusive. Here we report that congestive heart failure is associated with a significant decrease of myocardial Estrogen-Related Receptor alpha (ERRα), but not PPAR gamma coactivator-1 alpha (PGC1α), in human heart failure samples. In addition, chronic pressure overload in mice caused a decrease of ERRα expression that was significantly correlated to the degree of LV dysfunction, pulmonary congestion and decreases of a group of myocardial energy metabolism related genes. We found that the metabolic sensor AMP activated protein kinase (AMPK) regulates ERRα expression in vivo and in vitro. AMPKα2 KO decreased myocardial ERRα (both mRNA and protein) and its downstream targets under basal conditions, with no change in myocardial PGC1α expression. Using cultured rat neonatal cardiac myocytes, we found that overexpression of constitutively active AMPKα significantly induced ERRα mRNA, protein and promoter activity. Conversely, selective gene silencing of AMPKα2 repressed ERRα and its target gene levels, indicating that AMPKα2 is involved in the regulation of ERRα expression. In addition, over-expression of ERRα in AMPKα2 KO neonatal cardiac myocytes partially rescued the repressed expression of some energy metabolism related genes. These data support an important role for AMPKα2 in regulating the expression of myocardial ERRα and its downstream mitochondrial enzymes. PMID:21825219

  20. Mutations affecting two adjacent amino acid residues in the alpha subunit of RNA polymerase block transcriptional activation by the bacteriophage P2 Ogr protein.

    PubMed Central

    Ayers, D J; Sunshine, M G; Six, E W; Christie, G E

    1994-01-01

    The bacteriophage P2 ogr gene product is a positive regulator of transcription from P2 late promoters. The ogr gene was originally defined by compensatory mutations that overcame the block to P2 growth imposed by a host mutation, rpoA109, in the gene encoding the alpha subunit of RNA polymerase. DNA sequence analysis has confirmed that this mutation affects the C-terminal region of the alpha subunit, changing a leucine residue at position 290 to a histidine (rpoAL290H). We have employed a reporter plasmid system to screen other, previously described, rpoA mutants for effects on activation of a P2 late promoter and have identified a second allele, rpoA155, that blocks P2 late transcription. This mutation lies just upstream of rpoAL290H, changing the leucine residue at position 289 to a phenylalanine (rpoAL289F). The effect of the rpoAL289F mutation is not suppressed by the rpoAL290H-compensatory P2 ogr mutation. P2 ogr mutants that overcome the block imposed by rpoAL289F were isolated and characterized. Our results are consistent with a direct interaction between Ogr and the alpha subunit of RNA polymerase and support a model in which transcription factor contact sites within the C terminus of alpha are discrete and tightly clustered. PMID:8002564

  1. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    PubMed Central

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  2. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    PubMed

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  3. The Ron Receptor Regulates Kupffer Cell-Dependent Cytokine Production and Hepatocyte Survival Following Endotoxin Exposure in Mice

    PubMed Central

    Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.

    2011-01-01

    Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175

  4. Implications of oxidative stress and hepatic cytokine (TNF-{alpha} and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Subhankar; Santra, Amal; Lahiri, Sarbari

    2005-04-01

    Introduction: Noncirrhotic portal fibrosis has been reported to occur in humans due to prolonged intake of arsenic contaminated water. Further, oxystress and hepatic fibrosis have been demonstrated by us in chronic arsenic induced hepatic damage in murine model. Cytokines like tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin 6 (IL-6) are suspected to play a role in hepatic collagenesis. The present study has been carried out to find out whether increased oxystress and cytokine response are associated with increased accumulation of collagen in the liver due to prolonged arsenic exposure and these follow a dose-response relationship. Methods: Male BALB/c mice weremore » given orally 200 {mu}l of water containing arsenic in a dose of 50, 100, and 150 {mu}g/mouse/day for 6 days a week (experimental group) or arsenic-free water (<0.01 {mu}g/l, control group) for 3, 6, 9 and 12 months. Hepatic glutathione (GSH), protein sulfhydryl (PSH), glutathione peroxidase (GPx), Catalase, lipid peroxidation (LPx), protein carbonyl (PC), interleukin (IL-6), tumor necrosis factor (TNF-{alpha}), arsenic and collagen content in the liver were estimated from sacrificed animals. Results: Significant increase of lipid peroxidation and protein oxidation in the liver associated with depletion of hepatic thiols (GSH, PSH), and antioxidant enzymes (GPx, Catalase) occurred in mice due to prolonged arsenic exposure in a dose-dependent manner. Significant elevation of hepatic collagen occurred at 9 and 12 months in all the groups associated with significant elevation of TNF-{alpha} and IL-6. However, arsenic level in the liver increased progressively from 3 months onwards. There was a positive correlation between the hepatic arsenic level and collagen content (r = 0.8007), LPx (r = 0.779) and IL-6 (r = 0.7801). Further, there was a significant negative correlation between GSH and TNF-{alpha} (r = -0.5336)) and LPx (r = -0.644). Conclusion: Increasing dose and duration of arsenic

  5. RIP2: A novel player in the regulation of keratinocyte proliferation and cutaneous wound repair?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Stephanie; Valchanova, Ralitsa S.; Munz, Barbara, E-mail: barbara.munz@charite.de

    2010-03-10

    We could recently demonstrate an important role of receptor interacting protein 4 (RIP4) in the regulation of keratinocyte differentiation. Now, we analyzed a potential role of the RIP4 homolog RIP2 in keratinocytes. Specifically, we demonstrate here that rip2 expression is induced by scratch-wounding and after the induction of differentiation in these cells. Furthermore, serum growth factors and cytokines can induce rip2, with TNF-{alpha}-dependent induction being dependent on p38 MAPK. In addition, we demonstrate that scratch-induced upregulation of rip2 expression is completely blocked by the steroid dexamethasone. Since we also show that RIP2 is an important player in the regulation ofmore » keratinocyte proliferation, these data suggest that inhibition of rip2 upregulation after wounding might contribute to the reduced and delayed wound re-epithelialization phenotype seen in glucocorticoid-treated patients.« less

  6. [Induced abortion using prostaglandin E2 and F2alpha gel].

    PubMed

    Lippert, T H; Modly, T

    1974-01-01

    In this study of 20 patients in the 13th-17th week of pregnancy abortion was induced with intrauterine, extraamniotic application of prostaglandins (PG) E2 or F2 in gel form. The gel composition was as follows: 4% tylose MH 300, 2% glycerine, 1% chlorhexidine digluconate, 83% sterile distilled water and 10% PG stock solution. Both PGE2 and PGF2 gels were used. Final concentration was 2.5 mg E2 or 2.5 mg F2 per g of gel. Gel was applied via transcervical, extraamniotic polyethylene catheter every 2-3 hours. Results: PGE2-gel was used in 14 cases. After 3-4 applications both fetus and placenta were expelled. Average dose used was 4.6 mg E2/patient. First contractions started in 30 minutes; induction to expulsion time was 11 hours 35 minutes. F2-gel given to 6 patients resulted in expulsion of the fetus in all cases but placenta needed removal by curettage in 4 patients. Average dose per patient was 17.7 mg of F2; first contractions in 30 minutes, average expulsion time 17 hours 38 minutes. With both PGs there were painful contractions which were controlled with a combination of pentazocine and Valium. PGE2 caused vomiting in 5 patients. No increased bleeding or postabortion infection occurred. Follow-up curettage was done in all patients to ensure removal of all tissues. Overall evaluation of the PG-gels was considered good. PG stability in gel form is good; during 8 months of preservation in sterile aluminum tubes at -25 degrees Celsius no decline in clinical effectiveness was noted. The gel application is less expensive than the slow-injection pump method.

  7. Hypothesis: Normalisation of cytokine dysbalance explains the favourable effects of strict glucose regulation in the critically ill.

    PubMed

    Pickkers, P; Hoedemaekers, A; Netea, M G; de Galan, B E; Smits, P; van der Hoeven, J G; van Deuren, M

    2004-05-01

    Recent trials investigating the effects of strict glucose regulation in critically ill patients have shown impressive reductions in morbidity and mortality. Although the literature focuses on the possible toxic effects of high blood glucose levels, the underlying mechanism for this improvement is unclear. We hypothesise that strict glucose regulation results in modulation of cytokine production, leading to a shift towards a more anti-inflammatory pattern. This shift in the cytokine balance accounts for the reduction in morbidity and mortality. To support our hypothesis, effects of glucose and insulin on cytokine release and effects of glucose, insulin, and cytokines on host defence, cardiac function and coagulation will be reviewed.

  8. Distinct expression pattern of IFN-alpha and TNF-alpha in juvenile idiopathic arthritis synovial tissue.

    PubMed

    Gattorno, M; Chicha, L; Gregorio, A; Ferlito, F; Rossi, F; Jarrossay, D; Lanzavecchia, A; Martini, A; Manz, M G

    2007-04-01

    Recent laboratory and clinical data suggest that two prototype autoimmune diseases, systemic lupus erythematosus and rheumatoid arthritis are mainly driven by distinct cytokines, interferon (IFN)-alpha and tumour necrosis factor (TNF)-alpha, respectively. We here investigated the presence and characteristics of natural type I IFN-producing cells (IPCs), as well as IFN-alpha and TNF-alpha expression at sites of inflammation in juvenile idiopathic arthritis (JIA). Peripheral blood (PB) and synovial fluid (SF) mononuclear cells (MNCs) (n = 25 each) from JIA patients with active disease were studied. IPCs were identified as BCDA-2(+)CD123(+)HLA-DR(+)CD45RA(+) cells, and dendritic cells (DCs) as CD11c(+)CD14(-/low)lin(-) cells by flow cytometry. IPCs and DCs were analysed for Toll-like receptor-7 and -9 mRNA expression by real-time polymerase chain reaction. IFN-alpha was measured by enzyme-linked immunosorbent assay in serum, SF and in supernatants of influenza virus-infected, cultured IPCs. Synovial tissues of n = 6 additional JIA patients were analysed by immunohistochemistry using mAbs against CD123, IFN-alpha, TNF-alpha, CD3, CD19 and CD138. IPCs were enriched in SF MNCs compared with PB MNCs in all JIA patients. Influenza-induced, but no spontaneous IFN-alpha release was detected from SF IPCs, and serum and SF IFN-alpha levels were not elevated. Nonetheless, in synovial tissue IFN-alpha producing cells accumulated at inflammatory lymph-follicular-like structures, while TNF-alpha producing cells were mostly found at the lining and sublining layers. These data suggest that besides TNF-alpha-expressing cells, IFN-alpha-producing IPCs are involved in initiation, maintenance or regulation of the inflammatory response in JIA.

  9. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    PubMed

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  10. Cytokine/Antibody complexes: an emerging class of immunostimulants.

    PubMed

    Mostböck, Sven

    2009-01-01

    In recent years, complexes formed from a cytokine and antibodies against that respective cytokine (cytokine/Ab complex) have been shown to induce remarkable powerful changes in the immune system. Strong interest exists especially for complexes formed with Interleukin (IL)-2 and anti-IL-2-antibody (IL-2/Ab complex). IL-2/Ab complex activates maturation and proliferation in CD8(+) T cells and natural killer (NK) cells to a much higher degree than conventional IL-2 therapy. In addition, IL-2/Ab complex does not stimulate regulatory T cells as much as IL-2 alone. This suggests the possibility to replace the conventional IL-2 therapy with a therapy using low-dose IL-2/Ab complex. Further synthetic cytokine/Ab complexes are studied currently, including IL-3/Ab complex for its effects on the mast cell population, and IL-4/Ab complex and IL-7/Ab complex for inducing B and T cell expansion and maturation. Cytokine complexes can also be made from a cytokine and its soluble receptor. Pre-association of IL-15 with soluble IL-15 receptor alpha produces a complex with strong agonistic functions that lead to an expansion of CD8(+) T cells and NK cells. However, cytokine/Ab complexes also occur naturally in humans. A multitude of auto-antibodies to cytokines are found in human sera, and many of these auto-antibodies build cytokine/Ab complexes. This review presents naturally occurring auto-antibodies to cytokines and cytokine/Ab complexes in health and disease. It further summarizes recent research on synthetic cytokine/Ab complexes with a focus on the basic mechanisms behind the function of cytokine/Ab complexes.

  11. Mechanisms of stimulation of interleukin-1 beta and tumor necrosis factor-alpha by Mycobacterium tuberculosis components.

    PubMed Central

    Zhang, Y; Doerfler, M; Lee, T C; Guillemin, B; Rom, W N

    1993-01-01

    The granulomatous immune response in tuberculosis is characterized by delayed hypersensitivity and is mediated by various cytokines released by the stimulated mononuclear phagocytes, including tumor necrosis factor-alpha (TNF alpha) and IL-1 beta. We have demonstrated that Mycobacterium tuberculosis cell wall component lipoarabinomannan (LAM), mycobacterial heat shock protein-65 kD, and M. tuberculosis culture filtrate, devoid of LPS as assessed by the Amebocyte Lysate assay, stimulate the production of TNF alpha and IL-1 beta proteins and mRNA from mononuclear phagocytes (THP-1 cells). The effect of LAM on the release of these cytokines was specific, as only LAM stimulation was inhibited by anti-LAM monoclonal antibody. Interestingly, we found that LAM and Gram-negative bacterial cell wall-associated endotoxin LPS may share a similar mechanism in their stimulatory action as demonstrated by inhibition of TNF alpha and IL-1 beta release by monoclonal antibodies to CD14. Anti-CD14 monoclonal antibody MY4 inhibited both TNF alpha and IL-1 beta release with LAM and LPS but no effect was observed with other mycobacterial proteins. An isotype antibody control did not inhibit release of cytokines under the same experimental conditions. M. tuberculosis and its components upregulated IL-1 beta and TNF alpha mRNAs in THP-1 cells. Nuclear run-on assay for IL-1 beta demonstrated that LAM increased the transcription rate. The induction of IL-1 beta was regulated at the transcriptional level, in which these stimuli acted through cis-acting element(s) on the 5' flanking region of the IL-1 beta genomic DNA. M. tuberculosis cell wall component LAM acts similarly to LPS in activating mononuclear phagocyte cytokine TNF alpha and IL-1 beta release through CD14 and synthesis at the transcriptional level; both cytokines are key participants in the host immune response to tuberculosis. Images PMID:7683696

  12. Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin.

    PubMed

    Rahman, Md Mostafizur; Rumzhum, Nowshin N; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2015-05-18

    PP2A is a master controller of multiple inflammatory signaling pathways. It is a target in asthma; however the molecular mechanisms by which PP2A controls inflammation warrant further investigation. In A549 lung epithelial cells in vitro we show that inhibition of basal PP2A activity by okadaic acid (OA) releases restraint on MAPKs and thereby increases MAPK-mediated pro-asthmatic cytokines, including IL-6 and IL-8. Notably, PP2A inhibition also impacts on the anti-inflammatory protein - tristetraprolin (TTP), a destabilizing RNA binding protein regulated at multiple levels by p38 MAPK. Although PP2A inhibition increases TTP mRNA expression, resultant TTP protein builds up in the hyperphosphorylated inactive form. Thus, when PP2A activity is repressed, pro-inflammatory cytokines increase and anti-inflammatory proteins are rendered inactive. Importantly, these effects can be reversed by the PP2A activators FTY720 and AAL(s), or more specifically by overexpression of the PP2A catalytic subunit (PP2A-C). Moreover, PP2A plays an important role in cytokine expression in cells stimulated with TNFα; as inhibition of PP2A with OA or PP2A-C siRNA results in significant increases in cytokine production. Collectively, these data reveal the molecular mechanisms of PP2A regulation and highlight the potential of boosting the power of endogenous phosphatases as novel anti-inflammatory strategies to combat asthmatic inflammation.

  13. Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins.

    PubMed

    Patwari, Parth; Chutkow, William A; Cummings, Kiersten; Verstraeten, Valerie L R M; Lammerding, Jan; Schreiter, Eric R; Lee, Richard T

    2009-09-11

    Thioredoxin-interacting protein (Txnip), originally characterized as an inhibitor of thioredoxin, is now known to be a critical regulator of glucose metabolism in vivo. Txnip is a member of the alpha-arrestin protein family; the alpha-arrestins are related to the classical beta-arrestins and visual arrestins. Txnip is the only alpha-arrestin known to bind thioredoxin, and it is not known whether the metabolic effects of Txnip are related to its ability to bind thioredoxin or related to conserved alpha-arrestin function. Here we show that wild type Txnip and Txnip C247S, a Txnip mutant that does not bind thioredoxin in vitro, both inhibit glucose uptake in mature adipocytes and in primary skin fibroblasts. Furthermore, we show that Txnip C247S does not bind thioredoxin in cells, using thiol alkylation to trap the Txnip-thioredoxin complex. Because Txnip function was independent of thioredoxin binding, we tested whether inhibition of glucose uptake was conserved in the related alpha-arrestins Arrdc4 and Arrdc3. Both Txnip and Arrdc4 inhibited glucose uptake and lactate output, while Arrdc3 had no effect. Structure-function analysis indicated that Txnip and Arrdc4 inhibit glucose uptake independent of the C-terminal WW-domain binding motifs, recently identified as important in yeast alpha-arrestins. Instead, regulation of glucose uptake was intrinsic to the arrestin domains themselves. These data demonstrate that Txnip regulates cellular metabolism independent of its binding to thioredoxin and reveal the arrestin domains as crucial structural elements in metabolic functions of alpha-arrestin proteins.

  14. Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations.

    PubMed

    de Munck, J C; Gonçalves, S I; Mammoliti, R; Heethaar, R M; Lopes da Silva, F H

    2009-08-01

    In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.

  15. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease.

    PubMed

    Piper, Desiree A; Sastre, Danuta; Schüle, Birgitt

    2018-01-01

    Alpha-synuclein ( non A4 component of amyloid precursor, SNCA, NM_000345.3 ) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.

  16. Prostaglandin F2 alpha and its analogs induce release of endogenous prostaglandins in iris and ciliary muscles isolated from cat and other mammalian species.

    PubMed

    Yousufzai, S Y; Ye, Z; Abdel-Latif, A A

    1996-09-01

    Prostaglandin F2 alpha (PGF 2 alpha) and its analog latanoprost are effective in lowering intraocular pressure (IOP) in both animal and human subjects. There is mounting experimental evidence now which indicates that the IOP-lowering effect of these PGs occurs through an increased uveoscleral outflow of aqueous humor. The ciliary muscle constitutes the main resistance in this pathway. Work from several laboratories, including our own, has shown that in this smooth muscle PGF 2 alpha has little effect on cAMP accumulation or on Ca2+ mobilization. In the present study, we hypothesized that some of the effects of PGF2 alpha and its analogs may be mediated through the release of endogenous PGs. The purpose of this work was to determine whether or not PGF2 alpha and its analogs can enhance the release of endogenous PGs in iris and ciliary muscles isolated from different species. This report documents for the first time that exogenous PGF2 alpha and its analogs, PhXA85 and latanoprost, stimulate the formation of PGE2, PGD2 and PGF2 alpha in iris and ciliary muscles isolated from cat, bovine, rabbit, dog, rhesus monkey and human. PG-induced PG release was demonstrated by means of both radioimmunoassay and radiochromatography. Kinetic studies on cat iris revealed that PGF2 alpha-induced PGE2 release is time (t 1/2 = 1.7 min) and dose-dependent (EC50 = 45 nM). The increase in PGE2 release was blocked by indomethacin (Indo) and by dexamethasone in a dose-dependent manner with IC50 s of 9.2 nM and 2.6 microM, respectively. Furthermore, dexamethasone inhibited arachidonic acid (AA) release, suggesting the involvement of phospholipase A2 in PGF2 alpha-induced PG release. The data presented demonstrate that PGF2 alpha and its analogs interact with the PG receptor to stimulate phospholipase A2 and release AA for PG synthesis. Relaxation of ciliary muscle by PGF2 alpha and its analogs, via release of endogenous PGE2, a potent activator of the adenylate cyclase system, could in

  17. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2.

    PubMed

    Kim, K H; Lee, Y S; Jung, I S; Park, S Y; Chung, H Y; Lee, I R; Yun, Y S

    1998-03-01

    We previously reported that an acidic polysaccharide from Panax ginseng named ginsan inhibits the incidence of benzo[a]pyrene-induced autochthonous lung tumors in mice. To elucidate the mechanism of antineoplastic activity, ginsan was tested for its ability to generate LAK cells and to produce cytokines. Spleen cells became cytotoxic to a wide range of tumor cells after 5 days of culture with ginsan in a non-major histocompatibility restricted manner and the activity of ginsan was 12 times higher than that of lentinan. The generation of killer cells by rIL-2 was neutralized only in the presence of anti-IL-2, whereas by ginsan it was neutralized in the presence of anti-IL-2 as well as anti-IFN gamma, or anti-IL-1 alpha. It was confirmed that ginsan induces the expression of mRNA for IL-2, IFN gamma, IL-1 alpha, and GM-CSF. Depletion of AsGM1+ cells from spleen cells reduced the generation of LAK by rIL-2. In contrast, depletion of AsGM1+ as well as Thy1+ cells, CD4+ cells, or DC8+ cells reduced the generation of LAK cells by ginsan. The serologic phenotype of rIL-2 induced LAK cells was CD8- cells, whereas the ginsan induced LAK cells, were CD8+ cells. Ginsan synergized with rIL-2 to generate LAK cells (2.0-15 fold) and the most dramatic synergy was seen at rIL-2 concentrations below 3 U/ml. Ginsan alone inhibited pulmonary metastasis of B16-F10 melanoma cells and enhanced the inhibition of lung colonies by rIL-2. These findings demonstrate that ginsan generates LAK cells from both NK and T cells through endogeneously produced multiple cytokines. This property may contribute to its effectiveness in the immunoprevention and immunotherapy of cancer.

  18. Cyclo(dehydroala-L-Leu), an alpha-glucosidase inhibitor from Penicillium sp. F70614.

    PubMed

    Kwon, O S; Park, S H; Yun, B S; Pyun, Y R; Kim, C J

    2000-09-01

    A diketopiperazine (1) has been isolated from the culture broth of Penicillium sp. F70614 and its structure has been determined to be cyclo(dehydroala-L-Leu) by various spectroscopic analyses. This compound selectively inhibited yeast alpha-glucosidase and porcine intestinal alpha-glucosidase with IC50 values of 35 and 50 microg/ml, respectively. However, it did not show significant inhibitory effects against almond beta3-glucosidase, Aspergillus alpha-galactosidase, Escherichia coli beta-galactosidase and jack bean alpha-mannosidase.

  19. Common gamma chain cytokines: dissidence in the details.

    PubMed

    Alves, Nuno L; Arosa, Fernando A; van Lier, René A W

    2007-02-15

    Cytokines of the common cytokine-receptor gamma-chain (gamma(c)) family are essential for the development and maintenance of lymphocytes. Herein, we will focus on the roles of interleukin-2 (IL-2), IL-7, IL-15 and IL-21, in the orchestration of CD8 T cell responses. Among these cytokines, IL-7 has emerged as a master regulator of survival of immature and mature T lymphocytes, while IL-2, IL-15 and IL-21 appear to have specific functions in T cell homeostasis and differentiation. Hence, the gamma(c) has evolved as an elegant anchor through which related cytokines regulate distinct biological responses in T cells.

  20. Reproductive performance of ewes after 5-day treatment with intravaginal inserts containing progesterone in combination with injection of prostaglandin f2alpha.

    PubMed

    Dixon, A B; Knights, M; Pate, J L; Lewis, P E; Inskeep, E K

    2006-04-01

    Three experiments were conducted with a total of 1579 ewes to examine reproductive performance in response to synchronization of oestrus during the breeding season, using controlled internal drug releasing (CIDR-G) inserts in regimens designed to provide high concentrations of circulating progesterone. In experiment 1, treatment with two CIDR-G inserts for 12 days produced conception rate (79%) and prolificacy (1.9) to first service equivalent to breeding at natural oestrus (56% and 2.0, respectively). Pregnancy rates to two service periods were 90 and 79%, respectively. In experiments 2 and 3, progesterone was delivered by a single CIDR-G insert for 5 days in combination with prostaglandin F2alpha (PGF2alpha; 5 mg i.m., twice, 3 h apart) the day before (experiment 2), or at insert removal (experiment 3). The combined treatments improved rates of synchronization of oestrus (p<0.01) by 23 and 20% points, respectively, and pregnancy rates to the first service period by 19 (p<0.05) and 13 (p<0.01) percentage points, respectively, compared to treatment with PGF2alpha alone. It is concluded that the combination of treatment for 5 days with a CIDR-G insert and two injections of 5 mg PGF2alpha, the day before, or the day of insert removal, were effective treatments to obtain high fertility at synchronized oestrus in ewes during the breeding season.

  1. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol hasmore » anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.« less

  2. EBP1 is a novel E2F target gene regulated by transforming growth factor-β.

    PubMed

    Judah, David; Chang, Wing Y; Dagnino, Lina

    2010-11-10

    Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.

  3. [Changes of the immune cells, cytokines and growth hormone in teenager drug addicts].

    PubMed

    Kuang, Ying-min; Zhu, Yue-chun; Kuang, Ying; Sun, Yuan; Hua, Chen; He, Wen-yi

    2007-09-01

    To investigate the effect of heroin on the immune function, growth and development in the teenager heroin addicts by measuring their T-lymphocyte subsets, Th1/Th2 cytokines and serum growth hormone. Tlymphocyte subsets of peripheral blood from the teenager heroin addicts were measured by direct microvolume whole blood immunofluorescent staining technique by flow cytometer (FCM). Thl / Th2 cytokines were measured by BD cytometric bead array and serum growth hormone was assayed using the chemiluminescence method in the 20 teenager heroin addicts and 23 healthy teenagers. The levels of CD3(+), CD3(+) + CD4(+), CD3(+) + CD4(+)/CD3(+)+ CD8(+), Th1 cytokines(IL-2, TNF-alpha and IFN-gamma) and Th2 cytokines(IL-4 and IL-10) reduced significantly in the teenager heroin addicts compared with the healthy control group (P < 0.01 or P < 0.05). The level of Th1 cytokines(IL-2 + TNF-alpha+IFN-gamma) decreased more than that of Th2 cytokines(IL-4 + IL-5 + IL-10)(P < 0.05). The level of serum growth hormone from the teenager heroin addicts was remarkably higher than that in control group (P<0.01). Heroin can inhibit the immunofunction especially the celluar immunity of the teenager heroin addicts. Besides, it can increase the level of serum growth hormone of the teenager heroin addicts.

  4. Expression of alpha-AR subtypes in T lymphocytes and role of the alpha-ARs in mediating modulation of T cell function.

    PubMed

    Bao, Jing-Yin; Huang, Yan; Wang, Feng; Peng, Yu-Ping; Qiu, Yi-Hua

    2007-01-01

    Previous work in our laboratory has shown that alpha-adrenoreceptors (alpha-ARs) and beta-ARs exist on lymphocytes from functional profile, and that the receptors mediate the regulation of lymphocyte function by catecholamines. In the present study, we directly examined the expression of alpha-AR subtypes, alpha(1)-AR and alpha(2)-AR mRNAs, in T lymphocytes and explored the roles of the alpha-AR subtypes and intracellular signal transduction mechanisms linked to the receptors in mediating the modulation of T lymphocyte function. T lymphocytes from mesenteric lymph nodes of rats were purified by using a nylon wool column. Reverse transcription polymerase chain reaction was used to detect the expression of alpha(1)-AR and alpha(2)-AR mRNAs in the freshly isolated T cells and the mitogen concanavalin A (Con A)-activated lymphocytes. Colorimetric methylthiazoletetrazolium assay was employed to measure lymphocyte proliferation induced by Con A. Interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) levels in the Con A-stimulated lymphocyte culture supernatants were examined by enzyme-linked immunosorbent assay. T cells expressed both alpha(1)-AR and alpha(2)-AR mRNAs. The expression of both alpha(1)-AR and alpha(2)-AR mRNAs was significantly higher in the Con A-activated lymphocytes than in the resting lymphocytes. Phenylephrine, a selective alpha(1)-AR agonist, had no evident effect on lymphocyte proliferation nor on IFN-gamma and IL-4 production induced by Con A. However, the selective alpha(2)-AR agonist clonidine attenuated Con A-induced lymphocyte proliferation as well as IFN-gamma and IL-4 production. The inhibited lymphocyte proliferation and IFN-gamma and IL-4 production by clonidine were blocked by yohimbine, an alpha(2)-AR antagonist. Either phospholipase C inhibitor U-73122 or protein kinase C inhibitor chelerythrine partially prevented the suppressive effect of clonidine on Con A-stimulated lymphocyte proliferation and IL-4 production. T lymphocytes express

  5. Regulation of 1-alpha, 25-dihydroxyvitamin D3 on interleukin-6 and interleukin-8 induced by sulfur mustard (HD) on human skin cells.

    PubMed

    Arroyo, Carmen M; Kan, Robert K; Burman, Damon L; Kahler, David W; Nelson, Marian R; Corun, Charlene M; Guzman, Juanita J; Broomfield, Clarence A

    2003-05-01

    The regulatory effects of the active form of vitamin D, 1-alpha, 25-dihydroxyvitamin D3 (1-alpha, 25 (OH)2D3) were assessed on the cytokine and chemokine secretion induced by sulfur mustard on human skin fibroblasts and human epidermal keratinocytes. Stimulation of human skin fibroblasts with sulfur mustard (10(-4) M for 24 hr at 37 degrees ) resulted in approximately a 5 times increase in the secretion of interleukin-6 and over a 10 times increase for interleukin-8, which was inhibited by 1-alpha, 25 (OH)2D3, at alpha, 25 (OH)2D3 also suppressed interleukin-8 secretion by 5 times and interleukin-6 by 4 times on sulfur mustard-stimulated human epidermal keratinocytes at concentrations alpha, 25 (OH)2D3 was dose-dependent for the suppression of interleukin-6 and interleukin-8 induced by sulfur mustard on human skin fibroblasts/human epidermal keratinocytes, apparent at nanomolar concentrations. Our results indicate that the suppression of these inflammatory mediators by 1-alpha, 25 (OH)2D3 is dependent on the source of the primary cultures, cell densities, and kinetics of pretreatments. In contrast to the inhibition of cytokine/chemokine production, cell proliferation was enhanced by almost 1.7 times on treated human epidermal keratinocytes with 1-alpha, 25 (OH)2D3 (1 x 10(-9) M) after sulfur mustard-stimulation (10(-4) M for 24 hr at 37 degrees C). The observed enhancement diversified based on cell density, and kinetics of pretreatment with a maximal synergism (s) observed at 1 x 10(-9) M. Photomicrographs show typical signs of cellular degeneration caused by sulfur mustard such as chromatin condensation. The observed cellular degeneration was lessened when human epidermal keratinocytes were treated with 1-alpha, 25 (OH)2D3 (2 x 10(-9) M). 1-alpha, 25(OH)2D3 could be an alternative treatment for cutaneous inflammation disorders caused by sulfur mustard because we have demonstrated its ability to suppress inflammatory

  6. Anesthesiologists at work: an increase in pro-inflammatory and Th2 cytokine production, and alterations in proliferative immune responses.

    PubMed

    Beilin, B; Greenfeld, K; Abiri, N; Yardeni, I Z; Bessler, H; Ben-Eliyahu, S

    2006-11-01

    Anesthesiologists are a population at high risk of alcohol and drug abuse, depression, suicide, and psychiatric hospitalization. The impact of their working milieu on specific immune indices has scarcely been studied, and it is assumed that immune perturbations may contribute to some of the above risks. This study took advantage of an unplanned, 3-month long strike of anesthesiologists, and explored its relations to specific immune measures. We assessed induced cytokine production and lymphocytes proliferative responses in blood samples taken from 10 anesthesiologists just before the strike and at its end, after a long period of markedly reduced workload. The results indicated that the proliferative responses to phytohemagglutinin (PHA) and concanavalin A (Con A) were significantly lower at the end of the strike. At this time point, we observed a significant decrease in the production of interleukin-6 (IL-6), IL-10 and IL1ra levels, and a significant increase in IL-2 production. A strong trend towards a decline in tumor necrosis factor-alpha (TNF-alpha) levels was evident, while levels of IL-1beta were unchanged. These findings suggest that the working conditions of anesthesiologists are associated with specific immune alterations, including a shift towards a Th2 cytokines' dominance, and an elevated pro-inflammatory cytokine response. A reduced Th1 profile has been related to increased susceptibility to infections, and high pro-inflammatory cytokine levels were recently proposed as etiological factors in cardiovascular diseases and in depression.

  7. Anti-alpha interferon immunization: safety and immunogenicity in asymptomatic HIV positive patients at high risk of disease progression.

    PubMed

    Gringeri, A; Santagostino, E; Mannucci, P M; Siracusano, L; Marinoni, A; Criscuolo, M; Carcagno, M; Fall, L S; M'Bika, J P; Bizzini, B

    1995-05-01

    A randomized, placebo-controlled trial was designed to evaluate safety and immunogenicity of an anti-cytokine vaccine in high risk HIV-positive patients. This strategy was aimed to modulate the impaired cytokine regulation in AIDS. Twelve asymptomatic patients on antiretroviral therapy for at least 1 year and with CD4 cell counts between 100-300/mm3 were randomized to receive adjuvanted formol-inactivated interferon alpha-2a (IFN alpha) and continue the current antiretroviral treatment, whatever it was, or to receive the adjuvant alone and the current antiretroviral treatment. All patients received 4 i.m. injections monthly, followed by booster injections every 3 months. Clinical status, immunology and virology were monitored. Immune response to vaccination was evaluated in term of antibody detection (ELISA) and serum anti-IFN alpha neutralizing capacity. Only local discomfort and transient fever were reported. All vaccines except one showed increased levels of anti-IFN alpha Abs and developed serum IFN alpha neutralizing capacity. Viral load did not increase in vaccinees while it remained unchanged or even increased in placebo-treated patients. None of them showed HIV-related symptoms and all had their CD4 cell counts stabilized over 18 months, whereas 2 placebo-treated patients developed full-blow AIDS. In conclusion, anti-IFN alpha vaccine was safe and immunogenic. Stable clinical and immunological status over 18 months was observed in vaccinees coupled to increased serum IFN alpha neutralizing capacity.

  8. Modulation of Mycoplasma arthritidis-derived superantigen-induced cytokine gene expression by dexamethasone and interleukin-4.

    PubMed Central

    Mehindate, K; al-Daccak, R; Rink, L; Mecheri, S; Hébert, J; Mourad, W

    1994-01-01

    Activation of human monocytes or monocytic cell lines with all known stimuli coordinately induces the gene expression of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and the IL-1 receptor antagonist (IL-1Ra). In contrast, superantigens induce TNF-alpha and IL-1 beta but fail to affect IL-1Ra gene expression, suggesting that activation of monocytes via major histocompatibility complex class II is distinct from other signal transduction pathways. In the present study, we analyzed the regulation of the Mycoplasma arthritidis-derived superantigen (MAM)-induced IL-1 beta and TNF-alpha gene expression by studying the effects of two different anti-inflammatory agents: dexamethasone (DEX) and the T-cell-derived cytokine IL-4. Both agents contributed to the downregulation of MAM-induced IL-1 beta and TNF-alpha gene expression. They accelerated the normal decline of the gene expression of both MAM-induced cytokines by decreasing the stability of mRNAs via the induction or enhanced synthesis of one or more regulatory proteins. In addition, IL-4, but not DEX, induced a strong and rapid expression of IL-1Ra mRNA in MAM-stimulated and unstimulated THP-1 cells in a de novo protein synthesis-independent manner. The capacity of IL-4 to induce IL-1Ra gene expression reinforces its anti-inflammatory activity. This study illustrates some of the mechanisms by which MAM-induced proinflammatory monokine gene expression can be downregulated by IL-4 and DEX. Images PMID:7927746

  9. Modulation of Mycoplasma arthritidis-derived superantigen-induced cytokine gene expression by dexamethasone and interleukin-4.

    PubMed

    Mehindate, K; al-Daccak, R; Rink, L; Mecheri, S; Hébert, J; Mourad, W

    1994-11-01

    Activation of human monocytes or monocytic cell lines with all known stimuli coordinately induces the gene expression of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and the IL-1 receptor antagonist (IL-1Ra). In contrast, superantigens induce TNF-alpha and IL-1 beta but fail to affect IL-1Ra gene expression, suggesting that activation of monocytes via major histocompatibility complex class II is distinct from other signal transduction pathways. In the present study, we analyzed the regulation of the Mycoplasma arthritidis-derived superantigen (MAM)-induced IL-1 beta and TNF-alpha gene expression by studying the effects of two different anti-inflammatory agents: dexamethasone (DEX) and the T-cell-derived cytokine IL-4. Both agents contributed to the downregulation of MAM-induced IL-1 beta and TNF-alpha gene expression. They accelerated the normal decline of the gene expression of both MAM-induced cytokines by decreasing the stability of mRNAs via the induction or enhanced synthesis of one or more regulatory proteins. In addition, IL-4, but not DEX, induced a strong and rapid expression of IL-1Ra mRNA in MAM-stimulated and unstimulated THP-1 cells in a de novo protein synthesis-independent manner. The capacity of IL-4 to induce IL-1Ra gene expression reinforces its anti-inflammatory activity. This study illustrates some of the mechanisms by which MAM-induced proinflammatory monokine gene expression can be downregulated by IL-4 and DEX.

  10. YB-1, the E2F Pathway, and Regulation of Tumor Cell Growth

    PubMed Central

    Samuel, Weini; Cao, Helen; Patel, Rachna; Mehta, Reena; Stern, J. Lewis; Reid, Glen; Woolley, Adele G.; Miller, Lance D.; Black, Michael A; Shelling, Andrew N.; Print, Cristin G.; Braithwaite, Antony W.

    2012-01-01

    Background Y-box binding factor 1 (YB-1) has been associated with prognosis in many tumor types. Reduced YB-1 expression inhibits tumor cell growth, but the mechanism is unclear. Methods YB-1 mRNA levels were compared with tumor grade and histology using microarray data from 771 breast cancer patients and with disease-free survival and distant metastasis–free survival using data from 375 of those patients who did not receive adjuvant therapy. Microarrays were further searched for genes that had correlated expression with YB-1 mRNA. Small interfering RNA (siRNA) was used to study the effects of reduced YB-1 expression on growth of three tumor cell lines (MCF-7 breast, HCT116 colon, and A549 lung cancer cells), on tumorigenesis by A549 cells in nude mice, and on global transcription in the three cancer cell lines. Reporter gene assays were used to determine whether YB-1 siRNAs affected the expression of E2F1, and chromatin immunoprecipitation was used to determine whether YB-1 bound to various E2F promoters as well as E2F1-regulated promoters. All P values were from two-sided tests. Results YB-1 levels were elevated in more aggressive tumors and were strongly associated with poor disease-free survival and distant metastasis–free survival. YB-1 expression was often associated with the expression of genes with E2F sites in their promoters. Cells expressing YB-1 siRNA grew substantially more slowly than control cells and formed tumors less readily in nude mice. Transcripts that were altered in cancer cell lines with YB-1 siRNA included 32 genes that are components of prognostic gene expression signatures. YB-1 regulated expression of an E2F1 promoter–reporter construct in A549 cells (eg, relative E2F1 promoter activity with control siRNA = 4.04; with YB-1 siRNA = 1.40, difference= −2.64, 95% confidence interval = −3.57 to −1.71, P < .001) and bound to the promoters of several well-defined E2F1 target genes. Conclusion YB-1 expression is associated with the

  11. Immune-Enhancing Effect of Nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a Mouse Model of Cyclophosphamide-Induced Immunosuppression.

    PubMed

    Choi, Dae-Woon; Jung, Sun Young; Kang, Jisu; Nam, Young-Do; Lim, Seong-Il; Kim, Ki Tae; Shin, Hee Soon

    2018-02-28

    Nanometric Lactobacillus plantarum nF1 (nLp-nF1) is a biogenics consisting of dead L. plantarum cells pretreated with heat and a nanodispersion process. In this study, we investigated the immune-enhancing effects of nLp-nF1 in vivo and in vitro. To evaluate the immunostimulatory effects of nLp-nF1, mice immunosuppressed by cyclophosphamide (CPP) treatment were administered with nLp-nF1. As expected, CPP restricted the immune response of mice, whereas oral administration of nLp-nF1 significantly increased the total IgG in the serum, and cytokine production (interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α)) in bone marrow cells. Furthermore, nLp-nF1 enhanced the production of splenic cytokines such as IL-12, TNF-α, and interferon gamma (IFN-γ). In vitro, nLp-nF1 stimulated the immune response by enhancing the production of cytokines such as IL-12, TNF-α, and IFN-γ. Moreover, nLp-nF1 given a food additive enhanced the immune responses when combined with various food materials in vitro. These results suggest that nLp-nF1 could be used to strengthen the immune system and recover normal immunity in people with a weak immune system, such as children, the elderly, and patients.

  12. Immunostimulatory effects of natural human interferon-alpha (huIFN-alpha) on carps Cyprinus carpio L.

    PubMed

    Watanuki, Hironobu; Chakraborty, Gunimala; Korenaga, Hiroki; Kono, Tomoya; Shivappa, R B; Sakai, Masahiro

    2009-10-15

    Human interferon-alpha (huIFN-alpha) is an important immunomodulatory substance used in the treatment and prevention of numerous infectious and immune-related diseases in animals. However, the immunostimulatory effects of huIFN-alpha in fish remain to be investigated. In the current study, the immune responses of the carp species Cyprinus carpio L. to treatment with huIFN-alpha were analyzed via measurement of superoxide anion production, phagocytic activity and the expression of cytokine genes including interleukin-1beta, tumor necrosis factor-alpha and interleukin 10. Low doses of huIFN-alpha were administered orally once a day for 3 days, and sampling was carried out at 1, 3 and 5 days post-treatment. Our results indicate that a low dose of huIFN-alpha significantly increased phagocytic activity and superoxide anion production in the carp kidney. The huIFN-alpha-treated fish also displayed a significant upregulation in cytokine gene expression. The current study demonstrates the stimulatory effects of huIFN-alpha on the carp immune system and highlights the immunomodulatory role of huIFN-alpha in fish.

  13. Mangiferin attenuates TH1/TH2 cytokine imbalance in an ovalbumin-induced asthmatic mouse model.

    PubMed

    Guo, Hong-Wei; Yun, Chen-Xia; Hou, Guang-Han; Du, Jun; Huang, Xin; Lu, Yi; Keller, Evan T; Zhang, Jian; Deng, Jia-Gang

    2014-01-01

    Mangiferin is a major bioactive ingredient in Mangifera indica Linn. (Anacardiaceae) leaves. Aqueous extract of such leaves have been used as an indigenous remedy for respiratory diseases like asthma and coughing in traditional Chinese medicine. However, underlying molecular mechanisms of mangiferin on anti-asthma remain unclear. In our present study, we investigated the anti-asthmatic effect of mangiferin on Th1/Th2 cytokine profiles and explored its underlying immunoregulatory mechanism in mouse model of allergic asthma. Mangiferin significantly reduced the total inflammatory cell counts and eosinophil infiltration, decreased the production of ovalbumin-specific IgE in serum and PGD2 in BALF. The antibody array analysis showed that mangiferin down-regulated the levels of one group of cytokines/chemokines including Th2-related IL-4, IL-5, IL-13, and others IL-3, IL-9, IL-17, RANTES, TNF-α, but simultaneously up-regulated Th1-related IFN-γ, IL-2 and IL-10 and IL-12 expression in serum. Thus it attenuates the imbalance of Th1/Th2 cells ratio by diminishing the abnormal mRNA levels of Th1 cytokines (IFN-γ and IL-12) and Th2 cytokines (IL-4, IL-5 and IL-13). Finally, mangiferin substantially inhibited the activation and expression of STAT-6 and GATA-3 in excised lung tissues. Our results suggest that mangiferin can exert anti-asthmatic effect. The underlying mechanism may attribute to the modulation of Th1/Th2 cytokine imbalance via inhibiting the STAT6 signaling pathway.

  14. Mangiferin Attenuates Th1/Th2 Cytokine Imbalance in an Ovalbumin-Induced Asthmatic Mouse Model

    PubMed Central

    Hou, Guang-Han; Du, Jun; Huang, Xin; Lu, Yi; Keller, Evan T.; Zhang, Jian; Deng, Jia-Gang

    2014-01-01

    Mangiferin is a major bioactive ingredient in Mangifera indica Linn. (Anacardiaceae) leaves. Aqueous extract of such leaves have been used as an indigenous remedy for respiratory diseases like asthma and coughing in traditional Chinese medicine. However, underlying molecular mechanisms of mangiferin on anti-asthma remain unclear. In our present study, we investigated the anti-asthmatic effect of mangiferin on Th1/Th2 cytokine profiles and explored its underlying immunoregulatory mechanism in mouse model of allergic asthma. Mangiferin significantly reduced the total inflammatory cell counts and eosinophil infiltration, decreased the production of ovalbumin-specific IgE in serum and PGD2 in BALF. The antibody array analysis showed that mangiferin down-regulated the levels of one group of cytokines/chemokines including Th2-related IL-4, IL-5, IL-13, and others IL-3, IL-9, IL-17, RANTES, TNF-α, but simultaneously up-regulated Th1-related IFN-γ, IL-2 and IL-10 and IL-12 expression in serum. Thus it attenuates the imbalance of Th1/Th2 cells ratio by diminishing the abnormal mRNA levels of Th1 cytokines (IFN-γ and IL-12) and Th2 cytokines (IL-4, IL-5 and IL-13). Finally, mangiferin substantially inhibited the activation and expression of STAT-6 and GATA-3 in excised lung tissues. Our results suggest that mangiferin can exert anti-asthmatic effect. The underlying mechanism may attribute to the modulation of Th1/Th2 cytokine imbalance via inhibiting the STAT6 signaling pathway. PMID:24955743

  15. A Th2-like cytokine response is involved in bullous pemphigoid. the role of IL-4 and IL-5 in the pathogenesis of the disease.

    PubMed

    Feliciani, C; Toto, P; Mohammad Pour, S; Coscione, G; Amerio, P; Amerio, P

    1999-01-01

    Bullous Pemphigoid is an autoimmune bullous disorder characterized by production of IgG against an hemidesmosomal antigen (230 kDa, 180 kDa) responsible for blistering of the skin. In the past several mediators have been implicated in the pathogenesis of the disease such as proteases and collagenases secreted by local inflammatory cells. In order to investigate the role of cytokines in BP, the cytokine pattern was evaluated by an immunohistochemical analysis and by reverse transcriptase polymerase chain reaction procedure in 13 BP patients. Cytokines examined were interleukin (IL)-2, IL-4, IL-5, interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. The T cell inflammatory infiltrate was also characterized by monoclonal antibodies showing CD3+, CD4+ T cells with a perivascular and scattered distribution in lesional skin. IL-4 and IL-5 were detected in a similar distribution to the inflammatory infiltrate. IL-4 and IL-5 mRNA levels were also revealed by RT-PCR. Proinflammatory cytokines such as TNF-alpha, IL-6 and Th1-like cytokines (IL-2 and INF-gamma) were not detected neither as proteins nor as mRNA. Since IL-4 and IL-5 are important in eosinophil chemoattraction, maturation and functional activity, the presence of IL-4 and IL-5 in BP suggest that these cytokines could be important in the pathogenesis of the disease.

  16. DNA methylcytosine dioxygenase ten-eleven translocation 2 enhances lipopolysaccharide-induced cytokine expression in human dental pulp cells by regulating MyD88 hydroxymethylation.

    PubMed

    Wang, Xinxuan; Feng, Zhihui; Li, Qimeng; Yi, Baicheng; Xu, Qiong

    2018-04-13

    Dental pulp inflammation is a bacterially driven inflammation process characterized by the local accumulation of cytokines/chemokines that participate in destructive processes in the pulp. Multiple mechanisms are involved in dental pulp inflammation, including epigenetic events, such as DNA methylation/demethylation. Ten-eleven translocation 2 (TET2) is a recently discovered DNA methylcytosine dioxygenase that plays important roles in inflammatory disease. However, its role in the inflammatory response of dental pulp is unknown. We observed elevated mRNA and protein levels of TET2 after lipopolysaccharide (LPS) stimulation in human dental pulp cells (hDPCs). To identify the effects of TET2 on cytokine expression, TET2 was knocked down and cytokines were detected using a cytokine antibody array after LPS stimulation. The protein expression of GM-CSF, IL-6, IL-8 and RANTES decreased in the LPS-induced hDPCs following TET2 knockdown. The downregulated expression levels of IL-6 and IL-8 were further confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Additionally, the phosphorylation levels of IKK-α/β, p65 and IκBα of the NF-κB signaling pathway were decreased in the TET2-silenced group. Furthermore, the global 5-hydroxymethylcytosine (5hmC) level was significantly decreased and the genomic 5-methylcytosine (5mC) level was increased in the TET2-deficient hDPCs; TET2 depletion resulted in a decrease in the 5hmC level of the MyD88 promoter following LPS stimulation. These findings indicate that TET2 knockdown inhibits LPS-induced inflammatory response in hDPCs by downregulating MyD88 hydroxymethylation. Thus, TET2-dependent DNA demethylation might play an important role in dental pulp inflammation as an epigenetic regulator.

  17. Regulation of eIF2alpha phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle.

    PubMed

    Mulvey, Matthew; Poppers, Jeremy; Sternberg, David; Mohr, Ian

    2003-10-01

    Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the gamma(1)34.5 and Us11 gene products, are produced late in the viral life cycle, although the gamma(1)34.5 gene is expressed prior to the gamma(2) Us11 gene, as gamma(2) genes require viral DNA replication for their expression while gamma(1) genes do not. The gamma(1)34.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1alpha), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a gamma(1)34.5 mutant virus results in the accumulation of phosphorylated eIF2alpha and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2alpha phosphorylation and the inhibition of translation observed in cells infected with a gamma(1)34.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2alpha; however, a requirement for the Us11 protein, produced in its natural context as a gamma(2) polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2alpha were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus, previously ascribed solely to the gamma(1)34.5 mutation, actually results from the combined loss of gamma(1)34.5 and Us11 functions, as the gamma(2) Us11 mRNA is not

  18. Oncogenic JAK2V617F requires an intact SH2-like domain for constitutive activation and induction of a myeloproliferative disease in mice.

    PubMed

    Gorantla, Sivahari P; Dechow, Tobias N; Grundler, Rebekka; Illert, Anna Lena; Zum Büschenfelde, Christian Meyer; Kremer, Marcus; Peschel, Christian; Duyster, Justus

    2010-11-25

    The oncogenic JAK2V617F mutation is found in myeloproliferative neoplasms (MPNs) and is believed to be critical for leukemogenesis. Here we show that JAK2V617F requires an intact SH2 domain for constitutive activation of downstream signaling pathways. In addition, there is a strict requirement of cytokine receptor expression for the activation of this oncogene. Further analysis showed that the SH2 domain mutation did not interfere with JAK2 membrane distribution. However, coimmunoprecipitated experiments revealed a role for the SH2 domain in the aggregation and cross-phosphorylation of JAK2V617F at the cell membrane. Forced overexpression of cytokine receptors could rescue the JAK2V617F SH2 mutant supporting a critical role of JAK2V617F abundance for constitutive activation. However, under physiologic cytokine receptor expression the SH2 domain is absolutely necessary for oncogenic JAK2V617F activation. This is demonstrated in a bone marrow transplantation model, in which an intact SH2 domain in JAK2V617F is required for the induction of an MPN-like disease. Thus, our results points to an indispensable role of the SH2 domain in JAK2V617F-induced MPNs.

  19. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha.

    PubMed

    Corral, L G; Haslett, P A; Muller, G W; Chen, R; Wong, L M; Ocampo, C J; Patterson, R T; Stirling, D I; Kaplan, G

    1999-07-01

    TNF-alpha mediates both protective and detrimental manifestations of the host immune response. Our previous work has shown thalidomide to be a relatively selective inhibitor of TNF-alpha production in vivo and in vitro. Additionally, we have recently reported that thalidomide exerts a costimulatory effect on T cell responses. To develop thalidomide analogues with increased anti-TNF-alpha activity and reduced or absent toxicities, novel TNF-alpha inhibitors were designed and synthesized. When a selected group of these compounds was examined for their immunomodulatory activities, different patterns of cytokine modulation were revealed. The tested compounds segregated into two distinct classes: one class of compounds, shown to be potent phosphodiesterase 4 inhibitors, inhibited TNF-alpha production, increased IL-10 production by LPS-induced PBMC, and had little effect on T cell activation; the other class of compounds, similar to thalidomide, were not phosphodiesterase 4 inhibitors and markedly stimulated T cell proliferation and IL-2 and IFN-gamma production. These compounds inhibited TNF-alpha, IL-1beta, and IL-6 and greatly increased IL-10 production by LPS-induced PBMC. Similar to thalidomide, the effect of these agents on IL-12 production was dichotomous; IL-12 was inhibited when PBMC were stimulated with LPS but increased when cells were stimulated by cross-linking the TCR. The latter effect was associated with increased T cell CD40 ligand expression. The distinct immunomodulatory activities of these classes of thalidomide analogues may potentially allow them to be used in the clinic for the treatment of different immunopathological disorders.

  20. Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD

    PubMed Central

    Doe, Camille; Bafadhel, Mona; Siddiqui, Salman; Desai, Dhananjay; Mistry, Vijay; Rugman, Paul; McCormick, Margaret; Woods, Joanne; May, Richard; Sleeman, Matthew A.; Anderson, Ian K.

    2010-01-01

    Background: Asthma and COPD are characterized by airway dysfunction and inflammation. Neutrophilic airway inflammation is a common feature of COPD and is recognized in asthma, particularly in severe disease. The T helper (Th) 17 cytokines IL-17A and IL-17F have been implicated in the development of neutrophilic airway inflammation, but their expression in asthma and COPD is uncertain. Methods: We assessed IL-17A and IL-17F expression in the bronchial submucosa from 30 subjects with asthma, 10 ex-smokers with mild to moderate COPD, and 27 nonsmoking and 14 smoking control subjects. Sputum IL-17 concentration was measured in 165 subjects with asthma and 27 with COPD. Results: The median (interquartile range) IL-17A cells/mm2 submucosa was increased in mild to moderate asthma (2.1 [2.4]) compared with healthy control subjects (0.4 [2.8]) but not in severe asthma (P = .04). In COPD, IL-17A+ cells/mm2 submucosa were increased (0.5 [3.7]) compared with nonsmoking control subjects (0 [0]) but not compared with smoking control subjects (P = .046). IL-17F+ cells/mm2 submucosa were increased in severe asthma (2.7 [3.6]) and mild to moderate asthma (1.6 [1.0]) compared with healthy controls subjects (0.7 [1.4]) (P = .001) but was not increased in subjects with COPD. IL-17A and IL-17F were not associated with increased neutrophilic inflammation, but IL-17F was correlated with the submucosal eosinophil count (rs = 0.5, P = .005). The sputum IL-17 concentration in COPD was increased compared with asthma (2 [0-7] pg/mL vs 0 [0-2] pg/mL, P < .0001) and was correlated with post-bronchodilator FEV1% predicted (r = −0.5, P = .008) and FEV1/FVC (r = −0.4, P = .04). Conclusions: Our findings support a potential role for the Th17 cytokines IL-17A and IL-17F in asthma and COPD, but do not demonstrate a relationship with neutrophilic inflammation. PMID:20538817

  1. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons.

    PubMed

    Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.

  2. Cytokine expression in response to root canal infection in gnotobiotic mice.

    PubMed

    Maciel, K F; Neves de Brito, L C; Tavares, W L F; Moreira, G; Nicoli, J R; Vieira, L Q; Ribeiro Sobrinho, A P

    2012-04-01

    To examine cytokine expression profiles during periapical lesion development in response to synergetic human pathogens in a gnotobiotic mouse model. Human strains of Fusobacterium nucleatum and Peptostreptococcus prevotii were inoculated into the root canals of germ-free mice in either mono- or bi-association. Animals were killed 7 and 14 days after infection, and periapical tissues were collected. mRNA expression of the cytokines IFN-γ, TNF-α, Receptor activator of nuclear factor kappa-B ligand (RANKL), IL-10, IL-4 and transforming growth factor β (TGF-β) was assessed using real-time PCR. Levene's test was used to assess the equality of variance of the data, whereas a t-test for independent samples was used to evaluate the significance of the differences between groups (P < 0.05). The mRNA expression of IFN-γ and TNF-α was up-regulated by F. nucleatum during the acute (day 7) and chronic phase (day 14) of periapical lesion development. However, in bi-infection the expression of IFN-γ and TNF-α were effectively absent at both time-points. RANKL mRNA expression was down-regulated during dual infection at the chronic phase. As IL-4 expression was similar at both time-points, IL-4 does not appear to be involved in the periapical response to these bacterial strains. IL-10 was up-regulated during the chronic phase by mono-infection with either F. nucleatum or P. prevotii. Dual infection increased TGF-β mRNA expression on day 7, which paralleled the decrease in IFN-γ and TNF-α mRNA levels at the same time-point. F. nucleatum increased TGF-β mRNA expression during the chronic phase. Cytokine profiles depend on the nature of the bacterial challenge. Both TGF-β and IL-10 appeared to be regulating the proinflammatory cytokine responses at both time-points of the periapical immune response. © 2012 International Endodontic Journal.

  3. A novel mutation in the alpha-helix 1 of the C subunit of the F(1)/F(0) ATPase responsible for optochin resistance of a Streptococcus pneumoniae clinical isolate.

    PubMed

    Cogné, N; Claverys, J; Denis, F; Martin, C

    2000-10-01

    Previously reported mutations involved in optochin resistance of Streptococcus pneumoniae clinical isolates changed residues 48, 49 or 50, in the transmembrane alpha-helix 2 of the F(1)/F(0) ATPase subunit. We report here an unusual mutation which changes the sequence of the transmembrane alpha-helix 1 of the AtpC subunit. This mutation involves a Gly to Ser substitution resulting from a G to A transition at codon 14 of the atpC gene.

  4. Differential expression of 11β-hydroxysteroid dehydrogenase type 1 and 2 in mild and moderate/severe persistent allergic nasal mucosa and regulation of their expression by Th2 cytokines: asthma and rhinitis.

    PubMed

    Jun, Y J; Park, S J; Hwang, J W; Kim, T H; Jung, K J; Jung, J Y; Hwang, G H; Lee, S H; Lee, S H

    2014-02-01

    Glucocorticoids are used to treat allergic rhinitis, but the mechanisms by which they induce disease remission are unclear. 11β-hydroxysteroid dehydrogenase (11β-HSD) is a tissue-specific regulator of glucocorticoid responses, inducing the interconversion of inactive and active glucocorticoids. We analysed the expression and distribution patterns of 11β-HSD1, 11β-HSD2, and steroidogenic enzymes in normal and allergic nasal mucosa, and cytokine-driven regulation of their expression. The production levels of cortisol in normal, allergic nasal mucosa and in cultured epithelial cells stimulated with cytokines were also determined. The expression levels of 11β-HSD1, 11β-HSD2, steroidogenic enzymes (CYP11B1, CYP11A1), and cortisol in normal, mild, and moderate/severe persistent allergic nasal mucosa were assessed by real-time PCR, Western blot, immunohistochemistry, and ELISA. The expression levels of 11β-HSD1, 11β-HSD2, CYP11B1, CYP11A1, and cortisol were also determined in cultured nasal epithelial cell treated with IL-4, IL-5, IL-13, IL-17A, and IFN-γ. Conversion ratio of cortisone to cortisol was evaluated using siRNA technique, 11β-HSD1 inhibitor, and the measurement of 11β-HSD1 activity. The expression levels of 11β-HSD1, CYP11B1, and cortisol were up-regulated in mild and moderate/severe persistent allergic nasal mucosa. By contrast, 11β-HSD2 expression was decreased in allergic nasal mucosa. In cultured epithelial cells treated with IL-4, IL-5, IL-13, and IL-17A, 11β-HSD1 expression and activity increased in parallel with the expression levels of CYP11B1 and cortisol, but the production of 11β-HSD2 decreased. CYP11A1 expression level was not changed in allergic nasal mucosa or in response to stimulation with cytokines. SiRNA technique or the measurement of 11β-HSD1 activity showed that nasal epithelium activates cortisone to cortisol in a 11β-HSD-dependent manner. These results indicate that the localized anti-inflammatory effects of

  5. Inflammatory cytokine response and reduced heart rate variability in newborns with hypoxic-ischemic encephalopathy.

    PubMed

    Al-Shargabi, T; Govindan, R B; Dave, R; Metzler, M; Wang, Y; du Plessis, A; Massaro, A N

    2017-06-01

    To determine whether systemic inflammation-modulating cytokine expression is related to heart rate variability (HRV) in newborns with hypoxic-ischemic encephalopathy (HIE). The data from 30 newborns with HIE were analyzed. Cytokine levels (IL-2, IL-4, IL-6, IL-8, IL-10, IL-13, IL-1β, TNF-α, IFN-λ) were measured either at 24 h of cooling (n=5), 72 h of cooling (n=4) or at both timepoints (n=21). The following HRV metrics were quantified in the time domain: alpha_S, alpha_L, root mean square (RMS) at short time scales (RMS_S), RMS at long time scales (RMS_L), while low-frequency power (LF) and high-frequency power (HF) were quantified in the frequency domain. The relationships between HRV metrics and cytokines were evaluated using mixed-models. IL-6, IL-8, IL-10, and IL-13 levels were inversely related to selected HRV metrics. Inflammation-modulating cytokines may be important mediators in the autonomic dysfunction observed in newborns with HIE.

  6. Regulation of Proinflammatory Cytokines in Human Lung Epithelial Cells Infected with Mycoplasma pneumoniae

    PubMed Central

    Yang, Jun; Hooper, W. Craig; Phillips, Donald J.; Talkington, Deborah F.

    2002-01-01

    Mycoplasma pneumoniae is a small bacterium without a cell wall that causes tracheobronchitis and atypical pneumonia in humans. It has also been associated with chronic conditions, such as arthritis, and extrapulmonary complications, such as encephalitis. Although the interaction of mycoplasmas with respiratory epithelial cells is a critical early phase of pathogenesis, little is known about the cascade of events initiated by infection of respiratory epithelial cells by mycoplasmas. Previous studies have shown that M. pneumoniae can induce proinflammatory cytokines in several different study systems including cultured murine and human monocytes. In this study, we demonstrate that M. pneumoniae infection also induces proinflammatory cytokine expression in A549 human lung carcinoma cells. Infection of A549 cells resulted in increased levels of interleukin-8 (IL-8) and tumor necrosis factor alpha mRNA, and both proteins were secreted into culture medium. IL-1β mRNA also increased after infection and IL-1β protein was synthesized, but it remained intracellular. In contrast, levels of IL-6 and gamma interferon mRNA and protein remained unchanged or undetectable. Using protease digestion and antibody blocking methods, we found that M. pneumoniae cytadherence is important for the induction of cytokines. On the other hand, while M. pneumoniae protein synthesis and DNA synthesis do not appear to be prerequisites for the induction of cytokine gene expression, A549 cellular de novo protein synthesis is responsible for the increased cytokine protein levels. These results suggest a novel role for lung epithelial cells in the pathogenesis of M. pneumoniae infection and provide a better understanding of M. pneumoniae pathology at the cellular level. PMID:12065506

  7. Serum Cytokine Levels in Major Depressive Disorder and Its Role in Antidepressant Response.

    PubMed

    Myung, Woojae; Lim, Shinn-Won; Woo, Hye In; Park, Jin Hong; Shim, Sanghong; Lee, Soo-Youn; Kim, Doh Kwan

    2016-11-01

    Cytokines have been reported to have key roles in major depressive disorder (MDD). However, much less is known about cytokines in MDD and antidepressant treatment due to the diversity of cytokines and the heterogeneity of depression. We investigated the levels of cytokines in patients with MDD compared with healthy subjects and their associations with antidepressant response. We investigated the changes of several cytokines (eotaxin, sCD40L, IL-8, MCP-1alpha, TNF-alpha, INF-gamma and MIP-1alpha) by Luminex assay in 66 patients with MDD and 22 healthy controls. The antidepressant response was assessed by 17-item Hamilton Rating Scale for Depression. We found the levels of sCD40L (p=0.001), IL-8 (p=0.004) and MCP-1 (p=0.03) of healthy controls were significantly higher than those of depressive patients. However, the level of eotaxin and TNF-alpha were not associated with MDD. In addition, we found the level of MCP-1 was significantly changed after antidepressant treatment (p=0.01). These findings suggest the roles of cytokines in MDD are complex, and could vary according to the individual characteristics of each patient. Further studies regarding the relationship between cytokines and MDD will be required.

  8. Rubusuaviins A-F, monomeric and oligomeric ellagitannins from Chinese sweet tea and their alpha-amylase inhibitory activity.

    PubMed

    Li, Haizhou; Tanaka, Takashi; Zhang, Ying-Jun; Yang, Chong-Ren; Kouno, Isao

    2007-09-01

    Six new ellagitannins herein, rubusuaviins A-F, were isolated from the aqueous acetone extract of Chinese sweet tea (Tien-cha, dried leaves of Rubus suavissimus S. LEE) together with seven known tannins. Rubusuaviin A was characterized as 1-O-galloyl-2,3-O-(S)-HHDP-4,6-O-(S)-sanguisorboyl-beta-D-glucopyranose. Rubusuaviins B, C, and E are dimeric, trimeric, and tetrameric ellagitannins, respectively, in which the sanguisorboyl groups were connected ellagitannin units. Rubusuaviins D and F were desgalloyl derivatives of rubusuaviins C and E, respectively. The inhibition of alpha-amylase activity by rubusuaviins and related ellagitannins was compared. Ellagitannins with beta-galloyl groups at the glucose C-1 positions showed stronger inhibition compared with the alpha-galloyl and desgalloyl compounds. The molecular weight of these compounds was not important for the inhibition of alpha-amylase activity.

  9. Cytokine-mediated inflammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS.

    PubMed

    Campbell, Iain L

    2005-04-01

    Cytokines are plurifunctional mediators of cellular communication. The CNS biology of this family of molecules has been explored by transgenic approaches that targeted the expression of individual cytokine genes to specific cells in the CNS of mice. Such transgenic animals exhibit wide-ranging structural and functional alterations that are linked to the development of distinct neuroinflammatory responses and gene expression profiles specific for each cytokine. The unique actions of individual cytokines result from the activation of specific receptor-coupled cellular signal transduction pathways such as the JAK/STAT tyrosine kinase signaling cascade. The cerebral expression of various STATs, their activation, as well as that of the major physiological inhibitors of this pathway, SOCS1 and SOCS3, is highly regulated in a stimulus- and cell-specific fashion. The role of the key IFN signaling molecules STAT1 or STAT2 was studied in transgenic mice (termed GIFN) with astrocyte-production of IFN-alpha that were null or haploinsufficient for these STAT genes. Surprisingly, these animals developed either more severe and accelerated neurodegeneration with calcification and inflammation (GIFN/STAT1 deficient) or severe immunoinflammation and medulloblastoma (GIFN/STAT2 deficient). STAT dysregulation may result in a signal switch phenomenon in which one cytokine acquires the apparent function of an entirely different cytokine. Therefore, for cytokines such as the IFNs, the receptor-coupled signaling process is complex, involving the coexistence of multiple JAK/STAT as well as alternative pathways. The cellular compartmentalization and balance in the activity of these pathways ultimately determines the repertoire and nature of CNS cytokine actions.

  10. PGC-1{alpha} accelerates cytosolic Ca{sup 2+} clearance without disturbing Ca{sup 2+} homeostasis in cardiac myocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min, E-mail: chenminyx@gmail.com; Yunnan Centers for Diseases Prevention and Control, Kunming 650022; Wang, Yanru

    2010-06-11

    Energy metabolism and Ca{sup 2+} handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1{alpha}) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1{alpha} in cardiac Ca{sup 2+} signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1{alpha} via adenoviral transduction. Our data shows that overexpressing PGC-1{alpha} improved myocyte contractility without increasing the amplitude of Ca{sup 2+}more » transients, suggesting that myofilament sensitivity to Ca{sup 2+} increased. Interestingly, the decay kinetics of global Ca{sup 2+} transients and Ca{sup 2+} waves accelerated in PGC-1{alpha}-expressing cells, but the decay rate of caffeine-elicited Ca{sup 2+} transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca{sup 2+}-ATPase (SERCA2a), but not Na{sup +}/Ca{sup 2+} exchange (NCX) contribute to PGC-1{alpha}-induced cytosolic Ca{sup 2+} clearance. Furthermore, PGC-1{alpha} induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1{alpha} did not disturb cardiac Ca{sup 2+} homeostasis, because SR Ca{sup 2+} load and the propensity for Ca{sup 2+} waves remained unchanged. These data suggest that PGC-1{alpha} can ameliorate cardiac Ca{sup 2+} cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1{alpha}-calcium handing pathway sheds new light on the role of PGC-1{alpha} in the therapy of cardiac diseases.« less

  11. Soluble antigens from group B streptococci induce cytokine production in human blood cultures.

    PubMed Central

    von Hunolstein, C; Totolian, A; Alfarone, G; Mancuso, G; Cusumano, V; Teti, G; Orefici, G

    1997-01-01

    Group B streptococcal antigens stimulated tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), and IL-6 production in human blood cultures in a concentration- and time-dependent fashion. The minimal concentrations of type-specific polysaccharides, lipoteichoic acid, and group-specific polysaccharide required to produce these effects were, respectively, 0.01, 1, and 10 microg/ml. Cell separation experiments indicated that monocytes were the cell type mainly responsible for cytokine production. Time course studies indicated that TNF-alpha was released before the other cytokines. TNF-alpha, however, did not appear to directly induce IL-1beta, as shown by blockade experiments with anti-TNF-alpha antibodies. IL-6 levels were moderately but significantly decreased by anti-TNF-alpha. These data indicate that several products from group B streptococci are able to directly stimulate human monocytes to release TNF-alpha, IL-1beta, and IL-6. These findings may be clinically relevant, since proinflammatory cytokines can mediate pathophysiologic changes during sepsis. PMID:9317001

  12. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com; Wei, Cong-Cong; Shang, Ting-Ting

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B)more » p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.« less

  13. Cytokines and major depression.

    PubMed

    Schiepers, Olga J G; Wichers, Marieke C; Maes, Michael

    2005-02-01

    In the research field of psychoneuroimmunology, accumulating evidence has indicated the existence of reciprocal communication pathways between nervous, endocrine and immune systems. In this respect, there has been increasing interest in the putative involvement of the immune system in psychiatric disorders. In the present review, the role of proinflammatory cytokines, such as interleukin (IL)-1, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, in the aetiology and pathophysiology of major depression, is discussed. The 'cytokine hypothesis of depression' implies that proinflammatory cytokines, acting as neuromodulators, represent the key factor in the (central) mediation of the behavioural, neuroendocrine and neurochemical features of depressive disorders. This view is supported by various findings. Several medical illnesses, which are characterised by chronic inflammatory responses, e.g. rheumatoid arthritis, have been reported to be accompanied by depression. In addition, administration of proinflammatory cytokines, e.g. in cancer or hepatitis C therapies, has been found to induce depressive symptomatology. Administration of proinflammatory cytokines in animals induces 'sickness behaviour', which is a pattern of behavioural alterations that is very similar to the behavioural symptoms of depression in humans. The central action of cytokines may also account for the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity that is frequently observed in depressive disorders, as proinflammatory cytokines may cause HPA axis hyperactivity by disturbing the negative feedback inhibition of circulating corticosteroids (CSs) on the HPA axis. Concerning the deficiency in serotonergic (5-HT) neurotransmission that is concomitant with major depression, cytokines may reduce 5-HT levels by lowering the availability of its precursor tryptophan (TRP) through activation of the TRP-metabolising enzyme indoleamine-2,3-dioxygenase (IDO). Although the central effects of

  14. Effect of Exercise Training on Interleukin-6, Tumour Necrosis Factor Alpha and Functional Capacity in Heart Failure

    PubMed Central

    Smart, Neil A.; Larsen, Alf I.; Le Maitre, John P.; Ferraz, Almir S.

    2011-01-01

    Background. We pooled data from four studies, to establish whether exercise training programs were able to modulate systemic cytokine levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). A second aim was to establish if differences in ExT regimens are related to degree of change in cytokines and peak VO2. Methods. Data from four centres relating to training protocol, exercise capacity, and cytokine measures (TNF-alpha and IL-6) were pooled for analysis. Results. Data for 106 CHF patients were collated (98 men, age 62 ± 10 yrs, wt 79 ± 14 Kg). Patients were moderately impaired (peak VO2 16.9 ± 4.4 mls/kg/min), with moderate LV systolic dysfunction (EF 30 ± 6.9%), 78% (83) had ischaemic cardiomyopathy. After ExT, peak VO2 increased 1.4 ± 3.4 ml/kg/min (P < .001), serum TNF-alpha decreased 1.9 ± 8.6 pg/ml (P = .02) and IL-6 was not significantly changed (0.5 ± 5.4 pg/ml, P = .32) for the whole group. Baseline and post-training peak VO2 changes were not correlated with change in cytokine levels. Conclusions. Exercise training reduces levels TNF-alpha but not IL-6 in CHF. However, across a heterogenic patient group, change in peak VO2 was not correlated with alterations in cytokine levels. While greater exercise volume (hours) was superior in improving peak VO2, no particular characteristic of ExT regimes appeared superior in effecting change in serum cytokines. PMID:21403878

  15. Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells.

    PubMed

    Muoio, Deborah M; Way, James M; Tanner, Charles J; Winegar, Deborah A; Kliewer, Steven A; Houmard, Joseph A; Kraus, William E; Dohm, G Lynis

    2002-04-01

    In humans, skeletal muscle is a major site of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) expression, but its function in this tissue is unclear. We investigated the role of hPPAR-alpha in regulating muscle lipid utilization by studying the effects of a highly selective PPAR-alpha agonist, GW7647, on [(14)C]oleate metabolism and gene expression in primary human skeletal muscle cells. Robust induction of PPAR-alpha protein expression occurred during muscle cell differentiation and corresponded with differentiation-dependent increases in oleate oxidation. In mature myotubes, 48-h treatment with 10-1,000 nmol/l GW7647 increased oleate oxidation dose-dependently, up to threefold. Additionally, GW7647 decreased oleate esterification into myotube triacylglycerol (TAG), up to 45%. This effect was not abolished by etomoxir, a potent inhibitor of beta-oxidation, indicating that PPAR-alpha-mediated TAG depletion does not depend on reciprocal changes in fatty acid catabolism. Consistent with its metabolic actions, GW7647 induced mRNA expression of mitochondrial enzymes that promote fatty acid catabolism; carnitine palmityltransferase 1 and malonyl-CoA decarboxylase increased approximately 2-fold, whereas pyruvate dehydrogenase kinase 4 increased 45-fold. Expression of several genes that regulate glycerolipid synthesis was not changed by GW7647 treatment, implicating involvement of other targets to explain the TAG-depleting effect of the compound. These results demonstrate a role for hPPAR-alpha in regulating muscle lipid homeostasis.

  16. Apigenin Attenuates Experimental Autoimmune Myocarditis by Modulating Th1/Th2 Cytokine Balance in Mice.

    PubMed

    Zhang, Shouxin; Liu, Xiaoyan; Sun, Chengming; Yang, Jun; Wang, Lihong; Liu, Jie; Gong, Lei; Jing, Yanyan

    2016-04-01

    This study aims to investigate the protective effect of apigenin on the development of experimental autoimmune myocarditis (EAM) and the underlying mechanisms. An EAM model was induced in BALB/c mice by the injection of porcine cardiac myosin. Apigenin was orally administered from day 1 to 21. The severity of myocarditis was assessed by determination of heart weight/body weight ratio (HW/BW) and histopathological evaluation. Echocardiography was conducted to evaluate the cardiac function and heart structure. Antigen-specific T cell proliferation responses to cardiac myosin were evaluated by the lymphocyte proliferation assay. ELISA was used to determine serum levels of type 1 helper (Th1) and Th2 cytokines. Apigenin treatment significantly decreased HW/BW. Histopathologic analysis showed that the infiltration of inflammatory cells was reduced significantly by apigenin treatment. Meanwhile, apigenin administration effectively ameliorated autoimmune myocarditis-induced cardiac hypertrophy and cardiac dysfunction as well as inhibited lymphocyte proliferation in mice immunized with myosin. Furthermore, Th1 cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-2 (IL-2) were significantly downregulated, while Th2 cytokines IL-4 and IL-10 were markedly upregulated. The results indicated that apigenin can alleviate EAM due to its immunomodulatory reactions in modification of helper T cell balance.

  17. Plasma cytokine levels in ulcerative colitis.

    PubMed

    Goral, Vedat; Celenk, Tahir; Kaplan, Abdurahman; Sit, Dede

    2007-06-01

    Some immunological factors are responsible in the pathogenesis of ulcerative colitis. There is a relationship between cytokines and ulcerative colitis. In this study 20 ulcerative colitis patients (mean age 36.2 years old, 9 women, 11 men) and 20 healthy control groups (mean age 27.2 years old, 11 women, 9 men) were involved in the study. We established that IL-2Rsp, IL-6, IL-8 and IL-10 levels were different at the patients and control groups (p < 0.005). TNF-alpha and IL-1 beta were similar at the both groups. According to these results, IL-2Rsp, IL-6, 11-8 and IL-10 play an important role in the pathogenesis of ulcerative colitis. We consider that these cytokines are beneficial parameters in the diagnosis, treatment and prognosis of ulcerative colitis.

  18. Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes.

    PubMed

    Zaragoza, Katrin; Bégay, Valérie; Schuetz, Anja; Heinemann, Udo; Leutz, Achim

    2010-05-01

    The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.

  19. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria.

    PubMed

    Marin, M L; Lee, J H; Murtha, J; Ustunol, Z; Pestka, J J

    1997-11-01

    When used in commercial fermented dairy products, bifidobacteria may enhance immunity by stimulating cytokine secretion by leukocytes. To assess whether interaction between bifidobacteria and leukocytes promote cytokine production, we cultured RAW 264.7 cells (macrophage model) and EL-4.IL-2 thymoma cells (helper T-cell model) in the presence of 14 representative strains of heat-killed bifidobacteria. In unstimulated RAW 264.7 cells, all bifidobacteria induced pronounced increases (up to several hundred-fold) in the production of tumor necrosis factor-alpha compared with that of controls. Interleukin-6 production by unstimulated cells also increased significantly, but less than did tumor necrosis factor-alpha. Upon concurrent stimulation of RAW 264.7 cells with lipopolysaccharide, production of tumor necrosis factor-alpha and interleukin-6 were both enhanced between 1.5- to 5.8-fold and 4.7- to 7.9-fold, respectively, when cultured with 10(8) bifidobacteria/ml. In unstimulated EL-4.IL-2 cells, bifidobacteria had no effect on the production of interleukin-2 or interleukin-5. Upon stimulation of EL-4.IL-2 with phorbol-12-myristate-13-acetate, there were variable increases in interleukin-2 secretion (up to 2.4-fold for 10(6) Bifidobacterium Bf-1/ml) and interleukin-5 secretion (up to 4.6-fold for 10(8) B. adolescentis M101-4). The results indicated that, even when variations among strains were considered, direct interaction of most bifidobacteria with macrophages enhanced cytokine production, but the effects on cytokine production by the T-cell model were less marked. Interestingly, the 4 bifidobacteria strains used commercially for diary foods showed the greatest capacity for cytokine stimulation. The in vitro approaches employed here should be useful in future characterization of the effects of bifidobacteria on gastrointestinal and systemic immunity.

  20. Inflammatory Cytokine Pattern Is Sex-Dependent in Mouse Cutaneous Melanoma Experimental Model

    PubMed Central

    Surcel, Mihaela

    2017-01-01

    We present the evaluation of inflammatory cytokines in mouse cutaneous melanoma experimental model, as markers of disease evolution. Moreover, to test our experimental model, we have used low doses of dacarbazine (DTIC). C57 BL/6J mouse of both sexes were subjected to experimental cutaneous melanoma and treated with low doses of DTIC. Clinical parameters and serum cytokines were followed during tumor evolution and during DTIC therapy. Cytokine/chemokine pattern was assessed using xMAP technology and the following molecules were quantified: interleukins (IL)-1-beta, IL-6, IL-10, IL-12 (p70), interferon (IFN)-gamma, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein (MIP)-1alpha, monocyte chemoattractant protein (MCP-1), and keratinocyte-derived chemokine (KC). Significant differences were found between normal females and males mice, female mice having a statistically higher serum concentration of IL-1-beta compared to male mice, while males have a significantly higher concentration of MIP-1-alpha. During melanoma evolution in the female group, IL-1-beta, MIP-1-alpha, and KC circulatory levels were found 10-fold increased, while other cytokines doubled their values. In the male mice group, only circulatory KC increased 4 times, while IL-1-beta and TNF-alpha doubled their circulatory values. Various serum cytokines correlated with the disease evolution in cutaneous melanoma mouse model. PMID:29318162

  1. E2F1 and NF-κB: Key Mediators of Inflammation-associated Cancers and Potential Therapeutic Targets.

    PubMed

    Huang, Yulin; Chen, Rui; Zhou, Jianwei

    2016-01-01

    Inflammation is the fundamental protective response; however disordered immuno-response can cause chronic human disease, including cancer. Inflammatory cells and mediators are essential to the tumor microenvironment and dissection of this complex molecular and cellular milieu may elucidate a connection between cancer and inflammation and help to identify potential novel therapeutic targets. Thus, focusing on transcription factor NF-κB and E2F1 in inflammation-associated cancer is urgent. NF-κB activation is prevalent in carcinomas, mainly driven by inflammatory cytokines in the tumor microenvironment. E2F1 is also involved in regulating immune responses. Understanding the crosstalk between the two pathways may contribute to the development of novel anti-cancer drugs.

  2. Cytokine Polymorphisms are Associated with Daytime Napping in Adults Living with HIV

    PubMed Central

    Byun, Eeeseung; Gay, Caryl L.; Portillo, Carmen J.; Pullinger, Clive R.; Aouizerat, Bradley E.; Lee, Kathryn A.

    2017-01-01

    Objective/Background Daytime napping longer than one hour has been associated with an increased risk for all-cause mortality. Associations between cytokine polymorphisms and daytime napping in chronic illnesses such as HIV, however, have not been well described. The purpose of this study was to examine cytokine polymorphisms associated with long daytime napping in adults living with HIV. Methods A cross-sectional analysis was conducted using a convenience sample of 257 adults living with HIV. Daytime napping was assessed with wrist actigraphy data collected over three days. Participants categorized as long nappers (≥ 60 min) were compared to short nappers and non-nappers (< 60 min). Single nucleotide polymorphisms (SNPs) for 15 candidate genes involved in cytokine signaling were analyzed. Genes included: interferon-gamma (IFNG), IFNG receptor 1 (IFNGR1), interleukins (IL1B, IL1R, IL1R2, IL2, IL4, IL6, IL8, IL10, IL13, IL17A), nuclear factors of kappa light polypeptide gene enhancer in B cells (NFKB1 and NFKB2), and tumor necrosis factor alpha (TNFA). Results After adjusting for relevant demographic and clinical characteristics, long daytime napping was associated with 12 SNPs from seven genes: 1) IFNG rs2069728; 2) IL1B rs1143642, rs1143627, and rs16944; 3) IL2 rs2069763; 4) IL6 rs4719714, rs1554606, and rs2069845; 5) IL17A rs3819024 and rs8193036; 6) NFKB1 rs4648110; and 7) NFKB2 rs1056890. Conclusions Cytokine genetic variations may have a role in physiological regulation of daytime napping as well as nocturnal sleep. Cytokine polymorphisms associated with long daytime napping could help identify adults with HIV who may benefit from targeted therapeutic interventions. PMID:28366330

  3. Cytokine polymorphisms are associated with daytime napping in adults living with HIV.

    PubMed

    Byun, Eeeseung; Gay, Caryl L; Portillo, Carmen J; Pullinger, Clive R; Aouizerat, Bradley E; Lee, Kathryn A

    2017-04-01

    Daytime napping longer than one hour has been associated with an increased risk for all-cause mortality. Associations between cytokine polymorphisms and daytime napping in chronic illnesses such as HIV, however, have not been well described. The purpose of this study was to examine cytokine polymorphisms associated with long daytime napping in adults living with HIV. A cross-sectional analysis was conducted using a convenience sample of 257 adults living with HIV. Daytime napping was assessed with wrist actigraphy data collected over three days. Participants categorized as long nappers (≥60 min) were compared to short nappers and non-nappers (<60 min). Single nucleotide polymorphisms (SNPs) for 15 candidate genes involved in cytokine signaling were analyzed. Genes included: interferon-gamma (IFNG), IFNG receptor 1 (IFNGR1), interleukins (IL1B, IL1R, IL1R2, IL2, IL4, IL6, IL8, IL10, IL13, IL17A), nuclear factors of kappa light polypeptide gene enhancer in B cells (NFKB1 and NFKB2), and tumor necrosis factor alpha (TNFA). After adjusting for relevant demographic and clinical characteristics, long daytime napping was associated with 12 SNPs from seven genes: 1) IFNG rs2069728; 2) IL1B rs1143642, rs1143627, and rs16944; 3) IL2 rs2069763; 4) IL6 rs4719714, rs1554606, and rs2069845; 5) IL17A rs3819024 and rs8193036; 6) NFKB1 rs4648110; and 7) NFKB2 rs1056890. Cytokine genetic variations may have a role in physiological regulation of daytime napping as well as nocturnal sleep. Cytokine polymorphisms associated with long daytime napping could help identify adults with HIV who may benefit from targeted therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microbiology and cytokine levels around healthy dental implants and teeth.

    PubMed

    Nowzari, Hessam; Botero, Javier Enrique; DeGiacomo, Marina; Villacres, Maria C; Rich, Sandra K

    2008-09-01

    Elicitation of the relationship of periodontopathogens and pro-inflammatory cytokines to bone resorption and formation is significant to a growing body of research known as osteoimmunology. It is essential that clinically healthy peri-implant and periodontal sites are studied to contribute comparison data for investigations that are addressing diseased sites. The purpose of this study was to describe levels of selected pro-inflammatory cytokines in clinically healthy peri-implant and periodontal sites, and to examine whether cytokine levels may be related to specific bacterial/viral pathogens. Eleven subjects (mean age 56.2 +/- 10) participated in the study. Subgingival microbial samples were cultured for periodontopathic bacteria. Gingival crevicular fluid samples were analyzed by nested polymerase chain reaction for Cytomegalovirus (HCMV) and were tested for the quantification of Interleukin (IL)-8, IL-1beta, IL-6, IL-10, Tumor Necrosis Factor (TNF)-alpha, and IL-12p70 using flow cytometry (FACS). Findings for microbiota composition and cytokine levels were compared between implants and teeth (chi square, Kruskall-Wallis, Mann-Whitney; p < or = .05). Both the frequency (%) and levels (%) of periodontopathic bacteria were higher around teeth than implants. The concentration (picogram per milliliter) of cytokines was more prominent around implants than teeth, reaching nearly twofold differences in some instances. Cytokine levels were higher when the sites analyzed were positive for any bacteria tested. HCMV was not detected. Pro-inflammatory cytokine production was unrelated to heavy bacterial challenge. Nevertheless, when periodontopathic bacteria were detected by culture, cytokine levels were increased around both implants and teeth. Studies are needed to investigate the pro-inflammatory cytokines (especially IL-1beta and TNF-alpha) produced in spite of minimal bacterial accumulation.

  5. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine.

    PubMed

    Asea, A; Kraeft, S K; Kurt-Jones, E A; Stevenson, M A; Chen, L B; Finberg, R W; Koo, G C; Calderwood, S K

    2000-04-01

    Here, we demonstrate a previously unknown function for the 70-kDa heat-shock protein (HSP70) as a cytokine. HSP70 bound with high affinity to the plasma membrane, elicited a rapid intracellular calcium flux, activated nuclear factor (NF)-kappaB and upregulated the expression of pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in human monocytes. Furthermore, two different signal transduction pathways were activated by exogenous HSP70: one dependent on CD14 and intracellular calcium, which resulted in increased IL-1beta, IL-6 and TNF-alpha; and the other independent of CD14 but dependent on intracellular calcium, which resulted in an increase in TNF-alpha but not IL-1beta or IL-6. These findings indicate that CD14 is a co-receptor for HSP70-mediated signaling in human monocytes and are indicative of an previously unrecognized function for HSP70 as an extracellular protein with regulatory effects on human monocytes, having a dual role as chaperone and cytokine.

  6. Bee venom inhibits hepatic fibrosis through suppression of pro-fibrogenic cytokine expression.

    PubMed

    Kim, Soo-Jung; Park, Ji-Hyun; Kim, Kyung-Hyun; Lee, Woo-Ram; Chang, Young-Chae; Park, Kwan-Kyu; Lee, Kwang-Gill; Han, Sang-Mi; Yeo, Joo-Hong; Pak, Sok Cheon

    2010-01-01

    Bee venom (BV) has a long tradition of use for the control of pain and inflammation in various chronic diseases. Carbon tetrachloride (CCl4) is known to induce hepatotoxicity after being metabolized to the highly reactive trichloromethyl free radical and its peroxy radical. The purpose of the current study was to examine whether BV regulates the pro-inflammation and fibrosis related genes against a mouse model of hepatic fibrosis induced by CCl4 and ethanol-treated hepatocytes (ETH). Test mice were administered with CCl4 (2 ml/mg) and hepatocytes were treated with 25 mM ethanol. BV was added to the final concentration of 0.05-0.5 mg/kg and 1-100 ng/ml for in vivo and in vitro testing, respectively. Fibrotic livers and ETH were used for the measurement of hepatocyte necrosis, pro-inflammatory cytokines and fibrogenic genes. BV suppressed CCl4-induced hepatocyte necrosis markers of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). It also inhibited the secretion of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. Moreover, BV inhibited CCl4-induced expression of transforming growth factor (TGF)-beta1, alpha-smooth muscle actin (SMA) and fibronectin. Similarly, ETH exhibited significant suppression of IL-1beta, TNF-alpha, TGF-beta1 and fibronectin when cultured with BV. These results suggest that BV possesses anti-fibrogenic properties that are mediated by the suppression of pro-inflammatory cytokines and fibrogenic gene expression. BV has substantial therapeutic potential for the treatment of fibrotic diseases.

  7. TNF-alpha infusion impairs corpora cavernosa reactivity.

    PubMed

    Carneiro, Fernando S; Zemse, Saiprazad; Giachini, Fernanda R C; Carneiro, Zidonia N; Lima, Victor V; Webb, R Clinton; Tostes, Rita C

    2009-03-01

    Erectile dysfunction (ED), as well as cardiovascular diseases (CVDs), is associated with endothelial dysfunction and increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). We hypothesized that increased TNF-alpha levels impair cavernosal function. In vitro organ bath studies were used to measure cavernosal reactivity in mice infused with vehicle or TNF-alpha (220 ng/kg/min) for 14 days. Gene expression of nitric oxide synthase isoforms was evaluated by real-time polymerase chain reaction. Corpora cavernosa from TNF-alpha-infused mice exhibited decreased nitric oxide (NO)-dependent relaxation, which was associated with decreased endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) cavernosal expression. Cavernosal strips from the TNF-alpha-infused mice displayed decreased nonadrenergic-noncholinergic (NANC)-induced relaxation (59.4 +/- 6.2 vs. control: 76.2 +/- 4.7; 16 Hz) compared with the control animals. These responses were associated with decreased gene expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated, as well as phenylephrine (PE)-induced, contractile responses (PE-induced contraction; 1.32 +/- 0.06 vs. control: 0.9 +/- 0.09, mN) were increased in cavernosal strips from TNF-alpha-infused mice. Additionally, infusion of TNF-alpha increased cavernosal responses to endothelin-1 and endothelin receptor A subtype (ET(A)) receptor expression (P < 0.05) and slightly decreased tumor necrosis factor-alpha receptor 1 (TNFR1) expression (P = 0.063). Corpora cavernosa from TNF-alpha-infused mice display increased contractile responses and decreased NANC nerve-mediated relaxation associated with decreased eNOS and nNOS gene expression. These changes may trigger ED and indicate that TNF-alpha plays a detrimental role in erectile function. Blockade of TNF-alpha actions may represent an alternative therapeutic approach for ED, especially in pathologic conditions associated with increased levels

  8. Thalidomide suppressed interleukin-6 but not tumor necrosis factor-alpha in volunteers with experimental endotoxemia.

    PubMed

    Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde; Kearney, Michael

    2007-11-01

    An early rationale for using thalidomide to treat erythema nodosum leprosum had been based on some reports that it suppresses tumor necrosis factor-alpha (TNF-alpha). However, in vivo and in vitro studies have yielded variable results, having shown that thalidomide can either enhance or suppress TNF-alpha. Since the course of circulating cytokines like TNF-alpha after infusion of endotoxin into volunteers is reproducible and characteristic, we investigated the effect of thalidomide on endotoxin-induced synthesis of TNF-alpha, interleukin (IL)-6, and IL-8. The cytokine response from 18 placebo-treated subjects who had undergone the endotoxin challenge were pooled with a placebo-treated subject from the current study and were compared with 4 subjects who received thalidomide (100 mg) every 6 h for 5 doses before endotoxin challenge. Thirty minutes after the last dose of thalidomide or placebo, volunteers were infused with 4-ng/kg endotoxin. Plasma was collected and assayed for cytokines by enzyme-linked immunosorbent assay. Endotoxin evoked the synthesis of the cytokines in all volunteers. The peak response for TNF-alpha was 1.5 h, 2.5 h for IL-8, and 3.0 h for IL-6. Thalidomide did not significantly delay the release of cytokines into the circulating blood. At the peak response, thalidomide reduced the concentration of the cytokines in the plasma. Using the area under the dose response curve (AUC(0 to 24) h), thalidomide reduced the AUC for IL-6 by 56%, for IL-8 by 30%, and TNF-alpha by 32%. In this model, thalidomide did not suppress TNF-alpha or IL-8, but it did suppress IL-6 at 4-h postinfusion with lipopolysaccharide (P=0.004), at 6 h (P=0.014), at 12 h (P=0.001), and at 16 h (P=0.012).

  9. Regulation of bovine kidney alpha-ketoglutarate dehydrogenase complex by calcium ion and adenine nucleotides. Effects on S0.5 for alpha-ketoglutarate.

    PubMed

    Lawlis, V B; Roche, T E

    1981-04-28

    Regulation of bovine kidney alpha-ketoglutarate dehydrogenase complex by energy-linked metabolites was investigated. Ca2+, ADP, or inorganic phosphate markedly enhanced the activity of the complex, and ATP or, to a lesser extent, GTP decreased the activity of the complex. Initial velocity studies with alpha-ketoglutarate as the varied substrate demonstrated that these modulators induced large changes in S0.5 for alpha-ketoglutarate (based on analysis in Hill plots) with no change in the maximum velocity (as determined by double-reciprocal plots). For all conditions studied, the Hill coefficients were significantly less than 1.0 with slopes that were linear over wide ranges of alpha-ketoglutarate concentrations, indicating negative cooperativity that probably resulted from multiple site-site interactions. Ca2+ (maintained at 10 muM by a Ca2+ buffer) decreased the S0.5 for alpha-ketoglutarate 63-fold (from 25 to 0.40 mM); even in the presence of a positive effector, ADP or phosphate, Ca2+ decreased the S0.5 for alpha-ketoglutarate 7.8- or 28-fold, respectively. Consistent with a mechanism of action dependent of Ca2+, ADP (1.60 mM) or phosphate (20 mM) reduced the S0.5 for alpha-ketoglutarate in the presence of Ca2+ (i.e., 4.5- or 1.67-fold, respectively); however, these effectors elicited larger decreases in S0.5 in the absence of Ca2+ (i.e., 37- or 3.7-fold, respectively). ATP (1.6 mM) increased the S0.5 for alpha-ketoglutarate, and Ca2+ appreciably reduced the effect, lowering the S0.5 98-fold from 66 to 0.67 mM. Thus the activity of the kidney alpha-ketoglutarate dehydrogenase complex is poised to increase as the energy potential in mitochondria declines, and Ca2+ has a pronounced modulatory effect. Comparative studies on bovine heart alpha-ketoglutarate dehydrogenase complex and the effects of varying the ADP/ATP ratio in the presence or absence of Ca2+ or phosphate are also described.

  10. Jellyfish mesogloea collagen. Characterization of molecules as alpha 1 alpha 2 alpha 3 heterotrimers.

    PubMed

    Miura, S; Kimura, S

    1985-12-05

    The mesogloea collagen of a primitive animal, the jellyfish Stomolophus nomurai, belonging to the class Scyphozoa in the Coelenterata, was studied with respect to its chain structure. Most of the mesogloea collagen was solubilized by limited digestion with pepsin and isolated by selective precipitation at 0.9 m NaCl in 0.5 M acetic acid. Upon denaturation, the pepsin-solubilized collagen produced three distinct alpha chains, alpha 1, alpha 2, and alpha 3, in comparable amounts which were separable by CM-cellulose chromatography. The nonidentity of these alpha chains was confirmed by amino acid and carbohydrate analyses and peptide mapping. Furthermore, the introduction of intramolecular cross-links into native molecules by formaldehyde yielded a large proportion of gamma 123 chain with chain structure alpha 1 alpha 2 alpha 3, as judged by chromatographic behavior and peptide maps. We concluded that mesogloea collagen is comprised of alpha 1 alpha 2 alpha 3 heterotrimers and is chemically like vertebrate Type V collagen. On the other hand, sea anemone mesogloea collagen from the class Anthozoa was previously reported to comprise (alpha)3 homotrimers (Katzman, R. L., and Kang, A. H. (1972) J. Biol. Chem. 247, 5486-5489). On the basis of these findings, we assume that alpha 1 alpha 2 alpha 3 heterotrimers arose in evolution with the divergence of Scyphozoa and Anthozoa.

  11. Epidermal growth factor system is a physiological regulator of development of the mouse fetal submandibular gland and regulates expression of the alpha6-integrin subunit.

    PubMed

    Kashimata, M; Gresik, E W

    1997-02-01

    Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) regulate branching morphogenesis of fetal mouse submandibular gland (SMG) rudiments in vitro. The EGF system (EGF, TGF-alpha, and their shared receptor, EGFR) also regulates expression of integrins and their ligands in the extracellular matrix. We show here that inhibition of EGFR tyrosine-kinase activity by a tyrphostin retards in vitro development of SMGs. Using total RNA isolated from pooled SMGs taken from intact mouse fetuses, mRNA transcripts for EGF, TGF-alpha, and EGFR were detected by reverse transcription-polymerase chain reaction (RT-PCR), and age-dependent variations in the levels of these mRNA were quantitatively determined by nuclease protection assays. These findings suggest that the EGF system is operative in the in vivo development of this gland. alpha6-Integrin subunit was localized by immunofluorescence at the basal surface of epithelial cells. Branching morphogenesis of cultured SMG rudiments was inhibited by anti-alpha6 antibodies. Synthesis of alpha6-subunit in cultured SMGs, detected by metabolic labeling and immunoprecipitation, was increased by EGF and drastically reduced by tyrphostin. RT-PCR revealed that mRNAs for alpha6- and beta1- and beta4-integrin subunits are expressed at all ages between embryonic day 13 and postnatal day 7. These findings suggest that 1) the EGF system is a physiologic regulator of development of fetal mouse SMG, and 2) one mechanism by which it acts may be by regulating expression of integrins, which in turn control interaction of epithelial cells with the extracellular matrix.

  12. The human interleukin-1 alpha gene is located on the long arm of chromosome 2 at band q13.

    PubMed

    Lafage, M; Maroc, N; Dubreuil, P; de Waal Malefijt, R; Pébusque, M J; Carcassonne, Y; Mannoni, P

    1989-01-01

    Interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) are two biochemically distinct, but distantly related, polypeptidic cytokines that play a key role in inflammation, immunologic reactions, and tissue repair. Recently, it has been shown that IL-1 alpha is identical to hematopoietin 1, which was described as a hematopoietic growth factor acting on early progenitor cells in synergy with other hematopoietic growth factors. In this report we discuss our use of in situ hybridization on human prometaphase cells with a human IL-1 alpha cDNA probe to localize the human IL-1 alpha gene on the proximal part of the long arm of chromosome 2 at band q13, in the same chromosomal region as the IL-1 beta gene.

  13. Artificial ligand binding within the HIF2[alpha] PAS-B domain of the HIF2 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, Thomas H.; Tomchick, Diana R.; Machius, Mischa

    2009-05-12

    The hypoxia-inducible factor (HIF) basic helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2{alpha} and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2{alpha} PAS-B domain contains a large internal cavity that accommodates ligands identified frommore » a small-molecule screen. Binding one of these ligands to HIF2{alpha} PAS-B modulates the affinity of the HIF2{alpha}:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.« less

  14. Serum levels of cytokines in water buffaloes experimentally infected with Fasciola gigantica.

    PubMed

    Zhang, Fu-Kai; Guo, Ai-Jiang; Hou, Jun-Ling; Sun, Miao-Miao; Sheng, Zhao-An; Zhang, Xiao-Xuan; Huang, Wei-Yi; Elsheikha, Hany M; Zhu, Xing-Quan

    2017-09-15

    Fasciola gigantica infection in water buffaloes causes significant economic losses especially in developing countries. Although modulation of the host immune response by cytokine neutralization or vaccination is a promising approach to control infection with this parasite, our understanding of cytokine's dynamic during F. gigantica infection is limited. To address this, we quantified the levels of serum cytokines produced in water buffaloes following experimental infection with F. gigantica. Five buffaloes were infected via oral gavage with 500 viable F. gigantica metacercariae and blood samples were collected from buffaloes one week before infection and for 13 consecutive weeks thereafter. The levels of 10 cytokines in serum samples were simultaneously determined using ELISA. F. gigantica failed to elicit the production of various pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-12, and IFN-γ. On the other hand, evidence of a Th2 type response was detected, but only early in the course of parasite colonization and included modest increase in the levels of IL-10 and IL-13. The results also revealed suppression of the immune responses as a feature of chronic F. gigantica infection in buffaloes. Taken together, F. gigantica seems to elicit a modest Th2 response at early stage of infection in order to downregulate harmful Th1- and Th17-type inflammatory responses in experimentally infected buffaloes. The full extent of anti-F. gigantica immune response and its relation to pathogenesis requires further study. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes

    PubMed Central

    Singh, Randeep K.; Dagnino, Lina

    2017-01-01

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation. PMID:27903963

  16. CDH1 regulates E2F1 degradation in response to differentiation signals in keratinocytes.

    PubMed

    Singh, Randeep K; Dagnino, Lina

    2017-01-17

    The E2F1 transcription factor plays key roles in skin homeostasis. In the epidermis, E2F1 expression is essential for normal proliferation of undifferentiated keratinocytes, regeneration after injury and DNA repair following UV radiation-induced photodamage. Abnormal E2F1 expression promotes nonmelanoma skin carcinoma. In addition, E2F1 must be downregulated for proper keratinocyte differentiation, but the relevant mechanisms involved remain poorly understood. We show that differentiation signals induce a series of post-translational modifications in E2F1 that are jointly required for its downregulation. Analysis of the structural determinants that govern these processes revealed a central role for S403 and T433. In particular, substitution of these two amino acid residues with non-phosphorylatable alanine (E2F1 ST/A) interferes with E2F1 nuclear export, K11- and K48-linked polyubiquitylation and degradation in differentiated keratinocytes. In contrast, replacement of S403 and T433 with phosphomimetic aspartic acid to generate a pseudophosphorylated E2F1 mutant protein (E2F1 ST/D) generates a protein that is regulated in a manner indistinguishable from that of wild type E2F1. Cdh1 is an activating cofactor that interacts with the anaphase-promoting complex/cyclosome (APC/C) ubiquitin E3 ligase, promoting proteasomal degradation of various substrates. We found that Cdh1 associates with E2F1 in keratinocytes. Inhibition or RNAi-mediated silencing of Cdh1 prevents E2F1 degradation in response to differentiation signals. Our results reveal novel regulatory mechanisms that jointly modulate post-translational modifications and downregulation of E2F1, which are necessary for proper epidermal keratinocyte differentiation.

  17. Strikingly higher interleukin (IL)-1alpha, IL-1beta and soluble interleukin-1 receptor antagonist (sIL-1RA) but similar IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumour necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta and interferon IFN-gamma urine levels in healthy females compared to healthy males: protection against urinary tract injury?

    PubMed

    Sadeghi, M; Daniel, V; Naujokat, C; Weimer, R; Opelz, G

    2005-11-01

    The aim of this prospective study was to examine gender-related differences of cytokines in the plasma and urine of healthy individuals that might provide a clue concerning the lower rate of chronic renal diseases in females. Soluble interleukin-1 receptor antagonist (sIL-1RA), interleukin (IL)-1alpha, IL-1beta, IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta(2) and interferon (IFN)-gamma were determined using standard enzyme-linked immunosorbent assay (ELISA). Cytokine levels were determined in simultaneously obtained plasma and urine samples of 18 male and 28 female healthy members of our laboratory staff. Urine cytokine levels were studied three times at 1-month intervals. All individuals had a negative urine nitrite test and showed no symptoms of urinary tract infection (UTI). Plasma levels of all studied cytokines were similar in males and females (P = n.s.). However, females had significantly higher urine IL-1alpha (P < 0.0001; P < 0.0001; P < 0.0001) and sIL-1RA (P = 0.0001; P = 0.0003; P = 0.0002) than males at three and higher IL-1beta at one of the three investigations (P = 0.098; P = 0.003; P = 0.073). Urine levels of the other cytokines were similar in males and females. Higher urine levels of IL-1alpha, IL-1beta and sIL-1RA in females may result from stimulation of cells in the urinary tract. Increased sIL-1RA might block T lymphocyte activation. The elevated cytokines may play a role in the protection of the female urinary tract from certain renal diseases, such as pyelonephritis and other inflammatory and sclerotic kidney diseases.

  18. Oncogenic Ras induces inflammatory cytokine production by up-regulating the squamous cell carcinoma antigens SerpinB3/B4

    PubMed Central

    Pan, Ji-An; Sun, Yu; Shi, Chanjuan; Li, Jinyu; Powers, R. Scott; Crawford, Howard C.; Zong, Wei-Xing

    2014-01-01

    Mounting evidence indicates that oncogenic Ras can modulate cell autonomous inflammatory cytokine production, although the underlying mechanism remains unclear. Here we show that squamous cell carcinoma antigens 1 and 2 (SCCA1/2), members of the Serpin family of serine/cysteine protease inhibitors, are transcriptionally up-regulated by oncogenic Ras via MAPK and the ETS family transcription factor PEA3. Increased SCCA expression leads to inhibition of protein turnover, unfolded protein response, activation of NF-κB, and is essential for Ras-mediated cytokine production and tumor growth. Analysis of human colorectal and pancreatic tumor samples reveals a positive correlation between Ras mutation, enhanced SCCA expression, and IL-6 expression. These results indicate that SCCA is a Ras-responsive factor that has a role in Ras-associated cytokine production and tumorigenesis. PMID:24759783

  19. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less

  20. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients.

    PubMed

    Seys, Sven F; Scheers, Hans; Van den Brande, Paul; Marijsse, Gudrun; Dilissen, Ellen; Van Den Bergh, Annelies; Goeminne, Pieter C; Hellings, Peter W; Ceuppens, Jan L; Dupont, Lieven J; Bullens, Dominique M A

    2017-02-23

    Asthma is characterized by a heterogeneous inflammatory profile and can be subdivided into T(h)2-high and T(h)2-low airway inflammation. Profiling of a broader panel of airway cytokines in large unselected patient cohorts is lacking. Patients (n = 205) were defined as being "cytokine-low/high" if sputum mRNA expression of a particular cytokine was outside the respective 10 th /90 th percentile range of the control group (n = 80). Unsupervised hierarchical clustering was used to determine clusters based on sputum cytokine profiles. Half of patients (n = 108; 52.6%) had a classical T(h)2-high ("IL-4-, IL-5- and/or IL-13-high") sputum cytokine profile. Unsupervised cluster analysis revealed 5 clusters. Patients with an "IL-4- and/or IL-13-high" pattern surprisingly did not cluster but were equally distributed among the 5 clusters. Patients with an "IL-5-, IL-17A-/F- and IL-25- high" profile were restricted to cluster 1 (n = 24) with increased sputum eosinophil as well as neutrophil counts and poor lung function parameters at baseline and 2 years later. Four other clusters were identified: "IL-5-high or IL-10-high" (n = 16), "IL-6-high" (n = 8), "IL-22-high" (n = 25). Cluster 5 (n = 132) consists of patients without "cytokine-high" pattern or patients with only high IL-4 and/or IL-13. We identified 5 unique asthma molecular phenotypes by biological clustering. Type 2 cytokines cluster with non-type 2 cytokines in 4 out of 5 clusters. Unsupervised analysis thus not supports a priori type 2 versus non-type 2 molecular phenotypes. www.clinicaltrials.gov NCT01224938. Registered 18 October 2010.

  1. Intraluteal prostaglandin biosynthesis and signaling are selectively directed towards PGF2alpha during luteolysis but towards PGE2 during the establishment of pregnancy in sheep.

    PubMed

    Lee, JeHoon; McCracken, John A; Stanley, Jone A; Nithy, Thamizh K; Banu, Sakhila K; Arosh, Joe A

    2012-10-01

    In ruminants, endometrial prostalgandin (PG) F(2alpha) causes functional luteolysis, whereas luteal synthesis of PGF(2alpha) is required for structural luteolysis. PGE(2) is considered to be a luteoprotective mediator. Molecular aspects of luteal PGF(2alpha) and PGE(2) biosynthesis and signaling during the estrous cycle and establishment of pregnancy are largely unknown. The objectives of the present study were 1) to determine the regulation of proteins involved in PGF(2alpha) and PGE(2) biosynthesis, catabolism, transport and signaling in the corpus luteum (CL); 2) to investigate the transport of interferon tau (IFNT), PGF(2alpha), and PGE(2) from the uterus to the ovary through the vascular utero-ovarian plexus (UOP); and 3) to compare the intraluteal production of PGF(2alpha) and PGE(2) on Days 12, 14, and 16 of the estrous cycle and pregnancy in sheep. Our results indicate that luteal PG biosynthesis is selectively directed towards PGF(2alpha) at the time of luteolysis and towards PGE(2) during the establishment of pregnancy. Moreover, the ability of the CL of early pregnancy to resist luteolysis is due to increased intraluteal biosynthesis of PGE(2) and PGE(2) receptor (PTGER) 2 (also known as EP2)- and PTGER4 (also known as EP4)-mediated signaling. We also found that IFNT protein is not transported through the UOP from the uterus to the ovary; in contrast, a large proportion of endometrial PGE(2) is transported from the uterus to the ovary through the UOP. These results indicate that endometrial PGE(2) stimulated by pregnancy is transported locally to the ovary, which increases luteal PGE(2) biosynthesis and hence activates luteal PTGER2 and PTGER4 signaling, thus protecting the CL during the establishment of pregnancy in sheep.

  2. FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets.

    PubMed

    Begonja, Antonija Jurak; Pluthero, Fred G; Suphamungmee, Worawit; Giannini, Silvia; Christensen, Hilary; Leung, Richard; Lo, Richard W; Nakamura, Fumihiko; Lehman, William; Plomann, Markus; Hoffmeister, Karin M; Kahr, Walter H A; Hartwig, John H; Falet, Hervé

    2015-07-02

    Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation. © 2015 by The American Society of Hematology.

  3. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes*

    PubMed Central

    Parker, Benjamin L.; Thaysen-Andersen, Morten; Fazakerley, Daniel J.; Holliday, Mira; Packer, Nicolle H.; James, David E.

    2016-01-01

    Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane. PMID:26537798

  4. In vivo replication of an ICP34.5 second-site suppressor mutant following corneal infection correlates with in vitro regulation of eIF2 alpha phosphorylation.

    PubMed

    Ward, Stephen L; Scheuner, Donalyn; Poppers, Jeremy; Kaufman, Randal J; Mohr, Ian; Leib, David A

    2003-04-01

    In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.

  5. Down-regulation of inflammatory cytokines by berberine attenuates Riemerella anatipestifer infection in ducks

    USDA-ARS?s Scientific Manuscript database

    Riemerella anatipestifer an important infectious bacterium affecting the duck industry, has 5-75% mortality, depending on strain virulence. We previously demonstrated that proinflammatory cytokines are involved in inflammation during, and regulating susceptibility to, R. anatipestifer infection We i...

  6. Cytokines and the regulation of fungus-specific CD4 T cell differentiation

    PubMed Central

    Espinosa, Vanessa; Rivera, Amariliz

    2011-01-01

    CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation. PMID:22133343

  7. Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha

    2004-12-01

    Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.

  8. Proton-induced degradation of VUV transmission of LiF and MgF2

    NASA Technical Reports Server (NTRS)

    Reft, C. S.; Becher, J.; Kernell, R. L.

    1980-01-01

    Proton-induced degradation of vacuum ultraviolet (VUV) transmittance of LiF and MgF2 was measured for 85- and 600-MeV protons for a fluence up to 2.8 x 10 to the 13th p/sq cm. Transmittances were measured from 105 to 210 nm. When the irradiation level for a given material is expressed in terms of absorbed energy per unit of volume of crystal, 85- and 600-MeV protons produce the same degradation. MgF2 is substantially more radiation resistant than LiF in the VUV. Irradiation of LiF with 1.8 x 10 to the 13th p/sq cm at 85 MeV changed the transmittance of the hydrogen Ly-alpha line at 121.6 nm from 55 to 23%. The corresponding change for MgF2 was from 52 to 42% for 2.8 x 10 to the 13th p/sq cm.

  9. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  10. Control of ACAT2 liver expression by HNF4{alpha}: lesson from MODY1 patients.

    PubMed

    Pramfalk, C; Karlsson, E; Groop, L; Rudel, L L; Angelin, B; Eriksson, M; Parini, P

    2009-08-01

    ACAT2 is thought to be responsible for cholesteryl ester production in chylomicron and VLDL assembly. Recently, we identified HNF1alpha as an important regulator of the human ACAT2 promoter. Thus, we hypothesized that MODY3 (HNF1alpha gene mutations) and possibly MODY1 (HNF4alpha, upstream regulator of HNF1alpha, gene mutations) subjects may have lower VLDL esterified cholesterol. Serum analysis and lipoprotein separation using size-exclusion chromatography were performed in controls and MODY1 and MODY3 subjects. In vitro analyses included mutagenesis and cotransfections in HuH7 cells. Finally, the relevance in vivo of these findings was tested by ChIP assays in human liver. Whereas patients with MODY3 had normal lipoprotein composition, those with MODY1 had lower levels of VLDL and LDL esterified cholesterol, as well as of VLDL triglyceride. Mutagenesis revealed one important HNF4 binding site in the human ACAT2 promoter. ChIP assays and protein-to-protein interaction studies showed that HNF4alpha, directly or indirectly (via HNF1alpha), can bind to the ACAT2 promoter. We identified HNF4alpha as an important regulator of the hepatocyte-specific expression of the human ACAT2 promoter. Our results suggest that the lower levels of esterified cholesterol in VLDL- and LDL-particles in patients with MODY1 may-at least in part-be attributable to lower ACAT2 activity in these patients.

  11. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosismore » in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black

  12. ASYMMETRIC ABSORPTION PROFILES OF Ly{alpha} AND Ly{beta} IN DAMPED Ly{alpha} SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hee-Won, E-mail: hwlee@sejong.ac.kr

    2013-08-01

    Damped Ly{alpha} systems observed in the quasar spectra are characterized by a high neutral hydrogen column density, N{sub HI} > 2 x 10{sup 20} cm{sup -2}. The absorption wing profiles are often fitted using the Voigt function due to the fact that the scattering cross section near the resonant line center is approximately described by the Lorentzian function. Since a hydrogen atom has infinitely many p states that participate in the electric dipole interaction, the cross section starts to deviate from the Lorentzian in an asymmetric way in the line wing regions. We investigate this asymmetry in the absorption linemore » profiles around Ly{alpha} and Ly{beta} as a function of the neutral hydrogen column density N{sub HI}. In terms of {Delta}{lambda} {identical_to} {lambda} - {lambda}{sub {alpha}}, we expand the Kramers-Heisenberg formula around Ly{alpha} to find {sigma}({lambda}) {approx_equal} (0.5f{sub 12}){sup 2}{sigma}{sub T}({Delta}{lambda}/{lambda}{sub {alpha}}){sup -2}[1 + 3.792({Delta}{lambda}/{lambda}{sub {alpha}})], where f{sub 12} and {sigma}{sub T} are the oscillator strength of Ly{alpha} and the Thomson scattering cross section, respectively. In terms of {Delta}{lambda}{sub 2} {identical_to} {lambda} - {lambda}{sub {beta}} in the vicinity of Ly{beta}, the total scattering cross section, given as the sum of cross sections for Rayleigh and Raman scattering, is shown to be {sigma}({lambda}) {approx_equal} {sigma}{sub T}(0.5f{sub 13}){sup 2}(1 + R{sub 0})({Delta}{lambda}{sub 2}/{lambda}{sub {beta}}){sup -2}[1 - 24.68({Delta}{lambda}{sub 2}/{lambda}{sub {beta}})] with f{sub 13} and the factor R{sub 0} = 0.1342 being the oscillator strength for Ly{beta} and the ratio of the Raman cross section to Rayleigh cross section, respectively. A redward asymmetry develops around Ly{alpha}, whereas a blue asymmetry is obtained for Ly{beta}. The absorption center shifts are found to be almost proportional to the neutral hydrogen column density.« less

  13. The role of cytokines in cancer-related fatigue.

    PubMed

    Kurzrock, R

    2001-09-15

    Fatigue is prominent in cancer patients and probably multifactorial in origin. Factors contributing to fatigue include anemia, weight loss, fever, pain, medication, and infection. In cancer patients, many of these factors are influenced by a frequently disrupted balance between endogenous cytokine levels and their natural antagonists. Indeed, cancer cells and the immune system appear to overexpress a range of cytokines in patients with malignancies. Some of these cytokines act as autocrine or paracrine growth factors for the neoplastic tissue while simultaneously causing secondary symptoms related to fatigue. For instance, cancer-associated anemia may be due to a blunted erythropoietin response and/or cytokines (interleukin-1 [IL-1], IL-6, tumor necrosis factor-alpha [TNF-alpha]), which suppress erythropoiesis. Cancerous cachexia, a wasting syndrome and a hallmark of cancer, can be attributed to loss of appetite or enhanced energy expenditure. Several different interleukins, as well as TNF, interferon-gamma, and leukemia inhibitory factor, act as cachectins in animal models. Similarly, fever and night sweats are influenced by pyrogenic cytokines. Recently, molecules that function as cytokine antagonists have been identified. These molecules may be exploitable in combating the components of cancer-related fatigue, and may inhibit tumor growth as well. Copyright 2001 American Cancer Society.

  14. Both alpha(1A)- and alpha(1B)-adrenergic receptors crosstalk to down regulate beta(1)-ARs in mouse heart: coupling to differential PTX-sensitive pathways.

    PubMed

    Rorabaugh, Boyd R; Gaivin, Robert J; Papay, Robert S; Shi, Ting; Simpson, Paul C; Perez, Dianne M

    2005-11-01

    Adrenergic receptors (ARs) play an important role in the regulation of cardiac function. Cardiac inotropy is primarily regulated by beta(1)-ARs. However, alpha(1)-ARs may play an important role in inotropy during heart failure. Previous work has suggested that the alpha(1B)-AR modulates beta(1)-AR function in the heart. The potential role of the alpha(1A)-AR has not been previously studied. We used transgenic mice that express constitutively active mutant (CAM) forms of the alpha(1A)-AR or alpha(1B)-AR regulated by their endogenous promoters. Expression of the CAM alpha(1A)-AR or CAM alpha(1B)-AR had no effect on basal cardiac function (developed pressure, +dP/dT, -dP/dT, heart rate, flow rate). However, both alpha(1)-AR subtypes significantly decreased isoproterenol-stimulated +dP/dT. Pertussis toxin had no effect on +dP/dT in CAM alpha(1A)-AR hearts but restored +dP/dT to non-transgenic values in CAM alpha(1B)-AR hearts. Radioligand binding indicated a selective decrease in the density of beta(1)-ARs in both CAM mice. However, G-proteins, cAMP, or the percentage of high and low affinity states were unchanged in either transgenic compared with control. These data demonstrate that CAM alpha(1A)- and alpha(1B)-ARs both down regulate beta(1)-AR-mediated inotropy in the mouse heart. However, alpha(1)-AR subtypes are coupled to different beta-AR mediated signaling pathways with the alpha(1B)-AR being pertussis toxin sensitive.

  15. Growth-related gene product {alpha}: A chemotactic cytokine for neutrophils in rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, A.E.; Pope, R.M.; Shah, M.R.

    Leukocyte recruitment is critical in the inflammation seen in rheumatoid arthritis (RA). To determine whether the chemokine growth-related gene product {alpha} (gro{alpha}) plays a role in this process, we examined synovial tissue (ST), synovial fluid (SF), and plasma samples from 102 patients with arthritis. RA SF contained more antigenic gro{alpha} (mean 5.3 {+-} 1.9 ng/ml) than did SFs from either osteoarthritis (OA) or other forms of arthritis (mean 0.1 ng/ml) (p < 0.05). RA plasma contained more gro{alpha} (mean 4.3 {+-} 1.8 ng/ml) than normal plasma (mean 0.1 ng/ml) (p < 0.05). RA ST fibroblasts (1.2 x 10{sup 5}/cells/ml RPMImore » 1640/24 h) produced antigenic gro{alpha} (mean 0.2 {+-} 0.1 ng/ml), and this production was increased significantly upon incubation with TNF-{alpha} (mean 1.3 {+-} 0.3 ng/ml) or IL-1{beta} (mean 2.3 {+-} 0.6 ng/ml) (p < 0.05). Cells from RA SF also produced gro{alpha}: neutrophils (PMNs) (10{sup 7} cells/ml/24 h) produced 3.7 {+-} 0.7 ng/ml. RA SF mononuclear cells produced gro{alpha}, particularly upon incubation with LPS or PHA. Immunoreactive ST gro{alpha} was found in greater numbers of RA compared with either OA or normal lining cells, as well as in RA compared with OA subsynovial macrophages (p < 0.05). IL-8 accounted for a mean of 36% of the RA SF chemotactic activity for PMNs, while epithelial neutrophil-activating peptide-78 accounted for 34%, and gro{alpha} for 28%, of this activity. Combined neutralization of all three chemokines in RA SFs resulted in a mean decrease of 50% of the chemotactic activity for PMNs present in the RA SFs. These results indicate that gro{alpha} plays an important role in the ingress of PMNs into the RA joint. 54 refs., 6 figs., 1 tab.« less

  16. TNF-alpha SNP haplotype frequencies in equidae.

    PubMed

    Brown, J J; Ollier, W E R; Thomson, W; Matthews, J B; Carter, S D; Binns, M; Pinchbeck, G; Clegg, P D

    2006-05-01

    Tumour necrosis factor alpha (TNF-alpha) is a pro-inflammatory cytokine that plays a crucial role in the regulation of inflammatory and immune responses. In all vertebrate species the genes encoding TNF-alpha are located within the major histocompatability complex. In the horse TNF-alpha has been ascribed a role in a variety of important disease processes. Previously two single nucleotide polymorphisms (SNPs) have been reported within the 5' un-translated region of the equine TNF-alpha gene. We have examined the equine TNF-alpha promoter region further for additional SNPs by analysing DNA from 131 horses (Equus caballus), 19 donkeys (E. asinus), 2 Grant's zebras (E. burchellii boehmi) and one onager (E. hemionus). Two further SNPs were identified at nucleotide positions 24 (T/G) and 452 (T/C) relative to the first nucleotide of the 522 bp polymerase chain reaction product. A sequence variant at position 51 was observed between equidae. SNaPSHOT genotyping assays for these and the two previously reported SNPs were performed on 457 horses comprising seven different breeds and 23 donkeys to determine the gene frequencies. SNP frequencies varied considerably between different horse breeds and also between the equine species. In total, nine different TNF-alpha promoter SNP haplotypes and their frequencies were established amongst the various equidae examined, with some haplotypes being found only in horses and others only in donkeys or zebras. The haplotype frequencies observed varied greatly between different horse breeds. Such haplotypes may relate to levels of TNF-alpha production and disease susceptibility and further investigation is required to identify associations between particular haplotypes and altered risk of disease.

  17. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms

    PubMed Central

    Tyner, Jeffrey W.; Bumm, Thomas G.; Deininger, Jutta; Wood, Lisa; Aichberger, Karl J.; Loriaux, Marc M.; Druker, Brian J.; Burns, Christopher J.; Fantino, Emmanuelle

    2010-01-01

    Activating alleles of Janus kinase 2 (JAK2) such as JAK2V617F are central to the pathogenesis of myeloproliferative neoplasms (MPN), suggesting that small molecule inhibitors targeting JAK2 may be therapeutically useful. We have identified an aminopyrimidine derivative (CYT387), which inhibits JAK1, JAK2, and tyrosine kinase 2 (TYK2) at low nanomolar concentrations, with few additional targets. Between 0.5 and 1.5μM CYT387 caused growth suppression and apoptosis in JAK2-dependent hematopoietic cell lines, while nonhematopoietic cell lines were unaffected. In a murine MPN model, CYT387 normalized white cell counts, hematocrit, spleen size, and restored physiologic levels of inflammatory cytokines. Despite the hematologic responses and reduction of the JAK2V617F allele burden, JAK2V617F cells persisted and MPN recurred upon cessation of treatment, suggesting that JAK2 inhibitors may be unable to eliminate JAK2V617F cells, consistent with preliminary results from clinical trials of JAK2 inhibitors in myelofibrosis. While the clinical benefit of JAK2 inhibitors may be substantial, not the least due to reduction of inflammatory cytokines and symptomatic improvement, our data add to increasing evidence that kinase inhibitor monotherapy of malignant disease is not curative, suggesting a need for drug combinations to optimally target the malignant cells. PMID:20385788

  18. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells.

    PubMed

    Vivacqua, Adele; Lappano, Rosamaria; De Marco, Paola; Sisci, Diego; Aquila, Saveria; De Amicis, Francesca; Fuqua, Suzanne A W; Andò, Sebastiano; Maggiolini, Marcello

    2009-11-01

    In the present study, we evaluated the regulation of G protein-coupled receptor (GPR)30 expression in estrogen receptor (ER)-positive endometrial, ovarian, and estrogen-sensitive, as well as tamoxifen-resistant breast cancer cells. We demonstrate that epidermal growth factor (EGF) and TGF alpha transactivate the GPR30 promoter and accordingly up-regulate GPR30 mRNA and protein levels only in endometrial and tamoxifen-resistant breast cancer cells. These effects exerted by EGF and TGF alpha were dependent on EGF receptor (EGFR) expression and activation and involved phosphorylation of the Tyr(1045) and Tyr(1173) EGFR sites. Using gene-silencing experiments and specific pharmacological inhibitors, we have ascertained that EGF and TGF alpha induce GPR30 expression through the EGFR/ERK transduction pathway, and the recruitment of c-fos to the activator protein-1 site located within GPR30 promoter sequence. Interestingly, we show that functional cross talk of GPR30 with both activated EGFR and ER alpha relies on a physical interaction among these receptors, further extending the potential of estrogen to trigger a complex stimulatory signaling network in hormone-sensitive tumors. Given that EGFR/HER2 overexpression is associated with tamoxifen resistance, our data may suggest that ligand-activated EGFR could contribute to the failure of tamoxifen therapy also by up-regulating GPR30, which in turn could facilitates the action of estrogen. In addition, important for resistance is the ability of tamoxifen to bind to and activate GPR30, the expression of which is up-regulated by EGFR activation. Our results emphasize the need for new endocrine agents able to block widespread actions of estrogen without exerting any stimulatory activity on transduction pathways shared by the steroid and growth factor-signaling networks.

  19. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells.

    PubMed

    Gautier, Violette; Cayrol, Corinne; Farache, Dorian; Roga, Stéphane; Monsarrat, Bernard; Burlet-Schiltz, Odile; Gonzalez de Peredo, Anne; Girard, Jean-Philippe

    2016-10-03

    IL-33 is a nuclear cytokine from the IL-1 family that plays important roles in health and disease. Extracellular IL-33 activates a growing number of target cells, including group 2 innate lymphoid cells, mast cells and regulatory T cells, but it remains unclear whether intracellular nuclear IL-33 has additional functions in the nucleus. Here, we used a global proteomic approach based on high-resolution mass spectrometry to compare the extracellular and intracellular roles of IL-33 in primary human endothelial cells, a major source of IL-33 protein in human tissues. We found that exogenous extracellular IL-33 cytokine induced expression of a distinct set of proteins associated with inflammatory responses in endothelial cells. In contrast, knockdown of endogenous nuclear IL-33 expression using two independent RNA silencing strategies had no reproducible effect on the endothelial cell proteome. These results suggest that IL-33 acts as a cytokine but not as a nuclear factor regulating gene expression in endothelial cells.

  20. Effects of prostaglandin F2alpha and latanoprost on phosphoinositide turnover, myosin light chain phosphorylation and contraction in cat iris sphincter.

    PubMed

    Ansari, Habib R; Davis, Angela M; Kaddour-Djebbar, Ismail; Abdel-Latif, Ata A

    2003-06-01

    The effects of the ocular hypotensive agents prostaglandin F(2alpha) (PGF(2alpha)) and its analog latanoprost on intraocular pressure (IOP) in both animals and human have been investigated extensively in the last two decades. While there is general agreement that application of these PGs to the eye alters IOP by altering the aqueous humor outflow of the eye via the uveoscleral and trabecular meshwork pathways, the mechanism of action of these agents on IOP lowering remains unclear. There is evidence which suggests that myosin light kinase (MLC kinase) may be involved in the IOP-lowering effects of these agents. Thus, the purpose of the present work was to investigate in cat iris sphincter the effects of these PGs on the MLC kinase signaling pathway, inositol phosphates production, MLC phosphorylation and contraction, in order to gain more information about the mechanism through which these agents modulate smooth muscle function and lower IOP. [(3)H]myo-inositol phosphates production was measured by ion-exchange chromatography, MLC kinase activity was measured by incorporation of (32)Pi into MLC, and changes in muscle tension were recorded isometrically. PGF(2alpha) and latanoprost induced contraction in a concentration-dependent manner with EC(50) values of 18.6 and 29.9 nM, respectively, and increased inositol phosphates production in a concentration-dependent manner. At 1 microM, PGF(2alpha) and latanoprost increased inositol phosphates formation by 125 and 102% over basal, respectively. PGF(2alpha) and latanoprost increased MLC phosphorylation in a concentration- and time-dependent manner, at 1 microM and 5 min incubation, the PGs increased the MLC response by 181 and 176% over basal, respectively. In general, PGF(2alpha) was slightly more potent in inducing the biochemical and pharmacological responses. Wortmannin, ML-7 and ML-9, selective inhibitors of MLC kinase, inhibited significantly PGF(2alpha)- and latanoprost-induced MLC phosphorylation and contraction

  1. Functional Impairment of Myeloid Dendritic Cells during Advanced Stage of HIV-1 Infection: Role of Factors Regulating Cytokine Signaling.

    PubMed

    Sachdeva, Meenakshi; Sharma, Aman; Arora, Sunil K

    2015-01-01

    Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART). Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR. The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase (SHP)-1 and a reduced expression of positive regulators like Janus kinase (JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells. Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral replication at this stage of disease, needs

  2. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ci Xinxin; Song Yu; Zeng Fanqin

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS.more » Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.« less

  3. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently

    PubMed Central

    Coutinho-Budd, Jaeda; Ghukasyan, Vladimir; Zylka, Mark J.; Polleux, Franck

    2012-01-01

    Summary Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis. PMID:22467852

  4. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  5. Effects of kefir fractions on innate immunity.

    PubMed

    Vinderola, Gabriel; Perdigon, Gabriela; Duarte, Jairo; Thangavel, Deepa; Farnworth, Edward; Matar, Chantal

    2006-01-01

    Innate immunity that protects against pathogens in the tissues and circulation is the first line of defense in the immune reaction, where macrophages have a critical role in directing the fate of the infection. We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial mucosa and the phagocytic activity of peritoneal and pulmonary macrophages. The aim of this study was to further characterize the immunomodulating capacity of the two fractions of kefir (F1: solids including bacteria and F2: liquid supernatant), by studying the cytokines produced by cells from the innate immune system: peritoneal macrophages and the adherent cells from Peyer's patches. BALB/c mice were fed either kefir solid fraction (F1) or kefir supernatant (F2) for 2, 5 or 7 consecutive days. The number of cytokine (IL-1alpha, IFNgamma, TNFalpha, IL-6 and IL-10) producing cells was determined on peritoneal macrophages and adherent cells from Peyer's patches. Both kefir fractions (F1 and F2) induced similar cytokine profiles on peritoneal macrophages (only TNFalpha and IL-6 were up-regulated). All cytokines studied on adherent cells from Peyer's patches were enhanced after F1 and F2 feeding, except for IFNgamma after F2 administration. Moreover, the percentage of IL-10+cells induced by fraction F2 on adherent cells from Peyer's patches was significantly higher than the one induced by fraction F1. Different components of kefir have an in vivo role as oral biotherapeutic substances capable of stimulating immune cells of the innate immune system, to down-regulate the Th2 immune phenotype or to promote cell-mediated immune responses against tumours and also against intracellular pathogenic infections.

  6. Peroxisome proliferation activation receptor alpha modulation of Ca2+-regulated exocytosis via arachidonic acid in guinea-pig antral mucous cells.

    PubMed

    Sawabe, Yukinori; Shimamoto, Chikao; Sakai, Akiko; Kuwabara, Hiroko; Saad, Adel H; Nakano, Takashi; Takitani, Kimitaka; Tamai, Hiroshi; Mori, Hiroshi; Marunaka, Yoshinori; Nakahari, Takashi

    2010-08-01

    Indomethacin (IDM, 10 microm), not aspirin (ASA; 10 microm), enhanced the Ca(2+)-regulated exocytosis stimulated by 1 microm acetylcholine (ACh) in guinea-pig antral mucous cells. Indomethacin inhibits prostaglandin G/H (PGG/H) and 15R-hydroperoxy-eicosatetraenoic acid (15R-HPETE) production from arachidonic acid (AA), while ASA inhibits PGG/H production but accelerates 15R-HPETE production. This suggests that IDM accumulates AA. Arachidonic acid (2 microm) enhanced Ca(2+)-regulated exocytosis in antral mucous cells to a similar extent to IDM. Moreover, a stable analogue of AA, arachidonyltrifluoromethyl ketone (AACOCF(3)), also enhanced Ca(2+)-regulated exocytosis, indicating that AA, not products from AA, enhances Ca(2+)-regulated exocytosis. We hypothesized that AA activates peroxisome proliferation activation receptor alpha (PPARalpha), because AA is a natural ligand for PPARalpha. A PPARalpha agonist (WY14643; 1 microm) enhanced Ca(2+)-regulated exocytosis, and a PPARalpha blocker (MK886; 50 microm) abolished the enhancement of Ca(2+)-regulated exocytosis induced by AA, IDM, AACOCF(3) and WY14643. Western blotting and immunohistochemical examinations demonstrated that PPARalpha exists in antral mucous cells. Moreover, MK886 decreased the frequency of Ca(2+)-regulated exocytosis activated by 1 microm ACh or 2 microm thapsigargin alone by 25-30%. Thus, ACh stimulates AA accumulation via an [Ca(2+)](i) increase, which activates PPARalpha, leading to enhancement of Ca(2+)-regulated exocytosis in antral mucous cells. A novel autocrine mechanism mediated via PPARalpha enhances Ca(2+)-regulated exocytosis in guinea-pig antral mucous cells.

  7. Regulation of 5alpha-reductase isoforms by oxytocin in the rat ventral prostate.

    PubMed

    Assinder, S J; Johnson, C; King, K; Nicholson, H D

    2004-12-01

    Oxytocin (OT) is present in the male reproductive tract, where it is known to modulate contractility, cell growth, and steroidogenesis. Little is known about how OT regulates these processes. This study describes the localization of OT receptor in the rat ventral prostate and investigates if OT regulates gene expression and/or activity of 5alpha-reductase isoforms I and II. The ventral prostates of adult male Wistar rats were collected following daily sc administration of saline (control), OT, a specific OT antagonist or both OT plus antagonist for 3 d. Expression of the OT receptor was identified in the ventral prostate by RT-PCR and Western blot, and confirmed to be a single active binding site by radioreceptor assay. Immunohistochemistry localized the receptor to the epithelium of prostatic acini and to the stromal tissue. Real-time RT-PCR determined that OT treatment significantly reduced expression of 5alpha-reductase I but significantly increased 5alpha-reductase II expression in the ventral prostate. Activity of both isoforms of 5alpha-reductase was significantly increased by OT, resulting in increased concentration of prostatic dihydrotestosterone. In conclusion, OT is involved in regulating conversion of testosterone to the biologically active dihydrotestosterone in the rat ventral prostate. It does so by differential regulation of 5alpha-reductase isoforms I and II.

  8. Cytokines and cytokine networks target neurons to modulate long-term potentiation

    PubMed Central

    Prieto, G. Aleph; Cotman, Carl W.

    2017-01-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. PMID:28377062

  9. Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms

    PubMed Central

    Hoermann, Gregor; Greiner, Georg; Valent, Peter

    2015-01-01

    The term myeloproliferative neoplasms (MPN) refers to a heterogeneous group of diseases including not only polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), but also chronic myeloid leukemia (CML), and systemic mastocytosis (SM). Despite the clinical and biological differences between these diseases, common pathophysiological mechanisms have been identified in MPN. First, aberrant tyrosine kinase signaling due to somatic mutations in certain driver genes is common to these MPN. Second, alterations of the bone marrow microenvironment are found in all MPN types and have been implicated in the pathogenesis of the diseases. Finally, elevated levels of proinflammatory and microenvironment-regulating cytokines are commonly found in all MPN-variants. In this paper, we review the effects of MPN-related oncogenes on cytokine expression and release and describe common as well as distinct pathogenetic mechanisms underlying microenvironmental changes in various MPN. Furthermore, targeting of the microenvironment in MPN is discussed. Such novel therapies may enhance the efficacy and may overcome resistance to established tyrosine kinase inhibitor treatment in these patients. Nevertheless, additional basic studies on the complex interplay of neoplastic and stromal cells are required in order to optimize targeting strategies and to translate these concepts into clinical application. PMID:26543328

  10. Immunomodulatory effects of thalidomide analogs on LPS-induced plasma and hepatic cytokines in the rat.

    PubMed

    Fernández-Martínez, Eduardo; Morales-Ríos, Martha S; Pérez-Alvarez, Víctor; Muriel, Pablo

    2004-10-01

    Thalidomide has shown to inhibit, selectively and mainly the cytokine tumor necrosis factor-alpha (TNF-alpha), thus, thalidomide has inhibitory consequences on other cytokines; this is ascribed as an immunomodulatory effect. Novel thalidomide analogs are reported with immunomodulatory activity. The aim of this work was to synthesize some of these analogs and to assess them as immunomodulatory agents in an acute model of LPS-induced septic challenge in rat. Animal groups received orally twice a day vehicle carboxymethylcellulose (0.9%), or thalidomide in suspension (100mg/kg), or analogs in an equimolar dose. Two hours after last dose, rats were injected with saline (NaCl, 0.9%, i.p.) or LPS (5mg/kg, i.p.). Groups were sacrificed 2h after injection and samples of blood and liver were obtained. TNF-alpha, interleukin-6, -1beta, and -10 (IL-6, IL-1beta, IL-10) were quantified by enzyme linked immunosorbent assay (ELISA) and studied in plasma and liver. After 2h of LPS-induction, different patterns of measured cytokines were observed with thalidomide analogs administration evidencing their immunomodulatory effects. Interestingly, some analogs decreased significantly plasma and hepatic levels of LPS-induced proinflammatory TNF-alpha and others increased plasma concentration of anti-inflammatory IL-10. Thalidomide analogs also showed slight effects on the remaining proinflammatory cytokines. Differences among immunomodulatory effects of analogs can be related to potency, mechanism of action, and half lives. Thalidomide analogs could be used as a pharmacological tool and in therapeutics in the future.

  11. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes

    PubMed Central

    Das, Hiranmoy; Kumar, Ajay; Lin, Zhiyong; Patino, Willmar D.; Hwang, Paul M.; Feinberg, Mark W.; Majumder, Pradip K.; Jain, Mukesh K.

    2006-01-01

    The mechanisms regulating activation of monocytes remain incompletely understood. Herein we provide evidence that Kruppel-like factor 2 (KLF2) inhibits proinflammatory activation of monocytes. In vitro, KLF2 expression in monocytes is reduced by cytokine activation or differentiation. Consistent with this observation, KLF2 expression in circulating monocytes is reduced in patients with chronic inflammatory conditions such as coronary artery disease. Adenoviral overexpression of KLF2 inhibits the LPS-mediated induction of proinflammatory factors, cytokines, and chemokines and reduces phagocytosis. Conversely, short interfering RNA-mediated reduction in KLF2 increased inflammatory gene expression. Reconstitution of immunodeficient mice with KLF2-overexpressing monocytes significantly reduced carrageenan-induced acute paw edema formation. Mechanistically, KLF2 inhibits the transcriptional activity of both NF-κB and activator protein 1, in part by means of recruitment of transcriptional coactivator p300/CBP-associated factor. These observations identify KLF2 as a novel negative regulator of monocytic activation. PMID:16617118

  12. Molecular And Structural Basis of Cytokine Receptor Pleiotropy in the Interleukin-4/13 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.

    2009-05-20

    Interleukin-4 and Interleukin-13 are cytokines critical to the development of T cell-mediated humoral immune responses, which are associated with allergy and asthma, and exert their actions through three different combinations of shared receptors. Here we present the crystal structures of the complete set of type I (IL-4R{alpha}/{gamma}{sub c}/IL-4) and type II (IL-4R/IL-13R{alpha}1/IL-4, IL-4R{alpha}/IL-13R{alpha}1/IL-13) ternary signaling complexes. The type I complex reveals a structural basis for {gamma}{sub c}'s ability to recognize six different {gamma}{sub c}-cytokines. The two type II complexes utilize an unusual top-mounted Ig-like domain on IL-13R{alpha}1 for a novel mode of cytokine engagement that contributes to a reversal inmore » the IL-4 versus IL-13 ternary complex assembly sequences, which are mediated through substantially different recognition chemistries. We also show that the type II receptor heterodimer signals with different potencies in response to IL-4 versus IL-13 and suggest that the extracellular cytokine-receptor interactions are modulating intracellular membrane-proximal signaling events.« less

  13. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  14. Activation of p42/p44 mitogen-activated protein kinase and contraction by prostaglandin F2alpha, ionomycin, and thapsigargin in cat iris sphincter smooth muscle: inhibition by PD98059, KN-93, and isoproterenol.

    PubMed

    Ansari, H R; Husain, S; Abdel-Latif, A A

    2001-10-01

    In the present study we investigated the cross talk between the Ca2+ mobilization pathway and the mitogen-activated protein (MAP) kinase pathway and contraction in the cat iris sphincter smooth muscle. Three Ca2+-mobilizing agonists, namely, prostaglandin F2alpha (PGF2alpha), ionomycin, and thapsigargin, and three specific inhibitors, PD98059, a p42/p44 MAP kinase inhibitor; KN-93, a Ca2+-calmodulin-dependent protein kinase II (CaMKII) blocker; and isoproterenol, a cAMP-elevating agent, were used. Changes in tension in response to the agonists were recorded isometrically and MAP kinase phosphorylation and activation were monitored by Western blotting and by in situ myelin basic protein phosphorylation, respectively. We found that 1) stimulation of the sphincter muscle with PGF2alpha, ionomycin, or thapsigargin resulted in rapid phosphorylation and activation of p42/p44 MAP kinase and contraction; and 2) treatment of the muscles with PD98059, KN-93, or isoproterenol resulted in inhibition of the Ca2+-mobilizing agonist-induced responses. The contractile responses induced by PGF2alpha, ionomycin, and thapsigargin were (mg of tension/mg of wet weight tissue) 15.2, 15.4, and 16.2, respectively; the increases in MAP kinase phosphorylation by these agonists were 228, 203, and 190%, respectively; and the increases in MAP kinase activation by the agonists were 212, 191, and 162%, respectively. The stimulatory effects of the agonists on contraction and on MAP kinase phosphorylation and activation were blocked by preincubation of the muscle with PD98059, KN-93, or isoproterenol. These data demonstrate that in the iris sphincter phosphorylation and activation of p42/p44 MAP kinases by PGF2alpha, ionomycin, or thapsigargin require intracellular Ca2+ either from extracellular sources or from internal stores, that CaMKII plays an important role in the regulation of contraction, that CaMKII acts upstream of MAP kinase to control its activation, and that the MAP kinase signaling

  15. Myricetin Protects Against Cytokine-Induced Cell Death in RIN-m5f β Cells

    PubMed Central

    Ding, Ye; Zhang, Zhao-Feng; Dai, Xiao-Qian

    2012-01-01

    Abstract Cytokine-induced cell death is recognized as a major cause of progressive β-cell loss. Tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ) in combination trigger a series of events that lead to β-cell death. In the past few decades, the use of myricetin as an anti-inflammatory and cytoprotective agent has gained much attention. The present study focused on the protective roles of myricetin against cytokine-induced cell death in insulin-secreting RIN-m5f β cells. The results showed that myricetin (especially at concentrations of 10 μM and 20 μM) increased cell viability and decreased cell apoptosis induced by the cytokine mixture of TNF-α (10 ng/mL), IL-1β (5 ng/mL), and IFN-γ (1000 IU/mL) for 3 days. Moreover, the cytokines increased the total and p65 subunit levels of nuclear factor κB, decreased inhibitor κB α levels, stimulated the accumulation of nitric oxide, increased cytochrome c release from mitochondria, and induced reactive oxygen species generation; myricetin (especially at the concentration of 20 μM) abolished all of these parameters. These results suggest that myricetin might have therapeutic value for preventing β-cell death. PMID:22846080

  16. Electrophilic fluorinating reagent mediated synthesis of fluorinated alpha-keto Ethers, benzil, and 6,6'-dialkoxy-2,2'-bipyridines.

    PubMed

    Manandhar, Sudha; Singh, Rajendra P; Eggers, Gary V; Shreeve, Jean'ne M

    2002-09-06

    Interactions of various fluorinated and nonfluorinated alcohols with trans-stilbene in the presence of electrophilic reagents were studied. Under neat conditions, reactions of trans-stilbene (1) with fluorinated alcohols, R(f)OH (R(f) = CF3CH2-, CFH2CH2-, CF3CF2CH2-, CF2H(CF2)3CH2-, (CF3)2CH-, (CF3)3C- (2a-f) in the presence of an electrophilic reagent, 1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor) or N,N-difluoro-2,2'-bipyridinium bis(tetrafluoroborate) (MEC-31), gave alpha-keto ethers (3a-f) and benzil (4) in good to moderate yields. alpha-Keto ether and benzil formation was very much dependent on the reaction time, the degree of fluorination of the alcohols, and whether a solvent such as CH3CN, DMF or DMA was utilized. In solution, alpha-keto ethers and benzil did not form. Interestingly, under neat conditions, nonfluorinated alcohols, ROH (R = CH3-, CH3CH2-, CH3CH2CH2-, CH3CH2CH2CH2-, CH3CH2CH2CH2CH2CH2-) (5g-k) did not react with trans-stilbene in the presence of MEC-31 but gave 6,6'-dialkoxy-2,2'-bipyridines (6g-k), regioselectively, in excellent isolated yields. On the other hand, fluorinated alcohols did not react with MEC-31. Reaction of MEC-31 with an excess of diethylene glycol (7) gave the bipyridine derivative (8) in 88% isolated yield. Reaction of 8 either with diethylaminosulfur trifluoride (DAST) or bis(2-methoxyethyl)aminosulfur trifluoride (Deoxofluor) readily produced the corresponding difluoro derivative (9) in 85% isolated yield. All new compounds have been characterized by spectroscopic and elemental analysis.

  17. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases

    PubMed Central

    Bencherif, Merouane; Lippiello, Patrick M.; Lucas, Rudolf; Marrero, Mario B.

    2013-01-01

    In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This “cholinergic anti-inflammatory pathway” modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components. PMID:20953658

  18. IL-9 expression by human eosinophils: regulation by IL-1beta and TNF-alpha.

    PubMed

    Gounni, A S; Nutku, E; Koussih, L; Aris, F; Louahed, J; Levitt, R C; Nicolaides, N C; Hamid, Q

    2000-09-01

    IL-9 is a pleiotropic cytokine that exhibits biologic activity on cells of diverse hemopoietic lineage. IL-9 stimulates the proliferation of activated T cells, enhances the production of IgE from B cells, and promotes the proliferation and differentiation of mast cells and hematopoietic progenitors. In this study we evaluated the expression of IL-9 messenger (m)RNA and protein by human peripheral blood eosinophils. We also investigated the role of IL-1beta and TNF-alpha in the release of IL-9 from human peripheral blood eosinophils. RT-PCR, in situ hybridization, and immunocytochemistry were used to investigate the presence of IL-9 mRNA and protein in human peripheral blood eosinophils from asthmatic patients and normal control subjects. Furthermore, biologic assay was used to investigate the release of IL-9 protein from IL-1beta- or TNF-alpha-stimulated eosinophils in vitro. RT-PCR analysis showed the presence of IL-9 mRNA in human peripheral blood eosinophil RNA preparations from subjects with atopic asthma, as well as in the eosinophil-differentiated HL-60 cell line. By using in situ hybridization, a significant difference (P <.01) in IL-9 mRNA expression was detected in human peripheral blood eosinophils freshly isolated from asthmatic subjects compared with those isolated from normal control subjects. Furthermore, the percentage of IL-9 immunoreactive eosinophils from asthmatic patients was increased compared with that found in normal control subjects (P <.01). We also demonstrate that cultured human peripheral blood eosinophils from asthmatic subjects synthesize and release IL-9 protein, which is upregulated on stimulation with TNF-alpha and IL-1beta. Human eosinophils express biologically active IL-9, which suggests that these cells may influence the recruitment and activation of effector cells linked to the pathogenesis of allergic disease. These observations provide further evidence for the role of eosinophils in regulating airway immune responses.

  19. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis.

    PubMed

    Wang, Ling-Yu; Hung, Chiu-Lien; Chen, Yun-Ru; Yang, Joy C; Wang, Junjian; Campbell, Mel; Izumiya, Yoshihiro; Chen, Hong-Wu; Wang, Wen-Ching; Ann, David K; Kung, Hsing-Jien

    2016-09-13

    The histone lysine demethylase KDM4A/JMJD2A has been implicated in prostate carcinogenesis through its role in transcriptional regulation. Here, we describe KDM4A as a E2F1 coactivator and demonstrate a functional role for the E2F1-KDM4A complex in the control of tumor metabolism. KDM4A associates with E2F1 on target gene promoters and enhances E2F1 chromatin binding and transcriptional activity, thereby modulating the transcriptional profile essential for cancer cell proliferation and survival. The pyruvate dehydrogenase kinases (PDKs) PDK1 and PDK3 are direct targets of KDM4A and E2F1 and modulate the switch between glycolytic metabolism and mitochondrial oxidation. Downregulation of KDM4A leads to elevated activity of pyruvate dehydrogenase and mitochondrial oxidation, resulting in excessive accumulation of reactive oxygen species. The altered metabolic phenotypes can be partially rescued by ectopic expression of PDK1 and PDK3, indicating a KDM4A-dependent tumor metabolic regulation via PDK. Our results suggest that KDM4A is a key regulator of tumor metabolism and a potential therapeutic target for prostate cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Alpha Trianguli Australis (K2 II-III) - Hybrid or composite?

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1985-01-01

    The prototype hybrid-spectrum giant Alpha Trianguli Australis exhibits a far-ultraviolet continuum which is considerably bluer than would be expected of a star of its optical colors, suggesting the presence of a previously unrecognized companion. If the K-type primary is as luminous as indicated by the widths of its Ca II and H-alpha lines, the companion could be an early F-type dwarf that only recently has arrived on the main sequence. Indeed, the flux of C IV from Alpha TrA - an important measure of hybridness - would not be inconsistent with that expected from a very young chromospherically active F star.

  1. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  2. Associations between Cytokine/Cytokine Receptor SNPs and Humoral Immunity to Measles, Mumps and Rubella in a Somali Population

    PubMed Central

    Dhiman, Neelam; Ovsyannikova, Inna G.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2008-01-01

    We genotyped a Somali population (n=85; age ≤ 30 years) for 617 cytokine and cytokine receptor SNPs using Illumina GoldenGate genotyping to determine associations with measles, mumps and rubella immunity. Overall, sixty-one significant associations (p≤0.01) were found between SNPs belonging to cytokine receptor genes regulating Th1 (IL12RB2, IL2RA and B) and Th2 (IL4R, IL10RB) immunity, and cytokine (IL1B, TNFA, IL6 and IFNB1) and cytokine receptor (IL1RA, IFNAR2, IL18R1, TNFRSF1A and B) genes regulating innate immunity, and variations in antibody levels to measles, mumps or rubella. SNPs within two major inflammatory cytokine genes, TNFA and IL6, demonstrated associations with measles-specific antibodies. Specifically, the minor allele variant of rs1799964 (TNFA -1211 C>T) was associated with primarily seronegative values (median EIA index values ≤0.87; p=0.002; q=0.23) in response to measles disease and/or vaccination. A heterozygous variant CT for rs2069849 (IL6 +4272C>T; Phe201Phe) was also associated with seronegative values and a lower median level of antibody response to measles disease and/or vaccination (p=0.004; q=0.36) or measles vaccination alone (p=0.008). Several SNPs within the coding and regulatory regions of cytokine and cytokine receptor genes demonstrated associations with mumps and rubella antibody levels, but were less informative as strong LD patterns and lower frequencies for minor alleles were observed among these SNPs. Our study identifies specific SNPs in innate immune response genes that may play a role in modulating antibody responses to measles vaccination and/or infection in Somali subjects. PMID:18715339

  3. NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid.

    PubMed

    Imaizumi, Yuzo; Higai, Koji; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro

    2009-05-08

    Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.

  4. Down-regulation of Jab1, HIF-1alpha, and VEGF by Moloney murine leukemia virus-ts1 infection: a possible cause of neurodegeneration.

    PubMed

    Lungu, Gina F; Stoica, George; Wong, Paul K Y

    2008-05-01

    Moloney murine leukemia virus-temperature sensitive (MoMuLV-ts1)-mediated neuronal death is a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Here the authors propose vascular endothelial growth factor (VEGF) down-regulation as another contributory factor in neuronal degeneration induced by ts1 infection. To determine how ts1 affects VEGF expression in ts1-infected brain, the authors examined the expression of several proteins that are important in regulating the expression of VEGF. The authors found significant decreases in Jun-activating domain-binding protein 1 (Jab1), hypoxia-inducible factor (HIF)-1alpha, and VEGF levels and increases in p53 protein levels in ts1-infected brains compared to noninfected control brains. The authors suggest that a decrease Jab1 expression in ts1 infection leads to accumulation of p53, which binds to HIF-1alpha to accelerate its degradation. A rapid degradation of HIF-1alpha leads to decreased VEGF production and secretion. Considering that endothelial cells are the most conspicuous in virus replication and production in ts1 infection, but are not killed by the infection, the authors examined the expression of these proteins using infected and noninfected mouse cerebrovascular endothelial (CVE) cells. The ts1- infected CVE cells showed decreased Jab1, HIF-1alpha, and VEGF mRNA and protein levels and increased p53 protein levels compared with noninfected cells, consistent with the results found in vivo. These results confirm that ts1 infection results in insufficient secretion of VEGF from endothelial cells and may result in decreased neuroprotection. This study suggested that ts1-mediated neuropathology in mice may result from changes in expression and activity of Jab1, p53, and HIF-1alpha, with a final target on VEGF expression and neuronal degeneration.

  5. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells.

    PubMed

    Yan, Z; DeGregori, J; Shohet, R; Leone, G; Stillman, B; Nevins, J R; Williams, R S

    1998-03-31

    Cdc6 has a critical regulatory role in the initiation of DNA replication in yeasts, but its function in mammalian cells has not been characterized. We show here that Cdc6 is expressed selectively in proliferating but not quiescent mammalian cells, both in culture and within tissues of intact animals. During the transition from a growth-arrested to a proliferative state, transcription of mammalian Cdc6 is regulated by E2F proteins, as revealed by a functional analysis of the human Cdc6 promoter and by the ability of exogenously expressed E2F proteins to stimulate the endogenous Cdc6 gene. Immunodepletion of Cdc6 by microinjection of anti-Cdc6 antibody blocks initiation of DNA replication in a human tumor cell line. We conclude that expression of human Cdc6 is regulated in response to mitogenic signals though transcriptional control mechanisms involving E2F proteins, and that Cdc6 is required for initiation of DNA replication in mammalian cells.

  6. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution.

    PubMed

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-10-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53(-/-) mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy.

  7. Serum and cerebrospinal fluid cytokine concentrations in subacute sclerosing panencephalitis.

    PubMed

    Aydin, Omer Faruk; Ichiyama, Takashi; Anlar, Banu

    2010-06-01

    Subacute sclerosing panencephalitis (SSPE) is a neurodegenerative disease due to persistent measles virus infection. Its immunopathogenesis is unknown. Tumor necrosis factor (TNF)-alpha, interleukin (IL)-2, IL-6, IL-10 and IL-4 concentrations were measured in cerebrospinal fluid (CSF) and serum samples from 30 SSPE patients and 19 control subjects by cytometric bead array. CSF and serum IFN-gamma, IL-12 and IL-18 levels were measured in 18 SSPE patients by ELISA. Serum IL-4 and IL-10 (p<0.001), CSF IL-4 (p<0.001) and IL-6 (p=0.049) concentrations were lower, and serum IL-2 concentrations, higher (p=0.001) in SSPE patients. Serum TNF-alpha and IL-6, CSF TNF-alpha, IL-10, and IL-2 concentrations were not different between SSPE and control groups. Serum IFN-gamma levels were higher in stage I and II than stage III patients (p<0.05), whereas there was no difference between stages in terms of other cytokines. The levels of Th2-type cytokines: IL-4, IL-6 and IL-10 were suppressed in our SSPE cases. This finding, along with relatively elevated IFN-gamma and IL-2 levels, may suggest more active effector T cells compared to regulatory T cells (Treg), especially induced Treg, in early disease. High serum IL-2 concentrations might indicate peripheral Th1 activation. Discrepancies between various reports in the literature should be examined in view of the ages, stage and treatments of the patients studied. The interplay of various cytokines or cellular systems which may vary over time and between patients. Studies of treatment measures favoring the preservation of the early inflammatory response may be of interest in SSPE. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Lipopolysaccharide mitagates methamphetamine-induced striatal dopamine depletion via modulating local TNF-alpha and dopamine transporter expression.

    PubMed

    Lai, Yu-Ting; Tsai, Yen-Ping N; Cherng, Chianfang G; Ke, Jing-Jer; Ho, Ming-Che; Tsai, Chia-Wen; Yu, Lung

    2009-04-01

    Systemic lipopolysaccharide (LPS) treatment may affect methamphetamine (MA)-induced nigrostriatal dopamine (DA) depletion. This study was undertaken to determine the critical time window for the protective effects of LPS treatment and the underlying mechanisms. An LPS injection (1 mg/kg) 72 h before or 2 h after MA treatment [three consecutive, subcutaneous injections of MA (10 mg/kg each) at 2-h intervals] diminished the MA-induced DA depletion in mouse striatum. Such an LPS-associated effect was independent of MA-produced hyperthermia. TNF-alpha, IL-1beta, IL-6 expressions were all elevated in striatal tissues following a systemic injection with LPS, indicating that peripheral LPS treatment affected striatal pro-inflammatory cytokine expression. Striatal TNF-alpha expression was dramatically increased at 72 and 96 h after the MA treatment, while such TNF-alpha elevation was abolished by the LPS pretreatment protocol. Moreover, MA-produced activation of nuclear NFkappaB, a transcription factor following TNF-alpha activation, in striatum was abolished by the LPS (1 mg/kg) pretreatment. Furthermore, thalidomide, a TNF-alpha antagonist, treatment abolished the LPS pretreatment-associated protective effects. Pretreatment with mouse recombinant TNF-alpha in striatum diminished the MA-produced DA depletion. Finally, single LPS treatment caused a rapid down-regulation of dopamine transporter (DAT) in striatum. Taken together, we conclude that peripheral LPS treatment protects nigrostriatal DA neurons against MA-induced toxicity, in part, by reversing elevated TNF-alpha expression and subsequent signaling cascade and causing a rapid DAT down-regulation in striatum.

  9. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    PubMed

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  10. Genomic organization of the rat alpha 2u-globulin gene cluster.

    PubMed

    McFadyen, D A; Addison, W; Locke, J

    1999-05-01

    The alpha 2u-globulin are a group of similar proteins, belonging to the lipocalin superfamily of proteins, that are synthesized in a subset of secretory tissues in rats. The many alpha 2u-globulin isoforms are encoded by a multigene family that exhibits extensive homology. Despite a high degree of sequence identity, individual family members show diverse expression patterns involving complex hormonal, tissue-specific, and developmental regulation. Analysis suggests that there are approximately 20 alpha 2u-globulin genes in the rat genome. We have used fluorescence in situ hybridization (FISH) to show that the alpha 2u-globulin genes are clustered at a single site on rat Chromosome (Chr) 5 (5q22-24). Southern blots of rat genomic DNA separated by pulsed field gel electrophoresis indicated that the alpha 2u-globulin genes are contained on two NruI fragments with a total size of 880 kbp. Analysis of three P1 clones containing alpha 2u-globulin genes indicated that the alpha 2u-globulin genes are tandemly arranged in a head-to-tail fashion. The organization of the alpha 2u-globulin genes in the rat as a tandem array of single genes differs from the homologous major urinary protein genes in the mouse, which are organized as tandem arrays of divergently oriented gene pairs. The structure of these gene clusters may have consequences for the proposed function, as a pheromone transporter, for the protein products encoded by these genes.

  11. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp; Ohnou, Tetsuya; Godai, Kohei

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functionsmore » linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased

  12. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    PubMed

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thalidomide inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production via down-regulation of MyD88 expression.

    PubMed

    Noman, Abu Shadat M; Koide, Naoki; Hassan, Ferdaus; I-E-Khuda, Imtiaz; Dagvadorj, Jargalsaikhan; Tumurkhuu, Gantsetseg; Islam, Shamima; Naiki, Yoshikazu; Yoshida, Tomoaki; Yokochi, Takashi

    2009-02-01

    The effect of thalidomide on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production was studied by using RAW 264.7 murine macrophage-like cells. Thalidomide significantly inhibited LPS-induced TNF-alpha production. Thalidomide prevented the activation of nuclear factor (NF)-KB by down-regulating phosphorylation of inhibitory KB factor (IKB), and IKB kinase (IKK)-alpha and IKK-beta Moreover, thalidomide inhibited LPS-induced phosphorylation of AKT, p38 and stress-activated protein kinase (SAPK)/JNK. The expression of myeloid differentiation factor 88 (MyD88) protein and mRNA was markedly reduced in thalidomide-treated RAW 264.7 cells but there was no significant alteration in the expression of interleukin-1 receptor-associated kinase (IRAK) 1 and TNF receptor-associated factor (TRAF) 6 in the cells. Thalidomide did not affect the cell surface expression of Toll-like receptor (TLR) 4 and CD14, suggesting the impairment of intracellular LPS signalling in thalidomide-treated RAW 264.7 cells. Thalidomide significantly inhibited the TNF-alpha production in response to palmitoyl-Cys(RS)-2,3-di(palmitoyloxy) propyl)-Ala-Gly-OH (Pam(3)Cys) as a MyD88-dependent TLR2 ligand. Therefore, it is suggested that thalidomide might impair LPS signalling via down-regulation of MyD88 protein and mRNA and inhibit LPS-induced TNF-alpha production. The putative mechanism of thalidomide-induced MyD88 down-regulation is discussed.

  14. Hemozoin Differentially Regulates Proinflammatory Cytokine Production in Human Immunodeficiency Virus-Seropositive and -Seronegative Women with Placental Malaria

    PubMed Central

    Moore, Julie M.; Chaisavaneeyakorn, Sujittra; Perkins, Douglas J.; Othoro, Caroline; Otieno, Juliana; Nahlen, Bernard L.; Shi, Ya Ping; Udhayakumar, Venkatachalam

    2004-01-01

    Pregnant women are at an increased risk for malarial infection. Plasmodium falciparum accumulates in the placenta and is associated with dysregulated immune function and poor birth outcomes. Malarial pigment (hemozoin) also accumulates in the placenta and may modulate local immune function. In this study, the impact of hemozoin on cytokine production by intervillous blood mononuclear cells from malaria-infected placentas was investigated. There was a dose-dependent, suppressive effect of hemozoin on production of gamma interferon (IFN-γ), with less of an effect on tumor necrosis factor alpha (TNF-α) and interleukin-10, in human immunodeficiency virus-seronegative (HIV−) women. In contrast, IFN-γ and TNF-α production tended to increase in HIV-seropositive women with increasing hemozoin levels. Production patterns of cytokines, especially IFN-γ in HIV− women, followed different trends as a function of parasite density and hemozoin level. The findings suggest that the influences of hemozoin accumulation and high-density parasitemia on placental cytokine production are not equivalent and may involve different mechanisms, all of which may operate differently in the context of HIV infection. Cytokine production dysregulated by accumulation of hemozoin or high-density parasitemia may induce pathology and impair protective immunity in HIV-infected and -uninfected women. PMID:15557625

  15. Cytokine production by oral and peripheral blood neutrophils in adult periodontitis.

    PubMed

    Galbraith, G M; Hagan, C; Steed, R B; Sanders, J J; Javed, T

    1997-09-01

    Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) also possess bone-resorptive properties, and are generally considered to play a role in the pathogenesis of periodontal disease. In the present study, TNF-alpha and IL-1 beta production by oral and peripheral blood polymorphonuclear leukocytes (PMN) was examined in 40 patients with adult periodontitis and 40 orally healthy matched controls. Oral PMN released considerable amounts of both cytokines in unstimulated culture, and there was no difference between patients and controls when the cytokine levels were corrected for cell number. However, when the effect of disease activity was examined, cytokine release by oral PMN was found to be greatest in patients with advanced periodontitis. Within the healthy control group, IL-1 beta production by oral PMN was significantly higher in males (Mann-Whitney test, P = 0.0008). Examination of IL-1 beta production by peripheral blood PMN exposed to recombinant human granulocyte-macrophage colony stimulating factor revealed no difference between the patient and control groups. In contrast, IL-1 beta production by peripheral blood PMN was significantly reduced in patients with advanced disease (Mann-Whitney test, P = 0.02), and peripheral PMN IL-1 beta synthesis was greater in female controls (Mann-Whitney test, P = 0.054). No effect of race on cytokine production could be discerned in patients or controls. These results indicate that several factors influence cytokine production in oral health and disease, and that a dichotomy in cytokine gene expression exists between oral and peripheral blood PMN in adult periodontitis.

  16. Separate necdin domains bind ARNT2 and HIF1{alpha} and repress transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Eitan R.; Fan Chenming

    2007-11-09

    PWS is caused by the loss of expression of a set of maternally imprinted genes including NECDIN (NDN). NDN is expressed in post-mitotic neurons and plays an essential role in PWS as mouse models lacking only the Ndn gene mimic aspects of this disease. Patients haploid for SIM1 develop a PW-like syndrome. Here, we report that NDN directly interacts with ARNT2, a bHLH-PAS protein and dimer partner for SIM1. We also found that NDN can interact with HIF1{alpha}. We showed that NDN can repress transcriptional activation mediated by ARNT2:SIM1 as well as ARNT2:HIF1{alpha}. The N-terminal 115 residues of NDN aremore » sufficient for interaction with the bHLH domains of ARNT2 or HIF1{alpha} but not for transcriptional repression. Using GAL4-NDN fusion proteins, we determined that NDN possesses multiple repression domains. We thus propose that NDN regulates neuronal function and hypoxic response by regulating the activities of the ARNT2:SIM1 and ARNT2:HIF1{alpha} dimers, respectively.« less

  17. Plasma Cytokine Concentrations in Workers Exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    PubMed Central

    Saberi Hosnijeh, Fatemeh; Boers, Daisy; Portengen, Lützen; Bueno-de-Mesquita, H. Bas; Heederik, Dick; Vermeulen, Roel

    2012-01-01

    Objectives: Few epidemiological studies have studied the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on blood cytokine levels. In this study we investigated changes in plasma levels of a large panel of cytokines, chemokines, and growth factors among workers from a Dutch historical cohort occupationally exposed to chlorophenoxy herbicides and contaminants including TCDD. Methods: Eighty-five workers who had been exposed to either high (n = 47) or low (n = 38) TCDD levels more than 30 years before serum collection were included in the current investigation. Plasma level of 16 cytokines, 10 chemokines, and 6 growth factors were measured. Current plasma levels of TCDD (TCDDcurrent) were determined by high-resolution gas chromatography/isotope-dilution high-resolution mass spectrometry. TCDD blood levels at the time of last exposure (TCDDmax) were estimated using a one-compartment first order kinetic model. Results: Blood levels of most analytes had a negative association with current and estimated past maximum TCDD levels. These decreases reached formal statistical significance for fractalkine, transforming growth factor alpha (TGF-α), and fibroblast growth factor 2 (FGF2) with increasing TCDD levels. Conclusion: Our study showed a general reduction in most analyte levels with the strongest effects for fractalkine, FGF2, and TGF-α. These findings suggest that TCDD exposure could suppress the immune system and that chemokine and growth factor-dependent cellular pathway changes by TCDD may play role in TCDD toxicity and associated health effects. PMID:22655272

  18. Membrane-derived second messenger regulates x-ray-mediated tumor necrosis factor alpha gene induction.

    PubMed Central

    Hallahan, D E; Virudachalam, S; Kuchibhotla, J; Kufe, D W; Weichselbaum, R R

    1994-01-01

    Cells adapt to adverse environmental conditions through a wide range of responses that are conserved throughout evolution. Physical agents such as ionizing radiation are known to initiate a stress response that is triggered by the recognition of DNA damage. We have identified a signaling pathway involving the activation of phospholipase A2 and protein kinase C in human cells that confers x-ray induction of the tumor necrosis factor alpha gene. Treatment of human cells with ionizing radiation or H2O2 was associated with the production of arachidonic acid. Inhibition of phospholipase A2 abolished radiation-mediated arachidonate production as well as the subsequent activation of protein kinase C and tumor necrosis factor alpha gene expression. These findings demonstrate that ionizing radiation-mediated gene expression in human cells is regulated in part by extranuclear signal transduction. One practical application of phospholipase A2 inhibitors is to ameliorate the adverse effects of radiotherapy associated with tumor necrosis factor alpha production. Images PMID:8197153

  19. Guinea pig hepatocyte alpha 1A-adrenoceptors: characterization, signal transduction and regulation.

    PubMed

    García-Sáinz, J A; Romero-Avila, T; Olivares-Reyes, J A; Macías-Silva, M

    1992-11-02

    Activation of guinea pig hepatocyte alpha 1-adrenoceptors increases phosphatidylinositol (PI) labeling, [3H]inositol phosphate production and phosphorylase activity. These adrenergic actions were not altered by pretreatment with chlorethylclonidine but were blocked by 5-methyl urapidil and prazosin (the former being 3- to 10-fold more potent than the latter), indicating that alpha 1A-adrenoceptors were involved. When the cells were incubated in buffer without calcium and containing EGTA, the alpha 1A-adrenergic stimulation of PI labeling was diminished but not abolished and that of phosphorylase was not affected. The alpha 1A-adrenergic effects were insensitive to pertussis toxin treatment. Phorbol myristate acetate inhibited the alpha 1A-adrenergic actions, although at relatively large concentrations, and also those of other agents such as angiotensin II and NaF. Our data clearly indicate that guinea pig hepatocytes express alpha 1A-adrenoceptors whose activation stimulates phosphoinositide turnover, via a pertussis toxin-insensitive process; the alpha 1A-adrenergic effects were at least partially independent of extracellular calcium.

  20. TNF-{alpha} mediates the stimulation of sclerostin expression in an estrogen-deficient condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Beom-Jun; Bae, Sung Jin; Lee, Sun-Young

    Highlights: Black-Right-Pointing-Pointer Estrogen deprivation stimulates the bony sclerostin levels with reversal by estrogen. Black-Right-Pointing-Pointer TNF-{alpha} increases the activity and expression of MEF2 in UMR-106 cells. Black-Right-Pointing-Pointer TNF-{alpha} blocker prevents the stimulation of bony sclerostin expression by ovariectomy. Black-Right-Pointing-Pointer No difference in bony sclerostin expression between sham-operated and ovariectomized nude mice. -- Abstract: Although recent clinical studies have suggested a possible role for sclerostin, a secreted Wnt antagonist, in the pathogenesis of postmenopausal osteoporosis, the detailed mechanisms how estrogen deficiency regulates sclerostin expression have not been well-elucidated. Bilateral ovariectomy or a sham operation in female C57BL/6 mice and BALB/c nude micemore » was performed when they were seven weeks of age. The C57BL/6 mice were intraperitoneally injected with phosphate-buffered serum (PBS), 5 {mu}g/kg {beta}-estradiol five times per week for three weeks, or 10 mg/kg TNF-{alpha} blocker three times per week for three weeks. Bony sclerostin expression was assessed by immunohistochemistry staining in their femurs. The activity and expression of myocyte enhancer factors 2 (MEF2), which is essential for the transcriptional activation of sclerostin, in rat UMR-106 osteosarcoma cells were determined by luciferase reporter assay and western blot analysis, respectively. Bony sclerostin expression was stimulated by estrogen deficiency and it was reversed by estradiol supplementation. When the UMR-106 cells were treated with well-known, estrogen-regulated cytokines, only TNF-{alpha}, but not IL-1 and IL-6, increased the MEF2 activity. Consistently, TNF-{alpha} also increased the nuclear MEF2 expression. Furthermore, the TNF-{alpha} blocker prevented the stimulation of bony sclerostin expression by ovariectomy. We also found that there was no difference in sclerostin expression between

  1. Restored PB1-F2 in the 2009 Pandemic H1N1 Influenza Virus Has Minimal Effects in Swine

    PubMed Central

    Pena, Lindomar; Loving, Crystal L.; Henningson, Jamie N.; Lager, Kelly M.; Lorusso, Alessio

    2012-01-01

    PB1-F2 is an 87- to 90-amino-acid-long protein expressed by certain influenza A viruses. Previous studies have shown that PB1-F2 contributes to virulence in the mouse model; however, its role in natural hosts—pigs, humans, or birds—remains largely unknown. Outbreaks of domestic pigs infected with the 2009 pandemic H1N1 influenza virus (pH1N1) have been detected worldwide. Unlike previous pandemic strains, pH1N1 viruses do not encode a functional PB1-F2 due to the presence of three stop codons resulting in premature truncation after codon 11. However, pH1N1s have the potential to acquire the full-length form of PB1-F2 through mutation or reassortment. In this study, we assessed whether restoring the full-length PB1-F2 open reading frame (ORF) in the pH1N1 background would have an effect on virus replication and virulence in pigs. Restoring the PB1-F2 ORF resulted in upregulation of viral polymerase activity at early time points in vitro and enhanced virus yields in porcine respiratory explants and in the lungs of infected pigs. There was an increase in the severity of pneumonia in pigs infected with isogenic virus expressing PB1-F2 compared to the wild-type (WT) pH1N1. The extent of microscopic pneumonia correlated with increased pulmonary levels of alpha interferon and interleukin-1β in pigs infected with pH1N1 encoding a functional PB1-F2 but only early in the infection. Together, our results indicate that PB1-F2 in the context of pH1N1 moderately modulates viral replication, lung histopathology, and local cytokine response in pigs. PMID:22379102

  2. Corticosteroids reduce IL-6 in ASM cells via up-regulation of MKP-1.

    PubMed

    Quante, Timo; Ng, Yee Ching; Ramsay, Emma E; Henness, Sheridan; Allen, Jodi C; Parmentier, Johannes; Ge, Qi; Ammit, Alaina J

    2008-08-01

    The mechanisms by which corticosteroids reduce airway inflammation are not completely understood. Traditionally, corticosteroids were thought to inhibit cytokines exclusively at the transcriptional level. Our recent evidence, obtained in airway smooth muscle (ASM), no longer supports this view. We have found that corticosteroids do not act at the transcriptional level to reduce TNF-alpha-induced IL-6 gene expression. Rather, corticosteroids inhibit TNF-alpha-induced IL-6 secretion by reducing the stability of the IL-6 mRNA transcript. TNF-alpha-induced IL-6 mRNA decays at a significantly faster rate in ASM cells pretreated with the corticosteroid dexamethasone (t(1/2) = 2.4 h), compared to vehicle (t(1/2) = 9.0 h; P < 0.05) (results are expressed as decay constants [k] [mean +/- SEM] and half-life [h]). Interestingly, the underlying mechanism of inhibition by corticosteroids is via the up-regulation of an endogenous mitogen-activated protein kinase (MAPK) inhibitor, MAPK phosphatase-1 (MKP-1). Corticosteroids rapidly up-regulate MKP-1 in a time-dependent manner (44.6 +/- 10.5-fold increase after 24 h treatment with dexamethasone; P < 0.05), and MKP-1 up-regulation was temporally related to the inhibition of TNF-alpha-induced p38 MAPK phosphorylation. Moreover, TNF-alpha acts via a p38 MAPK-dependent pathway to stabilize the IL-6 mRNA transcript (TNF-alpha, t(1/2) = 9.6 h; SB203580 + TNF-alpha, t(1/2) = 1.5 h), exogenous expression of MKP-1 significantly inhibits TNF-alpha-induced IL-6 secretion and MKP-1 siRNA reverses the inhibition of TNF-alpha-induced IL-6 secretion by dexamethasone. Taken together, these results suggest that corticosteroid-induced MKP-1 contributes to the repression of IL-6 secretion in ASM cells.

  3. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    PubMed

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  4. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    PubMed

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  5. Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri

    Highlights: Black-Right-Pointing-Pointer 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. Black-Right-Pointing-Pointer 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. Black-Right-Pointing-Pointer 1D10G down-regulates the expression of NF-{kappa}B-, AP1- or IRF3-target genes. Black-Right-Pointing-Pointer MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity thanmore » gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-{kappa}B (NF-{kappa}B) or activating protein 1 (AP1)-target genes such as tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-1{beta}, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-{beta} gene and IFN-{gamma} inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.« less

  6. Epigenetic Control of Cytokine Gene Expression: Regulation of the TNF/LT Locus and T Helper Cell Differentiation

    PubMed Central

    Falvo, James V.; Jasenosky, Luke D.; Kruidenier, Laurens; Goldfeld, Anne E.

    2014-01-01

    Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal “tails” of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The “histone code” defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages. PMID:23683942

  7. Jak2 FERM Domain Interaction with the Erythropoietin Receptor Regulates Jak2 Kinase Activity▿

    PubMed Central

    Funakoshi-Tago, Megumi; Pelletier, Stéphane; Moritake, Hiroshi; Parganas, Evan; Ihle, James N.

    2008-01-01

    Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement. PMID:18160720

  8. Characteristic cytokine generation patterns in cancer cells and infiltrating lymphocytes in oral squamous cell carcinomas and the influence of chemoradiation combined with immunotherapy on these patterns.

    PubMed

    Yamamoto, Tetsuya; Kimura, Tsuyoshi; Ueta, Eisaku; Tatemoto, Yukihiro; Osaki, Tokio

    2003-01-01

    Cytokines produced by tumor cells and tumor-infiltrating lymphocytes (TIL) appear to regulate tumor cell growth and the cytotoxic activity of TIL. The objectives of the present study were to investigate cytokine generation patterns in tumor cells and TIL and to examine the influence of cancer therapy on this cytokine production and the cytotoxic activity of TIL. We determined the levels of cytokines produced by tumor cells and TIL in vitro and measured the cytotoxic activity of TIL against Daudi cells in patients with oral squamous cell carcinoma (OSC) before and 1 week after the start of concomitant chemo-radio-immunotherapy. Before the therapy, OSC cells generated higher levels of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) than did oral keratinocytes isolated from the noninflamed gingivae of healthy individuals, but both kinds of cells generated similar levels of interleukin (IL)-1beta and IL-6. Compared with peripheral blood mononuclear cells (PBMC) of the patients, TIL produced higher levels of IL-1beta, IL-6, IL-10, TNF-alpha and TGF-beta, whereas their production of IL-12 and interferon-gamma (IFN-gamma) was only slightly higher than that in PBMC. After 1 week of therapy, the cytokine production by OSC cells had largely decreased, while the production of TNF-alpha, IFN-gamma, TGF-beta and IL-12 by TIL had increased greatly, although other cytokine levels were almost constant during the investigations. The cytotoxic activity of TIL was higher than that of PBMC before the therapy, and this activity was strongly increased by 1 week of therapy. These results suggest that the cytokine productivities of TIL and tumor cells differ from those of PBMC and normal keratinocytes, respectively, and that chemo-radio-immunotherapy modulates in situ cytokine generation, which is advantageous for inhibition of tumor cell growth and activation of TIL. Copyright 2003 S. Karger AG

  9. Measurement of the alpha4beta2* nicotinic acetylcholine receptor ligand 2-[(18)F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study.

    PubMed

    Sorger, Dietlind; Becker, Georg A; Patt, Marianne; Schildan, Andreas; Grossmann, Udo; Schliebs, Reinhard; Seese, Anita; Kendziorra, Kai; Kluge, Magnus; Brust, Peter; Mukhin, Alexey G; Sabri, Osama

    2007-04-01

    2-[(18)F]fluoro-A-85380 (2-[(18)F]FA) is a new radioligand for noninvasive imaging of alpha4beta2* nicotinic acetylcholine receptors (nAChRs) by positron emission tomography (PET) in human brain. In most cases, quantification of 2-[(18)F]FA receptor binding involves measurement of free nonmetabolized radioligand concentration in blood. This requires an efficient and reliable method to separate radioactive metabolites from the parent compound. In the present study, three analytical methods, thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and solid phase extraction (SPE) have been tested. Reversed-phase TLC of deproteinized aqueous samples of plasma provides good estimates of 2-[(18)F]FA and its metabolites. However, because of the decreased radioactivity in plasma samples, this method can be used in humans over the first 2 h after radioligand injection only. Reliable quantification of the parent radioligand and its main metabolites was obtained using reversed-phase HPLC, followed by counting of eluted fractions in a well gamma counter. Three main and five minor metabolites of 2-[(18)F]FA were detected in human blood using this method. On average, the unchanged 2-[(18)F]FA fraction in plasma of healthy volunteers measured at 14, 60, 120, 240 and 420 min after radioligand injection was 87.3+/-2.2%, 74.4+/-3%, 68.8+/-5%, 62.3+/-8% and 61.0+/-8%, respectively. In patients with neurodegenerative disorders, the values corresponding to the three last time points were significantly lower. The fraction of nonmetabolized 2-[(18)F]FA in plasma determined using SPE did not differ significantly from that obtained by HPLC (+gamma counting) (n=73, r=.95). Since SPE is less time-consuming than HPLC and provides comparable results, we conclude that SPE appears to be the most suitable method for measurement of 2-[(18)F]FA parent fraction during PET investigations.

  10. Effects of Reticuloendotheliosis Virus Infection on Cytokine Production in SPF Chickens

    PubMed Central

    Xue, Mei; Shi, Xingming; Zhao, Yan; Cui, Hongyu; Hu, Shunlei; Cui, Xianlan; Wang, Yunfeng

    2013-01-01

    Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the Retroviridae family, can result in immunosuppression and subsequent increased susceptibility to secondary infections. The effects of REV infection on expression of mRNA for cytokine genes in chickens have not been completely elucidated. In this study, using multiplex branched DNA (bDNA) technology, we identified molecular mediators that participated in the regulation of the immune response during REV infection in chickens. Cytokine and chemokine mRNA expression levels were evaluated in the peripheral blood mononuclear cells (PBMCs). Expression levels of interleukin (IL)-4, IL-10, IL-13 and tumor necrosis factor (TNF)-α were significantly up-regulated while interferon (IFN)-α, IFN-β, IFN-γ, IL-1β,IL-2, IL-3, IL-15, IL-17F, IL-18 and colony-stimulating factor (CSF)-1 were markedly decreased in PBMCs at all stages of infection. Compared with controls, REV infected chickens showed greater expression levels of IL-8 in PBMCs 21 and 28 days post infection. In addition, REV regulates host immunity as a suppressor of T cell proliferative responses. The results in this study will help us to understand the host immune response to virus pathogens. PMID:24358317

  11. Cytokine Signaling Modulates Blood-Brain Barrier Function

    PubMed Central

    Pan, Weihong; Stone, Kirsten P.; Hsuchou, Hung; Manda, Vamshi K.; Zhang, Yan; Kastin, Abba J.

    2014-01-01

    The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease. PMID:21834767

  12. Sequential changes in luminal microflora and mucosal cytokine expression during developing of colitis in HLA-B27/beta2-microglobulin transgenic rats.

    PubMed

    Hata, K; Andoh, A; Sato, H; Araki, Y; Tanaka, M; Tsujikawa, T; Fujiyama, Y; Bamba, T

    2001-11-01

    Transgenic rats expressing HLA-B27 and human beta2-microglobulin (HLA-B27 rats) spontaneously develop chronic colitis resembling human inflammatory bowel disease. We investigated the sequential changes in the luminal bacterial flora and mucosal cytokine mRNA expression in this model. HLA-B27 rats were maintained in a specific pathogen-free environment, and luminal microflora was evaluated by standard bacterial culture technique. The expression of mucosal cytokine mRNA was analysed by RT-PCR methods. Clinical symptoms of colitis appeared at 8 weeks of age. The total number of obligate anaerobes was higher than those of facultative anaerobes during the experimental period. At 6 weeks of age, the colonization of Bacteroides spp., Bifidobacterium spp. and Lactobacillus spp. was already detectable at high concentrations, whereas Clostridium spp. and Eubacterium spp. were not detected. The expression of proinflammatory cytokines (IL-Ibeta, IL-8 and TNF-alpha) appeared at 8 weeks of age, and these were detectable until 17 weeks. A similar pattern was observed in the expression of Th1 cytokines (IL-2, IL-12 and IFN-gamma). On the other hand, the expression of Th2 cytokines (IL-4, IL-10 and TGF-beta) was weak. IL-4 mRNA expression was weakly detectable only at 6 and 8 weeks of age. The expression of IL-10 and TGF-beta mRNA was scarcely detectable throughout the experimental period. The development of colitis may be mediated by both the predominant expression of Th1 cytokines and the weakness of Th2 cytokine expression in the mucosa. The colonization of anaerobic bacteria, especially Bacteroides spp., may be initiating and promoting these cytokine responses.

  13. Immunosuppressants: tools to investigate the physiological role of cytokines.

    PubMed

    Quesniaux, V F

    1993-11-01

    The cyclic peptide Cyclosporine A (CsA) is best known as the immunosuppressive drug which has revolutionized organ transplantation. It selectively suppresses T cell activation by blocking the transcription of cytokine genes such as IL-2 at the level of transcription factor modulation. The structurally unrelated immunosuppressant FK 506 acts on the same pathway and blocks cytokine gene expression. In contrast, rapamycin, a structural analogue of FK 506, interferes with the immune response at a different level, by blocking the response induced by cytokines such as IL-2. Although these drugs have been most studied for their immunosuppressive activities, it is clear that their effects on cytokine pathways extend far beyond the sole IL-2-mediated responses involved in the immune response. For instance, CsA and FK 506 inhibit the transcription of IL-3, IL-4, IFN gamma, TNF alpha or GM-CSF by activated T cells, and rapamycin has been shown to block the response to various growth factors such as IL-3, IL-4 or IL-6. Here, we recap what is known about the effects of CsA, FK 506 and rapamycin on hematopoiesis in vitro and in vivo and extrapolate on what these drugs can teach us about the physiological role of cytokines for hematopoiesis.

  14. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution

    PubMed Central

    Iglesias-Ara, A; Zenarruzabeitia, O; Buelta, L; Merino, J; Zubiaga, A M

    2015-01-01

    Tissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis. We show that pancreas atrophy in E2F1/E2F2 double-knockout (DKO) mice is associated with mitochondrial apoptosis and activation of the p53 pathway in young animals, before the development of diabetes. A deregulated expression of E2F target genes was detected in pancreatic cells of young DKO animals, along with unscheduled DNA replication and activation of a DNA damage response. Importantly, suppression of DNA replication in vivo with aphidicolin led to a significant inhibition of the p53 pathway in DKO pancreas, implying a causal link between DNA replication stress and p53 activation in this model. We further show that activation of the p53 pathway has a key role in the aberrant phenotype of DKO mice, since targeted inactivation of p53 gene abrogated cellular apoptosis and prevented organ involution and insulin-dependent diabetes in mice lacking E2F1/E2F2. Unexpectedly, p53 inactivation unmasked oncogenic features of E2F1/E2F2-depleted cells, as evidenced by an accelerated tumor development in triple-knockout mice compared with p53−/− mice. Collectively, our data reveal a role for E2F1 and E2F2 as suppressors of replicative stress in differentiating cells, and uncover the existence of a robust E2F-p53 regulatory axis to enable tissue homeostasis and prevent tumorigenesis. These findings have implications in the design of approaches targeting E2F for cancer therapy. PMID:25656653

  15. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression.

    PubMed

    Zhu, Kezhou; Liang, Wei; Ma, Zaijun; Xu, Daichao; Cao, Shuangyi; Lu, Xiaojuan; Liu, Nan; Shan, Bing; Qian, Lihui; Yuan, Junying

    2018-04-27

    Necroptosis, a form of regulated necrotic cell death, is mediated by receptor interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). However, the mechanism by which necroptosis promotes inflammation is still unclear. Here we report that the expression of cytokines is robustly upregulated in a cell-autonomous manner during necroptosis induced by tumor necrosis factor alpha (TNFα). We demonstrate that TNFα-induced necroptosis leads to two waves of cytokine production. The first wave, more transient and weaker than the second, is in response to TNFα alone; whereas the second wave depends upon the necroptotic signaling. We show that necroptosis promotes the transcription of TNFα-target genes in a cell-intrinsic manner. The activation of both NF-κB and p38 by the necroptotic machinery, RIPK1, RIPK3, and MLKL, is involved in mediating the robust induction of cytokine expression in the second wave. In contrast, necroptosis induced by direct oligomerization of MLKL promotes cytokine production at much lower levels than that of necroptosis induced with TNFα. Thus, we conclude that TNFα-induced necroptosis signaling events mediated by RIPK1 and RIPK3 activation, in addition to the MLKL oligomerization, promotes the expression of cytokines involving multiple intracellular signaling mechanisms including NF-κB pathway and p38. These findings reveal that the necroptotic cell death machinery mounts an immune response by promoting cell-autonomous production of cytokines. Our study provides insights into the mechanism by which necroptosis promotes inflammation in human diseases.

  16. Cytokine Decoy and Scavenger Receptors as Key Regulators of Immunity and Inflammation

    PubMed Central

    Bonecchi, Raffaella; Garlanda, Cecilia; Mantovani, Alberto; Riva, Federica

    2017-01-01

    IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors. PMID:27498604

  17. Activated macrophage-like THP-1 cells modulate anulus fibrosus cell production of inflammatory mediators in response to cytokines.

    PubMed

    Kim, Joo Han; Studer, Rebecca K; Sowa, Gwendolyn A; Vo, Nam Viet; Kang, James D

    2008-10-01

    Anulus fibrosus (AF) cells obtained from patients undergoing surgery were cocultured with macrophage-like cells and production of inflammatory mediators was analyzed by quantitative assay. To investigate the role of macrophages in AF cell production of inflammatory mediators by cytokines stimulation. Discogenic pain caused by anular disruption is an important cause of low back pain and recent studies show the presence of macrophages in symptomatic discs but not in normal and aging discs. We hypothesize that macrophages play a major role in development of symptomatic disc. Human AF cells were cocultured with phorbol myristate acetate stimulated macrophage-like THP-1 cells. The conditioned medium from cells cultured alone or in coculture was assayed for cytokines by Enzyme-linked immunosorbent assay and nitric oxide (NO) by the Greiss method. Using the same outcome measures, comparisons of cell response to cytokines were made among macrophage-like cells, naïve AF cells, and macrophage exposed AF cells. RESULTS.: Tumor necrosis factor (TNF)-alpha, interleukin (IL)-8, IL-6, and NO (TNF-alpha: 1.45 +/- 0.29 ng/mL, IL-8: 97.02 +/- 7.94 ng/mL, IL-6: 33.40 +/- 3.55 ng/mL, NO: 8.42 +/- 0.78 micromol/L) were secreted in much greater amounts by cells maintained in coculture compared to macrophages (TNF-alpha: 0.78 +/- 0.12 ng/mL, IL-8: 58.04 +/- 4.44 ng/mL, IL-6: 0.14 +/- 0.03 ng/mL, NO: 0.30 +/- 0.08 micromol/L) or AF cells cultured alone. In addition, IL-6 secretion from AF cells in response to TNF-alpha was up-regulated by coculture, however, IL-6 secretion in response to IL-1 beta was downregulated in a dose-dependent manner. Coculture with macrophages also up-regulated AF cell secretion of IL-8 dose-dependently and downregulated NO to TNF-alpha or IL-1beta stimulation. We conclude that exposure to macrophages, as can be expected after anular injury, can result in enhanced response to local inflammation. Although changes were observed in all inflammatory mediators after

  18. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression.

    PubMed

    Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok

    2002-11-15

    Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.

  19. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742

  20. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor {alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyunghee; Gonzalez, Frank J.; Yoon, Michung

    We investigated whether ginseng regulates lipoprotein metabolism by altering peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})-mediated pathways, using a PPAR{alpha}-null mouse model. Administration of ginseng extract, ginsenosides, and ginsenoside Rf (Rf) to wild-type mice not only significantly increased basal levels of hepatic apolipoprotein (apo) A-I and C-III mRNA compared with wild-type controls, but also substantially reversed the reductions in mRNA levels of apo A-I and C-III expected following treatment with the potent PPAR{alpha} ligand Wy14,643. In contrast, no effect was detected in the PPAR{alpha}-null mice. Testing of eight main ginsenosides on PPAR{alpha} reporter gene expression indicated that Rf was responsible for themore » effects of ginseng on lipoprotein metabolism. Furthermore, the inhibition of PPAR{alpha}-dependent transactivation by Rf seems to occur at the level of DNA binding. These results demonstrate that ginseng component Rf regulates apo A-I and C-III mRNA and the actions of Rf on lipoprotein metabolism are mediated via interactions with PPAR{alpha}.« less

  1. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems.

    PubMed

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-06-26

    Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-alpha in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-alpha and oleic acid treated cells was evaluated using flow cytometry. PPAR-gamma translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-alpha inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-alpha and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Oleic acid was found to

  2. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages.

    PubMed

    Wang, Huamin; Actor, Jeffrey K; Indrigo, Jessica; Olsen, Margaret; Dasgupta, Amitava

    2003-01-01

    Ginseng is a widely used herbal product in China, other Asian countries, and in the Unites States. There is a traditional belief that ginseng stimulates immune functions. In this study, the innate effects of Asian and Siberian ginsengs on cytokines and chemokines produced by cultured macrophages were examined. The effects of Asian and Siberian ginseng on cytokines and chemokines produced by cultured macrophages were examined. Mouse macrophages (J774A.1) were incubated with Asian or Siberian ginseng at varying concentrations (1, 10, 100, and 1000 microg/ml) for 24 h and then harvested for RNA isolation. The expression levels of IL-1beta, IL-12, TNF-alpha, MIP-1 alpha, and MIP-2 mRNA were measured by quantitative PCR. Our data showed that Asian ginseng induced a statistically significant increase in IL-12 expression at both mRNA and protein levels. However, the minor twofold increase is probably biologically insignificant. No significant increase of IL-12 by Siberian ginseng was observed at any dose level studied. No significant change in IL-1beta, IL-15, TNF-alpha, or MIP-1alpha mRNA was observed by either Asian or Siberian ginseng treatment. Our data showed statistically significant differential regulation of IL-12 by Asian ginseng. Siberian ginseng did not show a statistically significant increase. We conclude that both Asian ginseng and Siberian ginseng cannot significantly stimulate innate macrophage immune functions that influence cellular immune responses. Therefore, contrary to the popular belief, Asian and Siberian ginseng may not stimulate immune function.

  3. Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets.

    PubMed

    Pié, S; Awati, A; Vida, S; Falluel, I; Williams, B A; Oswald, I P

    2007-03-01

    There is increasing evidence showing that dietary supplementation with prebiotics can be effective in the treatment of intestinal inflammation. Because weaning time is characterized by rapid intestinal inflammation, this study investigated the effect of a diet supplemented with a combination of 4 fermentable carbohydrates (lactulose, inulin, sugarbeet pulp, and wheat starch) on the mRNA content of proinflammatory cytokines in newly weaned piglets. Cytokines (IL-1beta, IL-6, IL-8, IL-12p40, IL-18, and tumor necrosis factor-alpha) were analyzed using a semiquantitative reverse-transcription PCR technique on d 1, 4, and 10 in the ileum and colon of piglets fed either a test diet (CHO) or a control diet. In addition to the diet, the effect of enforced fasting on cytokine mRNA content was also evaluated. No effect of fasting was observed on the pro-inflammatory cytokine mRNA content. Our results showed that the CHO diet induced an up-regulation of IL-6 mRNA content in the colon of piglets 4 d postweaning. This up-regulation was specific for the animals fed the CHO diet and was not observed in animals fed the control diet. An increase in IL-1beta mRNA content was also observed on d 4 postweaning in all of the piglets. Correlations between proinflammatory cytokines and the end-products of fermentation indicated that the regulation of cytokines may be linked with some of the fermentation end-products such as branched-chain fatty acids, which are in turn end-products of protein fermentation.

  4. E2F1 somatic mutation within miRNA target site impairs gene regulation in colorectal cancer.

    PubMed

    Lopes-Ramos, Camila M; Barros, Bruna P; Koyama, Fernanda C; Carpinetti, Paola A; Pezuk, Julia; Doimo, Nayara T S; Habr-Gama, Angelita; Perez, Rodrigo O; Parmigiani, Raphael B

    2017-01-01

    Genetic studies have largely concentrated on the impact of somatic mutations found in coding regions, and have neglected mutations outside of these. However, 3' untranslated regions (3' UTR) mutations can also disrupt or create miRNA target sites, and trigger oncogene activation or tumor suppressor inactivation. We used next-generation sequencing to widely screen for genetic alterations within predicted miRNA target sites of oncogenes associated with colorectal cancer, and evaluated the functional impact of a new somatic mutation. Target sequencing of 47 genes was performed for 29 primary colorectal tumor samples. For 71 independent samples, Sanger methodology was used to screen for E2F1 mutations in miRNA predicted target sites, and the functional impact of these mutations was evaluated by luciferase reporter assays. We identified germline and somatic alterations in E2F1. Of the 100 samples evaluated, 3 had germline alterations at the MIR205-5p target site, while one had a somatic mutation at MIR136-5p target site. E2F1 gene expression was similar between normal and tumor tissues bearing the germline alteration; however, expression was increased 4-fold in tumor tissue that harbored a somatic mutation compared to that in normal tissue. Luciferase reporter assays revealed both germline and somatic alterations increased E2F1 activity relative to wild-type E2F1. We demonstrated that somatic mutation within E2F1:MIR136-5p target site impairs miRNA-mediated regulation and leads to increased gene activity. We conclude that somatic mutations that disrupt miRNA target sites have the potential to impact gene regulation, highlighting an important mechanism of oncogene activation.

  5. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes.

    PubMed

    Chang, Wing Y; Andrews, Joseph; Carter, David E; Dagnino, Lina

    2006-08-01

    E2F transcription factors are central to epidermal morphogenesis and regeneration after injury. The precise nature of E2F target genes involved in epidermal formation and repair has yet to be determined. Identification of these genes is essential to understand how E2F proteins regulate fundamental aspects of epidermal homeostasis and transformation. We have conducted a genome-wide screen using CpG island microarray analysis to identify novel promoters bound by E2F3 and E2F5 in human keratinocytes. We further characterized several of these genes, and determined that multiple E2F and retinoblastoma (pRb) family proteins associate with them in exponentially proliferating cells. We also assessed the effect on E2F and pRb binding to those genes in response to differentiation induced by bone morphogenetic protein-6 (BMP-6), or to activation of repair mechanisms induced by transforming growth factor-beta (TGF-beta). These studies demonstrate promoter- and cytokine-specific changes in binding profiles of E2F and/or pRb family proteins. For example, E2F1, 3, 4 and p107 were recruited to the N-myc promoter in cells treated with BMP-6, whereas E2F1, 3, 4, 5, p107 and p130 were bound to this promoter in the presence of TGF-beta. Functionally, these different interactions resulted in transcriptional repression by BMP-6 and TGF-beta of the N-myc gene, via mechanisms that involved E2F binding to the promoter and association with pRb-family proteins. Thus, multiple combinations of E2F and pRb family proteins may associate with and transcriptionally regulate a given target promoter in response to differentiation and injury-repair stimuli in epidermal keratinocytes.

  6. In situ changes in the relative abundance of human epidermal cytokine messenger RNA levels following exposure to the poison ivy/oak contact allergen urushiol.

    PubMed

    Boehm, K D; Yun, J K; Strohl, K P; Trefzer, U; Häffner, A; Elmets, C A

    1996-06-01

    Abstract: Epidermal keratinocytes in culture have been shown to produce many cytokines, and their proteins have been identified in skin tissue samples. It has therefore been assumed that these cytokines are transcribed in vivo by the epidermis in response to contact allergens. In this report, in situ hybridization was used to detect the messenger RNAs for interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta) and tumour necrosis factor-alpha (TNF-alpha) in samples of human skin prior to and at various times after application of urushiol, the immunogenic component of poison ivy/oak. In sensitive subjects, IL-1 alpha and TNF-alpha mRNAs showed a progressive increase in transcript levels that paralleled the clinical and histological features of the inflammatory process. The time-course of the IL-1 beta response differed from that of IL-1 alpha and TNF-alpha, in that there was an early (by 6 h after urushiol administration) elevation in IL-1 beta mRNA that occurred before there was evidence of inflammation and had returned to background levels by 72 h when the reaction had reached its peak. In contrast to urushiol-sensitive subjects, urushiol-anergic individuals did not exhibit an increase in IL-1 alpha, IL-1 beta or TNF-alpha mRNA levels. The data provide evidence for an in vivo role for epidermal IL-1 alpha, IL-1 beta and TNF-alpha transcription in the regulation of IL-1 beta and TNF-alpha polypeptide levels in the epidermis in response to this common contact allergen.

  7. Profile of peripheral blood neutrophil cytokines in diabetes type 1 pregnant women and its correlation with selected parameters in the newborns.

    PubMed

    Pertyńska-Marczewska, Magdalena; Głowacka, Ewa; Grodzicka, Alicja; Sobczak, Małgorzata; Cypryk, Katarzyna; Wilczyński, Jacek R; Wilczyński, Jan

    2010-02-01

    Interleukin (IL)-12, IL-10, tumor necrosis factor-alpha (TNF-alpha), IL-6 and IL-8 alter as pregnancy progresses, implying continuous immune regulation associated with the maintenance of pregnancy. We aimed to evaluate the peripheral blood neutrophil-derived production of these cytokines in the course of pregnancy complicated by type 1 diabetes. of study These parameters were measured in samples from healthy non-pregnant (C), diabetic non-pregnant (D), healthy pregnant (P) and pregnant diabetic (PD) women. Neutrophil-derived secretion of TNF-alpha and IL-12 increased along with progression of pregnancy in PD and P groups. The concentration of IL-10 from lipopolysaccharide (LPS)-stimulated neutrophils increased during the course of uncomplicated pregnancy but decreased in diabetic pregnancy. Concentration of IL-8 decreased with the advancing gestational age in P and PD groups. LPS-stimulated neutrophil-derived IL-6 concentration increased only in PD patients. Our results show that diabetes creates pro-inflammatory environment thus potentially influencing the outcome of pregnancy. We conclude that neutrophil-derived cytokine production could contribute to the complications seen in pregnant women with type 1 diabetes.

  8. Hydrogen bonds between the alpha and beta subunits of the F1-ATPase allow communication between the catalytic site and the interface of the beta catch loop and the gamma subunit.

    PubMed

    Boltz, Kathryn W; Frasch, Wayne D

    2006-09-19

    F(1)-ATPase mutations in Escherichia coli that changed the strength of hydrogen bonds between the alpha and beta subunits in a location that links the catalytic site to the interface between the beta catch loop and the gamma subunit were examined. Loss of the ability to form the hydrogen bonds involving alphaS337, betaD301, and alphaD335 lowered the k(cat) of ATPase and decreased its susceptibility to Mg(2+)-ADP-AlF(n) inhibition, while mutations that maintain or strengthen these bonds increased the susceptibility to Mg(2+)-ADP-AlF(n) inhibition and lowered the k(cat) of ATPase. These data suggest that hydrogen bonds connecting alphaS337 to betaD301 and betaR323 and connecting alphaD335 to alphaS337 are important to transition state stabilization and catalytic function that may result from the proper alignment of catalytic site residues betaR182 and alphaR376 through the VISIT sequence (alpha344-348). Mutations betaD301E, betaR323K, and alphaR282Q changed the rate-limiting step of the reaction as determined by an isokinetic plot. Hydrophobic mutations of betaR323 decreased the susceptibility to Mg(2+)-ADP-AlF(n)() inhibition and lowered the number of interactions required in the rate-limiting step yet did not affect the k(cat) of ATPase, suggesting that betaR323 is important to transition state formation. The decreased rate of ATP synthase-dependent growth and decreased level of lactate-dependent quenching observed with alphaD335, betaD301, and alphaE283 mutations suggest that these residues may be important to the formation of an alternative set of hydrogen bonds at the interface of the alpha and beta subunits that permits the release of intersubunit bonds upon the binding of ATP, allowing gamma rotation in the escapement mechanism.

  9. Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.

    PubMed

    Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M

    2004-05-01

    E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.

  10. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent

  11. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  12. HER2 signaling drives DNA anabolism and proliferation through SRC-3 phosphorylation and E2F1-regulated genes

    PubMed Central

    Nikolai, Bryan C.; Lanz, Rainer B.; York, Brian; Dasgupta, Subhamoy; Mitsiades, Nicholas; Creighton, Chad J.; Tsimelzon, Anna; Hilsenbeck, Susan G.; Lonard, David M.; Smith, Carolyn L.; O’Malley, Bert W.

    2016-01-01

    Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2+ tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. While the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor Palbociclib, defines overlap and divergence of adjuvant pharmacological targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacological combinations in pre-clinical models of adjuvant treatment and therapeutic resistance. PMID:26833126

  13. Detoxified pneumolysin derivative Plym2 directly protects against pneumococcal infection via induction of inflammatory cytokines.

    PubMed

    Lu, Jingcai; Sun, Tianxu; Hou, Hongjia; Xu, Man; Gu, Tiejun; Dong, Yunliang; Wang, Dandan; Chen, Pinxu; Wu, Chunlai; Liang, Chunshu; Sun, Shiyang; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2014-01-01

    Streptococcus pneumoniae is a major cause of infectious disease and complications worldwide, such as pneumonia, otitis media, bacteremia and meningitis. New generation protein-based pneumococcal vaccines are recognized as alternative vaccine candidates. Pneumolysin (Ply) is a cholesterol-dependent cytolysin produced by all clinical isolates of S. pneumoniae. Our research group previously developed a highly detoxified Ply mutant designated Plym2 by replacement of two animo acids (C428G and W433F). Exhibiting undetectable levels of cytotoxicity, Plym2 could still elicit high titer neutralizing antibodies against the native toxin. However, evaluation of the active immunoprotective effects of Plym2 by subcutaneous immunization and lethal challenge with S. pneumoniae in mice did not yield favorable results. In the present work, we confirmed the previous observations by using passive immunization and systemic challenge. Results of the passive immunization were consistent with those of active immunization. Further experiments were conducted to explain the inability of high titer neutralizing antibodies against Ply to protect mice from S. pneumoniae challenge. Pneumococcal Ply is known to be the major factor responsible for the induction of inflammation that benefits the host. Proinflammatory cytokines facilitate the clearance of invaders by the recruitment and activation of leukocytes at the early infection stage. We demonstrated that Plym2 could induce proinflammatory cytokines similarly to wild-type Ply. A systemic infection model was used to clarify that Plym2 lacking cytolytic activity could protect mice from intraperitoneal challenge directly, while antibodies to the mutant had no effect. Therefore, the protective function of Plym2 may be due to its induction of proinflammatory cytokines. When used in the systemic infection model, Plym2 antibodies may block the induction of proinflammatory cytokines by Ply. These findings demonstrate that a Ply-based vaccine would

  14. Cytokine ratios in chronic periodontitis and type 2 diabetes mellitus.

    PubMed

    Acharya, Anirudh B; Thakur, Srinath; Muddapur, M V; Kulkarni, Raghavendra D

    Chronic periodontitis may influence systemic cytokines in type 2 diabetes. This study aimed to evaluate the cytokine ratios in type 2 diabetes with, and without chronic periodontitis. Gingival status, periodontal, glycemic parameters and serum cytokines were evaluated in participants grouped as healthy, chronic periodontitis, and type 2 diabetes with, and without chronic periodontitis. Cytokine ratios showed significant differences in type 2 diabetes and chronic periodontitis, were highest in participants having both type 2 diabetes and chronic periodontitis, with a statistically significant cut-off point and area under curve by receiver operating characteristic. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  15. The impact of dydrogesterone supplementation on serum cytokine profile in women with threatened abortion.

    PubMed

    Kalinka, Jarosław; Radwan, Michał

    2006-02-01

    The role of increased Th1 cytokine expression in pregnancy failure has been questioned recently. The therapeutic value of progestogens in threatened abortion (TA) is still debated. The aim of this prospective study was to compare serum cytokine [tumor necrosis factor (TNF)-alpha, interleukin (IL)-12 and IL-10] concentrations in women with TA to those in women with normal pregnancy and to evaluate the impact of dydrogesterone supplementation in the former group on cytokine concentration. Twenty-seven threatened aborters were treated for 10 days with dydrogesterone (30-40 mg/day). Sixteen healthy pregnant controls received no treatment. Serum cytokine concentrations were measured twice in both groups by enzyme-linked immunosorbent assay. Mean serum concentrations of Th1- and Th2-type cytokines in women with TA did not differ from those in women with normal pregnancy at first and second sampling. After dydrogesterone supplementation, mean TNF-alpha/IL-10 ratio changed from 1.08 to 1.75 while IL-12/IL-10 ratio remained almost the same (0.56-0.61) in the threatened aborters group and did not differ from those in healthy women. The results of this study indicate that peripheral cytokine production in threatened aborters does not differ from that observed among healthy pregnant women. The protective effect of dydrogesterone supplementation in threatened aborters is manifested via restoring progesterone-induced blocking factor concentration rather than controlling cytokine production.

  16. Lack of soluble tumor necrosis factor alpha receptor 1 and 2 and interleukin-1beta compartmentalization in lungs of mice after a single intratracheal inoculation with live Porphyromonas gingivalis.

    PubMed

    Nemec, Ana; Pavlica, Zlatko; Svete, Alenka Nemec; Erzen, Damijan; Crossley, David A; Petelin, Milan

    2009-09-01

    Porphyromonas gingivalis aspiration pneumonia induces local and systemic cytokine responses, but the dynamic of the immune response following lung exposure to live P. gingivalis is poorly understood. Groups of 50 12-week-old male BALB/c mice were inoculated intratracheally with live P. gingivalis ATCC 33277 using low dose (2 x 10(5) colony-forming units [CFU]), high dose (2.9 x 10(9) CFU), or phosphate-buffered saline (PBS; sham-inoculated), and the 3 groups were sacrificed at 2, 6, 24, 72, 168 hours. Lung and serum samples were collected for tumor necrosis factor alpha (TNF-alpha), soluble TNF-alpha receptors (sTNFRs), interleukin (IL)-1beta, and IL-6 analysis and lung histology. Pneumonia, only observed in the high-dose group, was associated with an early increase in lung TNF-alpha, IL-1beta, and IL-6, whereas no significant changes were observed in lung sTNFRs. Serum sTNFRs were significantly increased in high-dose animals at all times. IL-1beta elevation occurred earlier in serum than in lungs. IL-1beta was also significantly elevated in serum from low-dose animals at 6 hours. Serum IL-6 and sTNFRs remained raised at 7 days, whereas all other measured cytokines returned to basal levels with resolution of pneumonia. Development of pneumonia is dependent on the P. gingivalis dose; however, part of the cytokine response is unique to the systemic compartment, even in animals that do not develop pneumonia.

  17. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomicsmore » screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.« less

  18. The 193-base pair Gsg2 (haspin) promoter region regulates germ cell-specific expression bidirectionally and synchronously.

    PubMed

    Tokuhiro, Keizo; Miyagawa, Yasushi; Yamada, Shuichi; Hirose, Mika; Ohta, Hiroshi; Nishimune, Yoshitake; Tanaka, Hiromitsu

    2007-03-01

    Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.

  19. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription.

    PubMed

    Cavadini, Gionata; Petrzilka, Saskia; Kohler, Philipp; Jud, Corinne; Tobler, Irene; Birchler, Thomas; Fontana, Adriano

    2007-07-31

    Production of TNF-alpha and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-alpha and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-alpha on the circadian timing system. TNF-alpha is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-alpha on clock genes is shared by IL-1beta, but not by IFN-alpha, and IL-6. Furthermore, TNF-alpha interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-alpha is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-alpha and IL-1beta, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.

  20. Cyanidin-3-glucoside suppresses Th2 cytokines and GATA-3 transcription factor in EL-4 T cells.

    PubMed

    Pyo, Myoung Yun; Yoon, Soo Jeong; Yu, Yeonsil; Park, Sunyoung; Jin, Mirim

    2014-01-01

    Allergic disease is dominated by Th2 immune responses. Interleukin (IL)-4 and IL-13, representative Th2 cytokines, play pivotal roles in the pathogenic activation of the Th2 immune response. In this study, we found that cyanidin-3-glucoside chloride (C3G), an anthocyanin suppressed IL-4 and IL-13 produced in activated EL-4 T cells but not Th1 cytokines including IL-2, interferon-γ, or IL-12. IL-4 and IL-13 mRNA levels and luciferase activation in cells transiently transfected with IL-4 and IL-13 promoter reporter plasmids were significantly inhibited by C3G, suggesting that suppression might be, at least in part, regulated at the transcriptional level. Data from western blot and reverse transcription-polymerase chain reaction analyses of transcription factors involved in cytokine expression suggested that expression of GATA-3, but not T-bet, was downregulated in the nucleus by C3G. Taken together, our data indicate that C3G may has potential as an anti-allergic agent suppressing Th2 activation by downregulating Th2 cytokines and the GATA3 transcription factor in allergies.

  1. The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha.

    PubMed

    Gort, E H; van Haaften, G; Verlaan, I; Groot, A J; Plasterk, R H A; Shvarts, A; Suijkerbuijk, K P M; van Laar, T; van der Wall, E; Raman, V; van Diest, P J; Tijsterman, M; Vooijs, M

    2008-03-06

    Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that play a crucial role in oxygen homeostasis. Intratumoral hypoxia and genetic alterations lead to HIF activity, which is a hallmark of solid cancer and is associated with poor clinical outcome. HIF activity is regulated by an evolutionary conserved mechanism involving oxygen-dependent HIFalpha protein degradation. To identify novel components of the HIF pathway, we performed a genome-wide RNA interference screen in Caenorhabditis elegans, to suppress HIF-dependent phenotypes, like egg-laying defects and hypoxia survival. In addition to hif-1 (HIFalpha) and aha-1 (HIFbeta), we identified hlh-8, gska-3 and spe-8. The hlh-8 gene is homologous to the human oncogene TWIST1. We show that TWIST1 expression in human cancer cells is enhanced by hypoxia in a HIF-2alpha-dependent manner. Furthermore, intronic hypoxia response elements of TWIST1 are regulated by HIF-2alpha, but not HIF-1alpha. These results identify TWIST1 as a direct target gene of HIF-2alpha, which may provide insight into the acquired metastatic capacity of hypoxic tumors.

  2. Transcriptional regulation of human retinoic acid receptor-alpha (RAR-{alpha}) by Wilms` tumour gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodyer, P.R.; Torban, E.; Dehbi, M.

    1994-09-01

    The Wilms` tumor gene encodes a 47-49 kDa transcription factor expressed in kidney, gonads and mesothelium during embryogenesis. Inherited mutations of WT1 lead to aberrant urogenital development and Wilms` tumor, but the role of WT1 in development is not fully understood. Since the human RAR-{alpha} gene contains a potential WT1 binding site at its 5{prime} end, we studied the effect of WT1 co-transfection on expression of an RAR-{alpha} promoter/CAT reporter construct in COS cells. COS cells were plated at 5X10{sup 5} cells/dish in DMEM with 10% FBS and transfected by the Ca/PO4 method with an expression plasmid containing the full-lengthmore » WT1 (-/-) cDNA under the control of the CMV promoter, plasmid containing the RAR-{alpha} promoter (-519 to +36)/CAT reporter and TK/growth hormone plasmid to control for efficiency of transfection. CAT/GH activity at 48 hours was inhibited by co-transfection with increasing amounts of WT1 (-/-); maximum inhibition = 5% of control. WT1 co-transfection did not affect expression of TKGH, nor of a CMV-CAT vector. Expression of WT1 protein in tranfected COS cells was demonstrated by Western blotting. Minimal inhibiton of RAR-{alpha}/CAT activity was seen when cells were co-transfected with vectors containing WT1 deletion mutants, alternate WT1 splicing variants, or WT1 (-/-) cDNA bearing a mutation identified in a patient with Drash syndrome. Gel shift assays indicated binding of WT1 to RAR-{alpha} cDNA but not to an RAR-{alpha} deletion mutant lacking the GCGGGGGGCG site. These observations suggest that WT1 may function to regulate RAR-{alpha} expression during normal development.« less

  3. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury.

    PubMed

    Yue, Tian-li; Bao, Weike; Jucker, Beat M; Gu, Juan-li; Romanic, Anne M; Brown, Peter J; Cui, Jianqi; Thudium, Douglas T; Boyce, Rogely; Burns-Kurtis, Cynthia L; Mirabile, Rosanna C; Aravindhan, Karpagam; Ohlstein, Eliot H

    2003-11-11

    Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is expressed in the heart and regulates genes involved in myocardial fatty acid oxidation (FAO). The role of PPAR-alpha in acute ischemia/reperfusion myocardial injury remains unclear. The coronary arteries of male mice were ligated for 30 minutes. After reperfusion for 24 hours, ischemic and infarct sizes were determined. A highly selective and potent PPAR-alpha agonist, GW7647, was administered by mouth for 2 days, and the third dose was given 1 hour before ischemia. GW7647 at 1 and 3 mg x kg(-1) x d(-1) reduced infarct size by 28% and 35%, respectively (P<0.01), and myocardial contractile dysfunction was also improved. Cardioprotection by GW7647 was completely abolished in PPAR-alpha-null mice. Ischemia/reperfusion downregulated mRNA expression of cardiac PPAR-alpha and FAO enzyme genes, decreased myocardial FAO enzyme activity and in vivo cardiac fat oxidation, and increased serum levels of free fatty acids. All of these changes were reversed by GW7647. Moreover, GW7647 attenuated ischemia/reperfusion-induced release of multiple proinflammatory cytokines and inhibited neutrophil accumulation and myocardial expression of matrix metalloproteinases-9 and -2. Furthermore, GW7647 inhibited nuclear factor-kappaB activation in the heart, accompanied by enhanced levels of inhibitor-kappaBalpha. Activation of PPAR-alpha protected the heart from reperfusion injury. This cardioprotection might be mediated through metabolic and antiinflammatory mechanisms. This novel effect of the PPAR-alpha agonist could provide an added benefit to patients treated with PPAR-alpha activators for dyslipidemia.

  4. F-box only protein 2 (Fbxo2) regulates amyloid precursor protein levels and processing.

    PubMed

    Atkin, Graham; Hunt, Jack; Minakawa, Eiko; Sharkey, Lisa; Tipper, Nathan; Tennant, William; Paulson, Henry L

    2014-03-07

    The amyloid precursor protein (APP) is an integral membrane glycoprotein whose cleavage products, particularly amyloid-β, accumulate in Alzheimer disease (AD). APP is present at synapses and is thought to play a role in both the formation and plasticity of these critical neuronal structures. Despite the central role suggested for APP in AD pathogenesis, the mechanisms regulating APP in neurons and its processing into cleavage products remain incompletely understood. F-box only protein 2 (Fbxo2), a neuron-enriched ubiquitin ligase substrate adaptor that preferentially binds high-mannose glycans on glycoproteins, was previously implicated in APP processing by facilitating the degradation of the APP-cleaving β-secretase, β-site APP-cleaving enzyme. Here, we sought to determine whether Fbxo2 plays a similar role for other glycoproteins in the amyloid processing pathway. We present in vitro and in vivo evidence that APP is itself a substrate for Fbxo2. APP levels were decreased in the presence of Fbxo2 in non-neuronal cells, and increased in both cultured hippocampal neurons and brain tissue from Fbxo2 knock-out mice. The processing of APP into its cleavage products was also increased in hippocampi and cultured hippocampal neurons lacking Fbxo2. In hippocampal slices, this increase in cleavage products was accompanied by a significant reduction in APP at the cell surface. Taken together, these results suggest that Fbxo2 regulates APP levels and processing in the brain and may play a role in modulating AD pathogenesis.

  5. AlphaB-crystallin regulates remyelination after peripheral nerve injury

    PubMed Central

    Lim, Erin-Mai F.; Nakanishi, Stan T.; Hoghooghi, Vahid; Eaton, Shane E. A.; Palmer, Alexandra L.; Frederick, Ariana; Stratton, Jo A.; Stykel, Morgan G.; Zochodne, Douglas W.; Biernaskie, Jeffrey; Ousman, Shalina S.

    2017-01-01

    AlphaB-crystallin (αBC) is a small heat shock protein that is constitutively expressed by peripheral nervous system (PNS) axons and Schwann cells. To determine what role this crystallin plays after peripheral nerve damage, we found that loss of αBC impaired remyelination, which correlated with a reduced presence of myelinating Schwann cells and increased numbers of nonmyelinating Schwann cells. The heat shock protein also seems to regulate the cross-talk between Schwann cells and axons, because expected changes in neuregulin levels and ErbB2 receptor expression after PNS injury were disrupted in the absence of αBC. Such dysregulations led to defects in conduction velocity and motor and sensory functions that could be rescued with therapeutic application of the heat shock protein in vivo. Altogether, these findings show that αBC plays an important role in regulating Wallerian degeneration and remyelination after PNS injury. PMID:28137843

  6. Th2 cytokine antagonists: potential treatments for severe asthma.

    PubMed

    Hansbro, Philip M; Scott, Grace V; Essilfie, Ama-Tawiah; Kim, Richard Y; Starkey, Malcolm R; Nguyen, Duc H; Allen, Paul D; Kaiko, Gerard E; Yang, Ming; Horvat, Jay C; Foster, Paul S

    2013-01-01

    Asthma is a major disease burden worldwide. Treatment with steroids and long acting β-agonists effectively manage symptoms in many patients but do not treat the underlying cause of disease and have serious side effects when used long term and in children. Therapies targeting the underlying causes of asthma are urgently needed. T helper type 2 (Th2) cells and the cytokines they release are clinically linked to the presentation of all forms of asthma. They are the primary drivers of mild to moderate and allergic asthma. They also play a pathogenetic role in exacerbations and more severe asthma though other factors are also involved. Much effort using animal models and human studies has been dedicated to the identification of the pathogenetic roles of these cells and cytokines and whether inhibition of their activity has therapeutic benefit in asthma. We discuss the current status of Th2 cytokine antagonists for the treatment of asthma. We also discuss the potential for targeting Th2-inducing cytokines, Th2 cell receptors and signaling as well as the use of Th2 cell antagonists, small interfering oligonucleotides, microRNAs, and combination therapies. Th2 antagonists may be most effective in particular asthma subtypes/endotypes where specific cytokines are known to be active through the analysis of biomarkers. Targeting common receptors and pathways used by these cytokines may have additional benefit. Animal models have been valuable in identifying therapeutic targets in asthma, however the results from such studies need to be carefully interpreted and applied to appropriately stratified patient cohorts in well-designed clinical studies and trials.

  7. Ameliorating effect of Kalpaamruthaa, a Siddha preparation in adjuvant induced arthritis in rats with reference to changes in proinflammatory cytokines and acute phase proteins.

    PubMed

    Mythilypriya, Rajendran; Sachdanandam, Palanivelu Shanthi; Sachdanandam, Panchanadam

    2009-05-15

    As disease initiation and propagation still represents a research question in rheumatoid arthritis (RA), the cytokines play a central role in the inflammatory articular process including the synovial proliferation and cartilage destruction in RA and understanding the role of these cytokines in turn exploits them as therapeutic targets in RA. The present study illustrates the beneficial outcome of the Siddha drug Kalpaamruthaa (KA) in reducing the pathological lesions caused by the proinflammatory cytokines in adjuvant induced arthritis (AIA) in rats. KA consists of Semecarpus anacardium nut milk extract (SA), dried powder of Emblica officinalis fruit and honey. Both SA and KA were administered at dose of 150 mg/kg b.wt. for 14 days after 14 days of adjuvant injection in rats. The protein expressions of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), the levels of acute phase proteins, immunoglobulins and the radiological, histopathological and electron microscopical changes in control and experimental animals were analyzed. Both SA and KA significantly regulated the inflammation in arthritic joints by reducing extracellular matrix degradation and cartilage and bone destruction via down regulating the levels of TNF-alpha and IL-1beta, as well the levels of acute phase proteins with appreciable increase in the levels of immunoglobulins in arthritic rats. Of both the drugs KA exhibited a profound effect than sole treatment of SA and the enhanced effect of KA might be attributed to the combined effect of the flavonoids, tannins, vitamin C and other phytoconstituents present in the drug.

  8. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    PubMed

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p < 0.05), increased the number of positive proliferating cell nuclear antigen (PCNA + ) cells and concentrations of glutathione peroxidase (GSH-Px) and phosphorylated extracellular signal-regulated kinase (p-ERK) (p < 0.05), and promoted mRNA expression of PCNA and ERK1/2 in thymocytes (p < 0.05). However, the number of caspase-3 + cells and the expression level of caspase-3 mRNA were reduced (p < 0.05). Supplementation with 40, 80, and 160 mg/L boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p < 0.05). Our study showed that supplementation of various doses of boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic

  9. Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis

    PubMed Central

    Lin, Xue; Chang, Ying; Liu, Jing; Zhou, Rui; Nie, Jia-Yan; Dong, Wei-Guo; Zhao, Qiu; Li, Jin

    2017-01-01

    The role of intestinal lamina propria (LP) NKG2D+ NK cells is unclear in regulating Th1/Th2 balance in ulcerative colitis (UC). In this study, we investigated the frequency of LP NKG2D+ NK cells in DSS-induced colitis model and intestinal mucosal samples of UC patients, as well as the secretion of Th1/Th2/Th17 cytokines in NK cell lines after MICA stimulation. The role of Th1 cytokines in UC was validated by bioinformatics analysis. We found that DSS-induced colitis in mice was characterized by a Th2-mediated process. In acute phrase, the frequency of LP NKG2D+ lymphocytes increased significantly and decreased in remission, while the frequency of LP NKG2D+ NK cells decreased significantly in acute phase and increased in remission. No obvious change was found in the frequency of total LP NK cells. Similarly, severe UC patients had a higher expression of mucosal NKG2D and a lower number of NKG2D+ NK cells than mild to moderate UC. In NK cell lines, the MICA stimulation could induce a predominant secretion of Th1 cytokines (TNF, IFN-γ). Furthermore, in bioinformatics analysis, mucosal Th1 cytokine of TNF, showed a double-edged role in UC when compared to the Th1-mediated disease of Crohn's colitis. In conclusion, LP NKG2D+ NK cells partially played a regulatory role in UC through secreting Th1 cytokines to regulate the Th2-predominant Th1/Th2 imbalance, despite of the concomitant pro-inflammatory effects of Th1 cytokines. PMID:29228739

  10. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response.

    PubMed

    Pang, Xiuhua; Samten, Buka; Cao, Guangxiang; Wang, Xisheng; Tvinnereim, Amy R; Chen, Xiu-Lan; Howard, Susan T

    2013-01-01

    The ESX-1 secretion system exports the immunomodulatory protein ESAT-6 and other proteins important in the pathogenesis of Mycobacterium tuberculosis. Components and substrates of ESX-1 are encoded at several loci, but the regulation of the encoding genes is only partially understood. In this study, we investigated the role of the MprAB two-component system in the regulation of ESX-1 activity. We determined that MprAB directly regulates the espA gene cluster, a locus necessary for ESX-1 function. Transcript mapping determined that the five genes in the cluster form an operon with two transcriptional start points, and several MprA binding sites were detected in the espA promoter. Expression analyses and promoter constructs indicated that MprAB represses the espA operon. However, the MprAB mutant Rv-D981 secreted lower levels of EspA, ESAT-6, and the ESX-1 substrate EspB than control strains. Secretion of CFP10, which is normally cosecreted with ESAT-6, was similar in Rv-D981 and control strains, further demonstrating aberrant ESX-1 activity in the mutant. ESAT-6 induces proinflammatory cytokines, and macrophages infected with Rv-D981 elicited lower levels of interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), consistent with the reduced levels of ESAT-6. These findings indicate that MprAB modulates ESX-1 function and reveal a new role for MprAB in host-pathogen interactions.

  11. Cytokines in Drosophila immunity.

    PubMed

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  12. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  13. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes.

    PubMed

    Grecco, Ana Carolina P; Paula, Rosemeire F O; Mizutani, Erica; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Peterlevitz, Alfredo C; Farias, Alessandro S; Ceragioli, Helder J; Santos, Leonilda M B; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  14. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J

    2013-08-01

    The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.

  15. Crystal structure and magnetic properties of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' containing residual {alpha}-Fe prepared by low-temperature ammonia nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, S.; Masubuchi, Y.; Nakazawa, Y.

    2012-10-15

    Slight enhancement of saturation magnetization to 219 A m{sup 2} kg{sup -1} was observed from 199 A m{sup 2} kg{sup -1} for the original {alpha}-Fe on the intermediate nitrided mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' with residual {alpha}-Fe among the low temperature ammonia nitridation products under 5 T magnetic field at room temperature. The value changed not linearly against the yield as had been expected. Crystal structure refinement indicated that the phase similar to {alpha} Prime Prime -Fe{sub 16}N{sub 2} had deviations on its lattice constants and positional parameters, compared to previously reported values for {alpha} Prime Primemore » -Fe{sub 16}N{sub 2}. Spin-polarized total energy calculations were performed using the projector-augmented wave method as implemented in the Vienna ab-initio simulation package (VASP) to calculate magnetic moment on the refined crystal structure of the intermediate '{alpha} Prime Prime -Fe{sub 16}N{sub 2}'. The calculations supported the observed magnetization enhancement in the intermediate nitridation product. - Graphical abstract: Crystal structural parameters slightly change in the intermediate nitrided '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' from those in {alpha} Prime Prime -Fe{sub 16}N{sub 2} to show the magnetization maxima in the mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' and the residual {alpha}-F. Highlights: Black-Right-Pointing-Pointer Larger magnetization was observed than the value of Fe{sub 16}N{sub 2} on its intermediate nitrided mixture with residual {alpha}-Fe. Black-Right-Pointing-Pointer The enhancement was related to the crystal structural deviation from Fe{sub 16}N{sub 2} on the intermediate nitride. Black-Right-Pointing-Pointer It was supported by spin-polarized total energy calculation using the deviated structure.« less

  16. Repetitive intradermal bleomycin injections evoke T-helper cell 2 cytokine-driven pulmonary fibrosis.

    PubMed

    Singh, Brijendra; Kasam, Rajesh K; Sontake, Vishwaraj; Wynn, Thomas A; Madala, Satish K

    2017-11-01

    IL-4 and IL-13 are major T-helper cell (Th) 2 cytokines implicated in the pathogenesis of several lung diseases, including pulmonary fibrosis. In this study, using a novel repetitive intradermal bleomycin model in which mice develop extensive lung fibrosis and a progressive decline in lung function compared with saline-treated control mice, we investigated profibrotic functions of Th2 cytokines. To determine the role of IL-13 signaling in the pathogenesis of bleomycin-induced pulmonary fibrosis, wild-type, IL-13, and IL-4Rα-deficient mice were treated with bleomycin, and lungs were assessed for changes in lung function and pulmonary fibrosis. Histological staining and lung function measurements demonstrated that collagen deposition and lung function decline were attenuated in mice deficient in either IL-13 or IL-4Rα-driven signaling compared with wild-type mice treated with bleomycin. Furthermore, our results demonstrated that IL-13 and IL-4Rα-driven signaling are involved in excessive migration of macrophages and fibroblasts. Notably, our findings demonstrated that IL-13-driven migration involves increased phospho-focal adhesion kinase signaling and F-actin polymerization. Importantly, in vivo findings demonstrated that IL-13 augments matrix metalloproteinase (MMP)-2 and MMP9 activity that has also been shown to increase migration and invasiveness of fibroblasts in the lungs during bleomycin-induced pulmonary fibrosis. Together, our findings demonstrate a pathogenic role for Th2-cytokine signaling that includes excessive migration and protease activity involved in severe fibrotic lung disease.

  17. Eosinophils Reduce Chronic Inflammation in Adipose Tissue by Secreting Th2 Cytokines and Promoting M2 Macrophages Polarization.

    PubMed

    Zhang, Yi; Yang, Peng; Cui, Ran; Zhang, Manna; Li, Hong; Qian, Chunhua; Sheng, Chunjun; Qu, Shen; Bu, Le

    2015-01-01

    Obesity is now recognized as a low-grade, chronic inflammatory disease that is linked to a myriad of disorders including cardiovascular diseases, type 2 diabetes, and liver diseases. Recently it is found that eosinophils accelerate alternative activation macrophage (AAM) polarization by secreting Th2 type cytokines such as interleukin-4 and interleukin-13, thereby reducing metainflammation in adipose tissue. In this review, we focused on the role of eosinophils in regulating metabolic homeostasis and obesity.

  18. Rapid solid-phase immunoassay for 6-keto prostaglandin F1 alpha on microplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, W.; Smith, R.H.; Jackson, T.M.

    1990-03-01

    We describe, for the measurement of 6-keto prostaglandin F1 alpha in biological media, a solid-phase immunoassay with immobilized antibodies that requires a total processing time of less than 2 h with hands-on time less than 30 min for 40 samples. The method combines the convenience of the microplate format with the sensitivity of radiolabeled prostaglandin derivatives as tracers in a competitive immunoassay. The intra- and interassay variations at 50% displacement of the radiolabeled prostaglandin derivative as tracer were 9.0% and 11.8%, respectively. At 50% displacement of the radiolabeled tracer, the sensitivity is about 20 pg per well. Optimal incubation timemore » is between 60 and 90 min. Nonspecific binding was less than 1% if about 8 pg of tracer (approximately 25,000 counts/min per well) was used. Inhibition curves of samples in different dilutions were parallel to standard curves. The variation of bound radiolabeled prostaglandin derivative within the wells of one microplate (n = 96) was less than 3%. Human plasma samples and medium from tissue culture assayed for 6-keto prostaglandin F1 alpha correlated well with results obtained with a solid-phase assay based on use of magnetic particles (r = 0.99, n = 24) for culture-medium samples; r = 0.99; n = 26 for plasma samples.« less

  19. Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium.

    PubMed

    Kawanami, Daiji; Mahabeleshwar, Ganapati H; Lin, Zhiyong; Atkins, G Brandon; Hamik, Anne; Haldar, Saptarsi M; Maemura, Koji; Lamanna, Joseph C; Jain, Mukesh K

    2009-07-31

    Hypoxia-inducible factor 1 (HIF-1) is a central regulator of the hypoxic response in many cell types. In endothelial cells, HIF-1 induces the expression of key proangiogenic factors to promote angiogenesis. Recent studies have identified Kruppel-like factor 2 (KLF2) as a potent inhibitor of angiogenesis. However, the role of KLF2 in regulating HIF-1 expression and function has not been evaluated. KLF2 expression was induced acutely by hypoxia in endothelial cells. Adenoviral overexpression of KLF2 inhibited hypoxia-induced expression of HIF-1alpha and its target genes such as interleukin 8, angiopoietin-2, and vascular endothelial growth factor in endothelial cells. Conversely, knockdown of KLF2 increased expression of HIF-1alpha and its targets. Furthermore, KLF2 inhibited hypoxia-induced endothelial tube formation, whereas endothelial cells from mice with haploinsufficiency of KLF2 showed increased tube formation in response to hypoxia. Consistent with this ex vivo observation, KLF2 heterozygous mice showed increased microvessel density in the brain. Mechanistically, KLF2 promoted HIF-1alpha degradation in a von Hippel-Lindau protein-independent but proteasome-dependent manner. Finally, KLF2 disrupted the interaction between HIF-1alpha and its chaperone Hsp90, suggesting that KLF2 promotes degradation of HIF-1alpha by affecting its folding and maturation. These observations identify KLF2 as a novel inhibitor of HIF-1alpha expression and function. Therefore, KLF2 may be a target for modulating the angiogenic response in disease states.

  20. Delayed expression of cytokines after reperfused myocardial infarction: possible trigger for cardiac dysfunction and ventricular remodeling.

    PubMed

    Moro, Cécile; Jouan, Marie-Gabrielle; Rakotovao, Andry; Toufektsian, Marie-Claire; Ormezzano, Olivier; Nagy, Norbert; Tosaki, Arpad; de Leiris, Joël; Boucher, François

    2007-11-01

    Previous studies have shown that 1 wk after permanent coronary artery ligation in rats, some cellular mechanisms involving TNF-alpha occur and contribute to the development of cardiac dysfunction and subsequent heart failure. The aim of the present study was to determine whether similar phenomena also occur after ischemia-reperfusion and whether cytokines other than TNF-alpha can also be involved. Anesthetized male Wistar rats were subjected to 1 h coronary occlusion followed by reperfusion. Cardiac geometry and function were assessed by echocardiography at days 5, 7, 8, and 10 postligation. Before death, heart function was assessed in vivo under basal conditions, as well as after volume overload. Finally, hearts were frozen for histoenzymologic assessment of infarct size and remodeling. The profile of cardiac cytokines was determined by ELISA and ChemiArray on heart tissue extracts. As expected, ischemia-reperfusion induced a progressive remodeling of the heart, characterized by left ventricular free-wall thinning and cavity dilation. Heart function was also decreased in ischemic rats during the first week after surgery. Interestingly, a transient and marked increase in TNF-alpha, IL-1beta, IL-6, cytokine-induced neutrophil chemoattractant (CINC) 2, CINC3, and macrophage inflammatory protein-3alpha was also observed in the myocardium of myocardial ischemia (MI) animals at day 8, whereas the expression of anti-inflammatory interleukins IL-4 and IL-10 remained unchanged. These results suggest that overexpression of proinflammatory cytokines occurring during the first week after ischemia-reperfusion may play a role in the adaptative process in the myocardium and contribute to early dysfunction and remodeling.

  1. Vaginal cytokines do not correlate with postmenopausal vulvovaginal symptoms.

    PubMed

    Kollmann, Zahraa; Bersinger, Nick; von Wolff, Michael; Thurman, Andrea R; Archer, David F; Stute, Petra

    2015-04-01

    Exploratory pilot study to determine the correlation between postmenopausal vulvovaginal symptoms and vaginal cytokine levels. Postmenopausal women (n = 34) not using menopausal hormone therapy and presenting with or without symptoms of vulvovaginal irritation were screened. Each participant underwent a vaginal examination and screening for vaginitis. A cervicovaginal lavage (CVL) with sterile saline and a peripheral blood sample were obtained. Main outcome measures were assessed by Luminex® X-map method on the Bio-Plex® platform. Main outcome measures were cervicovaginal and serum interleukin (IL)-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES level. Cervicovaginal cytokines were adjusted to total protein concentration [pg/mcg protein]. Twenty-six postmenopausal women were enrolled (symptomatic: n = 15; asymptomatic: n = 11). There were no significant differences between groups: age, age at menopause, vaginal pH and all CVL and serum cytokines (IL-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES). GM-CSF was the most abundant vaginal cytokine (symptomatic: 146.5 ± 165.6 pg/mcg protein; asymptomatic: 146.0 ± 173.5 pg/mcg protein; p = 0.99). Postmenopausal vulvovaginal symptoms did not correlate with vaginal inflammatory marker. There was no difference in serum or CVL cytokines between symptomatic and asymptomatic postmenopasual women. Vaginal symptoms after menopause are not related to the vaginal cytokine changes associated with loss of estrogen.

  2. Elongation Factor 1 alpha interacts with phospho-Akt in breast cancer cells and regulates their proliferation, survival and motility.

    PubMed

    Pecorari, Luisa; Marin, Oriano; Silvestri, Chiara; Candini, Olivia; Rossi, Elena; Guerzoni, Clara; Cattelani, Sara; Mariani, Samanta A; Corradini, Francesca; Ferrari-Amorotti, Giovanna; Cortesi, Laura; Bussolari, Rita; Raschellà, Giuseppe; Federico, Massimo R; Calabretta, Bruno

    2009-08-03

    Akt/PKB is a serine/threonine kinase that has attracted much attention because of its central role in regulating cell proliferation, survival, motility and angiogenesis. Activation of Akt in breast cancer portends aggressive tumour behaviour, resistance to hormone-, chemo-, and radiotherapy-induced apoptosis and it is correlated with decreased overall survival. Recent studies have identified novel tumor-specific substrates of Akt that may provide new diagnostic and prognostic markers and serve as therapeutic targets. This study was undertaken to identify pAkt-interacting proteins and to assess their biological roles in breast cancer cells. We confirmed that one of the pAkt interacting proteins is the Elongation Factor EF1alpha. EF1alpha contains a putative Akt phosphorylation site, but is not phosphorylated by pAkt1 or pAkt2, suggesting that it may function as a modulator of pAkt activity. Indeed, downregulation of EF1alpha expression by siRNAs led to markedly decreased expression of pAkt1 and to less extent of pAkt2 and was associated with reduced proliferation, survival and invasion of HCC1937 cells. Proliferation and survival was further reduced by combining EF1alpha siRNAs with specific pAkt inhibitors whereas EF1alpha downregulation slightly attenuated the decreased invasion induced by Akt inhibitors. We show here that EF1alpha is a pAkt-interacting protein which regulates pAkt levels. Since EF1alpha is often overexpressed in breast cancer, the consequences of EF1alpha increased levels for proliferation, survival and invasion will likely depend on the relative concentration of Akt1 and Akt2.

  3. Independent modulation of the activity of alpha-ketoglutarate dehydrogenase complex by Ca2+ and Mg2+.

    PubMed

    Panov, A; Scarpa, A

    1996-01-16

    The activity of alpha-ketoglutarate dehydrogenase complex (KGDHC), an important enzyme regulating several metabolic pathways, could be regulated by changes in the environment within the mitochondrial matrix. It has been postulated that the activity of this and other dehydrogenases in vivo could be modulated by changes in the intramitochondrial concentrations of Ca2+ or Mg2+. Using a purified alpha-ketoglutarate dehydrogenase from pig hearts, the effect of Ca2+ and/or Mg2+ on the enzyme activity was investigated. Either Ca2+ or Mg2+ increased enzyme activity, and the effects were additive if the concentrations of free divalent cations were below 0.1 and 1 mM for Ca2+ and Mg2+, respectively. In the presence of 1 mM alpha-ketoglutarate and other cofactors, the KM for Mg2+ was 25 microM and less than 1 microM for Ca2+. The KM for alpha-ketoglutarate was a function of the divalent cation(s) present: 4 +/- 1.1 mM in the absence of Ca2+, with or without Mg2+; 2.2 mM in the presence of 1.8 microM Ca2+ alone; and 0.3 mM in the presence of both Ca2+ and Mg2+. Mg2+ increased KGDHC activity only in the presence of thiamine pyrophosphate (TPP) indicating that KGDHC requires both TPP and Mg2+ for enzyme's maximal activity. The affinity of KGDHC for NAD+ is significantly changed by either Mg2+ or Ca2+. The conclusions are that changes in both Ca2+ and Mg2+, in concentrations possibly occurring within mitochondria, could control KGDHC activity and that thiamine pyrophosphate is required for maximal enzyme activity.

  4. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell.

    PubMed

    Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin

    2014-01-01

    Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.

  5. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.

    PubMed

    Wu, Lei; Eichele, Tom; Calhoun, Vince D

    2010-10-01

    Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Serum amyloid A induction of cytokines in monocytes/macrophages and lymphocytes.

    PubMed

    Song, Changjie; Hsu, Kenneth; Yamen, Eric; Yan, Weixing; Fock, Jianyi; Witting, Paul K; Geczy, Carolyn L; Freedman, S Ben

    2009-12-01

    Serum amyloid A (SAA) is a biomarker of inflammation. Elevated blood levels in cardiovascular disease and local deposition in atheroma implies a role of SAA as a mediator rather than just a marker of inflammation. This study explored SAA-induced cytokine production and secretion by mononuclear cells. RT-PCR showed that SAA time-dependently induced cytokine mRNAs in peripheral blood mononuclear cells (PBMC) and THP-1 monocytoid cells, and dramatically increased IL-1beta, MCP-1, IL-6, IL-8, IL-10, GM-CSF, TNF, and MIP-1alpha secretion by PBMC to levels 28 to 25,000 fold above baseline, as measured with Bio-Plex kits; monocytes were the principle source. SAA induction of cytokines in monocyte-derived macrophages (MDM) was significantly higher than from monocytes from the same donors. SAA time-dependently induced transient and significant upregulation of NF-kappaB1 mRNA; inhibitor studies indicate that activation of NF-kappaB through the ERK1/2, p38 and JNK MAPKs and the PI3K pathway was involved. PBMC from 10 patients with coronary artery disease (CAD) spontaneously secreted higher levels of IL-6 and MIP-1alpha after 24h incubation than PBMC from normal controls, whereas SAA-induced levels of all cytokines were similar to controls. Aortic and coronary sinus sampling in 23 CAD patients indicated significant SAA release into the coronary circulation, not evident in 11 controls. SAA can increase monocyte and macrophage cytokine production, possibly at sites of atherosclerosis, thereby contributing to the pro-inflammatory state in coronary artery disease.

  7. Cytokine gene polymorphisms in bullous pemphigoid in a Chinese population.

    PubMed

    Chang, Y T; Liu, H N; Yu, C W; Lin, M W; Huang, C H; Chen, C C; Liu, M T; Lee, D D; Wang, W J; Tsai, S F

    2006-01-01

    Bullous pemphigoid (BP) is an autoimmune bullous disease mostly associated with autoantibodies to the hemidesmosomal BP autoantigens BP180 and BP230. High levels of interleukin (IL)-1beta, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma have been detected in skin lesions or sera of patients with BP. Cytokine gene polymorphisms may affect cytokine production and contribute to susceptibility to autoimmune diseases. Until now, no cytokine gene polymorphism study has been conducted on patients with BP. We aimed to determine whether the genetic polymorphisms of the cytokine genes might influence the development of BP. DNA samples were obtained from 96 BP patients and 174 control subjects. Using direct sequencing and microsatellite genotyping, we examined 23 polymorphisms in 11 cytokine genes including the IL-1alpha, IL-1beta, IL-1 receptor antagonist, IL-4, IL-6, IL-8, IL-10, IL-13, IL-4 receptor, TNF-alpha and IFN-gamma genes. Although the BP patients were more likely to carry the -511T and -31C alleles of the IL-1beta gene (P = 0.04), the significance disappeared after correction for multiple testing (Pc). There was complete linkage disequilibrium between the -511T and -31C alleles of the IL-1beta gene. In female patients with BP, the associations with IL-1beta (-511T) and (-31C) alleles were much stronger (68% vs. 40.6%, odds ratio = 3.11, Pc = 0.006). No significantly different allelic and genotypic distributions of other cytokine gene polymorphisms could be found between the patients with BP and controls. Moreover, no association with the extent of disease involvement (localized or generalized) was observed. The IL-1beta (-511) and (-31) polymorphisms were significantly associated with BP in women. The other genetic polymorphisms of cytokine genes that we analysed do not appear to be associated with BP susceptibility in our Chinese population.

  8. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages.

    PubMed

    Kim, Jin; Park, Chang-Shin; Lim, Yunsook; Kim, Hyun-Sook

    2009-04-01

    Natural products are increasingly recognized as potential targets for drug discovery and development. We previously reported that Paeonia japonica, Houttuynia cordata, and Aster scaber enhanced macrophage activation both in vitro and in vivo. In the present study we investigated the immunomodulating effects of these plants on lipopolysacharide (LPS)-stimulated macrophages. An aqueous extract of each plant was administered to female BALB/c mice every other day for 4 weeks. Peritoneal macrophages were then collected and incubated to examine the immunoreactivity of macrophages against LPS at different time points. The expression levels of inducible nitric oxide (NO) synthetase (iNOS), cyclooxygenase (COX)-2, and inhibitory factor kappaB alpha (IkappaBalpha) proteins and the production of NO metabolite (nitrite), prostaglandin (PG) E(2), and the pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were determined in the activated macrophages treated with extracts from each plant individually or combined. High levels of pro-inflammatory cytokines were produced by A. scaber-, P. japonica-, and H. cordata-treated macrophages following 24 hours of LPS stimulation. P. japonica, H. cordata, and A. scaber treatment also induced the production of nitrate by LPS-treated macrophages. Induction of iNOS mRNA and protein was also different in each group. PGE(2) secretion was up-regulated by all extract-treated macrophages at early time points; however, no significant differences were observed between the groups by 8 hours post-LPS stimulation. Treatment with A. scaber extract resulted in the highest levels of IkappaBalpha degradation. Our findings illustrate that the natural plant products P. japonica, H. cordata, and A. scaber may enhance immune function by modulating ex vivo pro-inflammatory cytokine and NO production as well as the expression of iNOS and COX-2.

  9. [Cytokines and their role in reproductive system].

    PubMed

    Ianchiĭ, R I; Voznesens'ka, T Iu; Shepel', O A

    2007-01-01

    In this review we analyze the involvement of cytokines in regulation of ovarian function. A growing body of evidence suggests that the ovary is a site of inflammatory reactions. Immune-competent cells present within the ovary may constitute potential in-situ modulators of ovarian function that act through local secretion of regulatory soluble factors cytokines. In addition many over cell in the ovary also produce cytokines independently of the presence of leukocytes, thus ovaries are sites of cytokine action and production. There are many evidences that cytokines are involved in the ovarian control of follicular development and are surveyed as the important regulators of steroidogenesis and gamete production. It is established that cytokines generally inhibit gonadotropin-stimulated production of steroids. However ovarian steroids, in turn, reduce the cytokine production by immunecompetent cells. There are some data about participation of cytokines in regulating the proliferation and differentiation of granulose cells. Most cytokines appear in mammalian follicles only a short time before ovulation and play the important role in process of ovulation and luteinization. Thus a variety of clinical situations may be due to cytokine action in the gonads, and therapeutic manipulation of the immune system may affect reproductive function. Moreover the findings about the expression of some cytokines by oocytes and their presence in follicular fluid provide further evidence and substantiate the physiologic role for their in ovarian function, and may lead to clinical applications in programs of in vitro fertilization and in diagnosis and treatment of infertility in women, especially in cases attributed to ovarian dysfunction.

  10. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling

    PubMed Central

    Fukada, Toshiyuki; Tonks, Nicholas K.

    2003-01-01

    Changes in expression of PTP1B, the prototypic protein tyrosine phosphatase, have been associated with various human diseases; however, the mechanisms by which PTP1B expression is regulated have not been defined. We have identified an enhancer sequence within the PTP1B promoter which serves as a binding site for the transcription factor Y box-binding protein-1 (YB-1). Overexpression of YB-1 resulted in increased levels of PTP1B. Furthermore, depletion of YB-1 protein, by expression of a specific antisense construct, led to an ∼70% decrease in expression of PTP1B, but no change in the level of its closest relative, TC-PTP. Expression of antisense YB-1 resulted in increased sensitivity to insulin and enhanced signaling through the cytokine receptor gp130, which was suppressed by re-expression of PTP1B. Finally, we observed a correlation between the expression of PTP1B and that of YB-1 in cancer cell lines and an animal model of type II diabetes. Our data reveal an important role for YB-1 as a regulator of PTP1B expression, and further highlight PTP1B as a critical regulator of insulin- and cytokine-mediated signal transduction. PMID:12554649

  11. AtsPLA2-alpha nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response.

    PubMed

    Froidure, Solène; Canonne, Joanne; Daniel, Xavier; Jauneau, Alain; Brière, Christian; Roby, Dominique; Rivas, Susana

    2010-08-24

    The hypersensitive response (HR), characterized by a rapid and localized cell death at the inoculation site, is one of the most efficient resistance reactions to pathogen attack in plants. The transcription factor AtMYB30 was identified as a positive regulator of the HR and resistance responses during interactions between Arabidopsis and bacteria. Here, we show that AtMYB30 and the secreted phospholipase AtsPLA(2)-alpha physically interact in vivo, following the AtMYB30-mediated specific relocalization of AtsPLA(2)-alpha from cytoplasmic vesicles to the plant cell nucleus. This protein interaction leads to repression of AtMYB30 transcriptional activity and negative regulation of plant HR. Moreover, Atspla(2)-alpha mutant plants are more resistant to bacterial inoculation, whereas AtsPLA(2)-alpha overexpression leads to decreased resistance, confirming that AtsPLA(2)-alpha is a negative regulator of AtMYB30-mediated defense. These data underline the importance of cellular dynamics and, particularly, protein translocation to the nucleus, for defense-associated gene regulation in plants.

  12. Three-Dimensional Conformal Radiotherapy in Prostate Cancer Patients: Rise in Interleukin 6 (IL-6) but not IL-2, IL-4, IL-5, Tumor Necrosis Factor-{alpha}, MIP-1-{alpha}, and LIF Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira Lopes, Carlos; Callera, Fernando, E-mail: fcallera@gmail.com

    Purpose: To investigate the effect of radiotherapy (RT) on serum levels of interleukin-2 (IL-2), IL-4, IL-5, IL-6, tumor necrosis factor alpha (TNF-{alpha}), macrophage inflammatory protein-1-alpha (MIP-1-{alpha}) and leukemia inhibitory factor (LIF) in patients with prostate cancer. Methods and Materials: Forty eight patients with prostate cancer received three-dimensional conformal blocking radiation therapy with a linear accelerator. IL-2, IL-4, IL-5, IL-6, TNF-{alpha}, MIP-1-{alpha}, and LIF levels were measured by the related immunoassay kit 1 day before the beginning of RT and during RT at days 15 and 30. Results: The mean IL-2 values were elevated before and during the RT in contrastmore » with those of IL-4, IL-5, IL-6, TNF-{alpha}, MIP-1-{alpha}, and LIF, which were within the normal range under the same conditions. Regarding markers IL-2, IL-4, IL-5, TNF-{alpha}, MIP-1-{alpha}, and LIF, comparisons among the three groups (before treatment and 15 and 30 days during RT) did not show significant differences. Although values were within the normal range, there was a significant rise in IL-6 levels at day 15 of RT (p = 0.0049) and a decline at day 30 to levels that were similar to those observed before RT. Conclusions: IL-6 appeared to peak after 15 days of RT before returning to pre-RT levels. In contrast, IL-2, IL-4, IL-5, TNF-{alpha}, MIP-1-{alpha}, and LIF levels were not sensitive to irradiation. The increased levels of IL-6 following RT without the concurrent elevation of other cytokines involved in the acute phase reaction did not suggest a classical inflammatory response to radiation exposure. Further studies should be designed to elucidate the role of IL-6 levels in patients with prostate cancer treated with RT.« less

  13. Impact of Τh1 and Τh2 cytokines in the progression of idiopathic nephrotic syndrome due to focal segmental glomerulosclerosis and minimal change disease.

    PubMed

    Stangou, Maria; Spartalis, Μichael; Daikidou, Dimitra-Vasilia; Kouloukourgiotou, Theodora; Sampani, Erasmia; Lambropoulou, Ioanna-Theologia; Pantzaki, Afroditi; Papagianni, Αikaterini; Efstratiadis, George

    2017-07-01

    Differential diagnosis between primary focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) is sometimes difficult as nephrotic syndrome is the main clinical symptom in both diseases. This study has attempted to evaluate the urinary excretion of Th1 and Th2 cytokines as potential biomarkers in distinguishing the two types of nephrotic syndrome, and predicting outcome of renal function. Thirty-six patients with FSGS (M/F 22/14, Age; 41.9 ± 17 years, SCr=1.7 ± 0.8 mg/dL, UProt=4.7 ± 5.5 g/24 h), and 21 with MCD (M/F 5/16, Age; 41.4 ± 15 years, SCr = 1 ± 0.4 mg/dL, UProt = 7.9 ± 9.3 g/24 h) were included in the study. Τh1 (IL-2, IL-12, GM-CSF, INF-γ, TNF-α) and Th2 cytokines (IL-4, IL-5, IL-10, IL-13) were measured by multiple cytokine assay, Luminex technology, in first morning urinary samples collected at the day of renal biopsy. No significant differences in urinary excretion of all cytokines were found between FSGS and MCD patients. In FSGS however, IL-12 urinary levels were independent factor correlated with both global sclerosis (R = 0.5, P = 0.009) and interstitial fibrosis (R = 0.5, P = 0.02). Th1 cytokines (IL-2 and GM-CSF) were significantly increased in FSGS patients who did not respond to treatment ( P = 0.03 and P = 0.007, respectively). Th2 cytokines (IL-4, IL-5, IL-10, IL-13) were significantly increased in MCD patients with frequent relapses ( P = 0.05, P = 0.001, P = 0.01, P = 0.03). Urinary excretion of Th1 and Th2 cytokines cannot discriminate FSGS from MCD. Th1 cytokines, especially IL-12, IL-2 and GM-CSF, may be involved in pathology and progression of FSGS, while Th2 cytokines are implicated in frequent relapses of nephrotic syndrome in MCD.

  14. Cell-mediated immune response and Th/Th cytokine profile of B-T constructs of F1 and V antigen of Yersinia pestis.

    PubMed

    Gupta, G; Khan, A A; Rao, D N

    2010-03-01

    Yersinia pestis, a Gram-negative bacterium, is the etiological agent of pneumonic and bubonic plague and still active in various regions of the world. Because plague is highly infectious and can readily spread by aerosolization, it poses a bioterrorism threat. The effective induction of mucosal as well as systemic immunity is an important attribute of an improved vaccine for plague. An alternative approach described here is the use of protective epitopes derived from immunodominant antigens (F1 and V) of Yersinia pestis. As T-cell immunity is also a major contributor of protection, microencapsulated B-T constructs of F1 and V antigen were used to immunize outbred and inbred mice through intranasal route, and lympho-proliferative response and cytokine profile of both Th(1) and Th(2) arms were measured in spleen, lamina propria and Peyer's patches. Three B-T constructs of F1 antigen and seven of V antigen showed significantly high T-cell response in terms of inducing systemic as well as mucosal response when compared to constituent peptides. These ten conjugates showed Th(1) cytokine profile whereas rest of the conjugates showed mixed Th(1)/Th(2) response. Four conjugates of V antigen showed high level of IL-10 production. In present study, microencapsulated B-T constructs after intranasal immunization generated systemic as well as mucosal immune response in all three sites, which offers an alternative approach for plague vaccine.

  15. Alpha-lipoic acid reduces body weight and regulates triglycerides in obese patients with diabetes mellitus.

    PubMed

    Okanović, Azra; Prnjavorac, Besim; Jusufović, Edin; Sejdinović, Rifat

    2015-08-01

    To determine an influence of alpha-lipoic acid to reduction of body weight and regulation of total cholesterol concentration, triglycerides and glucose serum levels in obese patients with diabetes mellitus type 2. A prospective study includes two groups of obese patients with diabetes mellitus and signs of peripheral polyneuropathia: examined group (30 patients; 15 females and 15 males), and control group (30 patients; 12 females and 18 males). All were treated with metformin (850-1700 mg/day). Examined patients were additionally treated with alpha-lipoic acid 600 mg/day during 20 weeks. Body mass index and concentrations of total cholesterol, triglycerides and glucose in serum were compared before and after the treatment. The group treated with 600 mg alpha-lipoic acid lost significantly more weight, and had lower triglyceride level than the control group. There were no significant differences in total cholesterol and glucose serum levels between the groups. Alpha-lipoic acid of 600 mg/day treatment have influenced weight and triglycerides loss in obese patients with diabetes mellitus type 2. It should be considered as an important additive therapy in obese patients with diabetes mellitus type 2. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  16. Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation.

    PubMed Central

    Bazenet, C E; Gelderloos, J A; Kazlauskas, A

    1996-01-01

    Following binding of platelet-derived growth factor (PDGF), the PDGF alpha receptor (alphaPDGFR) becomes tyrosine phosphorylated and associates with a number of signal transduction molecules, including phospholipase Cgamma-1 (PLCgamma-1), phosphatidylinositol 3-kinase (PI3K), the phosphotyrosine phosphatase SHP-2, Grb2, and Src. Here, we present data identifying a novel phosphorylation site in the kinase insert domain of the alphaPDGFR at tyrosine (Y) 720. We replaced this residue with phenylalanine and expressed the mutated receptor (F720) in Patch fibroblasts that do not express the alphaPDGFR. Characterization of the F720 mutant indicated that binding of two proteins, SHP-2 and Grb2, was severely impaired, whereas PLCgamma-1 and PI3K associated to wild-type levels. In addition, mutating Y720 to phenylalanine dramatically reduced PDGF-dependent tyrosine phosphorylation of SHP-2. Since Y720 was required for recruitment of two proteins, we investigated the mechanism by which these two proteins associated with the alphaPDGFR. SHP-2 bound the alphaPDGFR directly, whereas Grb2 associated indirectly, most probably via SHP-2, as Grb2 and SHP-2 coimmunoprecipitated when SHP-2 was tyrosine phosphorylated. We also compared the ability of the wild-type and F720 alphaPDGFRs to mediate a number of downstream events. Preventing the alphaPDGFR from recruiting SHP-2 and Grb2 did not compromise PDGF-AA-induced activation of Ras, initiation of DNA synthesis, or growth of cells in soft agar. We conclude that phosphorylation of the alphaPDGFR at Y720 is required for association of SHP-2 and Grb2 and tyrosine phosphorylation of SHP-2; however, these events are not required for the alphaPDGFR to activate Ras or initiate a proliferative response. In addition, these findings reveal that while SHP-2 binds to both of the receptors, it binds in different locations: to the carboxy terminus of the betaPDGFR but to the kinase insert of the alphaPDGFR. PMID:8943348

  17. Synthesis of methyl 2-O- and 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside.

    PubMed

    Rana, S S; Matta, K L

    1986-09-01

    Methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-alpha-D- mannopyranosyl]-alpha-D-mannopyranoside (2) was synthesized by treatment of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside with tert-butylchlorodiphenylsilane in the presence of imidazole. Isopropylidenation, followed by oxidation with pyridinium chlorochromate, and stereoselective reduction with sodium borohydride, converted 2 into methyl 3,4,6-tri-O-benzyl-2-O-[6-O-(tert-butyldiphenylsilyl)-2,3-O-isopro pylidene- alpha-D-talopyranosyl]-alpha-D-mannopyranoside (5). Treatment of 5 with a molar solution of tetrabutylammonium fluoride in dry oxolane produced a diol which, on O-de-isopropylidenation followed by catalytic hydrogenolysis, afforded the disaccharide glycoside methyl 2-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside. Synthesis of methyl 3-O-alpha-D-talopyranosyl-alpha-D-mannopyranoside was accomplished by a similar reaction-sequence. The structures of the final disaccharides, and of various other intermediates, were established by 1H- and 13C-n.m.r. spectroscopy.

  18. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1

    PubMed Central

    Haim, Yulia; Blüher, Matthias; Slutsky, Noa; Goldstein, Nir; Klöting, Nora; Harman-Boehm, Ilana; Kirshtein, Boris; Ginsberg, Doron; Gericke, Martin; Guiu Jurado, Esther; Kovsan, Julia; Tarnovscki, Tanya; Kachko, Leonid; Bashan, Nava; Gepner, Yiftach; Shai, Iris; Rudich, Assaf

    2015-01-01

    Autophagy genes' expression is upregulated in visceral fat in human obesity, associating with obesity-related cardio-metabolic risk. E2F1 (E2F transcription factor 1) was shown in cancer cells to transcriptionally regulate autophagy. We hypothesize that E2F1 regulates adipocyte autophagy in obesity, associating with endocrine/metabolic dysfunction, thereby, representing non-cell-cycle function of this transcription factor. E2F1 protein (N=69) and mRNA (N=437) were elevated in visceral fat of obese humans, correlating with increased expression of ATG5 (autophagy-related 5), MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β), but not with proliferation/cell-cycle markers. Elevated E2F1 mainly characterized the adipocyte fraction, whereas MKI67 (marker of proliferation Ki-67) was elevated in the stromal-vascular fraction of adipose tissue. In human visceral fat explants, chromatin-immunoprecipitation revealed body mass index (BMI)-correlated increase in E2F1 binding to the promoter of MAP1LC3B, but not to the classical cell cycle E2F1 target, CCND1 (cyclin D1). Clinically, omental fat E2F1 expression correlated with insulin resistance, circulating free-fatty-acids (FFA), and with decreased circulating ADIPOQ/adiponectin, associations attenuated by adjustment for autophagy genes. Overexpression of E2F1 in HEK293 cells enhanced promoter activity of several autophagy genes and autophagic flux, and sensitized to further activation of autophagy by TNF. Conversely, mouse embryonic fibroblast (MEF)-derived adipocytes from e2f1 knockout mice (e2f1−/−) exhibited lower autophagy gene expression and flux, were more insulin sensitive, and secreted more ADIPOQ. Furthermore, e2f1−/− MEF-derived adipocytes, and autophagy-deficient (by Atg7 siRNA) adipocytes were resistant to cytokines-induced decrease in ADIPOQ secretion. Jointly, upregulated E2F1 sensitizes adipose tissue autophagy to inflammatory stimuli, linking visceral obesity to adipose and systemic

  19. Inhibition of inflammatory cytokine-induced response in human islet cells by withaferin A.

    PubMed

    Peng, H; Olsen, G; Tamura, Y; Noguchi, H; Matsumoto, S; Levy, M F; Naziruddin, B

    2010-01-01

    After islet cell transplantation, a substantial mass of islets are lost owing to nonspecific inflammatory reactions. Cytokine exposure before or after transplantation can upregulate expression of proinflammatory genes via the nuclear factor-kappaB signaling pathway, eventually resulting in islet loss. To test the effects of a naturally occurring nuclear factor-kappaB inhibitor, withaferin A, on regulation of inflammatory genes in human islets. Human pancreatic islets were isolated using a modified Ricordi protocol. Purified islets were cultured for 2 days. The effect of withaferin A treatment on islet cell viability was examined using the fluorescein diacetate-propidium iodide dye exclusion test, and on function using a static glucose stimulation assay. Islet cells were treated with a cytokine mixture (50 U/mL of interleukin-1beta, 1000 U/mL of tumor necrosis factor-alpha, and 1000 U/mL of interferon-gamma) for 48 hours with or without withaferin A, 1 microg/mL. Treated islets were used for real-time polymerase chain reaction (PCR) array analysis for expression of inflammatory genes, and expression of other selected genes was analyzed using real-time PCR with single primers. Glucose stimulation and viability assays demonstrated that withaferin A was not toxic to islet cells. Of 84 inflammation-related genes examined using real-time PCR array analysis, 9 were significantly upregulated by cytokine treatment compared with the control group. However, addition of withaferin A to the culture significantly inhibited expression of all genes. Withaferin A significantly inhibits the inflammatory response of islet cells with cytokine exposure. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Difference in luteal and placental P450(17) alpha: substrate preference and hormonal regulation in the rat.

    PubMed

    Eckstein, B; Khan, I; Gibori, G

    1987-12-01

    The purpose of this study was to assess the substrate specificity of P450(17) alpha in both the corpus luteum and placenta of pregnant rats, and to analyse the site at which LH/human chorionic gonadotrophin (hCG) regulates the activities of this enzyme. To distinguish the substrate preference, placentas and corpora lutea were obtained from rats on day 15 of pregnancy. Tissues were homogenized and the 10,000 g supernatants incubated in the presence of equimolar concentrations of [14C]progesterone and [3H]17 alpha-hydroxyprogesterone as substrate with either NADH or NADPH as cofactors for 2, 8, 16 and 24 min. The labelling pattern of both 17 alpha-hydroxyprogesterone and testosterone indicated that the corpus luteum produced testosterone preferentially from progesterone, whereas the placenta principally used 17 alpha-hydroxyprogesterone and synthesized six times as much testosterone from 17 alpha-hydroxyprogesterone than from progesterone. Addition of either NADPH or NADH as cofactors had no effect on substrate preference. The products of the two enzymatic activities were identified by recrystallization to constant 14C/3H ratios. The ratio of 14C/3H in testosterone produced by the corpus luteum was 16-fold higher than in that produced by the placenta. To explore which of the two activities of P450(17) alpha is regulated by the gonadotrophin, rats were treated with either 1.5 IU hCG or vehicle between days 13 and 15 of pregnancy. Hydroxylase and lyase activities were determined on day 15 after incubation for 2, 8, 16 or 24 min in the presence of either NADH or NADPH. Administration of hCG significantly inhibited NADH-dependent 17 alpha-hydroxylase in the placenta at each time-point studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage.

    PubMed

    Ye, Jing; Lenain, Christelle; Bauwens, Serge; Rizzo, Angela; Saint-Léger, Adelaïde; Poulet, Anaïs; Benarroch, Delphine; Magdinier, Frédérique; Morere, Julia; Amiard, Simon; Verhoeyen, Els; Britton, Sébastien; Calsou, Patrick; Salles, Bernard; Bizard, Anna; Nadal, Marc; Salvati, Erica; Sabatier, Laure; Wu, Yunlin; Biroccio, Annamaria; Londoño-Vallejo, Arturo; Giraud-Panis, Marie-Josèphe; Gilson, Eric

    2010-07-23

    Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation.

    PubMed

    Cui, J G; Zhao, Y; Sethi, P; Li, Y Y; Mahta, A; Culicchia, F; Lukiw, W J

    2010-07-01

    High density micro-RNA (miRNA) arrays, fluorescent-reporter miRNA assay and Northern miRNA dot-blot analysis show that a brain-enriched miRNA-128 is significantly down-regulated in glioblastoma multiforme (GBM) and in GBM cell lines when compared to age-matched controls. The down-regulation of miRNA-128 was found to inversely correlate with WHO tumor grade. Three bioinformatics-verified miRNA-128 targets, angiopoietin-related growth factor protein 5 (ARP5; ANGPTL6), a transcription suppressor that promotes stem cell renewal and inhibits the expression of known tumor suppressor genes involved in senescence and differentiation, Bmi-1, and a transcription factor critical for the control of cell-cycle progression, E2F-3a, were found to be up-regulated. Addition of exogenous miRNA-128 to CRL-1690 and CRL-2610 GBM cell lines (a) restored 'homeostatic' ARP5 (ANGPTL6), Bmi-1 and E2F-3a expression, and (b) significantly decreased the proliferation of CRL-1690 and CRL-2610 cell lines. Our data suggests that down-regulation of miRNA-128 may contribute to glioma and GBM, in part, by coordinately up-regulating ARP5 (ANGPTL6), Bmi-1 and E2F-3a, resulting in the proliferation of undifferentiated GBM cells.

  3. The ceramide-1-phosphate analogue PCERA-1 modulates tumour necrosis factor-alpha and interleukin-10 production in macrophages via the cAMP-PKA-CREB pathway in a GTP-dependent manner.

    PubMed

    Avni, Dorit; Philosoph, Amir; Meijler, Michael M; Zor, Tsaffrir

    2010-03-01

    The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.

  4. Thermally induced disintegration of the oligomeric structure of alphaB-crystallin mutant F28S is associated with diminished chaperone activity.

    PubMed

    Kelley, Patrick B; Abraham, Edathara C

    2003-10-01

    alphaB-crystallin, a member of the small heat-shock protein (hsp) family of proteins, is able to function as a molecular chaperone by protecting other proteins from stress-induced aggregation by recognizing and binding to partially unfolded species of damaged proteins. The present work has investigated the role of phenylalanine-28 (F28) of the 22RLFDQFF28 region of alphaB-crystallin in maintaining chaperone function and oligomeric structure under physiological condition and under thermal stress. Bovine alphaB-crystallin was cloned for the first time and the cDNA sequence revealed greater than 90% homology to that of human, rat and mouse alphaB-crystallins. F28 was mutated to a serine followed by expression of the mutant F28S and the wild-type alphaB (alphaB-wt) in E. coli and subsequent purification of the protein by size-exclusion chromatography. Secondary and tertiary structure analyses showed some structural changes in the mutant. Chaperone activity and oligomeric size of the mutant was unchanged at 37 degrees C whereas at 58 degrees C the chaperone activity was significantly decreased and the oligomeric size ranged from low molecular weight to high molecular weight showing disintegration of the oligomeric structure. The data support the idea that the participation of large oligomeric structure rather than smaller units is required to have optimal chaperone activity and the hydrophobic F28 residue is needed for maintaining the native oligomeric structure under thermal stress.

  5. [Effects of shoutai pills on expression of Th1/Th2 cytokine in maternal-fetal interface and pregnancy outcome].

    PubMed

    Lai, Maohua; You, Zhaoling; Ma, Hongxia; Lei, Lei; Lu, Fangguo; He, Dongmei; Liu, Huiping; Yin, Sheng

    2010-11-01

    To evaluate its mechanism of inducing the maternal-fetal immune tolerance by studying the effects of Shoutai pills on the expression of Th1/Th2 cytokine and pregnancy in maternal-fetal interface of mice with recurrent spontaneous abortion (RSA). The normal pregnancy and RSA model were respectively induced with CBA/J x BALB/c and CBA/J x DBA/2. The mice with RSA were randomly divided into model group and low, middle and high dose groups of Shoutai pills. The mice were killed in 14 days after administration and embryo resorption rate was counted and their decidual and placental tissues were co-cultured to detect the expressions of IL-4, IL-10, IFN-gamma and TNF-alpha with ELISA. The embryo resorption rate of the model group was significantly higher than the normal pregnancy, middle and high dose groups of Shoutai pills could decreased the embryo resorption rate of the mice with RSA (P < 0.05). All the doses in 3 groups of Shoutai pills could decreased the expression of IFN-gamma and TNF-alpha (P < 0. 05) and there was no obvious difference between normal pregnancy group and all groups of Shoutai pills. Middle and high doses of Shoutai pills could increased the expression of IL-4 and IL-10 (P < 0.05) and there was no obvious differences between normal pregnancy and high dose group of Shoutai pills. The mechanism about Shoutai pills can change Th1 /Th2 cytokine towards Th2 bias, which induced the maternal-fetal immune tolerance.

  6. Interferon-alpha 2b quantification in inclusion bodies using reversed phase-ultra performance liquid chromatography (RP-UPLC).

    PubMed

    Cueto-Rojas, H F; Pérez, N O; Pérez-Sánchez, G; Ocampo-Juárez, I; Medina-Rivero, E

    2010-04-15

    Interferon-alpha 2b (IFN-alpha 2b) is a recombinant therapeutic cytokine produced as inclusion bodies using a strain of Escherichia coli as expression system. After fermentation and recovery, it is necessary to know the amount of recombinant IFN-alpha 2b, in order to determine the yield and the load for solubilization, and chromatographic protein purification steps. The present work details the validation of a new short run-time and fast sample-preparation method to quantify IFN-alpha 2b in inclusion bodies using Reversed Phase-Ultra Performance Liquid Chromatography (RP-UPLC). The developed method demonstrated an accuracy of 100.28%; the relative standard deviations for method precision, repeatability and inter-day precision tests were found to be 0.57%, 1.54% and 1.83%, respectively. Linearity of the method was assessed in the range of concentrations from 0.05 mg/mL to 0.5 mg/mL, the curve obtained had a determination coefficient (r(2)) of 0.9989. Detection and quantification limits were found to be 0.008 mg/mL and 0.025 mg/mL, respectively. The method also demonstrated robustness for changes in column temperature, and specificity against host proteins and other recombinant protein expressed in the same E. coli strain. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp; Takeuchi, Kentaro; Inada, Hirohiko

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  8. Interactions between cytokines and nitric oxide.

    PubMed

    Liew, F Y

    1995-01-01

    There is now an impressive range of evidence supporting the important role of cytokines in sleep regulation (see Krueger et al., 1995; De Simoni et al., 1995). It has also been reported that inhibition of nitric oxide (NO) synthesis suppresses sleep in rabbits (Kapás et al., 1994). This is not surprising, since NO is closely involved in neurotransmission (Garthwaite, 1991; Schuman and Madison, 1994) and cytokines are the major inducers of NO synthesis (Hibbs et al., 1990). Further, it is now clear that NO plays an important role in modulating immune responses, possibly through the differential regulation of cytokine synthesis (Taylor-Robinson et al., 1994). In this article, I will provide evidence for the interactions between cytokines and nitric oxide, and discuss their implications in the regulation of immune responses. I shall illustrate these mainly with results from my coworkers and I, from our laboratory rather than attempting an exhaustive review of the subject.

  9. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    PubMed

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    cell isolates were unaffected by T3 so changes in cell numbers could not account for any observed effects. In the first trimester, T3 decreased VEGF-A secretion by total decidual cells (P < 0.05) and increased angiopoietin-2 secretion by stromal-depleted cells (P < 0.05) but in the second trimester total decidual cells showed only increased angiogenin secretion (P < 0.05). In the first trimester, T3 reduced IL-10 secretion by total decidual cells (P < 0.05), and reduced granulocyte macrophage colony stimulating factor (P < 0.01), IL-8 (P < 0.05), IL-10 (P < 0.01), IL-1β (P < 0.05) and monocyte chemotactic protein -1 (P < 0.001) secretion by macrophages, but increased tumour necrosis factor-α secretion by stromal-depleted cells (P < 0.05) and increased IL-6 by uNK cells (P < 0.05). In contrast, in the second trimester T3 increased IL-10 secretion by total decidual cells (P < 0.01) but did not affect cytokine secretion by uNK cells and macrophages. Conditioned media from first trimester T3-treated total decidual cells and macrophages did not alter EVT invasion compared with untreated controls. Thus, treatment of decidual cells with T3 resulted in changes in both angiogenic growth factor and cytokine secretion in a cell type-specific and gestational age-dependent manner, with first trimester decidual macrophages being the most responsive to T3 treatment, but these changes in decidual cell secretome did not affect EVT invasion in vitro. Our results are based on in vitro findings and we cannot be certain if a similar response occurs in human pregnancy in vivo. Optimal maternal thyroid hormone concentrations could play a critical role in maintaining a balanced inflammatory response in early pregnancy to prevent fetal immune rejection and promote normal placental development through the regulation of the secretion of critical cytokines and angiogenic growth factors by human decidual cells. Our data suggest that there is an ontogenically determined regulatory 'switch' in T3

  10. Sulforaphane protects against cytokine- and streptozotocin-induced {beta}-cell damage by suppressing the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Kim, Eun-Kyung; Moon, Woo-Sung

    2009-02-15

    Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced {beta}-cell damage. Treatment of RIN cells with IL-1{beta} and IFN-{gamma} induced {beta}-cell damage through a NF-{kappa}B-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokinemore » toxicity. The mechanism by which Nrf2 activation inhibited NF-{kappa}B-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H{sub 2}O{sub 2} production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice.« less

  11. Aging enhances serum cytokine response but not task-induced grip strength declines in a rat model of work-related musculoskeletal disorders

    PubMed Central

    2011-01-01

    Background We previously reported early tissue injury, increased serum and tissue inflammatory cytokines and decreased grip in young rats performing a moderate demand repetitive task. The tissue cytokine response was transient, the serum response and decreased grip were still evident by 8 weeks. Thus, here, we examined their levels at 12 weeks in young rats. Since aging is known to enhance serum cytokine levels, we also examined aged rats. Methods Aged and young rats, 14 mo and 2.5 mo of age at onset, respectfully, were trained 15 min/day for 4 weeks, and then performed a high repetition, low force (HRLF) reaching and grasping task for 2 hours/day, for 12 weeks. Serum was assayed for 6 cytokines: IL-1alpha, IL-6, IFN-gamma, TNF-alpha, MIP2, IL-10. Grip strength was assayed, since we have previously shown an inverse correlation between grip strength and serum inflammatory cytokines. Results were compared to naïve (grip), and normal, food-restricted and trained-only controls. Results Serum cytokines were higher overall in aged than young rats, with increases in IL-1alpha, IFN-gamma and IL-6 in aged Trained and 12-week HRLF rats, compared to young Trained and HRLF rats (p < 0.05 and p < 0.001, respectively, each). IL-6 was also increased in aged 12-week HRLF versus aged normal controls (p < 0.05). Serum IFN-gamma and MIP2 levels were also increased in young 6-week HRLF rats, but no cytokines were above baseline levels in young 12-week HRLF rats. Grip strength declined in both young and aged 12-week HRLF rats, compared to naïve and normal controls (p < 0.05 each), but these declines correlated only with IL-6 levels in aged rats (r = -0.39). Conclusion Aging enhanced a serum cytokine response in general, a response that was even greater with repetitive task performance. Grip strength was adversely affected by task performance in both age groups, but was apparently influenced by factors other than serum cytokine levels in young rats. PMID:21447183

  12. Cytokines and autoimmunity.

    PubMed Central

    Cavallo, M G; Pozzilli, P; Thorpe, R

    1994-01-01

    Although the immunopathology of most autoimmune diseases has been well defined, the mechanisms responsible for the breakdown of self-tolerance and which lead to the development of systemic and organ-specific autoaggression are still unclear. Evidence has accumulated which supports a role for a disregulated production of cytokines by leucocytes and possibly other cells in the pathogenesis of some autoimmune diseases. However, due to the complexity and heterogeneity of cytokine effects in the regulation of the immune response, it is difficult to determine whether abnormalities in the patterns of cytokine production are primary or secondary to the pathological process. Confusion is also caused by the fact that the biological activities of cytokines are multiple and often overlapping, and consequently it is difficult to focus on a unique effect of any one cytokine. Characterization of the potential and actual involvement of cytokines is important not only for a better understanding of the pathogenesis of autoimmune conditions, but particularly because of the implications for the development of immunotherapeutic strategies for the prevention and treatment of the diseases. PMID:8149655

  13. Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium

    PubMed Central

    Koay, Luan C.; Rigby, Rachael J.

    2014-01-01

    Autophagy is a catabolic process involved in homeostatic and regulated cellular protein recycling and degradation via the lysosomal degradation pathway. Emerging data associate impaired autophagy, increased activity in the endocannabinoid system, and upregulation of suppressor of cytokine signaling-3 (SOCS3) protein expression during intestinal inflammation. We have investigated whether these three processes are linked. By assessing the impact of the phytocannabinoid cannabidiol (CBD), the synthetic cannabinoid arachidonyl-2′-chloroethylamide (ACEA), and the endocannabinoid N-arachidonoylethanolamine (AEA) on autophagosome formation, we explored whether these actions were responsible for cyclic SOCS3 protein levels. Our findings show that all three cannabinoids induce autophagy in a dose-dependent manner in fully differentiated Caco-2 cells, a model of mature intestinal epithelium. ACEA and AEA induced canonical autophagy, which was cannabinoid type 1 receptor-mediated. In contrast, CBD was able to bypass the cannabinoid type 1 receptor and the canonical pathway to induce autophagy, albeit to a lesser extent. Functionally, all three cannabinoids reduced SOCS3 protein expression, which was reversed by blocking early and late autophagy. In conclusion, the regulatory protein SOCS3 is regulated by autophagy, and cannabinoids play a role in this process, which could be important when therapeutic applications for the cannabinoids in inflammatory conditions are considered. PMID:24833710

  14. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    PubMed

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  15. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha.

    PubMed

    Handschin, Christoph; Lin, Jiandie; Rhee, James; Peyer, Anne-Kathrin; Chin, Sherry; Wu, Pei-Hsuan; Meyer, Urs A; Spiegelman, Bruce M

    2005-08-26

    Inducible hepatic porphyrias are inherited genetic disorders of enzymes of heme biosynthesis. The main clinical manifestations are acute attacks of neuropsychiatric symptoms frequently precipitated by drugs, hormones, or fasting, associated with increased urinary excretion of delta-aminolevulinic acid (ALA). Acute attacks are treated by heme infusion and glucose administration, but the mechanisms underlying the precipitating effects of fasting and the beneficial effects of glucose are unknown. We show that the rate-limiting enzyme in hepatic heme biosynthesis, 5-aminolevulinate synthase (ALAS-1), is regulated by the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). Elevation of PGC-1alpha in mice via adenoviral vectors increases the levels of heme precursors in vivo as observed in acute attacks. The induction of ALAS-1 by fasting is lost in liver-specific PGC-1alpha knockout animals, as is the ability of porphyrogenic drugs to dysregulate heme biosynthesis. These data show that PGC-1alpha links nutritional status to heme biosynthesis and acute hepatic porphyria.

  16. A mutation within the SH2 domain of slp-76 regulates the tissue distribution and cytokine production of iNKT cells in mice.

    PubMed

    Danzer, Claudia; Koller, Anna; Baier, Julia; Arnold, Harald; Giessler, Claudia; Opoka, Robert; Schmidt, Stephanie; Willers, Maike; Mihai, Sidonia; Parsch, Hans; Wirtz, Stefan; Daniel, Christoph; Reinhold, Annegret; Engelmann, Swen; Kliche, Stefanie; Bogdan, Christian; Hoebe, Kasper; Mattner, Jochen

    2016-09-01

    TCR ligation is critical for the selection, activation, and integrin expression of T lymphocytes. Here, we explored the role of the TCR adaptor protein slp-76 on iNKT-cell biology. Compared to B6 controls, slp-76(ace/ace) mice carrying a missense mutation (Thr428Ile) within the SH2-domain of slp-76 showed an increase in iNKT cells in the thymus and lymph nodes, but a decrease in iNKT cells in spleens and livers, along with reduced ADAP expression and cytokine response. A comparable reduction in iNKT cells was observed in the livers and spleens of ADAP-deficient mice. Like ADAP(-/-) iNKT cells, slp-76(ace/ace) iNKT cells were characterized by enhanced CD11b expression, correlating with an impaired induction of the TCR immediate-early gene Nur77 and a decreased adhesion to ICAM-1. Furthermore, CD11b-intrinsic effects inhibited cytokine release, concanavalin A-mediated inflammation, and iNKT-cell accumulation in the liver. Unlike B6 and ADAP(-/-) mice, the expression of the transcription factors Id3 and PLZF was reduced, whereas NP-1-expression was enhanced in slp-76(ace/ace) mice. Blockade of NP-1 decreased the recovery of iNKT cells from peripheral lymph nodes, identifying NP-1 as an iNKT-cell-specific adhesion factor. Thus, slp-76 contributes to the regulation of the tissue distribution, PLZF, and cytokine expression of iNKT cells via ADAP-dependent and -independent mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hyperglycemia-conditioned increase in alpha-2-macroglobulin in healthy normal subjects: a phenomenon correlated with deficient antithrombin III activity.

    PubMed

    Ceriello, A; Quatraro, A; Dello Russo, P; Marchi, E; Barbanti, M; Giugliano, D

    1989-01-01

    Induced hyperglycemia in normal subjects increases alpha 2-macroglobulin (alpha 2M) activity and alpha 2M concentration and reduces antithrombin III (ATIII) activity, while it does not affect ATIII plasma concentration. Hyperglycemia-determined variations in ATIII activity and alpha 2M molecules are correlated in an inverse and parallel fashion. A compensatory role for the increase in alpha 2M in the regulation of the coagulation system may be hypothesized. Moreover, these data provide evidence that hyperglycemia may decrease, directly, the biological function of some proteins and may influence the levels of some risk factors for the development of complications in diabetes.

  18. A novel mechanism of E2F1 regulation via nucleocytoplasmic shuttling: determinants of nuclear import and export.

    PubMed

    Ivanova, Iordanka A; Vespa, Alisa; Dagnino, Lina

    2007-09-01

    E2F1 is a transcription factor central for cell survival, proliferation, and repair following genomic insult. Depending on the cell type and conditions, E2F1 can induce apoptosis in transformed cells, behaving as a tumour suppressor, or impart growth advantages favouring tumour formation. The pleiotropic functions of E2F1 are a likely consequence of its ability to transcriptionally control a wide variety of target genes, and require tight regulation of its activity at multiple levels. Although sequestration of proteins to particular cellular compartments is a well-established regulatory mechanism, virtually nothing is known about its contribution to modulation of E2F1 target gene expression. We have examined the subcellular trafficking of E2F1 and, contrary to the widely held notion that this factor is constitutively nuclear, we now demonstrate that it is subjected to continuous nucleocytoplasmic shuttling. We have also defined two nuclear localization domains and a nuclear export region, which mediates CRM1-dependent transit out of the nucleus. The predominant subcellular location of E2F1 is likely determined by the balance between the activity of nuclear import and export domains, and can be modulated by differentiation stimuli in epidermal cells. Thus, we have identified a hitherto unrecognized mechanism to control E2F1 function through modulation of its subcellular localization.

  19. Paracrine regulation of matrix metalloproteinase expression in the normal human endometrium.

    PubMed

    Osteen, K G; Keller, N R; Feltus, F A; Melner, M H

    1999-01-01

    Endometrial expression of matrix metalloproteinase (MMP)-3, MMP-7 and MMP-11 occurs during menstrual breakdown and subsequent estrogen-mediated growth, but not during the secretory phase. These enzymes are suppressed by progesterone treatment. Paracrine factors, including transforming growth factor-beta (TGF-beta) and retinoic acid, are also critical for MMP regulation in the endometrium. In contrast, inflammatory cytokines such as interleukin-1alpha may block or interfere with steroid-mediated MMP regulation at ectopic sites of growth. Using in vitro models, our laboratory has investigated the complex interactions between progesterone and locally produced cytokines that may affect MMP expression during the development of endometriosis. Our results indicate that targeting the regulation of MMPs may represent an appropriate therapeutic strategy for the treatment of endometriosis. Copyrightz1999S. KargerAG,Basel

  20. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.

    PubMed

    Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J

    2001-07-01

    We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.

  1. Relationship of oestrus synchronization method, circulating hormones, luteinizing hormone and prostaglandin F-2 alpha receptors and luteal progesterone concentration to premature luteal regression in superovulated sheep.

    PubMed

    Schiewe, M C; Fitz, T A; Brown, J L; Stuart, L D; Wildt, D E

    1991-09-01

    Ewes were treated with exogenous follicle-stimulating hormone (FSH) and oestrus was synchronized using either a dual prostaglandin F-2 alpha (PGF-2 alpha) injection regimen or pessaries impregnated with medroxy progesterone acetate (MAP). Natural cycling ewes served as controls. After oestrus or AI (Day 0), corpora lutea (CL) were enucleated surgically from the left and right ovaries on Days 3 and 6, respectively. The incidence of premature luteolysis was related (P less than 0.05) to PGF-2 alpha treatment and occurred in 7 of 8 ewes compared with 0 of 4 controls and 1 of 8 MAP-exposed females. Sheep with regressing CL had lower circulating and intraluteal progesterone concentrations and fewer total and small dissociated luteal cells on Day 3 than gonadotrophin-treated counterparts with normal CL. Progesterone concentration in the serum and luteal tissue was higher (P less than 0.05) in gonadotrophin-treated ewes with normal CL than in the controls; but luteinizing hormone (LH) receptors/cell were not different on Days 3 and 6. There were no apparent differences in the temporal patterns of circulating oestradiol-17 beta, FSH and LH. High progesterone in gonadotrophin-treated ewes with normal CL coincided with an increase in total luteal mass and numbers of cells, which were primarily reflected in more small luteal cells than in control ewes. Gonadotrophin-treated ewes with regressing CL on Day 3 tended (P less than 0.10) to have fewer small luteal cells and fewer (P less than 0.05) low-affinity PGF-2 alpha binding sites than sheep with normal CL. By Day 6, luteal integrity and cell viability was absent in ewes with prematurely regressed CL. These data demonstrate that (i) the incidence of premature luteal regression is highly correlated with the use of PGF-2 alpha; (ii) this abnormal luteal tissue is functionally competent for 2-3 days after ovulation, but deteriorates rapidly thereafter and (iii) luteal-dysfunctioning ewes experience a reduction in numbers of

  2. The Staphyloccous aureus Eap protein activates expression of proinflammatory cytokines.

    PubMed

    Scriba, Thomas J; Sierro, Sophie; Brown, Eric L; Phillips, Rodney E; Sewell, Andrew K; Massey, Ruth C

    2008-05-01

    The extracellular adhesion protein (Eap) secreted by the major human pathogen Staphylococcus aureus is known to have several effects on human immunity. We have recently added to knowledge of these roles by demonstrating that Eap enhances interactions between major histocompatibility complex molecules and human leukocytes. Several studies have indicated that Eap can induce cytokine production by human peripheral blood mononuclear cells (PBMCs). To date, there has been no rigorous attempt to identify the breadth of cytokines produced by Eap stimulation or to identify the cell subsets that respond. Here, we demonstrate that Eap induces the secretion of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) by CD14(+) leukocytes (monocytes and macrophages) within direct ex vivo PBMC populations (note that granulocytes are also CD14(+) but are largely depleted from PBMC preparations). Anti-intercellular adhesion molecule 1 (CD54) antibodies inhibited this induction and implicated a role for this known Eap binding protein in cellular activation. IL-6 and TNF-alpha secretion by murine cells exposed to Eap was also observed. The activation of CD14(+) cells by Eap suggests that it could play a significant role in both septic shock and fever, two of the major pathological features of S. aureus infections.

  3. [Interferon alpha-2b modified with polyethylene glycol].

    PubMed

    Wu, Yingxin; Zhai, Yanqin; Lei, Jiandu; Ma, Guanghui; Su, Zhiguo

    2008-09-01

    In order to obtain a more stable PEGylated interferon alpha-2b, and prolong its half life, interferon alpha-2b (IFN alpha-2b) was modified with monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD) 20000. It was found that the optimized reaction condition for the maximum bioactivity and highest PEGylation degree of the mono PEGylated interferon alpha-2b was as follows: in 20 mmol/L, pH 6.5, citric acid and sodium dihydrogen phosphate buffer, the concentration of IFN alpha-2b was 4 mg/mL, and the molar ratio of PEG/IFN alpha-2b was 8:1, and the reaction time was 20 h at 4 degrees C. Under the optimized reaction condition, the mono PEGylation degree reached to 55%. Ion exchange chromatography was used to separate and purify mono PEGylated interferon alpha-2b from the reaction mixture. The purity of mono PEGylated interferon alpha-2b was higher than 97% characterized by HPLC. The bioactivity of the mono PEGylated interferon alpha-2b was 13.4% of the native IFN alpha-2b, while its half life in SD rat is much longer than the native IFN alpha-2b. The mono PEGylated interferon alpha-2b is also stable in aqueous.

  4. Effect of different ventilatory strategies on local and systemic cytokine production in intact swine lungs in vivo.

    PubMed

    Myrianthefs, P; Boutzouka, E; Venetsanou, K; Papalois, A; Kouloukousa, M; Kittas, C; Baltopoulos, G

    2006-05-01

    The purpose of the study was to investigate the effect of different ventilatory strategies on local and systemic cytokine production in swine with intact lungs in vivo after 4 h of mechanical ventilation. Twenty-five swine were anesthetized and then randomized into five groups (n = 5): (1) low tidal volume zero PEEP (LVZP); (2) medium tidal volume zero PEEP (MVZP); (3) high tidal volume zero PEEP (HVZP); (4) low tidal volume PEEP (LVP); (4) high tidal volume PEEP (HVP). Respiratory rate was adjusted to maintain normocapnia and fraction of inspired oxygen (FiO2) was 1.0. TNF-alpha and IL-10 were measured in BALF and serum at baseline, 2 h, and 4 h of MV. One animal in LVZP (2 h) and two in HVP (3 h) group died before the end of the experiment. TNF-alpha level in BALF was significantly higher in LVZP and LVP at 4 h compared to baseline and the other groups. IL-10 level in BALF was significantly higher in LVP at 4h compared to baseline and the other groups. There was a statistically significant increase in serum TNF-alpha levels at 4 h in LVP group compared to baseline and the other groups at 4 h. There was statistically significant increase in serum IL-10 levels in HVZP and LVP groups at 2 and 4 h which was significantly higher compared to the other groups at 4 h. Our results show that a) low volume MV may induce local and systemic pro- and anti-inflammatory cytokine increase b) in the presence of pro-inflammatory cytokine response there is also an anti-inflammatory response in the same compartment (lungs, circulation). c) There maybe loss of alveolar-to-systemic cytokine compartmentalization.

  5. Serum cytokine profiles of children with human enterovirus 71-associated hand, foot, and mouth disease.

    PubMed

    Han, Jun; Wang, Ying; Gan, Xing; Song, Juan; Sun, Peng; Dong, Xiao-Ping

    2014-08-01

    Cytokine profiles may impact the pathogenicity and severity of hand, foot, and mouth disease caused by human enterovirus (HEV) 71. In 91 severe or mild HEV 71-associated hand, foot, and mouth disease children, serum was collected between days 2 and 10 or day >10. Serum cytokines including Type 1 T helper (Th1) cytokines: interleukin (IL)-2, interferon-gamma (IFN-γ), IL-12, and IL-18, Type 1 T helper (Th2) cytokines: IL-4, IL-10, IL-13, proinflammatory cytokines: IL-1α, IL-1β, IL-6, IL-8, IL-17, and tumor necrosis factor alpha (TNF-α), were assessed during the early stage and recovery. In the patients with mild illness, the peaks of IL-8 and IL-10 were observed on day 6 and that of IL-18 was on day 4. In the patients with severe illness, all cytokines spiked on day 3 and peaked on day 11. All cytokines except IL-6, IL-8, IL-18, and TNF-α were significantly correlated with immunoglobulin M levels by the end of the disease course. Cytokine profile variations between the patients with mild and severe illness may indicate prognosis and strain virulence, useful in clinical treatment of patients. © 2014 Wiley Periodicals, Inc.

  6. Alpha1- and alpha2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia.

    PubMed

    Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G

    2009-06-01

    Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.

  7. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral

  8. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    PubMed

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  9. Aberrant Production of Th1/Th2/Th17-Related Cytokines in Serum of C57BL/6 Mice after Short-Term Formaldehyde Exposure

    PubMed Central

    Wei, Haiyan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Zhang, Juan; Pu, Yuepu

    2014-01-01

    Previous studies have shown that formaldehyde (FA) could cause immunotoxicity by changing the number of T lymphocytes and that cytokines play a pivotal role in the regulation of T lymphocytes. However, the previously used cytokine detection methods are difficult to use in the measurement of several cytokines in a small amount of sample for one test. Therefore, the cytometric bead array (CBA) technique was used. CBA showed better analytical efficiency and sensitivity than the previous methods. C57BL/6 mice were exposed to the control (normal saline), low FA concentration (0.5 mg/kg), and high FA concentration (2 mg/kg) for 1 week or 1 month. The contents of cytokines, including Th1-related cytokines (IL-2, IFN-γ, and tumor necrosis factor), Th2-related cytokines (IL-4, IL-6, and IL-10), and Th17-related cytokines (IL-17A), were measured by using the BD FACS Canto II Flow Cytometer and analyzed by FCAP ArrayTM Software. Th1/Th2/Th17-related cytokines showed a slightly decreasing trend after low FA exposure. Conversely, a significantly increasing trend was found after high FA exposure. Th1/Th2/Th17-related cytokines all serve important functions in the immune reactions in mice after FA exposure. PMID:25264680

  10. PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site

    PubMed Central

    Bothe, Ingo; Deng, Su; Baylies, Mary

    2014-01-01

    Cell-cell fusion is a regulated process that requires merging of the opposing membranes and underlying cytoskeletons. However, the integration between membrane and cytoskeleton signaling during fusion is not known. Using Drosophila, we demonstrate that the membrane phosphoinositide PI(4,5)P2 is a crucial regulator of F-actin dynamics during myoblast fusion. PI(4,5)P2 is locally enriched and colocalizes spatially and temporally with the F-actin focus that defines the fusion site. PI(4,5)P2 enrichment depends on receptor engagement but is upstream or parallel to actin remodeling. Regulators of actin branching via Arp2/3 colocalize with PI(4,5)P2 in vivo and bind PI(4,5)P2 in vitro. Manipulation of PI(4,5)P2 availability leads to impaired fusion, with a reduction in the F-actin focus size and altered focus morphology. Mechanistically, the changes in the actin focus are due to a failure in the enrichment of actin regulators at the fusion site. Moreover, improper localization of these regulators hinders expansion of the fusion interface. Thus, PI(4,5)P2 enrichment at the fusion site encodes spatial and temporal information that regulates fusion progression through the localization of activators of actin polymerization. PMID:24821989

  11. Beneficial effects of cytokine induced hyperlipidemia.

    PubMed

    Feingold, K R; Hardardóttir, I; Grunfeld, C

    1998-01-01

    Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and

  12. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.

    PubMed

    Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu

    2018-01-20

    The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.

  13. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine.

    PubMed

    McILwain, R Britt; Timpa, Joseph G; Kurundkar, Ashish R; Holt, David W; Kelly, David R; Hartman, Yolanda E; Neel, Mary Lauren; Karnatak, Rajendra K; Schelonka, Robert L; Anantharamaiah, G M; Killingsworth, Cheryl R; Maheshwari, Akhil

    2010-01-01

    Extracorporeal membrane oxygenation (ECMO) is a life-saving support system used in neonates and young children with severe cardiorespiratory failure. Although ECMO has reduced mortality in these critically ill patients, almost all patients treated with ECMO develop a systemic inflammatory response syndrome (SIRS) characterized by a 'cytokine storm', leukocyte activation, and multisystem organ dysfunction. We used a neonatal porcine model of ECMO to investigate whether rising plasma concentrations of inflammatory cytokines during ECMO reflect de novo synthesis of these mediators in inflamed tissues, and therefore, can be used to assess the severity of ECMO-related SIRS. Previously healthy piglets (3-week-old) were subjected to venoarterial ECMO for up to 8 h. SIRS was assessed by histopathological analysis, measurement of neutrophil activation (flow cytometry), plasma cytokine concentrations (enzyme immunoassays), and tissue expression of inflammatory genes (PCR/western blots). Mast cell degranulation was investigated by measurement of plasma tryptase activity. Porcine neonatal ECMO was associated with systemic inflammatory changes similar to those seen in human neonates. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) concentrations rose rapidly during the first 2 h of ECMO, faster than the tissue expression of these cytokines. ECMO was associated with increased plasma mast cell tryptase activity, indicating that increased plasma concentrations of inflammatory cytokines during ECMO may result from mast cell degranulation and associated release of preformed cytokines stored in mast cells. TNF-alpha and IL-8 concentrations rose faster in plasma than in the peripheral tissues during ECMO, indicating that rising plasma levels of these cytokines immediately after the initiation of ECMO may not reflect increasing tissue synthesis of these cytokines. Mobilization of preformed cellular stores of inflammatory cytokines such as in mucosal mast cells may have

  14. Selective suppression of cytokine secretion in whole blood cell cultures of patients with colorectal cancer.

    PubMed Central

    Lahm, H.; Schindel, M.; Frikart, L.; Cerottini, J. P.; Yilmaz, A.; Givel, J. C.; Fischer, J. R.

    1998-01-01

    We have investigated the secretion of interferon alpha (IFN-alpha), IFN-gamma, interleukin-1alpha (IL-1alpha), IL-1beta, IL-2 and tumour necrosis factor alpha (TNF-alpha) in whole blood cell cultures (WBCCs) of colorectal cancer patients upon mitogen stimulation. Whereas the values for IL-1beta and TNF-alpha remained virtually unchanged in comparison with healthy control subjects, WBCCs of colorectal cancer patients secreted significantly lower amounts of IFN-alpha (P < 0.005), IFN-gamma (P < 0.0001), IL-1alpha (P < 0.0001) and IL-2 (P < 0.05). This reduction correlated with the progression of the disease. The total leucocyte and monocyte population were almost identical in both groups. In contrast, a dramatic depletion of lymphocytes was observed in colorectal cancer patients, which affected both lymphocyte counts (P < 0.0005) and their distribution (P < 0.0001). Our results suggest a selective suppression of cytokines in colorectal cancer patients that is related to tumour burden. Several mechanisms might account for this phenomenon, one of which might be lymphocyte depletion. PMID:9792144

  15. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  16. Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways.

    PubMed

    Liu, Dali; Yumoto, Hiromichi; Hirota, Katsuhiko; Murakami, Keiji; Takahashi, Kanako; Hirao, Kouji; Matsuo, Takashi; Ohkura, Kazuto; Nagamune, Hideaki; Miyake, Yoichiro

    2008-01-01

    Streptococcus intermedius is a commensal associated with serious, deep-seated purulent infections in major organs, such as the brain and liver. Histone-like DNA binding protein (HLP) is an accessory architectural protein in a variety of bacterial cellular processes. In this study, we investigated the mechanisms of pro-inflammatory cytokine inductions in THP-1 cells by stimulation with recombinant HLP of S. intermedius (rSi-HLP). rSi-HLP stimulation-induced production of pro-inflammatory cytokines (IL-8, IL-1 beta and TNF-alpha) occurred in a time- and dose-dependent manner. In contrast with the heat-stable activity of DNA binding, the induction activity of rSi-HLP was heat-unstable. In subsequent studies, rSi-HLP acted cooperatively with lipoteichoic acid, the synthetic Toll-like receptor 2 agonist, Pam3CSK4, and the cytosolic nucleotide binding oligomerization domain 2 receptor agonist, muramyldipeptide. Furthermore, Western blot and blocking assays with specific inhibitors showed that rSi-HLP stimulation induced the activation of cell signal transduction pathways, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). In addition to its physiological role in bacterial growth through DNA binding, these results indicate that Si-HLP can trigger a cascade of events that induce pro-inflammatory responses via ERK1/2 and JNK signal pathways, and suggest that bacterial HLP may contribute to the activation of host innate immunity during bacterial infection.

  17. Endometrial IL-1beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis. Effects of estrous cycle, artificial insemination and immunomodulation.

    PubMed

    Fumuso, Elida; Giguère, Steeve; Wade, José; Rogan, Dragan; Videla-Dorna, Ignacio; Bowden, Raúl A

    2003-11-15

    Endometrial mRNA expression of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) was assessed in mares resistant (RM) or susceptible (SM) to persistent post-breeding endometritis (PPBE). Eight RM and eight SM, were selected based on reproductive records and functional tests out of a herd of 2,000 light cross-type mares. Three experiments were done to study transcription patterns in (i) basal conditions; (ii) after artificial insemination (AI); and (iii) after administration of an immunomodulator at time of artificial insemination. Endometrial biopsies were taken during consecutive cycles: (i) at estrus, when follicles reached 35 mm and at diestrus (7 +/- 1 days after ovulation); (ii) at 24 h post-AI, with dead semen (estrus) and in diestrus; (iii) at 24 h after treatment with a Mycobacterium phlei cell-wall extract (MCWE) preparation and AI (with dead semen), and at diestrus. mRNA expression was quantitated by real time PCR. Under basal conditions, SM had significantly higher mRNA expression of all cytokines in estrus and of IL-1beta and TNF-alpha in diestrus, compared to RM. After AI, there were no differences between RM and SM in estrus; however, mRNA expression for all three pro-inflammatory cytokines was higher than under basal conditions. In diestrus, RM showed significantly lower IL-1beta and TNF-alpha mRNA expression than SM. When MCWE was administered at time of AI, no differences between cytokine induction from RM and SM were found. Globally, mRNA expression for all three cytokines correlated well among themselves when expression was high. The present study showed that (i) in basal conditions RM had lower mRNA expression of pro-inflammatory cytokines than SM with no effect of estrous cycle; (ii) AI upregulated mRNA expression for all three cytokines in both RM and SM, with persistance in diestrus in the latter; (iii) treatment with MCWE at time of AI down-regulated mRNA expression

  18. The gene expression of cytokines and chemokines induced by tourniquet shock in mice.

    PubMed

    Tanaka, Jin; Ishida, Yuko; Ohshima, Tohru; Kondo, Toshikazu

    2003-09-01

    Traumatic shock is one of the major fields in forensic pathology, but its mechanism remains elusive from the pathophysiological aspects. Tourniquet shock has been established as one of the animal models of traumatic shock, and we examined the gene expression of cytokines and chemokines in the lung and liver in tourniquet shock using mice. Tourniquet was conducted by the application of elastic bands with five turns at both the thighs as high as possible for 2 h, followed by reperfusion. In this procedure, more than 90% mice died within 48 h after reperfusion. Serum hepatic transaminase and hematocrit values significantly increased at 2 h after reperfusion, and their elevation was still evident after 10 h. Histopathologically, hemorrhages, congestion and leukocyte recruitment were observed in the lung and liver specimens after 6 h of reperfusion. Immunohistochemical analysis with anti-myeloperoxidase antibody demonstrated a massive neutrophil infiltration in the lung and liver at 2 h or more after reperfusion. RT-PCR analyses demonstrated that the gene expression of interleukin-1beta, tumor necrosis factor-alpha, monocytes chemoattractant protein-1, macrophage inflammatory protein (MIP)-1alpha, MIP-2, KC and vascular endothelial adhesion molecule-1 was most enhanced in the lung and liver at 2 h after reperfusion. Thus, the gene expression of cytokines and chemokines is presumed to be closely related with the onset of tourniquet shock. From the forensic aspects, these cytokines and chemokines are considered to be useful markers for the early diagnosis of tourniquet shock.

  19. Selective suppression of endothelial cytokine production by progesterone receptor.

    PubMed

    Goddard, Lauren M; Ton, Amy N; Org, Tõnis; Mikkola, Hanna K A; Iruela-Arispe, M Luisa

    2013-01-01

    Steroid hormones are well-recognized suppressors of the inflammatory response, however, their cell- and tissue-specific effects in the regulation of inflammation are far less understood, particularly for the sex-related steroids. To determine the contribution of progesterone in the endothelium, we have characterized and validated an in vitro culture system in which human umbilical vein endothelial cells constitutively express human progesterone receptor (PR). Using next generation RNA-sequencing, we identified a selective group of cytokines that are suppressed by progesterone both under physiological conditions and during pathological activation by lipopolysaccharide. In particular, IL-6, IL-8, CXCL2/3, and CXCL1 were found to be direct targets of PR, as determined by ChIP-sequencing. Regulation of these cytokines by progesterone was also confirmed by bead-based multiplex cytokine assays and quantitative PCR. These findings provide a novel role for PR in the direct regulation of cytokine levels secreted by the endothelium. They also suggest that progesterone-PR signaling in the endothelium directly impacts leukocyte trafficking in PR-expressing tissues. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice.

    PubMed

    Pervaiz, Nabeel; Hoffman-Goetz, Laurie

    2012-01-01

    Exhaustive exercise induces apoptosis and oxidative stress in systemic organs and tissues and is associated with increased levels of pro-inflammatory cytokines. The effects of acute exercise on cytokine expression and apoptosis of immune cells in the central nervous system (CNS) have not been well characterized. We investigated the effects of a single bout of strenuous exercise on the expression of TNF-alpha, IL-6, and IL-beta, as well as the apoptotic status of cells in the hippocampus of healthy mice. To compare central vs. systemic differences, cytokine expression in the intestinal lymphocytes of a subset of mice were also assessed. Female C57BL/6 mice were divided into three groups: sedentary controls (NOTREAD) (n = 22), treadmill exercise with immediate sacrifice (TREAD-Imm) (n = 21), or treadmill exercise with sacrifice after 2 hours (TREAD-2h). TNF-alpha, IL-6, and IL-1beta expression in the hippocampus and intestinal lymphocytes were measured by Western blot analysis. Percentages of hippocampal cells undergoing apoptosis (Annexin+) or necrosis (Propidium Iodide+) were determined through flow cytometry. Plasma levels of 8-isoprostane and corticosterone were measured using commercially available EIA kits. Acute treadmill exercise led to significant decreases in TNF-alpha (p<0.05) and increases in IL-6 (p<0.05) expression in the hippocampus of healthy mice. No effects of acute exercise on the apoptotic status of hippocampal cells were observed. In intestinal lymphocytes, the exercise bout led to significant increases in TNF-alpha (p<0.05), IL-6 (p<0.05), and IL-1beta (p<0.05). Acute exercise was associated with a significant increase in both plasma 8-isoprostane (p<0.05) and corticosterone (p<0.05) levels. Acute exercise differentially affects the pattern ofpro-inflammatory cytokine expression in the hippocampus compared to intestinal lymphocytes and, further, does not induce apoptosis in hippocampal cells.