Sample records for fa cement concrete

  1. Exterior building details of Building A; east façade: concrete staircase, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; east façade: concrete staircase, profiled cement, plaster door surround, recessed panel inscribed "1859", historic window opening with concrete sill above door, cement plaster dentil course and cornice truncated wood beam ends, plaster finished brick wall, granite base; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  2. Investigation on the Rheological Behavior of Fly Ash Cement Composites at Paste and Concrete Level

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Hemalatha; Mapa, Maitri; Kushwaha, Rakhi

    2018-06-01

    Towards developing sustainable concrete, nowadays, high volume replacement of cement with fly ash (FA) is more common. Though the replacement of fly ash at 20-30% is widely accepted due to its advantages at both fresh and hardened states, applicability and acceptability of high volume fly ash (HVFA) is not so popular due to some adverse effects on concrete properties. Nowadays to suit various applications, flowing concretes such as self compacting concrete is often used. In such cases, implications of usage of HVFA on fresh properties are required to be investigated. Further, when FA replacement is beyond 40% in cement, it results in the reduction of strength and in order to overcome this drawback, additions such as nano calcium carbonate (CC), lime sludge (LS), carbon nano tubes (CNT) etc. are often incorporated to HVFA concrete. Hence, in this study, firstly, the influence of replacement level of 20-80% FA on rheological property is studied for both cement and concrete. Secondly, the influence of additions such as LS, CC and CNT on rheological parameters are discussed. It is found that the increased FA content improved the flowability in paste as well as in concrete. In paste, the physical properties such as size and shape of fly ash is the reason for increased flowability whereas in concrete, the paste volume contributes dominantly for the flowability rather than the effect due to individual FA particle. Reduced density of FA increases the paste volume in FA concrete thus reducing the interparticle friction by completely coating the coarse aggregate.

  3. Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA).

    PubMed

    Golewski, Grzegorz Ludwik

    2018-06-07

    Interfacial Transition Zone (ITZ) of coarse aggregate cement matrix is commonly regarded as the weakest element of concrete. In this phase - the first cracks in the material are initiated, and the process of destruction of the composite begins. An improvement of the ITZ properties are positively influenced by the mineral additives used for the composite. One of such a substitute for a binder is, potentially hazardous industrial waste, siliceous fly ash (FA). In this paper the ITZ between aggregate and cement paste in concretes containing FA is considered. The paper presents the results of tests on the effect of the addition of FA in the amount of: 0, 20 and 30% by weight of cement on morphology and size of cracks of the ITZ in composites. In matured concretes the smallest cracks occur in composite with the 20% FA additive. It can be concluded that composites with 20% addition of FA are characterized by low permeability and therefore high durability. The results of tests carried out can be helpful in obtaining concrete with the highest possible: strength, durability and reliability of operation. Moreover, such procedures also cause a restriction storage of hazardous materials, i.e. FA - by 160 million tons per year. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Modified pavement cement concrete

    NASA Astrophysics Data System (ADS)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  5. Use of rubber crumbs in cement concrete

    NASA Astrophysics Data System (ADS)

    Longvinenko, A. A.

    2018-03-01

    Rubber crumb obtained from worn out tires has been increasingly used over the last 15-20 years, especially in manufacture of asphalt and cement concrete mixtures. This review pays principal attention to application of the rubber crumb to cement concrete mixtures. Use of the rubber crumb in cement concrete is not as successful as in asphalt concrete mixtures, due to incompatibility problems linked to chemical composition and a significant difference in rigidity between the rubber crumb and concrete mixture aggregates. Different methods are proposed and studied to mitigate the adverse influence and increase the beneficial effects of the rubber crumb when added to cement concrete.

  6. Recycled concrete aggregate in portland cement concrete.

    DOT National Transportation Integrated Search

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  7. An experimental investigation on mechanical behaviour of eco - friendly concrete

    NASA Astrophysics Data System (ADS)

    Narender Reddy, A.; Meena, T.

    2017-11-01

    Fly ash (FA) and Alccofine are the eco-friendly materials that can be used in the production of concrete composites. Initially, concrete mixes of M30 grade with replacement of cement by 0%, 5%, 10%, 15%, 20% and 25% by weight of Fly ash were prepared. They were subjected to compression test so as to select the optimum replacement percentage of FA. Keeping this optimum percentage of FA as constant, additional replacement of cement with Alccofine was done varying its replacement in the range of 8%, 10%, 12% and 14%. The mechanical properties such as compressive, split tensile and flexural strengths of these mixes were computed for 7, 14 and 28 days. The results of Eco-Friendly Concrete (EFC) are compared with those of control concrete. It was observed that EFC mixes exhibited superior qualities like quick setting and enhanced workability, their mechanical properties were found to be higher than that of the conventional concrete. This goes to prove that the combination of FA and Alccofine together as replacement for cement would enhance the properties of EFC.

  8. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review.

    PubMed

    Kurda, Rawaz; Silvestre, José D; de Brito, Jorge

    2018-04-01

    This paper presents an overview of previous studies on the environmental impact (EI) and toxicity of producing recycled concrete aggregates (RCA), fly ash (FA), cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA) with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation (POCP), acidification potential (AP), eutrophication potential (EP), non-renewable energy (PE-NRe) and renewable energy (PE-Re). In terms of toxicity, leachability (chemical and ecotoxicological characterization) was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials.

  9. Evaluation of ternary blended cements for use in transportation concrete structures

    NASA Astrophysics Data System (ADS)

    Gilliland, Amanda Louise

    This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make

  10. Crushed cement concrete substitution for construction aggregates; a materials flow analysis

    USGS Publications Warehouse

    Kelly, Thomas

    1998-01-01

    An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.

  11. Portland cement concrete air content study.

    DOT National Transportation Integrated Search

    1987-04-20

    This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...

  12. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  13. Recycled materials in Portland cement concrete

    DOT National Transportation Integrated Search

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  14. Calcium Orthophosphate Cements and Concretes

    PubMed Central

    Dorozhkin, Sergey V.

    2009-01-01

    In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  15. Low Shrinkage Cement Concrete Intended for Airfield Pavements

    NASA Astrophysics Data System (ADS)

    Małgorzata, Linek

    2017-10-01

    The work concerns the issue of hardened concrete parameters improvement intended for airfield pavements. Factors which have direct or indirect influence on rheological deformation size were of particular interest. The aim of lab testing was to select concrete mixture ratio which would make hardened concrete less susceptible to influence of basic operating factors. Analyses included two research groups. External and internal factors were selected. They influence parameters of hardened cement concrete by increasing rheological deformations. Research referred to innovative cement concrete intended for airfield pavements. Due to construction operation, the research considered the influence of weather conditions and forced thermal loads intensifying concrete stress. Fresh concrete mixture parameters were tested and basic parameters of hardened concrete were defined (density, absorbability, compression strength, tensile strength). Influence of the following factors on rheological deformation value was also analysed. Based on obtained test results, it has been discovered that innovative concrete, made on the basis of modifier, which changes internal structure of concrete composite, has definitely lower values of rheological deformation. Observed changes of microstructure, in connection with reduced deformation values allowed to reach the conclusion regarding advantageous characteristic features of the newly designed cement concrete. Applying such concrete for airfield construction may contribute to extension of its operation without malfunction and the increase of its general service life.

  16. Mechanical properties of cement concrete composites containing nano-metakaolin

    NASA Astrophysics Data System (ADS)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  17. Microstructural and Microanalytical Study on Concrete Exposed to the Sulfate Environment

    NASA Astrophysics Data System (ADS)

    Qing, Fang; Beixing, Li; Jiangang, Yin; Xiaolu, Yuan

    2017-11-01

    Microstructural properties have been examined to investigate the effect of mineral admixtures on the sulfate resistance of concrete. Concrete and cement paste specimens made with ordinary Portland cement (OPC) or ordinary Portland cement incorporating 20% fly ash (FA) or 30% ground blast furnace slag (GBFS), were made and exposed to 250 cycles of the cyclic sulfate environment. Microstructural and Microanalytical study was conducted by means of x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Results indicate that the pore structure of concrete after sulfate exposure possesses the fractal feature. The OPC concrete presents more complex pore internal surface, higher porosity and less micro-pores than the concrete incorporating fly ash and GBFS. Portlandite in OPC concrete and OPC-FA concrete is mainly converted to gypsum; while for OPC-GBFS concrete, both gypsum and ettringite are formed. In the cyclic sulfate environment, repeated hydration and dehydration of sulfates produce the expansive stress in pores, aggravating the demolishment of concrete structure.

  18. Heavyweight cement concrete with high stability of strength parameters

    NASA Astrophysics Data System (ADS)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  19. Repair and protection of hydraulic cement concrete bridge decks.

    DOT National Transportation Integrated Search

    1994-01-01

    The report is an updated version of "A Manual for the Repair and Protection of Hydraulic Cement Concrete Bridge Decks" (VTRC 90-TAR2). The report was prepared for Chapter 2 of the Hydraulic Cement Concrete Construction School Study Guide which is dis...

  20. Development of design parameters for virtual cement and concrete testing : [summary].

    DOT National Transportation Integrated Search

    2013-12-01

    At its most basic, concrete is made from cement : and aggregate, often Portland cement and gravel : (or in Florida, limestone). Varying ingredients and : their proportions directly influences the behavior : of the final cement and concrete products. ...

  1. Effect of wet curing duration on durability parameters of hydraulic cement concretes.

    DOT National Transportation Integrated Search

    2010-01-01

    Hydraulic cement concrete slabs were cast and stored outdoors in Charlottesville, Virginia, to study the impact of wet curing duration on durability parameters. Concrete mixtures were produced using portland cement, portland cement with slag cement, ...

  2. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    NASA Astrophysics Data System (ADS)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  3. Effect of Cement on Properties of Over-Burnt Brick Bituminous Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Sarkar, Dipankar; Pal, Manish

    2016-06-01

    The present investigation is carried out to propose the use of cement coated over burnt brick aggregate in the preparation of bituminous concrete mix. The effect of cement on various mechanical properties such as Marshall stability, flow, Marshall quotient (stability to flow ratio), indirect tensile strength, stripping, rutting and fatigue life of bituminous concrete overlay has been evaluated. In this study, different cement percentages such as 2, 3, 4 and 5 % by weight of aggregate have been mixed with Over Burnt Brick Aggregate (OBBA). The laboratory results indicate that bituminous concrete prepared by 4 % cement coated OBBA gives the highest Marshall stability. The bituminous concrete mix with 4 % cement shows considerable improvement in various mechanical properties of the mix compared to the plain OBBA concrete mix.

  4. Properties of ambient cured blended alkali activated cement concrete

    NASA Astrophysics Data System (ADS)

    Talha Junaid, M.

    2017-11-01

    This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.

  5. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    PubMed

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  6. Strength characteristics of light weight concrete blocks using mineral admixtures

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, P.; Priyadharshini, U.; Gurucharan, S.; Mithunram, B.

    2017-07-01

    This paper presents an experimental study to investigate the characteristics of light weight concrete blocks. Cement was partially replaced with mineral admixtures like Fly ash (FA), limestone powder waste (LPW), Rice husk ash (RHA), sugarcane fiber waste (SCW) and Chrysopogonzizanioides (CZ). The maximum replacement level achieved was 25% by weight of cement and sand. Total of 56 cubes (150 mm x 150 mm x150 mm) and 18 cylinders (100mmφ and 50mm depth) were cast. The specimens being (FA, RHA, SCW, LPW, CZ, (FA-RHA), (FA-LPW), (FA-CZ), (LPW-CZ), (FA-SCW), (RHA-SCW)).Among the different combination, FA,FA-SCW,CZ,FA-CZ showed enhanced strength and durability, apart from achieving less density.

  7. Cement and Concrete Nanoscience and Nanotechnology

    PubMed Central

    Raki, Laila; Beaudoin, James; Alizadeh, Rouhollah; Makar, Jon; Sato, Taijiro

    2010-01-01

    Concrete science is a multidisciplinary area of research where nanotechnology potentially offers the opportunity to enhance the understanding of concrete behavior, to engineer its properties and to lower production and ecological cost of construction materials. Recent work at the National Research Council Canada in the area of concrete materials research has shown the potential of improving concrete properties by modifying the structure of cement hydrates, addition of nanoparticles and nanotubes and controlling the delivery of admixtures. This article will focus on a review of these innovative achievements.

  8. Using cement paste rheology to predict concrete mix design problems : technical report.

    DOT National Transportation Integrated Search

    2009-07-01

    The complex interaction between cement and chemical/mineral admixtures in concrete mixture sometimes leads to : unpredictable concrete performance in the field, which is generally defined as concrete incompatibilities. Cement paste : rheology measure...

  9. Utilization of sugarcane bagasse ash in concrete as partial replacement of cement

    NASA Astrophysics Data System (ADS)

    Mangi, Sajjad Ali; Jamaluddin, N.; Ibrahim, M. H. Wan; Halid Abdullah, Abd; Awal, A. S. M. Abdul; Sohu, Samiullah; Ali, Nizakat

    2017-11-01

    This research addresses the suitability of sugarcane bagasse ash (SCBA) in concrete used as partial cement replacement. Two grades of concrete M15 and M20 were used for the experimental analysis. The cement was partially replaced by SCBA at 0%, 5%, and 10%, by weight in normal strength concrete (NSC). The innovative part of this study is to consider two grades of concrete mixes to evaluate the performance of concrete while cement is replaced by sugarcane bagasse ash. The cylindrical specimens having size 150 mm × 300 mm were used and tested after curing period of 7, 14 and 28 days. It was observed through the experimental work that the compressive strength increases with incorporating SCBA in concrete. Results indicated that the use of SCBA in concrete (M20) at 5% increased the average amount of compressive strength by 12% as compared to the normal strength concrete. The outcome of this work indicates that maximum strength of concrete could be attained at 5% replacement of cement with SCBA. Furthermore, the SCBA also gives compatible slump values which increase the workability of concrete.

  10. Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste

    NASA Astrophysics Data System (ADS)

    Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš

    2017-09-01

    This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.

  11. [Toxic ulcerative contact dermatitis due to prefabricated concrete (cement burns)].

    PubMed

    Bandmann, H J; Agathos, M

    1977-01-01

    In the present report the case of a toxic ulcerous contact dermatitis (cement burns) by pre-fabricated concrete is described. This can be clearly distinguished by anamnesis, findings and development from the allergic and cumulative-toxic contact dermatitis caused by cement and related substances. It is pointed out, that in the few cases of "cement burns" made known up to now, pre-fabricated concrete was always the triggering agent.

  12. Studies for understanding effects of additions on the strength of cement concrete

    NASA Astrophysics Data System (ADS)

    Bucur, R. D.; Barbuta, M.; Konvalina, P.; Serbanoiu, A. A.; Bernas, J.

    2017-09-01

    The paper analyzes the effects of different types of additions introduced in concrete mix on the compressive strength. The current studies show that additions contribute to improve some characteristics of concrete and to reduce the cement dosage, so it can obtain concretes which are cheaper and friendlier with environment. In the experimental mixes were introduced: crushed natural aggregates, slag aggregates, silica fume, fly ash, chopped tire, polystyrene granule, glass fibers and metallic fibers. The experimental values of compressive strengths were compared for two concrete grades (C20/25 and C25/30). The study shown that near the well-known possibilities of improving mechanical strengths of cement concrete by increasing cement dosage and strength, by using crushed aggregates and by reducing the water/cement ratio, there are other methods in which less cement is used by replacing it with different wastes or by adding fiber.

  13. Electrically conductive Portland cement concrete.

    DOT National Transportation Integrated Search

    1986-01-01

    There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...

  14. Reducing cement content in concrete mixtures : [research brief].

    DOT National Transportation Integrated Search

    2011-12-01

    Concrete mixtures contain crushed rock or gravel, and sand, bound together by Portland cement in combination with supplemental cementitious materials (SCMs), which harden through a chemical reaction with water. Portland cement is the most costly comp...

  15. Portland-cement concrete rheology and workability : final report.

    DOT National Transportation Integrated Search

    2011-04-01

    Methods for determining the workability of freshly mixed Portland-cement concrete with : slumps less than 5 1 mm (2 in) were investigated. Four potential methods to determine the : workability of concrete were proposed for evaluation and development....

  16. Exterior building details of Building A; east façade: profiled cement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; east façade: profiled cement plaster door surround, black mesh gate protects a two-light transom atop non-original metal door; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  17. Gaseous mercury from curing concretes that contain fly ash: laboratory measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danold W. Golightly; Ping Sun; Chin-Min Cheng

    2005-08-01

    Total gaseous mercury in headspace air was measured for enclosed concretes dry curing at 40 C for intervals of 2, 28, and 56 days. Release of mercury was confirmed for ordinary Portland cement concrete (OPC) and three concretes in which class F fly ash from coal-combustion substituted for a fraction of the cement: (a) 33% fly ash (FA33), (b) 55% fly ash (FA55), and (c) 33% fly ash plus 0.5% mercury-loaded powdered activated carbon (HgPAC). Mean rates of mercury release (0.10-0.43 ng/day per kg of concrete) over the standard first 28 days of curing followed the order OPC {lt} FA33more » {approximately} FA55 {lt} HgPAC. The mercury flux from exposed surfaces of these concretes ranged from 1.9 {+-} 0.5 to 8.1 {+-} 2.0 ng/m{sup 2}/h, values similar to the average flux for multiple natural substrates in Nevada, 4.2 {+-} 1.4 ng/m{sup 2}/h, recently published by others. Air sampling extending for 28 days beyond the initial 28-day maturation for OPC, FA55, and HgPAC suggested that the average Hg release rate by OPC is constant over 56 days and that mercury release rates for FA55 and HgPAC may ultimately diminish to levels exhibited by OPC concrete. The release of mercury from all samples was less than 0.1% of total mercury content over the initial curing period, implying that nearly all of the mercury was retained in the concrete. 20 refs., 3 figs., 3 tabs.« less

  18. Research on Foam Concrete Features by Replacing Cement with Industrial Waste Residues

    NASA Astrophysics Data System (ADS)

    Saynbaatar; Qiqige; Ma, Gangping; Fu, Jianhua; Wang, Jinghua

    The influence on the performance of foam concrete made by replacing cement with some industrial waste residues was researched in this paper. The result shows that the 7d and 28d compressive strength of foam concrete increases firstly and then decreases with the increasing amount of industrial waste residue. The proper added range is 10%-20% for steel slag, blast furnace slag and coal ash, but, 8% for desulfurized fly ash. With the proper adding ratio, the compressive strength of foam concrete always increased comparing with the pure cement foam concrete. When adding 48% of the compound industrial waste residues, the 28d compressive strength of the foam concrete reached the 2.9MPa which could match the pure cement foam concrete. The results indicates that there is a synergistic effect among the compound industrial waste residue, and this effect is benefit to improving the compressive strength of foam concrete.

  19. Development of design parameters for virtual cement and concrete testing.

    DOT National Transportation Integrated Search

    2013-12-01

    The development, testing, and certification of new concrete mix designs is an expensive and time-consuming aspect : of the concrete industry. A software package, named the Virtual Concrete and Cement Testing Laboratory (VCCTL), : has been developed b...

  20. Changes of strength characteristics of pervious concrete due to variations in water to cement ratio

    NASA Astrophysics Data System (ADS)

    Kovac, M.; Sicakova, A.

    2017-10-01

    Pervious concrete is considered to be a sustainable pavement material due to high water permeability. The experiment presented in this paper was aimed at study the influence of water to cement ratio on both the compressive and splitting tensile strength of pervious concrete. Typically, less water content in concrete mixture leads to less porosity of cement paste and thus it provides desirable mechanical properties. In case of conventional dense concrete, the lower is the water to cement ratio, the higher or better is the strength, density and durability of concrete. This behaviour is not quite clear in case of pervious concrete because of low amount of cement paste present. Results of compressive and splitting tensile strength of pervious concrete are discussed in the paper while taking into account values measured after 2 and 28 days of hardening and variations in water to cement ratio. The results showed that changes of water to cement ratio from 0.25 to 0.35 caused only slight differences in strength characteristics, and this applied to both types of tested strength.

  1. Efforts to reduce reflective cracking of bituminous concrete overlays of Portland cement concrete pavements.

    DOT National Transportation Integrated Search

    1975-01-01

    Studies of efforts in Virginia to reduce the incidence of reflection cracking when portland cement concrete pavements or bases are overlayed with asphaltic concrete are reported. The methods of reflection crack reduction discussed are: (1) The use of...

  2. Time-domain reflectometry of water content in portland cement concrete

    DOT National Transportation Integrated Search

    1997-11-01

    Time-domain reflectometry is useful for measuring the moisture content of solids. However, little information exists on its use with portland cement concrete. By monitoring the response from TDR sensors embedded in concrete as the concrete dried, the...

  3. Properties, sustainability and elevated temperature behavior of concrete containing Portland limestone cement

    NASA Astrophysics Data System (ADS)

    El-Hawary, Moetaz; Ahmed, Mahmoud

    2017-09-01

    The utilization of some type of cheap filler as partial cement replacement is an effective way of improving concrete sustainability. With the recent trends to reduce water to cement ratio and improve compaction, there is no enough space or water for complete hydration of cement. This means that actually, a portion of mixed cement acts as expensive filler. Replacing this portion with cheaper filler that requires less energy to produce is, therefore, beneficial. Crushed limestone is the most promising filler. This work is to investigate the effect of the amount of limestone fillers on the sustainability and the fresh and mechanical properties of the resulting concrete. A rich mix is designed with a low water/cement ratio of 0.4. Lime is introduced as a replacement percentage of cement. Ratios of 0, 10, 20 and 30% were used. Slump, compressive strength, specific gravity and water absorption are evaluated for every mix. In addition, the effect of the amount of lime on the residual strength of concrete subjected to elevated temperatures is also investigated. Samples are subjected to six different temperature stations of 20, 100, 200, 300, 500 and 700°C for six hours before being cooled and subsequently tested for compressive strength and specific gravity. Sustainability of the tested mixes is evaluated through reductions in the emitted carbon dioxide, energy and reduction in cost. Based on the annual use of concrete in Kuwait, the sustainability benefits resulting from the use of limestone filler in Kuwait are evaluated and assessed. The paper is concluded with the recommendation of the use of 15% limestone filler as partial cement replacement where the properties and the behavior under high temperature of the resulting concrete are almost the same as those of conventional concrete with considerable cost and sustainability benefits.

  4. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements.

    PubMed

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-05-20

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.

  5. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.

    PubMed

    Acharya, Prasanna K; Patro, Sanjaya K

    2016-08-01

    Solid waste management is one of the subjects essentially addressing the current interest today. Due to the scarcity of land filling area, utilization of wastes in the construction sector has become an attractive proposition for disposal. Ferrochrome ash (FA) is a dust obtained as a waste material from the gas cleaning plant of Ferro alloy industries. It possesses the chemical requirements of granulated slag material used for the manufacture of Portland cement. Ferrochrome slag (FS) is another residue that is obtained as a solid waste by the smelting process during the production of stainless steel in Ferroalloy industries. FS possesses the required engineering properties of coarse aggregates. The possibility of using FA with lime for partial replacement of ordinary Portland cement (OPC) and FS for total replacement of natural coarse aggregates is explored in this research. The combined effect of FA with lime and FS-addition on the properties of concrete, such as workability, compressive strength, flexural strength, splitting tensile strength and sorptivity, were studied. Results of investigation revealed improvement in strength and durability properties of concrete on inclusion of FA and FS. Concrete mix containing 40% FA with 7% lime (replacing 47% OPC) and100% of FS (replacing 100% natural coarse aggregate) achieved the properties of normal concrete or even better properties at all ages. The results were confirmed by microscopic study such as X-ray diffraction and petrography examination. Environmental compatibility of concrete containing FA and FS was verified by the toxicity characteristic leaching procedure test. © The Author(s) 2016.

  6. Evaluation of a thin-bonded Portland cement concrete pavement overlay.

    DOT National Transportation Integrated Search

    1996-01-01

    This report discusses the performance of the Virginia Department of Transportation's first modern rehabilitation project involving a thin-bonded portland cement concrete overlay of an existing jointed concrete pavement. The performance of the rigid o...

  7. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters.

    PubMed

    Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez

    2017-02-28

    Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10 -10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale.

  8. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters

    PubMed Central

    Sherzer, Gili; Gao, Peng; Schlangen, Erik; Ye, Guang; Gal, Erez

    2017-01-01

    Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed over a range of scale sizes, from the atomic scale (10−10 m), which is characterized by the behavior of crystalline particles of hydrated Portland cement, to the macroscopic scale (10 m). The proposed multiscale framework is based on several models, including chemical analysis at the cement paste scale, a mechanical lattice model at the cement and mortar scales, geometrical aggregate distribution models at the mortar scale, and the Lattice Discrete Particle Model (LDPM) at the concrete scale. The analysis procedure starts from a known chemical and mechanical set of parameters of the cement paste, which are then used to evaluate the mechanical properties of the LDPM concrete parameters for the fracture, shear, and elastic responses of the concrete. Although a macroscopic validation study of this procedure is presented, future research should include a comparison to additional experiments in each scale. PMID:28772605

  9. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    PubMed Central

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-01-01

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517

  10. The quest for performance-related specifications for hydraulic cement concrete.

    DOT National Transportation Integrated Search

    1982-01-01

    This paper reviews some of the problems associated with quality assurance for hydraulic cement concrete and the difficulties of relating the results of quality control and acceptance testing to the performance of the concrete facility. The importance...

  11. Impact of aggregate gradation on properties of portland cement concrete.

    DOT National Transportation Integrated Search

    2013-10-01

    Increasingly, aggregates in South Carolina are failing to meet the standard requirements for gradation for use in portland cement concrete. The effect of such failed aggregate gradations on concrete properties and the consequent effect on short- and ...

  12. End-result specification for hydraulic cement concrete.

    DOT National Transportation Integrated Search

    2005-01-01

    The purpose of this research was to develop and implement an end-result specification (ERS) for hydraulic cement concrete for structural and paving use. This report details the development of the specification, in the form of a special provision, inc...

  13. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content.

    PubMed

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-26

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  14. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  15. Selected Bibliography on Fiber-Reinforced Cement and Concrete.

    DTIC Science & Technology

    1976-08-01

    A listing of 660 references with author index is given for fiber reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)

  16. [Skin burns, necrosis and ulcers caused by wet cement, ready-mixed concrete and lime. 8 cases].

    PubMed

    Koch, P

    1996-01-01

    Skin burns and caustic ulcers caused by wet cement, due to calcium hydroxyde, are rarely reported in the literature. They occur mostly among amateur cement users. We report seven cases of skin burns, necrosis and ulcerations after use of wet cement and ready-mixed concrete, and one case of caustic ulcers induced by wet lime. Even short skin contacts to wet cement or concrete may induce extensive lesions in some cases. However, we were not able to incriminate with certainty any special concrete additives which could increase skin penetration of calcium hydroxyde. Warning notices about the danger of skin contact should be prominent on sacked cement. When ready-mixed concrete is delivered, the purchaser should be handed a note explaining the risk of kneeling in wet concrete and the importance of protective measures. This may probably contribute to reduce the frequency of those accidents.

  17. High stenghth concrete with high cement substitution by adding fly ash, CaCO3, silica sand, and superplasticizer

    NASA Astrophysics Data System (ADS)

    Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti

    2017-03-01

    Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.

  18. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    PubMed Central

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-01

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works. PMID:28787874

  19. Collaboration of polymer composite reinforcement and cement concrete

    NASA Astrophysics Data System (ADS)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  20. Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete

    PubMed Central

    Lee, Swoo-Heon; Hong, Ki-Nam; Park, Jae-Kyu; Ko, Jung

    2014-01-01

    This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA) to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C). However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete. PMID:28788703

  1. Evaluation of hydraulic cement concretes containing slag added at the mixer.

    DOT National Transportation Integrated Search

    1985-01-01

    The study evaluated the effect of ground, granulated, iron slags on the properties of hydraulic cement concretes such as normally used in highway construction. Two cements with different alkali contents and two slags with different activity indices, ...

  2. Latex-modified concrete overlay containing Type K cement.

    DOT National Transportation Integrated Search

    2005-01-01

    Hydraulic cement concrete overlays are usually placed on bridges to reduce the infiltration of water and chloride ions and to improve skid resistance, ride quality, and surface appearance. Constructed in accordance with prescription specifications, s...

  3. Portland cement concrete pavement restoration : final summary report.

    DOT National Transportation Integrated Search

    1988-07-01

    This final summary report is comprised of an Initial Construction Report; a Final Report; and two Interim Reports. These reports document the construction of Louisiana's Portland Cement Concrete Pavement Restoration project and its performance during...

  4. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete.

    PubMed

    Wang, Xiao-Yong

    2017-01-26

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel-space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  5. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete

    PubMed Central

    Wang, Xiao-Yong

    2017-01-01

    Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods. PMID:28772472

  6. The analysis of mechanical properties of non autoclaved aerated concrete with the substitution of fly ash and bottom ash

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Muhammad, F.

    2018-02-01

    Based on PP. No.85 of 1999 on the management of hazardous and toxic (B3), fly ash and bottom ash wastes are categorized into B3 waste because there are heavy metal oxide contents that can pollute the environment. One form of environmental rescue that can be applied is to utilize waste fly ash and bottom ash in the manufacture of concrete. In this research, fly ash and bottom ash waste are used as substitution of cement and fine aggregate to make lightweight concrete. The purpose of this research is to know the mechanical properties of non-autoclaved aerated lightweight concrete (NAAC) with FA and BA substitution to cement and fine aggregate which is expected to improve the quality of concrete. The NAAC lightweight concrete in this study is divided into 4 categories: normal NAAC lightweight concrete, NAAC lightweight NAAC substituted concrete with FA, NAAC lightweight concrete substituted with BA, and NAAC combined light weight from FA and BA with variations of 10%, 20% And 30%. The test specimen used in cylindrical shape, which was tested at the age of 28 days, amounted to 90 pieces and consisted of 10 variations. Each variation amounted to 9 samples. Based on the test results with FA and BA substitutions of 10%, 20%, and 30%, the highest compressive strength was achieved in samples with FA 30% of 12.687 MPa, maximum tensile strength achieved in samples with FA 30% of 1,540 MPa, The highest absorption was achieved in normal NAAC of 5.66%. Based on the weight of the contents of all samples, samples can be categorized in lightweight concrete, since the weight of the contents is less than 1900 kg / m3.

  7. Improved specifications for hydraulic cement concrete : final report.

    DOT National Transportation Integrated Search

    1983-01-01

    This is the final report of a study of the application of statistical concepts to specifications for hydraulic cement concrete as used in highway facilities. It reviews the general problems associated with the application of statistical techniques to...

  8. Freezing temperature protection admixture for Portland cement concrete

    DOT National Transportation Integrated Search

    1996-10-01

    A number of experimental admixtures were compared to Pozzutec 20 admixture for their ability to protect fresh concrete from freezing and for increasing the rate of cement hydration at below-freezing temperatures. The commercial accelerator and low-te...

  9. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    PubMed Central

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-01-01

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content. PMID:28787892

  10. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    PubMed

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  11. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    DOT National Transportation Integrated Search

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  12. Portland cement concrete pavement best practices summary report.

    DOT National Transportation Integrated Search

    2010-08-01

    This report summarizes the work and findings from WA-RD 744. This work consisted of four separate efforts related to best practices for portland cement concrete (PCC) pavement design and construction: (1) a review of past and current PCC pavement, (2...

  13. Microwave processing of cement and concrete materials – towards an industrial reality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  14. Formulating a low-alkalinity, high-resistance and low-heat concrete for radioactive waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Celine; Courtois, Simone; Nectoux, Didier

    2006-12-15

    Investigations were carried out in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Several systems comprising Ordinary Portland Cement (OPC), a fast-reacting pozzolan (silica fume (SF) or metakaolin (MK)) and, in some cases, a slow-reacting product (fly ash (FA) or blastfurnace slag (BFS)) were compared. Promising results were obtained with some binary mixtures of OPC and SF, and with some ternary blends of OPC, SF and FA or BFS: pH of water in equilibrium with the fully hydrated cements dropped below 11. Dependence of the properties of standard mortarsmore » on the high contents of FA and SF in the low-pH blends was examined. Combining SF and FA seemed attractive since SF compensated for the low reactivity of FA, while FA allowed to reduce the water demand, and dimensional variations of the mortars. Finally, low-heat ({delta}T < 20 deg. C under semi-adiabatic conditions) and high strength ({approx} 70-80 MPa) concretes were prepared from two low-pH cements: a binary blend made from 60% of OPC and 40% of SF, and a ternary blend including 37.5% OPC, 32.5% SF and 30% FA.« less

  15. Durability of Geopolymer Lightweight Concrete Infilled LECA in Seawater Exposure

    NASA Astrophysics Data System (ADS)

    Razak, R. A.; Abdullah, M. M. A. B.; Yahya, Z.; Hamid, M. S. A.

    2017-11-01

    This paper describes a development of lightweight concrete using lightweight expanded clay aggregate (LECA) in fly ash (FA) based geopolymer immersed in seawater. The objective of this research is to compare the performance of geopolymer concrete (GPC) with ordinary Portland cement (OPC) concrete infilled lightweight expanded clay aggregate (LECA) in seawater exposure. Geopolymer concrete is produced by using alkaline activator to activate the raw material, FA. The highest compressive strength of this study is 42.0 MPa at 28 days and 49.8 MPa at 60 days. The density for this concrete is in the range of 1580 kg/m3 to 1660 kg/m3. The result for water absorption is in the range of 6.82% to 14.72%. However, the test results of weight loss is in the range between 0.30% to 0.43%.

  16. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    PubMed

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  17. Effect of Metakaolin and Slag blended Cement on Corrosion Behaviour of Concrete

    NASA Astrophysics Data System (ADS)

    Borade, Anita N.; Kondraivendhan, B.

    2017-06-01

    The present paper is aimed to investigate the influence of Metakaolin (MK) and Portland slag Cement (PSC) on corrosion behaviour of concrete. For this purpose, Ordinary Portland Cement (OPC) was replaced by 15% MK by weight and readymade available PSC were used. The standard concrete specimens were prepared for both compressive strength and half- cell potential measurement. For the aforesaid experiments, the specimens were cast with varying water to binder ratios (w/b) such as 0.45, 0.5 and 0.55 and exposed to 0%, 3%, 5% and 7.5% of sodium chloride (NaCl) solution. The specimens were tested at wide range of curing ages namely 7, 28, 56, 90 and 180 days. The effects of MK, w/b ratio, age, and NaCl exposure upon concrete were demonstrated in this investigation along with the comparison of results of both MK and PSC concrete were done. It was also observed that concrete with MK shows improved performance as compared to concrete with PSC.

  18. Effect of Rice Husk Ash and Fly Ash on the workability of concrete mixture in the High-Rise Construction

    NASA Astrophysics Data System (ADS)

    Van Tang, Lam; Bulgakov, Boris; Bazhenova, Sofia; Aleksandrova, Olga; Pham, Anh Ngoc; Dinh Vu, Tho

    2018-03-01

    The dense development of high-rise construction in urban areas requires a creation of new concretes with essential properties and innovative technologies for preparing concrete mixtures. Besides, it is necessary to develop new ways of presenting concrete mixture and keeping their mobility. This research uses the mathematical method of two-factors rotatable central compositional planning to imitate the effect of amount of rice husk (RHA) and fly ash of thermal power plants (FA) on the workability of high-mobility concrete mixtures. The results of this study displays regression equation of the second order dependence of the objective functions - slump cone and loss of concrete mixture mobility due to the input factors - the amounts RHA (x1) and FA (x2), as well as the surface expression image of these regression equations. An analysis of the regression equations also shows that the amount of RHA and FA had a significant influence on the concrete mixtures mobility. In fact, the particles of RHA and FA will play the role as peculiar "sliding bearings" between the grains of cement leading to the dispersion of cement in the concrete mixture. Therefore, it is possible to regulate the concrete mixture mobility when transporting fresh concrete to the formwork during the high-rise buildings construction in the hot and humid climate of Vietnam. Although the average value of slump test of freshly mixed concrete, measured 60 minutes later after the mixing completion, decreased from 18.2 to 10.52 cm, this value still remained within the allowable range to maintain the mixing and and the delivery of concrete mixture by pumping.

  19. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    PubMed Central

    Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-01

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821

  20. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    PubMed

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  1. Impact of aggregate gradation on properties of Portland cement concrete : final report.

    DOT National Transportation Integrated Search

    2013-10-15

    Increasingly, aggregates in South Carolina are failing to meet the standard requirements for gradation for use in : portland cement concrete. The effect of such failed aggregate gradations on concrete properties and the : consequent effect on short- ...

  2. Life Cycle Cost Analysis of Portland Cement Concrete Pavements

    DOT National Transportation Integrated Search

    1999-09-01

    This report describes the development of a new life cycle cost analysis methodology for Portland cement concrete pavements - one that considers all aspects of pavement design, construction, maintenance, and user impacts throughout the analysis period...

  3. Cement Type Influence on Alkali-Silica Reaction in Concrete with Crushed Gravel Aggregate

    NASA Astrophysics Data System (ADS)

    Rutkauskas, A.; Nagrockienė, D.; Skripkiūnas, G.

    2017-10-01

    Alkali-silica reaction is one of the chemical reactions which have a significant influence for durability of concrete. During alkali and silica reaction, silicon located in aggregates of the concrete, reacts with high alkali content. This way in the micropores of concrete is forming hygroscopic gel, which at wet environment, expanding and slowly but strongly destroying concrete structures. The goal of this paper- to determine the influence of cement type on alkali-silica reaction of mortars with crushed gravel. In the study crushed gravel with fraction 4/16 mm was used and four types of cements tested: CEM I 42.5 R; CEM I 42.5 SR; CEM II/A-S 42.5; CEM II/A-V 52.5. This study showed that crushed gravel is low contaminated on reactive particles containing of amorphous silica dioxide. The expansion after 14 days exceed 0.054 %, by RILEM AAR-2 research methodology (testing specimen dimension 40×40×160 mm). Continuing the investigation to 56 days for all specimens occurred alkaline corrosion features: microcracking and the surface plaque of gel. The results showed that the best resistance to alkaline corrosion after 14 days was obtained with cement CEM I 42.5 SR containing ash additive, and after 56 days with cement CEM II/A-V 52.5 containing low alkali content. The highest expansion after 14 and 56 days was obtained with cement CEM I 42.5 R without active mineral additives.

  4. Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete

    NASA Astrophysics Data System (ADS)

    Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.

    2016-06-01

    This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.

  5. Development of Mix Design Method in Efforts to Increase Concrete Performance Using Portland Pozzolana Cement (PPC)

    NASA Astrophysics Data System (ADS)

    Krisnamurti; Soehardjono, A.; Zacoeb, A.; Wibowo, A.

    2018-01-01

    Earthquake disaster can cause infrastructure damage. Prevention of human casualties from disasters should do. Prevention efforts can do through improving the mechanical performance of building materials. To achieve high-performance concrete (HPC), usually used Ordinary Portland Cement (OPC). However, the most widely circulating cement types today are Portland Pozzolana Cement (PPC) or Portland Composite Cement (PCC). Therefore, the proportion of materials used in the HPC mix design needs to adjust to achieve the expected performance. This study aims to develop a concrete mix design method using PPC to fulfil the criteria of HPC. The study refers to the code/regulation of concrete mixtures that use OPC based on the results of laboratory testing. This research uses PPC material, gravel from Malang area, Lumajang sand, water, silica fume and superplasticizer of a polycarboxylate copolymer. The analyzed information includes the investigation results of aggregate properties, concrete mixed composition, water-binder ratio variation, specimen dimension, compressive strength and elasticity modulus of the specimen. The test results show that the concrete compressive strength achieves value between 25 MPa to 55 MPa. The mix design method that has developed can simplify the process of concrete mix design using PPC to achieve the certain desired performance of concrete.

  6. Durability of saw-cut joints in plain cement concrete pavements : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    The main objective of this study was to evaluate factors influencing the durability of the joints in portland cement concrete pavement in the state of Indiana. : The scope of the research included the evaluation of the absorption of water in concrete...

  7. Evaluation of hydraulic cement concrete overlays placed on three pavements in Virginia.

    DOT National Transportation Integrated Search

    2000-08-01

    Three hydraulic cement concrete pavement overlays were placed in the summer of 1995 at three locations in Virginia. Two of the overlays were placed on continuously reinforced concrete pavement to prevent spalling caused by a shy cover over the reinfo...

  8. Regeneration of paint sludge and reuse in cement concrete

    NASA Astrophysics Data System (ADS)

    Feng, Enqi; Sun, Jitao; Feng, Liming

    2018-06-01

    Paint Sludge (PS) is a hazardous waste. Inappropriate disposal of PS might be harmful to public health and the environment. Various size of Paint Sludge Solid Powder (PSSP) particles have been produced by automatic processing equipment via dewatering, crushing, screening removing Volatile Organic Compounds (VOCs), and etc. Meanwhile, the test results show that PSSP is not a hazardous waste. Both flexural and compressive strength are increased by adding PSSP of polyurethane to cement concrete at a level of below 10% of cement weight. However, the strength has a significant reduction at a level of above 15% of cement weight. The reason for the increase of strength is probably due to a slow coagulation and copolymerization of PSSP and cement. The reduction is likely due to the self-reunion of PSSP.

  9. Economical concrete mix design utilizing blended cements, performance-based specifications, and pay factors.

    DOT National Transportation Integrated Search

    2013-05-01

    This report showcases several new approaches of using materials science and structural mechanics to accomplish : sustainable design of concrete materials. The topics addressed include blended cements, fiber-reinforced concrete : (FRC), internal curin...

  10. Grout Impregnation of Pre-Placed Recycled Concrete Pavement (RCP) for Rapid Repair of Deteriorated Portland Cement Concrete Airfield Pavement

    DTIC Science & Technology

    2007-04-01

    generation, to reduce the amount of cement required, and to provide additional tensile strength to the concrete. Although there was limited success with...generally less workable and requires more cement due to the increased water requirements. He further states that with the equipment currently...52- Table 9. Results of the Type III Grout Scoping Study Mixture Water Cement Ratio Sand Replicate Compressive Strength MPa (psi) Flow Cone

  11. Esthetic enhancement of concrete structures using ferro-cement panels.

    DOT National Transportation Integrated Search

    1974-01-01

    An investigation of ferro-cement indicates that when used in colored panels, such panels can be used to enhance the appearance of concrete structures. The panels are simply made, light in weight, and easily attached to either old or new structures. W...

  12. Innovative solutions to buried portland cement concrete roadways.

    DOT National Transportation Integrated Search

    2005-03-01

    Forty or more years ago hundreds of miles of Maine highways were constructed of Portland Cement : Concrete (PCC) to a width of 5.5 to 6.0 m (18 to 20 ft). Since that time these same highways have been : paved and widened to 6.7 or 7.3 m (22 or 24 ft)...

  13. Construction of a thin-bonded Portland cement concrete overlay using accelerated paving techniques.

    DOT National Transportation Integrated Search

    1992-01-01

    The report describes the Virginia Department of Transportations' first modern experience with the construction of thin-bonded Portland cement concrete overlays of existing concrete pavements and with the fast track mode of rigid paving. The study was...

  14. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression

    PubMed Central

    Baeza, F. Javier; Garcés, Pedro

    2017-01-01

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. PMID:29186797

  15. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.

    PubMed

    Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro

    2017-11-24

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.

  16. Nanotechnology-Based Performance Improvements For Portland Cement Concrete - Phase I

    DOT National Transportation Integrated Search

    2012-08-16

    A fundamental understanding of the nano-structure of Portland cement concrete (PCC) is the key to realizing significant breakthroughs regarding high performance and susta : (MBTC 2095/3004) using molecular dynamics (MD) provided new understanding of ...

  17. The influence of calcium nitrate on setting and hardening rate of Portland cement concrete at different temperatures

    NASA Astrophysics Data System (ADS)

    Kičaitė, A.; Pundienė, I.; Skripkiūnas, G.

    2017-10-01

    Calcium nitrate in mortars and concrete is used as a multifunctional additive: as set accelerator, plasticizer, long term strength enhancer and as antifreeze admixture. Used binding material and the amount of calcium nitrate, affect the characteristics of the concrete mixture and strength of hardened concrete. The setting time of the initial and the final binding at different temperatures of hardening (+ 20 °C and + 5 °C) of the pastes made of different cements (Portland cement CEM I 42.5 R and Portland limestone cement CEM II/A-LL 42.5 R) and various amounts of calcium nitrate from 1 % until 3 % were investigated. The effect of calcium nitrate on technological characteristics of concrete mixture (the consistency of the mixture, the density, and the amount of air in the mixture), on early concrete strength after 2 and 7 days, as well as on standard concrete strength after 28 days at different temperatures (at + 20 °C and + 5 °C) were analysed.

  18. A field investigation of concrete overlays containing latex, silica fume, or Pyrament cement.

    DOT National Transportation Integrated Search

    1996-01-01

    This study evaluated latex-modified concretes (LMC) and concretes containing silica fume (SFC) or Pyrament-blended cement (PBCC) in bridge deck overlays in the field. The condition of the overlays was monitored for 4 years. LMC and SFC were placed in...

  19. [Ulcerative contact dermitis caused by premixed concrete (cement burns)].

    PubMed

    Ancona Alayón; Aranda Martínez, J G

    1978-01-01

    Cement dermatitis manifests clinically as a chronic dermatitis of irritative character, due to its alkaline nature and as allergic contact dermatitis produced by sensitization to chromium and cobalt occurring as trace elements. the present report deals with a mason without previous dermatitis, presenting bullae, ulcers and necrosis in lower limbs, short time after incidental contact at work, with premixed concrete. The clinical manifestations, such as short evolution, clear limitation to sites in close contact with concrete, negativity to standard patch testing and good prognosis with early treatment, are mentioned. The acute irritant nature of the disease is clear, in opposition to the classical manifestations of cement dermatitis. The need of studies of the chemical properties of this material including pH, alkalinity and the possible roll of additives employed, is part of the strategy for prevention of occupational dermatitis in the building trade, which should include also, information of hazards and proper training in their trade.

  20. Durability of saw-cut joints in plain cement concrete pavements.

    DOT National Transportation Integrated Search

    2011-01-01

    The objective of this project was to evaluate factors influencing the durability of the joints in portland cement concrete : pavement in the state of Indiana. Specifically this work evaluated the absorption of water, the absorption of deicing solutio...

  1. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.

    PubMed

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-06-24

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant.

  2. Effects of blends of cement kiln dust and fly ash on properties of concrete.

    DOT National Transportation Integrated Search

    1995-01-01

    This study evaluated concretes containing cement kiln dust (CKD) and fly ash to determine whether satisfactory properties can be achieved for long-lasting performance in the field. The results indicate that certain combinations of cement, CKD, and fl...

  3. Guide for curing of Portland cement concrete pavements : volume II.

    DOT National Transportation Integrated Search

    2006-08-01

    Information on the current state of knowledge of curing hydraulic-cement concrete and on current curing practice : was gathered by means of a literature review and a review of current standard guidance. From this information, a : draft guide for curi...

  4. Evaluation of Strength Characteristics of Laterized Concrete with Corn Cob Ash (CCA) Blended Cement

    NASA Astrophysics Data System (ADS)

    Ikponmwosa, E. E.; Salau, M. A.; Kaigama, W. B.

    2015-11-01

    Agricultural wastes are dumped in landfills or left on land in which they constitute nuisance. This study presents the results of investigation of strength characteristics of reinforced laterized concrete beams with cement partially replaced with corn cob (agricultural wastes) ash (CCA). Laterized concrete specimen of 25% laterite and 75% sharp sand were made by blending cement with corn cob ash at 0 to 40% in steps of 10%. A concrete mix ratio of 1:2:4 was used to cast 54 cubes of 150×150×150mm size and 54 beams of dimension 750×150×150mm. The results show that the consistency and setting time of cement increased as the percentage replacement of cement with CCA increased while the workability and density of concrete decreased as the percentage of CCA increased. There was a decrease in compressive strength when laterite was introduced to the concrete from 25.04 to 22.96N/mm2 after 28 days and a continual reduction in strength when CCA was further added from 10% to 40% at steps of 10%. Generally, the beam specimens exhibited majorly shear failure with visible diagonal cracks extending from support points to the load points. The corresponding central deflection in beams, due to two points loading, increased as the laterite was added to the concrete mix but reduced and almost approaching that of the control as 10% CCA was added. The deflection then increased as the CCA content further increased to 20%, 30% and 40% in the mix. It was also noted that the deflection of all percentage replacement including 40% CCA is less than the standard recommended maximum deflection of the beam. The optimal flexural strength occurred with 10% CCA content.

  5. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement number 1.

    DTIC Science & Technology

    1977-09-01

    A listing of 156 additional references with author index is given for fiber-reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)

  6. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 2.

    DTIC Science & Technology

    1979-07-01

    A listing of 471 additional references with author index is given for fiber-reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)

  7. Design and test properties of super water reducers in Portland cement concrete : final report.

    DOT National Transportation Integrated Search

    1980-12-01

    Recently, new concrete admixtures (super water reducers) have been developed and marketed by private industry. These admixtures permit the mixing and placement of very low water-cement ratio (0.32 to 0.38) concretes at conventional consistencies (slu...

  8. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cwirzen, Andrzej; Penttala, Vesa

    2005-04-01

    The influence of the cement paste-aggregate interfacial transition zone (ITZ) on the frost durability of high-performance silica fume concrete (HPSFC) has been studied. Investigation was carried out on eight non-air-entrained concretes having water-to-binder (W/B) ratios of 0.3, 0.35 and 0.42 and different additions of condensed silica fume. Studies on the microstructure and composition of the cement paste have been made by means of environmental scanning electron microscope (ESEM)-BSE, ESEM-EDX and mercury intrusion porosimetry (MIP) analysis. The results showed that the transition zone initiates and accelerates damaging mechanisms by enhancing movement of the pore solution within the concrete during freezing andmore » thawing cycles. Cracks filled with ettringite were primarily formed in the ITZ. The test concretes having good frost-deicing salt durability featured a narrow transition zone and a decreased Ca/Si atomic ratio in the transition zone compared to the bulk cement paste. Moderate additions of silica fume seemed to densify the microstructure of the ITZ.« less

  9. Properties of fresh and hardened sustainable concrete due to the use of palm oil fuel ash as cement replacement

    NASA Astrophysics Data System (ADS)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    Palm oil fuel ash (POFA) is a by-product resulting from the combustion of palm oil waste such as palm oil shell and empty fruit bunches to generate electricity in the palm oil mills. Considerable quantities of POFA thus generated, accumulate in the open fields and landfills, which causes atmospheric pollution in the form of generating toxic gases. Firstly, to protect the environment; and secondly, having excellent properties for this purpose; POFA can be and has been used as partial cement replacement in concrete preparation. Therefore, this paper compiles the results obtained from previous studies that address the properties of concrete containing POFA as cement replacement in fresh and hardened states. The results indicate that there is a great potential to using POFA as cement replacement because of its ability to improve compressive strength, reduce hydration heat of cement mortar and positively affect other fresh and hardened concrete properties. The paper recommends that conducting further studies to exploit high volume of POFA along with other additives as cement replacement while maintaining high quality of concrete can help minimize CO2 emissions due to concrete.

  10. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  11. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    PubMed Central

    Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes. PMID:25254256

  12. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-01-01

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant. PMID:27347987

  13. Development of fluorapatite cement for dental enamel defects repair.

    PubMed

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  14. The Virginia Department of Transportation's statistical specification for hydraulic cement concrete.

    DOT National Transportation Integrated Search

    1990-01-01

    This report reviews some of the principles relating to the application of statistical concepts to be used in the quality assurance and acceptance testing of hydraulic cement concrete. The problems encountered in developing a workable system without a...

  15. Innovative solutions to buried Portland concrete cement roadways : construction report.

    DOT National Transportation Integrated Search

    1999-01-01

    Maine has hundreds of miles of highway that were constructed of Portland Concrete Cement : (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that time these : same highways have been paved and widened to 6.7 or 7 meter...

  16. Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder.

    PubMed

    Kim, Si-Jun; Yang, Keun-Hyeok; Moon, Gyu-Don

    2015-09-01

    This study proposed a new binder as an alternative to conventional cement to reduce the heat of hydration in mass concrete elements. As a main cementitious material, low-heat cement (LHC) was considered, and then fly ash (FA), modified FA (MFA) by vibrator mill, and limestone powder (LP) were used as a partial replacement of LHC. The addition of FA delayed the induction period at the hydration heat curve and the maximum heat flow value ( q max ) increased compared with the LHC based binder. As the proportion and fineness of the FA increased, the induction period of the hydration heat curve was extended, and the q max increased. The hydration production of Ca(OH)₂ was independent of the addition of FA or MFA up to an age of 7 days, beyond which the amount of Ca(OH)₂ gradually decreased owing to their pozzolanic reaction. In the case of LP being used as a supplementary cementitious material, the induction period of the hydration heat curve was reduced by comparison with the case of LHC based binder, and monocarboaluminate was observed as a hydration product. The average pore size measured at an age of 28 days was smaller for LHC with FA or MFA than for 100% LHC.

  17. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete

    NASA Astrophysics Data System (ADS)

    Mallisa, Harun; Turuallo, Gidion

    2017-11-01

    This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.

  18. Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi

    An experimental study is carried out with the aim to understand the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement (OPC) concrete. Effects of carbonation on the chloride profile, the chloride binding capacity and the chloride diffusion coefficient are evaluated. Besides, effect of chloride aerosol attack on the carbonation rate is investigated. Concrete specimens with three water-to-cement ratios (0.38, 0.47 and 0.53) are fabricated in this work. Tested results demonstrate that carbonation remarkably affects the chloride profile, reduces the chloride binding capacity, and also accelerates the rate of chloride ion diffusion of concrete. Besides, the presencemore » of chloride aerosol can lead to lower the carbonation depth and increase the pH value of carbonated concrete. Microscopic properties such as morphology, porosity, and pore size distribution for the contaminated concretes are explored by scanning electron microscope and mercury intrusion porosimetry, which provide strong evidence to these research findings.« less

  19. Innovative solutions to buried portland cement concrete roadways : second interim.

    DOT National Transportation Integrated Search

    2001-04-01

    Maine has hundreds of miles of highway that were constructed of : Portland Cement Concrete (PCC) roughly 6 to 6.1 m (18 to 20 ft) wide forty : or more years ago. Since that time these same highways have been paved : and widened to 6.7 or 7 m (22 or 2...

  20. Impact of Micro Silica on the properties of High Volume Fly Ash Concrete (HVFA)

    NASA Astrophysics Data System (ADS)

    Sripragadeesh, R.; Ramakrishnan, K.; Pugazhmani, G.; Ramasundram, S.; Muthu, D.; Venkatasubramanian, C.

    2017-07-01

    In the current situation, to overcome the difficulties of feasible construction, concrete made with various mixtures of Ordinary Portland Cement (OPC) and diverse mineral admixtures, is the wise choice for engineering construction. Mineral admixtures viz. Ground Granulated Blast Furnace Slag (GGBS), Meta kaolin (MK), Fly Ash (FA) and Silica Fume (SF) etc. are used as Supplementary Cementitious Materials (SCM) in binary and ternary blend cement system to enhance the mechanical and durability properties. Investigation on the effect of different replacement levels of OPC in M25 grade with FA + SF in ternary cement blend on the strength characteristics and beam behavior was studied. The OPC was partially replaced (by weight) with different combinations of SF (5%, 10%, 15%, 20% and 25%) and FA as 50% (High Volume Fly Ash - HVFA). The amount of FA addition is kept constant at 50% for all combinations. The compressive strength and tensile strength tests on cube and cylinder specimens, at 7 and 28 days were carried out. Based on the compressive strength results, optimum mix proportion was found out and flexural behaviour was studied for the optimum mix. It was found that all the mixes (FA + SF) showed improvement in compressive strength over that of the control mix and the mix with 50% FA + 10% SF has 20% increase over the control mix. The tensile strength was also increased over the control mix. Flexural behaviour also showed a significant improvement in the mix with FA and SF over the control mix.

  1. Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete

    NASA Astrophysics Data System (ADS)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.

    2018-03-01

    This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  2. Validation of RAP and/or RAS in hydraulic cement concrete : technical report.

    DOT National Transportation Integrated Search

    2017-05-01

    The increasing maintenance and rehabilitation actions lead to considerable amounts of reclaimed asphalt pavement : (RAP) left in stockpiles in the United States. The possible use of RAP in Portland cement concrete (PCC) as aggregate : replacement not...

  3. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  4. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.

    DTIC Science & Technology

    1982-08-01

    Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance

  5. Nano-modified cement composites and its applicability as concrete repair material

    NASA Astrophysics Data System (ADS)

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  6. Portland cement concrete pavement review of QC/QA data 2000 through 2009.

    DOT National Transportation Integrated Search

    2011-04-01

    This report analyzes the Quality Control/Quality Assurance (QC/QA) data for Portland cement concrete pavement : (PCCP) awarded in the years 2000 through 2009. Analysis of the overall performance of the projects is accomplished by : reviewing the Calc...

  7. Recycled Portland cement concrete pavements : Part II, state-of-the art summary.

    DOT National Transportation Integrated Search

    1979-01-01

    This report constitutes a review of the literature concerning recycling of portland cement concrete pavements by crushing the old pavement and reusing the crushed material as aggregate in a number of applications. A summary of the major projects cond...

  8. Blasted copper slag as fine aggregate in Portland cement concrete.

    PubMed

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Innovative solutions to buried portland cement concrete roadways : first interim report.

    DOT National Transportation Integrated Search

    2000-05-01

    Maine has hundreds of miles of highway that were constructed of Portland Cement : Concrete (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that : time these same highways have been paved and widened to 6.7 or 7 meter...

  10. Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review

    PubMed Central

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive. PMID:24688443

  11. Mechanical characteristics of hardened concrete with different mineral admixtures: a review.

    PubMed

    Ayub, Tehmina; Khan, Sadaqat Ullah; Memon, Fareed Ahmed

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive.

  12. Durable high strength cement concrete topping for asphalt roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  13. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    PubMed

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  14. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  15. Rehabilitation of jointed Portland cement concrete pavements : SPS-6--initial evaluation and analysis

    DOT National Transportation Integrated Search

    2005-10-01

    The Specific Pavement Studies 6 (SPS-6) experiment, "Rehabilitation of Jointed Portland Cement Concrete Pavements," was designed as a controlled field experiment that focuses on the study of specific rehabilitation design features of jointed plain co...

  16. Evaluating Pavement Design Features: Five Year Performance Evaluation of FA 401 and FA 409

    DOT National Transportation Integrated Search

    1993-02-01

    In the summer of 1986, the Illinois Department of Transportation began the construction of four demonstration projects which focused on evaluating proposed mechanistically-based asphalt concrete (AC) and Portland cement concrete (PCC) pavement design...

  17. Influence of metakaolin on chemical resistance of concrete

    NASA Astrophysics Data System (ADS)

    Mlinárik, L.; Kopecskó, K.

    2013-12-01

    Nowadays the most suitable and widely used construction material is concrete. We could develop concrete for every request in connection with the properties of fresh concrete and the quality of hardened concrete, too. The demand is rising in application of special concretes, like high performance and ultra high performance concretes (HPC, UHPC). These are usable in extreme natural circumstances or in very corrosive surroundings (for example: sewage farm, sewer, cooling tower, biogas factories). The pH value of the commercial sewage is between 7-8, but this value is often around 4 or less. The concrete pipes, which transport the sewage, are under corrosion, because above the liquid level sulphuric acid occurs due to microbes. Acidic surroundings could start the corrosion of concrete. When the pH value reduces, the influence of the acids will increase. The most significant influence has the sulphuric acid. The pH value of sulphuric acid is about 1, or less. Earlier in the cooling towers of coal thermal power stations used special coating on the concrete wall. Recently application of high performance concrete without polymeric coating is more general. Cementitious supplementary materials are widely used to protect the concrete from these corrosive surroundings. Usually used cementitious supplementary materials are ground granulated blastfurnace slag (GGBS), flying ash (FA) or silica fume (SF). In the last years there has been a growing interest in the application of metakaolin. Metakaolin is made by heat treatment, calcinations of a natural clay mineral, kaolinite. In our present research the chemical resistance of mortars in different corrosive surroundings (pH=1 sulphuric acid; pH=3 acetic acid) and the chloride ion migration were studied on series of mortar samples using rapid chloride migration test. Cement paste and mortar samples were made with 17% metakaolin replacement or without metakaolin. The following cements were used: CEM II/A-S 42.5 N, CEM I 42.5 N-S. We

  18. Construction, Instrumentation, and Testing of Fast-Setting Hydraulic Cement Concrete in Palmdale, California

    DOT National Transportation Integrated Search

    2000-08-01

    To minimize the lane closure time for construction, Caltrans is exploring the use of fast-setting hydraulic cement concrete (FSHCC). The principal property of the FSHCC is its high early strength gain. This accelerated strength gain would increase th...

  19. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    PubMed Central

    Chowdhury, S.; Maniar, A.; Suganya, O.M.

    2014-01-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper. PMID:26644928

  20. Determination of the cement content of hardened concrete by selective solution : final report.

    DOT National Transportation Integrated Search

    1972-01-01

    The method of selective solution by methanolic maleic acid, developed by Tabikh et. al for the determination of cement content in hardened concrete, was evaluated. It was found to be relatively simple and inexpensive, and is accurate to within 1 pe...

  1. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  2. Using Cementitious Materials Such as Fly Ash to Replace a Part of Cement in Producing High Strength Concrete in Hot Weather

    NASA Astrophysics Data System (ADS)

    Turuallo, Gidion; Mallisa, Harun

    2018-03-01

    The use of waste materials in concrete gave many advantages to prove the properties of concrete such as its workability, strength and durability; as well to support sustaianable development programs. Fly ash was a waste material produced from coal combustion. This research was conducted to find out the effect of fly ash as a part replacement of cement to produce high strength concrete. The fly ash, which was used in this research, was taken from PLTU Mpanau Palu, Central Sulawesi. The water-binder ratio used in this research was 0.3 selected from trial mixes done before. The results of this research showed that the strength of fly ash concretes were higher than concrete with PCC only. The replacement of cement with fly ash concrete could be up to 20% to produce high strength concrete.

  3. Release of U(VI) from spent biosorbent immobilized in cement concrete blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkobachar, C.; Iyengar, L.; Mishra, U.K.

    1995-12-01

    This paper deals with cementation as the method for the disposal of spent biosorbent, Ganoderma lucidum (a wood rotting macrofungi) after it is used for the removal of Uranium. Results on the uranium release during the curing of cement-concrete (CC) blocks indicated that placing the spent sorbent at the center of the blocks during their casting yields better immobilization of uranium as compared to the homogeneous mixing of the spent sorbent with the cement. Short term leach tests indicated that the uranium release was negligible in simulated seawater, 1.8% in 0.2 N sodium carbonate and 6.0% in 0.2 N HCl.more » The latter two leachates were used to represent the extreme environmental conditions. It was observed that the presence of the spent biosorbent up to 5% by weight did not affect the compressive strength of CC blocks. Thus cementation technique is suitable for the immobilization of uranium loaded biosorbent for its ultimate disposal.« less

  4. Effects of cement alkalinity, exposure conditions and steel-concrete interface on the time-to-corrosion and chloride threshold for reinforcing steel in concrete

    NASA Astrophysics Data System (ADS)

    Nam, Jingak

    Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on

  5. Determination of coefficient of thermal expansion for Portland Cement Concrete pavements for MEPDG Implementation

    DOT National Transportation Integrated Search

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  6. Determination of coefficient of thermal expansion For Portland Cement Concrete pavements for MEPDG Implementation

    DOT National Transportation Integrated Search

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  7. Properties of Portland cement--stabilised MSWI fly ashes.

    PubMed

    Polettini, A; Pomi, R; Sirini, P; Testa, F

    2001-11-16

    In the present paper, the properties of Portland cement mixtures containing fly ashes (FA) collected at four different Italian municipal solid waste incineration (MSWI) plants were investigated. In particular, physical/mechanical characteristics (setting time, unconfined compressive strength (UCS) and shrinkage/expansion), as well as the acid neutralisation behaviour of the solidified products were considered. The FA composition, revealing enrichment in heavy metals, chlorides and sulphates, significantly altered the hydration behaviour of Portland cement. Consequently, for some of the investigated FA the maximum allowable content for the mixtures to achieve appreciable mechanical strength was 20 wt.%. Even at low FA dosages setting of cement was strongly delayed. In order to improve the properties of FA/cement mixtures, the use of additives was tested.Moreover, the acid neutralisation capacity (ANC) of the solidified products was evaluated in order to assess the ability of the matrix to resist acidification, and also to provide information on hydration progression, as well as on heavy metal release under different pH conditions. Comparison of the results from the present work with previous studies carried out on spiked mixtures lead to the conclusion that the mechanical properties of the stabilised FA could not be predicted based on the effect exerted by heavy metals and anions only, even when the dilution effect exerted on cement was taken into account. It was likely that a major role was also played by alkalis, which were present in the FA at much higher concentrations than in cement.

  8. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets

    PubMed Central

    Ouyang, Dong

    2017-01-01

    In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study. PMID:28726750

  9. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets.

    PubMed

    Lu, Liulei; Ouyang, Dong

    2017-07-20

    In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.

  10. Usage of Crushed Concrete Fines in Decorative Concrete

    NASA Astrophysics Data System (ADS)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  11. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  12. New Medium for Isolation of Bacteria From Cement Kiln Dust with a Potential to Apply in Bio-Concrete

    NASA Astrophysics Data System (ADS)

    Alshalif, A. F.; Irwan, J. M.; Othman, N.; Al-Gheethi, A.

    2018-04-01

    The present study aimed to introduce a new isolation medium named kiln dust medium (KDM) for recovering of bacteria from cement kiln dust with high pH (>pH 11) without the need for nutrients additives. The cement kiln dust samples were collected from five different areas of Cement Industries of Malaysia Berhad (CIMA). The bacterial isolates were recovered on KDM by direct plating technique. The chemical components for all collected samples were identified using X-ray fluorescence (XRF). The primary identification for the bacterial isolates indicated that these bacteria belongs to Bacillus spp. Based on the morphological characteristics. The growth curve of the bacterial strains was monitored using the optical density (OD) with 650 nm wavelength, which in role confirmed that all isolated bacteria had the ability to grow successfully in the proposed medium. The ability of the bacterial strains to grow at high pH reflects their potential in the bio-concrete applications (aerated and non-aerated concrete). These findings indicated that the cement kiln dust samples from Cement Industries represent the most appropriate source for bacteria used in the bioconcrete.

  13. Results of Laboratory Tests of the Filtration Characteristics of Clay-Cement Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sol’skii, S. V., E-mail: solskiysv@vniig.ru; Lopatina, M. G., E-mail: LoptainaMG@vniig.ru; Legina, E. E.

    Laboratory studies of the filtration characteristics of clay-cement concrete materials for constructing filtering diaphragms of earth dams by the method of secant piles are reported. Areas for further study aimed at improving the quality of construction, increasing operational safety, and developing a standards base for the design, construction, and operation of these systems are discussed.

  14. Chloride Diffusion and Acid Resistance of Concrete Containing Zeolite and Tuff as Partial Replacements of Cement and Sand

    PubMed Central

    Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi

    2017-01-01

    In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737

  15. Some Guides to Discovery About Elm Trees, Owls, Cockroaches, Earthworms, Cement and Concrete.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    The introduction emphasizes the need for environmental and conservation education, and advocates an inquiry approach. Outdoor resources available to every school are listed. Detailed suggestions are made for investigating cement and concrete, cockroaches, earthworms, elm trees, and owls. In each case general background information and a list of…

  16. Determination of Temperature Rise and Temperature Differentials of CEMII/B-V Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data

    NASA Astrophysics Data System (ADS)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.

  17. Combinations of pozzolans and ground, granulated blast-furnace slag for durable hydraulic cement concrete

    DOT National Transportation Integrated Search

    1999-08-01

    Hydraulic cement concretes were produced using pozzolans and ground, granulated, blast-furnace slag to investigate the effect of these materials on durability. The pozzolans used were an ASTM C 618 Class F fly ash with a low lime content and a dry, d...

  18. Compressive strength of concrete by partial replacement of cement with metakaolin

    NASA Astrophysics Data System (ADS)

    Ganesh, Y. S. V.; Durgaiyya, P.; Shivanarayana, Ch.; Prasad, D. S. V.

    2017-07-01

    Metakaolin or calcined kaolin, other type of pozzolan, produced by calcination has the capability to replace silica fume as an alternative material. Supplementary cementitious materials have been widely used all over the world in concrete due to their economic and environmental benefits; hence, they have drawn much attention in recent years. Mineral admixtures such as fly ash, rice husk ash, silica fume etc. are more commonly used SCMs. They help in obtaining both higher performance and economy. Metakaolin is also one of such non - conventional material, which can be utilized beneficially in the construction industry. This paper presents the results of an experimental investigations carried out to find the suitability of metakaolin in production of concrete. In the present work, the results of a study carried out to investigate the effects of Metakaolin on compressive strength of concrete are presented. The referral concrete M30 was made using 43 grade OPC and the other mixes were prepared by replacing part of OPC with Metakaolin. The replacement levels were 5%, 10%, 15% and 20%(by weight) for Metakaolin. The various results, which indicate the effect of replacement of cement by metakalion on concrete, are presented in this paper to draw useful conclusions.

  19. Effects of Different Mineral Admixtures on the Properties of Fresh Concrete

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer. PMID:24701196

  20. Effects of different mineral admixtures on the properties of fresh concrete.

    PubMed

    Khan, Sadaqat Ullah; Nuruddin, Muhammad Fadhil; Ayub, Tehmina; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer.

  1. Reinforcing of Cement Composites by Estabragh Fibres

    NASA Astrophysics Data System (ADS)

    Merati, A. A.

    2014-04-01

    The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

  2. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.

    PubMed

    Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe

    2006-10-01

    Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.

  3. Expansive Cements

    DTIC Science & Technology

    1970-10-01

    plastic or semi- plastic concrete and place no stress on the restraint provided. If, on the other hand, the ettringite continues to form rapidly for too...yield, I and wp.ter-cement ratio. Such a change in cement content may cause a greater change in expansion caracteristics than the change in...the tendency toward plastic shrinkage is increased. During the w’nter znths most structural concrete installations hare had adequate heating and no

  4. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.

    PubMed

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-07-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.

  5. Pozzolan cement study : final report.

    DOT National Transportation Integrated Search

    1979-12-01

    An experimental section using Type 1P cement concrete was poured on an active construction project in south Louisiana, near Franklin. A comparison in quality was made between this section and the normal Type 1(B) cement concrete poured on the remaind...

  6. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    NASA Astrophysics Data System (ADS)

    Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc

    2018-03-01

    The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  7. Effects of loop detector installation on the Portland cement concrete pavement lifespan : case study on I-5.

    DOT National Transportation Integrated Search

    2010-08-01

    The installation of loop detectors in portland cement concrete pavement (PCCP) may shorten affected panel life, thus prematurely worsening the condition of the overall pavement. This study focuses on the performance of those loop embedded panels (LEP...

  8. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  9. High Early-Age Strength Concrete for Rapid Repair

    NASA Astrophysics Data System (ADS)

    Maler, Matthew O.

    The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes. The cement types chosen for this study included Type III and Type V Portland cement and "Rapid Set"--a Calcium Sulfoaluminate (CSA) cement. In addition, two blended concretes containing different ratios of Type V Portland cement and CSA cement were investigated. The evaluation of the studied concretes included mechanical properties and transport properties. Additionally, dimensional stability and durability were investigated. Evaluations were conducted based on cement type and common cement factor. Fresh property tests showed that in order to provide a comparable workability, and still remain within manufactures guideline for plasticizer, the water-to-cement ratio was adjusted for each type of cement utilized. This resulted in the need to increase the water-to-cement ratio as the Blaine Fineness of the cement type increased (0.275 for Type V Portland cement, 0.35 for Type III Portland cement, and 0.4 for Rapid Set cement). It was also observed that negligible changes in setting time occurred with increasing cement content, whereas changes in cement type produced notable differences. The addition of air-entrainment had beneficial effect on workability for the lower cement factors. Increasing trends for peak hydration heat were seen with increases in cement factor, cement Blaine Fineness, and accelerator dosage. Evaluation of hardened properties revealed opening times as low as 5 hours for Type V Portland cement with 2.0 % accelerator per cement weight and further reduction in opening time by an hour when accelerator

  10. The durability of concrete containing a high-level of fly ash or a ternary blend of supplementary cementing materials

    NASA Astrophysics Data System (ADS)

    Gilbert, Christine M.

    The research for this study was conducted in two distinct phases as follows: Phase 1: The objective was to determine the effect of fly ash on the carbonation of concrete. The specimens made for this phase of the study were larger in size than those normally used in carbonation studies and were are meant to more accurately reflect real field conditions. The results from early age carbonation testing indicate that the larger size specimens do not have a measured depth of carbonation as great as that of the smaller specimens typically used in carbonation studies at the same age and under the same conditions. Phase 2: The objective was to evaluate the performance of ternary concrete mixes containing a ternary cement blend consisting of Portland cement, slag and Type C fly ash. It was found that concrete mixtures containing the fly ash with the lower calcium (CaO) content (in binary or ternary blends) provided superior durability performance and resistance to ASR compared to that of the fly ash with the higher CaO content. Ternary blends (regardless of the CaO content of the fly ash) provided better overall durability performance than binary blends of cementing materials or the control.

  11. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements.

    PubMed

    Pahlevanzadeh, F; Bakhsheshi-Rad, H R; Hamzah, E

    2018-06-01

    In this study, a bone cement consisting of poly methyl methacrylate (PMMA)-poly caprolactone (PCL)-fluorapatite (FA)-graphene oxide (GO) was synthesized as bone filler for application in orthopedic surgeries. The FA and GO particulates were homogenously distributed in the PMMA-PCL polymer matrix and no defects and agglomeration were found in the PMMA-PCL/FA/GO bone cement. The in-vitro bioactivity result exhibited that addition of FA and GO to the polymer cement (PMMA-PCL) improved the apatite formation ability on the surface of polymer. The results also showed that addition of FA to the polymer bone cement escalated the compressive strength and elastic modulus while reducing elongation to 8 ± 2%. However, after addition of GO into the PMMA-PCL/FA bone cement, both compressive strength and elongation considerably increased to 101 ± 5 MPa and 35 ± 6%, respectively. Furthermore, tensile tests exhibited that inclusion of GO was favorable in improving the tensile modulus, UTS and elongation of the PMMA-PCL/FA bone cement. The cytotoxicity test pointed out that MG63 osteoblast cells viability increased to 279 ± 15% after addition of FA and GO to the PMMA-PCL polymer bone cement. The DAPI (4',6-diamidino-2-phenylindole) staining demonstrated better spreading and attachment of MG63 cells on PMMA-PCL/FA/GO surface compared to the PMMA-PCL bone cements. These results confirm the suitable mechanical properties and favorable bioactivity along with high cells viability of PMMA-PCL/FA/GO bone cement, indicating its potentials for orthopedic applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    PubMed Central

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-01-01

    Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062

  13. Study on cement mortar and concrete made with sewage sludge ash.

    PubMed

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  14. Treatments for clays in aggregates used to produce cement concrete, bituminous materials, and chip seals : technical report.

    DOT National Transportation Integrated Search

    2013-07-01

    The clay contamination of coarse and fine aggregates and its effects on pavement performance of portland cement concrete, bituminous mixes and chip seals is a major concern for Texas Department of Transportation. We proposed (i) to determine what typ...

  15. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  16. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    EPA Science Inventory

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  17. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements

    PubMed Central

    Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro

    2013-01-01

    In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse. PMID:28809343

  18. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements.

    PubMed

    Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro

    2013-03-06

    In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions ( in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

  19. Mechanical Properties of Lightweight Concrete Using Recycled Cement-Sand Brick as Coarse Aggregates Replacement

    NASA Astrophysics Data System (ADS)

    Joohari, Ilya; Farhani Ishak, Nor; Amin, Norliyati Mohd

    2018-03-01

    This paper presents the result of replacing natural course aggregate with recycled cement-sand brick (CSB) towards the mechanical properties of concrete. Natural aggregates were used in this study as a control sample to compare with recycled coarse aggregates. This study was also carried to determine the optimum proportion of coarse aggregates replacement to produce lightweight concrete. Besides, this study was conducted to observe the crack and its behaviour development during the mechanical testing. Through this study, four types of concrete mixed were prepared, which were the control sample, 25%, 50% and 75% replacement of CSB. The test conducted to determine the effectiveness of recycled CSB as coarse aggregates replacement in this study were slump test, density measurement, compression test, and flexural test and. The strength of concrete was tested at 7 days and 28 days of curing. From the results obtained, the optimum proportion which produced the highest strength is 25% replacement of recycled CSB. The compressive and flexural strength has decreased by 10%-12% and 4%-34% respectively compared to the control sample. The presence of recycled coarse aggregates in sample has decreased the density of concrete by 0.8%-3% compared to the control sample.

  20. Cause Analysis on the Void under Slabs of Cement Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Wen, Li; Zhu, Guo Xin; Baozhu

    2017-06-01

    This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.

  1. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt.

    PubMed

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk

    2018-05-14

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.

  2. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt

    PubMed Central

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong

    2018-01-01

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008

  3. Evaluation of the installation and initial condition of hydraulic cement concrete overlays placed on three pavements in Virginia.

    DOT National Transportation Integrated Search

    1999-04-01

    Hydraulic cement concrete pavement overlays were placed in the summer of 1995 at the following locations in Virginia: : 1-295 near Richmond : 1-85 near Petersburg : Rt. 29 near Charlottesville. : Overlays were placed on 1-295 SBL (near mi...

  4. Performance of Kaolin Clay on the Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Jaya, R. P.; Shahafuddin, M. N. A.; Yaacob, H.; Ibrahim, M. H. Wan; Nazri, F. M.; Ramli, N. I.; Mohammed, A. A.

    2018-05-01

    This paper investigates the performance of concrete pavement containing kaolin clay with their engineering properties and to determine the optimum kaolin clay content. The concrete used throughout the study was designed as grade 30 MPa strength with constant water to cement ratio of 0.49. The compressive strength, flexural strength and water absorption test was conducted in this research. The concrete mix designed with kaolin clay as cement replacement comprises at 0%, 5%, 10% and 15% by the total weight of cement. The results indicate that the strength of pavement concrete decreases as the percentage of kaolin clay increases. It also shows that the water absorption increases with the percentage of cement replacement. However, 5% kaolin clay is found to be the optimum level to replace cement in a pavement concrete.

  5. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    NASA Astrophysics Data System (ADS)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties

  6. Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

    NASA Astrophysics Data System (ADS)

    Jung, Sang Hwa; Kwon, Seung-Jun

    2013-09-01

    Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

  7. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  8. Biodeterioration of the Cement Composites

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  9. Deicer scaling resistance of concrete mixtures containing slag cement. Phase 2 : evaluation of different laboratory scaling test methods.

    DOT National Transportation Integrated Search

    2012-07-01

    With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be b...

  10. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomerantz, M.; Akbari, H.; Chang, S.-C.

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how themore » albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.« less

  11. Short and long term behaviour of externally bonded fibre reinforced polymer laminates with bio-based resins for flexural strengthening of concrete beams

    NASA Astrophysics Data System (ADS)

    McSwiggan, Ciaran

    The use of bio-based resins in composites for construction is emerging as a way to reduce of embodied energy produced by a structural system. In this study, two types of bio-based resins were explored: an epoxidized pine oil resin blend (EP) and a furfuryl alcohol resin (FA) derived from corn cobs and sugar cane. Nine large-scale reinforced concrete beams strengthened using externally bonded carbon and glass fibre reinforced bio-based polymer (CFRP and GFRP) sheets were tested. The EP resin resulted in a comparable bond strength to conventional epoxy (E) when used in wet layup, with a 7% higher strength for CFRP. The FA resin, on the other hand, resulted in a very weak bond, likely due to concrete alkalinity affecting curing. However, when FA resin was used to produce prefabricated cured CFRP plates which were then bonded to concrete using conventional epoxy paste, it showed an excellent bond strength. The beams achieved an increase in peak load ranging from 18-54% and a 9-46% increase in yielding load, depending on the number of FRP layers and type of fibres and resin. Additionally, 137 concrete prisms with a mid-span half-depth saw cut were used to test CFRP bond durability, and 195 CFRP coupons were used to examine tensile strength durability. Specimens were conditioned in a 3.5% saline solution at 23, 40 or 50°C, for up to 240 days. Reductions in bond strength did not exceed 15%. Bond failure of EP was adhesive with traces of cement paste on CFRP, whereas that of FA was cohesive with a thicker layer of concrete on CFRP, suggesting that the bond between FA and epoxy paste is excellent. EP tension coupons had similar strength and modulus to E resin, whereas FA coupons had a 9% lower strength and 14% higher modulus. After 240 days of exposure, maximum reductions in tensile strength were 8, 19 and 10% for EP, FA and E resins, respectively. Analysis of Variance (ANOVA) was also performed to assess the significance of the reductions observed. High degrees of

  12. Concrete and cement composites used for radioactive waste deposition.

    PubMed

    Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel

    2017-11-01

    This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    PubMed

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.

  14. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 2: Significance of transition zones on physical and mechanical properties of portland cement mortar; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.F.F.; Cohen, M.D.; Chen, W.F.

    1998-08-01

    The research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  15. Experimental study on the performance of pervious concrete

    NASA Astrophysics Data System (ADS)

    Liu, Haojie; Liu, Rentai; Yang, Honglu; Ma, Chenyang; Zhou, Heng

    2018-02-01

    With the construction of sponge city, the pervious concrete material has been developed rapidly. A high-performance pervious concrete is developed by using cement, silica fume (SF) and superplasticizer (SP). The effects of SF, SP, aggregate size, water-cement ration and aggregate-cement ratio on the permeability coefficient, compressive strength and flexural strength are studied by controlling variables, and exploring the corrosion resistance and abrasion resistance of pervious concrete. The results show that using 0.5% SP, 5% SF and small aggregate can greatly improve the strength. There is an optimum value for water-cement ratio to make the strength and permeability coefficient maximum. Compared to ordinary pervious concrete, the corrosion resistance and abrasion resistance of this pervious concrete are very good.

  16. Mechanical properties of polymer-modified porous concrete

    NASA Astrophysics Data System (ADS)

    Ariffin, N. F.; Jaafar, M. F. Md.; Shukor Lim, N. H. Abdul; Bhutta, M. A. R.; Hussin, M. W.

    2018-04-01

    In this research work, polymer-modified porous concretes (permeable concretes) using polymer latex and redispersible polymer powder with water-cement ratio of 30 %, polymer-cement ratios of 0 to 10 % and cement content of 300 kg/m3 are prepared. The porous concrete was tested for compressive strength, flexural strength, water permeability and void ratio. The cubes size of specimen is 100 mm ×100 mm × 100 mm and 150 mm × 150 mm × 150 mm while the beam size is 100 mm × 100 mm × 500 mm was prepared for particular tests. The tests results show that the addition of polymer as a binder to porous concrete gives an improvement on the strength properties and coefficient of water permeability of polymer-modified porous concrete. It is concluded from the test results that increase in compressive and flexural strengths and decrease in the coefficient of water permeability of the polymer-modified porous concrete are clearly observed with increasing of polymer-cement ratio.

  17. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    PubMed

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  18. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    PubMed Central

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  19. Early-age monitoring of cement structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  20. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 1: Theoretical study on influence of interfacial transition zone on properties of concrete materials; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Chen, W.F.

    1998-08-01

    This research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  1. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete.

    PubMed

    Pilegis, Martins; Gardner, Diane; Lark, Robert

    2016-06-02

    Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN). The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c) ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA) and the concrete mix composition.

  2. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete

    PubMed Central

    Pilegis, Martins; Gardner, Diane; Lark, Robert

    2016-01-01

    Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN). The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c) ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA) and the concrete mix composition. PMID:28773560

  3. Durable fiber reinforced self-compacting concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corinaldesi, V.; Moriconi, G

    2004-02-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strainsmore » due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture.« less

  4. Mechanical Performance Test of Rubber-Powder Modified Concrete

    NASA Astrophysics Data System (ADS)

    Zhang, Yan Cong; Gao, Ling Ling

    2018-06-01

    A number of rubber cement concrete specimens that rubber powder dosage different were obtained using same cement, water and fine aggregates, by adjusting the dosage of rubber powder. Then it was used to research the influence of rubber powder dosage on performance of cement concrete by measuring its liquidity, strength and toughness. The results show that: when water-cement ratio was equal and rubber powder replacing the same volume sand, the fluidity of cement concrete almost linear increased with rubber powder dosage increasing. With dosage of rubber powder increasing, compressive strength and flexural strength reduced, but toughness linear growth trend when dosage of rubber powder less 30%.

  5. Compressive strength of marine material mixed concrete

    NASA Astrophysics Data System (ADS)

    Adnan; Parung, H.; Tjaronge, M. W.; Djamaluddin, R.

    2017-11-01

    Many cement factories have been incorporated fly ash with clinker cement to produce blended cement. PCC is a type of blended cement incorporated fly ash that produced in Indonesia cement factories. To promote the sustainable development in the remote islands this present paper attempted to study the suitability of sea water, marine sand that available abundantly surround the remote island with Portland Composite Cement (PCC) and crushed river stone to produce concrete. Slump test was conducted to evaluate the workability of fresh concrete and also compressive strength with stress-strain relationship was carried out to evaluate the hardened concrete that cured with two curing condition (e.g. sea water curing, and tap water-wet burlap curing). Test result indicated that fresh concrete had proper workability and all hardened specimens appeared a good compaction result. Compressive strength of specimens cured which sea water was higher than the specimens which cured by tap water-wet burlap where stress-strain behavior of specimens made with sea water, marine sand, and PCC had similar behavior with specimens which made with PCC and tap water.

  6. Effects of urban debris material on the extraction chromatographic separation of strontium: Part II: cement and concrete

    DOE PAGES

    McLain, Derek R.; Liu, Christine; Sudowe, Ralf

    2017-11-02

    The majority of radiochemical separation schemes available have been developed for environmental samples that are not necessarily representative of those found in an urban environment. However, it is much more likely that an incident involving a radiation dispersal device (RDD) would occur in an urban or metropolitan area. It is unclear if the currently available separation schemes would be effective in such an event. It is therefore important to determine if the current schemes would be adequate, or to find efficient and accurate ways to separate radiological material from urban debris. One important radiological material that could be used inmore » an RDD is 90Sr. Part I of this work investigated the effects steel had on strontium separations, while this work investigates cement and concrete. This research demonstrates that the individual elements present in a cement and concrete sample matrix can give rise to significant interferences with extraction chromatographic separations. In conclusion, solutions of the constituents mixed in representative ratios; however, show fewer problems« less

  7. Effects of urban debris material on the extraction chromatographic separation of strontium: Part II: cement and concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLain, Derek R.; Liu, Christine; Sudowe, Ralf

    The majority of radiochemical separation schemes available have been developed for environmental samples that are not necessarily representative of those found in an urban environment. However, it is much more likely that an incident involving a radiation dispersal device (RDD) would occur in an urban or metropolitan area. It is unclear if the currently available separation schemes would be effective in such an event. It is therefore important to determine if the current schemes would be adequate, or to find efficient and accurate ways to separate radiological material from urban debris. One important radiological material that could be used inmore » an RDD is 90Sr. Part I of this work investigated the effects steel had on strontium separations, while this work investigates cement and concrete. This research demonstrates that the individual elements present in a cement and concrete sample matrix can give rise to significant interferences with extraction chromatographic separations. In conclusion, solutions of the constituents mixed in representative ratios; however, show fewer problems« less

  8. Evaluation of concrete patching materials : final report.

    DOT National Transportation Integrated Search

    1985-01-01

    The project evaluated numerous repairs on portland cement concrete pavements and bridge decks made with a number of laboratory accepted, proprietary patching materials and portland cement concrete mixtures of different designs. It was ascertained tha...

  9. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    NASA Astrophysics Data System (ADS)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there

  10. Waste-Based Pervious Concrete for Climate-Resilient Pavements.

    PubMed

    Ho, Hsin-Lung; Huang, Ran; Hwang, Lih-Chuan; Lin, Wei-Ting; Hsu, Hui-Mi

    2018-05-27

    For the sake of environmental protection and circular economy, cement reduction and cement substitutes have become popular research topics, and the application of green materials has become an important issue in the development of building materials. This study developed green pervious concrete using water-quenched blast-furnace slag (BFS) and co-fired fly ash (CFFA) to replace cement. The objectives of this study were to gauge the feasibility of using a non-cement binder in pervious concrete and identify the optimal binder mix design in terms of compressive strength, permeability, and durability. For filled percentage of voids by cement paste (FPVs) of 70%, 80%, and 90%, which mixed with CFFA and BFS as the binder (40 + 60%, 50 + 50%, and 60 + 40%) to create pervious concrete with no cement. The results indicate that the complete (100%) replacement of cement with CFFA and BFS with no alkaline activator could induce hydration, setting, and hardening. After a curing period of 28 days, the compressive strength with different FPVs could reach approximately 90% that of the control cement specimens. The cementless pervious concrete specimens with BFS:CFFA = 7:3 and FPV = 90% presented better engineering properties and permeability.

  11. Cements for Structural Concrete in Cold Regions.

    DTIC Science & Technology

    1977-10-01

    ability to reduce the early evolu- tion of heat: slag and obsidian, pumicite and calcined shale, fly-ash , tuff and calcined diatomite , natural cement...and uncalcined diatomite . Variations in initial set times of cements can be controlled ‘cy varying the percentages of different cement mixtures . Wh it

  12. Experimental Study on Permeability of Concrete

    NASA Astrophysics Data System (ADS)

    Yang, Honglu; Liu, Rentai; Zheng, Zhuo; Liu, Haojie; Gao, Yan; Liu, Yankai

    2018-01-01

    To study the influencing factors on permeability of pervious concrete, by adding inorganic organic composite materials obtained experimental results show that different aggregate size, aggregate cement ratio of different, different water cement ratio on the permeability performance. The permeability of the concrete was tested by using the self - made permeable device. The experimental results showed that the permeation coefficient of the experiment was obtained and the factors influencing the permeability of the concrete were compared and analyzed. At the same time, the porosity of pervious concrete was measured, the influence of various variables on porosity was studied, and the influence of various factors on the permeability of voids was found. Finally, through comprehensive analysis of a variety of factors, the optimal water cement ratio is 0.28. At this time, the pervious performance of concrete is optimal.

  13. Self-curing concrete with different self-curing agents

    NASA Astrophysics Data System (ADS)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  14. Long-Term and Seismic Performance of Concrete-Filled Steel Tube Columns with Conventional and High-Volume SCM Concrete

    DOT National Transportation Integrated Search

    2012-06-01

    Production of Portland Cement for concrete is a major source of CO2 emission. Concrete can be made more sustainable by replacing a large volume of the cement with Supplementary Cementitous Materials (SCMs) such as fly ash and slag. The amount of ceme...

  15. Eco-friendly GGBS Concrete: A State-of-The-Art Review

    NASA Astrophysics Data System (ADS)

    Saranya, P.; Nagarajan, Praveen; Shashikala, A. P.

    2018-03-01

    Concrete is the most commonly used material in the construction industry in which cement is its vital ingredient. Although the advantages of concrete are many, there are side effects leading to environmental issues. The manufacturing process of cement emits considerable amount of carbon dioxide (CO2). Therefore is an urgent need to reduce the usage of cement. Ground Granulated Blast furnace Slag (GGBS) is a by-product from steel industry. It has good structural and durable properties with less environmental effects. This paper critically reviews the literatures available on GGBS used in cement concrete. In this paper, the literature available on GGBS are grouped into engineering properties of GGBS concrete, hydraulic action of GGBS in concrete, durability properties of GGBS concrete, self- compacting GGBS concrete and ultrafine GGBS are highlighted. From the review of literature, it was found that the use of GGBS in concrete construction will be eco-friendly and economical. The optimum percentage of replacement of cement by GGBS lies between 40 - 45 % by weight. New materials that can be added in addition to GGBS for getting better strength and durability also highlighted.

  16. Self-cleaning geopolymer concrete - A review

    NASA Astrophysics Data System (ADS)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  17. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    NASA Astrophysics Data System (ADS)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  18. Guide to cement-based integrated pavement solutions.

    DOT National Transportation Integrated Search

    2011-08-01

    This guide provides a clear, concise, and cohesive presentation of cement-bound materials options for 10 : specific engineering pavement applications: new concrete pavements, concrete overlays, pervious concrete, : precast pavements, roller-compacted...

  19. The use of steel slag in concrete

    NASA Astrophysics Data System (ADS)

    Martauz, P.; Vaclavik, V.; Cvopa, B.

    2017-10-01

    This paper presents the results of a research dealing with the use of unstable steel slag as a 100% substitute for natural aggregate in the production of concrete. Portland cement CEM I 42.5N and alkali activated hybrid cement H-CEMENT were used as the binder. The test results confirm the possibility to use steel slag as the filler in the production of concrete.

  20. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    PubMed Central

    Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro

    2015-01-01

    This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  1. Production and construction technology of C100 high strength concrete filled steel tube

    NASA Astrophysics Data System (ADS)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  2. Life Cycle Assessment of Completely Recyclable Concrete.

    PubMed

    De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele

    2014-08-21

    Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  3. Life Cycle Assessment of Completely Recyclable Concrete

    PubMed Central

    De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele

    2014-01-01

    Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete. PMID:28788174

  4. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    PubMed

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22

  5. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.

    PubMed

    Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

  6. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions

    PubMed Central

    Obla, K.; Hong, R.; Sherman, S.; Bentz, D.P.; Jones, S.Z.

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation’s constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K+, Na+, and OH-) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass (w/c), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c, paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture’s paste content or the product w*c; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed. PMID:29882546

  7. Investigation of concrete containing slag : Hampton River Bridge.

    DOT National Transportation Integrated Search

    1986-01-01

    The study evaluated the properties of concretes containing slag in a 50% replacement of the portland cement to assess their suitability as an alternative to the portland cement concretes normally used in the construction of bridge substructures. For ...

  8. Non-autoclaved aerated concrete with mineral additives

    NASA Astrophysics Data System (ADS)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  9. Laboratory evaluation of recycled concrete as aggregate in new concrete pavements.

    DOT National Transportation Integrated Search

    2014-09-01

    The Washington State Department of Transportation (WSDOT) has initiated a research project to investigate the use of recycled concrete as : aggregates (RCA) in Portland (hydraulic) cement concrete pavements (PCCP). The planned source for the RCA in t...

  10. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Maté, M.; De la Torre, A.G.; León-Reina, L.

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 monthsmore » of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.« less

  11. Scaling and saturation laws for the expansion of concrete exposed to sulfate attack.

    PubMed

    Monteiro, Paulo J M

    2006-08-01

    Reinforced concrete structures exposed to aggressive environments often require repair or retrofit even though they were designed to last >50 years. This statement is especially true for structures subjected to sulfate attack. It is critical that fundamental models of life prediction be developed for durability of concrete. Based on experimental results obtained over a 40-year period, scaling and saturation laws were formulated for concrete exposed to sulfate solution. These features have not been considered in current models used to predict life cycle of concrete exposed to aggressive environment. The mathematical analysis shows that porous concrete made with high and moderate water-to-cement ratios develops a definite scaling law after an initiation time. The scaling coefficient depends on the cement composition but does not depend on the original water-to-cement ratio. Dense concrete made with low water-to-cement ratios develops a cyclic saturation curve. An index for "potential of damage" is created to allow engineers to design concrete structures with better precision and cement chemists to develop portland cements with optimized composition.

  12. Structuring in Cement Systems with Introduction of Graphene Nano-Additives

    NASA Astrophysics Data System (ADS)

    Yanturina, R. A.; Trofimov, B. Ya; Ahmedjanov, R. M.

    2017-11-01

    At present, one of the most promising areas in the field of concrete research is the study of the effect of nano-additives for the production of highly effective concretes. Many authors have already obtained primary results which testify to the very effective role of nanoadditives based on carbon in modifying concrete. In this paper, the influence of a nano-additive of graphene on the phase composition and microstructure of the cement stone was studied. It has been found that, when a nano-additive of graphene is introduced, low-basic calcium hydrosilicates are mainly formed. This leads to an increase in the compressive strength of concrete. The results of the study of the microstructure of cement stone with nano-additive graphene showed that the high compressive strength of concrete modified with nano-additive graphene is explained by the cement stone dense structure. Thus, it was found that the nanoadditive of graphene contributes to the formation of a dense structure of cement stone, composed mainly of low-basic calcium hydrosilicates, and due to this, the physical and mechanical characteristics of concrete and its resistance to frost and other forms of aggression.

  13. Use of fiber reinforced concrete for concrete pavement slab replacement : [summary].

    DOT National Transportation Integrated Search

    2014-03-01

    Replacing cracked concrete in roadways requires : lanes to be closed and traff c disrupted. One way : to reduce road closure time is to reduce concrete : curing time. To accelerate curing time, pavement : engineers mix a very low water-cement ratio w...

  14. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone

    NASA Astrophysics Data System (ADS)

    Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.

    2017-11-01

    According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.

  15. Fatty acids in sparry calcite fracture fills and microsparite cement of septarian diagenetic concretions

    NASA Astrophysics Data System (ADS)

    Pearson, M. J.; Hendry, J. P.; Taylor, C. W.; Russell, M. A.

    2005-04-01

    Sparry calcite fracture fills and concretion body cements in concretions from the Flodigarry Shale Member of the Staffin Shale Formation, Isle of Skye, Scotland, entrap and preserve mineral and organic materials of sedimentary and diagenetic origin. Fatty acids are a major component of the lipids recovered by decarbonation and comprise mainly n-alkanoic and α-ω dicarboxylic acids. Two generations of fracture-fill calcite (early brown and later yellow) and the concretion body microspar yield significantly different fatty acid profiles. Early brown calcites yield mainly medium-chain n-alkanoic acids with strong even predominance; later yellow calcites are dominated by α-ω dicarboxylic acids with no even predominance. Both fracture fills lack the long-chain n-alkanoic and α-ω dicarboxylic acids additionally recovered from the concretion bodies. The absence of longer chain acids in the calcite spar fracture fills is inferred to result from the transport of fatty acids by septarian mineralising fluids whereby low-aqueous solubility of longer chain acids or their salts accounts for their relative immobility. Comparative experiments have been carried out using conventional solvent extraction on the concretion body and associated shales, both decarbonated and untreated. Extracted lipid yields are higher, but the fatty acids probably derive from mixed locations in the rock including both kerogen- and carbonate-associated lipid pools. Only experiments involving decarbonation yielded α-ω dicarboxylic acids in molecular distributions probably controlled mainly by fluid transport. Alkane biomarker ratios indicate very low thermal maturity has been experienced by the concretions and their host sediments. Septarian cracks lined by brown calcite formed during early burial. Microbial CO 2 from sulphate-reducing bacteria was probably the main source of mineralising carbonate. Emplacement of the later septarian fills probably involved at least one episode of fluid invasion.

  16. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Characterisation and management of concrete grinding residuals.

    PubMed

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  18. Effect of water-to-cement ratio and curing method on the strength, shrinkage and slump of the biosand filter concrete body.

    PubMed

    Chan, Nicole; Young-Rojanschi, Candice; Li, Simon

    2018-03-01

    The biosand filter is a household-level water treatment technology used globally in low-resource settings. As of December 2016, over 900,000 biosand filters had been implemented in 60 countries around the world. Local, decentralized production is one of the main advantages of this technology, but it also creates challenges, especially in regards to quality control. Using the current recommended proportions for the biosand filter concrete mix, slump was measured at water-to-cement ratios of 0.51, 0.64 and 0.76, with two replicates for each level. Twenty-eight-day strength was tested on four replicate cylinders, each at water-to-cement ratios of 0.51, 0.59, 0.67 and 0.76. Wet curing and dry curing were compared for 28-day strength and for their effect on shrinkage. Maximum strength occurred at water-to-cement ratios of 0.51-0.59, equivalent to 8-9.3 L water for a full-scale filter assuming saturated media, corresponding to a slump class of S1 (10-40 mm). Wet curing significantly improved strength of the concrete mix and reduced shrinkage. Quality control measures such as the slump test can significantly improve the quality within decentralized production of biosand filters, despite localized differences in production conditions.

  19. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    NASA Astrophysics Data System (ADS)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  20. Impact of Aggregates Size and Fibers on basic Mechanical Properties of Asphalt Emulsion—Cement Concrete

    NASA Astrophysics Data System (ADS)

    Fu, Jun; Liu, Zhihong; Liu, Jie

    2018-01-01

    Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.

  1. Workability enhancement of geopolymer concrete through the use of retarder

    NASA Astrophysics Data System (ADS)

    Umniati, B. Sri; Risdanareni, Puput; Zein, Fahmi Tarmizi Zulfikar

    2017-09-01

    Geopolymer concrete is a type of concrete manufactured without the addition of cement. In geopolymer concrete, along with an activator, cement as the concrete binder can be replaced by the fly ash. This will reduce global demand on cement, and therefore will reduce CO2 emission due to cement production. Thus, geopolymer concrete is commonly known as an eco-friendly concrete. Geopolymer concrete also offers a solution concerning with the utilization of the fly ash waste. However, despite of its environmental advantages, geopolymer concrete has a drawback, namelygeopolymer concrete set quickly, thus reducing its workability. This research aimed to increase the workability of geopolymer concrete by using retarder admixture (Plastocrete RT6 Plus). Retarder used varies within 0.2%, 0.4% and 0.6% of fly ash mass. As a control, geopolymer concrete without retarder (0%) were also made. Activator used in this research was Na2SiO3 mixed with NaOH 10 M solution, with ratio of 1:5. The results showed an optimum composition of geopolymer concrete with 0.6% retarder, where initial setting time occured after 6.75 hours, and the final setting time reached after 9.5 hours. Moreover, the slump of the geopolymer concrete was 8.8 cm, and the slump flow was 24 cm. The compressive strength of the geopolymer concrete at 28 days was 47.21 MPa. The experiment showed that the more retarder added, the setting time of the geopolymer concrete will be increased, thus increasing its workability.

  2. The Acoustical Properties of the Polyurethane Concrete Made of Oyster Shell Waste Comparing Other Concretes as Architectural Design Components

    NASA Astrophysics Data System (ADS)

    Setyowati, Erni; Hardiman, Gagoek; Purwanto

    2018-02-01

    This research aims to determine the acoustical properties of concrete material made of polyurethane and oyster shell waste as both fine aggregate and coarse aggregate comparing to other concrete mortar. Architecture needs aesthetics materials, so the innovation in architectural material should be driven through the efforts of research on materials for building designs. The DOE methods was used by mixing cement, oyster shell, sands, and polyurethane by composition of 160 ml:40 ml:100 ml: 120 ml respectively. Refer to the results of previous research, then cement consumption is reduced up to 20% to keep the concept of green material. This study compared three different compositions of mortars, namely portland cement concrete with gravel (PCG), polyurethane concrete of oyster shell (PCO) and concrete with plastics aggregate (PCP). The methods of acoustical tests were conducted refer to the ASTM E413-04 standard. The research results showed that polyurethane concrete with oyster shell waste aggregate has absorption coefficient 0.52 and STL 63 dB and has a more beautiful appearance when it was pressed into moulding. It can be concluded that polyurethane concrete with oyster shell aggregate (PCO) is well implemented in architectural acoustics-components.

  3. Exterior building details of Building C, east façade: brick quoins, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, east façade: brick quoins, brick lintels, brick window sills, decorative metal grilles, scored cement finished brick wall; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  4. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    NASA Astrophysics Data System (ADS)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  5. Extending the usage of high volume fly ash in concrete.

    DOT National Transportation Integrated Search

    2014-07-01

    Concrete is the worlds most consumed man-made material. Unfortunately, the production of Portland cement, the active ingredient in : concrete, generates a significant amount of carbon dioxide. For each pound of cement produced, approximately one p...

  6. Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

    PubMed Central

    Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2017-01-01

    Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948

  7. Concrete aggregate durability study.

    DOT National Transportation Integrated Search

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  8. Physicomechanical enhancement on Portland composite concrete using silica fume as replacement material

    NASA Astrophysics Data System (ADS)

    Husin, Wan Norsariza Wan; Johari, Izwan

    2017-09-01

    The addition of supplementary cementitious materials may change the physical and mechanical properties of concrete. Mineral additions which are also known as mineral admixtures have been used with cement for many years. However, this research did not use Ordinary Portland Cement (OPC) but using the Portland Cement Composite (PCC). The aim of this study is to determine the effect of partial substitution of PCC by silica fume (SF) on the physicomechanical properties especially the compressive strength of the hardened PCC-SF composite concrete. Silica fume was used to replace PCC at dosage levels of 5%, 10%, 15% and 20% by weight of cement in concrete. The results show that on 7 days the PCC concrete exhibited lower early age strength but PCC-SF concrete improved and gain strength up to grade 30 in 7 days. The utilisation of SF resulted in significant improvement of Portland composite concrete admixture.

  9. Development and freeze-thaw durability of high flyash-content concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, J.

    1987-01-01

    Objectives were to investigate the effects on concrete strength, drying shrinkage, freeze-thaw durability, and air-void system parameters of replacing various amounts of portland cement with different types of fly ash and to compare selected characteristics of such fly-ash concretes and fly-ash concretes containing a high-range water-reducing admixture to those of a control mixture. It was concluded that concrete mixtures with 90-day compressive strengths equal to the control could be produced when large amounts of cement were replaced by fly ash. In addition, when the high-range water-reducing admixtures was employed, very large amounts of cement could be replaced by fly ashmore » to yield mixtures whose compressive strengths were equal to or greater than the strengths of the control mix at all ages. The maximum amount of cement that could be replaced for equal-strength mixtures depended upon the nature of the fly ash. Drying shrinkage of plain fly-ash concretes and fly-ash concretes containing the high-range water-reducing admixture were similar to those of the control mix. The optimum fly-ash content in a concrete is comparable in strength and durability to a conventional (control) concrete was influenced by the chemical and physical characteristics of the fly ash.« less

  10. Dataset of producing and curing concrete using domestic treated wastewater.

    PubMed

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2016-03-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.

  11. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar

    NASA Astrophysics Data System (ADS)

    Dobiszewska, Magdalena; Beycioğlu, Ahmet

    2017-10-01

    Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement

  12. The national survey of natural radioactivity in concrete produced in Israel.

    PubMed

    Kovler, Konstantin

    2017-03-01

    The main goal of the current survey was to collect the results of the natural radiation tests of concrete produced in the country, to analyze the results statistically and make recommendations for further regulation on the national scale. Totally 109 concrete mixes produced commercially during the years 2012-2014 by concrete plants in Israel were analyzed. The average concentrations of NORM did not exceed the values recognized in the EU and were close to the values obtained from the Mediterranean countries such as Greece, Spain and Italy. It was also found that although the average value of the radon emanation coefficient of concrete containing coal fly ash (FA) was lower, than that of concrete mixes without FA, there was no significant difference between the indexes of both total radiation (addressing gamma radiation and radon together), and gamma radiation only, of the averages of the two sub-populations of concrete mixes: with and without FA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    NASA Astrophysics Data System (ADS)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  14. Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage - column study.

    PubMed

    Shabalala, Ayanda N; Ekolu, Stephen O; Diop, Souleymane; Solomon, Fitsum

    2017-02-05

    This paper presents a column study conducted to investigate the potential use of pervious concrete as a reactive barrier for treatment of water impacted by mine waste. The study was done using acid mine drainage (AMD) collected from a gold mine (WZ) and a coalfield (TDB). Pervious concrete mixtures consisting of Portland cement CEM I 52.5R with or without 30% fly ash (FA) were prepared at a water-cementitious ratio of 0.27 then used to make cubes which were employed in the reactor columns. It was found that the removal efficiency levels of Al, Fe, Mn, Co and Ni were 75%, 98%, 99%, 94% and 95% for WZ; 87%, 96%, 99%, 98% and 90% for TDB, respectively. The high rate of acid reduction and metal removal by pervious concrete is attributed to dissolution of portlandite which is a typical constituent of concrete. The dominant reaction product in all four columns was gypsum, which also contributed to some removal of sulphate from AMD. Formation of gypsum, goethite, and Glauber's salt were identified. Precipitation of metal hydroxides seems to be the dominant metal removal mechanism. Use of pervious concrete offers a promising alternative treatment method for polluted or acidic mine water. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The evaluation of ordinary Portland cement concrete subject to elevated temperatures in conjunction with acoustic emission and splitting tensile test

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hou, Tsung-Chin; Chen, Guan-Ying; Hou, Ping-Ni

    2017-04-01

    The research objective was to evaluate Ordinary Portland Cement concrete subject to various elevated temperatures. Single OPC concrete mixture with water to cementitious (w/c) equal to 0.45 was proportioned. Concrete specimens were cast and placed in the curing tank in which water was saturated with calcium hydroxide. After ninety days of moist-cure, three elevated temperatures, namely 300, 600, and 900-°C, were carried out upon hardened concrete specimens. Furthermore, two post-damaged curing conditions were executed to recover damaged concrete specimens: one was to recure under 23°C with 50% humidity in a controlled environmental chamber and the other was to recure in the same curing tank. Acoustic emission apparatus coupled with the splitting tensile test was utilized and found able to assess damaged concrete. Before concrete subject to elevated temperatures, the development of indirect tensile strength versus displacement diagram fit well with the tendency of AE energy release. It was found there was a large amount of AE energy released when stress and displacement diagram developed about 40-50%. As such could be identified as the onset of first fracture and the plain concrete generally exhibited a quasi-brittle fracture with two major series of AE energy dissipations; however when concrete specimens were subject to elevated temperatures, the damaged concrete specimens displayed neither fracture pattern nor the "double-hump" AE energy dissipation in comparison with those of plain concrete.

  16. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  17. Effect of Silica Fume on two-stage Concrete Strength

    NASA Astrophysics Data System (ADS)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  18. Design and evaluation of high-volume fly ash (HVFA) concrete mixes.

    DOT National Transportation Integrated Search

    2012-10-01

    Concrete is the worlds most consumed man-made material. Unfortunately, the production of portland cement, the active : ingredient in concrete, generates a significant amount of carbon dioxide. For each pound of cement produced, approximately one :...

  19. Development of high-performance blended cements

    NASA Astrophysics Data System (ADS)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  20. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, G.; Liu, X.; De Schutter, G.

    2007-06-15

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on themore » cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m{sup 3} of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently.« less

  1. Design and evaluation of high-volume fly ash (HVFA) concrete mixes.

    DOT National Transportation Integrated Search

    2012-10-01

    Concrete is the worlds most consumed man-made material. Unfortunately, the production of portland cement, the active ingredient in concrete, generates a significant amount of carbon dioxide. For each pound of cement produced, approximately one pou...

  2. Utilizing Coal Fly Ash and Recycled Glass in Developing Green Concrete Materials

    DOT National Transportation Integrated Search

    2012-06-01

    The environmental impact of Portland cement concrete production has motivated researchers and the construction industry to evaluate alternative technologies for incorporating recycled cementing materials and recycled aggregates in concrete. One such ...

  3. Oxalate Acid-Base Cements as a Means of Carbon Storage

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2017-12-01

    Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is

  4. Dataset of producing and curing concrete using domestic treated wastewater

    PubMed Central

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2015-01-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577

  5. The use of waste materials for concrete production in construction applications

    NASA Astrophysics Data System (ADS)

    Teara, Ashraf; Shu Ing, Doh; Tam, Vivian WY

    2018-04-01

    To sustain the environment, it is crucial to find solutions to deal with waste, pollution, depletion and degradation resources. In construction, large amounts of concrete from buildings’ demolitions made up 30-40 % of total wastes. Expensive dumping cost, landfill taxes and limited disposal sites give chance to develop recycled concrete. Recycled aggregates were used for reconstructing damaged infrastructures and roads after World War II. However, recycled concrete consists fly ash, slag and recycled aggregate, is not widely used because of its poor quality compared with ordinary concrete. This research investigates the possibility of using recycled concrete in construction applications as normal concrete. Methods include varying proportion of replacing natural aggregate by recycled aggregate, and the substitute of cement by associated slag cement with fly ash. The study reveals that slag and fly ash are effective supplementary elements in improving the properties of the concrete with cement. But, without cement, these two elements do not play an important role in improving the properties. Also, slag is more useful than fly ash if its amount does not go higher than 50%. Moreover, recycled aggregate contributes positively to the concrete mixture, in terms of compression strength. Finally, concrete strength increases when the amount of the RA augments, related to either the high quality of RA or the method of mixing, or both.

  6. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  7. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report C : shear behavior of HVFA reinforced concrete.

    DOT National Transportation Integrated Search

    2012-10-01

    Concrete is the most widely used man-made material on the planet. Unfortunately, producing Portland cement generates carbon dioxide (a greenhouse gas) at roughly a pound for pound ratio. High-volume fly ash (HVFA) concrete concrete with at least ...

  8. Reduction of soil pollution by usingwaste of the limestone in the cement industry

    NASA Astrophysics Data System (ADS)

    Muñoz, M. Cecilia Soto; Robles Castillo, Marcelo; Blanco Fernandez, David; Diaz Gonzalez, Marcos; Naranjo Lamilla, Pedro; Moore Undurraga, Fernando; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    In the cement manufacturing process (wet) a residue is generated in the flotation process. This builds up causing contamination of soil, groundwater and agricultural land unusable type. In this study to reduce soil and water pollution 10% of the dose of cement was replaced by waste of origin limestone. Concretes were produced with 3 doses of cement and mechanical strengths of each type of concrete to 7, 28 and 90 days were determined. the results indicate that the characteristics of calcareous residue can replace up to 10% of the dose of cement without significant decreases in strength occurs. It is noted that use of the residue reduces the initial resistance, so that the dose of cement should not be less than 200 kg of cement per m3. The results allow recommends the use of limestone waste since it has been observed decrease in soil and water contamination without prejudice construction material Keywords: Soil contamination; Limestone residue; Adding concrete

  9. Optimization and characterization of a cemented ultimate-storage product

    NASA Astrophysics Data System (ADS)

    Brunner, H.

    1981-12-01

    The U- and Pu-containing packaging wastes can be homogeneously cemented after a washing and fragmentation process. Both finely crushed and coarsely fragmented raw wastes yield products with sufficient mechanical stability. The processability limit of the coarsely fragmented raw waste using cement paste or mortar is largely determined by the cellulose content, which is not to exceed 1.3% by weight in the end waste. Of 9 binders studied, the most corrosion-resistant products were obtained with blast-furnace slag cement, whereas poured concrete and Maxit are much less resistant in five-component brine. In the cemented product, hydrolysis of plasticizers (DOP) from plastics (PVC) occurs, leading to release of 2-ethyl-hexanol. This reaction occurs to a much lower degree with blast-furnace slag cement than with all other binders studied. The binder chosen for further tests consists of blast-furnace slag cement, concrete fluidizer and a stabilizer, and is processed at a W/C ratio of 0.43.

  10. Properties of concrete containing scrap-tire rubber--an overview.

    PubMed

    Siddique, Rafat; Naik, Tarun R

    2004-01-01

    Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.

  11. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    PubMed

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Evaluation of portland cement concrete pavement with high slag content cement.

    DOT National Transportation Integrated Search

    2013-10-01

    The performance of a section of concrete pavement built with 30 percent Ground Granulated Blast Furnace Slag (GGBFS) is compared to a control section of concrete pavement built with 25 percent GGBFS to determine if the higher slag content pavement is...

  13. Influence of bottom ash of palm oil on compressive strength of concrete

    NASA Astrophysics Data System (ADS)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  14. Carbonation and CO{sub 2} uptake of concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Keun-Hyeok, E-mail: yangkh@kgu.ac.kr; Seo, Eun-A, E-mail: ssooaa@naver.com; Tae, Sung-Ho, E-mail: jnb55@hanyang.ac.kr

    This study developed a reliable procedure to assess the carbon dioxide (CO{sub 2}) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO{sub 2} per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, andmore » the substitution level of supplementary cementitious materials to the CO{sub 2} diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO{sub 2} diffusion coefficient and increased CO{sub 2} concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO{sub 2} uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO{sub 2} uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO{sub 2} emissions from concrete production, which roughly corresponds to 18%–21% of the CO{sub 2} emissions from the production of ordinary Portland cement. - Highlights:

  15. Use of roller-compacted concrete pavement in Stafford, Virginia.

    DOT National Transportation Integrated Search

    2015-05-01

    Roller-compacted concrete (RCC) is a relatively stiffer hydraulic cement concrete mixture than regular concrete when : fresh. Similar to regular concrete, RCC is a mixture of aggregate, cementitious materials, and water, but it is placed using asphal...

  16. Concrete pavement mixture design and analysis (MDA) : effect of aggregate systems on concrete mixture properties.

    DOT National Transportation Integrated Search

    2012-07-01

    For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume : of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40%...

  17. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  18. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  19. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  20. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  1. The effect of slag addition on strength development of Class C fly ash geopolymer concrete at normal temperature

    NASA Astrophysics Data System (ADS)

    Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan

    2017-09-01

    This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.

  2. Guide for curing of portland cement. Volume I

    DOT National Transportation Integrated Search

    2005-01-01

    This document provides guidance on details of concrete curing practice as they pertain to construction of portland cement concrete pavements. The guide is organized around the major events in curing pavements: curing immediately after placement (init...

  3. Fire Resistance of Geopolymer Concretes

    DTIC Science & Technology

    2010-03-21

    1 Project report – Grant FA23860814096, "Fire resistance of geopolymer concretes" – J. Provis, University of Melbourne 1. Background and...experimental program This project provided funding for us to carry out fire testing of geopolymer concrete specimens and associated laboratory...testing. The focus of this report will be the outcomes of the series of pilot-scale (4’×4’×6”) tests on geopolymer concrete panels, which were conducted

  4. On Deterioration Mechanism of Concrete Exposed to Freeze-Thaw Cycles

    NASA Astrophysics Data System (ADS)

    Trofimov, B. Ya; Kramar, L. Ya; Schuldyakov, K. V.

    2017-11-01

    At present, concrete and reinforced concrete are gaining ground in all sectors of construction including construction in the extreme north, on shelves, etc. Under harsh service conditions, the durability of reinforced concrete structures is related to concrete frost resistance. Frost resistance tests are accompanied by the accumulation of residual dilation deformations affected by temperature-humidity stresses, ice formation and other factors. Porosity is an integral part of the concrete structure which is formed as a result of cement hydration. The prevailing hypothesis of a deterioration mechanism of concrete exposed to cyclic freezing, i.e. the hypothesis of hydraulic pressure of unfrozen water in microcapillaries, does not take into account a number of phenomena that affect concrete resistance to frost aggression. The main structural element of concrete, i.e. hardened cement paste, contains various hydration products, such as crystalline, semicrystalline and gel-like products, pores and non-hydrated residues of clinker nodules. These structural elements in service can gain thermodynamic stability which leads to the concrete structure coarsening, decrease in the relaxation capacity of concrete when exposed to cycling. Additional destructive factors are leaching of portlandite, the difference in thermal dilation coefficients of hydration products, non-hydrated relicts, aggregates and ice. The main way to increase concrete frost resistance is to reduce the macrocapillary porosity of hardened cement paste and to form stable gel-like hydration products.

  5. Modelling of chemical degradation of blended cement-based materials by leaching cycles with Callovo-Oxfordian porewater

    NASA Astrophysics Data System (ADS)

    Olmeda, Javier; Henocq, Pierre; Giffaut, Eric; Grivé, Mireia

    2017-06-01

    The present work describes a thermodynamic model based on pore water replacement cycles to simulate the chemical evolution of blended cement (BFS + FA) by interaction with external Callovo-Oxfordian (COx) pore water. In the framework of the radioactive waste management, the characterization of the radionuclide behaviour (solubility/speciation, adsorption) in cementitious materials needs to be done for several chemical degradation states (I to IV). In particular, in the context of the deep geological radioactive waste disposal project (Cigéo), cement-based materials will be chemically evolved with time in contact with the host-rock (COx formation). The objective of this study is to provide an equilibrium solution composition for each degradation state for a CEM-V cement-based material to support the adsorption and diffusion experiments reproducing any state of degradation. Calculations have been performed at 25 °C using the geochemical code PhreeqC and an up-to-date thermodynamic database (ThermoChimie v.9.0.b) coupled to SIT approach for ionic strength correction. The model replicates experimental data with accuracy. The approach followed in this study eases the analysis of the chemical evolution in both aqueous and solid phase to obtain a fast assessment of the geochemical effects associated to an external water intrusion of variable composition on concrete structures.

  6. Mechanical behaviour of fibre reinforced concrete using soft - drink can

    NASA Astrophysics Data System (ADS)

    Ilya, J.; Cheow Chea, C.

    2017-11-01

    This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.

  7. Effect of Fly-Ash on Corrosion Resistance Characteristics of Rebar Embedded in Recycled Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Revathi, Purushothaman; Nikesh, P.

    2018-04-01

    In the frame of an extended research programme dealing with the utilization of recycled aggregate in concrete, the corrosion resistance characteristics of rebars embedded in recycled aggregate concrete is studied. Totally five series of concrete mixtures were prepared with fly-ash as replacement for cement in the levels of 10-30% by weight of cement. Corrosion studies by 90 days ponding test, linear polarization test and impressed voltage tests were carried out, in order to investigate whether corrosion behaviour of the rebars has improved due to the replacement of cement with fly-ash. Results showed that the replacement of cement with fly-ash in the range of 20-30% improves the corrosion resistance characteristics of recycled aggregate concrete.

  8. Improving Fatigue Strength of polymer concrete using nanomaterials.

    DOT National Transportation Integrated Search

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  9. Concrete performance using low-degradation aggregates.

    DOT National Transportation Integrated Search

    2012-06-01

    The durability of Portland cement concrete (PCC) has long been identified as a concern by transportation communities around the United States. In this study, the long-term performance of two batches of concrete incorporating either low-degradation (L...

  10. Research on curing behavior of concrete with anti-frost admixtures at subzero temperature

    NASA Astrophysics Data System (ADS)

    Ionov, Yulian; Kramar, Ludmila; Kirsanova, Alena; Kolegova, Irina

    2017-01-01

    The purpose of this paper is research on curing behavior of cold-weather concrete with anti-frost admixtures. During the study derivative thermal and X-ray phase analyses were performed and tests were carried out according to the standard GOST technique. The research results obtained reveal the peculiarities of cement hydration and concrete curing at subzero temperatures. The influence of subzero temperatures and anti-frost admixtures on hydrated phases of hardened cement paste and concrete strength formation was studied. It is found that cold-weather concrete does not cure at subzero temperatures, but when defrosting it attains 80 to 85% of its grade strength by the 28th day. Concrete achieves its grade strength when curing in normal conditions in 60 days only. Freezing concrete with anti-frost admixtures results in increase of calcium hydroxide content in hardened cement paste immediately when produced and has increased tendency of concrete to carbonation.

  11. Bond characteristics of reinforcing steel embedded in geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Kathirvel, Parthiban; Thangavelu, Manju; Gopalan, Rashmi; Raja Mohan Kaliyaperumal, Saravana

    2017-07-01

    The force transferring between reinforcing steel and the surrounding concrete in reinforced concrete is influenced by several factors. Whereas, the study on bond behaviour of geopolymer concrete (GPC) is lagging. In this paper, an experimental attempt has been made to evaluate the geopolymer concrete bond with reinforcing steel of different diameter and embedded length using standard pull out test. The geopolymer concrete is made of ground granulated blast furnace slag (GGBFS) as geopolymer source material (GSM). The tests were conducted to evaluate the development of bond between steel and concrete of grade M40 and M50 with 12 and 16 mm diameter reinforcing steel for geopolymer and cement concrete mixes and to develop a relation between bond strength and compressive strength. From the experimental results, it has been observed that the bond strength of the geopolymer concrete mixes was more compared to the cement concrete mixes and increases with the reduction in the diameter of the bar.

  12. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    PubMed

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  13. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete

    PubMed Central

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-01-01

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions. PMID:28787998

  14. Joint sealant materials for concrete pavement repairs.

    DOT National Transportation Integrated Search

    1991-01-01

    This report on joint sealant materials for concrete pavement repairs is based on conversations with specialists from several states, the Federal Highway Administration, the Portland Cement Association, and the American Concrete Pavement Association, ...

  15. Thermal stress control using waste steel fibers in massive concretes

    NASA Astrophysics Data System (ADS)

    Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye

    2017-11-01

    One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.

  16. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  17. Fly ash in concrete : final report.

    DOT National Transportation Integrated Search

    1990-08-01

    This study was initiated to develop information regarding the use of fly ash in portland cement concrete for state construction projects. : Concrete mixes containing 10%, 20%, 30%, 40% and 60% fly ash were evaluated in the laboratory in combination w...

  18. Prediction model for carbonation depth of concrete subjected to freezing-thawing cycles

    NASA Astrophysics Data System (ADS)

    Xiao, Qian Hui; Li, Qiang; Guan, Xiao; Xian Zou, Ying

    2018-03-01

    Through the indoor simulation test of the concrete durability under the coupling effect of freezing-thawing and carbonation, the variation regularity of concrete neutralization depth under freezing-thawing and carbonation was obtained. Based on concrete carbonation mechanism, the relationship between the air diffusion coefficient and porosity in concrete was analyzed and the calculation method of porosity in Portland cement concrete and fly ash cement concrete was investigated, considering the influence of the freezing-thawing damage on the concrete diffusion coefficient. Finally, a prediction model of carbonation depth of concrete under freezing-thawing circumstance was established. The results obtained using this prediction model agreed well with the experimental test results, and provided a theoretical reference and basis for the concrete durability analysis under multi-factor environments.

  19. A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems.

    PubMed

    Antiohos, S K; Tsimas, S

    2007-01-01

    Reject fly ash (rFA) represents a significant portion of the fly ashes produced from coal-fired power plants. Due to the high carbon content and large particle mean diameter, rFA is not utilized in the construction sector (for example, as supplementary cementing material) and is currently dumped into landfills, thus representing an additional environmental burden. Recently, the feasibility of using rFA in a relatively small number of applications, like solidification/stabilization of other wastes, has been investigated by different researchers. However, as the overall amount of fly ash utilized in such applications is still limited, there is a need to investigate other possibilities for rFA utilization starting from a deeper understanding of its properties. In the work presented herein, mechanical and hydration properties of cementitious materials prepared by blending the coarse fraction of a lignite high-calcium fly ash with ordinary cement were monitored and compared with the respective ones of a good quality fly ash-cement mixture. The results of this work reveal that a relatively cheap, bilateral classification-grinding method is able to promote the pozzolanic behavior of the rFAs, so that the overall performances of rFA containing cements are drastically improved. The evaluation of these results supports the belief that appropriate utilization of non-standardized materials may lead to new environmental-friendly products of superior quality.

  20. Study on Strength and Durability Characteristics of Concrete with Ternary Blend

    NASA Astrophysics Data System (ADS)

    Nissi Joy, C.; Ramakrishnan, K.; Snega, M.; Ramasundram, S.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of Ordinary Portland Cement (OPC) and different mineral admixtures is the wise choice for the construction industry. In this research work, M20 grade mix of concrete (with water - binder ratio as 0.48) is adopted with glass powder (GP) and Sugar Cane Bagasse Ash (SCBA) as partial replacement of cement. GP is an inert material, they occupy the landfill space for considerable amount of time unless there is a potential for recycling. Such glass wastes in the crushed form have a good potential in the infrastructure industry. Replacement of cement by GP from 30% to 0% by weight of cement in step of 5% and by SCBA from 0% to 30% in step of 5% respectively was adopted. In total, seven different combinations of mixes were studied at two different ages of concrete namely 7 and 28 days. Compressive strength of cubes for various percentage of replacement were investigated and compared with conventional concrete to find out the maximum mix ratio. Flexural strength of concrete for the maximum mix ratio was found out and durability parameters viz., water absorption and sorptivity were studied. From the experimental study, 20% SCBA and 10% GP combination was found to be the maximum mix ratio.

  1. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report B : bond behavior of mild reinforcing steel in HVFA concrete.

    DOT National Transportation Integrated Search

    2012-10-01

    The main objective of this study was to determine the effect on bond performance : of high-volume fly ash (HVFA) concrete. The HVFA concrete test program consisted of : comparing the bond performance of two concrete mix designs with 70% cement : repl...

  2. Effect of boron waste on the properties of mortar and concrete.

    PubMed

    Topçu, Iker Bekir; Boga, Ahmet Raif

    2010-07-01

    Utilization of by-products or waste materials in concrete production are important subjects for sustainable development and industrial ecology concepts. The usages as mineral admixtures or fine aggregates improve the durability properties of concrete and thus increase the economic and environmental advantages for the concrete industry. The effect of clay waste (CW) containing boron on the mechanical properties of concrete was investigated. CW was added in different proportions as cement additive in concrete. The effect of CW on workability and strength of concrete were analysed by fresh and hardened concrete tests. The results obtained were compared with control concrete properties and Turkish standard values. The results showed that the addition of CW had a small effect upon the workability of the concrete but an important effect on the reduction of its strength. It was observed that strength values were quite near to that of control concrete when not more than 10% CW was used in place of cement. In addition to concrete specimens, replacing cement with CW produced mortar specimens, which were investigated for their strength and durability properties. The tests of SO( 4) (2-) and Cl(-) effect as well as freeze-thaw behaviour related to the durability of mortar were performed. Consequently, it can be said that some improvements were obtained in durability properties even if mechanical properties had decreased with increasing CW content.

  3. Exterior building details of Building C, east façade: historic six ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, east façade: historic six light entry double door with three light transom, historic six light door with a one light transom, arch brick lintels and quoins, scored cement plaster finished brick walls; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  4. Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack

    NASA Astrophysics Data System (ADS)

    Kovalcikova, M.; Estokova, A.; Luptakova, A.

    2015-11-01

    The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.

  5. High early strength latex modified concrete overlay.

    DOT National Transportation Integrated Search

    1988-01-01

    This report describes the condition of the first high early strength latex modified concrete (LMC-HE) overlay to be constructed for the Virginia Department of Transportation. The overlay was prepared with type III cement and with more cement and less...

  6. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    EPA Science Inventory

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  7. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    NASA Astrophysics Data System (ADS)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  8. Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements

    PubMed Central

    Ferraris, Chiara; Stutzman, Paul; Peltz, Max; Winpigler, John

    2005-01-01

    External sulfate attack of concrete is a major problem that can appear in regions where concrete is exposed to soil or water containing sulfates, leading to softening and cracking of the concrete. Therefore, it is important that materials selection and proportioning of concrete in susceptible regions be carefully considered to resist sulfate attack. American Society for Testing Materials (ASTM) limits the tricalcium aluminate phase in cements when sulfate exposure is of concern. The hydration products of tricalcium aluminate react with the sulfates resulting in expansion and cracking. While ASTM standard tests are available to determine the susceptibility of cements to sulfate attack, these tests require at least 6 months and often up to a year to perform; a delay that hinders development of new cements. This paper presents a new method for testing cement resistance to sulfate attack that is three to five times faster than the current ASTM tests. Development of the procedure was based upon insights on the degradation process by petrographic examination of sulfate-exposed specimens over time. Also key to the development was the use of smaller samples and tighter environmental control. PMID:27308177

  9. Concrete wear study.

    DOT National Transportation Integrated Search

    1968-06-01

    This report primarily investigates the wear characteristics of concrete using various cement contents and three different sources of aggregates. Compressive strength and dynamic modulus of elasticity data was also obtained to assist in the evaluation...

  10. A review in high early strength concrete and local materials potential

    NASA Astrophysics Data System (ADS)

    Yasin, A. K.; Bayuaji, R.; Susanto, T. E.

    2017-11-01

    High early strength concrete is one of the type in high performance concrete. A high early strength concrete means that the compressive strength of the concrete at the first 24 hours after site-pouring could achieve structural concrete quality (compressive strength > 21 MPa). There are 4 (four) important factors that must be considered in the making process, those factors including: portland cement type, cement content, water to cement ratio, and admixture. In accordance with its high performance, the production cost is estimated to be 25 to 30% higher than conventional concrete. One effort to cut the production cost is to utilize local materials. This paper will also explain about the local materials which were abundantly available, cheap, and located in strategic coast area of East Java Province, that is: Gresik, Tuban and Bojonegoro city. In addition, the application of this study is not limited only to a large building project, but also for a small scale building which has one to three-story. The performance of this concrete was apparently able to achieve the quality of compressive strength of 27 MPa at the age of 24 hours, which qualified enough to support building structurally.

  11. Microsilica modified concrete for bridge deck overlays : construction report.

    DOT National Transportation Integrated Search

    1990-10-01

    The study objective was to see if microsilica concrete (MC) is a viable alternative to the latex modified concrete (LMC) usually used on bridge deck overlays in Oregon. The study addresses MC overlays placed in 1989 on Portland cement concrete (PCC) ...

  12. Accelerated aging of concrete : a literature review

    DOT National Transportation Integrated Search

    2002-02-01

    This report provides a review of the literature on accelerated aging of concrete. It was undertaken, as part of a research project : on predicting the long-term environmental performance of Portland cement concrete (PCC) pavements containing coal fly...

  13. An Experimental Investigation on the Effect of Addition of Ternary Blend on the Mix Design Characteristics of High Strength Concrete using Steel Fibre

    NASA Astrophysics Data System (ADS)

    Sinha, Deepa A., Dr; Verma, A. K., Dr

    2017-08-01

    This paper presents the results of M60 grade of concrete. M60 grade of concrete is achieved by maximum density technique. Concrete is brittle and weak in tension and develops cracks during curing and due to thermal expansion / contraction over a period ot time. Thus the effect of addition of 1% steel fibre is studied. For ages, concrete has been one of the widely used materials for construction. When cement is manufactured, every one ton of cement produces around one ton of carbon dioxide leading to global warming and also as natural resources are finishing, so use of supplementary cementitious material like alccofine and flyash is used as partial replacement of cement is considered. The effect of binary and ternary blend on the strength characteristics is studied. The results indicate that the concrete made with alccofine and flyash generally show excellent fresh and hardened properties. The ternary system that is Portland cement-fly ash-Alccofine concrete was found to increase the strength of concrete when compared to concrete made with Portland cement or even from Portland cement and fly ash.

  14. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China.

    PubMed

    Nie, Qingke; Zhou, Changjun; Shu, Xiang; He, Qiang; Huang, Baoshan

    2014-05-13

    Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment.

  15. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China

    PubMed Central

    Nie, Qingke; Zhou, Changjun; Shu, Xiang; He, Qiang; Huang, Baoshan

    2014-01-01

    Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment. PMID:28788648

  16. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  17. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  18. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  19. The influence of alkalinity of portland cement on the absorption characteristics of superabsorbent polymers (SAP) for use in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Tabares Tamayo, Juan D.

    The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such

  20. Quality control of concrete at the stage of designing its composition and technology

    NASA Astrophysics Data System (ADS)

    Kudyakov, A.; Prischepa, I.; Kiselev, D.; Prischepa, B.

    2016-01-01

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology - hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation of foam concrete mix technological regulations are worked out, in which it is recommended to use additives - hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.

  1. Performance and Characterization of Geopolymer Concrete Reinforced with Short Steel Fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M. M. A. B.; Faris, M. A.; Tahir, M. F. M.; Kadir, A. A.; Sandu, A. V.; Mat Isa, N. A. A.; Corbu, O.

    2017-06-01

    In the recent years, geopolymer concrete are reporting as the greener construction technology compared to conventional concrete that made up of ordinary Portland cement. Geopolymer concrete is an innovative construction material that utilized fly ash as one of waste material in coal combustion industry as a replacement for ordinary Portland cement in concrete. The uses of fly ash could reduce the carbon dioxide emission to the atmosphere, redundant of fly ash waste and costs compared to ordinary Portland cement concrete. However, the plain geopolymer concrete suffers from numerous drawbacks such as brittleness and low durability. Thus, in this study the addition of steel fiber is introduced in plain geopolymer concrete to improve its mechanical properties especially in compressive and flexural strength. Characterization of raw materials also determined by using chemical composition analysis. Short type of steel fiber is added to the mix in weight percent of 1 wt%, 3 wt%, 5 wt% and 7 wt% with fixed molarity of sodium hydroxide of 12M and solid to liquid ratio as 2.0. The addition of steel fiber showed the excellent improvement in the mechanical properties of geopolymer concrete that are determined by various methods available in the literature and compared with each other.

  2. Applicability of Fracture Mechanics Methodology to Cracking and Fracture of Concrete.

    DTIC Science & Technology

    1986-02-01

    Magazine of Concrete Research, Vol. 24. 1972. pp. * 185-196 - 100.0 Chir R. K. and C. M. Sangha. A Study of the Relations Between Time. Strength. Deformation...R. Clifton and E. Anderson, The Fracture Mechanics of Mortars, Cement and Concrete Researach, Vol. 6, 1976. pp. 535-548 195.0 Higgins , D. D. and J. E...Proceedings of a Conference at University of Sheffield, 1976, Cement and Concrete Association. Wexham Springs, 1976. pp. 283-296 196.0 "-’’ Higgins D. D

  3. Surface and microstructural properties of photocatalytic cements for pavement applications.

    DOT National Transportation Integrated Search

    2016-10-01

    Thin concrete inlays incorporating flowable fibrous concrete (FFC) mix designs as well as titanium dioxide (TiO2)- containing photocatalytic cements are a promising pavement preservation solution. These multi-functional inlays offer enhanced construc...

  4. Parameters of Concrete Modified with Glass Meal and Chalcedonite Dust

    NASA Astrophysics Data System (ADS)

    Kotwa, Anna

    2017-10-01

    Additives used for production of concrete mixtures affect the rheological properties and parameters of hardened concrete, including compressive strength, water resistance, durability and shrinkage of hardened concrete. By their application, the use of cement and production costs may be reduced. The scheduled program of laboratory tests included preparation of six batches of concrete mixtures with addition of glass meal and / or chalcedonite dust. Mineral dust is a waste product obtained from crushed aggregate mining, with grain size below 0,063μm. The main ingredient of chalcedonite dust is silica. Glass meal used in the study is a material with very fine grain size, less than 65μm. This particle size is present in 60% - 90% of the sample. Additives were used to replace cement in concrete mixes in an amount of 15% and 25%. The amount of aggregate was left unchanged. The study used Portland cement CEM I 42.5R. Concrete mixes were prepared with a constant rate w / s = 0.4. The aim of the study was to identify the effect of the addition of chalcedonite dust and / or glass meal on the parameters of hardened concrete, i.e. compressive strength, water absorption and capillarity. Additives used in the laboratory tests significantly affect the compressive strength. The largest decrease in compressive strength of concrete samples was recorded for samples with 50% substitutes of cement additives. This decrease is 34.35%. The smallest decrease in compressive strength was noted in concrete with the addition of 15% of chalcedonite dust or 15% glass meal, it amounts to an average of 15%. The study of absorption shows that all concrete with the addition of chalcedonite dust and glass meal gained a percentage weight increase between 2.7 ÷ 3.1% for the test batches. This is a very good result, which is probably due to grout sealing. In capillary action for the test batches, the percentage weight gains of samples ranges from 4.6% to 5.1%. However, the reference concrete obtained

  5. Autogenous accelerated curing of concrete cylinders. Part I, Strength results.

    DOT National Transportation Integrated Search

    1971-01-01

    Forty-eight different concrete mixes were designed to investigate the influence of cement types (II, III, and V), cement contents (450, 550, and 650 lb. per cu. yd.), water-cement ratios (0.4, 0.5, and 0.6), admixtures (accelerator, retarder, and air...

  6. Autogenous accelerated curing of concrete cylinders. Part III, Temperature relationships.

    DOT National Transportation Integrated Search

    1971-01-01

    Forty-eight different concrete mixes were designed to investigate the influence of cement types (II, III, and V), cement contents (450, 550, and 650 lb. per cu. yd.), water cement ratios (0.4, 0.5, and 0.6), admixtures (accelerator, retarder, and air...

  7. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    NASA Astrophysics Data System (ADS)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  8. Effects of portland cement particle size on heat of hydration.

    DOT National Transportation Integrated Search

    2013-12-01

    Following specification harmonization for portland cements, FDOT engineers reported signs of : deterioration in concrete elements due to temperature rise effects. One of the main factors that affect : concrete temperature rise potential is the heat g...

  9. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.

    PubMed

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-04-21

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  10. Experimental Study on Modification of Concrete with Asphalt Admixture

    NASA Astrophysics Data System (ADS)

    Bołtryk, Michał; Małaszkiewicz, Dorota; Pawluczuk, Edyta

    2017-10-01

    Durability of engineering structures made of cement concrete with high compressive strength is a very vital issue, especially when they are exposed to different aggressive environments and dynamic loads. Concrete resistance to weathering actions and chemical attack can be improved by combined chemical and mechanical modification of concrete microstructure. Asphalt admixture in the form of asphalt paste (AP) was used for chemical modification of cement composite microstructure. Concrete structure was formed using special technology of compaction. A stand for vibro-vibropressing with regulated vibrator force and pressing force was developed. The following properties of the modified concrete were tested: compressive strength, water absorption, freeze-thaw resistance, scaling resistance in the presence of de-icing agents, chloride migration, resistance to CO2 and corrosion in aggressive solutions. Corrosion resistance was tested alternately in 1.8% solutions of NH4Cl, MgSO4, (NH2)2CO and CaCl2, which were altered every 7 days; the experiment lasted 9.5 months. Optimum compaction parameters in semi-industrial conditions were determined: ratio between piston stress (Qp ) and external top vibrator force (Po ) in the range 0.4÷-0.5 external top vibrator force 4 kN. High strength concretes with compressive strength fcm = 60÷70 MPa, very low water absorption (<1%) and high resistance to aggressive environments were obtained in this study. AP content was reduced from 10% (previous investigations) to 2-4% of cement mass thanks to the special compaction method. Excellent chloride ion penetration resistance and carbonation resistance of concrete containing AP admixture is due to the asphalt barrier formed in pores of cement hydrates against dioxide and chloride ions. Concrete specimens containing AP 4% c.m. and consolidated by vibro-vibropressing method proved to be practically resistant to highly corrosive environment. Vibro-vibropressing compaction technology of concrete

  11. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage...

  12. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage...

  13. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage...

  14. Inclusion of geopolymers derivate from fly ash and pumice in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Montaño, A. M.; González, C. P.; Castro, D.; Gualdron, G.; Atencio, R.

    2017-12-01

    This paper presents results of a research project related to the development of alkali-activated geopolymers, synthesized from alumina-silicate minerals (fly ash and pumice) which are added to concrete. Alkali sources used in geopolymer synthesis were sodium hydroxide and sodium silicate solution. New materials were structurally characterized by Infra-Red spectroscopy (IR) and X-Ray Diffraction (XRD). Concretes obtained after geopolymers addition as Portland cement substitutes at 10%, 20% and 30%, were mechanically analysed by compression resistance at 7, 14, 28 and 90 drying days. Results were referred to standard (concrete of Portland cement) allows to know cementitious characteristics of geopolymers are lower than those for standard, but it keeps growing at longer drying time than Portland cement. By Electrochemical Impedance Spectroscopy (EIS) it is found that this new material shows high electrical resistance and have been proved as a protection agent against corrosion in reinforced concrete exhibiting anticorrosive properties higher than those showed by the conventional concrete mixture.

  15. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.

  16. Quality control of concrete at the stage of designing its composition and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudyakov, A., E-mail: kudyakow@mail.tomsknet.ru; Prischepa, I., E-mail: ingaprishepa@mail.ru; Kiselev, D.

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology – hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation ofmore » foam concrete mix technological regulations are worked out, in which it is recommended to use additives – hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.« less

  17. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  18. Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2017-04-01

    Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.

  19. Self-compacting concrete with sugarcane bagasse ash – ground blast furnace slag blended cement: fresh properties

    NASA Astrophysics Data System (ADS)

    Le, Duc-Hien; Sheen, Yeong-Nain; Ngoc-Tra Lam, My

    2018-04-01

    In this investigation, major properties in fresh state of self-compacting concrete (SCC) developed from sugarcane bagasse ash and granulated blast furnace slag as supplementary cementitious materials were examined through an experimental work. There were four mix groups (S0, BA10, BA20, and BA30) containing different cement replacing levels; and totally, 12 SCC mixtures and one control mixture were provided for the test. Fresh properties of the proposed SCC were evaluated through measurement of the density, slump, slump-flow, V-funnel test, T500 slump, Box-test, and setting time. The testing results indicated that replacing either SBA and/or BFS to OPC in SCC mixtures led to lower density, lesser flowability, and longer hardening times.

  20. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused by...

  1. 7 CFR 2902.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused by...

  2. Texturing new concrete pavements.

    DOT National Transportation Integrated Search

    1977-01-01

    Several texturing experiments on heavily traveled portland cement concrete pavements in Virginia are described. Included in the experiments were textures imparted by a heavy burlap drag, metal tines (transverse and longitudinal striations), sprinkled...

  3. Review of palm oil fuel ash and ceramic waste in the production of concrete

    NASA Astrophysics Data System (ADS)

    Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar

    2017-11-01

    High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.

  4. Experimental Study on Rise Husk Ash & Fly Ash Based Geo-Polymer Concrete Using M-Sand

    NASA Astrophysics Data System (ADS)

    Nanda Kishore, G.; Gayathri, B.

    2017-08-01

    Serious environmental problems by means of increasing the production of Ordinary Portland cement (OPC), which is conventionally used as the primary binder to produce cement concrete. An attempt has been made to reduce the use of ordinary Portland cement in cement concrete. There is no standard mix design of geo-polymer concrete, an effort has been made to know the physical, chemical properties and optimum mix of geo-polymer concrete mix design. Concrete cubes of 100 x 100 x 100 mm were prepared and cured under steam curing for about 24 hours at temperature range of 40°C to 60°C. Fly ash is replaced partially with rice husk ash at percentage of 10%, 15% and 25%. Sodium hydroxide and sodium silicate are of used as alkaline activators with 5 Molar and 10 Molar NaOH solutions. Natural sand is replaced with manufacture sand. Test results were compared with controlled concrete mix of grade M30. The results shows that as the percentage of rice husk ash and water content increases, compressive strength will be decreases and as molarity of the alkaline solution increases, strength will be increases.

  5. Expansive cements for the manufacture of the concrete protective bandages

    NASA Astrophysics Data System (ADS)

    Yakymechko, Yaroslav; Voloshynets, Vladyslav

    2017-12-01

    One of the promising directions of the use of expansive cements is making the protective bandages for the maintenance of pipelines. Bandages expansive application of the compositions of the pipeline reinforce the damaged area and reduce stress due to compressive stress in the cylindrical area. Such requirements are best suited for expansive compositions obtained from portland cement and modified quicklime. The article presents the results of expansive cements based on quick lime in order to implement protective bandages pipelines.

  6. Industrial waste utilization for foam concrete

    NASA Astrophysics Data System (ADS)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  7. Temperature influence on water transport in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouet, Emeline; Poyet, Stéphane, E-mail: stephane.poyet@cea.fr; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  8. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    PubMed Central

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-01-01

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes. PMID:28788613

  9. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    PubMed

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of k-300 concrete mix for earthquake-resistant Housing infrastructure in indonesia

    NASA Astrophysics Data System (ADS)

    Zulkarnain, Fahrizal

    2018-03-01

    In determining the strength of K-300 concrete mix that is suitable for earthquake-resistant housing infrastructure, it is necessary to research the materials to be used for proper quality and quantity so that the mixture can be directly applied to the resident’s housing, in the quake zone. In the first stage, the examination/sieve analysis of the fine aggregate or sand, and the sieve analysis of the coarse aggregate or gravel will be carried out on the provided sample weighing approximately 40 kilograms. Furthermore, the specific gravity and absorbance of aggregates, the examination of the sludge content of aggregates passing the sieve no. 200, and finally, examination of the weight of the aggregate content. In the second stage, the planned concrete mix by means of the Mix Design K-300 is suitable for use in Indonesia, with implementation steps: Planning of the cement water factor (CWF), Planning of concrete free water (Liters / m3), Planning of cement quantity, Planning of minimum cement content, Planning of adjusted cement water factor, Planning of estimated aggregate composition, Planning of estimated weight of concrete content, Calculation of composition of concrete mixture, Calculation of mixed correction for various water content. Implementation of the above tests also estimates the correction of moisture content and the need for materials of mixture in kilograms for the K-300 mixture, so that the slump inspection result will be achieved in planned 8-12 cm. In the final stage, a compressive strength test of the K-300 experimental mixture is carried out, and subsequently the composition of the K-300 concrete mixture suitable for one sack of cement of 50 kg is obtained for the foundation of the proper dwelling. The composition is consists of use of Cement, Sand, Gravel, and Water.

  11. Contrasting diagenetic histories of concretions vs. host rocks, Lion Mountain Member, Riley formation (upper Cambrian), Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, E.F.

    1988-02-01

    White, elliptical, calcite-cemented concretion nuclei up to 1 m long contrast markedly in color, composition, and diagenetic history from more glauconite-rich concretion rinds and from dark-green glaucarenite host rocks. Concretion nuclei are loosely packed deposits of trilobite carapaces and minor quartz and glauconite that have intergranular volumes of 58%. The nuclei are shell-lag deposits that were cemented by calcite at the sea floor or after burial of a few meters. Concretion rinds, composed of subequal amounts of quartz and compactionally deformed glauconite, have an intergranular volume of only 32% and minor quartz overgrowths that preceded pore-occluding calcite cement. The rindsmore » underwent burial for several million years to tens of millions of years to depths of several hundred meters before they were cemented. The host rock is predominately glauconite with very minor quartz and calcite cement. Strontium isotopic ratios of host-rock calcite cement are variable (0.7084 to 0.7093), but the lowest value suggests precipitation during the Middle Ordovician. In the absence of significant amounts of carbonate cement, the host rock underwent complete dissolution of trilobite carapaces and maximum compaction with total loss of porosity through squashing of glauconite grains. Maximum burial during this stage was completed by the end of Ordovician time.« less

  12. Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash

    PubMed Central

    Alsubari, Belal; Shafigh, Payam; Jumaat, Mohd Zamin

    2015-01-01

    Palm oil fuel ash (POFA) has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC). POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.

  13. CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.

    ERIC Educational Resources Information Center

    Taylor, Mary Lou

    This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…

  14. Effect of Molarity of Sodium Hydroxide and Curing Method on the Compressive Strength of Ternary Blend Geopolymer Concrete

    NASA Astrophysics Data System (ADS)

    Sathish Kumar, V.; Ganesan, N.; Indira, P. V.

    2017-07-01

    Concrete plays a vital role in the development of infrastructure and buildings all over the world. Geopolymer based cement-less concrete is one of the current findings in the construction industry which leads to a green environment. This research paper deals with the results of the use of Fly ash (FA), Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin (MK) as a ternary blend source material in Geopolymer concrete (GPC). The aspects that govern the compressive strength of GPC like the proportion of source material, Molarity of Sodium Hydroxide (NaOH) and Curing methods were investigated. The purpose of this research is to optimise the local waste material and use them effectively as a ternary blend in GPC. Seven combinations of binder were made in this study with replacement of FA with GGBS and MK by 35%, 30%, 25%, 20%, 15%, 10%, 5% and 5%, 10%, 15%, 20%, 25%, 30%, 35% respectively. The molarity of NaOH solution was varied by 12M, 14M and 16M and two types of curing method were adopted, viz. Hot air oven curing and closed steam curing for 24 hours at 60°C (140°F). The samples were kept at ambient temperature till testing. The compressive strength was obtained after 7 days and 28 days for the GPC cubes. The test data reveals that the ternary blend GPC with molarity 14M cured by hot air oven produces the maximum compressive strength. It was also observed that the compressive strength of the oven cured GPC is approximately 10% higher than the steam cured GPC using the ternary blend.

  15. Longitudinal cracking in widened portland cement concrete pavements.

    DOT National Transportation Integrated Search

    2013-02-01

    The Wisconsin Department of Transportation constructed certain concrete pavements with lane widths greater : than the standard 12 feet in order to reduce stress and deflection caused by vehicle tires running near the edge of : the concrete slabs. Man...

  16. Experimental use of fly ash concrete in prefabricated bridge-deck slabs.

    DOT National Transportation Integrated Search

    1987-01-01

    Hydraulic cement concretes with and without fly ash were investigated to assess the suitability of using fly ash in bridge-deck concrete. Eight prefabricated concrete slabs were prepared: four were control and the remaining contained fly ash. They we...

  17. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    NASA Astrophysics Data System (ADS)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  18. Foam concrete of increased strength with the thermomodified peat additives

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

  19. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content.

    PubMed

    Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam

    2017-05-05

    The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Performance of Michigan's concrete barriers.

    DOT National Transportation Integrated Search

    2007-08-01

    Modifications to design standards, material specifications, construction methods, and roadway : maintenance practices are believed to be major contributing causes for the observed premature : deterioration of Michigans Portland cement concrete bri...

  1. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  2. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    NASA Astrophysics Data System (ADS)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  3. Microgravity Investigation of Cement Solidification

    NASA Technical Reports Server (NTRS)

    Neves, Juliana; Radlinska, Aleksandra; Scheetz, Barry

    2017-01-01

    Concrete is the most widely used man-made material in the world, second only to water. The large-scale production of cements contributes to approximately 5% anthropogenic CO2 emission. Microgravity research can lead to more durable and hence more cost-effective material.

  4. Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Kien; Justnes, Harald; SINTEF Building and Infrastructure

    The applicability of a combination of sodium thiocyanate (NaSCN), diethanolamine (DEA) and glycerol (Gly) with small dosages as a ternary hardening accelerating admixture for fly ash blended cement (OPC-FA) was studied. The ternary admixture induced higher early and later age mortar strength at both low (5 °C) and normal (20 °C) temperature. Despite used in lower dosage the ternary admixture led to higher strength of the investigated OPC-FA system than other chemicals (e.g. sodium sulfate). Results obtained from isothermal calorimetry, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) showed that the ternary admixture accelerated the cement hydration and increased the amountmore » of AFm (notably calcium hemicarboaluminate hydrate) in the hydration products. A synergistic effect between the three components of the accelerator on the hydration of OPC-FA system was observed.« less

  5. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    PubMed

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  6. Laboratory fatigue evaluation of continuously fiber-reinforced concrete pavement.

    DOT National Transportation Integrated Search

    2013-09-01

    Portland cement concrete (PCC) is the worlds most versatile construction material. PCC has : been in use in the United States for over 100 years. PCC pavement is generally constructed as : either continually reinforced concrete pavement (CRCP) or ...

  7. Testing guide for implementing concrete paving quality control procedures.

    DOT National Transportation Integrated Search

    2008-03-01

    Construction of portland cement concrete pavements is a complex process. A small fraction of the concrete pavements constructed in the : United States over the last few decades have either failed prematurely or exhibited moderate to severe distress. ...

  8. 0-6717 : investigation of alternative supplementary cementing materials (SCMs) : [project summary].

    DOT National Transportation Integrated Search

    2014-08-01

    In Texas, Class F fly ash is extensively used as a : supplementary cementing material (SCM) : because of its ability to control thermal cracking : in mass concrete and to mitigate deleterious : expansions in concrete from alkali-silica reaction : (AS...

  9. The effect of various pozzolanic additives on the concrete strength index

    NASA Astrophysics Data System (ADS)

    Vitola, L.; Sahmenko, G.; Erdmane, D.; Bumanis, G.; Bajare, D.

    2017-10-01

    The concrete industry is searching continuously for new effective mineral additives to improve the concrete properties. Replacing cement with the pozzolanic additives in most cases has resulted not only in positive impact on the environment but also has improved strength and durability of the concrete. Effective pozzolanic additives can be obtained from natural resources such as volcanic ashes, kaolin and other sediments as well as from different production industries that create various by-products with high pozzolanic reactivity. Current research deals with effectiveness evaluation of various mineral additives/wastes, such as coal combustion bottom ash, barley bottom ash, waste glass and metakaolin containing waste as well as calcined illite clays as supplementary cementitious materials, to be used in concrete production as partial cement replacement. Most of the examined materials are used as waste stream materials with potential reactive effect on the concrete. Milling time and fineness of the tested supplementary material has been evaluated and effectiveness was detected. Results indicate that fineness of the tested materials has crucial effect on the concrete compressive strength index. Not in all cases the prolonged milling time can increase fineness and reactivity of the supplementary materials; however the optimal milling time and fineness of the pozolanic additives increased the strength index of concrete up to 1.16 comparing to reference, even in cases when cement was substituted by 20 w%.

  10. Optimizing cementious content in concrete mixtures for required performance.

    DOT National Transportation Integrated Search

    2012-01-01

    "This research investigated the effects of changing the cementitious content required at a given water-to-cement ratio (w/c) on workability, strength, and durability of a concrete mixture. : An experimental program was conducted in which 64 concrete ...

  11. Microsilica modified concrete for bridge deck overlays : first-year interim report.

    DOT National Transportation Integrated Search

    1991-11-01

    The study objective was to see if microsilica concrete (MC) is a viable alternative to the latex modified concrete (LMC) usually used on bridge deck overlays in Oregon. The study addresses MC overlays placed in 1989 on 7 portland cement concrete (PCC...

  12. Assessment of high early strength limestone blended cement for next generation transportation structures : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    This research on Type IL cements for high early strength concretes demonstrated that Type IL cements satisfying AASHTO M 240 specifications may be used in place of Type I/II cements which satisfy AASHTO M 85 specifications for construction of transpo...

  13. Using of borosilicate glass waste as a cement additive

    NASA Astrophysics Data System (ADS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  14. A Concrete Mainstreaming Experience: Cementing Relations through Art.

    ERIC Educational Resources Information Center

    Heller, Jeffry

    1983-01-01

    Two artists skilled in creating concrete sculpture worked with special and regular education elementary students in planning and building a concrete sculpture of a jungle. The shared experience not only resulted in a functional piece of art but also in improved staff and student relations. (CL)

  15. Carbonation-induced weathering effect on cesium retention of cement paste

    NASA Astrophysics Data System (ADS)

    Park, S. M.; Jang, J. G.

    2018-07-01

    Carbonation is inevitable for cement and concrete in repositories over an extended period of time. This study investigated the carbonation-induced weathering effect on cesium retention of cement. Cement paste samples were exposed to accelerated carbonation for different durations to simulate the extent of weathering among samples. The extent of carbonation in cement was characterized by XRD, TG and NMR spectroscopy, while the retention capacity for cesium was investigated by zeta potential measurement and batch adsorption tests. Though carbonation led to decalcification from the binder gel, it negatively charged the surface of cement hydrates and enhanced their cesium adsorption capacity.

  16. Recovery of MSWI and soil washing residues as concrete aggregates.

    PubMed

    Sorlini, Sabrina; Abbà, Alessandro; Collivignarelli, Carlo

    2011-02-01

    The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production. Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes. Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m(3) of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Design and construction guidelines for thermally insulated concrete pavements.

    DOT National Transportation Integrated Search

    2013-01-01

    The report describes the construction and design of composite pavements as a viable design strategy to use an : asphalt concrete (AC) wearing course as the insulating material and a Portland cement concrete (PCC) structural : layer as the load-carryi...

  18. Developing Low-Clinker Ternary Blends for Indian Cement Industry

    NASA Astrophysics Data System (ADS)

    Pal, Aritra

    2018-05-01

    In today's scenario cement-concrete has become the backbone of infrastructure development. The use of concrete is increasing day by day and so does cement. One of the major concerns is that the cement manufacturing contributes 7% of total man-made CO2 emission in the environment. At the same time India being a developing country secured the second position in cement production. On the other hand solid waste management is one of the growing problems in India. As we are one of the major contributors in this situation so, the time has come to think about the sustainable alternatives. From various researches it has been observed that the low clinker cement can be suitable option. In the present paper we have tried to develop a low clinker ternary blend for Indian cement industry using the concept of synergetic behavior of fly ash-limestone reaction and formation of more stable monocarboaluminate hydrate and hemicarboaluminate hydrate. 30% fly ash and 15% limestone and 5% gypsum have been used as supplementary cementing material for replacing 50% clinker. The mechanical properties like, compressive strength, have been studied for the fly ash limestone ternary blends cements and the results have been compared with the other controlled blends and ternary blends. The effect of intergrinding of constituent materials has shown a comparable properties which can be used for various structural application. The effect of dolomitic limestone has also been studied in fly ash limestone ternary blends and the result shows the relation between compressive strength and dolomite content is inversely proportional.

  19. Reuse of thermosetting plastic waste for lightweight concrete.

    PubMed

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  20. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  1. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  2. Iowa task report : US 18 concrete overlay construction under traffic.

    DOT National Transportation Integrated Search

    2012-05-01

    The National Concrete Pavement Technology Center, Iowa Department of Transportation, and Federal Highway Administration set out to demonstrate and document the design and construction of portland cement concrete (PCC) overlays on two-lane roadways wh...

  3. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    NASA Astrophysics Data System (ADS)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  4. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  5. Research Of The Influence Of Reftinskii SDPP’S Ash On The Processes Of Cement Stone’S Structure Forming

    NASA Astrophysics Data System (ADS)

    Zimakova, G. A.; Solonina, V. A.; Zelig, M. P.

    2017-01-01

    The article describes the experimental research of cement stone. Cement stone forming involves highly dispersive mineral additive - ground ash. It is stated that the substitution of some part of cement with activated ash leaves cement strength high. This is possible due to the activity of ash in structure forming processes. Activation of ash provides the increase in its puzzolanic activity, complete hydration processes. it is stated that ash grinding leads to a selective crystallization hydrated neoformations. Their morthology is different on outer and inner surfaces of ash spheres. The usage of ash can provide cement economy on condition that rheological characteristics of concrete stay constant. Besides, the usage of ash will improve physical and mechanic characteristics of cement stone and concrete.

  6. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review.

    PubMed

    Grengg, Cyrill; Mittermayr, Florian; Ukrainczyk, Neven; Koraimann, Günther; Kienesberger, Sabine; Dietzel, Martin

    2018-05-01

    Microbial induced concrete corrosion (MICC) is recognized as one of the main degradation mechanisms of subsurface infrastructure worldwide, raising the demand for sustainable construction materials in corrosive environments. This review aims to summarize the key research progress acquired during the last decade regarding the understanding of MICC reaction mechanisms and the development of durable materials from an interdisciplinary perspective. Special focus was laid on aspects governing concrete - micoorganisms interaction since being the central process steering biogenic acid corrosion. The insufficient knowledge regarding the latter is proposed as a central reason for insufficient progress in tailored material development for aggressive wastewater systems. To date no cement-based material exists, suitable to withstand the aggressive conditions related to MICC over its entire service life. Research is in particular needed on the impact of physiochemical material parameters on microbial community structure, growth characteristics and limitations within individual concrete speciation. Herein an interdisciplinary approach is presented by combining results from material sciences, microbiology, mineralogy and hydrochemistry to stimulate the development of novel and sustainable materials and mitigation strategies for MICC. For instance, the application of antibacteriostatic agents is introduced as an effective instrument to limit microbial growth on concrete surfaces in aggressive sewer environments. Additionally, geopolymer concretes are introduced as highly resistent in acid environments, thus representing a possible green alternative to conventional cement-based construction materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Autogenous accelerated curing of concrete cylinders. Part IV, Moisture relationships.

    DOT National Transportation Integrated Search

    1971-01-01

    Eighteen different concrete mixtures were proportioned to investigate the influence of cement types (II and III), water cement ratios (0.4, 0.5, and 0.6), and admixtures (accelerator, retarder, and air entraining agent) on the moisture changes during...

  8. Exterior building details of Building B, west façade: two paintedwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building B, west façade: two painted-wood single-light casements over two-light casements with concrete sill and arch brick lintel, over infilled brick patch with arch brick lintel, brick lintel above windows and brick infilled oval; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  9. Chemical vs. Physical Acceleration of Cement Hydration

    PubMed Central

    Bentz, Dale P.; Zunino, Franco; Lootens, Didier

    2016-01-01

    Cold weather concreting often requires the use of chemical accelerators to speed up the hydration reactions of the cement, so that setting and early-age strength development will occur in a timely manner. While calcium chloride (dihydrate – CaCl2·2H2O) is the most commonly used chemical accelerator, recent research using fine limestone powders has indicated their high proficiency for physically accelerating early-age hydration and reducing setting times. This paper presents a comparative study of the efficiency of these two approaches in accelerating hydration (as assessed via isothermal calorimetry), reducing setting times (Vicat needle), and increasing early-age mortar cube strength (1 d and 7 d). Both the CaCl2 and the fine limestone powder are used to replace a portion of the finest sand in the mortar mixtures, while keeping both the water-to-cement ratio and volume fractions of water and cement constant. Studies are conducted at 73.4 °F (23°C) and 50 °F (10 °C), so that activation energies can be estimated for the hydration and setting processes. Because the mechanisms of acceleration of the CaCl2 and limestone powder are different, a hybrid mixture with 1 % CaCl2 and 20 % limestone powder (by mass of cement) is also investigated. Both technologies are found to be viable options for reducing setting times and increasing early-age strengths, and it is hoped that concrete producers and contractors will consider the addition of fine limestone powder to their toolbox of techniques for assuring performance in cold weather and other concreting conditions where acceleration may be needed. PMID:28077884

  10. Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite

    NASA Astrophysics Data System (ADS)

    Joseph, Aswin K.; Anand, K. B.

    2018-02-01

    This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.

  11. The mechanical and physical properties of concrete containing polystyrene beads as aggregate and palm oil fuel ash as cement replacement material

    NASA Astrophysics Data System (ADS)

    Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah

    2017-10-01

    One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.

  12. Alternatives to type II cement : final report.

    DOT National Transportation Integrated Search

    1978-01-01

    Concrete mixtures incorporating fly ash were investigated as possible alternatives to mixtures utilizing Type II cements. The mixture characteristics considered were strength, resistance to freezing and thawing and sulfates, heat of hydration, and vo...

  13. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  14. Advanced Numerical Model for Irradiated Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorla, Alain B.

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be appliedmore » to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If

  15. Sustainable concretes for transportation infrastructure.

    DOT National Transportation Integrated Search

    2010-07-01

    performance in concrete for structural and transportation applications. Based on the challenges associated with coal ash (including SDA) and the economic costs linked to cement production, this research seeks to develop an environmentally friendly an...

  16. Field Performance Of Concrete Admixtures

    DOT National Transportation Integrated Search

    1998-06-30

    This project investigated compatibility problems involving two concrete admixtures from W.R. Grace Products and Dacotah portland cement. The problems experienced by the South Dakota Department of Transportation (SDDOT) were described as rapid slump l...

  17. The Effect of Mineral Powders Derived From Industrial Wastes on Selected Mechanical Properties of Concrete

    NASA Astrophysics Data System (ADS)

    Galińska, Anna; Czarnecki, Sławomir

    2017-10-01

    In recent years, concrete has been the most popular construction material. The main component of the concrete is cement. However, its production and transport causes significant emissions of CO2. Reports in the literature show that many laboratories are attempting to modify the composition of the concrete using various additives. These attempts are primarily designed to eliminate parts of cement. The greater part of the cement will be replaced with the selected additive, the more significant is the economic and ecological effect. Most attempts are related to the replacement of the selected additive in an amount of from 10 to 30% by weight of cement. Mineral powders, which are waste material producing crushed aggregate, are increasingly used for this purpose. Management of the waste carries significant cost related to their storage and disposal. With this in mind, the aim of this study was to evaluate the effect of mineral powders derived from industrial wastes on selected mechanical properties of concrete. In particular, the aim was to determine the effect of quartz and quartz-feldspar powders. For this purpose, 40, 50, 60% by weight of the cement was replaced by the selected powders. The results obtained were analysed and compared with previous attempts to replace the selected additive in an amount of from 10 to 30% by weight of cement.

  18. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    PubMed

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings. © The Author(s) 2016.

  19. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint.

    PubMed

    Schaefer, Carolyn E; Kupwade-Patil, Kunal; Ortega, Michael; Soriano, Carmen; Büyüköztürk, Oral; White, Anne E; Short, Michael P

    2018-01-01

    Concrete production contributes heavily to greenhouse gas emissions, thus a need exists for the development of durable and sustainable concrete with a lower carbon footprint. This can be achieved when cement is partially replaced with another material, such as waste plastic, though normally with a tradeoff in compressive strength. This study discusses progress toward a high/medium strength concrete with a dense, cementitious matrix that contains an irradiated plastic additive, recovering the compressive strength while displacing concrete with waste materials to reduce greenhouse gas generation. Compressive strength tests showed that the addition of high dose (100kGy) irradiated plastic in multiple concretes resulted in increased compressive strength as compared to samples containing regular, non-irradiated plastic. This suggests that irradiating plastic at a high dose is a viable potential solution for regaining some of the strength that is lost when plastic is added to cement paste. X-ray Diffraction (XRD), Backscattered Electron Microscopy (BSE), and X-ray microtomography explain the mechanisms for strength retention when using irradiated plastic as a filler for cement paste. By partially replacing Portland cement with a recycled waste plastic, this design may have a potential to contribute to reduced carbon emissions when scaled to the level of mass concrete production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparison of Hexavalent Chromium Leaching Levels of Zeoliteand Slag-based Concretes

    NASA Astrophysics Data System (ADS)

    Oravec, Jozef; Eštoková, Adriana

    2017-06-01

    In this experiment, the reference concrete samples containing Portland cement as binder and the concrete samples with the addition of ground granulated blast furnace slag (85% and 95%, respectively as replacement of Portland cement) and other samples containing ground zeolite (8% and 13%, respectively as replacement of Portland cement) were analyzed regarding the leachability of chromium. The prepared concrete samples were subjected to long-term leaching test for 300 days in three different leaching agents (distilled water, rainwater and Britton-Robinson buffer). Subsequently, the concentration of hexavalent chromium in the various leachates spectrophotometrically was measured. The leaching parameters as values of the pH and the conductivity were also studied. This experiment clearly shows the need for the regulation and control of the waste addition to the construction materials and the need for long-term study in relation to the leaching of heavy metals into the environment.

  1. Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties.

    PubMed

    Akhtar, Ali; Sarmah, Ajit K

    2018-03-01

    In this study, biochar, a carbonaceous solid material produced from three different waste sources (poultry litter, rice husk and pulp and paper mill sludge) was utilized to replace cement content up to 1% of total volume and the effect of individual biochar mixed with cement on the mechanical properties of concrete was investigated through different characterization techniques. A total of 168 samples were prepared for mechanical testing of biochar added concrete composites. The results showed that pulp and paper mill sludge biochar at 0.1% replacement of total volume resulted in compressive strength close to the control specimen than the rest of the biochar added composites. However, rice husk biochar at 0.1% slightly improved the splitting tensile strength with pulp and papermill sludge biochar produced comparable values. Biochar significantly improved the flexural strength of concrete in which poultry litter and rice husk biochar at 0.1% produced optimum results with 20% increment than control specimens. Based on the findings, we conclude that biochar has the potential to improve the concrete properties while replacing the cement in minor fractions in conventional concrete applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.

    2013-12-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.

  3. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    NASA Astrophysics Data System (ADS)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  4. Fast Setting Cement - Literature Survey

    DTIC Science & Technology

    1973-01-01

    materials tested that did not meet the requirements were Portland c~ment, Lumnite cement, Por-rock, Mirament, Speed Crete, Floc-roc, Sika accelerators...Sika’Chemical Corp., Data sheets on Sigunit and other Sika quick-setting. imaterials. (F) Simeonov, Bozhinov, et al, "Acceleration of Hardening of Concrete

  5. The effects of combined supplementary cementitious materials on physical properties of Kansas concrete pavements.

    DOT National Transportation Integrated Search

    2013-12-01

    This study evaluated the effects of combining varying proportions of slag cement and Class C fly ash : with Type I/II cement in concrete pavement. Three different ternary cementitious material combinations : containing slag cement and Class C fly ash...

  6. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  7. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  8. Rapid test methods for the evaluation of concrete properties.

    DOT National Transportation Integrated Search

    1982-01-01

    The objective of the project was to place a CERL/Kelly-Vail testing unit and a microwave oven in the field to perform tests of plastic concrete on construction projects. : The CERL/K-V tests were to determine water and cement content of the concrete ...

  9. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers

    PubMed Central

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F.

    2016-01-01

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP’s effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production. PMID:28787905

  10. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers.

    PubMed

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F

    2016-02-08

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.

  11. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  12. Pilot project for maximum heat of mass concrete : [research summary].

    DOT National Transportation Integrated Search

    2013-05-01

    Hardening cement releases heat, and because concrete is a thermal insulator, heat near the surface dissipates into its surroundings more quickly than heat deeper in the mass. Because concrete contracts as it cools, tension can build between surface a...

  13. Tremie Concrete for Bridge Piers and Other Massive Underwater Placements

    DOT National Transportation Integrated Search

    1981-09-01

    This study reviewed the placement of mass concrete under water using a tremie. Areas investigated included (a) Mixture design of tremie concrete including the use of pozzolanic replacement of portions of the cement; (b) Flow patterns and flow related...

  14. Evaluation of consolidation problems in thicker Portland cement concrete pavements

    DOT National Transportation Integrated Search

    2003-08-01

    Minimizing the amount of entrapped air in concrete is necessary to produce quality concrete with a longer pavement performance life, lower maintenance costs and fewer delays to the roadway users. Good quality concrete with low entrapped air content w...

  15. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  16. High velocity penetration into fibre-reinforced concrete materials - protection of buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.F.; Watson, A.J.; Armstrong, P.J.

    1983-05-01

    Fibre reinforced concrete suitable for spraying onto existing structures is being examined to assess its resistance to penetration by 7.62mm diameter armour piercing projectiles. A major test programme is being carried out to examine the influence of aggregate type and fibre type. For each aggregate/fibre combination a statistical method is being used to plan test series which will lead to optimization of the concrete in terms of water/cement ratio, fibre content and aggregate/cement ratio. The minimum thickness of optimized concretes to resist penetration by the projectile and minimise spall and scabbing, will be determined. The mechanics of the impact andmore » penetration event are being studied and a possible method of deflecting the projectile within the concrete is suggested.« less

  17. Cyclic behavior of self-consolidated concrete.

    DOT National Transportation Integrated Search

    2014-08-01

    This reports highlights on the production of Self-Consolidating concrete using local materials from Las Vegas, Nevada. 4 SCC : mixtures were worked on with 2 different levels of FA replacement and the inclusion of superplasticizers, ADVA 195 and V-MA...

  18. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  19. Physical-durable performance of concrete incorporating high loss on ignition-fly ash

    NASA Astrophysics Data System (ADS)

    Huynh, Trong-Phuoc; Ngo, Si-Huy; Hwang, Chao-Lung

    2018-04-01

    This study investigates the feasibility of using raw fly ash with a high loss on ignition in concrete. The fly ash-free concrete samples were prepared with different water-to-binder (w/b) ratios of 0.35, 0.40, and 0.45, whereas the fly ash concrete samples were prepared with a constant w/b of 0.40 and with various fly ash contents (10%, 20%, and 30%) as a cement substitution. The physical properties and durability performance of the concretes were evaluated through fresh concrete properties, compressive strength, strength efficiency of cement, ultrasonic pulse velocity, and resistance to sulfate attack. Test results show that the w/b ratio affected the concrete properties significantly. The incorporation of fly ash increased the workability and reduced the unit weight of fresh concrete. In addition, the fly ash concrete samples containing up to 20% fly ash exhibited an improved strength at long-term ages. Further, all of the fly ash concrete samples showed a good durability performance with ultrasonic pulse velocity value of greater than 4100 m/s and a comparable sulfate resistance to the no-fly ash concrete.

  20. Evaluation of mix designs and test procedures for pervious concrete.

    DOT National Transportation Integrated Search

    2014-10-01

    Pervious concrete is mixture of cement, aggregate, and water that provide a level of porosity which allows : water to percolate into the sub-grade. It differs from the conventional concrete since it usually contains a : smaller amount of fine aggrega...

  1. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  2. Optimum mixture proportions for concretes containing fly ash and silica fume.

    DOT National Transportation Integrated Search

    1991-01-01

    Concretes with equal water/cement ratios and equal paste volumes of various combinations of cement, fly ash, and silica fume were tested to establish parameters for strength and chloride permeability. Comparative specimens with Type II and Type III c...

  3. Study on the durability of concrete using granulated blast furnace slag as fine aggregate

    NASA Astrophysics Data System (ADS)

    Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan

    2018-03-01

    In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.

  4. Impedance methodology: A new way to characterize the setting reaction of dental cements.

    PubMed

    Villat, Cyril; Tran, Xuan-Vinh; Tran, V X; Pradelle-Plasse, Nelly; Ponthiaux, Pierre; Wenger, François; Grosgogeat, Brigitte; Colon, Pierre

    2010-12-01

    Impedance spectroscopy is a non-destructive, quantitative method, commonly used nowadays for industrial research on cement and concrete. The aim of this study is to investigate the interest of impedance spectroscopy in the characterization of setting process of dental cements. Two types of dental cements are used in this experiment: a new Calcium Silicate cement Biodentine™ (Septodont, Saint Maur-des Fossés, France) and a glass ionomer cement resin modified or not (Fuji II(®) LC Improved Capsules and Fuji IX(®) GP Fast set Capsules, GC Corp., Tokyo, Japan). The conductivity of the dental cements was determined by impedance spectroscopy measurements carried out on dental cement samples immersed in a 0.1M potassium chloride solution (KCl) in a "like-permeation" cell connected to a potentiostat and a Frequency Response Analyzer. The temperature of the solution is 37°C. From the moment of mixing of powder and liquid, the experiments lasted 2 weeks. The results obtained for each material are relevant of the setting process. For GIC, impedance values are stabilized after 5 days while at least 14 days are necessary for the calcium silicate based cement. In accordance with the literature regarding studies of cements and concrete, impedance spectroscopy can characterize ion mobility, porosity and hardening process of dental hydrogel materials. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Fibre Concrete 2017

    NASA Astrophysics Data System (ADS)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  6. Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane

    NASA Astrophysics Data System (ADS)

    Bede, Andrea; Ardelean, Ioan

    2017-12-01

    Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.

  7. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides

    PubMed Central

    Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-01-01

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)2 is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates. PMID:28788204

  8. Deteriorated Concrete from Liner of WIPP Waste Shaft

    DTIC Science & Technology

    1992-06-01

    for US Department of Energy. Bensted, J. 1989. "Novel Cements - Sorel and Related Chemical Cements," il Cemento , Vol 86, No. 4, pp 217-228. Ben-Yair, M...Waste Isolation Pilot Plant. Massazza, F. 1985. "Concrete Resistance to Sea Water and Marine Environment," il Cemento , Vol 82, No. 1, pp 3-26. Mather

  9. Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber

    NASA Astrophysics Data System (ADS)

    Taner Yildirim, Salih; Pelin Duygun, Nur

    2017-10-01

    Solid wastes are important environmental problem all over the World. Consumption of the plastic solid waste covers big portion within the total solid waste. Although a numerous plastic material is subjected to the recycling process, it is not easy to be destroyed by nature. One of the recommended way to prevent is to utilize as an aggregate in cement-based material. There are many researches on use of recycling rubber in concrete. However, studies on recycling of waste electrical cable rubber (WECR) in concrete is insufficient although there are many research on waste tyre rubbers in concrete. In this study, fine aggregate was replaced with WECR which were 5%, 10%, and 15 % of the total aggregate volume in the concrete and researched workability, unit weight, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, and abrasion resistance of concrete. As a result of experimental studies, increase of WECR amount in concrete increases workability due to lack of adherence between cement paste and WECR, and hydrophobic structure of WECR while it influences negatively mechanical properties of concrete. It is possible to use WECR in concrete taking into account the reduction in mechanical properties.

  10. Laboratory Manual (For Concrete Instruction Course); Instructor's Guide, Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This laboratory manual, prepared for a 2-year program in junior colleges and technical institutes, is designed to accompany the instructional materials to train persons for employment as technicians in the cement and concrete industries. Included are 16 laboratory assignments for each of the following: (1) Principles of Concrete, (2) Concrete in…

  11. A Review of the Mechanical Properties of Concrete Containing Biofillers

    NASA Astrophysics Data System (ADS)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.

    2016-11-01

    Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.

  12. Studies on Punching Shear Resistance of Two Way Slab Specimens with Partial Replacement of Cement by GGBS with Different Edge Conditions

    NASA Astrophysics Data System (ADS)

    Nemani, Ravi Dakshina Murthy; Rao, M. V. S.; Grandhe, Veera Venkata Satya Naranyana

    2016-09-01

    The present work is an effort to quantify the punching shear load resistance effect on two way simply supported slab specimens with replacement of cement by Ground Granulated Blast Furnace Slag (GGBS) with different edge conditions at various replacement levels and evaluate its efficiency. GGBS replacement has emerged as a major alternative to conventional concrete and has rapidly drawn the concrete industry attention due to its cement savings, cost savings, environmental and socio-economic benefits. The two way slab specimens were subjected to punching shear load by in house fabricated apparatus. The slab specimens were cast using M30 grade concrete with HYSD bars. The cement was partially replaced with GGBS at different percentages i.e., 0 to 30 % at regular intervals of 10 %. The test results indicate that the two way slab specimens with partial replacement of cement by GGBS exhibit high resistance against punching shear when compared with conventional concretes slab specimens.

  13. Evaluate the use of reclaimed concrete aggregate in french drain applications.

    DOT National Transportation Integrated Search

    2014-02-01

    Recycled concrete aggregate (RCA) is often used as a replacement of virgin aggregate in road : foundations (base course), embankments, hot-mix asphalt, and Portland cement concrete; however, the : use of RCA in exfiltration drainage systems, such as ...

  14. Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin

    NASA Astrophysics Data System (ADS)

    Shahidan, Shahiron; Tayeh, Bassam A.; Jamaludin, A. A.; Bahari, N. A. A. S.; Mohd, S. S.; Zuki Ali, N.; Khalid, F. S.

    2017-11-01

    The development of concrete technology shows a variety of admixtures in concrete to produce special concrete. This includes the production of self-compacting concrete which is able to fill up all spaces, take formwork shapes and pass through congested reinforcement bars without vibrating or needing any external energy. In this study, the main objective is to compare the physical and mechanical properties of self-compacting concrete containing metakaolin with normal concrete. Four types of samples were produced to study the effect of metakaolin towards the physical and mechanical properties of self-compacting concrete where 0%, 5%, 10% and 15% of metakaolin were used as cement replacement. The physical properties were investigated using slump test for normal concrete and slump flow test for self-compacting concrete. The mechanical properties were tested for compressive strength and tensile strength. The findings of this study show that the inclusion of metakaolin as cement replacement can increase both compressive and tensile strength compared to normal concrete. The highest compressive strength was found in self-compacting concrete with 15% metakaolin replacement at 53.3 MPa while self-compacting concrete with 10% metakaolin replacement showed the highest tensile strength at 3.6 MPa. On top of that, the finishing or concrete surface of both cube and cylinder samples made of self-compacting concrete produced a smooth surface with the appearance of less honeycombs compared to normal concrete.

  15. High-volume fly ash concrete.

    DOT National Transportation Integrated Search

    2013-06-01

    The objective of the proposed study is to design, test, and evaluate high-volume fly ash concrete mixtures. Traditional specifications : limit the amount of fly ash to 40% or less cement replacement. This program attempts to increase the ash content ...

  16. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  17. Aggregate assesment and durability evaluation of optimized graded concrete in the state of Oklahoma

    NASA Astrophysics Data System (ADS)

    Ghaeezadeh, Ashkan

    This research is a part of a larger project that emphasizes on creating a more scientific approach to designing concrete mixtures for concrete pavements that use less cement and more aggregate which is called optimized graded concrete. The most challenging obstacle in optimized mixtures is reaching enough workability so that one doesn't have to add more cement or super-plasticizer to reach the desired level of flowability. Aggregate gradation and characteristics have found to be very important when it comes to the workabaility of optimized graded concrete. In this research a new automated method of aggregate assessment was used to compare the shape and the surface of different aggregates as well as their influence on the concrete flowability. At the end, the performance of optimized graded concrete against drying shrinkage and freezing and thawing condition were investigated.

  18. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  19. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  20. Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.

    DOT National Transportation Integrated Search

    1993-06-01

    Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...

  1. Microsilica modified concrete for bridge deck overlays : second-year interim report.

    DOT National Transportation Integrated Search

    1994-10-01

    This report summarizes the performance of microsilica concrete (MC) overlays on seven distressed portland cement concrete bridge decks at three sites in Oregon. This report emphasizes the overlays' condition after two, or in some cases, three years o...

  2. Effect of portland cement (current ASTM C150/AASHTO M85) with limestone and process addition (ASTM C465/AASHTO M327) on the performance of concrete for pavement and bridge decks.

    DOT National Transportation Integrated Search

    2014-02-01

    The Illinois Department of Transportation (IDOT) is making several changes to concrete mix designs, using revisions to : cement specification ASTM C150/AASHTO M85 and ASTM C465/AASHTO M327. These proposed revisions will enable the : use of more susta...

  3. Operational features of decorative concrete

    NASA Astrophysics Data System (ADS)

    Bazhenova, Olga; Kotelnikov, Maxim

    2018-03-01

    This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.

  4. A probabilistic mechanical model for prediction of aggregates’ size distribution effect on concrete compressive strength

    NASA Astrophysics Data System (ADS)

    Miled, Karim; Limam, Oualid; Sab, Karam

    2012-06-01

    To predict aggregates' size distribution effect on the concrete compressive strength, a probabilistic mechanical model is proposed. Within this model, a Voronoi tessellation of a set of non-overlapping and rigid spherical aggregates is used to describe the concrete microstructure. Moreover, aggregates' diameters are defined as statistical variables and their size distribution function is identified to the experimental sieve curve. Then, an inter-aggregate failure criterion is proposed to describe the compressive-shear crushing of the hardened cement paste when concrete is subjected to uniaxial compression. Using a homogenization approach based on statistical homogenization and on geometrical simplifications, an analytical formula predicting the concrete compressive strength is obtained. This formula highlights the effects of cement paste strength and aggregates' size distribution and volume fraction on the concrete compressive strength. According to the proposed model, increasing the concrete strength for the same cement paste and the same aggregates' volume fraction is obtained by decreasing both aggregates' maximum size and the percentage of coarse aggregates. Finally, the validity of the model has been discussed through a comparison with experimental results (15 concrete compressive strengths ranging between 46 and 106 MPa) taken from literature and showing a good agreement with the model predictions.

  5. Substantial global carbon uptake by cement carbonation

    NASA Astrophysics Data System (ADS)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  6. Toxicological evaluation of the effects of waste-to-energy ash-concrete on two marine species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, K.L.; Nelson, W.G.; Curley, J.L.

    1993-10-01

    The toxicological effects of waste-to-energy ash-concrete on survivorship, growth, and fecundity (end-point parameters) of Mysidopsis bahia and on survivorship and growth of Menidia beryllina were evaluated with the 7-d static-renewal toxicity test. Leachate and elutriate solutions were prepared from experimental ash-concrete test cylinders constructed from concrete with additions of either bottom ash (mix BA), mixed bottom ash and scrubber residue, or mixed bottom ash and fly ash (60:40%, mix BA:FA). Control experiments with concrete (without ash) and pH (7-9.5) were conducted to assess any toxic effects of the stabilization process. pH did not affect end-point parameters of Mysidopsis bahia ormore » Menidia beryllina. However, the 100% elutriate solution made from concrete reduced survivorship of Mysidopsis bahia. For experiments with ash-concrete test cylinders with the BA mixture, 10-d leachate solution reduced survivorship of Mysidopsis bahia and the 100% elutriate solutions reduced survivorship of Mysidopsis bahia and Manidia beryllina. With the BA:SR mixture, the 100 and 50% elutriate solutions reduced survivorship of Menidia beryllina. The BA:FA 10- and 5-d leachate solutions and the 100, 50, and 25% elutriate solutions reduced survivorship of Menidia beryllina. The BA:FA 10- and 5-d leachate solutions and the 100, 50, 25% elutriate solutions reduced survivorship of Mysidopsis bahia.« less

  7. Long-term strength properties of HVFA concretes

    NASA Astrophysics Data System (ADS)

    Špak, M.; Bašková, R.

    2015-01-01

    Fly ash from coal burning is used as active addition for concrete in Middle-Europe region for several decades. The intensity of its utilization increases still. In the role of supplementary cement addition it serves as binder, whereby it helps to reduce final price of concrete as well as improves both the rheological properties of fresh concrete and several characteristics of hardened concrete. Fly ash presents the co-product of energetic industry. Its production increases together with growth of energy consumption. These factors bring the opportunity and requirement of production of concretes with high volume of fly ash based addition. Thus, significant economic, environmental, technological and technical benefits can be achieved by using of high amount of fly ash for concrete production.

  8. Study on performance of concrete with over-burnt bricks aggregates and micro-silica admixture

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Sathyan, Dhanya; Mini, K. M.

    2016-09-01

    Concrete is made by mixing cement, sand, aggregates and water in required proportion, where aggregates occupy the major volume. Addition of aggregates in concrete improves properties of concrete. With the natural resources depleting rapidly, limiting the use of natural resources and enhancing the use of waste materials is very important for sustainable development. Over-burnt bricks are a waste material which cannot be used in construction directly because of their irregular shape and dark colour. Use of over-burnt bricks helps to preserve natural aggregate source. The present study focuses on the effects of microsilica at various percentages as a partial cement replacement in concrete with over-burnt bricks as coarse aggregates. The mechanical properties of hardened concrete such as splitting tensile strength, flexural strength and compressive strength are studied and analyzed.

  9. Water bath accelerated curing of concrete.

    DOT National Transportation Integrated Search

    1970-01-01

    Water bath methods for accelerating the strength development of portland cement concrete were investigated in a two phase study as follows. Phase I - Participation in a cooperative accelerated strength testing program sponsored by the American Societ...

  10. 100 years of concrete pavements in Iowa : final report, March 2009.

    DOT National Transportation Integrated Search

    2009-03-01

    Portland cement concrete (PCC) pavements have given excellent service history for : Iowa. The first concrete pavement was placed in Le Mars in 1904 and was in service : until 1968. The Eddyville Cemetery Road placed in 1909 is still in service today....

  11. Cement study : phases I, II, and III.

    DOT National Transportation Integrated Search

    1970-06-01

    This report is the result of a three phase research program in which cements and aggregates from various supplier were studied in an effort to evaluate and improve various constitutents in concrete mixes. The major emphasis of this study has been on ...

  12. Evaluate the use of reclaimed concrete aggregate in french drain applications : [summary].

    DOT National Transportation Integrated Search

    2014-02-01

    Recycled concrete aggregate (RCA) is often used : as a replacement of virgin aggregate in road : foundations (base course), embankments, hot-mix : asphalt, and Portland cement concrete. However, : the use of RCA in exfiltration drainage systems, : su...

  13. Evaluation of fly ash in lean Portland Cement Concrete base "Econocrete".

    DOT National Transportation Integrated Search

    1986-08-01

    Fly ash was used in this evaluation study to replace 30, 50 and 70 : percent of the 400 1bs. of cement currently used in each cu. yd. of : portland cement econocrete base paving mix. : Two Class "c" ashes and one Class "F" ash from Iowa approved sour...

  14. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  15. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    NASA Astrophysics Data System (ADS)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  16. Preservation of overmature, ancient, sedimentary organic matter in carbonate concretions during outcrop weathering.

    PubMed

    Loyd, S J

    2017-01-01

    Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13 C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ 13 C carb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ 13 C org ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings

  17. 100 years of concrete pavements in Iowa : supplemental appendix, March 2009.

    DOT National Transportation Integrated Search

    2009-03-01

    Portland cement concrete (PCC) pavements have given excellent service history for Iowa. The first concrete pavement was placed in Le Mars in 1904 and was in service until 1968. The Eddyville Cemetery Road placed in 1909 is still in service today. Man...

  18. Using of Stone Flour from Some Mineral Rocks in Modern Concrete

    NASA Astrophysics Data System (ADS)

    Roman, Moskvin; Elena, Belyakova; Marina, Moroz

    2018-03-01

    There is shown the possibility of using mill ground rocks in SCC without deterioration of rheological properties of concrete mixtures. Obtained high-strength concrete of the new generation with high technical and economic indices and low unit costs per unit of cement strength.

  19. Effects of asphalt cement rejuvenating agents : final report.

    DOT National Transportation Integrated Search

    1980-08-01

    Louisiana's initial work in the recycling of asphaltic concrete pavements has demonstrated the need to obtain a base of knowledge in the area of rejuvenating age-hardened reclaimed asphalt cement. In this report, eight rejuvenating agents are examine...

  20. The contemporary cement cycle of the United States

    USGS Publications Warehouse

    Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.

    2009-01-01

    A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.

  1. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  2. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  3. Applications of Nano palm oil fuel ash and Nano fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    This paper discusses the applications of Nano waste materials including palm oil fuel ash and fly ash in the concrete production. The implementation of nanotechnology has been instrumental in the development of significant interest among the stakeholders to improve the mechanical and chemical properties of materials involved in the production of concrete. Although many researchers have shown the potential of nanomaterials to increase strength and durability of concrete and improve its physical and chemical properties, there is still a knowledge gap regarding the preparation of Nano waste materials from agricultural waste to use as cement replacement instead of non-renewable materials. Therefore, it should be focused on to study Nano- waste materials to benefit from these characteristics during preparation of concrete mixtures. Therefore, this paper highlights the potential of waste materials in the Nano size to partially replace cement in concrete and achieve the same or better result than the traditional concrete. This paper recommends to conduct further experimental works to improve the concrete material properties by investigating the properties of waste materials in Nano size.

  4. Review on supplymentary cementitious materials used in inorganic polymer concrete

    NASA Astrophysics Data System (ADS)

    Srinivasreddy, K.; Srinivasan, K.

    2017-11-01

    This paper presents a review on various supplementary cementitious materials generated from industries are used in concrete, which one is considered a waste material. These materials are rich in aluminosilicates and are activated by sodium/potassium based alkaline solution to form geopolymer concrete. When these geopolymer concrete is used in civil engineering applications has showed better or similar mechanical properties and durability properties than ordinary Portland cement concrete. This paper also given the overview on sodium hydroxide (NaOH) & sodium silicate solution (Na2SiO3) ratios, curing adopted for different geopolymer concretes and the effect of adding fibres in geopolymer concretes.

  5. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  6. High performance concrete pavement in Indiana.

    DOT National Transportation Integrated Search

    2011-01-01

    Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern : pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the : United States in the late 1950s throu...

  7. Influence of reactive fillers on concrete corrosion resistance

    NASA Astrophysics Data System (ADS)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  8. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  9. Comparative study between structural and electrical properties of geopolymers applied to a green concrete

    NASA Astrophysics Data System (ADS)

    Montaño, A. M.; González, C. P.; Pérez, J.; Royero, C.; Sandoval, D.; Gutiérrez, J.

    2013-11-01

    This work shows a comparative analysis of geopolymers obtained by alkaline activation of two aluminosilicates: bentonite and metakaolin. With the goal of to replace some cement percentage, both aluminosilicates were added in several proportions (10, 20 and 30%) to concrete mixes. Portland Type I cement was used to prepare the reference concrete (without geopolymer). X-ray diffraction of geopolymers allowed to find new crystallographic phases that was not present in precursor's minerals. To evaluate mechanical properties of concrete prepared with geopolymers, test tubes with 7, 14, 28 and 90 days as setting time were used. Chemical resistance and Electrical impedance of concrete mixes were also measured. Results shows that cementitious material obtained from metakaolin exhibit the best compressive strength. On the other hand, those materials derived from bentonite, have a high electrical resistance so that, they protected reinforced concrete better that Portland does.

  10. A review on carbonation study in concrete

    NASA Astrophysics Data System (ADS)

    Venkat Rao, N.; Meena, T.

    2017-11-01

    In this paper the authors have reviewed the carbonation studies which are a vital durability property of concrete. One of the major causes for deterioration and destruction of concrete is carbonation. The mechanism of carbonation involves the penetration carbon dioxide (CO2) into the concrete porous system to form an environment by reducing the pH around the reinforcement and initiation of the corrosion process. The paper also endeavours to focus and elucidate the gravity of importance, the process and chemistry of carbonate and how the various parameters like water/cement ratio, curing, depth of concrete cones, admixtures, grade of concrete, strength of concrete, porosity and permeability effect carbonation in concrete. The role of Supplementary Cementitious Materials (SCMs) like Ground granulated Blast Furnace Slag (GGBS) and Silica Fume (SF) has also been reviewed along with the influence of depth of carbonation.

  11. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  12. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete

    PubMed Central

    Fan, Wei-Jie; Wang, Xiao-Yong; Park, Ki-Bong

    2015-01-01

    High-calcium fly ash (FH) is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found. PMID:28793543

  13. Precast Slab Literature Review Report: Repair of Rigid Airfield Pavements Using Precast Concrete Panels - A State-of-the-Art Review

    DTIC Science & Technology

    2010-06-01

    Department of Transportation MPa megapascal mm millimeter NTIS National Technical Information Service PCC Portland cement concrete PCPU precast...Panels ...............................................................................................16 4.4.1. Portland Cement Concrete...materials or polyurethane foam beneath the slab to ensure full contact/support with the underlying substrate. Repairs using precast panels depend on

  14. Research of cost aspects of cement pavements construction

    NASA Astrophysics Data System (ADS)

    Bezuglyi, Artem; Illiash, Sergii; Tymoshchuk, Oleksandr

    2017-09-01

    The tendency to increasing traffic volume on public roads and to increased axle loads of vehicles makes the road scientists to develop scientifically justified methods for preserving the existing and developing the new transport network of Ukraine. One of the options for solving such issues is the construction of roads with rigid (cement concrete) pavement. However, any solution must be justified considering technical and economic components. This paper presents the results of the research of cost aspects of cement pavements construction.

  15. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    NASA Astrophysics Data System (ADS)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  16. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  17. Environmental durability of polymer concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, G.R.; Chawalwala, A.J.

    1996-12-31

    Over the past two decades, polymer concrete has increasingly been used for a number of applications including piping, machine bases, chemically resistant flooring, and bridge overlays. Currently, the use of polymer concrete as a wear surface for polymeric composite bridge decks is being investigated. Polymer concrete is a particulate composite comprised of mineral aggregate bound by a polymeric matrix. Such materials possess significantly higher mechanical properties than Portland cement concrete. However, the mechanical characteristics and environmental durability of polymer concrete are influenced by a number of factors. Among these are the selection of aggregate and resin, surface treatment, and curemore » conditions. In this work the influence of matrix selection and cure history on the environmental durability of polymer concrete was investigated. Particular attention was given to the effects of water on composite properties and to the mechanisms by which degradation occurs. The basalt-based polymer concrete systems investigated were susceptible to attack by water. Furthermore, results suggest that property loss associated with water exposure was primarily a result of interfacial weakening.« less

  18. Evaluating and optimizing recycled concrete fines in PCC mixtures containing supplementary cementitious materials.

    DOT National Transportation Integrated Search

    2010-08-01

    Portland cement concrete (PCC) is used throughout transportation infrastructure, for roads as well as bridges : and other structures. One of the most effective ways of making PCC more green is to replace a portion of the : portland cement (the ...

  19. Performance Using Bamboo Fiber Ash Concrete as Admixture Adding Superplasticizer

    NASA Astrophysics Data System (ADS)

    Vasudevan, Gunalaan

    2017-06-01

    The increasing demand on natural resources for housing provisions in developing countries have called for sourcing and use of sustainable local materials for building and housing delivery. Natural materials to be considered sustainable for building construction should be ‘green’ and obtained from local sources, including rapidly renewable plant materials like palm fronds and bamboo, recycled materials and other products that are reusable and renewable. Each year, tens of millions of tons of bamboo are utilized commercially, generating a vast amount of waste. Besides that, bamboo fiber is easy availability, low density, low production cost and satisfactory mechanical properties. One solution is to activate this waste by using it as an additive admixture in concrete to keep it out of landfills and save money on waste disposal. The research investigates the mechanical and physical properties of bamboo fiber powder in a blended Portland cement. The structural value of the bamboo fiber powder in a blended Portland cement was evaluated with consideration for its suitability in concrete. Varied percentage of bamboo fiber powder (BFP) at 0%, 5%, 10%, 15%, and 20% as an admixture in 1:2:4 concrete mixes. The workability of the mix was determined through slump; standard consistency test was carried on the cement. Compressive strength of hardened cured (150 x 150 x 150) mm concrete cubes at 7days, 14days and 28days were tested.

  20. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less

  1. Evaluation of concrete slab fracturing techniques in mitigating reflective cracking through asphalt overlays.

    DOT National Transportation Integrated Search

    2002-09-01

    This report presents the results of an evaluation of concrete slab fracturing techniques as a means of arresting or retarding reflective cracking through asphalt overlays placed on severely distressed portland cement concrete pavement. The study invo...

  2. Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection

    PubMed Central

    Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching

    2017-01-01

    One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa. PMID:28772454

  3. Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection.

    PubMed

    Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching

    2017-01-24

    One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa.

  4. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  5. Possibilities of using aluminate cements in high-rise construction

    NASA Astrophysics Data System (ADS)

    Kaddo, Maria

    2018-03-01

    The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.

  6. Recycling the construction and demolition waste to produce polymer concrete

    NASA Astrophysics Data System (ADS)

    Hamza, Mohammad T.; Hameed, Awham M., Dr.

    2018-05-01

    The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.

  7. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO₂ Emission Reduction.

    PubMed

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-08-19

    In order to reduce carbon dioxide (CO₂) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete

  8. Effects on radionuclide concentrations by cement/ground-water interactions in support of performance assessment of low-level radioactive waste disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, K.M.; Serne, R.J.

    The US Nuclear Regulatory Commission is developing a technical position document that provides guidance regarding the performance assessment of low-level radioactive waste disposal facilities. This guidance considers the effects that the chemistry of the vault disposal system may have on radionuclide release. The geochemistry of pore waters buffered by cementitious materials in the disposal system will be different from the local ground water. Therefore, the cement-buffered environment needs to be considered within the source term calculations if credit is taken for solubility limits and/or sorption of dissolved radionuclides within disposal units. A literature review was conducted on methods to modelmore » pore-water compositions resulting from reactions with cement, experimental studies of cement/water systems, natural analogue studies of cement and concrete, and radionuclide solubilities experimentally determined in cement pore waters. Based on this review, geochemical modeling was used to calculate maximum concentrations for americium, neptunium, nickel, plutonium, radium, strontium, thorium, and uranium for pore-water compositions buffered by cement and local ground-water. Another literature review was completed on radionuclide sorption behavior onto fresh cement/concrete where the pore water pH will be greater than or equal 10. Based on this review, a database was developed of preferred minimum distribution coefficient values for these radionuclides in cement/concrete environments.« less

  9. Shoulder rehabilitation using portland cement and recycled asphalt pavement.

    DOT National Transportation Integrated Search

    2007-04-01

    Maine has hundreds of miles of roadway originally constructed with Portland Cement Concrete that now : are covered with Hot Mix Asphalt overlays. In 2001 the Maine Department of Transportation utilized an : experimental construction technique on one ...

  10. Effect of fly ash content towards Sulphate resistance of oil palm shell lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Fadzil, M. Y.; Nazrin Akmal, A. Z. Muhammad; Ahmad, S. Wan; Nur Azzimah, Z.; Hanafi, H. Mohd; Mohamad Hafizuddin, R.

    2018-04-01

    Both oil palm shell (OPS) and fly ash are by-product generated from the industries. Disposal of these by-product as wastes cause negative impact to the environment. The use of both oil palm shell and fly ash in concrete is seen as an economical solution for making green and denser concrete. The primary aim of this research is to determine the effects of FA utilization as sand replacement in oil palm shell lightweight aggregate concrete (OPS LWAC) towards sulphate resistance. Five concrete mixes containing fly ash as sand replacement namely 0%, 10%, 20%, 30% and 40% were prepared in these experimental work. All mixes were cast in form of cubes before subjected to sulphate solution for the period of 5 months. It was found that addition of 10% fly ash as sand replacement content resulted in better sulphate resistance of OPS LWAC. The occurrence of pozzolanic reaction due to the presence of FA in concrete has consumed the vulnerable Calcium hydroxide to be secondary C-S-H gel making the concrete denser and more durable.

  11. Mercury release from fly ashes and hydrated fly ash cement pastes

    NASA Astrophysics Data System (ADS)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  12. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass.

    PubMed

    Arora, Tulika; Seyfried, Florian; Docherty, Neil G; Tremaroli, Valentina; le Roux, Carel W; Perkins, Rosie; Bäckhed, Fredrik

    2017-09-01

    Roux-en-Y gastric bypass (RYGB) and duodenal jejunal bypass (DJB), two different forms of bariatric surgery, are associated with improved glucose tolerance, but it is not clear whether the gut microbiota contributes to this effect. Here we used fa/fa rats as a model of impaired glucose tolerance to investigate whether (i) the microbiota varies between fa/fa and nondiabetic fa/+ rats; (ii) the microbiota of fa/fa rats is affected by RYGB and/or DJB; and (iii) surgically induced microbiota alterations contribute to glucose metabolism. We observed a profound expansion of Firmicutes (specifically, Lactobacillus animalis and Lactobacillus reuteri) in the small intestine of diabetic fa/fa compared with nondiabetic fa/+ rats. RYGB-, but not DJB-, treated fa/fa rats exhibited greater microbiota diversity in the ileum and lower L. animalis and L. reuteri abundance compared with sham-operated fa/fa rats in all intestinal segments, and their microbiota composition resembled that of unoperated fa/+ rats. To investigate the functional role of RYGB-associated microbiota alterations, we transferred microbiota from sham- and RYGB-treated fa/fa rats to germ-free mice. The metabolic phenotype of RYGB-treated rats was not transferred by the transplant of ileal microbiota. In contrast, postprandial peak glucose levels were lower in mice that received cecal microbiota from RYGB- versus sham-operated rats. Thus, diabetes-associated microbiota alterations in fa/fa rats can be modified by RYGB, and modifications in the cecal microbiota may partially contribute to improved glucose tolerance after RYGB.

  13. Controlling the set of carbon-fiber embedded cement with electric current

    DOEpatents

    Mattus, Alfred J.

    2004-06-15

    A method for promoting cement or concrete set on demand for concrete that has been chemically retarded by adding carbon fiber to the concrete, which enables it to become electrically conductive, sodium tartrate retardant, and copper sulfate which forms a copper tartrate complex in alkaline concrete mixes. Using electricity, the concrete mix anodically converts the retarding tartrate to an insoluble polyester polymer. The carbon fibers act as a continuous anode surface with a counter electrode wire embedded in the mix. Upon energizing, the retarding effect of tartrate is defeated by formation of the polyester polymer through condensation esterification thereby allowing the normal set to proceed unimpeded.

  14. Evaluate the Use of Mineral Admixtures in Concrete to Mitigate Alkali-Silica Reactivity.

    DOT National Transportation Integrated Search

    1996-12-01

    The increased use of mineral admixtures in portland cement concrete demands a better understanding of their properties and effects on hardened concrete. One of several beneficial advantages of mineral admixtures like flyash and silica fume is their p...

  15. Developing criteria for performance-based concrete specifications.

    DOT National Transportation Integrated Search

    2013-07-01

    For more than 50 years now, concrete technology has advanced, but CDOT specifications for durability have : remained mostly unchanged. The minimum cement content for a given strength is derived from mix design : guidelines that were developed before ...

  16. Very-early-strength latex-modified concrete overlay.

    DOT National Transportation Integrated Search

    1998-12-01

    This paper describes the installation and condition of the first two very-early-strength latex modified concrete (LMC-VE) overlays constructed for the Virginia Department of Transportation. The overlays were prepared with a special blended cement rat...

  17. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features

    PubMed Central

    Bastos, Guillermo; Patiño-Barbeito, Faustino; Patiño-Cambeiro, Faustino; Armesto, Julia

    2016-01-01

    For more than a century, several inclusions have been mixed with Portland cement—nowadays the most-consumed construction material worldwide—to improve both the strength and durability required for construction. The present paper describes the different families of inclusions that can be combined with cement matrix and reviews the achievements reported to date regarding mechanical performance, as well as two other innovative functionalities of growing importance: reducing the high carbon footprint of Portland cement, and obtaining new smart features. Nanomaterials stand out in the production of such advanced features, allowing the construction of smart or multi-functional structures by means of thermal- and strain-sensing, and photocatalytic properties. The first self-cleaning concretes (photocatalytic) have reached the markets. In this sense, it is expected that smart concretes will be commercialized to address specialized needs in construction and architecture. Conversely, other inclusions that enhance strength or reduce the environmental impact remain in the research stage, in spite of the promising results reported in these issues. Despite the fact that such functionalities are especially profitable in the case of massive cement consumption, the shift from the deeply established Portland cement to green cements still has to overcome economic, institutional, and technical barriers. PMID:28774091

  18. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass

    PubMed Central

    Arora, Tulika; Seyfried, Florian; Docherty, Neil G; Tremaroli, Valentina; le Roux, Carel W; Perkins, Rosie; Bäckhed, Fredrik

    2017-01-01

    Roux-en-Y gastric bypass (RYGB) and duodenal jejunal bypass (DJB), two different forms of bariatric surgery, are associated with improved glucose tolerance, but it is not clear whether the gut microbiota contributes to this effect. Here we used fa/fa rats as a model of impaired glucose tolerance to investigate whether (i) the microbiota varies between fa/fa and nondiabetic fa/+ rats; (ii) the microbiota of fa/fa rats is affected by RYGB and/or DJB; and (iii) surgically induced microbiota alterations contribute to glucose metabolism. We observed a profound expansion of Firmicutes (specifically, Lactobacillus animalis and Lactobacillus reuteri) in the small intestine of diabetic fa/fa compared with nondiabetic fa/+ rats. RYGB-, but not DJB-, treated fa/fa rats exhibited greater microbiota diversity in the ileum and lower L. animalis and L. reuteri abundance compared with sham-operated fa/fa rats in all intestinal segments, and their microbiota composition resembled that of unoperated fa/+ rats. To investigate the functional role of RYGB-associated microbiota alterations, we transferred microbiota from sham- and RYGB-treated fa/fa rats to germ-free mice. The metabolic phenotype of RYGB-treated rats was not transferred by the transplant of ileal microbiota. In contrast, postprandial peak glucose levels were lower in mice that received cecal microbiota from RYGB- versus sham-operated rats. Thus, diabetes-associated microbiota alterations in fa/fa rats can be modified by RYGB, and modifications in the cecal microbiota may partially contribute to improved glucose tolerance after RYGB. PMID:28524868

  19. Vision 2030. A Vision for the U.S. Concrete Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2001-01-01

    On September 27, 2000, the concrete industry's Strategic Development Council hosted a Concrete Vision Workshop in Chicago, Illinois. Meeting participants included over 50 concrete, cement, and other allied industry chief executive officers, presidents, vice-presidents, laboratory and industry research managers, and government representatives. Participants discussed the state of the concrete industry 30 years ago, the state of the current industry, and their vision for the United States concrete industry in 2030. Moreover, they identified specific goals to achieve the industry's Vision 2030. This document, Vision 2030, is the product of that workshop and the comments received after a broad industry review.

  20. PFC2D simulation of thermally induced cracks in concrete specimens

    NASA Astrophysics Data System (ADS)

    Liu, Xinghong; Chang, Xiaolin; Zhou, Wei; Li, Shuirong

    2013-06-01

    The appearance of cracks exposed to severe environmental conditions can be critical for concrete structures. The research is to validate Particle Flow Code(PFC2D) method in the context of concrete thermally-induced cracking simulations. First, concrete was discreted as meso-level units of aggregate, cement mortar and the interfaces between them. Parallel bonded-particle model in PFC2D was adapted to describe the constitutive relation of the cementing material. Then, the concrete mechanics meso-parameters were obtained through several groups of biaxial tests, in order to make the numerical results comply with the law of the indoor test. The concrete thermal meso-parameters were determined by compared with the parameters in the empirical formula through the simulations imposing a constant heat flow to the left margin of concrete specimens. At last, a case of 1000mm×500mm concrete specimen model was analyzed. It simulated the formation and development process of the thermally-induced cracks under the cold waves of different durations and temperature decline. Good agreements in fracture morphology and process were observed between the simulations, previous studies and laboratory data. The temperature decline limits during cold waves were obtained when its tensile strength was given as 3MPa. And it showed the feasibility of using PFC2D to simulate concrete thermally-induced cracking.