Sample records for fa pathway activation

  1. The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents.

    PubMed

    Chen, Clark C; Taniguchi, Toshiyasu; D'Andrea, Alan

    2007-05-01

    DNA alkylating agents including temozolomide (TMZ) and 1,3-bis[2-chloroethyl]-1-nitroso-urea (BCNU) are the most common form of chemotherapy in the treatment of gliomas. Despite their frequent use, the therapeutic efficacy of these agents is limited by the development of resistance. Previous studies suggest that the mechanism of this resistance is complex and involves multiple DNA repair pathways. To better define the pathways contributing to the mechanisms underlying glioma resistance, we tested the contribution of the Fanconi anemia (FA) DNA repair pathway. TMZ and BCNU treatment of FA-proficient cell lines led to a dose- and time-dependent increase in FANCD2 mono-ubiquitination and FANCD2 nuclear foci formation, both hallmarks of FA pathway activation. The FA-deficient cells were more sensitive to TMZ/BCNU relative to their corrected, isogenic counterparts. To test whether these observations were pertinent to glioma biology, we screened a panel of glioma cell lines and identified one (HT16) that was deficient in the FA repair pathway. This cell line exhibited increased sensitivity to TMZ and BCNU relative to the FA-proficient glioma cell lines. Moreover, inhibition of FA pathway activation by a small molecule inhibitor (curcumin) or by small interference RNA suppression caused increased sensitivity to TMZ/BCNU in the U87 glioma cell line. The BCNU sensitizing effect of FA inhibition appeared additive to that of methyl-guanine methyl transferase inhibition. The results presented in this paper underscore the complexity of cellular resistance to DNA alkylating agents and implicate the FA repair pathway as a determinant of this resistance.

  2. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  3. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway

    PubMed Central

    Ali, Abdullah Mahmood; Pradhan, Arun; Singh, Thiyam Ramsingh; Du, Changhu; Li, Jie; Wahengbam, Kebola; Grassman, Elke; Auerbach, Arleen D.; Pang, Qishen

    2012-01-01

    Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20 is an integral component of the FA nuclear core complex. We identify a region on FANCA that physically interacts with FAAP20, and show that FANCA regulates stability of this protein. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain (UBZ), and binds K-63–linked ubiquitin chains in vitro. The FAAP20-UBZ domain is not required for interaction with FANCA, but is required for DNA-damage–induced chromatin loading of FANCA and the functional integrity of the FA pathway. These findings reveal critical roles for FAAP20 in the FA-BRCA pathway of DNA damage repair and genome maintenance. PMID:22343915

  4. Disruption of the FA/BRCA pathway in bladder cancer.

    PubMed

    Neveling, K; Kalb, R; Florl, A R; Herterich, S; Friedl, R; Hoehn, H; Hader, C; Hartmann, F H; Nanda, I; Steinlein, C; Schmid, M; Tonnies, H; Hurst, C D; Knowles, M A; Hanenberg, H; Schulz, W A; Schindler, D

    2007-01-01

    Bladder carcinomas frequently show extensive deletions of chromosomes 9p and/or 9q, potentially including the loci of the Fanconi anemia (FA) genes FANCC and FANCG. FA is a rare recessive disease due to defects in anyone of 13 FANC genes manifesting with genetic instability and increased risk of neoplasia. FA cells are hypersensitive towards DNA crosslinking agents such as mitomycin C and cisplatin that are commonly employed in the chemotherapy of bladder cancers. These observations suggest the possibility of disruption of the FA/BRCA DNA repair pathway in bladder tumors. However, mutations in FANCC or FANCG could not be detected in any of 23 bladder carcinoma cell lines and ten surgical tumor specimens by LOH analysis or by FANCD2 immunoblotting assessing proficiency of the pathway. Only a single cell line, BFTC909, proved defective for FANCD2 monoubiquitination and was highly sensitive towards mitomycin C. This increased sensitivity was restored specifically by transfer of the FANCF gene. Sequencing of FANCF in BFTC909 failed to identify mutations, but methylation of cytosine residues in the FANCF promoter region was demonstrated by methylation-specific PCR, HpaII restriction and bisulfite DNA sequencing. Methylation-specific PCR uncovered only a single instance of FANCF promoter hypermethylation in surgical specimens of further 41 bladder carcinomas. These low proportions suggest that in contrast to other types of tumors silencing of FANCF is a rare event in bladder cancer and that an intact FA/BRCA pathway might be advantageous for tumor progression. Copyright (c) 2007 S. Karger AG, Basel.

  5. The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3 ligase complex to promote the FA DNA repair pathway.

    PubMed

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D; Kee, Younghoon

    2014-03-07

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.

  6. The Carboxyl Terminus of FANCE Recruits FANCD2 to the Fanconi Anemia (FA) E3 Ligase Complex to Promote the FA DNA Repair Pathway*

    PubMed Central

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D.; Kee, Younghoon

    2014-01-01

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair. PMID:24451376

  7. The FA pathway counteracts oxidative stress through selective protection of antioxidant defense gene promoters.

    PubMed

    Du, Wei; Rani, Reena; Sipple, Jared; Schick, Jonathan; Myers, Kasiani C; Mehta, Parinda; Andreassen, Paul R; Davies, Stella M; Pang, Qishen

    2012-05-03

    Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with BM failure and cancer. Here we show that major antioxidant defense genes are down-regulated in FA patients, and that gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of the antioxidant defense genes. Assessment of promoter activity and DNA damage repair kinetics shows that increased initial damage, rather than a reduced repair rate, contributes to the augmented oxidative DNA damage. Mechanistically, FA proteins act in concert with the chromatin-remodeling factor BRG1 to protect the promoters of antioxidant defense genes from oxidative damage. Specifically, BRG1 binds to the promoters of the antioxidant defense genes at steady state. On challenge with oxidative stress, FA proteins are recruited to promoter DNA, which correlates with significant increase in the binding of BRG1 within promoter regions. In addition, oxidative stress-induced FANCD2 ubiquitination is required for the formation of a FA-BRG1-promoter complex. Taken together, these data identify a role for the FA pathway in cellular antioxidant defense.

  8. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    PubMed

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.

  9. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair.

    PubMed

    Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie

    2012-03-20

    The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway.

  10. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair

    PubMed Central

    Leung, Justin Wai Chung; Wang, Yucai; Fong, Ka Wing; Huen, Michael Shing Yan; Li, Lei; Chen, Junjie

    2012-01-01

    The Fanconi anemia (FA) pathway participates in interstrand cross-link (ICL) repair and the maintenance of genomic stability. The FA core complex consists of eight FA proteins and two Fanconi anemia-associated proteins (FAAP24 and FAAP100). The FA core complex has ubiquitin ligase activity responsible for monoubiquitination of the FANCI-FANCD2 (ID) complex, which in turn initiates a cascade of biochemical events that allow processing and removal of cross-linked DNA and thereby promotes cell survival following DNA damage. Here, we report the identification of a unique component of the FA core complex, namely, FAAP20, which contains a RAD18-like ubiquitin-binding zinc-finger domain. Our data suggest that FAAP20 promotes the functional integrity of the FA core complex via its direct interaction with the FA gene product, FANCA. Indeed, somatic knockout cells devoid of FAAP20 displayed the hallmarks of FA cells, including hypersensitivity to DNA cross-linking agents, chromosome aberrations, and reduced FANCD2 monoubiquitination. Taking these data together, our study indicates that FAAP20 is an important player involved in the FA pathway. PMID:22396592

  11. Delta-like 1/Fetal Antigen-1 (Dlk1/FA1) Is a Novel Regulator of Chondrogenic Cell Differentiation via Inhibition of the Akt Kinase-dependent Pathway*

    PubMed Central

    Chen, Li; Qanie, Diyako; Jafari, Abbas; Taipaleenmaki, Hanna; Jensen, Charlotte H.; Säämänen, Anna-Marja; Sanz, Maria Luisa Nueda; Laborda, Jorge; Abdallah, Basem M.; Kassem, Moustapha

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1 protein to the medium strongly inhibited the activation of Akt, but not the ERK1/2, or p38 MAPK pathways, and the inhibition of Akt by Dlk1/FA1 was mediated through PI3K activation. Interestingly, inhibition of fibronectin expression by siRNA rescued the Dlk1/FA1-mediated inhibition of Akt, suggesting interaction of Dlk1/FA1 and fibronectin in chondrogenic cells. Our results identify Dlk1/FA1 as a novel regulator of chondrogenesis and suggest Dlk1/FA1 acts as an inhibitor of the PI3K/Akt pathways that leads to its inhibitory effects on chondrogenesis. PMID:21724852

  12. Fluocinolone acetonide partially restores the mineralization of LPS-stimulated dental pulp cells through inhibition of NF-κB pathway and activation of AP-1 pathway

    PubMed Central

    Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang

    2013-01-01

    BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985

  13. ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function

    PubMed Central

    Collins, Natalie B.; Wilson, James B.; Bush, Thomas; Thomashevski, Andrei; Roberts, Kate J.; Jones, Nigel J.

    2009-01-01

    Previous work has shown several proteins defective in Fanconi anemia (FA) are phosphorylated in a functionally critical manner. FANCA is phosphorylated after DNA damage and localized to chromatin, but the site and significance of this phosphorylation are unknown. Mass spectrometry of FANCA revealed one phosphopeptide, phosphorylated on serine 1449. Serine 1449 phosphorylation was induced after DNA damage but not during S phase, in contrast to other posttranslational modifications of FA proteins. Furthermore, the S1449A mutant failed to completely correct a variety of FA-associated phenotypes. The DNA damage response is coordinated by phosphorylation events initiated by apical kinases ATM (ataxia telangectasia mutated) and ATR (ATM and Rad3-related), and ATR is essential for proper FA pathway function. Serine 1449 is in a consensus ATM/ATR site, phosphorylation in vivo is dependent on ATR, and ATR phosphorylated FANCA on serine 1449 in vitro. Phosphorylation of FANCA on serine 1449 is a DNA damage–specific event that is downstream of ATR and is functionally important in the FA pathway. PMID:19109555

  14. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction.

    PubMed

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de Los Santos, Berta; Arroyo, Francisco T; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen.

  15. Partial Activation of SA- and JA-Defensive Pathways in Strawberry upon Colletotrichum acutatum Interaction

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Gadea, José; Blanco-Portales, Rosario; Muñoz-Mérida, Antonio; Trelles, Oswaldo; de los Santos, Berta; Arroyo, Francisco T.; Aguado-Puig, Ana; Romero, Fernando; Mercado, José-Ángel; Pliego-Alfaro, Fernando; Muñoz-Blanco, Juan; Caballero, José L.

    2016-01-01

    Understanding the nature of pathogen host interaction may help improve strawberry (Fragaria × ananassa) cultivars. Plant resistance to pathogenic agents usually operates through a complex network of defense mechanisms mediated by a diverse array of signaling molecules. In strawberry, resistance to a variety of pathogens has been reported to be mostly polygenic and quantitatively inherited, making it difficult to associate molecular markers with disease resistance genes. Colletotrichum acutatum spp. is a major strawberry pathogen, and completely resistant cultivars have not been reported. Moreover, strawberry defense network components and mechanisms remain largely unknown and poorly understood. Assessment of the strawberry response to C. acutatum included a global transcript analysis, and acidic hormones SA and JA measurements were analyzed after challenge with the pathogen. Induction of transcripts corresponding to the SA and JA signaling pathways and key genes controlling major steps within these defense pathways was detected. Accordingly, SA and JA accumulated in strawberry after infection. Contrastingly, induction of several important SA, JA, and oxidative stress-responsive defense genes, including FaPR1-1, FaLOX2, FaJAR1, FaPDF1, and FaGST1, was not detected, which suggests that specific branches in these defense pathways (those leading to FaPR1-2, FaPR2-1, FaPR2-2, FaAOS, FaPR5, and FaPR10) were activated. Our results reveal that specific aspects in SA and JA dependent signaling pathways are activated in strawberry upon interaction with C. acutatum. Certain described defense-associated transcripts related to these two known signaling pathways do not increase in abundance following infection. This finding suggests new insight into a specific putative molecular strategy for defense against this pathogen. PMID:27471515

  16. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks

    PubMed Central

    Hwang, Soo Kyung; Kim, Bong Sub; Kim, Hyoun Geun; Choi, Hae In; Kim, Jong Heon; Goh, Sung Ho; Lee, Chang-Hun

    2016-01-01

    Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway. PMID:27449087

  17. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks.

    PubMed

    Chun, Min Jeong; Kim, Sunshin; Hwang, Soo Kyung; Kim, Bong Sub; Kim, Hyoun Geun; Choi, Hae In; Kim, Jong Heon; Goh, Sung Ho; Lee, Chang-Hun

    2016-08-16

    Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway.

  18. Ubiquitylation and the Fanconi Anemia Pathway

    PubMed Central

    Garner, Elizabeth; Smogorzewska, Agata

    2012-01-01

    The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability. PMID:21605559

  19. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro.

    PubMed

    Xu, Tianjiao; Pan, Zhi; Dong, Miaoxian; Yu, Chunlei; Niu, Yingcai

    2015-01-01

    Hepatic stellate cells (HSCs) are the primary source of matrix components in hepatic fibrosis. Ferulic acid (FA) has antifibrotic potential in renal and cardiac disease. However, whether FA comprises inhibitive effects of HSCs activation remains to be clarified. This study aims at evaluating the hypothesis that FA inhibits extracellular matrix (ECM)-related gene expression by the interruption of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) or/and Smad signaling pathways in HSC-T6. Our results indicated that FA significantly inhibited both viability and activation of HSC-T6 cells in vitro. In addition, we demonstrated, for the first time, that FA dramatically inhibited the expression of α1(I) collagen (Col-I) and fibronectin at levels of transcription and translation. Moreover, FA treatment inhibited Smad transcriptional activity, as evaluated by transient transfection with a plasmid construction containing SMAD response element and the luciferase reporter gene. Furthermore, FA inhibition of HSCs activation involved in both focal adhesion kinase (FAK)-dependent ERK1/2 and Smad signaling pathways with independent manner. Blocking transforming growth factor-β by a neutralizing antibody caused a marked reduction in both ERK1/2 and Smad signaling. These results support FA as an effective therapeutic agent for the prevention and treatment of hepatic fibrosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure.

    PubMed

    Balacescu, Ovidiu; Balacescu, Loredana; Tudoran, Oana; Todor, Nicolae; Rus, Meda; Buiga, Rares; Susman, Sergiu; Fetica, Bogdan; Pop, Laura; Maja, Laura; Visan, Simona; Ordeanu, Claudia; Berindan-Neagoe, Ioana; Nagy, Viorica

    2014-04-08

    Advanced squamous cervical cancer, one of the most commonly diagnosed cancers in women, still remains a major problem in oncology due to treatment failure and distant metastasis. Antitumor therapy failure is due to both intrinsic and acquired resistance; intrinsic resistance is often decisive for treatment response. In this study, we investigated the specific pathways and molecules responsible for baseline therapy failure in locally advanced squamous cervical cancer. Twenty-one patients with locally advanced squamous cell carcinoma were enrolled in this study. Primary biopsies harvested prior to therapy were analyzed for whole human gene expression (Agilent) based on the patient's 6 months clinical response. Ingenuity Pathway Analysis was used to investigate the altered molecular function and canonical pathways between the responding and non-responding patients. The microarray results were validated by qRT-PCR and immunohistochemistry. An additional set of 24 formalin-fixed paraffin-embedded cervical cancer samples was used for independent validation of the proteins of interest. A 2859-gene signature was identified to distinguish between responder and non-responder patients. 'DNA Replication, Recombination and Repair' represented one of the most important mechanisms activated in non-responsive cervical tumors, and the 'Role of BRCA1 in DNA Damage Response' was predicted to be the most significantly altered canonical pathway involved in intrinsic resistance (p = 1.86E-04, ratio = 0.262). Immunohistological staining confirmed increased expression of BRCA1, BRIP1, FANCD2 and RAD51 in non-responsive compared with responsive advanced squamous cervical cancer, both in the initial set of 21 cervical cancer samples and the second set of 24 samples. Our findings suggest that FA/BRCA pathway plays an important role in treatment failure in advanced cervical cancer. The assessment of FANCD2, RAD51, BRCA1 and BRIP1 nuclear proteins could provide important information about the

  1. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.

    PubMed

    Chakraborty, Debkumar; Gupta, Gaganjot; Kaur, Baljinder

    2016-12-01

    Metabolic engineering and construction of recombinant Escherichia coli strains carrying feruloyl-CoA synthetase and enoyl-CoA hydratase genes for the bioconversion of ferulic acid to vanillin offers an alternative way to produce vanillin. Isolation and designing of fcs and ech genes was carried out using computer assisted protocol and the designed vanillin biosynthetic gene cassette was cloned in pCCIBAC expression vector for introduction in E. coli top 10. Recombinant strain was implemented for the statistical optimization of process parameters influencing F A to vanillin biotransformation. CCD matrix constituted of process variables like FA concentration, time, temperature and biomass with intracellular, extracellular and total vanillin productions as responses. Production was scaled up and 68 mg/L of vanillin was recovered from 10 mg/L of FA using cell extracts from 1 mg biomass within 30 min. Kinetic activity of enzymes were characterized. From LCMS-ESI analysis a metabolic pathway of FA degradation and vanillin production was predicted. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. BLM promotes the activation of Fanconi Anemia signaling pathway.

    PubMed

    Panneerselvam, Jayabal; Wang, Hong; Zhang, Jun; Che, Raymond; Yu, Herbert; Fei, Peiwen

    2016-05-31

    Mutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway. To date, it remains largely unclear as to how BLM and FA proteins work concurrently in the maintenance of genome stability. Here we report that BLM is involved in the early activation of FA group D2 protein (FANCD2). We found that FANCD2 activation is substantially delayed and attenuated in crosslinking agent-treated cells harboring deficient Blm compared to similarly treated control cells with sufficient BLM. We also identified that the domain VI of BLM plays an essential role in promoting FANCD2 activation in cells treated with DNA crosslinking agents, especially ultraviolet B. The similar biological effects performed by ΔVI-BLM and inactivated FANCD2 further confirm the relationship between BLM and FANCD2. Mutations within the domain VI of BLM detected in human cancer samples demonstrate the functional importance of this domain, suggesting human tumorigenicity resulting from mtBLM may be at least partly attributed to mitigated FANCD2 activation. Collectively, our data show a previously unknown regulatory liaison in advancing our understanding of how the cancer susceptibility gene products act in concert to maintain genome stability.

  3. Inhibitory effects of marine-derived DNA-binding anti-tumour tetrahydroisoquinolines on the Fanconi anaemia pathway.

    PubMed

    Martínez, Sandra; Pérez, Laura; Galmarini, Carlos M; Aracil, Miguel; Tercero, Juan C; Gago, Federico; Albella, Beatriz; Bueren, Juan A

    2013-10-01

    We have previously shown that cells with a defective Fanconi anaemia (FA) pathway are hypersensitive to trabectedin, a DNA-binding anti-cancer tetrahydroisoquinoline (DBAT) whose adducts functionally mimic a DNA inter-strand cross link (ICL). Here we expand these observations to new DBATs and investigate whether our findings in primary untransformed cells can be reproduced in human cancer cells. Initially, the sensitivity of transformed and untransformed cells, deficient or not in one component of the FA pathway, to mitomycin C (MMC) and three DBATs, trabectedin, Zalypsis and PM01183, was assessed. Then, the functional interaction of these drugs with the FA pathway was comparatively investigated. While untransformed FA-deficient haematopoietic cells were hypersensitive to both MMC and DBATs, the response of FA-deficient squamous cell carcinoma (SCC) cells to DBATs was similar to that of their respective FA-competent counterparts, even though these FA-deficient SCC cells were hypersensitive to MMC. Furthermore, while MMC always activated the FA pathway, the DBATs inhibited the FA pathway in the cancer cell lines tested and this enhanced their response to MMC. Our data show that although DBATs functionally interact with DNA as do agents that generate classical ICL, these drugs should be considered as FA pathway inhibitors rather than activators. Moreover, this effect was most significant in a variety of cancer cells. These inhibitory effects of DBATs on the FA pathway could be exploited clinically with the aim of 'fanconizing' cancer cells in order to make them more sensitive to other anti-tumour drugs. © 2013 The British Pharmacological Society.

  4. Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: in vitro and in vivo studies

    PubMed Central

    Kuo, Chun-Ting; Chang, Chieh; Lee, Wen-Sen

    2015-01-01

    To investigate the molecular mechanism underlying folic acid (FA)-induced anti-colon caner activity, we showed that FA caused G0/G1 arrest in COLO-205. FA activated the proto-oncogene tyrosine-protein kinase Src (c-SRC)-mediated signaling pathway to enhance nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) nuclear translocation and binding onto the tumor protein p53 (TP53) gene promoter, and up-regulated expressions of TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). Knock-down of TP53 abolished FA-induced increases in the levels of CDKN1A and CDKN1B protein and G0/G1 arrest in COLO-205. Knock-down of folate receptor alpha (FRα) abolished FA-induced activations in the c-SRC-mediated pathway and increases in the levels of CDKN1A, CDKN1B and TP53 protein. These data suggest that FA inhibited COLO-205 proliferation through activating the FRα/c-SRC/mitogen-activated protein kinase 3/1 (ERK1/2)/NFκB/TP53 pathway-mediated up-regulations of CDKN1A and CDKN1B protein. In vivo studies demonstrated that daily i.p. injections of FA led to profound regression of the COLO-205 tumors and prolong the lifespan. In these tumors, the levels of CDKN1A, CDKN1B and TP53 protein were increased and von willebrand factor (VWF) protein levels were decreased. These findings suggest that FA inhibits COLO-205 colon cancer growth through anti-cancer cell proliferation and anti-angiogenesis. PMID:26056802

  5. Inhibitory effects of marine-derived DNA-binding anti-tumour tetrahydroisoquinolines on the Fanconi anaemia pathway

    PubMed Central

    Martínez, Sandra; Pérez, Laura; Galmarini, Carlos M; Aracil, Miguel; Tercero, Juan C; Gago, Federico; Albella, Beatriz; Bueren, Juan A

    2013-01-01

    BACKGROUND AND PURPOSE We have previously shown that cells with a defective Fanconi anaemia (FA) pathway are hypersensitive to trabectedin, a DNA-binding anti-cancer tetrahydroisoquinoline (DBAT) whose adducts functionally mimic a DNA inter-strand cross link (ICL). Here we expand these observations to new DBATs and investigate whether our findings in primary untransformed cells can be reproduced in human cancer cells. EXPERIMENTAL APPROACH Initially, the sensitivity of transformed and untransformed cells, deficient or not in one component of the FA pathway, to mitomycin C (MMC) and three DBATs, trabectedin, Zalypsis and PM01183, was assessed. Then, the functional interaction of these drugs with the FA pathway was comparatively investigated. KEY RESULTS While untransformed FA-deficient haematopoietic cells were hypersensitive to both MMC and DBATs, the response of FA-deficient squamous cell carcinoma (SCC) cells to DBATs was similar to that of their respective FA-competent counterparts, even though these FA-deficient SCC cells were hypersensitive to MMC. Furthermore, while MMC always activated the FA pathway, the DBATs inhibited the FA pathway in the cancer cell lines tested and this enhanced their response to MMC. CONCLUSIONS AND IMPLICATIONS Our data show that although DBATs functionally interact with DNA as do agents that generate classical ICL, these drugs should be considered as FA pathway inhibitors rather than activators. Moreover, this effect was most significant in a variety of cancer cells. These inhibitory effects of DBATs on the FA pathway could be exploited clinically with the aim of ‘fanconizing’ cancer cells in order to make them more sensitive to other anti-tumour drugs. PMID:23937566

  6. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  7. Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors.

    PubMed

    Landais, Igor; Hiddingh, Sanne; McCarroll, Matthew; Yang, Chao; Sun, Aiming; Turker, Mitchell S; Snyder, James P; Hoatlin, Maureen E

    2009-12-31

    The Fanconi anemia (FA) pathway is a multigene DNA damage response network implicated in the repair of DNA lesions that arise during replication or after exogenous DNA damage. The FA pathway displays synthetic lethal relationship with certain DNA repair genes such as ATM (Ataxia Telangectasia Mutated) that are frequently mutated in tumors. Thus, inhibition of FANCD2 monoubiquitylation (FANCD2-Ub), a key step in the FA pathway, might target tumor cells defective in ATM through synthetic lethal interaction. Curcumin was previously identified as a weak inhibitor of FANCD2-Ub. The aim of this study is to identify derivatives of curcumin with better activity and specificity. Using a replication-free assay in Xenopus extracts, we screened monoketone analogs of curcumin for inhibition of FANCD2-Ub and identified analog EF24 as a strong inhibitor. Mechanistic studies suggest that EF24 targets the FA pathway through inhibition of the NF-kB pathway kinase IKK. In HeLa cells, nanomolar concentrations of EF24 inhibited hydroxyurea (HU)-induced FANCD2-Ub and foci in a cell-cycle independent manner. Survival assays revealed that EF24 specifically sensitizes FA-competent cells to the DNA crosslinking agent mitomycin C (MMC). In addition, in contrast with curcumin, ATM-deficient cells are twofold more sensitive to EF24 than matched wild-type cells, consistent with a synthetic lethal effect between FA pathway inhibition and ATM deficiency. An independent screen identified 4H-TTD, a compound structurally related to EF24 that displays similar activity in egg extracts and in cells. These results suggest that monoketone analogs of curcumin are potent inhibitors of the FA pathway and constitute a promising new class of targeted anticancer compounds.

  8. Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors

    PubMed Central

    2009-01-01

    Background The Fanconi anemia (FA) pathway is a multigene DNA damage response network implicated in the repair of DNA lesions that arise during replication or after exogenous DNA damage. The FA pathway displays synthetic lethal relationship with certain DNA repair genes such as ATM (Ataxia Telangectasia Mutated) that are frequently mutated in tumors. Thus, inhibition of FANCD2 monoubiquitylation (FANCD2-Ub), a key step in the FA pathway, might target tumor cells defective in ATM through synthetic lethal interaction. Curcumin was previously identified as a weak inhibitor of FANCD2-Ub. The aim of this study is to identify derivatives of curcumin with better activity and specificity. Results Using a replication-free assay in Xenopus extracts, we screened monoketone analogs of curcumin for inhibition of FANCD2-Ub and identified analog EF24 as a strong inhibitor. Mechanistic studies suggest that EF24 targets the FA pathway through inhibition of the NF-kB pathway kinase IKK. In HeLa cells, nanomolar concentrations of EF24 inhibited hydroxyurea (HU)-induced FANCD2-Ub and foci in a cell-cycle independent manner. Survival assays revealed that EF24 specifically sensitizes FA-competent cells to the DNA crosslinking agent mitomycin C (MMC). In addition, in contrast with curcumin, ATM-deficient cells are twofold more sensitive to EF24 than matched wild-type cells, consistent with a synthetic lethal effect between FA pathway inhibition and ATM deficiency. An independent screen identified 4H-TTD, a compound structurally related to EF24 that displays similar activity in egg extracts and in cells. Conclusions These results suggest that monoketone analogs of curcumin are potent inhibitors of the FA pathway and constitute a promising new class of targeted anticancer compounds. PMID:20043851

  9. Effects of antiglucocorticoid RU 486 on development of obesity in obese fa/fa Zucker rats.

    PubMed

    Langley, S C; York, D A

    1990-09-01

    The effects of RU 486 (mitepristone), an antagonist of type II glucocorticoid receptors (GR), on the development of obesity in young 5-wk-old obese fa/fa rats has been investigated. After 15 days of treatment, body composition of obese RU 486-treated rats was similar to that of lean-vehicle rats. Analysis of body composition changes showed that RU 486 effectively reversed the obesity. It stopped fat deposition in obese rats but increased protein deposition to the level of lean-vehicle rats. RU 486 prevented the development of hyperphagia and reduced gross energetic efficiency in the obese rats but had little effect on lean rats. Brown adipose tissue mitochondrial GDP binding was increased in obese rats but was reduced in lean rats by RU 486 treatment. RU 486 also reduced the elevated activity of hippocampal glycerophosphate dehydrogenase, a glucocorticoid-responsive enzyme, of obese rats to the level of lean rats. The evidence suggests that abnormal activity of glucocorticoid GR receptors or abnormal cellular responsiveness to corticosterone receptor complexes may be important in the development of obesity in the fa/fa rat.

  10. Licochalcone-A Induces Intrinsic and Extrinsic Apoptosis via ERK1/2 and p38 Phosphorylation-mediated TRAIL Expression in Head and Neck Squamous Carcinoma FaDu Cells

    PubMed Central

    Park, Mi-Ra; Kim, Su-Gwan; Cho, In-A; Oh, Dahye; Kang, Kyeong-Rok; Lee, Sook-Young; Moon, Sung-Min; Cho, Seung Sik; Yoon, Goo; Kim, Chun Sung; Oh, Ji-Su; You, Jae-Seek; Kim, Do Kyung; Seo, Yo-Seob; Im, Hee-Jeong; Kim, Jae-Sung

    2015-01-01

    We investigated Licochalcone-A (Lico-A)-induced apoptosis and the pathway underlying its activity in a pharyngeal squamous carcinoma FaDu cell line. Lico-A purified from root of Glycyrrhiza inflata had cytotoxic effects, significantly increasing cell death in FaDu cells. Using a cell viability assay, we determined that the IC50 value of Lico-A in FaDu cells was approximately 100 µM. Chromatin condensation was observed in FaDu cells treated with Lico-A for 24 h. Consistent with this finding, the number of apoptotic cells increased in a time-dependent manner when FaDu cells were treated with Lico-A. TRAIL was significantly up-regulated in Lico-A-treated FaDu cells in a dose-dependent manner. Apoptotic factors such as caspases and PARP polymerase were subsequently activated in a caspase-dependent manner. In addition, levels of pro-apoptotic factors increased significantly in response to Lico-A treatment, while levels of anti-apoptotic factors decreased. Lico-A-induced TRAIL expression was mediated in part by a MAPK signaling pathway involving ERK1/2 and p38. Lastly, in an in vivo xenograft mouse model, Lico-A treatment effectively suppressed the growth of FaDu cell xenografts by activating caspase-3, without affecting the body weight of mice. Taken together, these data suggest that Lico-A has potential chemopreventive effects and should therefore be developed as a chemotherapeutic agent for pharyngeal squamous carcinoma. PMID:25572524

  11. Friedreich's Ataxia (FA)

    MedlinePlus

    ... success- ful people with FA — business leaders, outstanding students, engineers, active teens and bright kids, parents, even ... tory experiments have shown that it’s possible to design short fragments of DNA that prevent abnormal folding ...

  12. ΔNp63 activates the Fanconi anemia DNA repair pathway and limits the efficacy of cisplatin treatment in squamous cell carcinoma.

    PubMed

    Bretz, Anne Catherine; Gittler, Miriam P; Charles, Joël P; Gremke, Niklas; Eckhardt, Ines; Mernberger, Marco; Mandic, Robert; Thomale, Jürgen; Nist, Andrea; Wanzel, Michael; Stiewe, Thorsten

    2016-04-20

    TP63, a member of the p53 gene family gene, encodes the ΔNp63 protein and is one of the most frequently amplified genes in squamous cell carcinomas (SCC) of the head and neck (HNSCC) and lungs (LUSC). Using an epiallelic series of siRNAs with intrinsically different knockdown abilities, we show that the complete loss of ΔNp63 strongly impaired cell proliferation, whereas partial ΔNp63 depletion rendered cells hypersensitive to cisplatin accompanied by an accumulation of DNA damage. Expression profiling revealed wide-spread transcriptional regulation of DNA repair genes and in particular Fanconi anemia (FA) pathway components such as FANCD2 and RAD18 - known to be crucial for the repair of cisplatin-induced interstrand crosslinks. In SCC patients ΔNp63 levels significantly correlate with FANCD2 and RAD18 expression confirming ΔNp63 as a key activator of the FA pathway in vivo Mechanistically, ΔNp63 bound an upstream enhancer of FANCD2 inactive in primary keratinocytes but aberrantly activated by ΔNp63 in SCC. Consistently, depletion of FANCD2 sensitized to cisplatin similar to depletion of ΔNp63. Together, our results demonstrate that ΔNp63 directly activates the FA pathway in SCC and limits the efficacy of cisplatin treatment. Targeting ΔNp63 therefore would not only inhibit SCC proliferation but also sensitize tumors to chemotherapy. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Regulation of palmitoyl-CoA chain elongation by clofibric acid in the liver of Zucker fa/fa rats.

    PubMed

    Toyama, Tomoaki; Kudo, Naomi; Mitsumoto, Atsushi; Kawashima, Yoichi

    2005-05-01

    The regulation of palmitoyl-CoA chain elongation (PCE) by clofibric acid [2-(4-chlorophenoxy)-2-methylpropionic acid] was investigated in comparison with stearoyl-CoA desaturase (SCD) in the liver of obese Zucker fa/fa rats. The proportion of oleic acid in the hepatic lipids of Zucker obese rats is 2.7 times higher than that of lean littermates. The activities of PCE and SCD in the liver of Zucker obese rats were markedly higher than in lean rats, and the hepatic uptake of 2-deoxyglucose (2-DG) was also higher in Zucker obese rats compared with lean rats. The increased activities of SCD and PCE in Zucker obese rats were due to the enhanced expression of mRNA of both SCD1 and rat FA elongase 2 (rELO2), but not SCD2 or rELO1. The proportion of oleic acid in the liver was significantly increased by the administration of clofibric acid to Zucker obese rats, and the hepatic PCE activity and rELO2 mRNA expression, but not the SCD activity or SCD1 mRNA expression, were increased in response to clofibric acid treatment. By contrast, the activities of both PCE and SCD and the mRNA expression of SCD1 and rELO2 in the liver were increased by the treatment of Zucker lean rats with clofibric acid. Multiple regression analysis, which was performed to determine the relationships involving PCE activity, SCD activity, and the proportion of oleic acid, revealed that the three parameters were significantly correlated and that the standardized partial regression coefficient of PCE was higher than that of SCD. These results indicate that oleic acid is synthesized by the concerted action of PCE and SCD and that PCE plays a crucial role in the formation of oleic acid when Zucker fa/fa rats are given clofibric acid.

  14. FANCJ Helicase Operates in the Fanconi Anemia DNA Repair Pathway and the Response to Replicational Stress

    PubMed Central

    Wu, Yuliang; Brosh, Robert M.

    2009-01-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by multiple congenital anomalies, progressive bone marrow failure, and high cancer risk. Cells from FA patients exhibit spontaneous chromosomal instability and hypersensitivity to DNA interstrand cross-linking (ICL) agents. Although the precise mechanistic details of the FA/BRCA pathway of ICL-repair are not well understood, progress has been made in the identification of the FA proteins that are required for the pathway. Among the 13 FA complementation groups from which all the FA genes have been cloned, only a few of the FA proteins are predicted to have direct roles in DNA metabolism. One of the more recently identified FA proteins, shown to be responsible for complementation of the FA complementation group J, is the BRCA1 Associated C-terminal Helicase (BACH1, designated FANCJ), originally identified as a protein associated with breast cancer. FANCJ has been proposed to function downstream of FANCD2 monoubiquitination, a critical event in the FA pathway. Evidence supports a role for FANCJ in a homologous recombination (HR) pathway of double strand break (DSB) repair. In this review, we will summarize the current knowledge in terms of FANCJ functions through its enzymatic activities and protein interactions. The molecular roles of FANCJ in DNA repair and the response to replicational stress will be discussed. PMID:19519404

  15. BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks

    PubMed Central

    Pichierri, Pietro; Franchitto, Annapaola; Rosselli, Filippo

    2004-01-01

    Fanconi anaemia (FA) and Bloom syndrome (BS) are autosomal recessive diseases characterised by chromosome fragility and cancer proneness. Here, we report that BLM and the FA pathway are activated in response to both crosslinked DNA and replication fork stall. We provide evidence that BLM and FANCD2 colocalise and co-immunoprecipitate following treatment with either DNA crosslinkers or agents inducing replication arrest. We also find that the FA core complex is necessary for BLM phosphorylation and assembly in nuclear foci in response to crosslinked DNA. Moreover, we show that knock-down of the MRE11 complex, whose function is also under the control of the FA core complex, enhances cellular and chromosomal sensitivity to DNA interstrand crosslinks in BS cells. These findings suggest the existence of a functional link between BLM and the FA pathway and that BLM and the MRE11 complex are in two separated branches of a pathway resulting in S-phase checkpoint activation, chromosome integrity and cell survival in response to crosslinked DNA. PMID:15257300

  16. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass.

    PubMed

    Arora, Tulika; Seyfried, Florian; Docherty, Neil G; Tremaroli, Valentina; le Roux, Carel W; Perkins, Rosie; Bäckhed, Fredrik

    2017-09-01

    Roux-en-Y gastric bypass (RYGB) and duodenal jejunal bypass (DJB), two different forms of bariatric surgery, are associated with improved glucose tolerance, but it is not clear whether the gut microbiota contributes to this effect. Here we used fa/fa rats as a model of impaired glucose tolerance to investigate whether (i) the microbiota varies between fa/fa and nondiabetic fa/+ rats; (ii) the microbiota of fa/fa rats is affected by RYGB and/or DJB; and (iii) surgically induced microbiota alterations contribute to glucose metabolism. We observed a profound expansion of Firmicutes (specifically, Lactobacillus animalis and Lactobacillus reuteri) in the small intestine of diabetic fa/fa compared with nondiabetic fa/+ rats. RYGB-, but not DJB-, treated fa/fa rats exhibited greater microbiota diversity in the ileum and lower L. animalis and L. reuteri abundance compared with sham-operated fa/fa rats in all intestinal segments, and their microbiota composition resembled that of unoperated fa/+ rats. To investigate the functional role of RYGB-associated microbiota alterations, we transferred microbiota from sham- and RYGB-treated fa/fa rats to germ-free mice. The metabolic phenotype of RYGB-treated rats was not transferred by the transplant of ileal microbiota. In contrast, postprandial peak glucose levels were lower in mice that received cecal microbiota from RYGB- versus sham-operated rats. Thus, diabetes-associated microbiota alterations in fa/fa rats can be modified by RYGB, and modifications in the cecal microbiota may partially contribute to improved glucose tolerance after RYGB.

  17. Emerging functions of the Fanconi anemia pathway at a glance.

    PubMed

    Sumpter, Rhea; Levine, Beth

    2017-08-15

    Fanconi anemia (FA) is a rare disease, in which homozygous or compound heterozygous inactivating mutations in any of 21 genes lead to genomic instability, early-onset bone marrow failure and increased cancer risk. The FA pathway is essential for DNA damage response (DDR) to DNA interstrand crosslinks. However, proteins of the FA pathway have additional cytoprotective functions that may be independent of DDR. We have shown that many FA proteins participate in the selective autophagy pathway that is required for the destruction of unwanted intracellular constituents. In this Cell Science at a Glance and the accompanying poster, we briefly review the role of the FA pathway in DDR and recent findings that link proteins of the FA pathway to selective autophagy of viruses and mitochondria. Finally, we discuss how perturbations in FA protein-mediated selective autophagy may contribute to inflammatory as well as genotoxic stress. © 2017. Published by The Company of Biologists Ltd.

  18. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass

    PubMed Central

    Arora, Tulika; Seyfried, Florian; Docherty, Neil G; Tremaroli, Valentina; le Roux, Carel W; Perkins, Rosie; Bäckhed, Fredrik

    2017-01-01

    Roux-en-Y gastric bypass (RYGB) and duodenal jejunal bypass (DJB), two different forms of bariatric surgery, are associated with improved glucose tolerance, but it is not clear whether the gut microbiota contributes to this effect. Here we used fa/fa rats as a model of impaired glucose tolerance to investigate whether (i) the microbiota varies between fa/fa and nondiabetic fa/+ rats; (ii) the microbiota of fa/fa rats is affected by RYGB and/or DJB; and (iii) surgically induced microbiota alterations contribute to glucose metabolism. We observed a profound expansion of Firmicutes (specifically, Lactobacillus animalis and Lactobacillus reuteri) in the small intestine of diabetic fa/fa compared with nondiabetic fa/+ rats. RYGB-, but not DJB-, treated fa/fa rats exhibited greater microbiota diversity in the ileum and lower L. animalis and L. reuteri abundance compared with sham-operated fa/fa rats in all intestinal segments, and their microbiota composition resembled that of unoperated fa/+ rats. To investigate the functional role of RYGB-associated microbiota alterations, we transferred microbiota from sham- and RYGB-treated fa/fa rats to germ-free mice. The metabolic phenotype of RYGB-treated rats was not transferred by the transplant of ileal microbiota. In contrast, postprandial peak glucose levels were lower in mice that received cecal microbiota from RYGB- versus sham-operated rats. Thus, diabetes-associated microbiota alterations in fa/fa rats can be modified by RYGB, and modifications in the cecal microbiota may partially contribute to improved glucose tolerance after RYGB. PMID:28524868

  19. Effect of combination treatment of S–amlodipine with peroxisome proliferator-activated receptor agonists on metabolic and cardiovascular parameters in Zucker fa/fa rats

    PubMed Central

    2014-01-01

    Background Type 2 diabetes is a complex metabolic disorder characterized by hyperglycemia, impaired glucose tolerance and insulin resistance associated with dyslipidemia and hypertension. The available drugs are not sufficiently efficacious in reducing cardiovascular risk and restoring normal glucose metabolism associated with type 2 diabetes as a mono- or a combination therapy. The present study examined the combined effects of an antihypertensive (S-Amlodipine) and an insulin-sensitizing agent, peroxisome proliferator-activated receptor (PPAR) agonists (Pioglitazone and Ragaglitazar), on cardiovascular risk factors in aged diabetic and insulin-resistant Zucker fa/fa rats. Methods Following combination treatment for 14 days, blood pressure (BP), serum glucose, total cholesterol and triglycerides were measured. Aortic ring study was conducted to determine the effect of combination treatments on phenylephrine-induced vasoconstriction and acetylcholine (Ach)-induced vasorelaxation. Results In combination, S-Amlodipine and Pioglitazone significantly reduced blood glucose (115.1 ± 6.6 vs. 81.7 ± 4.2), BP (184.4 ± 5.0 vs. 155.1 ± 5.0), serum triglycerides (362.5 ± 47.5 vs. 211.1 ± 23.7) and glucose intolerance when compared with vehicle treated Zucker fa/fa rats. Similar results were observed with the combination of S-Amlodipine and Ragaglitazar (Triglycerides, 362.5 ± 47.5 vs. 252.34 ± 27.86; BP, 184.4 ± 5.0 vs. 159.0 ± 8.0) except for serum glucose. ACh-induced vasorelaxation in aortic rings was also superior with both of the combinations compared to individual treatment. Furthermore, there was less body weight gain and food intake with S-Amlodipine and Pioglitazone combination in Zucker fa/fa rats. S-Amlodipine itself caused significant reduction in glucose (115.1 ± 6.6 vs. 89.7 ± 2.7) and BP (184.4 ± 5.0 vs. 156.1 ± 4.0) with improvement in insulin sensitivity observed through oral glucose

  20. Co-opting the Fanconi Anemia Genomic Stability Pathway Enables Herpesvirus DNA Synthesis and Productive Growth

    PubMed Central

    Karttunen, Heidi; Savas, Jeffrey N.; McKinney, Caleb; Chen, Yu-Hung; Yates, John R.; Hukkanen, Veijo; Huang, Tony T.; Mohr, Ian

    2015-01-01

    SUMMARY DNA damage associated with viral DNA synthesis can result in double strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi Anemia (FA) genomic stability pathway is exploited by HSV1 to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV1-infected cells resulted in monoubiquitination of FA effector proteins, FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments and FANCI-D2 interacted with a multi-subunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, while HSV1 productive growth was impaired in monoubiquitination-defective FA patient cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for non-homologous end-joining (NHEJ). This identifies the FA-pathway as a new cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral lifecycle. PMID:24954902

  1. FA(I):A(+) and FA(II):Cu(+) laser activity and photographic sensitization at the low coordinated surfaces of AgBr ab initio calculations.

    PubMed

    Shalabi, A S

    2002-08-01

    The twofold potentials of F(A)(I):Au(+) and F(A)(II)Cu(+) color centers at the low coordinated surfaces of AgBr thin films in providing tunable laser activity and photographic sensitization were investigated using ab initio methods of molecular electronic structure calculations. Clusters of variable size were embedded in simulated Coulomb fields that closely approximated the Madelung fields of the host surfaces, and the nearest neighbor ions to the F(A) defect site were allowed to relax to equilibrium in each case. Based on the calculated Stokes shifted optical transition bands and horizontal shifts along the configuration coordinate diagrams, both F(A)(I):Au(+) and F(A)(II):Cu(+) color centers were found to be laser active. The laser activity faded quickly as the bromide ion coordination decreased from 5 (flat) to 4 (edge) to 3 (corner) and as the size of the impurity cation increased from Cu(+) to Au(+). The latter relation was explainable in terms of the axial perturbation of the impurity cation. The smallest calculated Stokes-shift at the corner surface suggested that emission had the same oscillator strength as absorption. All relaxed excited states RESs of the defect containing surfaces were deep below the lower edges of the conduction bands of the defect free ground state surfaces, indicating that F(A)(I):Au(+) and F(A)(II):Cu(+) are suitable laser defects. The probability of orientational destruction of the two centers attributed to the assumed RES saddle point ion configurations along the <110> axis was found to be directly proportional to the size of the impurity cation, with activation energy barriers of about 0.655-3.294 eV for Cu(+), and about 1.887-3.404 eV for Au(+). The possibility of exciton (energy) transfer from the sites of higher coordination to those of lower coordination is demonstrated. The more laser active F(A)(II):Cu(+) center was more easily formed than the less laser active F(A)(I):Au(+) center. The Glasner-Tompkins empirical relation

  2. FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents.

    PubMed

    Patil, Abhijit A; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D; Roylance, Anthony; Kriplani, Deepti H; Myers, Katie N; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A; Collis, Spencer J

    2014-08-15

    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge, where survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome.

  3. FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents

    PubMed Central

    Patil, Abhijit A.; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D.; Roylance, Anthony; Kriplani, Deepti H.; Myers, Katie N.; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A.; Collis, Spencer J.

    2014-01-01

    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge. GBM survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome. PMID:25071006

  4. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair

    PubMed Central

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J.; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D.; Wang, Zhao-Qi; Jasin, Maria

    2005-01-01

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca–/– cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice. PMID:15650050

  5. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    PubMed

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  6. Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations.

    PubMed

    Santos, Ana Raquel O; Leon, Marina P; Barros, Katharina O; Freitas, Larissa F D; Hughes, Alice F S; Morais, Paula B; Lachance, Marc-André; Rosa, Carlos A

    2018-04-01

    Six novel yeast species, Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., Starmerella opuntiae f.a., sp. nov., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a, sp. nov. are proposed to accommodate 19 isolates recovered from ephemeral flowers or bees in Brazil, Costa Rica and Belize. Sequence analysis of the ITS-5.8S region (when available) and the D1/D2 domains of the large subunit of the rRNA gene showed that the six novel yeasts are phylogenetically related to several species of the Starmerella clade. The type strains are Starmerella camargoi f.a., sp. nov. UFMG-CM-Y595 T (=CBS 14130 T ; Mycobank number MB 822640), Starmerella ilheusensis f.a., sp. nov. UFMG-CM-Y596 T (=CBS CBS14131 T ; MB 822641), Starmerella litoralis f.a., sp. nov. UFMG-CM-Y603 T (=CBS14104 T ; MB 822642), Starmerella opuntiae f.a., sp. nov. UFMG-CM-Y286 T (=CBS 13466 T ; MB 822643), Starmerella roubikii f.a., sp. nov. UWOPS 01-191.1 (=CBS 15148; MB 822645) and Starmerella vitae f.a., sp. nov. UWOPS 00-107.2 (=CBS 15147 T ; MB 822646). In addition, 25 species currently assigned to the genus Candida are reassigned formally to the genus Starmerella.

  7. Diffusion tensor tractography detection of functional pathway for the spread of epileptiform activity between temporal lobe and Rolandic region.

    PubMed

    Bhardwaj, Ratan D; Mahmoodabadi, Sina Zarei; Otsubo, Hiroshi; Snead, O Carter; Rutka, James T; Widjaja, Elysa

    2010-02-01

    The aim of the study was to assess the connectivity between magnetoencephalographic (MEG) dipoles in the temporal lobe and Rolandic region in children with temporal lobe epilepsy using diffusion tensor imaging (DTI) tractography. Six pediatric patients with intractable focal epilepsy had MEG performed, which showed MEG dipoles over both temporal and Rolandic regions in a unilateral hemisphere. DTI tractography was performed on each patient. Six control subjects were studied for comparison. Two volumes of interest (VOIs) that encompassed the MEG dipoles were drawn, one placed in temporal lobe and the other in Rolandic region. Similar VOIs were placed in the contralateral side in the patients and on both sides in controls. Fractional anisotropy (FA) and trace of the external capsules were compared between patients and controls. In all patients, a tractography pathway traversing through the external capsule, connecting the temporal and Rolandic MEG dipoles, was visualized. However, on the contralateral hemisphere in each patient, there was no evidence of a similar fiber tract. There was no corresponding tractography pathway identified in either hemisphere within the controls. There were no significant differences in FA and trace between the seizure focus side and contralateral side in the patients. There was no significant difference in FA, but a difference in trace between patients and controls. We have found aberrant tractography pathway traversing through the external capsule, connecting two distant foci of epileptiform activity. Chronic interictal epileptogenic discharge could play a causal role in the de novo organization of these tracts.

  8. Is the onset of obesity in suckling fa/fa rats linked to a potentially larger milk intake?

    PubMed

    Buchberger, P; Schmidt, I

    1996-08-01

    We wanted to find out whether fatty (fa/fa) sucklings show abnormal intake when given access to an abundant milk reservoir. To do this, we gravimetrically determined the milk ingested by small groups (4-5 pups) of 5- to 15-day-old lean (+/fa) and fatty littermates allowed to suckle for 30 min after their mother had not been nursing for periods of between 1 and 7 h. The pups were grouped randomly and their phenotypes retrospectively identified. Within both genotypes, the intakes of simultaneously tested pups were significantly higher in pups deprived for longer periods. Deprived and undeprived fa/fa pups ingested, however, slightly but significantly less milk than +/fa littermates did in the same nursing bout. In the first 2 wk of life, when fa/fa pups deposit nearly twice as much body fat as their +/fa littermates do, fa/fa pups will thus suckle less rather than more milk. This extends previous findings showing that the onset of fa/fa obesity is independent of larger intakes and thus questions that fa impairs a receptor primarily controlling food intake.

  9. Dysfunction of protein kinase FA/GSK-3 alpha in lymphocytes of patients with schizophrenic disorder.

    PubMed

    Yang, S D; Yu, J S; Lee, T T; Yang, C C; Ni, M H; Yang, Y Y

    1995-09-01

    As compared to normal people, the lymphocytes of patients with schizophrenia were found to have an impairment of ATP.Mg-dependent protein phosphatase activation. More importantly, the impaired protein phosphatase activation in the lymphocytes of schizophrenic patients could be consistently and completely restored to normal by exogenous pure protein kinase FA/glycogen synthase kinase-3 alpha (kinase FA/GSK-3 alpha) (the activating factor of ATP.Mg-dependent protein phosphatase), indicating that the molecular mechanism for the impaired protein phosphatase activation in schizophrenic patients may be due to a functional loss of kinase FA/GSK-3 alpha. Immunoblotting and kinase activity analysis in an anti-kinase FA/GSK-3 alpha immunoprecipitate further demonstrate that both cellular activities and protein levels of kinase FA/GSK-3 alpha in the lymphocytes of schizophrenic patients were greatly impared as compared to normal controls. Statistical analysis revealed that the lymphocytes isolated from 37 normal people contain kinase FA/GSK-3 alpha activity in the high levels of 14.8 +/- 2.4 units/mg of cell protein, whereas the lymphocytes of 48 patients with schizophrenic disorder contain kinase FA/GSK-3 alpha activity in the low levels of 2.8 +/- 1.6 units/mg, indicating that the different levels of kinase FA/GSK-3 alpha activity between schizophrenic patients and normal people are statistically significant. Taken together, the results provide initial evidence that patients with schizophrenic disorder may have a common impairment in the protein levels and cellular activities of kinase FA/GSK-3 alpha, a multisubstrate protein kinase and a multisubstrate protein phosphatase activator in their lymphocytes.

  10. The Fanconi Anemia Pathway: Repairing the Link Between DNA Damage and Squamous Cell Carcinoma

    PubMed Central

    Romick-Rosendale, Lindsey E.; Lui, Vivian W. Y.; Grandis, Jennifer R.; Wells, Susanne I.

    2013-01-01

    Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today’s bone marrow failure treatments on tomorrow’s solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility. PMID:23333482

  11. White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.

    PubMed

    Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano

    2012-01-16

    Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients

    PubMed Central

    2014-01-01

    Background Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. Methods We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Results Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients’ clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Conclusions Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology

  13. Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia patients.

    PubMed

    Chang, Lixian; Yuan, Weiping; Zeng, Huimin; Zhou, Quanquan; Wei, Wei; Zhou, Jianfeng; Li, Miaomiao; Wang, Xiaomin; Xu, Mingjiang; Yang, Fengchun; Yang, Yungui; Cheng, Tao; Zhu, Xiaofan

    2014-05-15

    Fanconi anemia (FA) is a rare inherited genetic syndrome with highly variable clinical manifestations. Fifteen genetic subtypes of FA have been identified. Traditional complementation tests for grouping studies have been used generally in FA patients and in stepwise methods to identify the FA type, which can result in incomplete genetic information from FA patients. We diagnosed five pediatric patients with FA based on clinical manifestations, and we performed exome sequencing of peripheral blood specimens from these patients and their family members. The related sequencing data were then analyzed by bioinformatics, and the FANC gene mutations identified by exome sequencing were confirmed by PCR re-sequencing. Homozygous and compound heterozygous mutations of FANC genes were identified in all of the patients. The FA subtypes of the patients included FANCA, FANCM and FANCD2. Interestingly, four FA patients harbored multiple mutations in at least two FA genes, and some of these mutations have not been previously reported. These patients' clinical manifestations were vastly different from each other, as were their treatment responses to androstanazol and prednisone. This finding suggests that heterozygous mutation(s) in FA genes could also have diverse biological and/or pathophysiological effects on FA patients or FA gene carriers. Interestingly, we were not able to identify de novo mutations in the genes implicated in DNA repair pathways when the sequencing data of patients were compared with those of their parents. Our results indicate that Chinese FA patients and carriers might have higher and more complex mutation rates in FANC genes than have been conventionally recognized. Testing of the fifteen FANC genes in FA patients and their family members should be a regular clinical practice to determine the optimal care for the individual patient, to counsel the family and to obtain a better understanding of FA pathophysiology.

  14. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression.

    PubMed

    Wang, Yong; Huo, Yazhen; Zhao, Liang; Lu, Feng; Wang, Ou; Yang, Xue; Ji, Baoping; Zhou, Feng

    2016-07-01

    Cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and a potential nutritional supplement for preventing retinal degeneration. However, the protective mechanism of C3G and its metabolites, protocatechuic acid (PCA) and ferulic acid (FA), remain unclear. The molecular mechanisms of C3G and its metabolites against retinal photooxidative damage in vivo are investigated. Pigmented rabbits were orally administered C3G, PCA, and FA (0.11 mmol/kg/day) for 3 weeks. Electroretinography, histological analysis, and TUNEL assay showed that C3G and its metabolites attenuated retinal cell apoptosis. The expression of oxidative stress markers were upregulated after light exposure but attenuated by C3G and FA, which may be attributed to the elevated secretion and expression of heme oxygenase (HO-1) and nuclear factor erythroid-2 related factor 2 (Nrf2). C3G, PCA, and FA attenuated the secretion or expression of inflammation-related genes; FA suppressed nuclear factor kappa B (NF-κB) activation. The treatments attenuated the light-induced changes on certain apoptotic proteins and angiogenesis-related cytokines. C3G and FA reduced light-induced retinal oxidative stress by activating the Nrf2/HO-1 antioxidant pathway. FA attenuated the light-induced retinal inflammation by suppressing NF-κB activation. C3G and its metabolites attenuated the photooxidation-induced apoptosis and angiogenesis in the retina. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stress and DNA repair biology of the Fanconi anemia pathway

    PubMed Central

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  16. A never-ending story: the steadily growing family of the FA and FA-like genes

    PubMed Central

    Gueiderikh, Anna; Rosselli, Filippo; Neto, Januario B.C.

    2017-01-01

    Abstract Among the chromosome fragility-associated human syndromes that present cancer predisposition, Fanconi anemia (FA) is unique due to its large genetic heterogeneity. To date, mutations in 21 genes have been associated with an FA or an FA-like clinical and cellular phenotype, whose hallmarks are bone marrow failure, predisposition to acute myeloid leukemia and a cellular and chromosomal hypersensitivity to DNA crosslinking agents exposure. The goal of this review is to trace the history of the identification of FA genes, a history that started in the eighties and is not yet over, as indicated by the cloning of a twenty-first FA gene in 2016. PMID:28558075

  17. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo

    PubMed Central

    Yang, Yang; Poe, Jonathan C.; Yang, Lisong; Fedoriw, Andrew; Desai, Siddhi; Magnuson, Terry; Li, Zhiguo; Fedoriw, Yuri; Araki, Kimi; Gao, Yanzhe; Tateishi, Satoshi; Sarantopoulos, Stefanie; Vaziri, Cyrus

    2016-01-01

    In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18−/− mice. Moreover, primary Rad18−/− mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18−/− HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18−/− mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting. PMID:26883629

  18. Alterations of local cerebral glucose utilization in lean and obese fa/fa rats after acute adrenalectomy.

    PubMed

    Doyle, P; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1994-08-29

    An animal model often used to investigate the aetiology of obesity is the genetically obese fa/fa rat. It has many abnormalities, including hyperphagia, hyper-insulinemia, insulin resistance, low cerebral glucose utilization and an overactive hypothalamo-pituitary adrenal (HPA) axis with resulting hypercorticism. Due to the latter consideration, the aim of this work was to study the impact of acute adrenalectomy (ADX) on the local cerebral glucose utilization (LCGU) of lean and obese fa/fa rats. ADX resulted in discrete increases in LCGU of regions common to both lean and obese rats. These common regions were found to belong to be related to the limbic system. Within this system, the LCGU of the brain of obese rats was either normalized to lean sham operated values or increased by ADX to a similar degree in both groups on a percentage basis. It was concluded that the LCGU of both lean and obese animals appears to be negatively regulated, albeit to different extents, by glucocorticoids. Such negative regulation is particularly salient within the limbic system of the lean rat and even more so in the fa/fa rat. It is suggested that the long-term hypercorticism of obese fa/fa rats due to abnormal regulation of the HPA axis may result in a decreased LCGU in limbic and related regions of the brain of fa/fa rats and contribute to the expression of the obese phenotype.

  19. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway.

    PubMed

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D'Andrea, Alan D

    2015-04-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4-mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.

  20. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate fruit ripening in strawberry.

    PubMed

    Hou, Bing-Zhu; Xu, Cheng; Shen, Yuan-Yue

    2018-03-24

    Strawberry (Fragaria×ananassa) is a model plant for studying non-climacteric fruit ripening regulated by abscisic acid (ABA); however, its exact molecular mechanisms are yet not fully understood. In this study, a predicted leu-rich repeat (LRR) receptor-like kinase in strawberry, red-initial protein kinase 1 (FaRIPK1), was screened and, using a yeast two-hybrid assay, was shown to interact with a putative ABA receptor, FaABAR. This association was confirmed by bimolecular fluorescence complementation and co-immunoprecipitation assays, and shown to occur in the nucleus. Expression analysis by real-time PCR showed that FaRIPK1 is expressed in roots, stems, leaves, flowers, and fruit, with a particularly high expression in white fruit at the onset of coloration. Down-regulation of FaRIPK1 expression in strawberry fruit, using Tobacco rattle virus-induced gene silencing, inhibited ripening, as evidenced by suppression of ripening-related physiological changes and reduced expression of several genes involved in softening, sugar content, pigmentation, and ABA biosynthesis and signaling. The yeast-expressed LRR and STK (serine/threonine protein kinase) domains of FaRIPK1 bound ABA and showed kinase activity, respectively. A fruit disc-incubation test revealed that FaRIPK1 expression was induced by ABA and ethylene. The synergistic action of FaRIPK1 with FaABAR in regulation of strawberry fruit ripening is discussed.

  1. The fanconi anemia pathway limits human papillomavirus replication.

    PubMed

    Hoskins, Elizabeth E; Morreale, Richard J; Werner, Stephen P; Higginbotham, Jennifer M; Laimins, Laimonis A; Lambert, Paul F; Brown, Darron R; Gillison, Maura L; Nuovo, Gerard J; Witte, David P; Kim, Mi-Ok; Davies, Stella M; Mehta, Parinda A; Butsch Kovacic, Melinda; Wikenheiser-Brokamp, Kathryn A; Wells, Susanne I

    2012-08-01

    High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.

  2. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway

    PubMed Central

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A.; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D’Andrea, Alan D.

    2015-01-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4–mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes. PMID:25751062

  3. Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA.

    PubMed

    Ferrer, Miriam; de Winter, Johan P; Mastenbroek, D C Jeroen; Curiel, David T; Gerritsen, Winald R; Giaccone, Giuseppe; Kruyt, Frank A E

    2004-08-01

    Fanconi anemia (FA) is a rare genetic disorder characterized by bone-marrow failure and cellular hypersensitivity to crosslinking agents, including cisplatin. Here, we studied the use of the FA pathway as a possible target for cancer gene therapy with the aim to sensitize tumor cells for cisplatin by interfering with the FA pathway. As proof-of-principle, FA and non-FA lymphoblast-derived tumors were grown subcutaneously in scid mice and treated with two different concentrations of cisplatin. As predicted, the antitumor response was considerably improved in FA tumors. An adenoviral vector encoding a dominant-negative form of FANCA, FANCA600DN, was generated that interfered with endogenous FANCA-FANCG interaction resulting in the disruption of the FA pathway as illustrated by disturbed FANCD2 monoubiquitination. A panel of cell lines, including non-small-cell lung cancer cells, could be sensitized approximately two- to three-fold for cisplatin after Ad.CMV.FANCA600DN infection that may increase upon enhanced infection efficiency. In conclusion, targeting the FA pathway may provide a novel strategy for the sensitization of solid tumors for cisplatin and, in addition, provides a tool for examining the role of the FA pathway in determining chemoresistance in different tumor types.

  4. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L.

    PubMed

    Sood, Archit; Chauhan, Rajinder Singh

    2015-09-01

    The rising demand for biofuels has raised concerns about selecting alternate and promising renewable energy crops which do not compete with food supply. Jatropha (Jatropha curcas L.), a non-edible energy crop of the family euphorbiaceae, has the potential of providing biodiesel feedstock due to the presence of high proportion of unsaturated fatty acids (75%) in seed oil which is mainly accumulated in endosperm and embryo. The molecular basis of seed oil biosynthesis machinery has been studied in J. curcas, however, what genetic differences contribute to differential oil biosynthesis and accumulation in genotypes varying for oil content is poorly understood. We investigated expression profile of 18 FA and TAG biosynthetic pathway genes in different developmental stages of embryo and endosperm from high (42%) and low (30%) oil content genotypes grown at two geographical locations. Most of the genes showed relatively higher expression in endosperms of high oil content genotype, whereas no significant difference was observed in endosperms versus embryos of low oil content genotype. The promoter regions of key genes from FA and TAG biosynthetic pathways as well as other genes implicated in oil accumulation were analyzed for regulatory elements and transcription factors specific to oil or lipid accumulation in plants such as Dof, CBF (LEC1), SORLIP, GATA and Skn-1_motif etc. Identification of key genes from oil biosynthesis and regulatory elements specific to oil deposition will be useful not only in dissecting the molecular basis of high oil content but also improving seed oil content through transgenic or molecular breeding approaches. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats.

  6. Time to Detection with BacT/Alert FA Plus Compared to BacT/Alert FA Blood Culture Media.

    PubMed

    Nutman, A; Fisher Even-Tsur, S; Shapiro, G; Braun, T; Schwartz, D; Carmeli, Y

    2016-09-01

    Rapid identification of the causative pathogen in patients with bacteremia allows adjustment of antibiotic therapy and improves patient outcomes. We compared in vitro and real-life time to detection (TTD) of two blood culture media, BacT/Alert FA (FA) and BacT/Alert FA Plus (FA Plus), for the nine most common species of bacterial pathogens recovered from blood samples. Experimental data from simulated cultures was compared with microbiology records of TTD for both culture media with growth of the species of interest in clinical blood cultures. In the experimental conditions, median TTD was 3.8 hours (23.9 %) shorter using FA Plus media. The magnitude of reduction differed between species. Similarly, in real life data, FA Plus had shorter TTD than FA media; however, the difference between culture media was smaller, and median TTD was only 1 hour (8.5 %) less. We found shorter TTD with BacT/Alert FA Plus culture media, both experimentally and in real-life conditions and unrelated to antibiotic neutralization, highlighting the importance of appropriate blood culture media selection.

  7. The Significance of Different Diacylgycerol Synthesis Pathways on Plant Oil Composition and Bioengineering

    PubMed Central

    Bates, Philip D.; Browse, John

    2012-01-01

    The unique properties of vegetable oils from different plants utilized for food, industrial feedstocks, and fuel is dependent on the fatty acid (FA) composition of triacylglycerol (TAG). Plants can use two main pathways to produce diacylglycerol (DAG), the immediate precursor molecule to TAG synthesis: (1) De novo DAG synthesis, and (2) conversion of the membrane lipid phosphatidylcholine (PC) to DAG. The FA esterified to PC are also the substrate for FA modification (e.g., desaturation, hydroxylation, etc.), such that the FA composition of PC-derived DAG can be substantially different than that of de novo DAG. Since DAG provides two of the three FA in TAG, the relative flux of TAG synthesis from de novo DAG or PC-derived DAG can greatly affect the final oil FA composition. Here we review how the fluxes through these two alternate pathways of DAG/TAG synthesis are determined and present evidence that suggests which pathway is utilized in different plants. Additionally, we present examples of how the endogenous DAG synthesis pathway in a transgenic host plant can produce bottlenecks for engineering of plant oil FA composition, and discuss alternative strategies to overcome these bottlenecks to produce crop plants with designer vegetable oil compositions. PMID:22783267

  8. Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training.

    PubMed

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2017-08-01

    Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with (Music Group) or without (Control Group) musical cues. Participants completed 20minutes of training three times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased significantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No significant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in adults, with potential implications for therapeutic clinical practice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Fanconi Anemia Proteins, DNA Interstrand Crosslink Repair Pathways, and Cancer Therapy

    PubMed Central

    Andreassen, Paul R.; Ren, Keqin

    2016-01-01

    DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylation of bases and DNA intrastrand crosslinks, are extensively utilized for cancer therapy. Understanding the cellular response to DNA damage induced by these agents is critical for more effective utilization of these compounds and for the identification of novel therapeutic targets. Importantly, the repair of DNA interstrand crosslinks (ICLs) involves many distinct DNA repair pathways, including nucleotide excision repair, translesion synthesis (TLS), and homologous recombination (HR). Additionally, proteins implicated in the pathophysiology of the multigenic disease Fanconi anemia (FA) have a role in the repair of ICLs that is not well understood. Cells from FA patients are hypersensitive to agents that induce ICLs, therefore FA proteins are potentially novel therapeutic targets. Here we will review current research directed at identifying FA genes and understanding the function of FA proteins in DNA damage responses. We will also examine interactions of FA proteins with other repair proteins and pathways, including signaling networks, which are potentially involved in ICL repair. Potential approaches to the modulation of FA protein function to enhance therapeutic outcome will be discussed. Also, mutation of many genes that encode proteins involved in ICL repair, including FA genes, increases susceptibility to cancer. A better understanding of these pathways is therefore critical for the design of individualized therapies tailored to the genetic profile of a particular malignancy. For this purpose, we will also review evidence for the association of mutation of FA genes with cancer in non-FA patients. PMID:19200054

  10. Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck Cancer Cells.

    PubMed

    Zhao, Xueheng; Brusadelli, Marion G; Sauter, Sharon; Butsch Kovacic, Melinda; Zhang, Wujuan; Romick-Rosendale, Lindsey E; Lambert, Paul F; Setchell, Kenneth D R; Wells, Susanne I

    2018-06-01

    Purpose: Mutations in Fanconi anemia (FA) genes are common in sporadic squamous cell carcinoma of the head and neck (HNSCC), and we have previously demonstrated that FA pathway depletion in HNSCC cell lines stimulates invasion. The goal of our studies was to use a systems approach in order to define FA pathway-dependent lipid metabolism and to extract lipid-based signatures and effectors of invasion in FA-deficient cells. Experimental Design: We subjected FA-isogenic HNSCC keratinocyte cell lines to untargeted and targeted lipidomics analyses to discover novel biomarkers and candidate therapeutic targets in FA-deficient cells. Cellular invasion assays were carried out in the presence and absence of N-butyldeoxynojirimycin (NB-DNJ), a biosynthetic inhibitor of the newly identified class of gangliosides, to investigate the requirement of ganglioside upregulation in FA-deficient HNSCC cells. Results: The most notable element of the lipid profiling results was a consistent elevation of glycosphingolipids, and particularly the accumulation of gangliosides. Conversely, repression of this same class of lipids was observed upon genetic correction of FA patient-derived HNSCC cells. Functional studies demonstrate that ganglioside upregulation is required for HNSCC cell invasion driven by FA pathway loss. The motility of nontransformed keratinocytes in response to FA loss displayed a similar dependence, thus supporting early and late roles for the FA pathway in controlling keratinocyte invasion through lipid regulation. Conclusions: Elevation of glycosphingolipids including the ganglioside GM3 in response to FA loss stimulates invasive characteristics of immortalized and transformed keratinocytes. An inhibitor of glycosphingolipid biosynthesis NB-DNJ attenuates invasive characteristics of FA-deficient HNSCC cells. Clin Cancer Res; 24(11); 2700-9. ©2018 AACR . ©2018 American Association for Cancer Research.

  11. The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide.

    PubMed

    Yang, Xiao-Na; Niu, You-Ya; Liu, Yan; Yang, Yang; Wang, Jin; Cheng, Xiao-Yang; Liang, Hong; Wang, Heng-Shan; Hu, You-Min; Lu, Xiang-Yang; Zhu, Michael X; Xu, Tian-Le; Tian, Yun; Yu, Ye

    2017-12-29

    The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells.

    PubMed

    Renaud, Emilie; Barascu, Aurelia; Rosselli, Filippo

    2016-01-29

    To rescue collapsed replication forks cells utilize homologous recombination (HR)-mediated mechanisms to avoid the induction of gross chromosomal abnormalities that would be generated by non-homologous end joining (NHEJ). Using DNA interstrand crosslinks as a replication barrier, we investigated how the Fanconi anemia (FA) pathway promotes HR at stalled replication forks. FA pathway inactivation results in Fanconi anemia, which is associated with a predisposition to cancer. FANCD2 monoubiquitination and assembly in subnuclear foci appear to be involved in TIP60 relocalization to the chromatin to acetylates histone H4K16 and prevents the binding of 53BP1 to its docking site, H4K20Me2. Thus, FA pathway loss-of-function results in accumulation of 53BP1, RIF1 and RAP80 at damaged chromatin, which impair DNA resection at stalled replication fork-associated DNA breaks and impede HR. Consequently, DNA repair in FA cells proceeds through the NHEJ pathway, which is likely responsible for the accumulation of chromosome abnormalities. We demonstrate that the inhibition of NHEJ or deacetylase activity rescue HR in FA cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. This modified F/A-18A is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's D

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.

  14. Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity.

    PubMed

    Aggio, Raphael B M; Ruggiero, Katya; Villas-Bôas, Silas Granato

    2010-12-01

    Metabolomics is one of the most recent omics-technologies and uses robust analytical techniques to screen low molecular mass metabolites in biological samples. It has evolved very quickly during the last decade. However, metabolomics datasets are considered highly complex when used to relate metabolite levels to metabolic pathway activity. Despite recent developments in bioinformatics, which have improved the quality of metabolomics data, there is still no straightforward method capable of correlating metabolite level to the activity of different metabolic pathways operating within the cells. Thus, this kind of analysis still depends on extremely laborious and time-consuming processes. Here, we present a new algorithm Pathway Activity Profiling (PAPi) with which we are able to compare metabolic pathway activities from metabolite profiles. The applicability and potential of PAPi was demonstrated using a previously published data from the yeast Saccharomyces cerevisiae. PAPi was able to support the biological interpretations of the previously published observations and, in addition, generated new hypotheses in a straightforward manner. However, PAPi is time consuming to perform manually. Thus, we also present here a new R-software package (PAPi) which implements the PAPi algorithm and facilitates its usage to quickly compare metabolic pathways activities between different experimental conditions. Using the identified metabolites and their respective abundances as input, the PAPi package calculates pathways' Activity Scores, which represents the potential metabolic pathways activities and allows their comparison between conditions. PAPi also performs principal components analysis and analysis of variance or t-test to investigate differences in activity level between experimental conditions. In addition, PAPi generates comparative graphs highlighting up- and down-regulated pathway activity. These datasets are available in http://www.4shared

  15. Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Diebler, Corey G.

    2005-01-01

    A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.

  16. FaPOD27 functions in the metabolism of polyphenols in strawberry fruit (Fragaria sp.)

    PubMed Central

    Yeh, Su-Ying; Huang, Fong-Chin; Hoffmann, Thomas; Mayershofer, Mechthild; Schwab, Wilfried

    2014-01-01

    The strawberry (Fragaria × ananassa) is one of the most preferred fresh fruit worldwide, accumulates numerous flavonoids but has limited shelf life due to excessive tissue softening caused by cell wall degradation. Since lignin is one of the polymers that strengthen plant cell walls and might contribute to some extent to fruit firmness monolignol biosynthesis was studied in strawberry fruit. Cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD), and a peroxidase (POD27) gene were strongly expressed in red, ripe fruit whereas a second POD gene was primarily expressed in green, immature fruit. Moreover, FaPOD27 transcripts were strongly and constitutively induced in fruits exposed to Agrobacterium infection. Gene expression levels and enzymatic activities of FaCCR and FaCAD were efficiently suppressed through RNAi in FaCCR- and FaCAD-silenced strawberries. Besides, significantly elevated FaPOD transcript levels were detected after agroinfiltration of pBI-FaPOD constructs in fruits. At the same time, levels of G-monomers were considerably reduced in FaCCR-silenced fruits whereas the proportion of both G- and S-monomers decisively decreased in FaCAD-silenced and pBI-FaPOD fruits. Development, firmness, and lignin level of the treated fruits were similar to pBI-intron control fruits, presumably attributed to increased expression levels of FaPOD27 upon agroinfiltration. Additionally, enhanced firmness, accompanied with elevated lignin levels, was revealed in chalcone synthase-deficient fruits (CHS−), independent of down- or up-regulation of individual and combined FaCCR. FaCAD, and FaPOD genes by agroinfiltration, when compared to CHS−/pBI-intron control fruits. These approaches provide further insight into the genetic control of flavonoid and lignin synthesis in strawberries. The results suggest that FaPOD27 is a key gene for lignin biosynthesis in strawberry fruit and thus to improving the firmness of strawberries. PMID:25346738

  17. Physical interaction between the strawberry allergen Fra a 1 and an associated partner FaAP: Interaction of Fra a 1 proteins and FaAP.

    PubMed

    Franz-Oberdorf, Katrin; Langer, Andreas; Strasser, Ralf; Isono, Erika; Ranftl, Quirin L; Wunschel, Christian; Schwab, Wilfried

    2017-10-01

    The strawberry fruit allergens Fra a 1.01E, Fra a 1.02 and Fra a 1.03 belong to the group of pathogenesis-related 10 (PR-10) proteins and are homologs of the major birch pollen Bet v 1 and apple allergen Mal d 1. Bet v 1 related proteins are the most extensively studied allergens but their physiological function in planta remains elusive. Since Mal d 1-Associated Protein has been previously identified as interaction partner of Mal d 1 we studied the binding of the orthologous Fra a 1-Associated Protein (FaAP) to Fra a 1.01E/1.02/1.03. As the C-terminal sequence of FaAP showed strong auto-activation activity in yeast 2-hybrid analysis a novel time resolved DNA-switching system was successfully applied. Fra a 1.01E, Fra a 1.02, and Fra a 1.03 bind to FaAP with K D of 4.5 ± 1.1, 15 ± 3, and 11 ± 2 nM, respectively. Fra a 1.01E forms a dimer, whereas Fra a 1.02 and Fra a 1.03 bind as monomer. The results imply that PR-10 proteins might be integrated into a protein-interaction network and FaAP binding appears to be essential for the physiological function of the Fra a 1 proteins. © 2017 Wiley Periodicals, Inc.

  18. Evaluation of Carbohydrate-Derived Fulvic Acid (CHD-FA) as a Topical Broad-Spectrum Antimicrobial for Drug-Resistant Wound Infections

    DTIC Science & Technology

    2016-10-01

    restored from day 3 till day 6 in the cutaneous wound infection model. Although we have previously confirmed the broad-spectrum activity of CHD-FA in...vitro, CHD-FA may be less active against Gram-positive pathogens in vivo. The exact molecular mechanisms of the antibiotic activity of CHD-FA are still...not clear, and will be further investigated to address the discrepancy in its activity against Gram-positive and Gram-negative pathogens in our

  19. pH-sensitive Au–BSA–DOX–FA nanocomposites for combined CT imaging and targeted drug delivery

    PubMed Central

    Huang, He; Yang, Da-Peng; Liu, Minghuan; Wang, Xiangsheng; Zhang, Zhiyong; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wen Jie; Wang, Xiansong

    2017-01-01

    Albumin-based nanoparticles (NPs) as a drug delivery system have attracted much attention owing to their nontoxicity, non-immunogenicity, great stability and ability to bind to many therapeutic drugs. Herein, bovine serum albumin (BSA) was utilized as a template to prepare Au–BSA core/shell NPs. The outer layer BSA was subsequently conjugated with cis-aconityl doxorubicin (DOX) and folic acid (FA) to create Au–BSA–DOX–FA nanocomposites. A list of characterizations was undertaken to identify the successful conjugation of drug molecules and targeted agents. In vitro cytotoxicity using a cell counting kit-8 (CCK-8) assay indicated that Au–BSA NPs did not display obvious cytotoxicity to MGC-803 and GES-1 cells in the concentration range of 0–100 μg/mL, which can therefore be used as a safe drug delivery carrier. Furthermore, compared with free DOX, Au–BSA–DOX–FA nanocomposites exhibited a pH-sensitive drug release ability and superior antitumor activity in a drug concentration-dependent manner. In vivo computed tomography (CT) imaging experiments showed that Au–BSA–DOX–FA nanocomposites could be used as an efficient and durable CT contrast agent for targeted CT imaging of the folate receptor (FR) overexpressed in cancer tissues. In vivo antitumor experiments demonstrated that Au–BSA–DOX–FA nanocomposites have selective antitumor activity effects on FR-overexpressing tumors and no adverse effects on normal tissues and organs. In conclusion, the Au–BSA–DOX–FA nanocomposite exhibits selective targeting activity, X-ray attenuation activity and pH-sensitive drug release activity. Therefore, it can enhance CT imaging and improve the targeting therapeutic efficacy of FR-overexpressing gastric cancers. Our findings suggest that Au–BSA–DOX–FA nanocomposite is a novel drug delivery carrier and a promising candidate for cancer theranostic applications. PMID:28435261

  20. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu).

    PubMed

    Luan, Jinwei; Li, Xianglan; Guo, Rutao; Liu, Shanshan; Luo, Hongyu; You, Qingshan

    2016-06-01

    Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells. The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network. Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle. RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray.

  1. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  2. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer.

    PubMed

    Park, Jung Wook; Pitot, Henry C; Strati, Katerina; Spardy, Nicole; Duensing, Stefan; Grompe, Markus; Lambert, Paul F

    2010-12-01

    Patients with the rare genetic disease, Fanconi anemia (FA), are highly susceptible to squamous cell carcinomas arising at multiple anatomic sites including the head and neck region. Human papillomaviruses (HPVs), particularly HPV16, are associated with ∼20% of head and neck squamous cell carcinomas (HNSCCs) in the general population. Some but not other investigators have reported that HNSCCs in FA patients are much more frequently positive for HPV. In addition, studies have demonstrated an interaction between the HPV16 E7 oncoprotein and the FA pathway, a DNA damage response pathway deficient in FA patients. On the basis of these studies, it was hypothesized that the FA pathway contributes to repair of DNA damage induced by HPV16 E7, providing one explanation for why FA patients are predisposed to HPV-associated HNSCCs. To determine the importance of the FA pathway in modulating the oncogenic abilities of E7, we crossed K14E7 transgenic (K14E7) and fancD2 knockout mice (FancD2(-/-)) to establish K14E7/FancD2(-/-) and K14E7/FancD2(+/+) mice and monitored their susceptibility to HNSCC when treated with a chemical carcinogen. K14E7/FancD2(-/-) mice had a significantly higher incidence of HNSCC compared with K14E7/FancD2(+/+) mice. This difference correlated with an increased proliferative index and the increase in expression of biomarkers that are used to assess levels of DNA damage. These animal studies support the hypotheses that FA patients have increased susceptibility to HPV-associated cancer and that the FA DNA damage response pathway normally attenuates the oncogenic potential of HPV16 E7.

  3. Defective homing is associated with altered Cdc42 activity in cells from patients with Fanconi anemia group A

    PubMed Central

    Zhang, Xiaoling; Shang, Xun; Guo, Fukun; Murphy, Kim; Kirby, Michelle; Kelly, Patrick; Reeves, Lilith; Smith, Franklin O.; Williams, David A.

    2008-01-01

    Previous studies showed that Fanconi anemia (FA) murine stem cells have defective reconstitution after bone marrow (BM) transplantation. The mechanism underlying this defect is not known. Here, we report defective homing of FA patient BM progenitors transplanted into mouse models. Using cells from patients carrying mutations in FA complementation group A (FA-A), we show that when transplanted into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) recipient mice, FA-A BM cells exhibited impaired homing activity. FA-A cells also showed defects in both cell-cell and cell-matrix adhesion. Complementation of FA-A deficiency by reexpression of FANCA readily restored adhesion of FA-A cells. A significant decrease in the activity of the Rho GTPase Cdc42 was found associated with these defective functions in patient-derived cells, and expression of a constitutively active Cdc42 mutant was able to rescue the adhesion defect of FA-A cells. These results provide the first evidence that FA proteins influence human BM progenitor homing and adhesion via the small GTPase Cdc42-regulated signaling pathway. PMID:18565850

  4. The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation

    PubMed Central

    Yamashita, Takayuki; Kupfer, Gary M.; Naf, Dieter; Suliman, Ahmed; Joenje, Hans; Asano, Shigetaka; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway. PMID:9789045

  5. The Fanconi anemia pathway and ICL repair: implications for cancer therapy

    PubMed Central

    Wang, Lily C; Gautier, Jean

    2011-01-01

    Fanconi anemia (FA) is an inherited disease caused by mutations in at least 13 genes and characterized by genomic instability. In addition to displaying strikingly heterogenous clinical phenotypes, FA patients are exquisitely sensitive to treatments with crosslinking agents that create interstrand crosslinks (ICL). In contrast to bacteria and yeast, in which ICLs are repaired through replication-dependent and –independent mechanisms, it is thought that ICLs are repaired primarily during DNA replication in vertebrates (Moldovan and D’Andrea, 2009). However, recent data indicate that replication-independent ICL repair also operates in vertebrates. While the precise role of the FA pathway in ICL repair remains elusive, increasing evidence suggests that FA proteins function at different steps in the sensing, recognition and processing of ICLs, as well as in signaling from these very toxic lesions, which can be generated by a wide variety of cancer chemotherapeutic drugs. Here, we discuss some of the recent findings that have shed light on the role of the FA pathway in ICL repair with special emphasis on the implications of these findings for cancer therapy since disruption of FA genes have been associated with cancer predisposition. PMID:20807115

  6. This NASA Dryden F/A-18 is participating in the Automated Aerial Refueling (AAR) project. F/A-18 (No

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Dryden F/A-18 is participating in the Automated Aerial Refueling (AAR) project. F/A-18 (No. 847) is acting as an in-flight refueling tanker in the study to develop analytical models for an automated aerial refueling system for unmanned vehicles. A 300-gallon aerodynamic pod containing air-refueling equipment is seen beneath the fuselage. The hose and refueling basket are extended during an assessment of their dynamics on the F/A-18A.

  7. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    PubMed

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  8. Mass spectrometry of the lithium adducts of diacylglycerols containing hydroxy FA in castor oil and two normal FA

    USDA-ARS?s Scientific Manuscript database

    Castor oil can be used in industry. The molecular species of triacylglycerols containing hydroxy fatty acids (FA) in castor oil have been identified. We report here the identification of twelve diacylglycerols (DAG) containing hydroxy FA in castor oil using positive ion electrospray ionization mass ...

  9. FANCD2 monoubiquitination and activation by hexavalent chromium [Cr(VI)] exposure

    PubMed Central

    Vilcheck, Susan K.; Ceryak, Susan; O’Brien, Travis J.; Patierno, Steven R.

    2007-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by γ-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult. PMID:16893675

  10. Metabolic Interaction between Anthocyanin and Lignin Biosynthesis Is Associated with Peroxidase FaPRX27 in Strawberry Fruit1[W

    PubMed Central

    Ring, Ludwig; Yeh, Su-Ying; Hücherig, Stephanie; Hoffmann, Thomas; Blanco-Portales, Rosario; Fouche, Mathieu; Villatoro, Carmen; Denoyes, Béatrice; Monfort, Amparo; Caballero, José Luis; Muñoz-Blanco, Juan; Gershenson, Jonathan; Schwab, Wilfried

    2013-01-01

    Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm. PMID:23835409

  11. The Fanconi anemia pathway limits the severity of mutagenesis.

    PubMed

    Hinz, John M; Nham, Peter B; Salazar, Edmund P; Thompson, Larry H

    2006-08-13

    Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.

  12. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway.

    PubMed

    Oka, Yasuyoshi; Bekker-Jensen, Simon; Mailand, Niels

    2015-05-12

    Ubiquitin and ubiquitin-like proteins (UBLs) function in a wide array of cellular processes. UBL5 is an atypical UBL that does not form covalent conjugates with cellular proteins and which has a known role in modulating pre-mRNA splicing. Here, we report an unexpected involvement of human UBL5 in promoting the function of the Fanconi anemia (FA) pathway for repair of DNA interstrand crosslinks (ICLs), mediated by a specific interaction with the central FA pathway component FANCI. UBL5-deficient cells display spliceosome-independent reduction of FANCI protein stability, defective FANCI function in response to DNA damage and hypersensitivity to ICLs. By mapping the sequence determinants underlying UBL5-FANCI binding, we generated separation-of-function mutants to demonstrate that key aspects of FA pathway function, including FANCI-FANCD2 heterodimerization, FANCD2 and FANCI monoubiquitylation and maintenance of chromosome stability after ICLs, are compromised when the UBL5-FANCI interaction is selectively inhibited by mutations in either protein. Together, our findings establish UBL5 as a factor that promotes the functionality of the FA DNA repair pathway. © 2015 The Authors.

  13. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats.

    PubMed

    Jiao, Jian; Bae, Eun Ju; Bandyopadhyay, Gautam; Oliver, Jason; Marathe, Chaitra; Chen, Michael; Hsu, Jer-Yuan; Chen, Yu; Tian, Hui; Olefsky, Jerrold M; Saberi, Maziyar

    2013-04-01

    Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.

  14. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats.

    PubMed

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c

  15. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats

    PubMed Central

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to

  16. Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke.

    PubMed

    Mang, Cameron S; Borich, Michael R; Brodie, Sonia M; Brown, Katlyn E; Snow, Nicholas J; Wadden, Katie P; Boyd, Lara A

    2015-10-01

    To examine the relationship of transcallosal pathway microstructure and transcallosal inhibition (TCI) with motor function and impairment in chronic stroke. Diffusion-weighted magnetic resonance imaging and transcranial magnetic stimulation (TMS) data were collected from 24 participants with chronic stroke and 11 healthy older individuals. Post-stroke motor function (Wolf Motor Function Test) and level of motor impairment (Fugl-Meyer score) were evaluated. Fractional anisotropy (FA) of transcallosal tracts between prefrontal cortices and the mean amplitude decrease in muscle activity during the ipsilateral silent period evoked by TMS over the non-lesioned hemisphere (termed NL-iSPmean) were significantly associated with level of motor impairment and motor function after stroke (p<0.05). A regression model including age, post-stroke duration, lesion volume, lesioned corticospinal tract FA, transcallosal prefrontal tract FA and NL-iSPmean accounted for 84% of variance in motor impairment (p<0.01). Both transcallosal prefrontal tract FA (ΔR(2)=0.12, p=0.04) and NL-iSPmean (ΔR(2)=0.09, p=0.04) accounted for unique variance in motor impairment level. Prefrontal transcallosal tract microstructure and TCI are each uniquely associated with motor impairment in chronic stroke. Utilizing a multi-modal approach to assess transcallosal pathways may improve our capacity to identify important neural substrates of motor impairment in the chronic phase of stroke. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  18. Low-ω3 Fatty Acid and Soy Protein Attenuate Alcohol-Induced Fatty Liver and Injury by Regulating the Opposing Lipid Oxidation and Lipogenic Signaling Pathways

    PubMed Central

    Reyes-Gordillo, Karina; Shah, Ruchi; Varatharajalu, Ravi; Garige, Mamatha; Leckey, Leslie C.

    2016-01-01

    Chronic ethanol-induced downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β) affect hepatic lipid oxidation and lipogenesis, respectively, leading to fatty liver injury. Low-ω3 fatty acid (Low-ω3FA) that primarily regulates PGC1α and soy protein (SP) that seems to have its major regulatory effect on PGC1β were evaluated for their protective effects against ethanol-induced hepatosteatosis in rats fed with Lieber-deCarli control or ethanol liquid diets with high or low ω3FA fish oil and soy protein. Low-ω3FA and SP opposed the actions of chronic ethanol by reducing serum and liver lipids with concomitant decreased fatty liver. They also prevented the downregulation of hepatic Sirtuin 1 (SIRT1) and PGC1α and their target fatty acid oxidation pathway genes and attenuated the upregulation of hepatic PGC1β and sterol regulatory element-binding protein 1c (SREBP1c) and their target lipogenic pathway genes via the phosphorylation of 5′ adenosine monophosphate-activated protein kinase (AMPK). Thus, these two novel modulators attenuate ethanol-induced hepatosteatosis and consequent liver injury potentially by regulating the two opposing lipid oxidation and lipogenic pathways. PMID:28074114

  19. Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatin

    PubMed Central

    Burkitt, Kyunghee; Ljungman, Mats

    2008-01-01

    Background Cisplatin has been widely used to treat head and neck cancer. One of the clinical limitations with this treatment, however, is that tumors that are initially responsive to cisplatin later acquire resistance. We have recently shown that a subset of head and neck cancer cell lines has a defective Fanconi anemia DNA damage response pathway and this defect correlates to cisplatin sensitivity. We have also shown that the histone deacetylase inhibitor phenylbutyrate sensitize human cells to cisplatin. In this study we explored whether phenylbutyrate may sensitize head and neck cancer cells by interfering with the Fanconi anemia pathway. Results We found that the phenylbutyrate sensitizes head and neck cancer cell lines to cisplatin. This sensitization by phenylbutyrate correlated to a significant decrease in the formation of cisplatin-induced FANCD2 nuclear foci, which is a functional read out of the Fanconi anemia and BRCA (FA/BRCA) pathway. This abrogation of the FA/BRCA pathway by phenylbutyrate was not due to loss of FANCD2 monoubiquitylation but rather correlated to a phenylbutyrate-mediated reduction in the expression of the BRCA1 protein. Furthermore, we found that cancer cells defective in the FA pathway were also sensitized to cisplatin by phenylbutyrate suggesting that phenylbutyrate targets additional pathways. Conclusion The results from this study suggest that phenylbutyrate may have therapeutic utility as a cisplatin sensitizer in head and neck cancer by inhibiting the FA/BRCA pathway through the down regulation of BRCA1 as well as by an FA/BRCA-independent mechanism. PMID:18325101

  20. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress.

    PubMed

    Liow, K Y; Chow, Sek C

    2018-01-01

    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

  1. FANCM-FAAP24 and FANCJ: FA proteins that metabolize DNA

    PubMed Central

    Ali, Abdullah Mahmood; Singh, Thiyam Ramsing; Meetei, Amom Ruhikanta

    2009-01-01

    Fanconi anemia (FA) is a rare autosomal recessive or X-linked disorder characterized by aplastic anemia, cancer susceptibility and cellular sensitivity to DNA crosslinking agents. Eight FA proteins (FANCA, -B, -C, -E, -F, -G, -L and –M) and three non-FA proteins (FAAP100, FAAP24 and HES1) form the FA nuclear core complex that is required for monoubiquitination of the FANCD2-FANCI dimer upon DNA damage. The other three FA proteins, FANCD1/BRCA2, FANCJ/BACH1/BRIP1 and FANCN/PALB2, act in parallel or downstream of the FANCD2-FANCI dimer. Despite the isolation and characterization of several FA proteins, the mechanism by which these proteins protect cells from DNA interstrand crosslinking agents has been unclear. This is because a majority of the FA proteins lack any recognizable functional domains that can provide insight into their function. The recently discovered FANCM (Hef) and FANCJ (BRIP1/BACH1) proteins contain helicase domains, providing potential insight into the role of FA proteins in DNA repair. FANCM with its partner, FAAP24, and FANCJ bind and metabolize a variety of DNA substrates. In this review, we focus on the discovery, structure, and function of the FANCM-FAAP24 and FANCJ proteins. PMID:19379763

  2. Characterization of FaDu-R, a radioresistant head and neck cancer cell line, and cancer stem cells.

    PubMed

    Cho, Kwang-Jae; Park, Eun-Ji; Kim, Min-Sik; Joo, Young-Hoon

    2018-06-01

    The aim of this study was to evaluate the impact of CSC on insensitivity to radiotherapy in HNSCC. A radioresistant cell line, FaDu-R, was established using fractionated ionizing radiation. Cells with high and low CD44/ALDH activity were isolated. FaDu-R cells demonstrated significantly increased cell viability after radiation exposure compared with parental cells. CD44 high /ALDH high FaDu-R cells demonstrated significantly faster wound closure (p<0.05) and more efficient invasion (p<0.05) compared to the CD44 high /ALDH high FaDu cells or the CD44 low /ALDH low FaDu-R cells. There was a significant difference in tumor volume between the CD44 high /ALDH high FaDu-R cells and the CD44 high /ALDH high FaDu cells (p<0.05) as well as the CD44 low /ALDH low FaDu-R cells (p<0.05). Cancer stem cells (CSC) were associated with invasion and tumorigenesis in a radioresistant head and neck squamous cell carcinoma (HNSCC) cell line. This concept might help to improve the understanding of these mechanisms and to develop drugs that can overcome radioresistance during radiotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prismatic louver active façades for natural illumination and thermal energy gain in high-rise and commercial buildings

    NASA Astrophysics Data System (ADS)

    Vlachokostas, A.; Volkmann, C.; Madamopoulos, N.

    2013-06-01

    High-rise and commercial buildings in urban centers present a great challenge in terms of their energy consumption. Due to maximization of rentable square footage, the preferred urban façade system over the past 50 years has been the "curtain wall", only a few inches thick and comprised of modular steel or aluminum framing and predominant glass infills. The perceived Achilles heel of these modern glass façade systems is their thermal inefficiency: They are inadequate thermal barriers and exhibit excessive solar gain. The excessive solar gain has a negative impact on lighting and cooling loads of the entire building. This negative impact will be further exacerbated with rising energy costs. However, rather than view the glass façade's uncontrolled solar gain merely as a weakness contributing to higher energy consumption, the condition could indeed be considered as related to an energy solution. These glass façades can be retrofitted to operate as a provider of daylight and energy for the rest of the building, taking advantage of the overexposure to the sun. With today's technology, the sun's abundant renewable energy can be the driving force for the energy transition of these building envelopes. Illumination, thermal energy, and electricity production can be directly supplied from the sun, and when correctly and efficiently managed, they can lead to a significantly less energy-intensive building stock. We propose a multi-purpose, prismatic, louver-based façade to perform both daylight and thermal energy harvesting with a goal of offering a better daylight environment for the occupants, and reduce the energy consumption and carbon footprint of the building. While decentralized air-conditioning units are commonly accepted as façade "plug-ins", such decentralization could be utilized with more benefits by passively managing the interior space conditions, without using any extra power. Just as living organisms respond and adapt to the environmental changes in

  4. Role of various DNA repair pathways in chromosomal inversion formation in CHO mutants.

    PubMed

    Cartwright, Ian M; Kato, Takamitsu A

    2015-01-01

    In an effort to better understand the formation of chromosomal inversions, we investigated the role of various DNA repair pathways, including the non-homologous end joining (NHEJ), homologous recombination (HR), and Fanconi Anemia (FA) repair pathways for the formation of radiation induced chromosomal inversions. CHO10B2 wild type, CHO DNA repair-deficient, and CHO DNA repair-deficient corrected mutant cells were synchronized into G1 phase and exposed to gamma-rays. First post-irradiation metaphase cells were analyzed for chromosomal inversions by a differential chromatid staining technique involving a single cycle pre-irradiation ethynyl-uridine treatment and statistic calculations. It was observed that inhibition of the NHEJ pathway resulted in an overall decrease in the number of radiation-induced inversions, roughly a 50% decrease when compared to the CHO wild type. Interestingly, inhibition of the FA pathway resulted in an increase in both the number of spontaneous inversions and the number of radiation-induced inversions observed after exposure to 2 Gy of ionizing radiation. It was observed that FA-deficient cells contained roughly 330% (1.24 inversions per cell) more spontaneous inversions and 20% (0.4 inversions per cell) more radiation-induced inversions than the wild-type CHO cell lines. The HR mutants, defective in Rad51 foci, showed similar number of spontaneous and radiation-induced inversion as the wild-type cells. Gene complementation resulted in both spontaneous and radiation-induced inversions resembling the CHO wild-type cells. We have concluded that the NHEJ repair pathway contributes to the formation of radiation-induced inversions. Additionally, through an unknown molecular mechanism it appears that the FA signal pathway prevents the formation of both spontaneous and radiation induced inversions.

  5. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression

    PubMed Central

    Jakka, Siva R. K.; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J.; Narva, Kenneth; Blanco, Carlos A.

    2015-01-01

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae. PMID:26637593

  6. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer.

    PubMed

    Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Muñoz, Jenifer; Ocaña, Teresa; Carballal, Sabela; López-Cerón, Maria; Cuatrecasas, Miriam; Vila-Casadesús, Maria; Lozano, Juan José; Serra, Enric; Beltran, Sergi; Brea-Fernández, Alejandro; Ruiz-Ponte, Clara; Castells, Antoni; Bujanda, Luis; Garre, Pilar; Caldés, Trinidad; Cubiella, Joaquín; Balaguer, Francesc; Castellví-Bel, Sergi

    2016-10-01

    Colorectal cancer (CRC) is one of the most common neoplasms in the world. Fanconi anemia (FA) is a very rare genetic disease causing bone marrow failure, congenital growth abnormalities and cancer predisposition. The comprehensive FA DNA damage repair pathway requires the collaboration of 53 proteins and it is necessary to restore genome integrity by efficiently repairing damaged DNA. A link between FA genes in breast and ovarian cancer germline predisposition has been previously suggested. We selected 74 CRC patients from 40 unrelated Spanish families with strong CRC aggregation compatible with an autosomal dominant pattern of inheritance and without mutations in known hereditary CRC genes and performed germline DNA whole-exome sequencing with the aim of finding new candidate germline predisposition variants. After sequencing and data analysis, variant prioritization selected only those very rare alterations, producing a putative loss of function and located in genes with a role compatible with cancer. We detected an enrichment for variants in FA DNA damage repair pathway genes in our familial CRC cohort as 6 families carried heterozygous, rare, potentially pathogenic variants located in BRCA2/FANCD1, BRIP1/FANCJ, FANCC, FANCE and REV3L/POLZ. In conclusion, the FA DNA damage repair pathway may play an important role in the inherited predisposition to CRC.

  8. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry.

    PubMed

    Li, Qian; Ji, Kai; Sun, Yufei; Luo, Hao; Wang, Hongqing; Leng, Ping

    2013-10-01

    In plants, β-glucosidases (BG) have been implicated in developmental and pathogen defense, and are thought to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA; however, there is no genetic evidence for the role of BG genes in ripening and biotic/abiotic stress in fruits. To clarify the role of BG genes in fruit, eight Fa/FvBG genes encoding β-glucosidase were isolated using information from the GenBank strawberry nucleotide database. Of the Fa/FvBG genes examined, expression of FaBG3 was the highest, showing peaks at the mature stage, coincident with the changes observed in ABA content. To verify the role of this gene, we suppressed the expression of FaBG3 via inoculation with Agrobacterium tumefaciens containing tobacco rattle virus carrying a FaBG3 fragment (RNAi). The expression of FaBG3 in FaBG3-RNAi-treated fruit was markedly reduced, and the ABA content was lower than that of the control. FaBG3-RNAi-treated fruit did not exhibit full ripening, and were firmer, had lower sugar content, and were pale compared with the control due to down-regulation of ripening-related genes. FaBG3-RNAi-treated fruit with reduced ABA levels were much more resistant to Botrytis cinerea fungus but were more sensitive to dehydration stress than control fruit. These results indicate that FaBG3 may play key roles in fruit ripening, dehydration stress and B. cinerea fungal infection in strawberries via modulation of ABA homeostasis and transcriptional regulation of ripening-related genes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  9. The Fanconi anemia pathway sensitizes to DNA alkylating agents by inducing JNK-p53-dependent mitochondrial apoptosis in breast cancer cells.

    PubMed

    Zhao, Lin; Li, Yanlin; He, Miao; Song, Zhiguo; Lin, Shu; Yu, Zhaojin; Bai, Xuefeng; Wang, Enhua; Wei, Minjie

    2014-07-01

    The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to DNA alkylating agents and greatly influences drug response in cancer treatment. However, the molecular mechanisms underlying the FA/BRCA pathway reversed resistance have received limited attention. In the present study, we investigated the effect of Fanconi anemia complementation group F protein (FANCF), a critical factor of the FA/BRCA pathway, on cancer cell apoptosis induced by DNA alkylating agents such as mitomycin c (MMC). We found that FANCF shRNA potentiated MMC-induced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 breast cancer cells. At a mechanistic level, FANCF shRNA downregulated the anti-apoptotic protein Bcl-2 and upregulated the pro-apoptotic protein Bax, accompanied by release of cyt-c and smac into the cytosol in MMC-treated cells. Furthermore, activation of caspase-3 and -9, other than caspase-8, cleavage of poly(ADP ribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated that involvement of the mitochondrial apoptotic pathway in FANCF silencing of MMC-treated breast cancer cells. A decrease in IAP family proteins XIAP and survivin were also observed following FANCF silencing in MMC-treated breast cancer cells. Notably, FANCF shRNA was able to increase p53 levels through activation of the JNK pathway in MMC-treated breast cancer cells. Furthermore, p53 inhibition using pifithrin-α abolished the induction of caspase-3 and PARP by FANCF shRNA and MMC, indicating that MMC-induced apoptosis is substantially enhanced by FANCF shRNA via p53-dependent mechanisms. To our knowledge, we provide new evidence for the potential application of FANCF as a chemosensitizer in breast cancer therapy.

  10. RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP)

    DOE PAGES

    Zhao, Chi; Gan, Fei; Shen, Gaozhong; ...

    2015-11-25

    Terrestrial cyanobacteria often occur in niches tha tare strongly enriched in far-redlight (FRL; λ > 700nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRLphotoacclimation(FaRLiP).During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS)I, PSII,and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d.Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB,and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203.The resulting mutants were no longer able to modify their photosynthetic apparatus to absorbmore » FRL, were no longer able to synthesize Chl f, in appropriately synthesized Chl d in white light,and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less

  11. RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chi; Gan, Fei; Shen, Gaozhong

    Terrestrial cyanobacteria often occur in niches tha tare strongly enriched in far-redlight (FRL; λ > 700nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRLphotoacclimation(FaRLiP).During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS)I, PSII,and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d.Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB,and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203.The resulting mutants were no longer able to modify their photosynthetic apparatus to absorbmore » FRL, were no longer able to synthesize Chl f, in appropriately synthesized Chl d in white light,and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less

  12. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    PubMed

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into

  13. Surface characterization of colloidal-sol gel derived biphasic HA/FA coatings.

    PubMed

    Cheng, Kui; Zhang, Sam; Weng, Wenjian

    2007-10-01

    Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a "colloidal sol". HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 degrees C drying and 600 degrees C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400-600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.

  14. FANCJ suppresses microsatellite instability and lymphomagenesis independent of the Fanconi anemia pathway.

    PubMed

    Matsuzaki, Kenichiro; Borel, Valerie; Adelman, Carrie A; Schindler, Detlev; Boulton, Simon J

    2015-12-15

    Microsatellites are short tandem repeat sequences that are highly prone to expansion/contraction due to their propensity to form non-B-form DNA structures, which hinder DNA polymerases and provoke template slippage. Although error correction by mismatch repair plays a key role in preventing microsatellite instability (MSI), which is a hallmark of Lynch syndrome, activities must also exist that unwind secondary structures to facilitate replication fidelity. Here, we report that Fancj helicase-deficient mice, while phenotypically resembling Fanconi anemia (FA), are also hypersensitive to replication inhibitors and predisposed to lymphoma. Whereas metabolism of G4-DNA structures is largely unaffected in Fancj(-/-) mice, high levels of spontaneous MSI occur, which is exacerbated by replication inhibition. In contrast, MSI is not observed in Fancd2(-/-) mice but is prevalent in human FA-J patients. Together, these data implicate FANCJ as a key factor required to counteract MSI, which is functionally distinct from its role in the FA pathway. © 2015 Matsuzaki et al.; Published by Cold Spring Harbor Laboratory Press.

  15. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes

    PubMed Central

    Chaves, Raquel; Ferreira, Daniela; Mendes-da-Silva, Ana; Meles, Susana; Adega, Filomena

    2017-01-01

    Abstract In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic “dark matter.” Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is “frozen” conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved. In Carnivora genomes, the FA-SAT-related sequences are also amplified, with the predominance of a specific FA-SAT variant, at the heterochromatic regions. We inspected the cat genome project to locate FA-SAT array flanking regions and revealed an intensive intermingling with transposable elements. Our results also show that FA-SAT-related sequences are transcribed and that the most abundant FA-SAT variant is not always the most transcribed. We thus conclude that the DNA sequences of FA-SAT and their transcripts are “frozen” in these genomes. Future work is needed to disclose any putative function that these sequences may play in these genomes. PMID:29608678

  16. TRIM.FaTE Evaluation Report

    EPA Pesticide Factsheets

    The TRIM.FaTE Evaluation Report is composed of three volumes. Volume I presents conceptual, mechanistic, and structural complexity evaluations of various aspects of the model. Volumes II and III present performance evaluation.

  17. Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Allen, Michael J.

    2007-01-01

    Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  18. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  19. The Dorsal Rather than Ventral Pathway Better Reflects Individual Syntactic Abilities in Second Language

    PubMed Central

    Yamamoto, Kayako; Sakai, Kuniyoshi L.

    2016-01-01

    The left inferior frontal gyrus (IFG) has been reported to be critically involved in syntactic processing, not only in first language (L1), but in second language (L2). Indeed, the leftward lateralization of the IFG has been shown to be correlated with the performance of a syntactic task in L2. Given that posterior language-related regions are systematically connected with the left IFG, the next question is which of the dorsal and ventral pathways is more critical to the individual syntactic abilities in L2. Here we used diffusion magnetic resonance imaging (MRI) and tractography with newly developed semi-automatic methods of defining seeds and selecting regions of interest (ROIs). We calculated mean thickness and fractional anisotropy (FA) in each ROI for the arcuate fasciculus (Arcuate) of the dorsal pathway, as well as for the inferior fronto-occipital fasciculus (IFOF) of the ventral pathway. In Experiment I, we performed partial correlation analyses between FA and the accuracy of the syntactic task, removing the effects of the accuracy of a spelling task, gender, and handedness. Among the two pathways in each hemisphere, only FA of the left Arcuate was significantly correlated with individual accuracy of the syntactic task. In Experiment II, we recruited monozygotic twins and examined to what extent their L2 abilities and their structural properties were similar. Within twin pairs, the highest significant correlation was observed for reaction times of the spelling task, while the correlation for the accuracy of the syntactic task was marginal; these two correlation coefficients were significantly different. Moreover, the thickness of the left Arcuate was highly correlated within pairs, while its FA, as well as the thickness/FA in the ventral pathways, was not significantly correlated. The correlation coefficient for the thickness of the left Arcuate was significantly larger than that of the left IFOF. These results suggest that the thickness of the left

  20. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    DOE PAGES

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; ...

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  1. RfpA, RfpB, and RfpC are the Master Control Elements of Far-Red Light Photoacclimation (FaRLiP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chi; Gan, Fei; Shen, Gaozhong

    Terrestrial cyanobacteria often occur in niches that are strongly enriched in far-red light (FRL; λ > 700 nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRL photoacclimation (FaRLiP). During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS) I, PS II, and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d. Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB, and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203. The resulting mutantsmore » were no longer able to modify their photosynthetic apparatus to absorb FRL, were no longer able to synthesize Chl f, inappropriately synthesized Chl d in white light, and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less

  2. Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks.

    PubMed

    Mason, Jennifer M; Sekiguchi, JoAnn M

    2011-07-01

    Fanconi anemia (FA) is an inherited chromosomal instability disorder characterized by childhood aplastic anemia, developmental abnormalities and cancer predisposition. One of the hallmark phenotypes of FA is cellular hypersensitivity to agents that induce DNA interstrand crosslinks (ICLs), such as mitomycin C (MMC). FA is caused by mutation in at least 14 genes which function in the resolution of ICLs during replication. The FA proteins act within the context of a protein network in coordination with multiple repair factors that function in distinct pathways. SNM1B/Apollo is a member of metallo-β-lactamase/βCASP family of nucleases and has been demonstrated to function in ICL repair. However, the relationship between SNM1B and the FA protein network is not known. In the current study, we establish that SNM1B functions epistatically to the central FA factor, FANCD2, in cellular survival after ICL damage and homology-directed repair of DNA double-strand breaks. We also demonstrate that MMC-induced chromosomal anomalies are increased in SNM1B-depleted cells, and this phenotype is not further exacerbated upon depletion of either FANCD2 or another key FA protein, FANCI. Furthermore, we find that SNM1B is required for proper localization of critical repair factors, including FANCD2, BRCA1 and RAD51, to MMC-induced subnuclear foci. Our findings demonstrate that SNM1B functions within the FA pathway during the repair of ICL damage.

  3. Middle region of FancM interacts with Mhf and Rmi1 in silkworms, a species lacking the Fanconi anaemia (FA) core complex.

    PubMed

    Sugahara, R; Mon, H; Lee, J M; Kusakabe, T

    2014-04-01

    The Fanconi anaemia (FA) pathway is responsible for interstrand crosslink (ICL) repair. Among the FA core complex components, FANCM is believed to act as a damage sensor for the ICL-blocked replication fork and also as a molecular platform for FA core complex assembly and interaction with Bloom's syndrome (BS) complex that is thought to play an important role in the processing of DNA structures such as stalled replication forks. In the present study, we found that in silkworms, Bombyx mori, a species lacking the major FA core complex components (FANCA, B, C, E, F, and G), FancM is required for FancD2 monoubiquitination and cell proliferation in the presence of mitomycin C (MMC). Silkworm FancM (BmFancM) was phosphorylated in the middle regions, and the modification was associated with its subcellular localization. In addition, BmFancM interacted with Mhf1, a histone-fold protein, and Rmi1, a subunit of the BS complex, in the different regions. The interaction region containing at least these two protein-binding domains played an essential role in FancM-dependent resistance to MMC. Our results suggest that BmFancM also acts as a platform for recruitment of both the FA protein and the BS protein, although the silkworm genome seems to lose FAAP24, a FancM-binding partner protein in mammals. © 2013 The Royal Entomological Society.

  4. Supplemental fructose attenuates postprandial glycemia in Zucker fatty fa/fa rats.

    PubMed

    Wolf, Bryan W; Humphrey, Phillip M; Hadley, Craig W; Maharry, Kati S; Garleb, Keith A; Firkins, Jeffrey L

    2002-06-01

    Experiments were conducted to evaluate the effects of supplemental fructose on postprandial glycemia. After overnight food deprivation, Zucker fatty fa/fa rats were given a meal glucose tolerance test. Plasma glucose response was determined for 180 min postprandially. At a dose of 0.16 g/kg body, fructose reduced (P < 0.05) the incremental area under the curve (AUC) by 34% when supplemented to a glucose challenge and by 32% when supplemented to a maltodextrin (a rapidly digested starch) challenge. Similarly, sucrose reduced (P = 0.0575) the incremental AUC for plasma glucose when rats were challenged with maltodextrin. Second-meal glycemic response was not affected by fructose supplementation to the first meal, and fructose supplementation to the second meal reduced (P < 0.05) postprandial glycemia when fructose had been supplemented to the first meal. In a dose-response study (0.1, 0.2, and 0.5 g/kg body), supplemental fructose reduced (P < 0.01) the peak rise in plasma glucose (linear and quadratic effects). In the final experiment, a low dose of fructose (0.075 g/kg body) reduced (P < 0.05) the incremental AUC by 18%. These data support the hypothesis that small amounts of oral fructose or sucrose may be useful in lowering the postprandial blood glucose response.

  5. Overexpression of protein kinase FA/GSK-3 alpha (a proline-directed protein kinase) correlates with human hepatoma dedifferentiation/progression.

    PubMed

    Yang, S D; Yu, J S; Yang, C C; Lee, S C; Lee, T T; Ni, M H; Kuan, C Y; Chen, H C

    1996-05-01

    Computer analysis of protein phosphorylation sites sequence revealed that transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of the proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3 alpha (kinase F(A)/GSK-3 alpha) (a member of PDPK family) has been optimized for human hepatoma and used to demonstrate for the first time significantly increased (P < 0.01) activity in poorly differentiated SK-Hep-1 hepatoma (24.2 +/- 2.8 units/mg) and moderately differentiated Mahlavu hepatoma (14.5 +/- 2.2 units/mg) when compared to well differentiated Hep 3B hepatoma (8.0 +/- 2.4 units/mg). Immunoblotting analysis revealed that increased activity of kinase FA/GSK-3 alpha is due to overexpression of the protein. Elevated kinase FA/GSK-3 alpha expression in human hepatoma biopsies relative to normal liver tissue was found to be even more profound. This kinase appeared to be fivefold overexpressed in well differentiated hepatoma and 13-fold overexpressed in poorly differentiated hepatoma when compared to normal liver tissue. Taken together, the results provide initial evidence that overexpression of kinase FA/GSK-3 alpha is involved in human hepatoma dedifferentiation/progression. Since kinase FA/GSK-3 alpha is a PDPK, the results further support a potential role of this kinase in human liver tumorigenesis, especially in its dedifferentiation/progression.

  6. Leaching of biocides used in façade coatings under laboratory test conditions.

    PubMed

    Schoknecht, Ute; Gruycheva, Jana; Mathies, Helena; Bergmann, Hannelore; Burkhardt, Michael

    2009-12-15

    The European Biocidal Products Directive 98/8/EC requires a risk assessment concerning possible effects of active ingredients on the environment. Biocides can be leached from treated materials exposed to outdoor use. These emissions have to be estimated and evaluated during the authorization procedure. Different immersion and irrigation tests were performed to investigate leaching of biocides from façade coatings. Several marketed formulations of textured coatings and paints spiked with a mixture of commonly used active ingredients (OIT, DCOIT, IPBC, carbendazim, isoproturon, diuron, terbutryn, and Irgarol 1051) were investigated. The emission process can be described by time-dependent functions that depend on the test conditions. The results of all test procedures confirm that leachability is related to water solubility and n-octanol-water partition coefficient of the active ingredients and that leaching of biocides from façade coatings is mainly a diffusion controlled process. Other factors like the composition of the product, availability and transport of water, concentration of active ingredients in the coatings, as well as UV-exposure of the coatings influence biocide emissions.

  7. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Taichi; Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521; Takahashi, Akihisa

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-}more » cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.« less

  8. Adaptive Façade: Variant-Finding using Shape Grammar

    NASA Astrophysics Data System (ADS)

    Tomasowa, Riva; Utama Sjarifudin, Firza

    2017-12-01

    Modular façade construction has never been better since the birth of computer-aided manufacturing which bridges the modeling phase into the manufacturing phase for escalating the mass production. This comes to a result that the identity of a product or a building façade will commonly generate in the same way that the initial design was intended to. Rectifying the early model will then greatly impact the process later. The aim of this paper is to propose a way to solve these two challenges, without risking the manufacturing process, but more to explore the potential designs. Shape grammar is used to conceive more designs in the early stage, derived from the initial product - the modular adaptive façade system. The derivations are then tested through simulation to state the efficacy of the models. We find that the workflow somehow contributes to the better design and engineering process as well as the solution allows diversification in the façade expressions.

  9. Increase in gray matter volume and white matter fractional anisotropy in the motor pathways of patients with secondarily generalized neocortical seizures.

    PubMed

    Hsin, Yue-Loong; Harnod, Tomor; Chang, Cheng-Siu; Peng, Syu-Jyun

    2017-11-01

    Convulsive motor activity is a clinical manifestation of secondarily generalized seizures evolving from different focal regions. The way in which the motor seizures present themselves is not very different from most of the generalized seizures in and between epilepsy patients. This might point towards the involvement of motor-related cortices and corticospinal pathway for wide spread propagation of epileptic activity. Our aim was to identify changes in the cerebral structures and to correlate clinical variables with structural changes particularly in the motor-related cortices and pathway of patients with generalized convulsions from different seizure foci. Sixteen patients with focal onset and secondarily generalized seizures were included, along with sixteen healthy volunteers. Structural differences were analysed by measuring grey matter (GM) volume and thickness via T1-weighted MRI, and white matter (WM) fractional anisotropy (FA) via diffusion tensor imaging. GM and WM microstructural properties were compared between patients and controls by voxel- and surface- based analyses. Next, morphometric findings were correlated with seizure severity and disease duration to identify the pathologic process. In addition to widely reduced GM and WM properties, increased GM volume in the bilateral precentral gyri and paracentral lobules, and elevated regional FA in the bilateral corticospinal tracts adjacent to these motor -related GM were observed in patients and with higher statistical difference in the sub-patient group with drug-resistance. The increment of GM volume and WM FA in the motor pathway positively correlated with severity and duration of epilepsy. The demonstrated microstructural changes of motor pathways imply a plastic process of motor networks in the patients with frequent generalization of focal seizures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. FaStore - a space-saving solution for raw sequencing data.

    PubMed

    Roguski, Lukasz; Ochoa, Idoia; Hernaez, Mikel; Deorowicz, Sebastian

    2018-03-29

    The affordability of DNA sequencing has led to the generation of unprecedented volumes of raw sequencing data. These data must be stored, processed, and transmitted, which poses significant challenges. To facilitate this effort, we introduce FaStore, a specialized compressor for FASTQ files. FaStore does not use any reference sequences for compression, and permits the user to choose from several lossy modes to improve the overall compression ratio, depending on the specific needs. FaStore in the lossless mode achieves a significant improvement in compression ratio with respect to previously proposed algorithms. We perform an analysis on the effect that the different lossy modes have on variant calling, the most widely used application for clinical decision making, especially important in the era of precision medicine. We show that lossy compression can offer significant compression gains, while preserving the essential genomic information and without affecting the variant calling performance. FaStore can be downloaded from https://github.com/refresh-bio/FaStore. sebastian.deorowicz@polsl.pl. Supplementary data are available at Bioinformatics online.

  11. Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain

    PubMed Central

    Pellett, Sabine; Tepp, William H.; Bradshaw, Marite; Kalb, Suzanne R.; Dykes, Janet K.; Lin, Guangyun; Nawrocki, Erin M.; Pier, Christina L.; Barr, John R.; Maslanka, Susan E.

    2016-01-01

    ABSTRACT Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated “type H,” has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 107 mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes

  12. Global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa based on atmospheric observations

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Miller, B. R.; Rigby, M. L.; Reimann, S.; Muhle, J.; Agage, Soge, Snu Members, Kopri Members

    2010-12-01

    We report on the atmospheric measurements and global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc (CH3CH2CF2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). These measurements are from in-situ observations at stations of AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System for Observations of Halogenated Greenhouse Gases in Europe), and from the Korean station Gosan. We also report on flask sample measurements from the Antarctic stations King Sejong and Troll, and extend our records back to the 1970s using archived air samples of both hemispheres. All data are used in a global 12-box 2-dimensional atmospheric transport model to derive global abundances and emission estimates. All four HFCs have strongly increased in the atmosphere in recent years with growth rates at nearly 10 %, resulting in dry air mole fractions at the end of 2009 of 0.49 ppt for HFC-365mfc, 1.00 ppt for HFC-245fa, and 0.51 ppt for HFC-227ea. HFC-236fa, for which we report the first atmospheric measurements, is less abundant and has grown to 0.069 ppt at the end of 2009. Our model results show rapidly growing emissions of HFC-365mfc and HFC-245fa after 2002 but surprisingly these have now started to decline to globally 2.7 kt/yr (HFC-365mfc) and 6.1 kt/yr (HFC-245fa). On the other hand HFC-227ea and HFC-236fa show uninterrupted growth in their emissions of 2.5 kt/yr and 0.2 kt/yr at the end of 2009.

  13. Active Control of F/A-18 Vertical Tail Buffeting using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawerence J.; Harrand, Vincent J.

    2003-01-01

    Vertical tail buffeting is a serious multidisciplinary problem that limits the performance of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. This paper describes a multidisciplinary computational investigation for buffet load alleviation of full F/A-18 aircraft using distributed piezoelectric actuators. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the smart structure are expressed with a three-dimensional finite element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, fluid-structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. Peak values of the power spectral density of tail tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. RMS values of tip acceleration are reduced by as much as 12%.

  14. Increased integrity of white matter pathways after dual n-back training.

    PubMed

    Salminen, Tiina; Mårtensson, Johan; Schubert, Torsten; Kühn, Simone

    2016-06-01

    Dual n-back WM training has been shown to produce broad transfer effects to different untrained cognitive functions. The task is demanding to the cognitive system because it includes a bi-modal (auditory and visual) dual-task component. A previous WM training study showed increased white matter integrity in the parietal lobe as well as the anterior part of the corpus callosum after visual n-back training. We investigated dual n-back training-related changes in white matter pathways. We anticipated dual n-back training to increase white matter integrity in pathways that connect brain regions related to WM processes. Additionally, we hypothesized that dual n-back training would produce more brain-wide white matter changes than single n-back training because of the involvement of two modalities and the additional dual-task coordination component of the task. The dual n-back training group showed increased white matter integrity (reflected as increased fractional anisotropy, FA) after training. The effects were mostly left lateralized as compared with changes from pretest to posttest in the passive and active control groups. Additionally, significant effects were observed in the anterior part of the corpus callosum, when the training group was compared with the passive control group. There were no changes in pretest to posttest FA changes between the passive and active control groups. The results therefore show that dual n-back training produces increased integrity in white matter pathways connecting different brain regions. The results are discussed in reference to the bi-modal dual-task component of the training task. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  16. [Data mining analysis of professor Li Fa-zhi AIDS herpes zoster medical record].

    PubMed

    Wang, Dan-Ni; Li, Zhen; Xu, Li-Ran; Guo, Hui-Jun

    2013-08-01

    Analysis of professor Li Fa-zhi in the treatment of AIDS drug laws of herpes zoster and postherpetic neuralgia, provide reference for the use of Chinese medicine treatment of AIDS, herpes zoster and postherpetic neuralgia. By using the method of analyzing the complex network of Weishi county, Henan in 2007 October to 2011 July during an interview with professor Li Fa-zhi treatment of AIDS of herpes zoster and postherpetic neuralgia patients, patients are input structured clinical information collection system, into the analysis of the data, carries on the research analysis theory of traditional Chinese medicine compatibility system algorithm and complex network analysis the use of complex networks. The use of multi-dimensional query analysis of AIDS drugs, the core of herpes zoster and postherpetic neuralgia treated in this study are Scutellariae Radix, Glucyrrhizae Radix, Carthame Flos, Plantaginis Semen, Trichosamthis Fructus, Angelicae Sinensis Radix, Gentianae Radix; core prescription for Longdan Xiegan decoction and Trichosanthes red liquorice decoction. Professor Li Fa-zhi treatment of AIDS, herpes zoster and postherpetic neuralgia by clearing heat and removing dampness and activating blood circulation to.

  17. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4.

    PubMed

    Olthof, Evelyn D; Gülich, Alexandra F; Renne, Mike F; Landman, Sija; Joosten, Leo A B; Roelofs, Hennie M J; Wanten, Geert J A

    2015-10-01

    Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor (TLR)-4 mediated mechanism. We hypothesized that effects of parenteral MCTs on immune cells involve TLR-4 signaling and that these effects are modulated by n-3 FA that are present in FO. To test this hypothesis we assessed effects of addition of various commercially available mixed parenteral lipid emulsions, n-3 FA and of TLR-4 inhibition on MCT-induced human immune cell activation by evaluation of the expression of leukocyte membrane activation markers and reactive oxygen species (ROS) production. All MCT-containing lipid emulsions activated leukocytes by inducing changes in expression of membrane markers and stimulus induced ROS production, whereas MCT-free lipid emulsions lacked this effect. Moreover, addition of n-3 FA to LCT/MCT did not prevent MCT-induced immune activation. TLR-4 inhibitors did not distinctly modulate MCT-induced changes in immune function. Taken together, these findings suggest that leukocyte activation by parenteral MCTs does not involve TLR-4 signaling and is not modulated by n-3 FA in FO-, but is exerted via different signaling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Diets containing salmon fillet delay development of high blood pressure and hyperfusion damage in kidneys in obese Zucker fa/fa rats.

    PubMed

    Vikøren, Linn A; Drotningsvik, Aslaug; Mwakimonga, Angela; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2018-04-01

    Hypertension is the leading risk factor for cardiovascular and chronic renal diseases, affecting more than 1 billion people. Fish intake is inversely correlated with the prevalence of hypertension in several, but not all, studies, and intake of fish oil and fish proteins has shown promising potential to delay development of high blood pressure in rats. The effects of baked and raw salmon fillet intake on blood pressure and renal function were investigated in obese Zucker fa/fa rats, which spontaneously develop hypertension with proteinuria and renal failure. Rats were fed diets containing baked or raw salmon fillet in an amount corresponding to 25% of total protein from salmon and 75% of protein from casein, or casein as the sole protein source (control group) for 4 weeks. Results show lower blood pressure and lower urine concentrations of albumin and cystatin C (relative to creatinine) in salmon diet groups when compared to control group. Morphological examinations revealed less prominent hyperfusion damage in podocytes from rats fed diets containing baked or raw salmon when compared to control rats. In conclusion, diets containing baked or raw salmon fillet delayed the development of hypertension and protected against podocyte damage in obese Zucker fa/fa rats. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  19. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2 -deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  20. Association of protein kinase FA/GSK-3alpha (a proline-directed kinase and a regulator of protooncogenes) with human cervical carcinoma dedifferentiation/progression.

    PubMed

    Yang, S D; Yu, J S; Lee, T T; Ni, M H; Yang, C C; Ho, Y S; Tsen, T Z

    1995-10-01

    Computer analysis of protein phosphorylation-sites sequence revealed that most transcriptional factors and viral oncoproteins are prime targets for regulation of proline-directed protein phosphorylation, suggesting an association of proline-directed protein kinase (PDPK) family with neoplastic transformation and tumorigenesis. In this report, an immunoprecipitate activity assay of protein kinase FA/glycogen synthase kinase-3alpha (kinase FA/GSK-3alpha) (a particular member of PDPK family) has been optimized for human cervical tissue and used to demonstrate for the first time significantly increased (P < 0.001) activity in poorly differentiated cervical carcinoma (82.8 +/- 6.6 U/mg of protein), moderately differentiated carcinoma (36.2 +/- 3.4 U/mg of protein), and well-differentiated carcinoma (18.3 +/- 2.4 U/mg of protein) from 36 human cervical carcinoma samples when compared to 12 normal controls (4.9 +/- 0.6 U/mg of protein). Immunoblotting analysis further revealed that increased activity of kinase FA/GSK-3alpha in cervical carcinoma is due to overexpression of protein synthesis of the kinase. Taken together, the results provide initial evidence that overexpression of protein synthesis and cellular activity of kinase FA/GSK-3alpha may be involved in human cervical carcinoma dedifferentiation/progression, supporting an association of proline-directed protein kinase with neoplastic transformation and tumorigenesis. Since protein kinase FA/GSK-3alpha may function as a possible regulator of transcription factors/proto-oncogenes, the results further suggest that kinase FA/GSK-3alpha may play a potential role in human cervical carcinogenesis, especially in its dedifferentiation and progression.

  1. White matter pathways for prosodic structure building: A case study.

    PubMed

    Sammler, Daniela; Cunitz, Katrin; Gierhan, Sarah M E; Anwander, Alfred; Adermann, Jens; Meixensberger, Jürgen; Friederici, Angela D

    2018-05-11

    The relevance of left dorsal and ventral fiber pathways for syntactic and semantic comprehension is well established, while pathways for prosody are little explored. The present study examined linguistic prosodic structure building in a patient whose right arcuate/superior longitudinal fascicles and posterior corpus callosum were transiently compromised by a vasogenic peritumoral edema. Compared to ten matched healthy controls, the patient's ability to detect irregular prosodic structure significantly improved between pre- and post-surgical assessment. This recovery was accompanied by an increase in average fractional anisotropy (FA) in right dorsal and posterior transcallosal fiber tracts. Neither general cognitive abilities nor (non-prosodic) syntactic comprehension nor FA in right ventral and left dorsal fiber tracts showed a similar pre-post increase. Together, these findings suggest a contribution of right dorsal and inter-hemispheric pathways to prosody perception, including the right-dorsal tracking and structuring of prosodic pitch contours that is transcallosally informed by concurrent syntactic information. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. pH-sensitive and folic acid-targeted MPEG-PHIS/FA-PEG-VE mixed micelles for the delivery of PTX-VE and their antitumor activity.

    PubMed

    Di, Yan; Li, Ting; Zhu, Zhihong; Chen, Fen; Jia, Lianqun; Liu, Wenbing; Gai, Xiumei; Wang, Yingying; Pan, Weisan; Yang, Xinggang

    2017-01-01

    The aim of this study was to simultaneously introduce pH sensitivity and folic acid (FA) targeting into a micelle system to achieve quick drug release and to enhance its accumulation in tumor cells. Paclitaxel-(+)-α-tocopherol (PTX-VE)-loaded mixed micelles (PHIS/FA/PM) fabricated by poly(ethylene glycol) methyl ether-poly(histidine) (MPEG-PHIS) and folic acid-poly(ethylene glycol)-(+)-α-tocopherol (FA-PEG-VE) were characterized by dynamic light scattering and transmission electron microscopy (TEM). The mixed micelles had a spherical morphology with an average diameter of 137.0±6.70 nm and a zeta potential of -48.7±4.25 mV. The drug encapsulation and loading efficiencies were 91.06%±2.45% and 5.28%±0.30%, respectively. The pH sensitivity was confirmed by changes in particle size, critical micelle concentration, and transmittance as a function of pH. MTT assay showed that PHIS/FA/PM had higher cytotoxicity at pH 6.0 than at pH 7.4, and lower cytotoxicity in the presence of free FA. Confocal laser scanning microscope images demonstrated a time-dependent and FA-inhibited cellular uptake. In vivo imaging confirmed that the mixed micelles targeted accumulation at tumor sites and the tumor inhibition rate was 85.97%. The results proved that the mixed micelle system fabricated by MPEG-PHIS and FA-PEG-VE is a promising approach to improve antitumor efficacy.

  3. pH-sensitive and folic acid-targeted MPEG-PHIS/FA-PEG-VE mixed micelles for the delivery of PTX-VE and their antitumor activity

    PubMed Central

    Di, Yan; Li, Ting; Zhu, Zhihong; Chen, Fen; Jia, Lianqun; Liu, Wenbing; Gai, Xiumei; Wang, Yingying; Pan, Weisan; Yang, Xinggang

    2017-01-01

    The aim of this study was to simultaneously introduce pH sensitivity and folic acid (FA) targeting into a micelle system to achieve quick drug release and to enhance its accumulation in tumor cells. Paclitaxel-(+)-α-tocopherol (PTX-VE)-loaded mixed micelles (PHIS/FA/PM) fabricated by poly(ethylene glycol) methyl ether-poly(histidine) (MPEG-PHIS) and folic acid-poly(ethylene glycol)-(+)-α-tocopherol (FA-PEG-VE) were characterized by dynamic light scattering and transmission electron microscopy (TEM). The mixed micelles had a spherical morphology with an average diameter of 137.0±6.70 nm and a zeta potential of −48.7±4.25 mV. The drug encapsulation and loading efficiencies were 91.06%±2.45% and 5.28%±0.30%, respectively. The pH sensitivity was confirmed by changes in particle size, critical micelle concentration, and transmittance as a function of pH. MTT assay showed that PHIS/FA/PM had higher cytotoxicity at pH 6.0 than at pH 7.4, and lower cytotoxicity in the presence of free FA. Confocal laser scanning microscope images demonstrated a time-dependent and FA-inhibited cellular uptake. In vivo imaging confirmed that the mixed micelles targeted accumulation at tumor sites and the tumor inhibition rate was 85.97%. The results proved that the mixed micelle system fabricated by MPEG-PHIS and FA-PEG-VE is a promising approach to improve antitumor efficacy. PMID:28860753

  4. Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Miller, Benjamin R.; Rigby, Matthew; Reimann, Stefan; Mühle, Jens; Krummel, Paul B.; O'Doherty, Simon; Kim, Jooil; Rhee, Tae Siek; Weiss, Ray F.; Fraser, Paul J.; Simmonds, Peter G.; Salameh, Peter K.; Harth, Christina M.; Wang, Ray H. J.; Steele, L. Paul; Young, Dickon; Lunder, Chris R.; Hermansen, Ove; Ivy, Diane; Arnold, Tim; Schmidbauer, Norbert; Kim, Kyung-Ryul; Greally, Brian R.; Hill, Matthias; Leist, Michael; Wenger, Angelina; Prinn, Ronald G.

    2011-04-01

    We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH3CF2CH2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). In situ measurements are from the global monitoring sites of the Advanced Global Atmospheric Gases Experiment (AGAGE), the System for Observations of Halogenated Greenhouse Gases in Europe (SOGE), and Gosan (South Korea). We include the first halocarbon flask sample measurements from the Antarctic research stations King Sejong and Troll. We also present measurements of archived air samples from both hemispheres back to the 1970s. We use a two-dimensional atmospheric transport model to simulate global atmospheric abundances and to estimate global emissions. HFC-365mfc and HFC-245fa first appeared in the atmosphere only ˜1 decade ago; they have grown rapidly to globally averaged dry air mole fractions of 0.53 ppt (in parts per trillion, 10-12) and 1.1 ppt, respectively, by the end of 2010. In contrast, HFC-227ea first appeared in the global atmosphere in the 1980s and has since grown to ˜0.58 ppt. We report the first measurements of HFC-236fa in the atmosphere. This long-lived compound was present in the atmosphere at only 0.074 ppt in 2010. All four substances exhibit yearly growth rates of >8% yr-1 at the end of 2010. We find rapidly increasing emissions for the foam-blowing compounds HFC-365mfc and HFC-245fa starting in ˜2002. After peaking in 2006 (HFC-365mfc: 3.2 kt yr-1, HFC-245fa: 6.5 kt yr-1), emissions began to decline. Our results for these two compounds suggest that recent estimates from long-term projections (to the late 21st century) have strongly overestimated emissions for the early years of the projections (˜2005-2010). Global HFC-227ea and HFC-236fa emissions have grown to average values of 2.4 kt yr-1

  5. Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Chen, Tony; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.; Bessette, Denis (Technical Monitor)

    2002-01-01

    This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections measured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface. A series of 72 load cases has been performed, including single-point, double-point, and distributed load cases. Applied loads have reached 70 percent of the flight limit load. Maximum wingtip deflection has reached nearly 16 in.

  6. Glucomannan- and glucomannan plus spirulina-enriched pork affect liver fatty acid profile, LDL receptor expression and antioxidant status in Zucker fa/fa rats fed atherogenic diets

    PubMed Central

    González-Torres, Laura; Matos, Cátia; Vázquez-Velasco, Miguel; Santos-López, Jorge A.; Sánchez-Martínez, Iria; García–Fernández, Camino; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J.

    2017-01-01

    ABSTRACT We evaluated the effects of glucomannan or glucomannan plus spirulina-restructured pork (RP) on liver fatty acid profile, desaturase/elongase enzyme activities and oxidative status of Zucker fa/fa rats for seven weeks. Control (C), glucomannan (G) and glucomannan/spirulina (GS)-RP; HC (cholesterol-enriched control), HG and HGS (cholesterol-enriched glucomannan and glucomannan/spirulina-RP) experimental diets were tested. Increased metabolic syndrome markers were found in C, G and GS rats. Cholesterol feeding increased liver size, fat, and cholesterol and reduced antioxidant enzyme levels and expressions. Cholesterolemia was lower in HG and HGS than in HC. GS vs. G showed higher stearic but lower oleic levels. SFA and PUFA decreased while MUFA increased by cholesterol feeding. The arachidonic/linoleic and docosahexaenoic/alpha-linolenic ratios were lower in HC, HG, and HGS vs. C, G, and GS, respectively, suggesting a delta-6-elongase-desaturase system inhibition. Moreover, cholesterol feeding, mainly in HGS, decreased low-density-lipoprotein receptor expression and the delta-5-desaturase activity and increased the delta-9-desaturase activity. In conclusion, the liver production of highly unsaturated fatty acids was limited to decrease their oxidation in presence of hypercholesterolaemia. Glucomannan or glucomannan/spirulina-RP has added new attributes to their functional properties in meat, partially arresting the negative effects induced by high-fat-high-cholesterol feeding on the liver fatty acid and antioxidant statuses. PMID:28325998

  7. Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening.

    PubMed

    Garrido-Bigotes, Adrián; Figueroa, Nicolás E; Figueroa, Pablo M; Figueroa, Carlos R

    2018-01-01

    Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process.

  8. Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening

    PubMed Central

    Figueroa, Nicolás E.; Figueroa, Pablo M.

    2018-01-01

    Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process. PMID:29746533

  9. Optimizing Maintenance Manpower for USMC F/A-18 Squadrons

    DTIC Science & Technology

    2016-06-01

    experience level, with the requirement of keeping a standard number of aircraft operationally ready. MVP results show areas of deficit, either manpower ...MAINTENANCE MANPOWER FOR USMC F/A-18 SQUADRONS by Kevin J. Goodwin June 2016 Thesis Co-Advisors: W. Matthew Carlyle Robert F. Dell Second...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE OPTIMIZING MAINTENANCE MANPOWER FOR USMC F/A-18 SQUADRONS 5. FUNDING NUMBERS 6

  10. Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis.

    PubMed

    Oku, Yusuke; Nishiya, Naoyuki; Tazawa, Takaaki; Kobayashi, Takaya; Umezawa, Nanami; Sugawara, Yasuyo; Uehara, Yoshimasa

    2018-06-01

    The main reasons for failure of cancer chemotherapy are intrinsic and acquired drug resistance. The Hippo pathway effector Yes-associated protein (YAP) is associated with resistance to both cytotoxic and molecular targeted drugs. Several lines of evidence indicate that YAP activates transcriptional programmes to promote cell cycle progression and DNA damage responses. Therefore, we hypothesised that YAP is involved in the sensitivity of cancer cells to small-molecule agents targeting cell cycle-related proteins. Here, we report that the inactivation of YAP sensitises the OVCAR-8 ovarian cancer cell line to AZD1775, a small-molecule WEE1 kinase inhibitor. The accumulation of DNA damage and mitotic failures induced by AZD1775-based therapy were further enhanced by YAP depletion. YAP depletion reduced the expression of the Fanconi anaemia (FA) pathway components required for DNA repair and their transcriptional regulator E2F1. These results suggest that YAP activates the DNA damage response pathway, exemplified by the FA pathway and E2F1. Furthermore, we aimed to apply this finding to combination chemotherapy against ovarian cancers. The regimen containing dasatinib, which inhibits the nuclear localisation of YAP, improved the response to AZD1775-based therapy in the OVCAR-8 ovarian cancer cell line. We propose that dasatinib acts as a chemosensitiser for a subset of molecular targeted drugs, including AZD1775, by targeting YAP.

  11. Mathematical Justification of Expression-Based Pathway Activation Scoring (PAS).

    PubMed

    Aliper, Alexander M; Korzinkin, Michael B; Kuzmina, Natalia B; Zenin, Alexander A; Venkova, Larisa S; Smirnov, Philip Yu; Zhavoronkov, Alex A; Buzdin, Anton A; Borisov, Nikolay M

    2017-01-01

    Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members. For example, our algorithm OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data in the objects of the interest.Yet, the question of assessment of the relative importance for each gene product in a molecular pathway remains unclear unless one call for the methods of parameter sensitivity /stiffness analysis in the interactomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.Here we show two principal points: 1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time- and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS is kinetically justified. 2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large numbers, allows restoring the correlation between the similar samples that were examined using different transcriptome investigation techniques.

  12. Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: The effects of FA deficient or FA supplemented diet during the neurodevelopmental phase.

    PubMed

    Canever, L; Freire, T G; Mastella, G A; Damázio, L; Gomes, S; Fachim, I; Michels, C; Carvalho, G; Godói, A K; Peterle, B R; Gava, F F; Valvassori, S S; Budni, J; Quevedo, J; Zugno, A I

    2018-05-18

    hyperlocomotion and social impairment in the offspring with increased levels of lipid and protein damage (LPO, 8-ISO, 4-HNE, carbonylation of protein) within the FC, increased activity of antioxidant enzymes (SOD and CAT) in both of the brain structures studied, and also reduced the levels of neurotrophins (BDNF and NGF), particularly within the Hip of the adult offspring. Supplementation of FA (5, 10 and 50 mg/kg) to the Dam's was mostly able to prevent the cognitive damage which was induced by Ket in the adult animals. FA (10 and 50 mg/kg) attenuated the action of Ket in the animals in relation to the biochemical parameters, proving the possible neuroprotective effect of FA in the adulthood of offspring that were subjected to the animal model of SZ. Our study indicates that the intake of maternal FA during pregnancy and lactation plays an important role, particularly in the regulation of markers of oxidative stress and neurotrophins. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells.

    PubMed

    Gao, Zhifang; Liu, Xijian; Deng, Guoying; Zhou, Feng; Zhang, Lijuan; Wang, Qian; Lu, Jie

    2016-09-14

    In this work, a new multifunctional nanoplatform (Fe3O4@mSiO2-FA-CuS-PEG nanocomposite) for magnetic resonance imaging (MRI) and targeted chemo-photothermal therapy, was firstly fabricated on the basis of magnetic mesoporous silica nanoparticles (Fe3O4@mSiO2), on which folic acid (FA) was grafted as the targeting reagent, CuS nanocrystals were attached as the photothermal agent, and polyethylene glycol (PEG) was coupled to improve biocompatibility. The characterization results demonstrated that the fabricated Fe3O4@mSiO2-FA-CuS-PEG nanocomposites not only showed strong magnetism and excellent MRI performance, but also had a high doxorubicin (DOX, an anticancer drug) loading capacity (22.1%). The loaded DOX can be sustainably released, which was apt to be controlled by pH adjustment and near infrared (NIR) laser irradiation. More importantly, targeted delivery of the DOX-loaded Fe3O4@mSiO2-FA-CuS-PEG nanocomposites could be accomplished in HeLa cells via the receptor-mediated endocytosis pathway, and this exhibited synergistic effect of chemotherapy and photothermal therapy against HeLa cells under irradiation with a 915 nm laser. Therefore, the fabricated multifunctional Fe3O4@mSiO2-FA-CuS-PEG nanocomposite has a great potential in image-guided therapy of cancers.

  14. The FANCJ/MutLα interaction is required for correction of the cross-link response in FA-J cells

    PubMed Central

    Peng, Min; Litman, Rachel; Xie, Jenny; Sharma, Sudha; Brosh, Robert M; Cantor, Sharon B

    2007-01-01

    FANCJ also called BACH1/BRIP1 was first linked to hereditary breast cancer through its direct interaction with BRCA1. FANCJ was also recently identified as a Fanconi anemia (FA) gene product, establishing FANCJ as an essential tumor suppressor. Similar to other FA cells, FANCJ-null (FA-J) cells accumulate 4N DNA content in response to DNA interstrand crosslinks (ICLs). This accumulation is corrected by reintroduction of wild-type FANCJ. Here, we show that FANCJ interacts with the mismatch repair complex MutLα, composed of PMS2 and MLH1. Specifically, FANCJ directly interacts with MLH1 independent of BRCA1, through its helicase domain. Genetic studies reveal that FANCJ helicase activity and MLH1 binding, but not BRCA1 binding, are essential to correct the FA-J cells' ICL-induced 4N DNA accumulation and sensitivity to ICLs. These results suggest that the FANCJ/MutLα interaction, but not FANCJ/BRCA1 interaction, is essential for establishment of a normal ICL-induced response. The functional role of the FANCJ/MutLα complex demonstrates a novel link between FA and MMR, and predicts a broader role for FANCJ in DNA damage signaling independent of BRCA1. PMID:17581638

  15. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    PubMed

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-04

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Birth order and avuncular tendencies in Samoan men and fa'afafine.

    PubMed

    Vanderlaan, Doug P; Vasey, Paul L

    2013-04-01

    Androphilia refers to sexual attraction and arousal to males whereas gynephilia refers to sexual attraction and arousal to females. In Samoa, transgendered androphilic males are known locally as fa'afafine. Previous research has shown that, compared to Samoan gynephilic men, fa'afafine report greater willingness to invest time and money toward nieces and nephews (i.e., greater avuncular tendencies) and also have greater numbers of older brothers and older sisters. The present study examined whether the Samoan male sexual orientation difference in avuncular tendencies could be accounted for by these parallel differences in numbers of older brothers and older sisters. The sample included 204 fa'afafine and 272 Samoan gynephilic men from our Samoan data archive for whom we had concurrent information on (1) a measure of willingness to invest time and money in nieces and nephews (i.e., avuncular tendencies) and (2) numbers of older and younger biological brothers and sisters. Among fa'afafine, but not Samoan gynephilic men, number of older brothers and number of older sisters were both significantly positively associated with avuncular tendencies. When controlling for number of older brothers, the magnitude of the male sexual orientation difference in avuncular tendencies was lowered, but remained statistically significant. In contrast, when controlling for number of older sisters, the male sexual orientation difference in avuncular tendencies ceased to exist. Discussion detailed how these findings help hone in on the proximate basis of elevated avuncular tendencies among fa'afafine. In addition, discussion focused on how particular evolutionary and cultural factors might relate to the avuncularity of fa'afafine.

  17. Viewing time measures of sexual orientation in Samoan cisgender men who engage in sexual interactions with fa'afafine.

    PubMed

    Petterson, Lanna J; Dixson, Barnaby J; Little, Anthony C; Vasey, Paul L

    2015-01-01

    Androphilia refers to attraction to adult males, whereas gynephilia refers to attraction to adult females. The current study employed self-report and viewing time (response time latency) measures of sexual attraction to determine the sexual orientation of Samoan cisgender men (i.e., males whose gender presentation and identity is concordant with their biological sex) who engage in sexual interactions with transgender male androphiles (known locally as fa'afafine) compared to: (1) Samoan cisgender men who only engage in sexual interactions with women, and (2) fa'afafine. As expected, both measures indicated that cisgender men who only engaged in sexual interactions with women exhibited a gynephilic pattern of sexual attraction, whereas fa'afafine exhibited an androphilic one. In contrast, both measures indicated that cisgender men who engaged in sexual interactions with fa'afafine demonstrated a bisexual pattern of sexual attraction. Most of the cisgender men who exhibited bisexual viewing times did not engage in sexual activity with both men and women indicating that the manner in which bisexual patterns of sexual attraction manifest behaviorally vary from one culture to the next.

  18. Loss of CHK1 function impedes DNA damage-induced FANCD2 monoubiquitination but normalizes the abnormal G2 arrest in Fanconi anemia.

    PubMed

    Guervilly, Jean-Hugues; Macé-Aimé, Gaëtane; Rosselli, Filippo

    2008-03-01

    Fanconi anemia (FA) is a cancer-prone hereditary disease resulting from mutations in one of the 13 genes defining the FANC/BRCA pathway. This pathway is involved in the cellular resistance to DNA-cross-linking agents. How the FANC/BRCA pathway is activated and why its deficiency leads to the accumulation of FA cells with a 4N DNA content are still poorly answered questions. We investigated the involvement of ATR pathway members in these processes. We show here that RAD9 and RAD17 are required for DNA interstrand cross-link (ICL) resistance and for the optimal activation of FANCD2. Moreover, we demonstrate that CHK1 and its interacting partner CLASPIN that act downstream in the ATR pathway are required for both FANCD2 monoubiquitination and assembling in subnuclear foci in response to DNA damage. Paradoxically, in the absence of any genotoxic stress, CHK1 or CLASPIN depletion results in an increased basal level of FANCD2 monoubiquitination and focalization. We also demonstrate that the ICL-induced accumulation of FA cells in late S/G2 phase is dependent on ATR and CHK1. In agreement with this, CHK1 phosphorylation is enhanced in FA cells, and chemical inhibition of the ATR/CHK1 axis in FA lymphoblasts decreases their sensitivity to mitomycin C. In conclusion, this work describes a complex crosstalk between CHK1 and the FANC/BRCA pathway: CHK1 activates this pathway through FANCD2 monoubiquitination, whereas FA deficiency leads to a CHK1-dependent G2 accumulation, raising the possibility that the FANC/BRCA pathway downregulates CHK1 activation.

  19. Cosmologically allowed regions for the axion decay constant Fa

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Sonomoto, Eisuke; Yanagida, Tsutomu T.

    2018-07-01

    If the Peccei-Quinn symmetry is already broken during inflation, the decay constant Fa of the axion can be in a wide region from 1011GeV to 1018GeV for the axion being the dominant dark matter. In this case, however, the axion causes the serious cosmological problem, isocurvature perturbation problem, which severely constrains the Hubble parameter during inflation. The constraint is relaxed when Peccei-Quinn scalar field takes a large value ∼Mp (Planck scale) during inflation. In this letter, we point out that the allowed region of the decay constant Fa is reduced to a rather narrow region for a given tensor-to-scalar ratio r when Peccei-Quinn scalar field takes ∼Mp during inflation. For example, if the ratio r is determined as r ≳10-3 in future measurements, we can predict Fa ≃ (0.1- 1.4) ×1012GeV for domain wall number NDW = 6.

  20. Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway.

    PubMed

    van Twest, Sylvie; Murphy, Vincent J; Hodson, Charlotte; Tan, Winnie; Swuec, Paolo; O'Rourke, Julienne J; Heierhorst, Jörg; Crismani, Wayne; Deans, Andrew J

    2017-01-19

    Monoubiquitination and deubiquitination of FANCD2:FANCI heterodimer is central to DNA repair in a pathway that is defective in the cancer predisposition syndrome Fanconi anemia (FA). The "FA core complex" contains the RING-E3 ligase FANCL and seven other essential proteins that are mutated in various FA subtypes. Here, we purified recombinant FA core complex to reveal the function of these other proteins. The complex contains two spatially separate FANCL molecules that are dimerized by FANCB and FAAP100. FANCC and FANCE act as substrate receptors and restrict monoubiquitination to the FANCD2:FANCI heterodimer in only a DNA-bound form. FANCA and FANCG are dispensable for maximal in vitro ubiquitination. Finally, we show that the reversal of this reaction by the USP1:UAF1 deubiquitinase only occurs when DNA is disengaged. Our work reveals the mechanistic basis for temporal and spatial control of FANCD2:FANCI monoubiquitination that is critical for chemotherapy responses and prevention of Fanconi anemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons

    PubMed Central

    Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2017-01-01

    Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496

  2. TRIM.FaTE Public Reference Library Documentation

    EPA Pesticide Factsheets

    TRIM.FaTE is a spatially explicit, compartmental mass balance model that describes the movement and transformation of pollutants over time, through a user-defined, bounded system that includes both biotic and abiotic compartments.

  3. Cloning and expression analysis of FaPR-1 gene in strawberry

    NASA Astrophysics Data System (ADS)

    Mo, Fan; Luo, Ya; Ge, Cong; Mo, Qin; Ling, Yajie; Luo, Shu; Tang, Haoru

    2018-04-01

    The FaPR-1 gene was cloned by RT-PCR from `Benihoppe' strawberry and its bioinformatics analysis was conducted. The results showed that the open reading frame was 483 bp encoding encoding l60 amino acids which protein molecular weight and theoretical isoelectricity were 17854.17 and 8.72 respectively. Subcellular localization prediction shows that this gene is located extracellularly. By comparing strawberry FaPR-l and other plant Pathogenesis-related protein, homology and phylogenetic tree construction showed that the homology with grapes, peach is relatively close. In the treatments of ABA, sucrose and the mixture of the two, the expression of FaPR-1 in strawberry fruit were significantly increased.

  4. Murine Polyomavirus Cell Surface Receptors Activate Distinct Signaling Pathways Required for Infection.

    PubMed

    O'Hara, Samantha D; Garcea, Robert L

    2016-11-01

    Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways

  5. Cytotoxicity of the dicarboximide fungicides, vinclozolin and iprodione, in rat hepatoma-derived Fa32 cells.

    PubMed

    Dierickx, Paul J

    2004-10-01

    Dicarboximide fungicides are widely used to control various fungal species. Their primary action is not known, due to a lack of knowledge concerning the mechanism of action of the dicarboximide group. The cytotoxicities of vinclozolin and iprodione in rat hepatoma-derived Fa32 cells were investigated. Cytotoxicity was measured by neutral red uptake inhibition after treatment for 24 hours. Iprodione was more toxic than vinclozolin. Vinclozolin was less toxic in glutathione-depleted cells than in control cells. This was also true for iprodione at lower concentrations, but iprodione became more toxic at higher concentrations. Both the fungicides increased the endogenous glutathione content by 20% after 1 hour. After 24 hours, the glutathione content was doubled by vinclozolin, but was not affected by iprodione. No effect on glutathione S-transferase activity or reactive oxygen species formation could be observed. Cytochrome P450-dependent ethoxyresorufin-O-deethylase and pentoxyresorufin-O-depentylase activities were moderately activated by iprodione and strongly activated by vinclozolin. A glutathione-related cytochrome P450-dependent metabolic attack of vinclozolin and iprodione could be responsible for their cytotoxicity in Fa32 cells. Further research is needed to fully elucidate these (or other) mechanisms.

  6. JPRS Report Science & Technology Japan Future Prospects of FA-From FA to IMS

    DTIC Science & Technology

    1989-12-04

    of FA Investment (Large Companies) a) m d) m 5000fI~ljl|S 1 m± ¥-1$ 500~1000t| 300~500(f 1000~3000ft i) £ÜÜ 0i!§£3^ SWOT # H^fc3S j) k) 1...is a method conceived by Toyota Motors, now widely understood throughout the world. Such information as the production volume, time, method and...T. Suzuki Toyota Motor Corp. Y. Tatsue AIST, Mechanical Engineering Laboratory K. Togino Komatsu Ltd. H. Torii Nihon Keizai Shimbun Editorial

  7. Concurrent activation of striatal direct and indirect pathways during action initiation.

    PubMed

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Pham, Michael D; Vogel, Steven S; Lovinger, David M; Costa, Rui M

    2013-02-14

    The basal ganglia are subcortical nuclei that control voluntary actions, and they are affected by a number of debilitating neurological disorders. The prevailing model of basal ganglia function proposes that two orthogonal projection circuits originating from distinct populations of spiny projection neurons (SPNs) in the striatum--the so-called direct and indirect pathways--have opposing effects on movement: activity of direct-pathway SPNs is thought to facilitate movement, whereas activity of indirect-pathway SPNs is presumed to inhibit movement. This model has been difficult to test owing to the lack of methods to selectively measure the activity of direct- and indirect-pathway SPNs in freely moving animals. Here we develop a novel in vivo method to specifically measure direct- and indirect-pathway SPN activity, using Cre-dependent viral expression of the genetically encoded calcium indicator (GECI) GCaMP3 in the dorsal striatum of D1-Cre (direct-pathway-specific) and A2A-Cre (indirect-pathway-specific) mice. Using fibre optics and time-correlated single-photon counting (TCSPC) in mice performing an operant task, we observed transient increases in neural activity in both direct- and indirect-pathway SPNs when animals initiated actions, but not when they were inactive. Concurrent activation of SPNs from both pathways in one hemisphere preceded the initiation of contraversive movements and predicted the occurrence of specific movements within 500 ms. These observations challenge the classical view of basal ganglia function and may have implications for understanding the origin of motor symptoms in basal ganglia disorders.

  8. Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation

    PubMed Central

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Pham, Michael D.

    2014-01-01

    Summary The basal ganglia are subcortical nuclei that control voluntary actions, and are affected by a number of debilitating neurological disorders1–4. The prevailing model of basal ganglia function proposes that two orthogonal projection circuits originating from distinct populations of spiny projection neurons (SPNs) in the striatum5,6 - the so-called direct and indirect pathways - have opposing effects on movement: while activity of direct-pathway SPNs purportedly facilitates movement, activity of indirect-pathway SPNs inhibits movement1,2. This model has been difficult to test due to the lack of methods to selectively measure the activity of direct- and indirect-pathway SPNs in freely moving animals. We developed a novel in-vivo method that allowed us to specifically measure direct- and indirect-pathway SPN activity using Cre-dependent viral expression of the genetically encoded calcium indicator (GECI) GCAMP3 in the dorsal striatum of D1-Cre (direct-pathway specific6,7) and A2A-Cre (indirect-pathway specific8,9) mice10. Using fiber optics and time-correlated single photon counting (TCSPC) in mice performing an operant task, we observed transient increases in neural activity in both direct- and indirect-pathway SPNs when animals initiated actions, but not when they were inactive. Concurrent activation of SPNs from both pathways in one hemisphere preceded the initiation of contraversive movements, and predicted the occurrence of specific movements within 500 ms. These observations challenge the classical view of basal ganglia function, and may have implications for understanding the origin of motor symptoms in basal ganglia disorders. PMID:23354054

  9. Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover

    PubMed Central

    Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.

    2011-01-01

    We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814

  10. The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

    PubMed Central

    Antony, Florian; Grießhammer, Rainer; Speck, Thomas

    2016-01-01

    Background: The debate on the question whether biomimetics has a specific potential to contribute to sustainability is discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint Lotusan®. Results: As a first step it has been examined and verified that the façade paint Lotusan® is correctly defined as a biomimetic product. Secondly, Lotusan® has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA). For purposes of comparison, the façade paint Jumbosil® was chosen as reference for a conventional paint available on the market. The benefit analysis showed that both paints fulfil equally well the requirements of functional utility. With respect to the symbolic utility, Lotusan® has a particular added aesthetic value by the preservation of the optical quality over the life cycle. Within the social analysis no substantial differences between the two paints could be found regarding the handling and disposal of the final products. Regarding the life-cycle cost, Lotusan® is the more expensive product. However, the higher investment cost for a Lotusan®-based façade painting are more than compensated by the longer life time, resulting in both reduced overall material demand and lower labour cost. In terms of the life-cycle impact assessment, it can be ascertained that substantial differences between the paints arise from the respective service life, which are presented in terms of four scenario analyses. Conclusion: In summary, the biomimetic façade paint Lotusan® has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could be demonstrated that Lotusan®-based fa

  11. The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®.

    PubMed

    Antony, Florian; Grießhammer, Rainer; Speck, Thomas; Speck, Olga

    2016-01-01

    Background: The debate on the question whether biomimetics has a specific potential to contribute to sustainability is discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint Lotusan ® . Results: As a first step it has been examined and verified that the façade paint Lotusan ® is correctly defined as a biomimetic product. Secondly, Lotusan ® has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA). For purposes of comparison, the façade paint Jumbosil ® was chosen as reference for a conventional paint available on the market. The benefit analysis showed that both paints fulfil equally well the requirements of functional utility. With respect to the symbolic utility, Lotusan ® has a particular added aesthetic value by the preservation of the optical quality over the life cycle. Within the social analysis no substantial differences between the two paints could be found regarding the handling and disposal of the final products. Regarding the life-cycle cost, Lotusan ® is the more expensive product. However, the higher investment cost for a Lotusan ® -based façade painting are more than compensated by the longer life time, resulting in both reduced overall material demand and lower labour cost. In terms of the life-cycle impact assessment, it can be ascertained that substantial differences between the paints arise from the respective service life, which are presented in terms of four scenario analyses. Conclusion: In summary, the biomimetic façade paint Lotusan ® has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could be demonstrated that Lotusan

  12. Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)

    PubMed Central

    Langford, T.J.; Beise, E.J.; Breuer, H.; Heimbach, C.R.; Ji, G.; Nico, J.S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2. PMID:27226807

  13. Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus

    PubMed Central

    English, Jane A.; Harauma, Akiko; Föcking, Melanie; Wynne, Kieran; Scaife, Caitriona; Cagney, Gerard; Moriguchi, Toru; Cotter, David R.

    2013-01-01

    Omega-3 fatty acid (n-3 FA) deficiency is an environmental risk factor for schizophrenia, yet characterization of the consequences of deficiency at the protein level in the brain is limited. We aimed to identify the protein pathways disrupted as a consequence of chronic n-3 deficiency in the hippocampus of mice. Fatty acid analysis of the hippocampus following chronic dietary deficiency revealed a 3-fold decrease (p < 0.001) in n-3 FA levels. Label free LC-MS/MS analysis identified and profiled 1008 proteins, of which 114 were observed to be differentially expressed between n-3 deficient and control groups (n = 8 per group). The cellular processes that were most implicated were neuritogenesis, endocytosis, and exocytosis, while specific protein pathways that were most significantly dysregulated were mitochondrial dysfunction and clathrin mediated endocytosis (CME). In order to characterize whether these processes and pathways are ones influenced by antipsychotic medication, we used LC-MS/MS to test the differential expression of these 114 proteins in the hippocampus of mice chronically treated with the antipsychotic agent haloperidol. We observed 23 of the 114 proteins to be differentially expressed, 17 of which were altered in the opposite direction to that observed following n-3 deficiency. Overall, our findings point to disturbed synaptic function, neuritogenesis, and mitochondrial function as a consequence of dietary deficiency in n-3 FA. This study greatly aids our understanding of the molecular mechanism by which n-3 deficiency impairs normal brain function, and provides clues as to how n-3 FA exert their therapeutic effect in early psychosis. PMID:24194745

  14. Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti.

    PubMed

    Barletta, Ana Beatriz Ferreira; Nascimento-Silva, Maria Clara L; Talyuli, Octávio A C; Oliveira, José Henrique M; Pereira, Luiza Oliveira Ramos; Oliveira, Pedro L; Sorgine, Marcos Henrique F

    2017-02-23

    Aedes aegypti is the main vector of important arboviruses such as dengue, Zika and chikungunya. During infections mosquitoes can activate the immune pathways Toll, IMD and JAK/STAT to limit pathogen replication. Here, we evaluate the immune response profile of Ae. aegypti against Sindbis virus (SINV). We analyzed gene expression of components of Toll, IMD and JAK/STAT pathways and showed that a blood meal and virus infection upregulated aaREL2 in a microbiota-dependent fashion, since this induction was prevented by antibiotic. The presence of the microbiota activates IMD and impaired the replication of SINV in the midgut. Constitutive activation of the IMD pathway, by Caspar depletion, leads to a decrease in microbiota levels and an increase in SINV loads. Together, these results suggest that a blood meal is able to activate innate immune pathways, through a nutrient induced growth of microbiota, leading to upregulation of aaREL2 and IMD activation. Microbiota levels seemed to have a reciprocal interaction, where the proliferation of the microbiota activates IMD pathway that in turn controls bacterial levels, allowing SINV replication in Ae. aegypti mosquitoes. The activation of the IMD pathway seems to have an indirect effect in SINV levels that is induced by the microbiota.

  15. Compromised Integrity of Central Visual Pathways in Patients With Macular Degeneration.

    PubMed

    Malania, Maka; Konrad, Julia; Jägle, Herbert; Werner, John S; Greenlee, Mark W

    2017-06-01

    Macular degeneration (MD) affects the central retina and leads to gradual loss of foveal vision. Although, photoreceptors are primarily affected in MD, the retinal nerve fiber layer (RNFL) and central visual pathways may also be altered subsequent to photoreceptor degeneration. Here we investigate whether retinal damage caused by MD alters microstructural properties of visual pathways using diffusion-weighted magnetic resonance imaging. Six MD patients and six healthy control subjects participated in the study. Retinal images were obtained by spectral-domain optical coherence tomography (SD-OCT). Diffusion tensor images (DTI) and high-resolution T1-weighted structural images were collected for each subject. We used diffusion-based tensor modeling and probabilistic fiber tractography to identify the optic tract (OT) and optic radiations (OR), as well as nonvisual pathways (corticospinal tract and anterior fibers of corpus callosum). Fractional anisotropy (FA) and axial and radial diffusivity values (AD, RD) were calculated along the nonvisual and visual pathways. Measurement of RNFL thickness reveals that the temporal circumpapillary retinal nerve fiber layer was significantly thinner in eyes with macular degeneration than normal. While we did not find significant differences in diffusion properties in nonvisual pathways, patients showed significant changes in diffusion scalars (FA, RD, and AD) both in OT and OR. The results indicate that the RNFL and the white matter of the visual pathways are significantly altered in MD patients. Damage to the photoreceptors in MD leads to atrophy of the ganglion cell axons and to corresponding changes in microstructural properties of central visual pathways.

  16. Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Prazenica, Richard J.

    2003-01-01

    Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.

  17. DNA interstrand cross-link repair: understanding role of Fanconi anemia pathway and therapeutic implications.

    PubMed

    Shukla, Pallavi; Solanki, Avani; Ghosh, Kanjaksha; Vundinti, Babu Rao

    2013-11-01

    Interstrand cross-links (ICLs) are extremely toxic DNA lesions that prevent DNA double-helix separation due to the irreversible covalent linkage binding of some agents on DNA strands. Agents that induce these ICLs are thus widely used as chemotherapeutic drugs but may also lead to tumor growth. Fanconi anemia (FA) is a rare genetic disorder that leads to ICL sensitivity. This review provides update on current understanding of the role of FA proteins in repairing ICLs at various stages of cell cycle. We also discuss link between DNA cross-link genotoxicity caused by aldehydes in FA pathway. Besides this, we summarize various ICL agents that act as drugs to treat different types of tumors and highlight strategies for modulating ICL sensitivity for therapeutic interventions that may be helpful in controlling cancer and life-threatening disease, FA. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Aerodynamics of powered missile separation from F/A-18 aircraft

    NASA Technical Reports Server (NTRS)

    Ahmad, J. U.; Shanks, S. P.; Buning, P. G.

    1993-01-01

    A 3D dynamic 'chimera' algorithm that solves the thin-layer Navier-Stokes equations over multiple moving bodies was modified to numerically simulate the aerodynamics, missile dynamics, and missile plume interactions of a missile separating from a generic wing and from an F/A-18 aircraft in transonic flow. The missile is mounted below the wing for missile separation from the wing and on the F/A-18 fuselage at the engine inlet side for missile separation from aircraft. Static and powered missile separation cases are considered to examine the influence of the missile and plume on the wing and F/A-18 fuselage and engine inlet. The aircraft and missile are at two degrees angle of attack, Reynolds number of 10 million, freestream Mach number of 1.05 and plume Mach number of 3.0. The computational results show the details of the flow field.

  19. The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair

    PubMed Central

    Rosado, Ivan V.; Niedzwiedz, Wojciech; Alpi, Arno F.; Patel, Ketan J.

    2009-01-01

    FANCM, the most highly conserved component of the Fanconi Anaemia (FA) pathway can resolve recombination intermediates and remodel synthetic replication forks. However, it is not known if these activities are relevant to how this conserved protein activates the FA pathway and promotes DNA crosslink repair. Here we use chicken DT40 cells to systematically dissect the function of the helicase and nuclease domains of FANCM. Our studies reveal that these domains contribute distinct roles in the tolerance of crosslinker, UV light and camptothecin-induced DNA damage. Although the complete helicase domain is critical for crosslink repair, a predicted inactivating mutation of the Walker B box domain has no impact on FA pathway associated functions. However, this mutation does result in elevated sister chromatid exchanges (SCE). Furthermore, our genetic dissection indicates that FANCM functions with the Blm helicase to suppress spontaneous SCE events. Overall our results lead us to reappraise the role of helicase domain associated activities of FANCM with respect to the activation of the FA pathway, crosslink repair and in the resolution of recombination intermediates. PMID:19465393

  20. The role of APC in WNT pathway activation in serrated neoplasia.

    PubMed

    Borowsky, Jennifer; Dumenil, Troy; Bettington, Mark; Pearson, Sally-Ann; Bond, Catherine; Fennell, Lochlan; Liu, Cheng; McKeone, Diane; Rosty, Christophe; Brown, Ian; Walker, Neal; Leggett, Barbara; Whitehall, Vicki

    2018-03-01

    Conventional adenomas are initiated by APC gene mutation that activates the WNT signal. Serrated neoplasia is commonly initiated by BRAF or KRAS mutation. WNT pathway activation may also occur, however, to what extent this is owing to APC mutation is unknown. We examined aberrant nuclear β-catenin immunolocalization as a surrogate for WNT pathway activation and analyzed the entire APC gene coding sequence in serrated and conventional pathway polyps and cancers. WNT pathway activation was a common event in conventional pathway lesions with aberrant nuclear immunolocalization of β-catenin and truncating APC mutations in 90% and 89% of conventional adenomas and 82% and 70% of BRAF wild-type cancers, respectively. WNT pathway activation was seen to a lesser extent in serrated pathway lesions. It occurred at the transition to dysplasia in serrated polyps with a significant increase in nuclear β-catenin labeling from sessile serrated adenomas (10%) to sessile serrated adenomas with dysplasia (55%) and traditional serrated adenomas (9%) to traditional serrated adenomas with dysplasia (39%) (P=0.0001). However, unlike the conventional pathway, truncating APC mutations were rare in the serrated pathway lesions especially sessile serrated adenomas even when dysplastic (15%) and in the BRAF mutant cancers with microsatellite instability that arise from them (8%). In contrast, APC missense mutations that were rare in conventional pathway adenomas and cancers (3% in BRAF wild-type cancers) were more frequent in BRAF mutant cancers with microsatellite instability (32%). We conclude that increased WNT signaling is important in the transition to malignancy in the serrated pathway but that APC mutation is less common and the spectrum of mutations is different than in conventional colorectal carcinogenesis. Moderate impact APC mutations and non-APC-related causes of increased WNT signaling may have a more important role in serrated neoplasia than the truncating APC mutations

  1. Antisense Down-Regulation of the FaPG1 Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening1[W

    PubMed Central

    Quesada, Miguel A.; Blanco-Portales, Rosario; Posé, Sara; García-Gago, Juan A.; Jiménez-Bermúdez, Silvia; Muñoz-Serrano, Andrés; Caballero, José L.; Pliego-Alfaro, Fernando; Mercado, José A.; Muñoz-Blanco, Juan

    2009-01-01

    The strawberry (Fragaria × ananassa ‘Chandler’) fruit undergoes a fast softening during ripening. Polygalacturonase (PG) activity is low during this process, but two ripening-related PG genes, FaPG1 and FaPG2, have been cloned. Both genes were up-regulated during fruit ripening and were also negatively regulated by auxin. To further assess the role of FaPG1 on strawberry softening, transgenic plants containing an antisense sequence of this gene under the control of the 35S promoter (APG lines) were obtained. Sixteen out of 30 independent transgenic lines showed fruit yields similar to those of the control. Several quality parameters were measured in ripe fruits from these 16 lines. Fruit weight was slightly reduced in four lines, and most of them showed an increase in soluble solid content. Half of these lines yielded fruits significantly firmer than did the control. Four APG lines were selected, their ripened fruits being on average 163% firmer than the control. The postharvest softening of APG fruits was also diminished. Ripened fruits from the four selected lines showed a 90% to 95% decrease in FaPG1 transcript abundance, whereas the level of FaPG2 was not significantly altered. Total PG activity was reduced in three of these lines when compared with control fruits. Cell wall extracts from APG fruits showed a reduction in pectin solubilization and an increase in pectins covalently bound to the cell wall. A comparative transcriptomic analysis of gene expression between the ripened receptacle of the control and those of the APG fruits (comprising 1,250 receptacle expressed sequence tags) did not show any statistically significant change. These results indicate that FaPG1 plays a central role in strawberry softening. PMID:19395408

  2. Se@SiO2-FA-CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy.

    PubMed

    Wang, Yeying; Liu, Xijian; Deng, Guoying; Sun, Jian; Yuan, Haikuan; Li, Qi; Wang, Qiugeng; Lu, Jie

    2018-02-08

    In this study, a versatile tumor-targeted and multi-stimuli-responsive drug delivery vehicle (Se particle@porous silica-folic acid-copper sulfide/doxorubicin (Se@SiO 2 -FA-CuS/DOX)) was fabricated for combined photothermal therapy with chemotherapy in cancer treatment. Due to excellent targeting ability, the Se@SiO 2 -FA-CuS/DOX nanocomposites actively accumulated in tumor tissues and thus provided photothermal therapy under NIR irradiation and chemotherapy through the release of DOX and Se. Owing to the synergistic effect of chemotherapy (Se and DOX) and photothermal therapy, the Se@SiO 2 -FA-CuS/DOX nanocomposites could efficiently inhibit cancer cells both in vitro and in vivo and even completely eliminate tumors. Moreover, as the toxicity of DOX could be reduced by Se, the treatment using Se@SiO 2 -FA-CuS/DOX nanocomposites exhibited no appreciable adverse reactions. Thus, the Se@SiO 2 -FA-CuS/DOX nanocomposites have great potential as a multifunctional nanoplatform in future clinical applications.

  3. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed tomore » their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.« less

  4. Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts.

    PubMed

    Yang, Xiaohua; Haghiac, Maricela; Glazebrook, Patricia; Minium, Judi; Catalano, Patrick M; Hauguel-de Mouzon, Sylvie

    2015-09-01

    What are the effects of fatty acids on placental inflammatory cytokine with respect to toll-like receptor-4/nuclear factor-kappa B (TLR4/NF-kB)? Exogenous fatty acids induce a pro-inflammatory cytokine response in human placental cells in vitro via activation of TLR4 signaling pathways. The placenta is exposed to changes in circulating maternal fatty acid concentrations throughout pregnancy. Fatty acids are master regulators of innate immune pathways through recruitment of toll-like receptors and activation of cytokine synthesis. Trophoblast cells isolated from 14 normal term human placentas were incubated with long chain fatty acids (FA) of different carbon length and degree of saturation. The expression and secretion of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-alpha (TNF-α) were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Antibodies against TLR4 ligand binding domain, downstream signaling and anti-p65 NFkB-inhibitor were used to characterize the pathways of FA action. General approach used primary human term trophoblast cell culture. Methods and end-points used real-time quantitative PCR, cytokine measurements, immunohistochemistry, western blots. The long chain saturated fatty acids, stearic and palmitic (PA), stimulated the synthesis as well as the release of TNF-α, IL-6 and IL-8 by trophoblast cells (2- to 6-fold, P < 0.001). In contrast, the unsaturated (palmitoleic, oleic, linoleic) acids did not modify cytokine expression significantly. Palmitate-induced inflammatory effects were mediated via TLR4 activation, NF-kB phosphorylation and nuclear translocation. TNF-α protein level was close to the limit of detection in the culture medium even when cells were cultured with PA. These mechanisms open the way to a better understanding of how changes in maternal lipid homeostasis may regulate placental inflammatory status. X.Y. was recipient of fellowship award from West China Second University

  5. Architectural Kansei of ‘Wall’ in The Façade Design by Le Corbusier

    NASA Astrophysics Data System (ADS)

    Sendai, Shoichiro

    The purpose of this paper is to discuss the modern architect Le Corbusier's architectural Kansei (sensibility) on wall in site environment through the analysis of his façade design, using Œuvres complètes (1910-1965, 8 vols., Les éditions d'architecture, Artemis, Zurich) and Le Corbusier Archives (1982-1984, 32 vols., Garland Publishing, Inc. and Fondation Le Corbusier, New York, London, Paris). At first, I arrange five façade types, according to the explanation by Le Corbusier ; ‘fenêtre en longueur (strip window)’, ‘pan de verre (glass wall)’, ‘brise-soleil (sun-breaker)’, ‘loggia’ and ‘claustra’. Through the analysis of the relationship between these types and the design process of each building, we find that Le Corbusier's façade design includes the affirmation and the negation of the ‘wall’ at the same time. In fact, the nature of façade modification during design process is divers: increase in transparency, decrease in transparency and spatialization of façade. That means, Le Corbusier studied the environmental condition by these façade types, and tried to realize the phenomenal openness. This trial bases on the function of architectural Kansei as correspondence between body and environment beyond the physical design.

  6. Total Risk Integrated Methodology (TRIM) - TRIM.FaTE

    EPA Pesticide Factsheets

    TRIM.FaTE is a spatially explicit, compartmental mass balance model that describes the movement and transformation of pollutants over time, through a user-defined, bounded system that includes both biotic and abiotic compartments.

  7. Preharvest Ultraviolet C Irradiation Increased the Level of Polyphenol Accumulation and Flavonoid Pathway Gene Expression in Strawberry Fruit.

    PubMed

    Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Mimee, Benjamin; Veronneau, Pierre-Yves; Rolland, Daniel; Roussel, Dominique

    2017-11-22

    Preharvest ultraviolet C (UV-C) irradiation is an innovative approach for increasing the bioactive phytochemical content of strawberries to increase the disease resistance and nutritional value. This study investigated the changes in individual flavonoids in strawberry developed with three different cumulative doses of preharvest UV-C treatment (low, 9.6 kJ m -2 ; middle, 15 kJ m -2 ; and high , 29.4 kJ m -2 ). Significant accumulation (p < 0.05) of phenolics (25-75% increase), namely, cyanidin 3-glucoside, pelargonidin 3-glucoside/rutinoside, glucoside and glucuronide of quercetin and kaempferol, and ellagic acid, was found in the fruit subjected to low and middle supplemental doses of UV-C radiation. The expression of the flavonoid pathway structural genes, i.e., FaCHS1, FaCHI, FaFHT, FaDFR, FaFLS, and FaFGT, was upregulated in the low- and middle-dose groups, while the early stage genes were not affected by the high dose. FaMYB1 was also relatively enhanced in the low- and middle-dose groups, while FaASR was upregulated in only the low-dose group. Hormetic preharvest UV-C dose ranges for enhancing the polyphenol content of strawberries were established for the first time.

  8. Dynamic behavior of reactive aluminum nanoparticle-fluorinated acrylic (AlFA) polymer composites

    NASA Astrophysics Data System (ADS)

    Crouse, Christopher A.; White, Brad; Spowart, Jonathan E.

    2011-06-01

    The dynamic behavior of aluminum nanoparticle-fluorinated acrylic (AlFA) composite materials has been explored under high strain rates. Cylindrical pellets of the AlFA composite materials were mounted onto copper sabots and impacted against a rigid anvil at velocities between 100 and 400 m/s utilizing a Taylor gas gun apparatus to achieve strain rates on the order of 104 /s. A framing camera was used to record the compaction and reaction events that occurred upon contact of the pellet with the anvil. Under both open air and vacuum environments the AlFA composites demonstrated high reactivity suggesting that the particles are primarily reacting with the fluorinated matrix. We hypothesize, based upon the compaction history of these materials, that reaction is initiated when the oxide shells on the aluminum nanoparticles are broken due an interparticle contact deformation process. We have investigated this hypothesis through altering the particle loading in the AlFA composites as well as impact velocities. This data and the corresponding trends will be presented in detail.

  9. "What D'ya Mean, Project SOL-FA?"

    ERIC Educational Resources Information Center

    Hardman, Olga S.

    1981-01-01

    Since 1977, Project Sol-fa, funded with an ESEA Title IV-C grant has provided Harrison County primary teachers with inservice training in the Kodaly method of music education. This article provides information on program funding, costs, and accomplishments. Evaluation forms and the inservice syllabus are appended. (SJL)

  10. Leaching of biocides from façades under natural weather conditions.

    PubMed

    Burkhardt, M; Zuleeg, S; Vonbank, R; Bester, K; Carmeliet, J; Boller, M; Wangler, T

    2012-05-15

    Biocides are included in organic building façade coatings as protection against biological attack by algae and fungi but have the potential to enter the environment via leaching into runoff from wind driven rain. The following field study correlates wind driven rain to runoff and measured the release of several commonly used organic biocides (terbutryn, Irgarol 1051, diuron, isoproturon, OIT, DCOIT) in organic façade coatings from four coating systems. During one year of exposure of a west oriented model house façade in the Zurich, Switzerland area, an average of 62.7 L/m(2), or 6.3% of annual precipitation came off the four façade panels installed as runoff. The ISO method for calculating wind driven rain loads is adapted to predict runoff and can be used in the calculation of emissions in the field. Biocide concentrations tend to be higher in the early lifetime of the coatings and then reach fairly consistent levels later, generally ranging on the order of mg/L or hundreds of μg/L. On the basis of the amount remaining in the film after exposure, the occurrence of transformation products, and the calculated amounts in the leachate, degradation plays a significant role in the overall mass balance.

  11. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato.

    PubMed

    Rajer, Faheem Uddin; Wu, Huijun; Xie, Yongli; Xie, Shanshan; Raza, Waseem; Tahir, Hafiz Abdul Samad; Gao, Xuewen

    2017-04-01

    Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.

  12. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Overcoming reprogramming resistance of Fanconi anemia cells

    PubMed Central

    Müller, Lars U. W.; Milsom, Michael D.; Harris, Chad E.; Vyas, Rutesh; Brumme, Kristina M.; Parmar, Kalindi; Moreau, Lisa A.; Schambach, Axel; Park, In-Hyun; London, Wendy B.; Strait, Kelly; Schlaeger, Thorsten; DeVine, Alexander L.; Grassman, Elke; D'Andrea, Alan; Daley, George Q.

    2012-01-01

    Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal BM failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and protecting cells from the DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells, but previous attempts at gene therapy have failed largely because of inadequate numbers of hematopoietic stem cells available for gene correction. Induced pluripotent stem cells (iPSCs) constitute an alternate source of autologous cells that are amenable to ex vivo expansion, genetic correction, and molecular characterization. In the present study, we demonstrate that reprogramming leads to activation of the FA pathway, increased DNA double-strand breaks, and senescence. We also demonstrate that defects in the FA DNA-repair pathway decrease the reprogramming efficiency of murine and human primary cells. FA pathway complementation reduces senescence and restores the reprogramming efficiency of somatic FA cells to normal levels. Disease-specific iPSCs derived in this fashion maintain a normal karyotype and are capable of hematopoietic differentiation. These data define the role of the FA pathway in reprogramming and provide a strategy for future translational applications of patient-specific FA iPSCs. PMID:22371882

  14. Serotonin Activates Overall Feeding by Activating Two Separate Neural Pathways in Caenorhabditis elegans

    PubMed Central

    Song, Bo-mi; Avery, Leon

    2012-01-01

    Food intake in the nematode Caenorhabditis elegans requires two distinct feeding motions, pharyngeal pumping and isthmus peristalsis. Bacteria, the natural food of C. elegans, activate both feeding motions (Croll, 1978; Horvitz et al., 1982; Chiang et al., 2006). The mechanisms by which bacteria activate the feeding motions are largely unknown. To understand the process, we studied how serotonin, an endogenous pharyngeal pumping activator whose action is triggered by bacteria, activates feeding motions. Here, we show that serotonin, like bacteria, activates overall feeding by activating isthmus peristalsis as well as pharyngeal pumping. During active feeding, the frequencies and the timing of onset of the two motions were distinct, but each isthmus peristalsis was coupled to the preceding pump. We found that serotonin activates the two feeding motions mainly by activating two separate neural pathways in response to bacteria. For activating pumping, the SER-7 serotonin receptor in the MC motor neurons in the feeding organ activated cholinergic transmission from MC to the pharyngeal muscles by activating the Gsα signaling pathway. For activating isthmus peristalsis, SER-7 in the M4 (and possibly M2) motor neuron in the feeding organ activated the G12α signaling pathway in a cell-autonomous manner, which presumably activates neurotransmission from M4 to the pharyngeal muscles. Based on our results and previous calcium imaging of pharyngeal muscles (Shimozono et al., 2004), we propose a model that explains how the two feeding motions are separately regulated yet coupled. The feeding organ may have evolved this way to support efficient feeding. PMID:22323705

  15. Cardiac extrinsic apoptotic pathway is silent in young but activated in elder mice overexpressing bovine GH: interplay with the intrinsic pathway.

    PubMed

    Bogazzi, Fausto; Russo, Dania; Raggi, Francesco; Bohlooly-Y, Mohammad; Tornell, Jan; Sardella, Chiara; Lombardi, Martina; Urbani, Claudio; Manetti, Luca; Brogioni, Sandra; Martino, Enio

    2011-08-01

    Apoptosis may occur through the mitochondrial (intrinsic) pathway and activation of death receptors (extrinsic pathway). Young acromegalic mice have reduced cardiac apoptosis whereas elder animals have increased cardiac apoptosis. Multiple intrinsic apoptotic pathways have been shown to be modulated by GH and other stimuli in the heart of acromegalic mice. However, the role of the extrinsic apoptotic pathways in acromegalic hearts is currently unknown. In young (3-month-old) acromegalic mice, expression of proteins of the extrinsic apoptotic pathway did not differ from that of wild-type animals, suggesting that this mechanism did not participate in the lower cardiac apoptosis levels observed at this age. On the contrary, the extrinsic pathway was active in elder (9-month-old) animals (as shown by increased expression of TRAIL, FADD, TRADD and increased activation of death inducing signaling complex) leading to increased levels of active caspase 8. It is worth noting that changes of some pro-apoptotic proteins were induced by GH, which seemed to have, in this context, pro-apoptotic effects. The extrinsic pathway influenced the intrinsic pathway by modulating t-Bid, the cellular levels of which were reduced in young and increased in elder animals. However, in young animals this effect was due to reduced levels of Bid regulated by the extrinsic pathway, whereas in elder animals the increased levels of t-Bid were due to the increased levels of active caspase 8. In conclusion, the extrinsic pathway participates in the cardiac pro-apoptotic phenotype of elder acromegalic animals either directly, enhancing caspase 8 levels or indirectly, increasing t-Bid levels and conveying death signals to the intrinsic pathway.

  16. New insights into the operative network of FaEO, an enone oxidoreductase from Fragaria x ananassa Duch.

    PubMed

    Collu, Gabriella; Farci, Domenica; Esposito, Francesca; Pintus, Francesca; Kirkpatrick, Joanna; Piano, Dario

    2017-05-01

    The 2-methylene-furan-3-one reductase or Fragaria x ananassa Enone Oxidoreductase (FaEO) catalyses the last reductive step in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a major component in the characteristic flavour of strawberries. In the present work, we describe the association between FaEO and the vacuolar membrane of strawberry fruits. Even if FaEO lacks epitopes for stable or transient membrane-interactions, it contains a calmodulin-binding region, suggesting that in vivo FaEO may be associated with the membrane via a peripheral protein complex with calmodulin. Moreover, we also found that FaEO occurs in dimeric form in vivo and, as frequently observed for calmodulin-regulated proteins, it may be expressed in different isoforms by alternative gene splicing. Further mass spectrometry analysis confirmed that the isolated FaEO consists in the already known isoform and that it is the most characteristic during ripening. Finally, a characterization by absorption spectroscopy showed that FaEO has specific flavoprotein features. The relevance of these findings and their possible physiological implications are discussed.

  17. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    PubMed

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  18. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    PubMed Central

    2010-01-01

    Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast

  19. Formal language of Lanna Shop House’s Façade in Lampang Old city, Thailand

    NASA Astrophysics Data System (ADS)

    Phetsuriya, Natthakit

    2017-10-01

    This article aims to presents ‘the formal architectural language of Lanna Designs” that is a linguistic paradigm for decrypt the linguistic system which is hidden in the Lanna façade style. Lanna Designs present an identity of vital ordered and crucial articulated formal language which inherently set of mathematical rules for the arrangement of ornaments. The scope of this article is attempted to the morphology of façades of the ten shop houses which located in Lampang Old city and have familiar proportion and style. In this article, the sampling of façade buildings required proportion as three-stall and two-story with familiar style. The morphology is described based on terms of a symbolic encoding system that is represented as graphically building grammar. The system helps to emphasize commonalities in façade languages and propose a prototype of identified Lanna façade design. This methodology might be the option for decrypt or study in every facades style.

  20. FaSTR DNA: a new expert system for forensic DNA analysis.

    PubMed

    Power, Timothy; McCabe, Brendan; Harbison, Sally Ann

    2008-06-01

    The automation of DNA profile analysis of reference and crime samples continues to gain pace driven in part by a realisation by the criminal justice system of the positive impact DNA technology can have in aiding in the solution of crime and the apprehension of suspects. Expert systems to automate the profile analysis component of the process are beginning to be developed. In this paper, we report the validation of a new expert system FaSTR DNA, an expert system suitable for the analysis of DNA profiles from single source reference samples and from crime samples. We compare the performance of FaSTR DNA with that of other equivalent systems, GeneMapper ID v3.2 (Applied Biosystems, Foster City, CA) and FSS-i(3) v4 (The Forensic Science Service((R)) DNA expert System Suite FSS-i(3), Forensic Science Service, Birmingham, UK) with GeneScan Analysis v3.7/Genotyper v3.7 software (Applied Biosystems, Foster City, CA, USA) with manual review. We have shown that FaSTR DNA provides an alternative solution to automating DNA profile analysis and is appropriate for implementation into forensic laboratories. The FaSTR DNA system was demonstrated to be comparable in performance to that of GeneMapper ID v3.2 and superior to that of FSS-i(3) v4 for the analysis of DNA profiles from crime samples.

  1. A Security-façade Library for Virtual-observatory Software

    NASA Astrophysics Data System (ADS)

    Rixon, G.

    2009-09-01

    The security-façade library implements, for Java, IVOA's security standards. It supports the authentication mechanisms for SOAP and REST web-services, the sign-on mechanisms (with MyProxy, AstroGrid Accounts protocol or local credential-caches), the delegation protocol, and RFC3820-enabled HTTPS for Apache Tomcat. Using the façade, a developer who is not a security specialist can easily add access control to a virtual-observatory service and call secured services from an application. The library has been an internal part of AstroGrid software for some time and it is now offered for use by other developers.

  2. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  3. Activation of DNA damage repair pathways by murine polyomavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling.more » ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.« less

  4. Activation of DNA Damage Repair Pathways by Murine Polyomavirus

    PubMed Central

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert L.

    2016-01-01

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. PMID:27529739

  5. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway.

    PubMed

    Guo, Hongsun; Hamilton, Mark; Offutt, Sarah J; Gloeckner, Cory D; Li, Tianqi; Kim, Yohan; Legon, Wynn; Alford, Jamu K; Lim, Hubert H

    2018-06-06

    Ultrasound (US) can noninvasively activate intact brain circuits, making it a promising neuromodulation technique. However, little is known about the underlying mechanism. Here, we apply transcranial US and perform brain mapping studies in guinea pigs using extracellular electrophysiology. We find that US elicits extensive activation across cortical and subcortical brain regions. However, transection of the auditory nerves or removal of cochlear fluids eliminates the US-induced activity, revealing an indirect auditory mechanism for US neural activation. Our findings indicate that US activates the ascending auditory system through a cochlear pathway, which can activate other non-auditory regions through cross-modal projections. This cochlear pathway mechanism challenges the idea that US can directly activate neurons in the intact brain, suggesting that future US stimulation studies will need to control for this effect to reach reliable conclusions. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast.

    PubMed

    Ward, Thomas A; Dudášová, Zuzana; Sarkar, Sovan; Bhide, Mangesh R; Vlasáková, Danuša; Chovanec, Miroslav; McHugh, Peter J

    2012-01-01

    Fanconi anemia (FA) is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL) repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6). Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5'-3' exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA-related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.

  7. A modified F/A-18 in a distinctive red, white and blue paint scheme was showcased during formal roll

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A modified F/A-18 in a distinctive red, white and blue paint scheme was showcased during formal rollout ceremonies for the Active Aeroelastic Wing flight research program at NASA's Dryden Flight Research Center on March 27, 2002.

  8. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  9. In vitro C3 Deposition on Cryptococcus Capsule Occurs Via Multiple Complement Activation Pathways

    PubMed Central

    Mershon-Shier, Kileen L.; Vasuthasawat, Alex; Takahashi, Kazue; Morrison, Sherie L.; Beenhouwer, David O.

    2011-01-01

    Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and C. neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B−/− serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins. PMID:21723612

  10. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    PubMed

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A modified F/A-18A sporting a distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.

  12. This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This modified F/A-18A with its distinctive red, white and blue paint scheme is the test aircraft for the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.

  13. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less

  14. Detecting blind building façades from highly overlapping wide angle aerial imagery

    NASA Astrophysics Data System (ADS)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  15. Yamadazyma kitorensis f.a., sp. nov. and Zygoascus biomembranicola f.a., sp. nov., novel yeasts from the stone chamber interior of the Kitora tumulus, and five novel combinations in Yamadazyma and Zygoascus for species of Candida.

    PubMed

    Nagatsuka, Yuka; Ninomiya, Shinya; Kiyuna, Tomohiko; Kigawa, Rika; Sano, Chie; Sugiyama, Junta

    2016-04-01

    Analysis of D1/D2 large-subunit (LSU) rRNA gene sequences predicted that 17 yeast isolates, mainly from viscous gels (biofilms) taken from the stone chamber interior of the Kitora tumulus in Nara, Japan, were placed in the Yamadazyma and Zygoascus clades. Polyphasic characterization, including morphological, physiological and chemotaxonomic characteristics, multigene sequence divergence and DNA-DNA hybridization, strongly suggested the assignment of one novel species to each of the clades; these are Yamadazyma kitorensis f.a., sp. nov., with the type strain JCM 31005T (ex-type CBS 14158T=isolate K8617-6-8T), and Zygoascus biomembranicola f.a., sp. nov., with the type strain JCM 31007T (ex-type CBS 14157T=isolate K61208-2-11T). Furthermore, the transfer of five known species of the genus Candida as novel combinations to the genera Yamadazyma and Zygoascus is proposed; these are Yamadazyma olivae f.a., comb. nov. (type strain CBS 11171T=ATCC MYA-4568T), Yamadazyma tumulicola f.a., comb. nov. (type strain JCM 15403T=ex-type CBS 10917T=isolate T6517-9-5T), Yamadazyma takamatsuzukensis f.a., comb. nov. (type strain JCM 15410T=CBS 10916T = isolate T4922-1-1T), Zygoascus polysorbophila f.a., comb. nov. (type strain NRRL Y-27161T=CBS 7317T) and Zygoascus bituminiphila f.a., comb. nov. (type strain CBS 8813T=MUCL 41424T).

  16. Feasibility of a physical activity pathway for Irish primary care physiotherapy services.

    PubMed

    Barrett, Emer M; Hussey, Juliette; Darker, Catherine D

    2017-03-01

    To establish consensus on a physical activity pathway suitable for use by physiotherapists in Irish primary care. The physical activity pathway "Let's Get Moving" was examined to agree recruitment criteria and seek consensus on component parts. Modified Delphi approach which attempts to achieve a convergence of opinion, over a series of iterations. Three rounds of questionnaires were used. Primary care. 41 senior physiotherapists working in primary care for a median of 6 years (IQR 3.7 to 8.5). Statements achieving consensus; defined as at least 70% of participants scoring a 6 or a 7, indicating high agreement, on a 7 point Likert scale. The response rate was 98%. There was a high degree of consensus for many components of the pathway. Participants agreed that all patients attending physiotherapy should be eligible for recruitment onto the pathway as well as accepting referrals from other health professionals and direct access from the public. Private physiotherapists highlighted concerns about recruiting fee paying patients onto the pathway. The pathway should be integrated into other preventative and chronic disease programmes in primary care. Modifications to the original pathway included the use of a pedometer in addition to the General Practice Physical Activity Questionnaire. Training needs in physical activity screening and motivational interviewing, as well as additional staffing were identified to support implementation. The Physical Activity Pathway "Let's Get Moving" was accepted as a clinically feasible resource to primary care physiotherapists with some modifications and with the support of additional resources. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  17. Two faces of Hippo: activate or suppress the Hippo pathway in cancer.

    PubMed

    Cao, Jingwen; Huang, Wenlong

    2017-11-01

    The Hippo pathway has generated considerable interest in recent years because of its involvement in several key hallmarks of cancer progression and metastasis. Research on the Hippo signaling pathway in cancer has been used to determine the activity of yes-associated protein (YAP) in tumorigenesis and disease progression. Previous studies have shown that the Hippo pathway can be used as a target to inhibit YAP activity and is a viable treatment for cancer. However, more studies are required to further advance our understanding of the Hippo signaling pathway in cancer. It has been shown that knockout of serine/threonine-kinases LATS1/2 in the Hippo pathway suppresses cancer immunity in mice. In addition, suppression of the oncogene YAP could contribute toward cancer immune therapy. Therefore, regulation of Hippo signaling can be an attractive alternative strategy for cancer treatment. This review will provide a summary of currently known compounds that activate or suppress the Hippo pathway.

  18. Effect of Different Phospholipids on α-Secretase Activity in the Non-Amyloidogenic Pathway of Alzheimer’s Disease

    PubMed Central

    Grimm, Marcus O. W.; Haupenthal, Viola J.; Rothhaar, Tatjana L.; Zimmer, Valerie C.; Grösgen, Sven; Hundsdörfer, Benjamin; Lehmann, Johannes; Grimm, Heike S.; Hartmann, Tobias

    2013-01-01

    Alzheimer’s disease (AD) is characterized by extracellular accumulation of amyloid-β peptide (Aβ), generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. Aβ generation is inhibited when the initial ectodomain shedding is caused by α-secretase, cleaving APP within the Aβ domain. Therefore, an increase in α-secretase activity is an attractive therapeutic target for AD treatment. APP and the APP-cleaving secretases are all transmembrane proteins, thus local membrane lipid composition is proposed to influence APP processing. Although several studies have focused on γ-secretase, the effect of the membrane lipid microenvironment on α-secretase is poorly understood. In the present study, we systematically investigated the effect of fatty acid (FA) acyl chain length (10:0, 12:0, 14:0, 16:0, 18:0, 20:0, 22:0, 24:0), membrane polar lipid headgroup (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine), saturation grade and the FA double-bond position on α-secretase activity. We found that α-secretase activity is significantly elevated in the presence of FAs with short chain length and in the presence of polyunsaturated FAs, whereas variations in the phospholipid headgroups, as well as the double-bond position, have little or no effect on α-secretase activity. Overall, our study shows that local lipid membrane composition can influence α-secretase activity and might have beneficial effects for AD. PMID:23485990

  19. USP21 regulates Hippo pathway activity by mediating MARK protein turnover.

    PubMed

    Nguyen, Hung Thanh; Kugler, Jan-Michael; Loya, Anand C; Cohen, Stephen M

    2017-09-08

    The Hippo pathway, which acts to repress the activity of YAP and TAZ trancriptional co-activators, serve as a barrier for oncogenic transformation. Unlike other oncoproteins, YAP and TAZ are rarely activated by mutations or amplified in cancer. However, elevated YAP/TAZ activity is frequently observed in cancer and often correlates with worse survival. The activity and stability of Hippo pathway components, including YAP/TAZ, AMOT and LATS1/2, are regulated by ubiquitin-mediated protein degradation. Aberrant expression of ubiquitin ligase complexes that regulate the turnover of Hippo components and deubiquitylating enzymes that counteract these ubiquitin ligases have been implicated in human cancer. Here we identify the USP21 deubiquitylating enzyme as a novel regulator of Hippo pathway activity. We provide evidence that USP21 regulates YAP/TAZ activity by controlling the stability of MARK kinases, which promote Hippo signaling. Low expression of USP21 in early stage renal clear cell carcinoma suggests that USP21 may be a useful biomarker.

  20. Electrophilic nitro-fatty acids prevent astrocyte-mediated toxicity to motor neurons in a cell model of familial amyotrophic lateral sclerosis via nuclear factor erythroid 2-related factor activation.

    PubMed

    Diaz-Amarilla, Pablo; Miquel, Ernesto; Trostchansky, Andrés; Trias, Emiliano; Ferreira, Ana M; Freeman, Bruce A; Cassina, Patricia; Barbeito, Luis; Vargas, Marcelo R; Rubbo, Homero

    2016-06-01

    Nitro-fatty acids (NO2-FA) are electrophilic signaling mediators formed in tissues during inflammation, which are able to induce pleiotropic cytoprotective and antioxidant pathways including up regulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) responsive genes. Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons associated to an inflammatory process that usually aggravates the disease progression. In ALS animal models, the activation of the transcription factor Nrf2 in astrocytes confers protection to neighboring neurons. It is currently unknown whether NO2-FA can exert protective activity in ALS through Nrf2 activation. Herein we demonstrate that nitro-arachidonic acid (NO2-AA) or nitro-oleic acid (NO2-OA) administrated to astrocytes expressing the ALS-linked hSOD1(G93A) induce antioxidant phase II enzyme expression through Nrf2 activation concomitant with increasing intracellular glutathione levels. Furthermore, treatment of hSOD1(G93A)-expressing astrocytes with NO2-FA prevented their toxicity to motor neurons. Transfection of siRNA targeted to Nrf2 mRNA supported the involvement of Nrf2 activation in NO2-FA-mediated protective effects. Our results show for the first time that NO2-FA induce a potent Nrf2-dependent antioxidant response in astrocytes capable of preventing motor neurons death in a culture model of ALS. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Herpes simplex virus triggers activation of calcium-signaling pathways

    PubMed Central

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  2. Activation of DNA damage repair pathways by murine polyomavirus.

    PubMed

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert L

    2016-10-01

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. AMPK activators inhibit the proliferation of human melanomas bearing the activated MAPK pathway.

    PubMed

    Petti, Carlotta; Vegetti, Claudia; Molla, Alessandra; Bersani, Ilaria; Cleris, Loredana; Mustard, Kirsty J; Formelli, Franca; Hardie, Grahame D; Sensi, Marialuisa; Anichini, Andrea

    2012-10-01

    Raf/MEK/ERK signaling can inhibit the liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway, thus rendering melanoma cells resistant to energy stress conditions. We evaluated whether pharmacological reactivation of the AMPK function could exert antitumor effects on melanoma cells bearing this pathway constitutively active because of a mutation in NRAS or BRAF genes. Nine melanoma cell lines were treated with the AMPK activators 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and phenformin. The activation of AMPK enzymatic activity, phosphorylation of AMPK and acetyl-CoA carboxylase kinase, in-vitro proliferation, cell cycle, and in-vivo growth of xenografts in nude mice were evaluated. AICAR and phenformin promoted phosphorylation and enzymatic activity of AMPK, as well as phosphorylation of the AMPK downstream target acetyl-CoA carboxylase. Drug treatment of either BRAF-mutant or NRAS-mutant melanomas, at doses not inducing cell death, was accompanied by a dose-dependent decrease in melanoma cell proliferation because of cell cycle arrest in either the G0/G1 or the S phase, associated with an increased expression of the p21 cell cycle inhibitor. Melanomas isolated from subcutaneously implanted mice, 25 days from treatment with AICAR, showed increased staining of the senescence-associated marker β-galactosidase, high p21 expression, and evidence of necrosis. Altogether, these results indicate that pharmacological activators of AMPK-dependent pathways inhibit the cell growth of melanoma cells with active Raf/MEK/ERK signaling and provide a rationale for further investigation on their use in combination therapies.

  4. Use of OCTA, FA, and Ultra-Widefield Imaging in Quantifying Retinal Ischemia: A Review.

    PubMed

    Or, Chris; Sabrosa, Almyr S; Sorour, Osama; Arya, Malvika; Waheed, Nadia

    2018-01-01

    As ischemia remains a key prognostic factor in the management of various diseases including diabetic retinopathy, an increasing amount of research has been dedicated to its quantification as a potential biomarker. Advancements in the quantification of retinal ischemia have been made with the imaging modalities of fluorescein angiography (FA), ultra-widefield imaging (UWF), and optical coherence tomography angiography (OCTA), with each imaging modality offering certain benefits over the others. FA remains the gold standard in assessing the extent of ischemia. UWF imaging has allowed for the assessment of peripheral ischemia via FA. It is, however, OCTA that offers the best visualization of retinal vasculature with its noninvasive depth-resolved imaging and therefore has the potential to become a mainstay in the assessment of retinal ischemia. The primary purpose of this article is to review the use of FA, UWF, and OCTA to quantify retinal ischemia and the various methods described in the literature by which this is achieved. Copyright 2018 Asia-Pacific Academy of Ophthalmology.

  5. Transonic Free-To-Roll Analysis of the F/A-18E and F-35 Configurations

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; McConnell, Jeffrey K.; Brandon, Jay M.; Hall, Robert M.

    2004-01-01

    The free-to-roll technique is used as a tool for predicting areas of uncommanded lateral motions. Recently, the NASA/Navy/Air Force Abrupt Wing Stall Program extended the use of this technique to the transonic speed regime. Using this technique, this paper evaluates various wing configurations on the pre-production F/A-18E aircraft and the Joint Strike Fighter (F-35) aircraft. The configurations investigated include leading and trailing edge flap deflections, fences, leading edge flap gap seals, and vortex generators. These tests were conducted in the NASA Langley 16-Foot Transonic Tunnel. The analysis used a modification of a figure-of-merit developed during the Abrupt Wing Stall Program to discern configuration effects. The results showed how the figure-of-merit can be used to schedule wing flap deflections to avoid areas of uncommanded lateral motion. The analysis also used both static and dynamic wind tunnel data to provide insight into the uncommanded lateral behavior. The dynamic data was extracted from the time history data using parameter identification techniques. In general, modifications to the pre-production F/A-18E resulted in shifts in angle-of-attack where uncommanded lateral activity occurred. Sealing the gap between the inboard and outboard leading-edge flaps on the Navy version of the F-35 eliminated uncommanded lateral activity or delayed the activity to a higher angle-of-attack.

  6. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    PubMed

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Inhibition of the Nedd8 system sensitizes cells to DNA Inter-strand crosslinking agents

    PubMed Central

    Kee, Younghoon; Huang, Min; Chang, Sophia; Moreau, Lisa A.; Park, Eunmi; Smith, Peter G.; D’Andrea, Alan D.

    2012-01-01

    The Fanconi Anemia (FA) pathway is required for repair of DNA interstrand crosslinks (ICLs). FA pathway-deficient cells are hypersensitive to DNA ICL-inducing drugs such as Cisplatin. Conversely, hyperactivation of the FA pathway is a mechanism that may underlie cellular resistance to DNA ICL agents. Modulating FANCD2 monoubiquitination, a key step in the FA pathway, may be an effective therapeutic approach to conferring cellular sensitivity to ICL agents. Here, we show that inhibition of the Nedd8 conjugation system increases cellular sensitivity to DNA ICL-inducing agents. Mechanistically, the Nedd8 inhibition, either by siRNA-mediated knockdown of Nedd8 conjugating enzymes or treatment with a Nedd8 activating enzyme inhibitor MLN4924, suppressed DNA damage-induced FANCD2 monoubiquitination and CHK1 phosphorylation. Our data indicate that inhibition of the FA pathway is largely responsible for the heightened cellular sensitivity to DNA ICLs upon Nedd8 inhibition. These results suggest that a combination of Nedd8 inhibition with ICL-inducing agents may be an effective strategy for sensitizing a subset of drug-resistant cancer cells. PMID:22219386

  8. Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework.

    PubMed

    Yang, Lingjian; Ainali, Chrysanthi; Tsoka, Sophia; Papageorgiou, Lazaros G

    2014-12-05

    Applying machine learning methods on microarray gene expression profiles for disease classification problems is a popular method to derive biomarkers, i.e. sets of genes that can predict disease state or outcome. Traditional approaches where expression of genes were treated independently suffer from low prediction accuracy and difficulty of biological interpretation. Current research efforts focus on integrating information on protein interactions through biochemical pathway datasets with expression profiles to propose pathway-based classifiers that can enhance disease diagnosis and prognosis. As most of the pathway activity inference methods in literature are either unsupervised or applied on two-class datasets, there is good scope to address such limitations by proposing novel methodologies. A supervised multiclass pathway activity inference method using optimisation techniques is reported. For each pathway expression dataset, patterns of its constituent genes are summarised into one composite feature, termed pathway activity, and a novel mathematical programming model is proposed to infer this feature as a weighted linear summation of expression of its constituent genes. Gene weights are determined by the optimisation model, in a way that the resulting pathway activity has the optimal discriminative power with regards to disease phenotypes. Classification is then performed on the resulting low-dimensional pathway activity profile. The model was evaluated through a variety of published gene expression profiles that cover different types of disease. We show that not only does it improve classification accuracy, but it can also perform well in multiclass disease datasets, a limitation of other approaches from the literature. Desirable features of the model include the ability to control the maximum number of genes that may participate in determining pathway activity, which may be pre-specified by the user. Overall, this work highlights the potential of building

  9. ERCC1 function in nuclear excision and interstrand crosslink repair pathways is mediated exclusively by the ERCC1-202 isoform

    PubMed Central

    Friboulet, Luc; Postel-Vinay, Sophie; Sourisseau, Tony; Adam, Julien; Stoclin, Annabelle; Ponsonnailles, Florence; Dorvault, Nicolas; Commo, Frédéric; Saulnier, Patrick; Salome-Desmoulez, Sophie; Pottier, Géraldine; André, Fabrice; Kroemer, Guido; Soria, Jean Charles; Olaussen, Ken André

    2013-01-01

    ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies. PMID:24036546

  10. Neutrophil extracellular traps can activate alternative complement pathways.

    PubMed

    Wang, H; Wang, C; Zhao, M-H; Chen, M

    2015-09-01

    The interaction between neutrophils and activation of alternative complement pathway plays a pivotal role in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCAs activate primed neutrophils to release neutrophil extracellular traps (NETs), which have recently gathered increasing attention in the development of AAV. The relationship between NETs and alternative complement pathway has not been elucidated. The current study aimed to investigate the relationship between NETs and alternative complement pathway. Detection of components of alternative complement pathway on NETs in vitro was assessed by immunostain and confocal microscopy. Complement deposition on NETs were detected after incubation with magnesium salt ethyleneglycol tetraacetic acid (Mg-EGTA)-treated human serum. After incubation of serum with supernatants enriched in ANCA-induced NETs, levels of complement components in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Complement factor B (Bb) and properdin deposited on NETs in vitro. The deposition of C3b and C5b-9 on NETs incubated with heat-inactivated normal human serum (Hi-NHS) or EGTA-treated Hi-NHS (Mg-EGTA-Hi-NHS) were significantly less than that on NETs incubated with NHS or EGTA-treated NHS (Mg-EGTA-NHS). NETs induced by ANCA could activate the alternative complement cascade in the serum. In the presence of EGTA, C3a, C5a and SC5b-9 concentration decreased from 800·42 ± 244·81 ng/ml, 7·68 ± 1·50 ng/ml, 382·15 ± 159·75 ng/ml in the supernatants enriched in ANCA induced NETs to 479·07 ± 156·2 ng/ml, 4·86 ± 1·26 ng/ml, 212·65 ± 44·40 ng/ml in the supernatants of DNase I-degraded NETs (P < 0·001, P = 0·008, P < 0·001, respectively). NETs could activate the alternative complement pathway, and might thus participate in the pathogenesis of AAV. © 2015 British Society for Immunology.

  11. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats.

    PubMed

    Daubioul, Catherine; Rousseau, Nicolas; Demeure, Roger; Gallez, Bernard; Taper, Henryk; Declerck, Barbara; Delzenne, Nathalie

    2002-05-01

    This study was designed to compare the effects of dietary supplementation with nondigestible carbohydrates, differing in fermentability by colonic bacteria, on hepatic steatosis in growing obese Zucker rats. Male Zucker fa/fa rats were divided into three groups: a control group that received the basal diet, a fructan group that received 10 g highly fermented Synergy 1/100 g diet and a cellulose group that received 10 g poorly fermented Vivapur Microcrystalline cellulose/100 g diet. Rats consuming fructan had a lower energy intake, a lower body weight and less triacylglycerol accumulation in the liver as assessed in vivo by nuclear magnetic resonance (NMR) spectroscopy, and ex vivo by biochemical and histochemical analysis compared with the control and/or cellulose groups. The high fermentation of fructans compared with cellulose was reflected by greater cecal contents and by a twofold greater propionate concentration in the portal vein of rats fed fructan compared with those fed cellulose. By measuring the capacity of hepatocytes isolated from liver of Zucker rats to synthesize triglycerides or total lipids from different precursors, we showed that propionate, at the concentrations measured in the portal vein of rats treated with fructan, selectively decreased the incorporation of acetate into total lipids, a phenomenon that could contribute, along with the lower energy intake, to less triglyceride accumulation in the liver of obese Zucker rats fed dietary fructans.

  12. Filter-Adapted Fluorescent In Situ Hybridization (FA-FISH) for Filtration-Enriched Circulating Tumor Cells.

    PubMed

    Oulhen, Marianne; Pailler, Emma; Faugeroux, Vincent; Farace, Françoise

    2017-01-01

    Circulating tumor cells (CTCs) may represent an easily accessible source of tumor material to assess genetic aberrations such as gene-rearrangements or gene-amplifications and screen cancer patients eligible for targeted therapies. As the number of CTCs is a critical parameter to identify such biomarkers, we developed fluorescent in situ hybridization (FISH) for CTCs enriched on filters (filter-adapted-FISH, FA-FISH). Here, we describe the FA-FISH protocol, the combination of immunofluorescent staining (DAPI/CD45) and FA-FISH techniques, as well as the semi-automated microscopy method that we developed to improve the feasibility and reliability of FISH analyses in filtration-enriched CTC.

  13. IDENTIFICATION OF THE ROLE OF APOPTOSIS PATHWAYS POTENTIALLY INVOLVED IN FORMALDEHYDE-INDUCED CARCINOGENESIS USING CDNA ARRAYS

    EPA Science Inventory

    Identification of the Role of Apoptosis Pathways Potentially Involved in Formaldehyde- Induced Carcinogenesis Using cDNA Arrays.

    Formaldehyde (FA) is a genotoxic chemical found in household, medicinal, and industrial products. Although the major source of human exposure is...

  14. Slicing Method for curved façade and window extraction from point clouds

    NASA Astrophysics Data System (ADS)

    Iman Zolanvari, S. M.; Laefer, Debra F.

    2016-09-01

    Laser scanning technology is a fast and reliable method to survey structures. However, the automatic conversion of such data into solid models for computation remains a major challenge, especially where non-rectilinear features are present. Since, openings and the overall dimensions of the buildings are the most critical elements in computational models for structural analysis, this article introduces the Slicing Method as a new, computationally-efficient method for extracting overall façade and window boundary points for reconstructing a façade into a geometry compatible for computational modelling. After finding a principal plane, the technique slices a façade into limited portions, with each slice representing a unique, imaginary section passing through a building. This is done along a façade's principal axes to segregate window and door openings from structural portions of the load-bearing masonry walls. The method detects each opening area's boundaries, as well as the overall boundary of the façade, in part, by using a one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per vertical metre of building and 25 slices per horizontal metre of building, irrespective of building configuration or complexity. The proposed procedure was validated by its application to three highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no manual intervention on highly complex buildings and nearly 100% on simple ones. Furthermore, computational times were less than 3 sec for data sets up to 2.6 million points, while similar existing approaches required more than 16 hr for such datasets.

  15. Identification of active miRNA and transcription factor regulatory pathways in human obesity-related inflammation.

    PubMed

    Zhang, Xi-Mei; Guo, Lin; Chi, Mei-Hua; Sun, Hong-Mei; Chen, Xiao-Wen

    2015-03-07

    Obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of metabolic syndrome (MS). Recently, a growing body of evidence supports that miRNAs are largely dysregulated in obesity and that specific miRNAs regulate obesity-associated inflammation. We applied an approach aiming to identify active miRNA-TF-gene regulatory pathways in obesity. Firstly, we detected differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) from mRNA and miRNA expression profiles, respectively. Secondly, by mapping the DEGs and DEmiRs to the curated miRNA-TF-gene regulatory network as active seed nodes and connect them with their immediate neighbors, we obtained the potential active miRNA-TF-gene regulatory subnetwork in obesity. Thirdly, using a Breadth-First-Search (BFS) algorithm, we identified potential active miRNA-TF-gene regulatory pathways in obesity. Finally, through the hypergeometric test, we identified the active miRNA-TF-gene regulatory pathways that were significantly related to obesity. The potential active pathways with FDR < 0.0005 were considered to be the active miRNA-TF regulatory pathways in obesity. The union of the active pathways is visualized and identical nodes of the active pathways were merged. We identified 23 active miRNA-TF-gene regulatory pathways that were significantly related to obesity-related inflammation.

  16. Disrupting Façades of Clarity in the Teaching and Learning of Qualitative Research

    ERIC Educational Resources Information Center

    Carducci, Rozana; Pasque, Penny A.; Kuntz, Aaron M.; Contreras-­McGavin, Melissa

    2013-01-01

    In this article we examine two methodological façades of clarity that commonly shroud critical qualitative educational inquiry. More specifically, we interrogate discussions of reflexivity and positionality and explore the ways in which methodology curricula and instructional practices perpetuate façades of clarity, or a false sense of coherence,…

  17. Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    PubMed Central

    Geiselhart, Anja; Lier, Amelie; Walter, Dagmar; Milsom, Michael D.

    2012-01-01

    Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients. PMID:22675615

  18. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric J; Durrani, Atiq A; Wylie, Christopher

    2009-03-01

    Intervertebral discs at different postnatal ages were assessed for active intercellular signaling pathways. To generate a spatial and temporal map of the signaling pathways active in the postnatal intervertebral disc (IVD). The postnatal IVD is a complex structure, consisting of 3 histologically distinct components, the nucleus pulposus, fibrous anulus fibrosus, and endplate. These differentiate and grow during the first 9 weeks of age in the mouse. Identification of the major signaling pathways active during and after the growth and differentiation period will allow functional analysis using mouse genetics and identify targets for therapy for individual components of the disc. Antibodies specific for individual cell signaling pathways were used on cryostat sections of IVD at different postnatal ages to identify which components of the IVD were responding to major classes of intercellular signal, including sonic hedgehog, Wnt, TGFbeta, FGF, and BMPs. We present a spatial/temporal map of these signaling pathways during growth, differentiation, and aging of the disc. During growth and differentiation of the disc, its different components respond at different times to different intercellular signaling ligands. Most of these are dramatically downregulated at the end of disc growth.

  19. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  20. Checkpoint Pathways Activated by Re-Replication in Breast Cancer Cells

    DTIC Science & Technology

    2011-05-01

    107- 13. 9. Zhu W DA. An ATR- and BRCA1-Mediated Fanconi Anemia Pathway Is Required for Activating the G2/M Checkpoint and DNA Damage Repair upon...re-replication. J Biol Chem 2007;282:30357-62. 25. Montes de Oca R, Andreassen PR, Margossian SP, et al. Regulated interaction of the Fanconi anemia ...protein, FANCD2, with chromatin. Blood 2005;105:1003-9. 26. Zhu W DA. An ATR- and BRCA1-Mediated Fanconi Anemia Pathway Is Required for Activating

  1. Alternative Pathway of Metronidazole Activation in Trichomonas vaginalis Hydrogenosomes

    PubMed Central

    Hrdý, Ivan; Cammack, Richard; Stopka, Pavel; Kulda, Jaroslav; Tachezy, Jan

    2005-01-01

    Metronidazole and related 5-nitroimidazoles are the only available drugs in the treatment of human urogenital trichomoniasis caused by the protozoan parasite Trichomonas vaginalis. The drugs are activated to cytotoxic anion radicals by their reduction within the hydrogenosomes. It has been established that electrons required for metronidazole activation are released from pyruvate by the activity of pyruvate:ferredoxin oxidoreductase and transferred to the drug by a low-redox-potential carrier, ferredoxin. Here we describe a novel pathway involved in the drug activation within the hydrogenosome. The source of electrons is malate, another major hydrogenosomal substrate, which is oxidatively decarboxylated to pyruvate and CO2 by NAD-dependent malic enzyme. The electrons released during this reaction are transferred from NADH to ferredoxin by NADH dehydrogenase homologous to the catalytic module of mitochondrial complex I, which uses ferredoxin as electron acceptor. Trichomonads acquire high-level metronidazole resistance only after both pyruvate- and malate-dependent pathways of metronidazole activation are eliminated from the hydrogenosomes. PMID:16304169

  2. Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways.

    PubMed

    Malemud, Charles J

    2007-06-01

    The importance of stress-activated protein/mitogen-activated protein kinase (SAP/MAPK) pathway signalling (involving c-Jun-N-terminal kinase [JNK], extracellular signal-regulated kinase [ERK] and p38 kinase) in normal cellular proliferation, differentiation and programmed cell death has led to significant recent advances in our understanding of the role of SAP/MAPK signaling in inflammatory disorders such as arthritis and cardiovascular disease, cancer, and pulmonary and neurogenerative diseases. The discovery that several natural products such as resveratrol, tangeretin and ligustilide non-specifically inhibit SAP/MAPK signalling in vitro should now be logically extended to studies designed to determine how agents in these natural products regulate SAP/MAPK pathways in animal models of disease. A new generation of small-molecule SAP/MAPK inhibitors that demonstrate increasing specificity for each of the JNK, ERK and p38 kinase isoforms has shown promise in animal studies and could eventually prove effective for treating human diseases. Several of these compounds are already being tested in human subjects to assess their oral bioavailability, pharmacokinetics and toxicity.

  3. Antipsychotics activate the TGFβ pathway effector SMAD3

    PubMed Central

    Cohen, T.; Sundaresh, S.; Levine, F.

    2014-01-01

    Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical antipsychotics. We then identified the TGFβ pathway as being involved in the effect of antipsychotics on the insulin promoter, finding that antipsychotics activated SMAD3, a downstream effector of the TGFβ pathway, through a receptor distinct from the TGFβ receptor family and known neurotransmitter receptor targets of antipsychotics. Of note, antipsychotics that do not cause metabolic side effects did not activate SMAD3. In vivo relevance was demonstrated by reanalysis of gene expression data from human brains treated with antipsychotics, which showed altered expression of SMAD3 responsive genes. This work raises the possibility that antipsychotics could be designed that retain beneficial CNS activity while lacking deleterious metabolic side effects. PMID:22290122

  4. The Fanconi anemia ID2 complex: dueling saxes at the crossroads.

    PubMed

    Boisvert, Rebecca A; Howlett, Niall G

    2014-01-01

    Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.

  5. Activation of AhR-mediated toxicity pathway by emerging ...

    EPA Pesticide Factsheets

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eighteen PCDPSs were tested in the H4IIE-luc transactivation assay, with 13/18 causing concentration-dependent AhR activation. Potencies of several congeners were similar to those of mono-ortho substituted polychlorinated biphenyls. A RNA sequencing (RNA-seq)-based transcriptomic analysis was performed on H4IIE cells treated with two PCDPS congeners, 2,2',3,3',4,5,6-hepta-CDPS, and 2,4,4',5-tetra-CDPS. Results of RNA-seq revealed a remarkable modulation on a relatively short gene list by exposure to the tested concentrations of PCDPSs, among which, Cyp1 responded with the greatest fold up-regulation. Both the identities of the modulated transcripts and the associated pathways were consistent with targets and pathways known to be modulated by other types of AhR agonists and there was little evidence for significant off-target effects within the cellular context of the H4IIE bioassay. The results suggest AhR activation as a toxicologically relevant mode of action for PCDPSs suggests the utility of AhR-related toxicity pathways for predicting potential hazards associated with PCDPS exposure in mammals and potentially other vertebrates. Polychlorinated diphenyl sulfides (PCDPSs) are a group of en

  6. Avuncular tendencies and the evolution of male androphilia in Samoan fa'afafine.

    PubMed

    Vasey, Paul L; VanderLaan, Doug P

    2010-08-01

    The kin selection hypothesis for male androphilia holds that genes for male androphilia can be maintained in a population if the fitness costs of not reproducing directly are offset by enhancing indirect fitness. Kin share some proportion of genes identical by virtue of descent. Theoretically speaking, androphilic males can increase their fitness indirectly by allocating altruistic behavior toward kin, which, in turn, allows kin to increase their reproductive success. Research conducted in Independent Samoa has shown that androphilic males (known locally as fa'afafine) report significantly higher avuncular tendencies relative to gynephilic men. Here, we replicate this sexual orientation difference, using a larger, independent sample, suggesting that the documented sexual orientation difference in avuncular tendencies in Independent Samoa is genuine. We also extend previous research by showing that fa'afafine exhibit significantly higher avuncular tendencies even when compared to a more closely matched control group that also lacks direct parental care responsibilities (i.e., gynephilic men with no children). Although the greater avuncular tendencies of fa'afafine relative to gynephilic men are consistent with the predictions of the kin selection hypothesis for male androphilia, further research is needed before deeming male androphilia an adaptation for promoting elevated avuncularity. Likewise, more research is needed before deeming elevated avuncularity in fa'afafine an evolved adaptation for promoting indirect fitness. We discuss these findings in the context of alternative evolutionary explanations for male androphilia (i.e., an evolved by-product of an adaptation).

  7. Regional imbalanced activation of the calcineurin/BAD apoptotic pathway and the PI3K/Akt survival pathway after myocardial infarction

    PubMed Central

    Li, Tieluo; Kilic, Ahmet; Wei, Xufeng; Wu, Changfu; Schwartzbauer, Gary; Yankey, G. Kwame; DeFilippi, Christopher; Bond, Meredith; Wu, Zhongjun J; Griffith, Bartley P

    2011-01-01

    Background The underlying molecular mechanisms of the remodeling after myocardial infarction (MI) remain unclear. The purpose of this study was to investigate the role of a survival pathway (PI3K/Akt) and an apoptosis pathway (calcineurin/BAD) in the remodeling after MI in a large animal model. Methods Ten Dorset hybrid sheep underwent 25% MI in the left ventricle (LV, n=10). Five sheep were used as sham control. The regional strain was calculated from sonomicrometry. Apoptosis and the activation of the PI3K/Akt and calcineurin/BAD pathways were evaluated in the non-ischemic adjacent zone and the remote zone relative to infarct by immunoblotting, immunoprecipitation, and immunofluorescence staining. Results Dilation and dysfunction of LV were present at 12 weeks after MI. The regional strain in the adjacent zone was significantly higher than in the remote zone at 12 weeks (36.6 ± 4.0% vs 9.5 ± 3.6%, p < 0.05). Apoptosis was more severe in the adjacent zone than in the remote zone. The PI3K/Akt and calcineurin/BAD pathways were activated in the adjacent zone. Dephosphorylation and translocation of BAD were evident in the adjacent zone. Regional correlation between the strain and the expression of calcineurin/BAD indicated that the activation was strain-related (R2 = 0.46, 0.48, 0.39 for calcineurin, BAD, mitochondrial BAD, respectively, p < 0.05). Conclusions The PI3K/Akt survival and calcineurin/BAD apoptotic pathways were concomitantly activated in the non-ischemic adjacent zone after MI. The calcineurin/BAD pathway is strain related and its imbalanced activation may be one of the causes of progressive remodeling after MI. PMID:22088220

  8. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.

    PubMed

    Bracht, Tobias; Schnell, Susanne; Federspiel, Andrea; Razavi, Nadja; Horn, Helge; Strik, Werner; Wiest, Roland; Dierks, Thomas; Müller, Thomas J; Walther, Sebastian

    2013-02-01

    Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  10. Orientations of Iron-Sulfur Clusters FA and FB in the Homodimeric Type-I Photosynthetic Reaction Center of Heliobacterium modesticaldum.

    PubMed

    Kondo, Toru; Matsuoka, Masahiro; Azai, Chihiro; Itoh, Shigeru; Oh-Oka, Hirozo

    2016-05-12

    Orientations of the FA and FB iron-sulfur (FeS) clusters in a structure-unknown type-I homodimeric heriobacterial reaction center (hRC) were studied in oriented membranes of the thermophilic anaerobic photosynthetic bacterium Heliobacterium modesticaldum by electron paramagnetic resonance (EPR), and compared with those in heterodimeric photosystem I (PS I). The Rieske-type FeS center in the cytochrome b/c complex showed a well-oriented EPR signal. Illumination at 14 K induced an FB(-) signal with g-axes of gz = 2.066, gy = 1.937, and gx = 1.890, tilted at angles of 60°, 60°, and 45°, respectively, with respect to the membrane normal. Chemical reduction with dithionite produced an additional signal of FA(-), which magnetically interacted with FB(-), with gz = 2.046, gy = 1.942, and gx = 1.911 at 30°, 60°, and 90°, respectively. The angles and redox properties of FA(-) and FB(-) in hRC resemble those of FB(-) and FA(-), respectively, in PS I. Therefore, FA and FB in hRC, named after their g-value similarities, seem to be located like FB and FA, not like FA and FB, respectively, in PS I. The reducing side of hRC could resemble those in PS I, if the names of FA and FB are interchanged with each other.

  11. Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses.

    PubMed

    Jiang, Lin; Campagne, Cécile; Sundström, Elisabeth; Sousa, Pedro; Imran, Saima; Seltenhammer, Monika; Pielberg, Gerli; Olsson, Mats J; Egidy, Giorgia; Andersson, Leif; Golovko, Anna

    2014-11-21

    Constitutive activation of the ERK pathway, occurring in the vast majority of melanocytic neoplasms, has a pivotal role in melanoma development. Different mechanisms underlie this activation in different tumour settings. The Grey phenotype in horses, caused by a 4.6 kb duplication in intron 6 of Syntaxin 17 (STX17), is associated with a very high incidence of cutaneous melanoma, but the molecular mechanism behind the melanomagenesis remains unknown. Here, we investigated the involvement of the ERK pathway in melanoma development in Grey horses. Grey horse melanoma tumours, cell lines and normal skin melanocytes were analyzed with help of indirect immunofluorescence and immunoblotting for the expression of phospho-ERK1/2 in comparison to that in non-grey horse and human counterparts. The mutational status of BRAF, RAS, GNAQ, GNA11 and KIT genes in Grey horse melanomas was determined by direct sequencing. The effect of RAS, RAF and PI3K/AKT pathways on the activation of the ERK signaling in Grey horse melanoma cells was investigated with help of specific inhibitors and immunoblotting. Individual roles of RAF and RAS kinases on the ERK activation were examined using si-RNA based approach and immunoblotting. We found that the ERK pathway is constitutively activated in Grey horse melanoma tumours and cell lines in the absence of somatic activating mutations in BRAF, RAS, GNAQ, GNA11 and KIT genes or alterations in the expression of the main components of the pathway. The pathway is mitogenic and is mediated by BRAF, CRAF and KRAS kinases. Importantly, we found high activation of the ERK pathway also in epidermal melanocytes, suggesting a general predisposition to melanomagenesis in these horses. These findings demonstrate that the presence of the intronic 4.6 kb duplication in STX17 is strongly associated with constitutive activation of the ERK pathway in melanocytic cells in Grey horses in the absence of somatic mutations commonly linked to the activation of this

  12. Kibra and Merlin Activate the Hippo Pathway Spatially Distinct from and Independent of Expanded.

    PubMed

    Su, Ting; Ludwig, Michael Z; Xu, Jiajie; Fehon, Richard G

    2017-03-13

    The Hippo pathway is emerging as a key evolutionarily conserved signaling mechanism that controls organ size. Three membrane-associated proteins, Kibra, Merlin, and Expanded, regulate pathway activity, but the precise molecular mechanism by which they function is still poorly understood. Here we provide evidence that Merlin and Kibra activate Hippo signaling in parallel to Expanded at a spatially distinct cellular domain, the medial apical cortex. Merlin and Kibra together recruit the adapter protein Salvador, which in turn recruits the core kinase Hippo. In addition, we show that Crumbs has a dual effect on Hippo signaling. Crumbs promotes the ability of Expanded to activate the pathway but also sequesters Kibra to downregulate Hippo signaling. Together, our findings elucidate the mechanism of Hippo pathway activation by Merlin and Kibra, identify a subcellular domain for Hippo pathway regulation, and demonstrate differential activity of upstream regulators in different subcellular domains. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. [Data mining analysis of professor Li Fa-zhi AIDS itchy skin medical record].

    PubMed

    Wang, Dan-Ni; Li, Zhen; Xu, Li-Ran; Guo, Hui-Jun

    2013-08-01

    Analysis of professor Li Fa-zhi in the treatment of AIDS drug laws of itchy skin, provide the corresponding drug reference basis for Chinese medicine treatment of AIDS, skin itching. By using the method of analyzing the complex network of Weishi county, Henan in 2007 October to 2011 July during an interview with professor Li Fa-zhi treatment of AIDS patients with skin pruritus, etiology and pathogenesis analysis, skin itching AIDS syndrome differentiation of old Chinese medicine treatment and medication rule. The use of multi-dimensional query analysis, core drug skin itching AIDS treatment in this study as a windbreak, cicada slough, bupleurum, Qufeng solution table drug, licorice detoxification efficacy of drugs, Radix Scutellariae, Kochia scoparia, clearing away heat and promoting diuresis medicine; core prescription for Jingfang San streak virus. Professor Li Fa-zhi treatment of AIDS in the skin itching Qufeng solution table dehumidification antipruritic treatment.

  14. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver.

    PubMed

    Tian, Yueli; Ma, Jingting; Wang, Wudong; Zhang, Lingjuan; Xu, Jia; Wang, Kai; Li, Dongfu

    2016-11-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by high levels of nonesterified fatty acids (NEFA), inflammation, and hepatic steatosis. Inflammation plays a crucial role in the development of fatty liver. Resveratrol (RSV) supplement could improve inflammatory response and hepatic steatosis, whereas the underlying mechanism was not well understood. In this study, mice fed with high-fat diet (HFD) exhibited severe hepatic injury and high blood concentrations of the inflammatory cytokines TNF-α, IL-6, and IL-1β. Hepatic NF-κB inflammatory pathway was over-induced in HFD mice. In vitro, NEFA treatment further increased NF-κB pathway activation in mice hepatocytes, which then promoted the synthesis of inflammatory cytokines. Interestingly, RSV treatment significantly inhibited overactivation of NF-κB pathway and improved hepatic steatosis. Furthermore, RSV further increased the AMP-activated protein kinaseα (AMPKα) phosphorylation and sirtuin1 (SIRT1) protein levels to inhibit overactivation of NF-κB pathway induced by HFD or high levels of NEFA. AMPKα or SIRT1 inhibition significantly decreased the improvement effect of RSV on the NF-κB pathway induced by high levels of NEFA. Taken together, these findings indicate that RSV supplement decreases the inflammatory level and improves hepatic steatosis through activating AMPKα-SIRT1 pathway. Therefore, these data suggested an important clinical application of RSV in preventing NAFLD in humans.

  15. Regional imbalanced activation of the calcineurin/BAD apoptotic pathway and the PI3K/Akt survival pathway after myocardial infarction.

    PubMed

    Li, Tieluo; Kilic, Ahmet; Wei, Xufeng; Wu, Changfu; Schwartzbauer, Gary; Yankey, G Kwame; DeFilippi, Christopher; Bond, Meredith; Wu, Zhongjun J; Griffith, Bartley P

    2013-06-05

    The underlying molecular mechanisms of the remodeling after myocardial infarction (MI) remain unclear. The purpose of this study was to investigate the role of a survival pathway (PI3K/Akt) and an apoptosis pathway (calcineurin/BAD) in the remodeling after MI in a large animal model. Ten Dorset hybrid sheep underwent 25% MI in the left ventricle (LV, n=10). Five sheep were used as sham control. The regional strain was calculated from sonomicrometry. Apoptosis and the activation of the PI3K/Akt and calcineurin/BAD pathways were evaluated in the non-ischemic adjacent zone and the remote zone relative to infarct by immunoblotting, immunoprecipitation, and immunofluorescence staining. Dilation and dysfunction of LV were present at 12 weeks after MI. The regional strain in the adjacent zone was significantly higher than in the remote zone at 12 weeks (36.6 ± 4.0% vs 9.5 ± 3.6%, p<0.05). Apoptosis was more severe in the adjacent zone than in the remote zone. The PI3K/Akt and calcineurin/BAD pathways were activated in the adjacent zone. Dephosphorylation and translocation of BAD were evident in the adjacent zone. Regional correlation between the strain and the expression of calcineurin/BAD indicated that the activation was strain-related (R(2)=0.46, 0.48, 0.39 for calcineurin, BAD, mitochondrial BAD, respectively, p<0.05). The PI3K/Akt survival and calcineurin/BAD apoptotic pathways were concomitantly activated in the non-ischemic adjacent zone after MI. The calcineurin/BAD pathway is strain related and its imbalanced activation may be one of the causes of progressive remodeling after MI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    NASA Technical Reports Server (NTRS)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  17. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants.

    PubMed Central

    Davenport, K D; Williams, K E; Ullmann, B D; Gustin, M C

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype. PMID:10545444

  18. Reassessment of the Genetic Regulation of Fatty Acid Synthesis in Escherichia coli: Global Positive Control by the Dual Functional Regulator FadR

    PubMed Central

    My, L.; Ghandour Achkar, N.; Viala, J. P.

    2015-01-01

    ABSTRACT In Escherichia coli, the FadR transcriptional regulator represses the expression of fatty acid degradation (fad) genes. However, FadR is also an activator of the expression of fabA and fabB, two genes involved in unsaturated fatty acid synthesis. Therefore, FadR plays an important role in maintaining the balance between saturated and unsaturated fatty acids in the membrane. We recently showed that FadR also activates the promoter upstream of the fabH gene (L. My, B. Rekoske, J. J. Lemke, J. P. Viala, R. L. Gourse, and E. Bouveret, J Bacteriol 195:3784–3795, 2013, doi:10.1128/JB.00384-13). Furthermore, recent transcriptomic and proteomic data suggested that FadR activates the majority of fatty acid (FA) synthesis genes. In the present study, we tested the role of FadR in the expression of all genes involved in FA synthesis. We found that FadR activates the transcription of all tested FA synthesis genes, and we identified the FadR binding site for each of these genes. This necessitated the reassessment of the transcription start sites for accA and accB genes described previously, and we provide evidence for the presence of multiple promoters driving the expression of these genes. We showed further that regulation by FadR impacts the amount of FA synthesis enzymes in the cell. Our results show that FadR is a global regulator of FA metabolism in E. coli, acting both as a repressor of catabolism and an activator of anabolism, two directly opposing pathways. IMPORTANCE In most bacteria, a transcriptional regulator tunes the level of FA synthesis enzymes. Oddly, such a global regulator still was missing for E. coli, which nonetheless is one of the prominent model bacteria used for engineering biofuel production using the FA synthesis pathway. Our work identifies the FadR functional dual regulator as a global activator of almost all FA synthesis genes in E. coli. Because FadR also is the repressor of FA degradation, FadR acts both as a repressor and an activator

  19. FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics

    NASA Astrophysics Data System (ADS)

    Deparis, Simone; Forti, Davide; Grandperrin, Gwenol; Quarteroni, Alfio

    2016-12-01

    Modeling Fluid-Structure Interaction (FSI) in the vascular system is mandatory to reliably compute mechanical indicators in vessels undergoing large deformations. In order to cope with the computational complexity of the coupled 3D FSI problem after discretizations in space and time, a parallel solution is often mandatory. In this paper we propose a new block parallel preconditioner for the coupled linearized FSI system obtained after space and time discretization. We name it FaCSI to indicate that it exploits the Factorized form of the linearized FSI matrix, the use of static Condensation to formally eliminate the interface degrees of freedom of the fluid equations, and the use of a SIMPLE preconditioner for saddle-point problems. FaCSI is built upon a block Gauss-Seidel factorization of the FSI Jacobian matrix and it uses ad-hoc preconditioners for each physical component of the coupled problem, namely the fluid, the structure and the geometry. In the fluid subproblem, after operating static condensation of the interface fluid variables, we use a SIMPLE preconditioner on the reduced fluid matrix. Moreover, to efficiently deal with a large number of processes, FaCSI exploits efficient single field preconditioners, e.g., based on domain decomposition or the multigrid method. We measure the parallel performances of FaCSI on a benchmark cylindrical geometry and on a problem of physiological interest, namely the blood flow through a patient-specific femoropopliteal bypass. We analyze the dependence of the number of linear solver iterations on the cores count (scalability of the preconditioner) and on the mesh size (optimality).

  20. Role of Nongenomic Signaling Pathways Activated by Aldosterone During Cardiac Reperfusion Injury.

    PubMed

    Ashton, Anthony W; Le, Thi Y L; Gomez-Sanchez, Celso E; Morel-Kopp, Marie-Christine; McWhinney, Brett; Hudson, Amanda; Mihailidou, Anastasia S

    2015-08-01

    Aldosterone (Aldo) activates both genomic and nongenomic signaling pathways in the cardiovascular system. Activation of genomic signaling pathways contributes to the adverse cardiac actions of Aldo during reperfusion injury; however, the extent nongenomic signaling pathways contribute has been difficult to identify due to lack of a specific ligand that activates only nongenomic signaling pathways. Using a pegylated aldosterone analog, aldosterone-3-carboxymethoxylamine-TFP ester conjugated to methoxypegylated amine (Aldo-PEG), we are able for the first time to distinguish between nongenomic and genomic cardiac actions of Aldo. We confirm Aldo-PEG activates phosphorylation of ERK1/2 in rat cardiomyocyte H9c2 cells similar to Aldo and G protein-coupled receptor 30 (GPR30 or GPER) agonist G1. GPER antagonist, G36, but not mineralocorticoid receptor (MR) antagonist spironolactone, prevented ERK1/2 phosphorylation by Aldo, Aldo-PEG, and G1. The selective nongenomic actions of Aldo-PEG are confirmed, with Aldo-PEG increasing superoxide production in H9c2 cells to similar levels as Aldo but having no effect on subcellular localization of MR. Striatin serves as a scaffold for GPER and MR, with GPER antagonist G36, but not spironolactone, restoring MR-striatin complexes. Aldo-PEG had no effect on MR-dependent transcriptional activation, whereas Aldo increased transcript levels of serum-regulated kinase 1 and plasminogen activator inhibitor-1. Using our ex vivo experimental rat model of myocardial infarction, we found aggravated infarct size and apoptosis by Aldo but not Aldo-PEG. Our studies confirm that in the heart, activation of nongenomic signaling pathways alone are not sufficient to trigger the deleterious effects of aldosterone during myocardial reperfusion injury.

  1. The Fanconi anemia ID2 complex: Dueling saxes at the crossroads

    PubMed Central

    Boisvert, Rebecca A; Howlett, Niall G

    2014-01-01

    Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions. PMID:25486561

  2. Microarray and network-based identification of functional modules and pathways of active tuberculosis.

    PubMed

    Bian, Zhong-Rui; Yin, Juan; Sun, Wen; Lin, Dian-Jie

    2017-04-01

    Diagnose of active tuberculosis (TB) is challenging and treatment response is also difficult to efficiently monitor. The aim of this study was to use an integrated analysis of microarray and network-based method to the samples from publically available datasets to obtain a diagnostic module set and pathways in active TB. Towards this goal, background protein-protein interactions (PPI) network was generated based on global PPI information and gene expression data, following by identification of differential expression network (DEN) from the background PPI network. Then, ego genes were extracted according to the degree features in DEN. Next, module collection was conducted by ego gene expansion based on EgoNet algorithm. After that, differential expression of modules between active TB and controls was evaluated using random permutation test. Finally, biological significance of differential modules was detected by pathways enrichment analysis based on Reactome database, and Fisher's exact test was implemented to extract differential pathways for active TB. Totally, 47 ego genes and 47 candidate modules were identified from the DEN. By setting the cutoff-criteria of gene size >5 and classification accuracy ≥0.9, 7 ego modules (Module 4, Module 7, Module 9, Module 19, Module 25, Module 38 and Module 43) were extracted, and all of them had the statistical significance between active TB and controls. Then, Fisher's exact test was conducted to capture differential pathways for active TB. Interestingly, genes in Module 4, Module 25, Module 38, and Module 43 were enriched in the same pathway, formation of a pool of free 40S subunits. Significant pathway for Module 7 and Module 9 was eukaryotic translation termination, and for Module 19 was nonsense mediated decay enhanced by the exon junction complex (EJC). Accordingly, differential modules and pathways might be potential biomarkers for treating active TB, and provide valuable clues for better understanding of molecular

  3. PTPRS Regulates Colorectal Cancer RAS Pathway Activity by Inactivating Erk and Preventing Its Nuclear Translocation.

    PubMed

    Davis, Thomas B; Yang, Mingli; Schell, Michael J; Wang, Heiman; Ma, Le; Pledger, W Jack; Yeatman, Timothy J

    2018-06-18

    Colorectal cancer (CRC) growth and progression is frequently driven by RAS pathway activation through upstream growth factor receptor activation or through mutational activation of KRAS or BRAF. Here we describe an additional mechanism by which the RAS pathway may be modulated in CRC. PTPRS, a receptor-type protein tyrosine phosphatase, appears to regulate RAS pathway activation through ERK. PTPRS modulates ERK phosphorylation and subsequent translocation to the nucleus. Native mutations in PTPRS, present in ~10% of CRC, may reduce its phosphatase activity while increasing ERK activation and downstream transcriptional signaling.

  4. Fitness costs and stability of Cry1Fa resistance in Brazilian populations of Spodoptera frugiperda.

    PubMed

    Santos-Amaya, Oscar F; Tavares, Clébson S; Rodrigues, João Victor C; Campos, Silverio O; Guedes, Raul Narciso C; Alves, Analiza P; Pereira, Eliseu José G

    2017-01-01

    The presence of fitness costs of resistance to Bacillus thuringiensis (Bt) insecticidal proteins in insect populations may delay or even reverse the local selection of insect resistance to Bt transgenic crops, and deserves rigorous investigation. Here we assessed the fitness costs associated with Cry1Fa resistance in two strains of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), derived from field collections in different Brazilian regions and further selected in the laboratory for high levels of resistance to Cry1Fa using leaves of TC1507 corn. Fitness components were compared using paired resistant and susceptible strains with similar genetic backgrounds and F 1 generations from reciprocal crosses, all of them reared on non-transgenic corn leaves. No apparent life history costs in the larval stage were observed in the Bt-resistant strains. Moreover, the resistance remained stable for seven generations in the absence of selection, with no decrease in the proportion of resistant individuals. Larval respiration rates were also similar between resistant and susceptible homozygotes, and heterozygotes displayed respiration rates and demographic performance equal or superior to those of susceptible homozygotes. In combination, these results indicate the lack of strong fitness costs associated with resistance to Cry1Fa in the fall armyworm strains studied. These findings suggest that Cry1Fa resistance in S. frugiperda populations is unlikely to be counterselected in Cry1Fa-free environments. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    PubMed

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  6. Pheromone-Induced Morphogenesis Improves Osmoadaptation Capacity by Activating the HOG MAPK Pathway**

    PubMed Central

    Baltanás, Rodrigo; Bush, Alan; Couto, Alicia; Durrieu, Lucía; Hohmann, Stefan; Colman-Lerner, Alejandro

    2013-01-01

    Environmental and internal conditions expose cells to a multiplicity of stimuli whose consequences are difficult to predict. Here, we investigate the response to mating pheromone of yeast cells adapted to high osmolarity. Events downstream of pheromone binding involve two mitogen-activated protein kinase (MAPK) cascades: the pheromone response (PR) and the cell-wall integrity response (CWI). Although these MAPK pathways share components with each and a third MAPK pathway, the high osmolarity response (HOG), they are normally only activated by distinct stimuli, a phenomenon called insulation. We found that in cells adapted to high osmolarity, PR activated the HOG pathway in a pheromone- and osmolarity- dependent manner. Activation of HOG by the PR was not due to loss of insulation, but rather a response to a reduction in internal osmolarity, which resulted from an increase in glycerol release caused by the PR. By analyzing single-cell time courses, we found that stimulation of HOG occurred in discrete bursts that coincided with the “shmooing” morphogenetic process. Activation required the polarisome, the cell wall integrity MAPK Slt2, and the aquaglyceroporin Fps1. HOG activation resulted in high glycerol turnover that improved adaptability to rapid changes in osmolarity. Our work shows how a differentiation signal can recruit a second, unrelated sensory pathway to enable responses to yeast to multiple stimuli. PMID:23612707

  7. Multivariate inference of pathway activity in host immunity and response to therapeutics

    PubMed Central

    Goel, Gautam; Conway, Kara L.; Jaeger, Martin; Netea, Mihai G.; Xavier, Ramnik J.

    2014-01-01

    Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis. The method incorporates a new algorithm to identify a subset of genes that may regulate the extent of activity induced in a pathway. We present an in-depth evaluation of specificity, robustness, and reproducibility of our method. We benchmarked MIPA's false positive rate at less than 1%. Using transcriptomic profiles representing distinct physiological and disease states, we illustrate applicability of our method in (i) identifying gene–gene interactions in autophagy-dependent response to Salmonella infection, (ii) uncovering gene–environment interactions in host response to bacterial and viral pathogens and (iii) identifying driver genes and processes that contribute to wound healing and response to anti-TNFα therapy. We provide relevant experimental validation that corroborates the accuracy and advantage of our method. PMID:25147207

  8. XEDAR activates the non-canonical NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhelst, Kelly, E-mail: Kelly.Verhelst@irc.VIB-UGent.be; Department of Biomedical Molecular Biology, Ghent University, Ghent; Gardam, Sandra, E-mail: s.gardam@garvan.org.au

    2015-09-18

    Members of the tumor necrosis factor receptor (TNFR) superfamily are involved in a number of physiological and pathological responses by activating a wide variety of intracellular signaling pathways. The X-linked ectodermal dysplasia receptor (XEDAR; also known as EDA2R or TNFRSF27) is a member of the TNFR superfamily that is highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2), a member of the TNF family that is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Although XEDAR was first described in the year 2000, its function and molecular mechanism of action is still largely unclear. XEDAR hasmore » been reported to activate canonical nuclear factor κB (NF-κB) signaling and mitogen-activated protein (MAP) kinases. Here we report that XEDAR is also able to trigger the non-canonical NF-κB pathway, characterized by the processing of p100 (NF-κB2) into p52, followed by nuclear translocation of p52 and RelB. We provide evidence that XEDAR-induced p100 processing relies on the binding of XEDAR to TRAF3 and TRAF6, and requires the kinase activity of NIK and IKKα. We also show that XEDAR stimulation results in NIK accumulation and that p100 processing is negatively regulated by TRAF3, cIAP1 and A20. - Highlights: • XEDAR activates the non-canonical NF-κB pathway. • XEDAR-induced processing of p100 depends on XEDAR interaction with TRAF3 and TRAF6. • XEDAR-induced processing of p100 depends on NIK and IKKα activity. • Overexpression of XEDAR leads to NIK accumulation. • XEDAR-induced processing of p100 is negatively regulated by TRAF3 cIAP1 and A20.« less

  9. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    PubMed Central

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  10. Wavelet Analyses of F/A-18 Aeroelastic and Aeroservoelastic Flight Test Data

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1997-01-01

    Time-frequency signal representations combined with subspace identification methods were used to analyze aeroelastic flight data from the F/A-18 Systems Research Aircraft (SRA) and aeroservoelastic data from the F/A-18 High Alpha Research Vehicle (HARV). The F/A-18 SRA data were produced from a wingtip excitation system that generated linear frequency chirps and logarithmic sweeps. HARV data were acquired from digital Schroeder-phased and sinc pulse excitation signals to actuator commands. Nondilated continuous Morlet wavelets implemented as a filter bank were chosen for the time-frequency analysis to eliminate phase distortion as it occurs with sliding window discrete Fourier transform techniques. Wavelet coefficients were filtered to reduce effects of noise and nonlinear distortions identically in all inputs and outputs. Cleaned reconstructed time domain signals were used to compute improved transfer functions. Time and frequency domain subspace identification methods were applied to enhanced reconstructed time domain data and improved transfer functions, respectively. Time domain subspace performed poorly, even with the enhanced data, compared with frequency domain techniques. A frequency domain subspace method is shown to produce better results with the data processed using the Morlet time-frequency technique.

  11. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com; Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz; Aguado, Andrea

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and didmore » not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2

  12. Development and verification of real-time controllers for the F/A-18 vertical fin buffet load alleviation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Viresh, Wickramasinghe; Zimcik, David

    2006-03-01

    Twin-tail fighter aircraft such as the F/A-18 may experience intense buffet loads at high angles of attack flight conditions and the broadband buffet loads primarily excite the first bending and torsional modes of the vertical fin that results in severe vibration and dynamic stresses on the vertical fin structures. To reduce the premature fatigue failure of the structure and to increase mission availability, a novel hybrid actuation system was developed to actively alleviate the buffet response of a full-scale F/A-18 vertical fin. A hydraulic rudder actuator was used to control the bending mode of the fin by engaging the rudder inertial force. Multiple Macro Fiber Composites actuators were surface mounted to provide induced strain actuation authority to control the torsional mode. Experimental system identification approach was selected to obtain a state-space model of the system using open-loop test data. An LQG controller was developed to minimize the dynamic response of the vertical fin at critical locations. Extensive simulations were conducted to evaluate the control authority of the actuators and the performance of the controller under various buffet load cases and levels. Closed-loop tests were performed on a full-scale F/A-18 empennage and the results validated the effectiveness of the real-time controller as well as the development methodology. In addition, the ground vibration test demonstrated that the hybrid actuation system is a feasible solution to alleviate the vertical tail buffet loads in high performance fighter aircraft.

  13. Activity-based protein profiling for biochemical pathway discovery in cancer

    PubMed Central

    Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.

    2011-01-01

    Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252

  14. Salicylic Acid and Ethylene Pathways Are Differentially Activated in Melon Cotyledons by Active or Heat-Denatured Cellulase from Trichoderma longibrachiatum

    PubMed Central

    Martinez, Christelle; Blanc, Frédéric; Le Claire, Emilie; Besnard, Olivier; Nicole, Michel; Baccou, Jean-Claude

    2001-01-01

    Infiltration of cellulase (EC 3.2.1.4) from Trichoderma longibrachiatum into melon (Cucumis melo) cotyledons induced several key defense mechanisms and hypersensitive reaction-like symptoms. An oxidative burst was observed 3 hours after treatment and was followed by activation of ethylene and salicylic acid (SA) signaling pathways leading to marked induction of peroxidase and chitinase activities. The treatment of cotyledons by heat-denatured cellulase also led to some induction of peroxidase and chitinase activities, but the oxidative burst and SA production were not observed. Co-infiltration of aminoethoxyvinil-glycine (an ethylene inhibitor) with the active cellulase did not affect the high increase of peroxidase and chitinase activities. In contrast, co-infiltration of aminoethoxyvinil-glycine with the denatured enzyme blocked peroxidase and chitinase activities. Our data suggest that the SA pathway (induced by the cellulase activity) and ethylene pathway (induced by heat-denatured and active protein) together coordinate the activation of defense mechanisms. We found a partial interaction between both signaling pathways since SA caused an inhibition of the ethylene production and a decrease in peroxidase activity when co-infiltrated with denatured cellulase. Treatments with active or denatured cellulase caused a reduction in powdery mildew (Sphaerotheca fuliginea) disease. PMID:11553761

  15. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development.

    PubMed

    Ozerov, Ivan V; Lezhnina, Ksenia V; Izumchenko, Evgeny; Artemov, Artem V; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N; Labat, Ivan; West, Michael D; Buzdin, Anton; Cantor, Charles R; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex

    2016-11-16

    Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.

  16. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development

    PubMed Central

    Ozerov, Ivan V.; Lezhnina, Ksenia V.; Izumchenko, Evgeny; Artemov, Artem V.; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N.; Labat, Ivan; West, Michael D.; Buzdin, Anton; Cantor, Charles R.; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex

    2016-01-01

    Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy. PMID:27848968

  17. View southeast; detail of north façade with crane rail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southeast; detail of north façade with crane rail - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  18. A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing.

    PubMed

    Solomon, Ponnumony John; Margaret, Priya; Rajendran, Ramya; Ramalingam, Revathy; Menezes, Godfred A; Shirley, Alph S; Lee, Seung Jun; Seong, Moon-Woo; Park, Sung Sup; Seol, Dodam; Seo, Soo Hyun

    2015-05-08

    Fanconi anemia (FA) is a genetically heterogeneous rare autosomal recessive disorder characterized by congenital malformations, hematological problems and predisposition to malignancies. The genes that have been found to be mutated in FA patients are called FANC. To date 16 distinct FANC genes have been reported. Among these, mutations in FANCA are the most frequent among FA patients worldwide which account for 60- 65%. In this study, a nine years old male child was brought to our hospital one year ago for opinion and advice. He was the third child born to consanguineous parents. The mutation analyses were performed for proband, parents, elder sibling and the relatives [maternal aunt and maternal aunt's son (cousin)]. Molecular genetic testing [targeted next-generation sequencing (MiSeq, Illumina method)] was performed by mutation analysis in 15 genes involved. Entire coding exons and their flanking regions of the genes were analysed. Sanger sequencing [(ABI 3730 analyzer by Applied Biosystems)] was performed using primers specific for 43 coding exons of the FANCA gene. A novel splice site mutation, c.3066 + 1G > T, (IVS31 + 1G > T), homozygote was detected by sequencing in the patient. The above sequence variant was identified in heterozygous state in his parents. Further, the above sequence variant was not identified in other family members (elder sibling, maternal aunt and cousin). It is concluded that genetic study should be done if possible in all the cases of suspected FA, including siblings, parents and close blood relatives. It will help us to plan appropriate treatment and also to select suitable donor for hematopoietic stem cell transplantation and to plan for genetic counseling. In addition to the case report, the main focus of this manuscript was to review literature on role of FANCA gene in FA since large number of FANCA mutations and polymorphisms have been identified.

  19. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signalling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular the precise mapping of its sites of activity, remain unclear. To address this issue, we have generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jκ binding sites. Here we show that this transgenic line, we named NAS for Notch Activity Sensor, displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jκ deficient background indicating that it indeed requires Notch/RBP-Jκ signalling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signalling pathway. PMID:16708386

  20. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo.

    PubMed

    Souilhol, Céline; Cormier, Sarah; Monet, Marie; Vandormael-Pournin, Sandrine; Joutel, Anne; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-06-01

    The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jkappa-deficient background, indicating that it indeed requires Notch/RBP-Jkappa signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway.

  1. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-H.; Yu, F.-Y.; Wang, L.-T.

    2009-06-15

    Mycotoxin citrinin (CTN) is commonly found in foods and feeds that are contaminated/inoculated with Penicillium, Aspergillus and Monascus species. The exposure of human embryonic kidney (HEK293) and HeLa cells to CTN resulted in a dose-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), ERK1/2 and JNK. In HEK293 cultures, the administering of CTN increased both the mRNA and protein levels of egr-1, c-fos and c-jun genes; additionally, the ERK1/2 pathway contributed to the upregulation of Egr-1 and c-Fos protein expression. CTN treatment also induced the transcription activity of Egr-1 and AP-1 proteins, as evidenced by luciferase reportermore » assays. Bioinformatic analyses indicated two genes Gadd45{beta} and MMP3 have Egr-1 and AP-1 response elements in their promoters, respectively. Furthermore, co-exposure of HEK293 cells to CTN and MAPK pathway inhibitors demonstrated that CTN increased the levels of Gadd45{beta} mRNA through ERK1/2 signaling pathway and up-regulated the MMP3 transcripts majorly via JNK pathway. Finally, CTN-triggered caspase 3 activity was significantly reduced in the presence of MAPK inhibitors. Our results suggest that CTN positively regulates ERK1/2 and JNK pathways as well as their downstream effectors in human cells; activated MAPK pathways are also involved in CTN-induced apoptosis.« less

  2. Evidence for two distinct phosphorylation pathways activated by high affinity immunoglobulin E receptors.

    PubMed

    Adamczewski, M; Paolini, R; Kinet, J P

    1992-09-05

    The high affinity receptor for immunoglobulin (Ig) E on mast cells, along with the antigen receptors on T and B cells and Fc receptors for IgG, belongs to a class of receptors which lack intrinsic kinase activity, but activate non-receptor tyrosine and serine/threonine kinases. Receptor engagement triggers a chain of signaling events leading from protein phosphorylation to activation of phosphatidylinositol-specific phospholipase C, an increase in intracellular calcium levels, and ultimately the activation of more specialized functions. IgE receptor disengagement leads to reversal of phosphorylation by undefined phosphatases and to inhibition of activation pathways. Here we show that phenylarsine oxide, a chemical which reacts with thiol groups and has been reported to inhibit tyrosine phosphatases, uncouples the IgE receptor-mediated phosphorylation signal from activation of phosphatidyl inositol metabolism, the increase in intracellular calcium levels, and serotonin release. Phenylarsine oxide inhibits neither the kinases (tyrosine and serine/threonine) phosphorylating the receptor and various cellular substrates nor, unexpectedly, the phosphatases responsible for the dephosphorylation following receptor disengagement. By contrast, it abolishes the receptor-mediated phosphorylation of phospholipase C-gamma 1, but not phospholipase C activity in vitro. Therefore the phosphorylation and activation of phospholipase C likely requires a phenylarsine oxide-sensitive element. Receptor aggregation thus activates at least two distinct phosphorylation pathways: a phenylarsine oxide-insensitive pathway leading to phosphorylation/dephosphorylation of the receptor and of various substrates and a sensitive pathway leading to phospholipase C-gamma 1 phosphorylation.

  3. A community-based Falls Management Exercise Programme (FaME) improves balance, walking speed and reduced fear of falling.

    PubMed

    Yeung, Pui Yee; Chan, Wayne; Woo, Jean

    2015-04-01

    Although effective community falls prevention programmes for the older persons have been described, challenges remain in translating proven interventions into daily practice. To evaluate the efficacy, feasibility and acceptability of a falls prevention programme that can be integrated into daily activities in a group of community-dwelling older adults with risk of falling. A cohort study with intervention and comparison groups was designed to evaluate a 36-week group-based falls prevention exercise programme (FaME) in the community setting. Participants were aged 60 years or older, had fallen in the past 12 months, had fear of falling with avoidance of activities or had deficits in balance control. Primary outcome measures included assessment of balance control and mobility; secondary outcome measures included level of physical activity, assessment of fear of falling and health-related quality of life. There were 48 and 51 participants in the intervention and comparison groups, respectively. There were improvements in measurements of balance, walking speed and self-efficacy. The drop out rate was low (14.6% and 3.9% from the intervention and comparison groups, respectively). Overall compliance in the intervention group was 79%. Factors that motivated continued participation include the regular and long-term nature of the programme helping to reinforce their exercise habits, the simplicity of movements and friendliness of the group. The FaME programme improves balance, walking speed and reduces fear of falling. It could be widely promoted and integrated into regular health and social activities in community settings.

  4. North façade of crucible steel building; looking southwest Bethlehem ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North façade of crucible steel building; looking southwest - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  5. Starmerella reginensis f.a., sp. nov. and Starmerella kourouensis f.a., sp. nov., isolated from flowers in French Guiana.

    PubMed

    Amoikon, Tiemele Laurent Simon; Grondin, Cécile; Djéni, Théodore N'Dédé; Jacques, Noémie; Casaregola, Serge

    2018-05-21

    Analysis of yeasts isolated from various biotopes in French Guiana led to the identification of two strains isolated from flowers and designated CLIB 1634 T and CLIB 1707 T . Comparison of the D1/D2 domain of the large subunit (LSU D1/D2) rRNA gene sequences of CLIB 1634 T and CLIB 1707 T to those in the GenBank database revealed that these strains belong to the Starmerella clade. Strain CLIB 1634 T was shown to diverge from the closely related Starmerella apicola type strain CBS 2868 T with a sequence divergence of 1.34 and 1.30 %, in the LSU D1/D2 rRNA gene and internal transcribed spacer (ITS) sequences respectively. Strain CLIB 1634 T and Candida apicola CBS 2868 T diverged by 3.81 and 14.96 % at the level of the protein-coding gene partial sequences EF-1α and RPB2, respectively. CLIB 1707 T was found to have sequence divergence of 3.88 and 9.16 % in the LSU D1/D2 rRNA gene and ITS, respectively, from that of the most closely related species Starmerella ratchasimensis type strain CBS 10611 T . The species Starmerella reginensis f.a., sp. nov. and Starmerella kourouensis f.a., sp. nov. are proposed to accommodate strains CLIB 1634 T (=CBS 15247 T ) and CLIB 1707 T (=CBS 15257 T ), respectively.

  6. The Characteristic of S100A7 Induction by the Hippo-YAP Pathway in Cervical and Glossopharyngeal Squamous Cell Carcinoma.

    PubMed

    Kong, Fei; Li, Yunguang; Hu, Enze; Wang, Rui; Wang, Junhao; Liu, Jin; Zhang, Jinsan; He, Dacheng; Xiao, Xueyuan

    2016-01-01

    S100A7 is expressed in many squamous cell carcinomas (SCCs). Our previous study revealed that S100A7 was dramatically induced in several SCC cells and activation of the Hippo pathway significantly promoted S100A7 in epidermoid carcinoma cells. However, whether the Hippo pathway regulates S100A7 expression in SCCs remains largely unknown. Here, we uncover that S100A7 induction by the Hippo-YAP pathway displays different characteristic in cervical and glossopharyngeal SCC. In well differentiated HCC94 cervical cells and FaDu pharyngeal cells, S100A7 is easily induced by both suspension and dense culture, which is accompanied by an increase in YAP phosphorylation and a decrease in nuclear YAP. Strikingly, these correlations of S100A7 and YAP reverse after recovery of cell attachment or relief from dense culture. Further examination finds that S100A7 induction is significantly repressed by nuclear YAP, which is validated by activation or inhibition of the Hippo pathway via loss- and/or gain-of- LATS1 and MST1 function. Subsequently, we prove that TEAD1 is required for YAP transcriptional repression of S100A7. However, S100A7 is hardly induced in poorly differentiated SiHa cervical cells and NCI-H226 pulmonary cells even in suspension or activation of the Hippo pathway. More importantly, cervical and lingual SCC tissues array analyses show that S100A7 expression displays the positive correlation with pYAP-S127 and the negative correlation with nuclear YAP in the majority of well differentiated but not in poorly differentiated tissues. Collectively, our findings demonstrate that the different induction of S100A7 toward activation of the Hippo pathway mainly depends on the degree of cell differentiation in cervical and glossopharyngeal SCC.

  7. Curcumin as therapeutics for the treatment of head and neck squamous cell carcinoma by activating SIRT1

    PubMed Central

    Hu, An; Huang, Jing-Juan; Li, Rui-Lin; Lu, Zhao-Yang; Duan, Jun-Li; Xu, Wei-Hua; Chen, Xiao-Ping; Fan, Jing-Ping

    2015-01-01

    SIRT1 is one of seven mammalian homologs of Sir2 that catalyzes NAD+-dependent protein deacetylation. The aim of the present study is to explore the effect of SIRT1 small molecule activator on the anticancer activity and the underlying mechanism. We examined the anticancer activity of a novel oral agent, curcumin, which is the principal active ingredient of the traditional Chinese herb Curcuma Longa. Treatment of FaDu and Cal27 cells with curcumin inhibited growth and induced apoptosis. Mechanistic studies showed that anticancer activity of curcumin is associated with decrease in migration of HNSCC and associated angiogenesis through activating of intrinsic apoptotic pathway (caspase-9) and extrinsic apoptotic pathway (caspase-8). Our data demonstrating that anticancer activity of curcumin is linked to the activation of the ATM/CHK2 pathway and the inhibition of nuclear factor-κB. Finally, increasing SIRT1 through small molecule activator curcumin has shown beneficial effects in xenograft mouse model, indicating that SIRT1 may represent an attractive therapeutic target. Our studies provide the preclinical rationale for novel therapeutics targeting SIRT1 in HNSCC. PMID:26299580

  8. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    PubMed

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  9. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole

    2015-04-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and {sup 137}Cs γ-rays were used. To estimate the RBE of protons relative to {sup 60}Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assaysmore » were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation.« less

  10. Potential fluid mechanic pathways of platelet activation.

    PubMed

    Shadden, Shawn C; Hendabadi, Sahar

    2013-06-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here, we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport.

  11. Potential fluid mechanic pathways of platelet activation

    PubMed Central

    Shadden, Shawn C.; Hendabadi, Sahar

    2012-01-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport. PMID:22782543

  12. Cytoplasmic FANCA-FANCC Complex Interacts and Stabilizes the Cytoplasm-dislocalized Leukemic Nucleophosmin Protein (NPMc)*

    PubMed Central

    Du, Wei; Li, Jie; Sipple, Jared; Chen, Jianjun; Pang, Qishen

    2010-01-01

    Eight of the Fanconi anemia (FA) proteins form a core complex that activates the FA pathway. Some core complex components also form subcomplexes for yet-to-be-elucidated functions. Here, we have analyzed the interaction between a cytoplasmic FA subcomplex and the leukemic nucleophosmin (NPMc). Exogenous NPMc was degraded rapidly in FA acute myeloid leukemia bone marrow cells. Knockdown of FANCA or FANCC in leukemic OCI/AML3 cells induced rapid degradation of endogenous NPMc. NPMc degradation was mediated by the ubiquitin-proteasome pathway involving the IBR-type RING-finger E3 ubiquitin ligase IBRDC2, and genetic correction of FA-A or FA-C lymphoblasts prevented NPMc ubiquitination. Moreover, cytoplasmic FANCA and FANCC formed a cytoplasmic complex and interacted with NPMc. Using a patient-derived FANCC mutant and a nuclearized FANCC, we demonstrated that the cytoplasmic FANCA-FANCC complex was essential for NPMc stability. Finally, depletion of FANCA and FANCC in NPMc-positive leukemic cells significantly increased inflammation and chemoresistance through NF-κB activation. Our findings not only reveal the molecular mechanism involving cytoplasmic retention of NPMc but also suggest cytoplasmic function of FANCA and FANCC in NPMc-related leukemogenesis. PMID:20864535

  13. EG-1 interacts with c-Src and activates its signaling pathway.

    PubMed

    Lu, Ming; Zhang, Liping; Sartippour, Maryam R; Norris, Andrew J; Brooks, Mai N

    2006-10-01

    EG-1 is significantly elevated in breast, colorectal, and prostate cancers. Overexpression of EG-1 stimulates cellular proliferation, and targeted inhibition blocks mouse xenograft tumor growth. To further clarify the function of EG-1, we investigated its role in c-Src activation. We observed that EG-1 overexpression results in activation of c-Src, but found no evidence that EG-1 is a direct Src substrate. EG-1 also binds to other members of the Src family. Furthermore, EG-1 shows interaction with multiple other SH3- and WW-containing molecules involved in various signaling pathways. These observations suggest that EG-1 may be involved in signaling pathways including c-Src activation.

  14. Modeling the binding of fulvic acid by goethite: the speciation of adsorbed FA molecules

    NASA Astrophysics Data System (ADS)

    Filius, Jeroen D.; Meeussen, Johannes C. L.; Lumsdon, David G.; Hiemstra, Tjisse; van Riemsdijk, Willem H.

    2003-04-01

    Under natural conditions, the adsorption of ions at the solid-water interface may be strongly influenced by the adsorption of organic matter. In this paper, we describe the adsorption of fulvic acid (FA) by metal(hydr)oxide surfaces with a heterogeneous surface complexation model, the ligand and charge distribution (LCD) model. The model is a self-consistent combination of the nonideal competitive adsorption (NICA) equation and the CD-MUSIC model. The LCD model can describe simultaneously the concentration, pH, and salt dependency of the adsorption with a minimum of only three adjustable parameters. Furthermore, the model predicts the coadsorption of protons accurately for an extended range of conditions. Surface speciation calculations show that almost all hydroxyl groups of the adsorbed FA molecules are involved in outer sphere complexation reactions. The carboxylic groups of the adsorbed FA molecule form inner and outer sphere complexes. Furthermore, part of the carboxylate groups remain noncoordinated and deprotonated.

  15. Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA).

    PubMed

    Golewski, Grzegorz Ludwik

    2018-06-07

    Interfacial Transition Zone (ITZ) of coarse aggregate cement matrix is commonly regarded as the weakest element of concrete. In this phase - the first cracks in the material are initiated, and the process of destruction of the composite begins. An improvement of the ITZ properties are positively influenced by the mineral additives used for the composite. One of such a substitute for a binder is, potentially hazardous industrial waste, siliceous fly ash (FA). In this paper the ITZ between aggregate and cement paste in concretes containing FA is considered. The paper presents the results of tests on the effect of the addition of FA in the amount of: 0, 20 and 30% by weight of cement on morphology and size of cracks of the ITZ in composites. In matured concretes the smallest cracks occur in composite with the 20% FA additive. It can be concluded that composites with 20% addition of FA are characterized by low permeability and therefore high durability. The results of tests carried out can be helpful in obtaining concrete with the highest possible: strength, durability and reliability of operation. Moreover, such procedures also cause a restriction storage of hazardous materials, i.e. FA - by 160 million tons per year. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Understanding disease mechanisms with models of signaling pathway activities.

    PubMed

    Sebastian-Leon, Patricia; Vidal, Enrique; Minguez, Pablo; Conesa, Ana; Tarazona, Sonia; Amadoz, Alicia; Armero, Carmen; Salavert, Francisco; Vidal-Puig, Antonio; Montaner, David; Dopazo, Joaquín

    2014-10-25

    Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets. The proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.

  17. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  18. Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1996-01-01

    An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

  19. Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats.

    PubMed

    Drotningsvik, Aslaug; Mjøs, Svein A; Pampanin, Daniela M; Slizyte, Rasa; Carvajal, Ana; Remman, Tore; Høgøy, Ingmar; Gudbrandsen, Oddrun A

    2016-10-01

    The world's fisheries and aquaculture industries produce vast amounts of protein-containing by-products that can be enzymatically hydrolysed to smaller peptides and possibly be used as additives to functional foods and nutraceuticals targeted for patients with obesity-related metabolic disorders. To investigate the effects of fish protein hydrolysates on markers of metabolic disorders, obese Zucker fa/fa rats consumed diets with 75 % of protein from casein/whey (CAS) and 25 % from herring (HER) or salmon (SAL) protein hydrolysate from rest raw material, or 100 % protein from CAS for 4 weeks. The fatty acid compositions were similar in the experimental diets, and none of them contained any long-chain n-3 PUFA. Ratios of lysine:arginine and methionine:glycine were lower in HER and SAL diets when compared with CAS, and taurine was detected only in fish protein hydrolysate diets. Motifs with reported hypocholesterolemic or antidiabetic activities were identified in both fish protein hydrolysates. Rats fed HER diet had lower serum HDL-cholesterol and LDL-cholesterol, and higher serum TAG, MUFA and n-3:n-6 PUFA ratio compared with CAS-fed rats. SAL rats gained more weight and had better postprandial glucose regulation compared with CAS rats. Serum lipids and fatty acids were only marginally affected by SAL, but adipose tissue contained less total SFA and more total n-3 PUFA when compared with CAS. To conclude, diets containing hydrolysed rest raw material from herring or salmon proteins may affect growth, lipid metabolism, postprandial glucose regulation and fatty acid composition in serum and adipose tissue in obese Zucker rats.

  20. The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study.

    PubMed

    Pugliese, Luca; Catani, Marco; Ameis, Stephanie; Dell'Acqua, Flavio; Thiebaut de Schotten, Michel; Murphy, Clodagh; Robertson, Dene; Deeley, Quinton; Daly, Eileen; Murphy, Declan G M

    2009-08-15

    It has been suggested that people with autistic spectrum disorder (ASD) have altered development (and connectivity) of limbic circuits. However, direct evidence of anatomical differences specific to white matter pathways underlying social behaviour and emotions in ASD is lacking. We used Diffusion Tensor Imaging Tractography to compare, in vivo, the microstructural integrity and age-related differences in the extended limbic pathways between subjects with Asperger syndrome and healthy controls. Twenty-four males with Asperger syndrome (mean age 23+/-12 years, age range: 9-54 years) and 42 age-matched male controls (mean age 25+/-10 years, age range: 9-54 years) were studied. We quantified tract-specific diffusivity measurements as indirect indexes of microstructural integrity (e.g. fractional anisotropy, FA; mean diffusivity, MD) and tract volume (e.g. number of streamlines) of the main limbic tracts. The dissected limbic pathways included the inferior longitudinal fasciculus, inferior frontal occipital fasciculus, uncinate, cingulum and fornix. There were no significant between-group differences in FA and MD. However, compared to healthy controls, individuals with Asperger syndrome had a significantly higher number of streamlines in the right (p=.003) and left (p=.03) cingulum, and in the right (p=.03) and left (p=.04) inferior longitudinal fasciculus. In contrast, people with Asperger syndrome had a significantly lower number of streamlines in the right uncinate (p=.02). Within each group there were significant age-related differences in MD and number of streamlines, but not FA. However, the only significant age-related between-group difference was in mean diffusivity of the left uncinate fasciculus (Z(obs)=2.05) (p=.02). Our preliminary findings suggest that people with Asperger syndrome have significant differences in the anatomy, and maturation, of some (but not all) limbic tracts.

  1. Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.

    PubMed

    Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru

    2018-05-15

    The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water

  2. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-236FA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC)--HFC-236fa or 1,1,1,3,3,3-hexafluoropropane--as a possible alternative for chlorofluorocarbon (CFC)-114 (1,2-dichloro-1,1,2,2-tetrafluoroethane) refrigerant for chillers and as a possible fire s...

  3. Weekly infusional high-dose fluorouracil (HD-FU), HD-FU plus folinic acid (HD-FU/FA), or HD-FU/FA plus biweekly cisplatin in advanced gastric cancer: randomized phase II trial 40953 of the European Organisation for Research and Treatment of Cancer Gastrointestinal Group and the Arbeitsgemeinschaft Internistische Onkologie.

    PubMed

    Lutz, Manfred P; Wilke, Hansjochen; Wagener, D J Theo; Vanhoefer, Udo; Jeziorski, Krzysztof; Hegewisch-Becker, Susanna; Balleisen, Leopold; Joossens, Eric; Jansen, Rob L; Debois, Muriel; Bethe, Ullrich; Praet, Michel; Wils, Jacques; Van Cutsem, Eric

    2007-06-20

    This multicentric, randomized, two-stage phase II trial evaluated three simplified weekly infusional regimens of fluorouracil (FU) or FU plus folinic acid (FA) and cisplatin (Cis) with the aim to select a regimen for future phase III trials. A total of 145 patients with advanced gastric cancer where randomly assigned to weekly FU 3,000 mg/m2/24 hours (HD-FU), FU 2,600 mg/m2/24 hours plus dl-FA 500 mg/m2 or l-FA 250 mg/m2 (HD-FU/FA), or FU 2000 mg/m2/24 hours plus FA plus biweekly Cis 50 mg/m2, each administered for 6 weeks with a 1-week rest. The primary end point was the response rate. Confirmed responses were observed in 6.1% (two of 33) of the eligible patients treated with HD-FU, in 25% (12 of 48, including one complete remission [CR]) with HD-FU/FA, and in 45.7% (21 of 46, including four CRs) with HD-FU/FA/Cis. The HD-FU arm was closed after stage 1 because the required minimum number of responses was not met. The median progression-free survival of all patients in the HD-FU, HD-FU/FA, and HD-FU/FA/Cis arm was 1.9, 4.0, and 6.1 months, respectively. The median overall survival was 7.1, 8.9, and 9.7 months, and the survival rate at 1 year was 24.3%, 30.3%, and 45.3%, respectively. Grade 4 toxicities were rare. The most relevant grade 3/4 toxicities were neutropenia in 1.9%, 5.4%, and 19.6%, and diarrhea in 2.7%, 1.9%, and 3.9% of the cycles in the HD-FU, HD-FU/FA, and HD-/FU/Cis arms, respectively. Weekly infusional FU/FA plus biweekly Cis is effective and safe in patients with gastric cancer.

  4. Color Vision and the Railways: Part 3. Comparison of FaLant, OPTEC 900, and Railway LED Lantern Tests.

    PubMed

    Dain, Stephen J; Casolin, Armand; Long, Jennifer

    2015-02-01

    The Farnsworth Lantern (FaLant) and the OPTEC 900 are nominated in the Commission Internationale de l'Éclairage (CIE) Color Vision Standard 2. Neither test uses the railway signal color code of red, yellow, and green, and only the OPTEC 900 is commercially available. The Railway LED Lantern Test (RLLT) is based on railway signaling practices in New South Wales, Australia, and is nominated in the Australian railway medical standard. The objective of this study is to compare the performance of the three lantern tests. The RLLT, FaLant, and OPTEC 900 were administered to 46 color vision-normal and 37 color vision-deficient (CVD) subjects. The pattern of errors on the RLLT was different from that of the FaLant and OPTEC 900. This may be accounted for, at least in part, by the different colors and the use of blank presentations in the RLLT. The three lanterns showed agreement in failing 21 and passing 6 of the CVD subjects (72.9%). The lanterns gave different results for 10 CVD subjects (27.9%): n = 5 passed only the RLLT and n = 3 passed only the FaLant; n = 1 failed only the FaLant and n = 1 failed only the RLLT. The overall failure rate by CVD for each lantern was 67.6% (RLLT), 73.0% (FaLant), and 78.4% (OPTEC 900). Despite the different construction principles, the pass/fail levels of the RLLT, FaLant, and OPTEC 900 are comparable and consistent with the performance of other lanterns listed by the CIE for Color Vision Standard 2. The RLLT may be a little easier to pass and is based on the signal color code used and actual signaling practice. We propose that the RLLT is also an appropriate lantern for CIE Color Vision Standard 2.

  5. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    PubMed Central

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  6. Protective immune responses against West Nile virus are primed by distinct complement activation pathways.

    PubMed

    Mehlhop, Erin; Diamond, Michael S

    2006-05-15

    West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3(-/-) and complement receptor 1/2(-/-) mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.

  7. [Role of membrane lipids in myocardial cytoprotection

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2000-01-01

    The cardiomyocyte capacity to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. This process is based on a balanced fatty acid (FA) metabolism, because FA is the main fuel of the heart, although the most expensive one in oxygen. The pathway is, however, weakly controlled by the cardiac myocyte which can well regulate FA mitochondrial entry but not cell FA uptake. For this reason, several pathological situations often result from either harmful accumulation of FA and derivatives or excess FA-oxidation. Control of the FA/glucose balance by decreased energy production from FA would thus offer an alternative strategy in the treatment of ischaemia, providing the cardiomyocytes weak ability in handling the non-metabolised FA is controlled. The initiation and the regulation of cardiac contraction both result from membrane activity; the other major role of lipids in the heart is their contribution to membrane homeostasis through phospholipid synthesis pathways and phospholipases. The anti-anginal activity of Trimetazidine, reported as a cytoprotective effect without a haemo-dynamic component; is associated with reduced use of FA for energy. However, accumulation of FA and derivatives has never been observed. Trimetazidine is reported to increase significantly the synthesis of phospholipids without influencing the other lipid classes, thus increasing the incorporation of FA in membrane structures. This cytoprotection appears to be based on the redirection of the use of FA to phospholipid synthesis, which would decrease their availability for energy production. This class of compounds, with the same properties as Trimetazidine, offers a metabolic approach to the treatment of ischaemia.

  8. Validation of an automated tractography method for the optic radiations as a biomarker of visual acuity in neurofibromatosis-associated optic pathway glioma.

    PubMed

    de Blank, Peter; Fisher, Michael J; Gittleman, Haley; Barnholtz-Sloan, Jill S; Badve, Chaitra; Berman, Jeffrey I

    2018-01-01

    Fractional anisotropy (FA) of the optic radiations has been associated with vision deficit in multiple intrinsic brain pathologies including NF1 associated optic pathway glioma, but hand-drawn regions of interest used in previous tractography methods limit consistency of this potential biomarker. We created an automated method to identify white matter tracts in the optic radiations and compared this method to previously reported hand-drawn tractography. Automated tractography of the optic radiation using probabilistic streamline fiber tracking between the lateral geniculate nucleus of the thalamus and the occipital cortex was compared to the hand-drawn method between regions of interest posterior to Meyer's loop and anterior to tract branching near the calcarine cortex. Reliability was assessed by two independent raters in a sample of 20 healthy child controls. Among 50 children with NF1-associated optic pathway glioma, the association of FA and visual acuity deficit was compared for both tractography methods. Hand-drawn tractography methods required 2.6±0.9min/participant; automated methods were performed in <1min of operator time for all participants. Cronbach's alpha was 0.83 between two independent raters for FA in hand-drawn tractography, but repeated automated tractography resulted in identical FA values (Cronbach's alpha=1). On univariate and multivariate analyses, FA was similarly associated with visual acuity loss using both methods. Receiver operator characteristic curves of both multivariate models demonstrated that both automated and hand-drawn tractography methods were equally able to distinguish normal from abnormal visual acuity. Automated tractography of the optic radiations offers a fast, reliable and consistent method of tract identification that is not reliant on operator time or expertise. This method of tract identification may be useful as DTI is developed as a potential biomarker for visual acuity. Copyright © 2017 Elsevier Inc. All rights

  9. Oxidative degradation of atenolol by heat-activated persulfate: Kinetics, degradation pathways and distribution of transformation intermediates.

    PubMed

    Miao, Dong; Peng, Jianbiao; Zhou, Xiaohuan; Qian, Li; Wang, Mengjie; Zhai, Li; Gao, Shixiang

    2018-05-17

    Atenolol (ATL) has been widely detected in wastewater and aquatic environment. Although satisfactory removal of ATL from wastewater could be achieved, the mineralization ratio is usually low, which may result in the accumulation of its transformation products in the effluent and cause additional ecological risk to the environment. The aim of this study is to explore the effectiveness of heat activated persulfate (PS) in the removal of ATL from wastewater. Influencing factors including temperature, PS dosage, solution pH, existence of NO 3 - , Cl - , HCO 3 - and Suwannee river fulvic acid (SRFA) were examined. Complete removal of ATL was achieved within 40 min at pH 7.0 and 70 °C by using 0.5 mM PS. Inhibitive effects of HCO 3 - and FA had been observed on ATL oxidation, which was increased with the increase of their concentration. Sulfate radical (SO 4 - ) was determined as the main reactive species by quenching experiment. Eight intermediates produced in ATL degradation were identified, and four degradation pathways were proposed based on the analysis of mass spectrum and frontier electron densities. The distribution of major intermediates was influenced by reaction temperature. Hydroxylation intermediates and deamidation intermediate were the most prominent at 50 °C and 60 °C, respectively. All intermediates were completely degraded in 40 min except P134 at 70 °C. Effective removal of TOC (74.12%) was achieved with 0.5 mM PS, pH 7.0 and 70 °C after 240 min. The results proved that heat activation of PS is a promising method to remove organic pollutants in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. DTI fiber tractography of cerebro-cerebellar pathways and clinical evaluation of ataxia in childhood posterior fossa tumor survivors.

    PubMed

    Oh, Myung Eun; Driever, Pablo Hernáiz; Khajuria, Rajiv K; Rueckriegel, Stefan Mark; Koustenis, Elisabeth; Bruhn, Harald; Thomale, Ulrich-Wilhelm

    2017-01-01

    Pediatric posterior fossa (PF) tumor survivors experience long-term motor deficits. Specific cerebrocerebellar connections may be involved in incidence and severity of motor dysfunction. We examined the relationship between long-term ataxia as well as fine motor function and alteration of differential cerebellar efferent and afferent pathways using diffusion tensor imaging (DTI) and tractography. DTI-based tractography was performed in 19 patients (10 pilocytic astrocytoma (PA) and 9 medulloblastoma patients (MB)) and 20 healthy peers. Efferent Cerebello-Thalamo-Cerebral (CTC) and afferent Cerebro-Ponto-Cerebellar (CPC) tracts were reconstructed and analyzed concerning fractional anisotropy (FA) and volumetric measurements. Clinical outcome was assessed with the International Cooperative Ataxia Rating Scale (ICARS). Kinematic parameters of fine motor function (speed, automation, variability, and pressure) were obtained by employing a digitizing graphic tablet. ICARS scores were significantly higher in MB patients than in PA patients. Poorer ICARS scores and impaired fine motor function correlated significantly with volume loss of CTC pathway in MB patients, but not in PA patients. Patients with pediatric post-operative cerebellar mutism syndrome showed higher loss of CTC pathway volume and were more atactic. CPC pathway volume was significantly reduced in PA patients, but not in MB patients. Neither relationship was observed between the CPC pathway and ICARS or fine motor function. There was no group difference of FA values between the patients and healthy peers. Reduced CTC pathway volumes in our cohorts were associated with severity of long-term ataxia and impaired fine motor function in survivors of MBs. We suggest that the CTC pathway seems to play a role in extent of ataxia and fine motor dysfunction after childhood cerebellar tumor treatment. DTI may be a useful tool to identify relevant structures of the CTC pathway and possibly avoid surgically induced long

  11. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats.

    PubMed

    Qin, Liyan; Dai, Xufang; Yin, Yunhou

    2016-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, limited verbal communication and repetitive behaviors. Recent studies have demonstrated that Wnt signaling and mTOR signaling play important roles in the pathogenesis of ASD. However, the relationship of these two signaling pathways in ASD remains unclear. We assessed this question using the valproic acid (VPA) rat model of autism. Our results demonstrated that VPA exposure activated mTOR signaling and suppressed autophagy in the prefrontal cortex, hippocampus and cerebellum of autistic model rats, characterized by enhanced phospho-mTOR and phospho-S6 and decreased Beclin1, Atg5, Atg10, LC3-II and autophagosome formation. Rapamycin treatment suppressed the effect of VPA on mTOR signaling and ameliorated the autistic-like behaviors of rats in our autism model. The administration of VPA also activated Wnt signaling through up-regulating beta-catenin and phospho-GSK3beta. Suppression of the Wnt pathway by sulindac relieved autistic-like behaviors and attenuated VPA-induced mTOR signaling activation in autistic model rats. Our results demonstrate that VPA exposure sequentially activates Wnt signaling and mTOR signaling in rats. Suppression of the Wnt signaling pathway relieves autistic-like behaviors partially by deactivating the mTOR signaling pathway in VPA-exposed rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-07-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.

  13. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal andmore » glial cultures, and protects neurons against glutamate-induced excitotoxicity.« less

  14. 2-Methoxylated FA Display Unusual Antibacterial Activity Towards Clinical Isolates of Methicillin-Resistant Staphylococcus aureus (CIMRSA) and Escherichia coli.

    PubMed

    Carballeira, Néstor M; Montano, Nashbly; Morales, Christian; Mooney, Joseph; Torres, Xiomara; Díaz, Dakeishla; Sanabria-Rios, David J

    2017-06-01

    The naturally occurring (6Z)-(±)-2-methoxy-6-hexadecenoic acid (1) and (6Z)-(±)-2-methoxy-6-octadecenoic acid (2) were synthesized in 7-8 steps with 38 and 13% overall yields, respectively, by using an acetylide coupling approach, which made it possible to obtain a 100% cis-stereochemistry for the double bonds. In a similar fashion, the acetylenic analogs (±)-2-methoxy-6-hexadecynoic acid (3) and (±)-2-methoxy-6-octadecynoic acid (4) were also synthesized in 6-7 steps with 48 and 16% overall yields, respectively. The antibacterial activity of acids 1-4 was determined against clinical isolates of methicillin-resistant Staphylococcus aureus (ClMRSA) and Escherichia coli. Among the series of compounds, acid 4 was the most active bactericide towards CIMRSA displaying IC 50s (half maximal inhibitory concentrations) between 17 and 37 μg/mL, in sharp contrast to the 6-octadecynoic acid, which was not bactericidal at all. On the other hand, acids 1 and 3 were the only acids that displayed antibacterial activity towards E. coli, but 1 stood out as the best candidate with an IC 50 of 21 μg/mL. The critical micelle concentrations (CMCs) of acids 1-4 were also determined. The C18 acids 2 and 4 displayed a five-fold lower CMC (15-20 μg/mL) than the C16 analogs 1 and 3 (70-100 μg/mL), indicating that 4 exerts its antibacterial activity in a micellar state. None of the studied acids were inhibitory towards S. aureus DNA gyrase discounting this type of enzyme inhibition as a possible antibacterial mechanism. It was concluded that the combination of α-methoxylation and C-6 unsaturation increases the bactericidal activity of the C16 and C18 FA towards the studied bacterial strains. Acids 1 and 4 stand out as viable candidates to be used against E. coli and CIMRSA, respectively.

  15. Differential Protection of Cry1Fa Toxin against Spodoptera frugiperda Larval Gut Proteases by Cadherin Orthologs Correlates with Increased Synergism

    PubMed Central

    Rahman, Khalidur; Abdullah, Mohd Amir F.; Ambati, Suresh; Taylor, Milton D.

    2012-01-01

    The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin. PMID:22081566

  16. Differential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.

    PubMed

    Rahman, Khalidur; Abdullah, Mohd Amir F; Ambati, Suresh; Taylor, Milton D; Adang, Michael J

    2012-01-01

    The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving efficacy of Cry toxins. However, the mode of action of Bt Cry synergists is thus far unclear. Here we elucidate the mechanism of cadherin-based Cry toxin synergism utilizing two cadherin peptides, Spodoptera frugiperda Cad (SfCad) and Manduca sexta Cad (MsCad), which differentially enhance Cry1Fa toxicity to Spodoptera frugiperda neonates. We show that differential SfCad- and MsCad-mediated protection of Cry1Fa toxin in the Spodoptera frugiperda midgut correlates with differential Cry1Fa toxicity enhancement. Both peptides exhibited high affinity for Cry1Fa toxin and an increased rate of Cry1Fa-induced pore formation in S. frugiperda. However, only SfCad bound the S. frugiperda brush border membrane vesicle and more effectively prolonged the stability of Cry1Fa toxin in the gut, explaining higher Cry1Fa enhancement by this peptide. This study shows that cadherin fragments may enhance B. thuringiensis toxicity by at least two different mechanisms or a combination thereof: (i) protection of Cry toxin from protease degradation in the insect midgut and (ii) enhancement of pore-forming ability of Cry toxin.

  17. Genetic variants in a lipid regulatory pathway as potential tools for improving the nutritional quality of grass-fed beef.

    PubMed

    Baeza, M C; Corva, P M; Soria, L A; Pavan, E; Rincon, G; Medrano, J F

    2013-04-01

    The aim of this study was to evaluate the effect of genetic variants on candidate genes corresponding to the sterol recognition element-binding protein-1 (SREBP-1) signaling pathway and stearoyl-CoA desaturases (SCD1 and SCD5) on muscle fatty acid (FA) composition of Brangus steers fattened on grass. FA profiles were measured on Longissimus lumborum muscle samples using a gas chromatography-flame ionization detection technique. A total of 43 tag single-nucleotide polymorphisms on the SCD1, SCD5, SREBP-1, SCAP, INSIG1, INSIG2, MBTPS1, MBTPS2, and SRPR genes were genotyped on 246 steers to perform a marker-trait association study. To evaluate the influence of the Indicine breed in the composite breed, additional groups of 48 Angus, 18 Hereford, 75 Hereford x Angus, and 36 Limousin x Hereford-Angus steers were also genotyped. To perform the association analysis, FA data were grouped according to the number of carbon atoms and/or number of double bonds (i.e. SFA, MUFA, PUFA, etc.). In addition, different indexes that reflect the activity of FA desaturase and elongase enzymes were calculated. SCD1 markers significantly affected C14:1/(C14:0 + C14:1) and C18:1/(C18:0 + C18:1) indexes, whereas one SNP in SCD5 was correlated with the C16:1/(C16:0 + C16:1) index. Polymorphisms in the signal recognition particle receptor (SRPR) gene were associated with all the estimated desaturase indexes. Because the evaluated markers showed no effect on total lipid content of beef, this work supports the potential utilization of these markers for the improvement of grass-fed beef without undesirable side effects. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  18. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

    PubMed

    Ericson, Megan E; Subramanian, Chitra; Frank, Matthew W; Rock, Charles O

    2017-08-01

    The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus , but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus , and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely

  19. Localised JAK/STAT Pathway Activation Is Required for Drosophila Wing Hinge Development

    PubMed Central

    Johnstone, Kirsty; Wells, Richard E.; Strutt, David; Zeidler, Martin P.

    2013-01-01

    Extensive morphogenetic remodelling takes place during metamorphosis from a larval to an adult insect body plan. These changes are particularly intricate in the generation of the dipteran wing hinge, a complex structure that is derived from an apparently simple region of the wing imaginal disc. Using the characterisation of original outstretched alleles of the unpaired locus as a starting point, we demonstrate the role of JAK/STAT pathway signalling in the process of wing hinge development. We show that differences in JAK/STAT signalling within the proximal most of three lateral folds present in the wing imaginal disc is required for fold morphology and the subsequent differentiation of the first and second auxiliary sclerites as well as the posterior notal wing process. Changes in these domains are consistent with the established fate map of the wing disc. We show that outstretched wing posture phenotypes arise from the loss of a region of Unpaired expression in the proximal wing fold and demonstrate that this results in a decrease in JAK/STAT pathway activity. Finally we show that reduction of JAK/STAT pathway activity within the proximal wing fold is sufficient to phenocopy the outstretched phenotype. Taken together, we suggest that localised Unpaired expression and hence JAK/STAT pathway activity, is required for the morphogenesis of the adult wing hinge, providing new insights into the link between signal transduction pathways, patterning and development. PMID:23741461

  20. TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis

    PubMed Central

    Cammareri, Patrizia; Vincent, David F; Hodder, Michael C; Ridgway, Rachel A; Murgia, Claudio; Nobis, Max; Campbell, Andrew D; Varga, Julia; Huels, David J; Subramani, Chithra; Prescott, Katie L H; Nixon, Colin; Hedley, Ann; Barry, Simon T; Greten, Florian R; Inman, Gareth J; Sansom, Owen J

    2017-01-01

    Recent studies have suggested increased plasticity of differentiated cells within the intestine to act both as intestinal stem cells (ISCs) and tumour-initiating cells. However, little is known of the processes that regulate this plasticity. Our previous work has shown that activating mutations of Kras or the NF-κB pathway can drive dedifferentiation of intestinal cells lacking Apc. To investigate this process further, we profiled both cells undergoing dedifferentiation in vitro and tumours generated from these cells in vivo by gene expression analysis. Remarkably, no clear differences were observed in the tumours; however, during dedifferentiation in vitro we found a marked upregulation of TGFβ signalling, a pathway commonly mutated in colorectal cancer (CRC). Genetic inactivation of TGFβ type 1 receptor (Tgfbr1/Alk5) enhanced the ability of KrasG12D/+ mutation to drive dedifferentiation and markedly accelerated tumourigenesis. Mechanistically this is associated with a marked activation of MAPK signalling. Tumourigenesis from differentiated compartments is potently inhibited by MEK inhibition. Taken together, we show that tumours arising in differentiated compartments will be exposed to different suppressive signals, for example, TGFβ and blockade of these makes tumourigenesis more efficient from this compartment. PMID:28622298

  1. The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation

    PubMed Central

    Kwiatek, Agnieszka; Bacal, Pawel; Wasiluk, Adrian; Trybunko, Anastasiya; Adamczyk-Poplawska, Monika

    2014-01-01

    Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than

  2. Calcium-independent haemolysis via the lectin pathway of complement activation in the guinea-pig and other *

    PubMed Central

    Zhang, Y; Suankratay, C; Zhang, X-H; Jones, D R; Lint, T F; Gewurz, H

    1999-01-01

    We previously reported that complement-dependent haemolysis of sheep erythrocytes (E) coated with mannan (M) and sensitized with human mannan-binding lectin (MBL) via the lectin pathway in man occurs in Mg-EGTA and requires alternative pathway amplification. Calcium was required for MBL binding to E-M, but once the E-M-MBL intermediate was formed, MBL was retained and haemolysis occurred in the absence of calcium. Comparable or greater lectin pathway haemolysis in the absence of calcium was observed upon incubation of E-M-MBL in guinea-pig, rat, dog and pig sera, and was further investigated in the guinea-pig, in which titres were much higher (∼14-fold) than in man, and in contrast to humans, greater than classical pathway haemolytic activity. As in human serum, no lysis was observed in C4- or C2-deficient guinea-pig serum until purified C4 or C2, respectively, were restored. However, lectin pathway haemolytic activity in the guinea-pig did not require the alternative pathway. Removal (>98%) of factor D activity by three sequential passages through Sephadex G-75, resulting in serum which retained a normal classical pathway but no alternative pathway haemolytic activity, did not reduce the ability of guinea-pig serum to mediate haemolysis via the lectin pathway. Further, the C3-convertase formed via the lectin pathway (E-M-MBL-C4,2) lysed in C2-deficient guinea-pig but not human serum chelated with EDTA, a condition which precludes alternative pathway amplification. Thus, lectin pathway haemolysis occurs efficiently in guinea-pig serum, in the absence of calcium and without requirement for alternative pathway amplification. The guinea-pig provides a model for studying the assembly and haemolytic function of a lectin pathway which contrasts with the lectin pathway of man, and allows for comparisons that may help clarify the role of this pathway in complement biology. PMID:10457224

  3. HEAT TRANSFER EVALUATION OF HFC-236FA IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the shell-side heat transfer performance of hydrofluorocarbon (HFC)-236fa, which is considered to be a potential substitute for chlorofluorocarbon (CFC)-114 in Navy shipboard chillers, for both conventional finned [1024- and 1575-fpm (...

  4. Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization

    PubMed Central

    Xu, Ran; Andres-Mateos, Eva; Mejias, Rebeca; MacDonald, Elizabeth M.; Leinwand, Leslie A.; Merriman, Dana K.; Fink, Rainer H. A.; Cohn, Ronald D.

    2013-01-01

    Skeletal muscle atrophy is a very common clinical challenge in many disuse conditions. Maintenance of muscle mass is crucial to combat debilitating functional consequences evoked from these clinical conditions. In contrast, hibernation represents a physiological state in which there is natural protection against disuse atrophy despite prolonged periods of immobilization and lack of nutrient intake. Even though peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α) is a central mediator in muscle remodeling pathways, its role in the preservation of skeletal muscle mass during hibernation remains unclear. Since PGC-1α regulates muscle fiber type formation and mitochondrial biogenesis, we analyzed muscles of 13-lined ground squirrels. We find that animals in torpor exhibit a shift to slow-twitch Type I muscle fibers. This switch is accompanied by activation of the PGC-1α-mediated endurance exercise pathway. In addition, we observe increased antioxidant capacity without evidence of oxidative stress, a marked decline in apoptotic susceptibility, and enhanced mitochondrial abundance and metabolism. These results show that activation of the endurance exercise pathway can be achieved in vivo despite prolonged periods of immobilization, and therefore might be an important mechanism for skeletal muscle preservation during hibernation. This PGC-1α regulated pathway may be a potential therapeutic target promoting skeletal muscle homeostasis and oxidative balance to prevent muscle loss in a variety of inherited and acquired neuromuscular disease conditions. PMID:23333568

  5. An enhanced functional ability questionnaire (faVIQ) to measure the impact of rehabilitation services on the visually impaired.

    PubMed

    Wolffsohn, James Stuart; Jackson, Jonathan; Hunt, Olivia Anne; Cottriall, Charles; Lindsay, Jennifer; Gilmour, Richard; Sinclair, Anne; Harper, Robert

    2014-01-01

    To develop a short, enhanced functional ability Quality of Vision (faVIQ) instrument based on previous questionnaires employing comprehensive modern statistical techniques to ensure the use of an appropriate response scale, items and scoring of the visual related difficulties experienced by patients with visual impairment. Items in current quality-of-life questionnaires for the visually impaired were refined by a multi-professional group and visually impaired focus groups. The resulting 76 items were completed by 293 visually impaired patients with stable vision on two occasions separated by a month. The faVIQ scores of 75 patients with no ocular pathology were compared to 75 age and gender matched patients with visual impairment. Rasch analysis reduced the faVIQ items to 27. Correlation to standard visual metrics was moderate (r=0.32-0.46) and to the NEI-VFQ was 0.48. The faVIQ was able to clearly discriminate between age and gender matched populations with no ocular pathology and visual impairment with an index of 0.983 and 95% sensitivity and 95% specificity using a cut off of 29. The faVIQ allows sensitive assessment of quality-of-life in the visually impaired and should support studies which evaluate the effectiveness of low vision rehabilitation services.

  6. An enhanced functional ability questionnaire (faVIQ) to measure the impact of rehabilitation services on the visually impaired

    PubMed Central

    Wolffsohn, James Stuart; Jackson, Jonathan; Hunt, Olivia Anne; Cottriall, Charles; Lindsay, Jennifer; Gilmour, Richard; Sinclair, Anne; Harper, Robert

    2014-01-01

    AIM To develop a short, enhanced functional ability Quality of Vision (faVIQ) instrument based on previous questionnaires employing comprehensive modern statistical techniques to ensure the use of an appropriate response scale, items and scoring of the visual related difficulties experienced by patients with visual impairment. METHODS Items in current quality-of-life questionnaires for the visually impaired were refined by a multi-professional group and visually impaired focus groups. The resulting 76 items were completed by 293 visually impaired patients with stable vision on two occasions separated by a month. The faVIQ scores of 75 patients with no ocular pathology were compared to 75 age and gender matched patients with visual impairment. RESULTS Rasch analysis reduced the faVIQ items to 27. Correlation to standard visual metrics was moderate (r=0.32-0.46) and to the NEI-VFQ was 0.48. The faVIQ was able to clearly discriminate between age and gender matched populations with no ocular pathology and visual impairment with an index of 0.983 and 95% sensitivity and 95% specificity using a cut off of 29. CONCLUSION The faVIQ allows sensitive assessment of quality-of-life in the visually impaired and should support studies which evaluate the effectiveness of low vision rehabilitation services. PMID:24634868

  7. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis

    PubMed Central

    Kato, Yasuko; Alavattam, Kris G.; Sin, Ho-Su; Meetei, Amom Ruhikanta; Pang, Qishen; Andreassen, Paul R.; Namekawa, Satoshi H.

    2015-01-01

    Fanconi anemia (FA) is a recessive X-linked and autosomal genetic disease associated with bone marrow failure and increased cancer, as well as severe germline defects such as hypogonadism and germ cell depletion. Although deficiencies in FA factors are commonly associated with germ cell defects, it remains unknown whether the FA pathway is involved in unique epigenetic events in germ cells. In this study, we generated Fancb mutant mice, the first mouse model of X-linked FA, and identified a novel function of the FA pathway in epigenetic regulation during mammalian gametogenesis. Fancb mutant mice were infertile and exhibited primordial germ cell (PGC) defects during embryogenesis. Further, Fancb mutation resulted in the reduction of undifferentiated spermatogonia in spermatogenesis, suggesting that FANCB regulates the maintenance of undifferentiated spermatogonia. Additionally, based on functional studies, we dissected the pathway in which FANCB functions during meiosis. The localization of FANCB on sex chromosomes is dependent on MDC1, a binding partner of H2AX phosphorylated at serine 139 (γH2AX), which initiates chromosome-wide silencing. Also, FANCB is required for FANCD2 localization during meiosis, suggesting that the role of FANCB in the activation of the FA pathway is common to both meiosis and somatic DNA damage responses. H3K9me2, a silent epigenetic mark, was decreased on sex chromosomes, whereas H3K9me3 was increased on sex chromosomes in Fancb mutant spermatocytes. Taken together, these results indicate that FANCB functions at critical stages of germ cell development and reveal a novel function of the FA pathway in the regulation of H3K9 methylation in the germline. PMID:26123487

  8. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    PubMed

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    PubMed

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  10. Alternative complement pathway activation increases mortality in a model of burn injury in mice.

    PubMed Central

    Gelfand, J A; Donelan, M; Hawiger, A; Burke, J F

    1982-01-01

    We have studied the role of the complement system in burn injury in an experimental model in mice. A 25% body surface area, full-thickness scald wound was produced in anesthetized animals. Massive activation of the alternative complement pathway, but not the classical pathway, was seen. This activation was associated with the generation of neutrophil aggregating activity in the plasma, neutrophil aggregates in the lungs, increased pulmonary vascular permeability, and increased lung edema formation. Decomplementation with cobra venom factor (CVF) or genetic C5 deficiency diminished these pathologic changes, and CVF pretreatment substantially reduced burn mortality in the first 24 h. Preliminary data show that human burn patients have a similar pattern of complement activation involving predominantly the alternative pathway, indicating the possible relevance of the murine model to human disease. Images PMID:7174787

  11. Bioreactor Transient Exposure Activates Specific Neurotrophic Pathway in Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zimmitti, V.; Benedetti, E.; Caracciolo, V.; Sebastiani, P.; Di Loreto, S.

    2010-02-01

    Altered gravity forces might influence neuroplasticity and can provoke changes in biochemical mechanisms. In this contest, neurotrophins have a pivotal role, particularly nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). A suspension of dissociated cortical cells from rat embryos was exposed to 24 h of microgravity before plating in normal adherent culture system. Expression and transductional signalling pathways of NGF and BDNF were assessed at the end of maturational process (8-10 days in vitro). Rotating wall vessel bioreactor (RWV) pre-exposition did not induce changes in NGF expression and its high affinity receptor TrkA. On the contrary both BDNF expression and its high affinity receptor TrkB were strongly up-regulated, inducing Erk-5, but not Erk-1/2 activation and, in turn, MEF2C over-expression and activation. According to our previous and present results, we postulate that relatively short microgravitational stimuli, applied to neural cells during the developmental stage, exert a long time activation of specific neurotrophic pathways.

  12. Insights into the TOR-S6K signaling pathway in maize (Zea mays L.). pathway activation by effector-receptor interaction.

    PubMed

    Garrocho-Villegas, Verónica; Aguilar C, Raúl; Sánchez de Jiménez, Estela

    2013-12-23

    The primordial TOR pathway, known to control growth and cell proliferation, has still not been fully described for plants. Nevertheless, in maize, an insulin-like growth factor (ZmIGF) peptide has been reported to stimulate this pathway. This research provides further insight into the TOR pathway in maize, using a biochemical approach in cultures of fast-growing (FG) and slow-growing (SG) calli, as a model system. Our results revealed that addition of either ZmIGF or insulin to SG calli stimulated DNA synthesis and increased the growth rate through cell proliferation and increased the rate of ribosomal protein (RP) synthesis by the selective mobilization of RP mRNAs into polysomes. Furthermore, analysis of the phosphorylation status of the main TOR and S6K kinases from the TOR pathway revealed stimulation by ZmIGF or insulin, whereas rapamycin inhibited its activation. Remarkably, a putative maize insulin-like receptor was recognized by a human insulin receptor antibody, as demonstrated by immunoprecipitation from membrane protein extracts of maize callus. Furthermore, competition experiments between ZmIGF and insulin for the receptor site on maize protoplasts suggested structural recognition of the putative receptor by either effector. These data were confirmed by confocal immunolocalization within the cell membrane of callus cells. Taken together, these data indicate that cell growth and cell proliferation in maize depend on the activation of the TOR-S6K pathway through the interaction of an insulin-like growth factor and its receptor. This evidence suggests that higher plants as well as metazoans have conserved this biochemical pathway to regulate their growth, supporting the conclusion that it is a highly evolved conserved pathway.

  13. Defocused low-energy shock wave activates adipose tissue-derived stem cells in vitro via multiple signaling pathways.

    PubMed

    Xu, Lina; Zhao, Yong; Wang, Muwen; Song, Wei; Li, Bo; Liu, Wei; Jin, Xunbo; Zhang, Haiyang

    2016-12-01

    We found defocused low-energy shock wave (DLSW) could be applied in regenerative medicine by activating mesenchymal stromal cells. However, the possible signaling pathways that participated in this process remain unknown. In the present study, DLSW was applied in cultured rat adipose tissue-derived stem cells (ADSCs) to explore its effect on ADSCs and the activated signaling pathways. After treating with DLSW, the cellular morphology and cytoskeleton of ADSCs were observed. The secretions of ADSCs were detected. The expressions of ADSC surface antigens were analyzed using flow cytometry. The expressions of proliferating cell nuclear antigen and Ki67 were analyzed using western blot. The expression of CXCR2 and the migrations of ADSCs in vitro and in vivo were detected. The phosphorylation of selected signaling pathways with or without inhibitors was also detected. DLSW did not change the morphology and phenotype of ADSCs, and could promote the secretion, proliferation and migration of ADSCs. The phosphorylation levels were significantly higher in mitogen-activated protein kinases (MAPK) pathway, phosphoinositide 3-kinase (PI-3K)/AKT pathway and nuclear factor-kappa B (NF-κB) signaling pathway but not in Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Furthermore, ADSCs were not activated by DLSW after adding the inhibitors of these pathways simultaneously. Our results demonstrated for the first time that DLSW could activate ADSCs through MAPK, PI-3K/AKT and NF-κB signaling pathways. Combination of DLSW and agonists targeting these pathways might improve the efficacy of ADSCs in regenerative medicine in the future. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. The fa2 gene and molecular markers mapping in the gp segment of the Pisum linkage group V.

    PubMed

    Gawłowska, M; Święcicki, W

    2016-08-01

    Review studies on the world Pisum genetic resources have shown that stem fasciation is controlled by three loci, i.e., fa1 (LGIV; Wt 10006 - type line of the Polish Gene Bank), fa2 (LGV, the line Wt 12185), and fas (LGIII, the line Shtambovii). Outstanding advantages of this character (e.g., pods gathered in upper part of a stem) resulted in breeding some cultivars. Preliminary investigations suggested linkages of the newly described fa2 gene within the gp-U segment. Based on the further linkage test crosses, it was stated that the fa2 is localized between the gp and Pis_Gen_9_3_1 markers (in the LGV). Additionally, four molecular markers (AD175, AB146, AC58, and AD280) and the morphological marker lk were also localized in this segment. Moreover, rms5, lum3, and cri were found to map on the other side of gp with tight linkage observed between lum3 and cri.

  15. Support Equipment Management in the F/A-18 Program

    DTIC Science & Technology

    1986-12-01

    or character (such as manuals and drawings) of a scientific or technical nature. Computer programs and related software are not technical data...documentation of computer programs and related software are. Also excluded are financial data or other information related to contract administration. 6...management in the F/A-18 program . Graeser, Kenneth S. http://hdl.handle.net/10945/22133 Downloaded from NPS Archive: Calhoun NAVAL POSTGRADUATE SCHOOL Monterey

  16. View northeast; detail of southwest corner showing damage to façade ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast; detail of southwest corner showing damage to façade - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  17. View north detail of south façade showing damage to wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north detail of south façade showing damage to wall - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  18. White Bass (Morone chrysops) Preferentially Retain n-3 PUFA in Ova When Fed Prepared Diets with Varying FA Content.

    PubMed

    Fuller, S Adam; Rawles, Steven D; McEntire, Matthew E; Bader, Troy J; Riche, Marty; Beck, Benjamin H; Webster, Carl D

    2017-10-01

    We evaluated the fatty acid (FA) composition of broodstock white bass ova fed one of six commercial diets with increasing polyunsaturated FA content (n-6/n-3 ratio; 0.36, 0.39, 0.46, 0.83, 1.07, 1.12) eight weeks prior to sampling. Fatty acid profiles of ova from brooders fed each of the six diets were significantly altered according to canonical discriminant analysis. Ova FA profiles resulting from the 0.39 diet separated those from the 0.36 diet based on lower 18:2n-6 (LNA) and higher 20:1n-9 concentrations from the 0.36 diet. Ova profiles were further separated based on lower concentrations of 22:5n-3 (DPA) from the 0.46 diet, lower concentrations of 20:5n-3 (EPA) in the 1.12 and 0.83 diets, and lower concentrations of 22:6n-3 (DHA) in all other diets relative to the 0.46 diet. Changes in ova FA profile at four and eight weeks were consistent with dietary intake with an approximate 2% increase in any given FA class with increasing time on individual diet. There was no correlation between dietary ARA concentrations (0.7-1.1 mol%), or dietary EPA/ARA ratios (7-15), and the concentrations (1.4-1.7 mol%) or ratios (3.3-4.4) found in the ova by diet. Our results suggest that white bass females have the ability to preferentially incorporate n-3 PUFA, particularly DHA, suggesting mobilization of this FA from other tissues for ova deposition or preferential dietary incorporation of PUFA into ova. These results will add to the limited FA information available in white bass and enable nutritionists to formulate broodstock diets that maximize reproductive potential in this species.

  19. Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury.

    PubMed

    Wink, Steven; Hiemstra, Steven W; Huppelschoten, Suzanne; Klip, Janna E; van de Water, Bob

    2018-05-01

    Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.

  20. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase

    PubMed Central

    Sareen, Archana; Chaudhury, Indrajit; Adams, Nicole; Sobeck, Alexandra

    2012-01-01

    Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2–FANCI complex versus the monomeric proteins are. We show that the FANCD2–FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2–FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to—and independently of—FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase. PMID:22753026

  1. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    PubMed Central

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  2. Activation of the RLR/MAVS Signaling Pathway by the L Protein of Mopeia Virus

    PubMed Central

    Zhang, Lei-Ke; Xin, Qi-Lin; Zhu, Sheng-Lin; Wan, Wei-Wei; Wang, Wei

    2016-01-01

    ABSTRACT The family Arenaviridae includes several important human pathogens that can cause severe hemorrhagic fever and greatly threaten public health. As a major component of the innate immune system, the RLR/MAVS signaling pathway is involved in recognizing viral components and initiating antiviral activity. It has been reported that arenavirus infection can suppress the innate immune response, and NP and Z proteins of pathogenic arenaviruses can disrupt RLR/MAVS signaling, thus inhibiting production of type I interferon (IFN-I). However, recent studies have shown elevated IFN-I levels in certain arenavirus-infected cells. The mechanism by which arenavirus infection induces IFN-I responses remains unclear. In this study, we determined that the L polymerase (Lp) of Mopeia virus (MOPV), an Old World (OW) arenavirus, can activate the RLR/MAVS pathway and thus induce the production of IFN-I. This activation is associated with the RNA-dependent RNA polymerase activity of Lp. This study provides a foundation for further studies of interactions between arenaviruses and the innate immune system and for the elucidation of arenavirus pathogenesis. IMPORTANCE Distinct innate immune responses are observed when hosts are infected with different arenaviruses. It has been widely accepted that NP and certain Z proteins of arenaviruses inhibit the RLR/MAVS signaling pathway. The viral components responsible for the activation of the RLR/MAVS signaling pathway remain to be determined. In the current study, we demonstrate for the first time that the Lp of MOPV, an OW arenavirus, can activate the RLR/MAVS signaling pathway and thus induce the production of IFN-I. Based on our results, we proposed that dynamic interactions exist among Lp-produced RNA, NP, and the RLR/MAVS signaling pathway, and the outcome of these interactions may determine the final IFN-I response pattern: elevated or reduced. Our study provides a possible explanation for how IFN-I can become activated during

  3. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    PubMed

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1- 14 C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1- 14 C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  4. Design of MiSolFA Hard X-Ray Imager

    NASA Astrophysics Data System (ADS)

    Lastufka, Erica; Casadei, Diego

    2017-08-01

    Advances in the study of coronal electron-accelerating regions have so far been limited by the dynamic range of X-ray instruments. A quick and economical alternative to desirable focusing optics technology is stereo observation. The micro-satellite MiSolFA (Micro Solar-Flare Apparatus) is designed both as a stand-alone X-ray imaging spectrometer and a complement to the Spectrometer/Telescope for Imaging X-rays (STIX) mission. These instruments will be the first pair of cross-calibrated X-ray imaging spectrometers to look at solar flares from very different points of view. MiSolFA will achieve indirect imaging between 10 and 60 keV and provide spectroscopy up to 100 keV, equipped with grids producing moiré patterns in a similar way to STIX. New manufacturing techniques produce gold gratings on a graphite or silicon substrate, with periods ranging from 15 to 225 micrometers, separated by a distance of 15.47 cm, to achieve a spatial resolutions from 10" to 60" (as compared to RHESSI's separation of 150 cm and 1" resolution). We present the progress of the imager design, the performance of the first prototypes, and reach out to the community for further scientific objectives to consider in optimizing the final design.

  5. Analysis of Tangential Slot Blowing on F/A-18 Isolated Forebody

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.

    1995-01-01

    The generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and underblowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind-tunnel and subscale wind-tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flowfield about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.

  6. Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway

    PubMed Central

    Adhikari, Hema; Cullen, Paul J.

    2014-01-01

    Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. PMID:25356552

  7. The FANC pathway is activated by adenovirus infection and promotes viral replication-dependent recombination

    PubMed Central

    Cherubini, Gioia; Naim, Valeria; Caruso, Paola; Burla, Romina; Bogliolo, Massimo; Cundari, Enrico; Benihoud, Karim; Saggio, Isabella; Rosselli, Filippo

    2011-01-01

    Deciphering the crosstalk between a host cell and a virus during infection is important not only to better define viral biology but also to improve our understanding of cellular processes. We identified the FANC pathway as a helper of viral replication and recombination by searching for cellular targets that are modified by adenovirus (Ad) infection and are involved in its outcome. This pathway, which is involved in the DNA damage response and checkpoint control, is altered in Fanconi anaemia, a rare cancer predisposition syndrome. We show here that Ad5 infection activates the FANC pathway independent of the classical DNA damage response. Infection with a non-replicating Ad shows that the presence of viral DNA is not sufficient to induce the monoubiquitination of FANCD2 but still activates the DNA damage response coordinated by phospho-NBS1 and phospho-CHK1. E1A expression alone fails to induce FANCD2 monoubiquitination, indicating that a productive viral infection and/or replication is required for FANC pathway activation. Our data indicate that Ad5 infection induces FANCD2 activation to promote its own replication. Specifically, we show that FANCD2 is involved in the recombination process that accompanies viral DNA replication. This study provides evidence of a DNA damage-independent function of the FANC pathway and identifies a cellular system involved in Ad5 recombination. PMID:21421559

  8. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits

    PubMed Central

    Posé, Sara; Paniagua, Candelas; Cifuentes, Manuel; Blanco-Portales, Rosario; Quesada, Miguel A.; Mercado, José A.

    2013-01-01

    Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell–cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity

  9. Erythrocytes of uranium miners: the activity of the pentose phosphate pathway

    PubMed Central

    Vích, Z.; Novosad, F.; Brychtová, V.

    1970-01-01

    Vích, Z., Novosad, F., and Brychtová, V. (1970).Brit. J. industr. Med.,27, 287-290. Erythrocytes of uranium miners: the activity of the pentose phosphate pathway. The functioning of erythrocytes was studied by determination of the activity of the pentose phosphate pathway in 431 individuals - 221 uranium miners, 42 employees of a uranium ore trimming station (30 of whom were exposed), 36 former uranium miners, 32 coal miners, and 100 persons not working in mines and with no previous exposure. In the groups exposed to long-term occupational radiation, the activity of the pentose phosphate cycle was found to be enhanced. This finding was interpreted as evidence for a change in the functional state of the erythrocytes in exposed persons due to the effects of radiation on the genesis of red cells in the bone marrow. PMID:5448126

  10. Exterior building details of Building B, east façade: ca. 1914 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building B, east façade: ca. 1914 covered porch with an asphalt singled low-hipped roof; southwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  11. Exterior building details of Building E, oblique west façade: brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building E, oblique west façade: brick arch lintel and brick infilled window with brick sill; southeasterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  12. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality. Copyright © 2017, American Association for the Advancement of Science.

  13. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    NASA Astrophysics Data System (ADS)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  14. Oral Delivery of Nanoparticles Loaded With Ginger Active Compound, 6-Shogaol, Attenuates Ulcerative Colitis and Promotes Wound Healing in a Murine Model of Ulcerative Colitis.

    PubMed

    Zhang, Mingzhen; Xu, Changlong; Liu, Dandan; Han, Moon Kwon; Wang, Lixin; Merlin, Didier

    2018-01-24

    Oral drug delivery is the most attractive pathway for ulcerative colitis [UC] therapy, since it has many advantages. However, this strategy has encountered many challenges, including the instability of drugs in the gastrointestinal tract [GT], low targeting of disease tissues, and severe adverse effects. Nanoparticles capable of colitis tissue-targeted delivery and site-specific drug release may offer a unique and therapeutically effective system that addresses these formidable challenges. We used a versatile single-step surface-functionalising technique to prepare PLGA/PLA-PEG-FA nanoparticles loaded with the ginger active compound, 6-shogaol [NPs-PEG-FA/6-shogaol]. The therapeutic efficacy of NPs-PEG-FA/6-shogaol was evaluated in the well-established mouse model of dextran sulphate sodium [DSS]-induced colitis. NPs-PEG-FA exhibited very good biocompatibility both in vitro and in vivo. Subsequent cellular uptake experiments demonstrated that NPs-PEG-FA could undergo efficient receptor-mediated uptake by colon-26 cells and activated Raw 264.7 macrophage cells. In vivo, oral administration of NPs-PEG-FA/6-shogaol encapsulated in a hydrogel system [chitosan/alginate] significantly alleviated colitis symptoms and accelerated colitis wound repair in DSS-treated mice by regulating the expression levels of pro-inflammatory [TNF-α, IL-6, IL-1β, and iNOS] and anti-inflammatory [Nrf-2 and HO-1] factors. Our study demonstrates a convenient, orally administered 6-shogaol drug delivery system that effectively targets colitis tissue, alleviates colitis symptoms, and accelerates colitis wound repair. This system may represent a promising therapeutic approach for treating inflammatory bowel disease [IBD]. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  15. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example

    PubMed Central

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F.; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C.

    2017-01-01

    Background Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Objective Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Methods Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson’s disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Results Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Conclusion Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation. PMID:28441410

  16. Transport and fate of Herbaspirillum chlorophenolicum FA1 in saturated porous media

    NASA Astrophysics Data System (ADS)

    Li, X.; Xu, H.; Wu, J.

    2016-12-01

    For the bioremediation of contaminated groundwater, sufficient dispersal of functional microorganisms is one of the most important factors that determine the remediation efficiency. There are extensive studies on the transport of microbes in porous media, while most of them focus on pathogenic bacteria and little attention has been given toward functional bacteria that being used in bioremediation process. Therefore, accurate knowledge of the mechanisms that govern the transport and distribution of such bacteria in groundwater is needed to develop efficient treatment techniques. Herbaspirillum chlorophenolicum FA1, a pure bacterial strain capable of absorbing heavy metals and degrading polycyclic aromatic hydrocarbons (PAHs), was selected as the representative functional bacterium in this study. A series of batch and column experiments were conducted to investigate the transport and deposition behavior of strain FA1 in saturated porous media. The effects of physical (grain size), chemical (ionic strength, humic acid), and biological factors (living/dead cells) were studied in detail. In addition, numerical simulations of breakthrough curve (BTC) data were also performed for information gathering. Results of this study could advance our understanding of functional bacteria transport and help to develop successful bioremediation strategies. This work was financially supported by the National Natural Science Foundation of China -Xinjiang Project (U1503282), the National Natural Science Foundation of China (41030746, 41102148), and the Natural Science Foundation of Jiangsu Province (BK20151385). Keywords: Herbaspirillum chlorophenolicum FA1, bacteria, porous media, transport, modeling

  17. The cost of changing physical activity behaviour: evidence from a "physical activity pathway" in the primary care setting

    PubMed Central

    2011-01-01

    Background The 'Physical Activity Care Pathway' (a Pilot for the 'Let's Get Moving' policy) is a systematic approach to integrating physical activity promotion into the primary care setting. It combines several methods reported to support behavioural change, including brief interventions, motivational interviewing, goal setting, providing written resources, and follow-up support. This paper compares costs falling on the UK National Health Service (NHS) of implementing the care pathway using two different recruitment strategies and provides initial insights into the cost of changing physical activity behaviour. Methods A combination of a time driven variant of activity based costing, audit data through EMIS and a survey of practice managers provided patient-level cost data for 411 screened individuals. Self reported physical activity data of 70 people completing the care pathway at three month was compared with baseline using a regression based 'difference in differences' approach. Deterministic and probabilistic sensitivity analyses in combination with hypothesis testing were used to judge how robust findings are to key assumptions and to assess the uncertainty around estimates of the cost of changing physical activity behaviour. Results It cost £53 (SD 7.8) per patient completing the PACP in opportunistic centres and £191 (SD 39) at disease register sites. The completer rate was higher in disease register centres (27.3% vs. 16.2%) and the difference in differences in time spent on physical activity was 81.32 (SE 17.16) minutes/week in patients completing the PACP; so that the incremental cost of converting one sedentary adult to an 'active state' of 150 minutes of moderate intensity physical activity per week amounts to £ 886.50 in disease register practices, compared to opportunistic screening. Conclusions Disease register screening is more costly than opportunistic patient recruitment. However, additional costs come with a higher completion rate and better

  18. Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Meixiao; Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Jinan University, Zhuhai; Sun, Xiaohan

    The ubiquitin-specific protease Usp7 plays roles in multiple cellular processes through deubiquitinating and stabilizing numerous substrates, including P53, Pten and Gli. Aberrant Usp7 activity has been implicated in many disorders and tumorigenesis, making it as a potential target for therapeutic intervention. Although it is clear that Usp7 is involved in many types of cancer, its role in regulating medulloblastoma (MB) is still unknown. In this study, we show that knockdown of Usp7 inhibits the proliferation and migration of MB cells, while Usp7 overexpression exerts an opposite effect. Furthermore, we establish Usp7 knockout MB cell line using the CRISPR/Cas9 system andmore » further confirm that Usp7 knockout also blocks MB cell proliferation and metastasis. In addition, we reveal that knockdown of Usp7 compromises Shh pathway activity and decrease Gli protein levels, while P53 level and P53 target gene expression have no obvious changes. Finally, we find that Usp7 inhibitors apparently inhibit MB cell viability and migration. Taken together, our findings suggest that Usp7 is important for MB cell proliferation and metastasis by activating Shh pathway, and is a putative therapeutic target for MBs. - Highlights: • Loss of usp7 blocks the proliferation and metastasis of MB cells. • Usp7 regulates MB cell growth and migration through stimulating Shh pathway. • Usp7 inhibitors hamper MB cell proliferation and migration. • Usp7 inhibitors could attenuate Shh pathway activity.« less

  19. The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening

    PubMed Central

    García-Gago, Juan A; Posé, Sara; Muñoz-Blanco, Juan; Quesada, Miguel A

    2009-01-01

    The loss of firm texture is one of the most characteristic physiological processes that occur during the ripening of fleshy fruits. It is generally accepted that the disassembly of primary cell wall and middle lamella is the main factor involved in fruit softening. In this process, polygalacturonase (PG) has been implicated in the degradation of the polyuronide network in several fruits. However, the minor effect of PG downregulation on tomato softening, reported during the nineties, minimized the role of this enzyme in softening. Further works in other fruits are challenging this general assumption, as is occurring in strawberry. The strawberry (Fragaria × ananassa) fruit undergoes an extensive and fast softening that limit its shelf life and postharvest. Traditionally, it has also been considered that PG plays a minor role on this process, due to the low PG activity found in ripened strawberry fruits. Transgenic strawberry plants expressing an antisense sequence of the ripening-specific PG gene FaPG1 have been generated to get an insight into the role of this gene in softening. Half of the transgenic lines analyzed yielded fruits significantly firmer than control, without being affected other fruit parameters such as weight, color or soluble solids. The increase on firmness was maintained after several days of posharvest. In these firmer lines, FaPG1 was silenced to 95%, but total PG activity was only minor reduced. At the cell wall level, transgenic fruits contained a higher amount of covalently bound pectins whereas the soluble fraction was diminished. A microarray analysis of genes expressed in ripened receptacle did not show any significant change between control and transgenic fruits. Thus, contrary to the most accepted view, it is concluded that PG plays a key role on pectin metabolism and softening of strawberry fruit. PMID:19820312

  20. The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening.

    PubMed

    García-Gago, Juan A; Posé, Sara; Muñoz-Blanco, Juan; Quesada, Miguel A; Mercado, José A

    2009-08-01

    The loss of firm texture is one of the most characteristic physiological processes that occur during the ripening of fleshy fruits. It is generally accepted that the disassembly of primary cell wall and middle lamella is the main factor involved in fruit softening. In this process, polygalacturonase (PG) has been implicated in the degradation of the polyuronide network in several fruits. However, the minor effect of PG downregulation on tomato softening, reported during the nineties, minimized the role of this enzyme in softening. Further works in other fruits are challenging this general assumption, as is occurring in strawberry. The strawberry (Fragaria x ananassa) fruit undergoes an extensive and fast softening that limit its shelf life and postharvest. Traditionally, it has also been considered that PG plays a minor role on this process, due to the low PG activity found in ripened strawberry fruits. Transgenic strawberry plants expressing an antisense sequence of the ripening-specific PG gene FaPG1 have been generated to get an insight into the role of this gene in softening. Half of the transgenic lines analyzed yielded fruits significantly firmer than control, without being affected other fruit parameters such as weight, color or soluble solids. The increase on firmness was maintained after several days of posharvest. In these firmer lines, FaPG1 was silenced to 95%, but total PG activity was only minor reduced. At the cell wall level, transgenic fruits contained a higher amount of covalently bound pectins whereas the soluble fraction was diminished. A microarray analysis of genes expressed in ripened receptacle did not show any significant change between control and transgenic fruits. Thus, contrary to the most accepted view, it is concluded that PG plays a key role on pectin metabolism and softening of strawberry fruit.

  1. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    PubMed

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  2. Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes.

    PubMed

    Srivastava, Anubhav; Evans, Krystal J; Sexton, Anna E; Schofield, Louis; Creek, Darren J

    2017-04-07

    A detailed analysis of the metabolic state of human-stem-cell-derived erythrocytes allowed us to characterize the existence of active metabolic pathways in younger reticulocytes and compare them to mature erythrocytes. Using high-resolution LC-MS-based untargeted metabolomics, we found that reticulocytes had a comparatively much richer repertoire of metabolites, which spanned a range of metabolite classes. An untargeted metabolomics analysis using stable-isotope-labeled glucose showed that only glycolysis and the pentose phosphate pathway actively contributed to the biosynthesis of metabolites in erythrocytes, and these pathways were upregulated in reticulocytes. Most metabolite species found to be enriched in reticulocytes were residual pools of metabolites produced by earlier erythropoietic processes, and their systematic depletion in mature erythrocytes aligns with the simplification process, which is also seen at the cellular and the structural level. Our work shows that high-resolution LC-MS-based untargeted metabolomics provides a global coverage of the biochemical species that are present in erythrocytes. However, the incorporation of stable isotope labeling provides a more accurate description of the active metabolic processes that occur in each developmental stage. To our knowledge, this is the first detailed characterization of the active metabolic pathways of the erythroid lineage, and it provides a rich database for understanding the physiology of the maturation of reticulocytes into mature erythrocytes.

  3. Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway1[S

    PubMed Central

    Latham Birt, Sally H.; Purcell, Robert; Botham, Kathleen M.; Wheeler-Jones, Caroline P. D.

    2016-01-01

    Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs—artificial TG-rich CMR-like particles (A-CRLPs)—containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction. PMID:27185859

  4. Non-specific adsorption of complement proteins affects complement activation pathways of gold nanomaterials.

    PubMed

    Quach, Quang Huy; Kah, James Chen Yong

    2017-04-01

    The complement system is a key humoral component of innate immunity, serving as the first line of defense against intruders, including foreign synthetic nanomaterials. Although gold nanomaterials (AuNMs) are widely used in nanomedicine, their immunological response is not well understood. Using AuNMs of three shapes commonly used in biomedical applications: spherical gold nanoparticles, gold nanostars and gold nanorods, we demonstrated that AuNMs activated whole complement system, leading to the formation of SC5b-9 complex. All three complement pathways were simultaneously activated by all the AuNMs. Recognition molecules of the complement system interacted with all AuNMs in vitro, except for l-ficolin, but the correlation between these interactions and corresponding complement pathway activation was only observed in the classical and alternative pathways. We also observed the mediating role of complement activation in cellular uptake of all AuNMs by human U937 promonocytic cells, which expresses complement receptors. Taken together, our results highlighted the potential immunological challenges for clinical applications of AuNMs that were often overlooked.

  5. Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway.

    PubMed

    Mascuch, Samantha J; Boudreau, Paul D; Carland, Tristan M; Pierce, N Tessa; Olson, Joshua; Hensler, Mary E; Choi, Hyukjae; Campanale, Joseph; Hamdoun, Amro; Nizet, Victor; Gerwick, William H; Gaasterland, Teresa; Gerwick, Lena

    2018-03-23

    The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway. Activation of this pathway by honaucin A in cultured human MCF7 cells was confirmed using an Nrf2 luciferase reporter assay. In vitro alkylation experiments with the natural product and N-acetyl-l-cysteine suggest that honaucin A activates this pathway through covalent interaction with the sulfhydryl residues of the cytosolic repressor protein Keap1. Honaucin A presents a potential therapeutic lead for diseases with an inflammatory component modulated by Nrf2-ARE.

  6. East façade, Burton Park Club House, with Amphitheater in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East façade, Burton Park Club House, with Amphitheater in foreground, view to north from Amphitheater stage (90 mm lens). - Burton Park, Club House & Amphitheater, Adjacent ot south end of Chestnut Avenue, San Carlos, San Mateo County, CA

  7. Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series

    PubMed Central

    Shao, Ying-Hui; Gu, Gao-Feng; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Sornette, Didier

    2012-01-01

    Notwithstanding the significant efforts to develop estimators of long-range correlations (LRC) and to compare their performance, no clear consensus exists on what is the best method and under which conditions. In addition, synthetic tests suggest that the performance of LRC estimators varies when using different generators of LRC time series. Here, we compare the performances of four estimators [Fluctuation Analysis (FA), Detrended Fluctuation Analysis (DFA), Backward Detrending Moving Average (BDMA), and Centred Detrending Moving Average (CDMA)]. We use three different generators [Fractional Gaussian Noises, and two ways of generating Fractional Brownian Motions]. We find that CDMA has the best performance and DFA is only slightly worse in some situations, while FA performs the worst. In addition, CDMA and DFA are less sensitive to the scaling range than FA. Hence, CDMA and DFA remain “The Methods of Choice” in determining the Hurst index of time series. PMID:23150785

  8. Measuring X-ray anisotropy in solar flares. Prospective stereoscopic capabilities of STIX and MiSolFA

    NASA Astrophysics Data System (ADS)

    Casadei, Diego; Jeffrey, Natasha L. S.; Kontar, Eduard P.

    2017-09-01

    Context. During a solar flare, a large percentage of the magnetic energy released goes into the kinetic energy of non-thermal particles, with X-ray observations providing a direct connection to keV flare-accelerated electrons. However, the electron angular distribution, a prime diagnostic tool of the acceleration mechanism and transport, is poorly known. Aims: During the next solar maximum, two upcoming space-borne X-ray missions, STIX on board Solar Orbiter and MiSolFA, will perform stereoscopic X-ray observations of solar flares at two different locations: STIX at 0.28 AU (at perihelion) and up to inclinations of 25°, and MiSolFA in a low-Earth orbit. The combined observations from these cross-calibrated detectors will allow us to infer the electron anisotropy of individual flares confidently for the first time. Methods: We simulated both instrumental and physical effects for STIX and MiSolFA including thermal shielding, background and X-ray Compton backscattering (albedo effect) in the solar photosphere. We predict the expected number of observable flares available for stereoscopic measurements during the next solar maximum. We also discuss the range of useful spacecraft observation angles for the challenging case of close-to-isotropic flare anisotropy. Results: The simulated results show that STIX and MiSolFA will be capable of detecting low levels of flare anisotropy, for M1-class or stronger flares, even with a relatively small spacecraft angular separation of 20-30°. Both instruments will directly measure the flare X-ray anisotropy of about 40 M- and X-class solar flares during the next solar maximum. Conclusions: Near-future stereoscopic observations with Solar Orbiter/STIX and MiSolFA will help distinguishing between competing flare-acceleration mechanisms, and provide essential constraints regarding collisional and non-collisional transport processes occurring in the flaring atmosphere for individual solar flares.

  9. Behavioural and biochemical responses following activation of midbrain dopamine pathways by receptor selective neurokinin agonists.

    PubMed

    Elliott, P J; Mason, G S; Stephens-Smith, M; Hagan, R M

    1991-06-01

    Preferential activation of mesolimbic and nigro-striatal dopamine (DA) pathways by receptor-selective and peptidase-resistant neurokinin (NK) agonists is reported. The DA cell body region of the mesolimbic pathway appears to be activated by NK agonists selective for NK-1 and NK-3 receptors whereas the DA cell bodies in the substantia nigra are under an excitatory NK-2 receptor-mediated influence. Stimulation of the mesolimbic DA pathway by NK-1 (Ava[L-Pro9,N-Me-Leu10]SP (7-11) [GR73632]) or NK-3 (Senktide) agonists increase locomotor activity. Additional studies showed that this elevated motor response observed after intra-VTA infusion of GR73632 was accompanied by a corresponding increase in DA turnover in the terminal fields of this pathway. Similarly, unilateral activation of the nigro-striatal DA pathway by NK-2 selective agonists (Ava (D-Pro9) SP (7-11) [GR51667] or [Lys3,Gly8,R-Lac-Leu9]NKA (3-10) [GR64349]) elicit contralateral rotational activity and an increase in DA turnover in the ipsilateral striatum. The rotational response was attenuated by prior administration of an NK-2 antagonist (cyclo (Gln, Trp, Phe, Gly, Leu, Met)] L-659877]) into the nigra. Peripheral injection of haloperidol, a DA antagonist, also blocked the NK-2 agonist induced rotations.

  10. F/A-18 and F-16 forebody vortex control, static and rotary-balance results

    NASA Technical Reports Server (NTRS)

    Kramer, Brian; Smith, Brooke

    1994-01-01

    The results from research on forebody vortex control on both the F/A-18 and the F-16 aircraft will be shown. Several methods of forebody vortex control, including mechanical and pneumatic schemes, will be discussed. The wind tunnel data includes both static and rotary balance data for forebody vortex control. Time lags between activation or deactivation of the pneumatic control and when the aircraft experiences the resultant forces are also discussed. The static (non-rotating) forces and pressures are then compared to similar configurations tested in the NASA Langley and DTRC Wind Tunnel, the NASA Ames 80'x120' Wind Tunnel, and in flight on the High Angle of Attack Research Vehicle (HARV).

  11. Activation of the MAPK/ERK Cell-Signaling Pathway in Uterine Smooth Muscle Cells of Women With Adenomyosis.

    PubMed

    Streuli, Isabelle; Santulli, Pietro; Chouzenoux, Sandrine; Chapron, Charles; Batteux, Frédéric

    2015-12-01

    We investigated whether the myometrium might be intrinsically different in women with adenomyosis. We studied whether the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPKs/ERKs) and phosphoinositide 3-kinase/mammalian target of rapamycin/AKT (PI3K/mTOR/AKT) cell-signaling pathways, implicated in the pathogenesis of endometriosis, might also be activated in uterine smooth muscle cells (uSMCs) of women with adenomyosis and measured the production of reactive oxygen species (ROS), proinflammatory mediators that modulate cell proliferation and have been shown to activate the MAPK/ERK pathway in endometriosis. The uSMC cultures were derived from myometrium biopsies obtained during hysterectomy or myomectomy in women with adenomyosis and controls with leiomyoma. Proliferation of uSMCs and in vitro activation of the MAPK/ERK cell-signaling pathway were increased in women with adenomyosis compared to controls. The activation of the PI3K/mTOR/AKT pathway was not significant. The ROS production and ROS detoxification pathways were not different between uSMCs of women with adenomyosis and controls suggesting an ROS-independent activation of the MAPK/ERK pathway. Our results also provide evidence that protein kinase inhibitors and the rapanalogue temsirolimus can control proliferation of uSMCs in vitro suggesting an implication of the MAPK/ERK and the PI3K/mTOR/AKT pathways in proliferation of uSMCs in women with adenomyosis and leiomyomas. © The Author(s) 2015.

  12. Exterior building details of Building C, east façade: brick quoins, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, east façade: brick quoins, brick lintels, brick window sills, decorative metal grilles, scored cement finished brick wall; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  13. Exterior building details of Building C, west façade: second floor: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, west façade: second floor: four-over-four windows, arch brick lintels, brick sills, decorative metal grilles; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  14. Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China?

    PubMed

    Roney, Britton R; Renhui, Li; Banack, Sandra Anne; Murch, Susan; Honegger, Rosmarie; Cox, Paul Alan

    2009-01-01

    Grown in arid regions of western China the cyanobacterium Nostoc flagelliforme--called fa cai in Mandarin and fat choy in Cantonese--is wild-harvested and used to make soup consumed during New Year's celebrations. High prices, up to $125 USD/kg, led to overharvesting in Inner Mongolia, Ningxia, Gansu, Qinghai, and Xinjiang. Degradation of arid ecosystems, desertification, and conflicts between Nostoc harvesters and Mongol herdsmen concerned the Chinese environmental authorities, leading to a government ban of Nostoc commerce. This ban stimulated increased marketing of a substitute made from starch. We analysed samples purchased throughout China as well as in Chinese markets in the United States and the United Kingdom. Some were counterfeits consisting of dyed starch noodles. A few samples from California contained Nostoc flagelliforme but were adulterated with starch noodles. Other samples, including those from the United Kingdom, consisted of pure Nostoc flagelliforme. A recent survey of markets in Cheng Du showed no real Nostoc flagelliforme to be marketed. Real and artificial fa cai differ in the presence of beta-N-methylamino-L-alanine (BMAA). Given its status as a high-priced luxury food, the government ban on collection and marketing, and the replacement of real fa cai with starch substitutes consumed only on special occasions, it is anticipated that dietary exposure to BMAA from fa cai will be reduced in the future in China.

  15. Water-tunnel study results of a TF/A-18 and F/A-18 canopy flow visualization

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.; Fisher, David F.

    1990-01-01

    A water tunnel study examining the influence of canopy shape on canopy and leading edge extension flow patterns was initiated. The F/A-18 single-place canopy model and the TF/A-18 two place canopy model were the study subjects. Plan view and side view photographs showing the flow patterns created by injected colored dye are presented for 0 deg and 5 deg sideslip angles. Photographs taken at angle of attack and sideslip conditions correspond to test departure points found in flight test. Flight experience has shown that the TF/A-18 airplane departs in regions where the F/A-18 airplane is departure-resistant. The study results provide insight into the differences in flow patterns which may influence the resulting aerodynamics of the TF/A-18 and F/A-18 aircraft. It was found that at 0 deg sideslip, the TF/A-18 model has more downward flow on the sides of the canopy than the F/A-18 model. This could be indicative of flow from the leading edge extension (LEX) vortexes impinging on the sides of the wider TF/A-18 canopy. In addition, the TF/A-18 model has larger areas of asymmetric separated and unsteady flow on the LEXs and fuselage, possibly indicating a lateral and directional destabilizing effect at the conditions studied.

  16. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δmore » enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.« less

  17. Overexpression of the Transcription Factor Sp1 Activates the OAS-RNAse L-RIG-I Pathway

    PubMed Central

    Dupuis-Maurin, Valéryane; Brinza, Lilia; Baguet, Joël; Plantamura, Emilie; Schicklin, Stéphane; Chambion, Solène; Macari, Claire; Tomkowiak, Martine; Deniaud, Emmanuelle; Leverrier, Yann

    2015-01-01

    Deregulated expression of oncogenes or transcription factors such as specificity protein 1 (Sp1) is observed in many human cancers and plays a role in tumor maintenance. Paradoxically in untransformed cells, Sp1 overexpression induces late apoptosis but the early intrinsic response is poorly characterized. In the present work, we studied increased Sp1 level consequences in untransformed cells and showed that it turns on an early innate immune transcriptome. Sp1 overexpression does not activate known cellular stress pathways such as DNA damage response or endoplasmic reticulum stress, but induces the activation of the OAS-RNase L pathway and the generation of small self-RNAs, leading to the upregulation of genes of the antiviral RIG-I pathway at the transcriptional and translational levels. Finally, Sp1-induced intrinsic innate immune response leads to the production of the chemokine CXCL4 and to the recruitment of inflammatory cells in vitro and in vivo. Altogether our results showed that increased Sp1 level in untransformed cells constitutes a novel danger signal sensed by the OAS-RNase L axis leading to the activation of the RIG-I pathway. These results suggested that the OAS-RNase L-RIG-I pathway may be activated in sterile condition in absence of pathogen. PMID:25738304

  18. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    NASA Astrophysics Data System (ADS)

    Hudişteanu, Sebastian Valeriu; Popovici, Cătălin George; Cherecheş, Nelu-Cristian

    2018-02-01

    The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30). The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF) and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  19. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia.

    PubMed

    Brose, Stephen A; Golovko, Svetlana A; Golovko, Mikhail Y

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke.

  20. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    PubMed Central

    Brose, Stephen A.; Golovko, Svetlana A.; Golovko, Mikhail Y.

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke. PMID:27965531

  1. Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    El-Deab, Mohamed S.; El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Anadouli, Bahgat E.

    2015-07-01

    The current study addresses, for the first time, the enhanced direct electro-oxidation of formic acid (FA) at platinum-nanoparticles modified glassy carbon (nano-Pt/GC) electrode in the presence of methanol (MeOH) as a blending fuel. This enhancement is probed by: (i) the increase of the direct oxidation current of FA to CO2 (Ipd, dehydrogenation pathway), (ii) suppressing the dehydration pathway (Ipind, producing the poisoning intermediate CO) and (iii) a favorable negative shift of the onset potential of Ipd with increasing the mole fraction of MeOH in the blend. Furthermore, the charge of the direct FA oxidation in 0.3 M FA + 0.3 M MeOH blend is by 14 and 21times higher than that observed for 0.3 M FA and 0.3 M MeOH, respectively. MeOH is believed to adsorb at the Pt surface sites and thus disfavor the "non-faradaic" dissociation of FA (which produces the poisoning CO intermediate), i.e., MeOH induces a high CO tolerance of the Pt catalyst. The enhanced oxidation activity indicates that FA/MeOH blend is a promising fuel system.

  2. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis.

    PubMed

    Horal, Melissa; Zhang, Zhiquan; Stanton, Robert; Virkamäki, Antti; Loeken, Mary R

    2004-08-01

    Oxidative stress is critical to the teratogenic effects of diabetic pregnancy, yet the specific biochemical pathways responsible for oxidative stress have not been fully elucidated. The hexosamine pathway is activated in many tissues during diabetes and could contribute to oxidative stress by inhibiting the pentose shunt pathway, thereby diminishing production of the cellular antioxidant, reduced glutathione (GSH). To test the hypothesis that activation of the hexosamine pathway might contribute to the teratogenic effects of diabetic pregnancy, pregnant mice were injected with glucose, to induce hyperglycemia, or glucosamine, to directly activate the hexosamine pathway. Embryo tissue fragments were also cultured in physiological glucose, high glucose, or physiological glucose plus glucosamine, to test effects on oxidative stress and embryo gene expression. Glucosamine increased hexosamine synthesis and inhibited pentose shunt activity. There was a trend for transient hyperglycemia to have the same effects, but they did not reach statistical significance. However, both glucose and glucosamine significantly decreased GSH, and increased oxidative stress, as indicated by 2',7'-dichloro-dihydrofluorescein fluorescence. Glucose and glucosamine inhibited expression of Pax-3, a gene required for neural tube closure both in vivo and in vitro, and increased neural tube defects (NTDs) in vivo; these effects were prevented by GSH ethyl ester. High glucose and glucosamine inhibited Pax-3 expression by embryo culture, but culture in glutamine-free media to block the hexosamine pathway prevented the inhibition of Pax-3 expression by high glucose. Activation of the hexosamine pathway causes oxidative stress through depletion of GSH and consequent disruption of embryo gene expression. Activation of this pathway may contribute to diabetic teratogenesis.

  3. Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Pi, Jiang; Yang, Fen; Jiang, Jinhuan; Wang, Xiaoping; Bai, Haihua; Shao, Mingtao; Huang, Lei; Zhu, Haiyan; Yang, Peihui; Li, Lihua; Li, Ting; Cai, Jiye; Chen, Zheng W.

    2016-07-01

    Ursolic acid (UA) has proved to have broad-spectrum anti-tumor effects, but its poor water solubility and incompetent targeting property largely limit its clinical application and efficiency. Here, we synthesized a nanoparticle-based drug carrier composed of chitosan, UA and folate (FA-CS-UA-NPs) and demonstrated that FA-CS-UA-NPs could effectively diminish off-target effects and increase local drug concentrations of UA. Using MCF-7 cells as in vitro model for anti-cancer mechanistic studies, we found that FA-CS-UA-NPs could be easily internalized by cancer cells through a folate receptor-mediated endocytic pathway. FA-CS-UA-NPs entered into lysosome, destructed the permeability of lysosomal membrane, and then got released from lysosomes. Subsequently, FA-CS-UA-NPs localized into mitochondria but not nuclei. The prolonged retention of FA-CS-UA-NPs in mitochondria induced overproduction of ROS and destruction of mitochondrial membrane potential, and resulted in the irreversible apoptosis in cancer cells. In vivo experiments showed that FA-CS-UA-NPs could significantly reduce breast cancer burden in MCF-7 xenograft mouse model. These results suggested that FA-CS-UA-NPs could further be explored as an anti-cancer drug candidate and that our approach might provide a platform to develop novel anti-cancer drug delivery system.

  4. A role for NRAGE in NF-κB activation through the non-canonical BMP pathway

    PubMed Central

    2010-01-01

    Background Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the XIAP-Tak1-Tab1 complex. Its effect on NF-κB has yet to be explored. Results Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation of IKK -α/β and subsequent transcriptional activation of the p65 subunit of NF-κB. Ablation of endogenous NRAGE by siRNA inhibited NF-κB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited overexpression of NRAGE from activating NF-κB. Finally, cytokine profiling of an NRAGE over-expressing stable line revealed the expression of macrophage migration inhibitory factor. Conclusion Modulation of NRAGE expression revealed novel roles in regulating NF-κB activity in the non-canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental pathway. PMID:20100315

  5. Effector T cells require fatty acid metabolism during murine graft-versus-host disease

    PubMed Central

    Byersdorfer, Craig A.; Tkachev, Victor; Opipari, Anthony W.; Goodell, Stefanie; Swanson, Jacob; Sandquist, Stacy; Glick, Gary D.; Ferrara, James L. M.

    2013-01-01

    Activated T cells require increased energy to proliferate and mediate effector functions, but the metabolic changes that occur in T cells following stimulation in vivo are poorly understood, particularly in the context of inflammation. We have previously shown that T cells activated during graft-versus-host disease (GVHD) primarily rely on oxidative phosphorylation to synthesize adenosine 5′-triphosphate. Here, we demonstrate that alloreactive effector T cells (Teff) use fatty acids (FAs) as a fuel source to support their in vivo activation. Alloreactive T cells increased FA transport, elevated levels of FA oxidation enzymes, up-regulated transcriptional coactivators to drive oxidative metabolism, and increased their rates of FA oxidation. Importantly, increases in FA transport and up-regulation of FA oxidation machinery occurred specifically in T cells during GVHD and were not seen in Teff following acute activation. Pharmacological blockade of FA oxidation decreased the survival of alloreactive T cells but did not influence the survival of T cells during normal immune reconstitution. These studies suggest that pathways controlling FA metabolism might serve as therapeutic targets to treat GVHD and other T-cell–mediated immune diseases. PMID:24046012

  6. Iro/IRX transcription factors negatively regulate Dpp/TGF-β pathway activity during intestinal tumorigenesis.

    PubMed

    Martorell, Òscar; Barriga, Francisco M; Merlos-Suárez, Anna; Stephan-Otto Attolini, Camille; Casanova, Jordi; Batlle, Eduard; Sancho, Elena; Casali, Andreu

    2014-11-01

    Activating mutations in Wnt and EGFR/Ras signaling pathways are common in colorectal cancer (CRC). Remarkably, clonal co-activation of these pathways in the adult Drosophila midgut induces "tumor-like" overgrowths. Here, we show that, in these clones and in CRC cell lines, Dpp/TGF-β acts as a tumor suppressor. Moreover, we discover that the Iroquois/IRX-family-protein Mirror downregulates the transcription of core components of the Dpp pathway, reducing its tumor suppressor activity. We also show that this genetic interaction is conserved in human CRC cells, where the Iro/IRX proteins IRX3 and IRX5 diminish the response to TGF-β. IRX3 and IRX5 are upregulated in human adenomas, and their levels correlate inversely with the gene expression signature of response to TGF-β. In addition, Irx5 expression confers a growth advantage in the presence of TGF-β, but is selected against in its absence. Together, our results identify a set of Iro/IRX proteins as conserved negative regulators of Dpp/TGF-β activity. We propose that during the characteristic adenoma-to-carcinoma transition of human CRC, the activity of IRX proteins could reduce the sensitivity to the cytostatic effect of TGF-β, conferring a growth advantage to tumor cells prior to the acquisition of mutations in TGF-β pathway components. © 2014 The Authors.

  7. Pathways of the inferior frontal occipital fasciculus in overt speech and reading.

    PubMed

    Rollans, Claire; Cheema, Kulpreet; Georgiou, George K; Cummine, Jacqueline

    2017-11-19

    In this study, we examined the relationship between tractography-based measures of white matter integrity (ex. fractional anisotropy [FA]) from diffusion tensor imaging (DTI) and five reading-related tasks, including rapid automatized naming (RAN) of letters, digits, and objects, and reading of real words and nonwords. Twenty university students with no reported history of reading difficulties were tested on all five tasks and their performance was correlated with diffusion measures extracted through DTI tractography. A secondary analysis using whole-brain Tract-Based Spatial Statistics (TBSS) was also used to find clusters showing significant negative correlations between reaction time and FA. Results showed a significant relationship between the left inferior fronto-occipital fasciculus FA and performance on the RAN of objects task, as well as a strong relationship to nonword reading, which suggests a role for this tract in slower, non-automatic and/or resource-demanding speech tasks. There were no significant relationships between FA and the faster, more automatic speech tasks (RAN of letters and digits, and real word reading). These findings provide evidence for the role of the inferior fronto-occipital fasciculus in tasks that are highly demanding of orthography-phonology translation (e.g., nonword reading) and semantic processing (e.g., RAN object). This demonstrates the importance of the inferior fronto-occipital fasciculus in basic naming and suggests that this tract may be a sensitive predictor of rapid naming performance within the typical population. We discuss the findings in the context of current models of reading and speech production to further characterize the white matter pathways associated with basic reading processes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Exterior building details of Building C, south façade: second floor" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, south façade: second floor" four-over-four windows, arch brick lintels, brick sills, decorative metal grilles and tiebacks; northwesterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  9. Exterior building details of Building B, west façade: road level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building B, west façade: road level four-over-four double-hung painted-wood windows with brick sill and arch brick lintels; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  10. NADPH Oxidase Signaling Pathway Mediates Mesenchymal Stem Cell-Induced Inhibition of Hepatic Stellate Cell Activation.

    PubMed

    Qiao, Haowen; Zhou, Yu; Qin, Xingping; Cheng, Jing; He, Yun; Jiang, Yugang

    2018-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have blossomed into an effective approach with great potential for the treatment of liver fibrosis. The aim of this study was to investigate the underlying antifibrosis mechanisms by which the BMSC inhibit activated hepatic stellate cells (HSCs) in vivo and in vitro. To study the effect of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) on activated HSCs, we used HSCs and the coculture systems to evaluate the inhibition of activated HSCs from the aspects of the apoptosis of activated HSCs. In addition, activation of NADPH oxidase pathway and the changes in liver histopathology were tested by using the carbon tetrachloride- (CCl 4 -) induced liver fibrosis in mice. Introduction of hBM-MSCs significantly inhibited the proliferation of activated HSCs by inducing the apoptosis process of activated HSCs. The effect of hBM-MSCs reduced the signaling pathway of NADPH oxidase in activated HSCs. Besides, the signaling pathway of NADPH oxidase mediated hBM-MSC upregulation of the expression of the peroxisome proliferator-activated receptor γ and downregulation of the expression of α 1(I) collagen and alpha-smooth muscle actin ( α -SMA) in activated HSCs. Moreover, the hBM-MSC-induced decrease in the signaling pathway of NADPH oxidase was accompanied by the decrease of the activated HSC number and liver fibrosis in a mouse model of CCl 4 -induced liver fibrosis. The hBM-MSCs act as a promising drug source against liver fibrosis development with respect to hepatopathy as a therapeutic target.

  11. F/A-18 1/9th scale model tail buffet measurements

    NASA Technical Reports Server (NTRS)

    Martin, C. A.; Glaister, M. K.; Maclaren, L. D.; Meyn, L. A.; Ross, J.

    1991-01-01

    Wind tunnel tests were carried out on a 1/9th scale model of the F/A-18 at high angles of attack to investigate the characteristics of tail buffet due to bursting of the wing leading edge extension (LEX) vortices. The tests were carried out at the Aeronautical Research Laboratory low-speed wind tunnel facility and form part of a collaborative activity with NASA Ames Research Center, organized by The Technical Cooperative Program (TTCP). Information from the program will be used in the planning of similar collaborative tests, to be carried out at NASA Ames, on a full-scale aircraft. The program covered the measurement of unsteady pressures and fin vibration for cases with and without the wing LEX fences fitted. Fourier transform methods were used to analyze the unsteady data, and information on the spatial and temporal content of the vortex burst pressure field was obtained. Flow visualization of the vortex behavior was carried out using smoke and a laser light sheet technique.

  12. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells.

    PubMed

    Senga, Shogo; Kobayashi, Narumi; Kawaguchi, Koichiro; Ando, Akira; Fujii, Hiroshi

    2018-06-12

    Fatty acid-binding proteins (FABPs) are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting them to the appropriate compartments in the cell. Epidermal fatty acid-binding protein (FABP5) is an intracellular lipid-binding protein that is abundantly expressed in adipocytes and macrophages. Previous studies have revealed that the FABP5 expression level is closely related to malignancy in various types of cancer. However, its precise functions in the metabolisms of cancer cells remain unclear. Here, we revealed that FABP5 knockdown significantly induced downregulation of the genes expression, such as hormone-sensitive lipase (HSL), monoacylglycerol lipase (MAGL), elongation of long-chain fatty acid member 6 (Elovl6), and acyl-CoA synthetase long-chain family member 1 (ACSL1), which are involved in altered lipid metabolism, lipolysis, and de novo FA synthesis in highly aggressive prostate and breast cancer cells. Moreover, we demonstrated that FABP5 induced inflammation and cytokine production through the nuclear factor-kappa B signaling pathway activated by reactive oxygen species and protein kinase C in PC-3 and MDA-MB-231 cells. Thus, FABP5 might regulate lipid quality and/or quantity to promote aggressiveness such as cell growth, invasiveness, survival, and inflammation in prostate and breast cancer cells. In the present study, we have revealed for the first time that high expression of FABP5 plays a critical role in alterations of lipid metabolism, leading to cancer development and metastasis in highly aggressive prostate and breast cancer cells. Copyright © 2018. Published by Elsevier B.V.

  13. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis

  14. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    PubMed

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  15. The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway

    PubMed Central

    Lin, Dong; De La Pena, Ike; Lin, Lili; Zhou, Shu-Feng; Borlongan, Cesar V.; Cao, Chuanhai

    2014-01-01

    Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway. PMID:24566146

  16. Activation of multiple pH-regulatory pathways in granulocytes by a phosphotyrosine phosphatase antagonist.

    PubMed Central

    Bianchini, L; Nanda, A; Wasan, S; Grinstein, S

    1994-01-01

    Activated phagocytes undergo a massive burst of metabolic acid generation, yet must be able to maintain their cytosolic pH (pHi) within physiological limits. Peroxides of vanadate (V(4+)-OOH), potent inhibitors of phosphotyrosine phosphatases, have recently been shown to produce activation of the respiratory burst in HL60 granulocytes. We therefore investigated the effects of V(4+)-OOH on pHi homoeostasis in HL60 granulocytes, using a pH-sensitive fluorescent dye. V(4+)-OOH stimulation induced a biphasic pH change: a transient cytosolic acidification followed by a significant alkalinization. The initial acidification was prevented by inhibition of the NADPH oxidase and was absent in undifferentiated cells lacking oxidase activity. Analysis of the alkalinization phase demonstrated the involvement of the Na+/H+ antiporter, and also provided evidence for activation of two alternative H(+)-extrusion pathways: a bafilomycin-sensitive component, likely reflecting vacuolar-type H(+)-ATPase activity, and a Zn(2+)-sensitive H(+)-conductive pathway. Our results indicate that V(4+)-OOH stimulation not only activated the NADPH oxidase but concomitantly stimulated H(+)-extrusion pathways, enabling the cells to compensate for the massive production of intracellular H+ associated with the respiratory burst. PMID:8043000

  17. Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells.

    PubMed

    Zhang, Tianshun; Yamamoto, Norio; Ashida, Hitoshi

    2014-06-01

    Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease. 4-Hydroxyderricin (4HD), xanthoangelol (XAG), cardamonin (CAR) and flavokawain B (FKB) are chalcones that have exhibited various biological effects against obesity, inflammation, and diabetes; however, little is known about the inhibitory effects of these chalcones on fatty liver disease. In the present study, we investigated the ability of 4HD, XAG, CAR, and FKB to reduce lipid accumulation in hepatocytes. When HepG2 cells were treated with a mixture of fatty acids (FAs; palmitic acid : oleic acid = 1 : 2 ratio), significant lipid accumulation was observed. Under the same experimental conditions, addition of chalcones at 5 μM significantly suppressed the FA-induced lipid accumulation. We found that the expression of sterol regulatory element-binding protein-1 (SREBP-1), a key molecule involved in lipogenesis, was decreased in these chalcone-treated cells. We also found that these chalcones increased the expression of peroxisome proliferator-activated receptor α (PPARα), which is involved in FA oxidation. Moreover, these chalcones increased phosphorylation of AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), upstream regulators of SREBP-1 and PPARα. We confirmed that an AMPK inhibitor, compound C, reversed chalcone-induced changes in SREBP-1 and PPARα expression in the HepG2 cells. Collectively, we found that 4HD, XAG, CAR, and XAG attenuated lipid accumulation through activation of the LKB1/AMPK signaling pathway in HepG2 cells.

  18. Exterior building details of Building A; east façade: profiled cement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; east façade: profiled cement plaster door surround, black mesh gate protects a two-light transom atop non-original metal door; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  19. Mixed compared with single-source proteins in high-protein diets affect kidney structure and function differentially in obese fa/fa Zucker rats.

    PubMed

    Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2017-02-01

    Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.

  20. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jian; Tan Juan; Zhang Xihui

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may bemore » responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription.« less

  1. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription.

    PubMed

    Wang, Jian; Tan, Juan; Zhang, Xihui; Guo, Hongyan; Zhang, Qicheng; Guo, Tingting; Geng, Yunqi; Qiao, Wentao

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may be responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription. Copyright 2010 Elsevier Inc. All rights reserved.

  2. View south; detail view of south façade at column A13 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south; detail view of south façade at column A13 - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  3. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    PubMed

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  4. Diffusion tensor imaging and MR spectroscopy of microstructural alterations and metabolite concentration changes in the auditory neural pathway of pediatric congenital sensorineural hearing loss patients.

    PubMed

    Wu, Chunxiao; Huang, Lexing; Tan, Hui; Wang, Yanting; Zheng, Hongyi; Kong, Lingmei; Zheng, Wenbin

    2016-05-15

    Our objective was to evaluate age-dependent changes in microstructure and metabolism in the auditory neural pathway, of children with profound sensorineural hearing loss (SNHL), and to differentiate between good and poor surgical outcome cochlear implantation (CI) patients by using diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS). Ninety-two SNHL children (49 males, 43 females; mean age, 4.9 years) were studied by conventional MR imaging, DTI and MRS. Patients were divided into three groups: Group A consisted of children≤1 years old (n=20), Group B consisted of children 1-3 years old (n=31), and group C consisted of children 3-14 years old (n=41). Among the 31 patients (19 males and 12 females, 12m- 14y ) with CI, 18 patients (mean age 4.8±0.7 years) with a categories of auditory performance (CAP) score over five were classified into the good outcome group and 13 patients (mean age, 4.4±0.7 years) with a CAP score below five were classified into the poor outcome group. Two DTI parameters, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), were measured in the superior temporal gyrus (STG) and auditory radiation. Regions of interest for metabolic change measurements were located inside the STG. DTI values were measured based on region-of-interest analysis and MRS values for correlation analysis with CAP scores. Compared with healthy individuals, 92 SNHL patients displayed decreased FA values in the auditory radiation and STG (p<0.05). Only decreased FA values in the auditory radiation was observed in Group A. Decreased FA values in the auditory radiation and STG were both observed in B and C groups. However, in Group C, the N-acetyl aspartate/creatinine ratio in the STG was also significantly decreased (p<0.05). Correlation analyses at 12 months post-operation revealed strong correlations between the FA, in the auditory radiation, and CAP scores (r=0.793, p<0.01). DTI and MRS can be used to evaluate microstructural

  5. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Bo; Yang Zhenhua; Shangguan Lei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after,more » or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.« less

  6. Increased biomagnetic activity in the ventral pathway in mild cognitive impairment.

    PubMed

    Maestú, F; Campo, P; Del Río, D; Moratti, S; Gil-Gregorio, P; Fernández, A; Capilla, A; Ortiz, T

    2008-06-01

    Mild cognitive impairment (MCI) patients represent an intermediary state between healthy aging and dementia. MCI activation profiles, recorded during a memory task, have been studied either through high spatial resolution or high temporal resolution techniques. However, little is known about the benefit of combining both dimensions. Here, we investigate, by means of magnetoencephalography (MEG), whether spatio-temporal profiles of neuromagnetic activity could differentiate between MCI and age-matched elderly participants. Taking the advantage of the high temporal resolution and good spatial resolution of MEG, neuromagnetic activity from 15 elderly MCI patients and 20 age-matched controls was recorded during the performance of a modified version of the Sternberg paradigm. Behavioral performance was similar in both groups. A between group analysis revealed that MCI patients showed bilateral higher activity in the ventral pathway, in both the target and the non-target stimuli. A within-group analysis of the target stimuli, indicates a lack of asymmetry through all late latency windows in both groups. MCI patients showed a compensatory mechanism represented by an increased bilateral activity of the ventral pathway in order to achieve a behavioral performance similar to the control group. This spatio-temporal pattern of activity could be another tool to differentiate between healthy aging and MCI patients.

  7. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa).

    PubMed

    Wang, Shufang; Song, Miaoyu; Guo, Jiaxuan; Huang, Yun; Zhang, Fangfang; Xu, Cheng; Xiao, Yinghui; Zhang, Lusheng

    2018-03-01

    Potassium (K + ), an abundant cation in plant cells, is important in fruit development and plant resistance. However, how cellular K + is directed by potassium channels in fruit development and quality formation of strawberry (Fragaria × ananassa) is not yet fully clear. Here, a two-pore K + (TPK) channel gene in strawberry, FaTPK1, was cloned using reverse transcription-PCR. A green fluorescent protein subcellular localization analysis showed that FaTPK1 localized in the vacuole membrane. A transcription analysis indicated that the mRNA expression level of FaTPK1 increased rapidly and was maintained at a high level in ripened fruit, which was coupled with the fruit's red colour development, suggesting that FaTPK1 is related to fruit quality formation. The down- and up-regulation of the FaTPK1 mRNA expression levels using RNA interference and overexpression, respectively, inhibited and promoted fruit ripening, respectively, as demonstrated by consistent changes in firmness and the contents of soluble sugars, anthocyanin and abscisic acid, as well as the transcript levels of ripening-regulated genes PG1 (polygalacturonase), GAL6 (beta-galactosidase), XYL2 (D-xylulose reductase), SUT1 (sucrose transporter), CHS (chalcone synthase) and CHI (chalcone flavanone isomerase). Additionally, the regulatory changes influenced fruit resistance to Botrytis cinerea. An isothermal calorimetry analysis showed that the Escherichia coli-expressed FaTPK1 recombinant protein could bind K + with a binding constant of 2.1 × 10 -3  m -1 and a dissociation constant of 476 μm. Thus, the strawberry TPK1 is a ubiquitously expressed, tonoplast-localized two-pore potassium channel that plays important roles in fruit ripening and quality formation. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    PubMed

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  9. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  10. Thiocoraline alters neuroendocrine phenotype and activates the Notch pathway in MTC-TT cell line

    PubMed Central

    Tesfazghi, Sara; Eide, Jacob; Dammalapati, Ajitha; Korlesky, Colin; Wyche, Thomas P; Bugni, Tim S; Chen, Herbert; Jaskula-Sztul, Renata

    2013-01-01

    Medullary thyroid cancer (MTC) is an aggressive neuroendocrine tumor (NET). Previous research has shown that activation of Notch signaling has a tumor suppressor role in NETs. The potential therapeutic effect of thiocoraline on the activation of the Notch pathway in an MTC cell line (TT) was investigated. Thiocoraline was isolated from a marine bacterium Verrucosispora sp. MTT assay (3-[4, 5-dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide) was used to determine the IC50 value and to measure cell proliferation. Western blot revealed the expression of Notch isoforms, NET, and cell cycle markers. Cell cycle progression was validated by flow cytometry. The mRNA expression of Notch isoforms and downstream targets were measured using real-time PCR. The IC50 value for thiocoraline treatment in TT cells was determined to be 7.6 nmol/L. Thiocoraline treatment decreased cell proliferation in a dose- and time-dependent manner. The mechanism of growth inhibition was found to be cell cycle arrest in G1 phase. Thiocoraline activated the Notch pathway as demonstrated by the dose-dependent increase in mRNA and protein expression of Notch isoforms. Furthermore, treatment with thiocoraline resulted in changes in the expression of downstream targets of the Notch pathway (HES1, HES2, HES6, HEY1, and HEY2) and reduced expression of NET markers, CgA, and ASCL1. Thiocoraline is a potent Notch pathway activator and an inhibitor of MTC-TT cell proliferation at low nanomolar concentrations. These results provide exciting evidence for the use of thiocoraline as a potential treatment for intractable MTC. Thiocoraline is a potent Notch pathway activator and an inhibitor of medullary thyroid cancer cell line (MTC-TT) cell proliferation at low nanomolar concentrations. These results provide evidence for the use of thiocoraline as a potential treatment for intractable MTC. PMID:24403239

  11. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    PubMed Central

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  12. INTERFERON α ACTIVATES NF-κ B IN JAK1-DEFICIENT CELLS THROUGH A TYK2-DEPENDENT PATHWAY

    PubMed Central

    Yang, Chuan He; Murti, Aruna; Valentine, William J.; Du, Ziyun; Pfeffer, Lawrence M.

    2005-01-01

    In addition to activating members of the STAT transcription factor family, IFN α/β activates the NF-κ B transcription factor. To determine the role of the JAK-STAT pathway in NF-κ B activation by IFN, we examined NF-κ B activation in JAK1-deficient mutant human fibrosarcoma cells. In wild-type fibrosarcoma cells (2fTGH) IFN activates STAT1, STAT2 and STAT3, as well as NF-κB complexes comprised of p50 and p65. In contrast, in JAK1-deficient cells IFN induces NF-κB activation and NF-κB dependent gene transcription, but does not activate these STAT proteins and has no effect on STAT-dependent gene transcription. Expression of a catalytically-inactive TYK2 tyrosine kinase in JAK1-deficient cells, as well as in the highly IFN-sensitive Daudi lymphoblastoid cell line, abrogates NF-κB activation by IFN. Moreover, IFN does not promote NF-κB activation in TYK2-deficient mutant fibrosarcoma cells. Our results demonstrate a dichotomy between the classical JAK-STAT pathway and the NF-κB signaling pathway. In the IFN signaling pathway leading to STAT activation both JAK1 and TYK2 are essential, while NF-κB activation requires only TYK2. PMID:15883164

  13. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation.

    PubMed

    Yang, Rui; Wu, Yanan; Wang, Mei; Sun, Zhongfeng; Zou, Jiahua; Zhang, Yundong; Cui, Hongjuan

    2015-04-10

    Histone deacetylase 9 (HDAC9), a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions. We found that HDAC9 is over-expressed in prognostically poor glioblastoma patients. Knockdown HDAC9 decreased proliferation in vitro and tumor formation in vivo. HDAC9 accelerated cell cycle in part by potentiating the EGFR signaling pathway. Also, HDAC9 interacted with TAZ, a key downstream effector of Hippo pathway. Knockdown of HDAC9 decreased the expression of TAZ. We found that overexpressed TAZ in HDAC9-knockdown cells abrogated the effects induced by HDAC9 silencing both in vitro and in vivo. We demonstrated that HDAC9 promotes tumor formation of glioblastoma via TAZ-mediated EGFR pathway activation, and provide the evidence for promising target for the treatment of glioblastoma.

  14. Emotion modulates activity in the 'what' but not 'where' auditory processing pathway.

    PubMed

    Kryklywy, James H; Macpherson, Ewan A; Greening, Steven G; Mitchell, Derek G V

    2013-11-15

    Auditory cortices can be separated into dissociable processing pathways similar to those observed in the visual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization task. Surprisingly, participants were significantly slower to localize emotional relative to neutral sounds. A separate localizer scan was performed to isolate neural regions sensitive to stimulus location independent of emotion. When applied to the main experimental task, a significant main effect of location, but not emotion, was found in this ROI. A whole-brain analysis of the data revealed that posterior-medial regions of auditory cortex were modulated by sound location; however, additional anterior-lateral areas of auditory cortex demonstrated enhanced neural activity to emotional compared to neutral stimuli. The latter region resembled areas described in dual pathway models of auditory processing as the 'what' processing stream, prompting a follow-up task to generate an identity-sensitive ROI (the 'what' pathway) independent of location and emotion. Within this region, significant main effects of location and emotion were identified, as well as a significant interaction. These results suggest that emotion modulates activity in the 'what,' but not the 'where,' auditory processing pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Upregulated ATM gene expression and activated DNA crosslink-induced damage response checkpoint in Fanconi anemia: implications for carcinogenesis.

    PubMed

    Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M

    2008-01-01

    Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.

  16. [Validity and reliability of Korean version of the Family Management Measure (Korean FaMM) for families with children having chronic illness].

    PubMed

    Kim, Dong Hee; Im, Yeo Jin

    2013-02-01

    To develop and test the validity and reliability of the Korean version of the Family Management Measure (Korean FaMM) to assess applicability for families with children having chronic illnesses. The Korean FaMM was articulated through forward-backward translation methods. Internal consistency reliability, construct and criterion validity were calculated using PASW WIN (19.0) and AMOS (20.0). Survey data were collected from 341 mothers of children suffering from chronic disease enrolled in a university hospital in Seoul, South Korea. The Korean version of FaMM showed reliable internal consistency with Cronbach's alpha for the total scale of .69-.91. Factor loadings of the 53 items on the six sub-scales ranged from 0.28-0.84. The model of six subscales for the Korean FaMM was validated by expiratory and confirmatory factor analysis (χ²<.001, RMR<.05, GFI, AGFI, NFI, NNFI>.08). Criterion validity compared to the Parental Stress Index (PSI) showed significant correlation. The findings of this study demonstrate that the Korean FaMM showed satisfactory construct and criterion validity and reliability. It is useful to measure Korean family's management style with their children who have a chronic illness.

  17. A novel role of topical iodine in skin: Activation of the Nrf2 pathway.

    PubMed

    Ben-Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben-Sasson, Shmuel; Bianco-Peled, Havazelet; Kohen, Ron

    2017-03-01

    For a long time iodine has been used as an active dermal agent in the treatment of inflammatory, immune-mediated and infectious diseases. Moreover, topical iodine application has been reported to provide protection against sulfur-mustard-induced skin lesions, heat-induced and acid-induced skin burns in both haired guinea-pigs and mouse ear swelling models. However, the exact mechanism of action underlying these benefits of iodine has not yet been elucidated. In the current study, a novel mechanism of action by which iodine provides skin protection and relief, based on its electrophilic nature, is suggested. This study demonstrates that both iodine and iodide are capable of activating the Nrf2 pathway in human skin. As a result, skin protection against UVB-induced damage was acquired and the secretion of pro-inflammatory cytokines (IL-6, IL-8) from LPS-challenged skin was reduced. Iodide role in the enhanced activation of this pathway is demonstrated. The mode of action by which iodine and iodide activate the Nrf2 pathway is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Geophysical data collected from the St. Clair River between Michigan and Ontario, Canada (2008-016-FA)

    USGS Publications Warehouse

    Denny, Jane F.; Foster, D.S.; Worley, C.R.; Irwin, Barry J.

    2011-01-01

    In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, Mich., and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the riverbed of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the geophysical and sample data collected from the St. Clair River, May 29-June 6, 2008, as part of the International Upper Great Lakes Study, a 5-year project funded by the International Joint Commission of the United States and Canada to examine whether physical changes in the St. Clair River are affecting water levels within upper Great Lakes, to assess regulation plans for outflows from Lake Superior, and to examine the potential effect of climate change on the Great Lakes water levels (http://www.iugls.org). This document makes available the data that were used in a separate report, U.S. Geological Survey Open-File Report 2009-1137, which detailed the interpretations of the Quaternary geologic framework of the region. This report includes a description of the high-resolution acoustic and sediment-sampling systems that were used to map the morphology, surficial sediment distribution, and underlying geology of the Upper St. Clair River during USGS field activity 2008-016-FA (http://quashnet.er.usgs.gov/cgi-bin/datasource/public_ds_info.pl?fa=2008-016-FA). Video and photographs of the riverbed were also collected and are included in this data release. Future analyses will be focused on substrate erosion and its effects on river-channel morphology and geometry. Ultimately, the International Upper Great Lakes Study will attempt to determine where physical changes in the St. Clair River affect water flow and, subsequently, water levels in the Upper Great

  19. Thermal surface analysis on high-rise building façades with neo-minimalist and modern style in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Arab, Yasser; Hassan, Ahmad Sanusi; Qanaa, Bushra

    2017-10-01

    This research analyzed the façade thermal performance of high-rise buildings with modern and neo-minimalist architectural style. Four high-rise apartment buildings in Penang Island are selected as case studies for this research. The modern architectural style, which was popular during the 1970s to 1990s, nearly disregarded the cultural identity of the country and used the basic geometric shapes in the design. Conversely, the neo-minimalist style is the popular style from the 2010s up to the present. This style is a result of the "less is more" concept, which means using minimal applications to obtain an efficient design. The four selected case studies are as follows: Halaman Kristal 2 and Mutiara Idaman 1 with modern architectural style and Light Linear and Baystar apartments with neo-minimalist style. The research uses Fluke Ti20 thermal imager to capture thermal images of the west façade of the selected case studies on an hourly basis from 12:00 to 6:00 P.M. on March 15, 2017. Results confirm that the neo-minimalist façade elements, such as balconies and recessed walls, as well as other shading elements, are effective in improving the performance of façade shading. Notably, façade shading causes low surface temperature and provides cool indoor atmosphere during the day when the temperature is extremely high outside. Accordingly, this distinct feature partly explains the current popularity of the neo-minimalist architectural style.

  20. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  1. Active PI3K Pathway Causes an Invasive Phenotype Which Can Be Reversed or Promoted by Blocking the Pathway at Divergent Nodes

    PubMed Central

    Wallin, Jeffrey J.; Guan, Jane; Edgar, Kyle A.; Zhou, Wei; Francis, Ross; Torres, Anthony C.; Haverty, Peter M.; Eastham-Anderson, Jeffrey; Arena, Sabrina; Bardelli, Alberto; Griffin, Sue; Goodall, John E.; Grimshaw, Kyla M.; Hoeflich, Klaus P.; Torrance, Christopher; Belvin, Marcia; Friedman, Lori S.

    2012-01-01

    The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R) was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT) and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP3 production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis. PMID:22570710

  2. TGF-β Coordinately Activates TAK1/MEK/AKT/NFkB and Smad Pathways to Promote Osteoclast Survival

    PubMed Central

    Gingery, Anne; Bradley, Elizabeth W.; Pederson, Larry; Ruan, Ming; Horwood, Nikki J.; Oursler, Merry Jo

    2008-01-01

    To better understand the roles of TGF-β in bone metabolism, we investigated osteoclast survival in response TGF-β and found that TGF-β inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-β receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-β treatment. Since osteoclast survival involves MEK, AKT, and NFκB activation, we examined TGF-β effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IκB, and NFκB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFκB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFκB repressed TGF-β-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-β-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclXL expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-β-induced NFκB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-β to support of osteoclast survival. PMID:18586026

  3. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    DTIC Science & Technology

    2012-03-01

    Fanconi anemia pathway for ICL repair. BRCA1 therefore has two separate roles in ICL repair that can be modulated by manipulating NHEJ, whereas FANCD2...repair pathway comprising at least 15 gene products. Mutation of any of these genes causes the human disease Fanconi anemia (FA), which is associated...genetic deficiency in components of the Fanconi anemia (FA) pathway (Wang, 2007). Cells from FA patients, or knockout mice with deficiencies in the FA

  4. New Insights into Glomerular Parietal Epithelial Cell Activation and Its Signaling Pathways in Glomerular Diseases

    PubMed Central

    Su, Hua; Chen, Shan; He, Fang-Fang; Wang, Yu-Mei; Bondzie, Philip; Zhang, Chun

    2015-01-01

    The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation. PMID:25866774

  5. Free-to-Roll Investigation of the Pre-Production F/A-18E Powered Approach Wing Drop

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; Bryant, Elaine M.; Barlow, Jewel B.

    2005-01-01

    A free-to-roll study of the low-speed lateral characteristics of the pre-production F/A-18E was conducted in the NASA Langley 12-Foot Low-Speed Tunnel. In developmental flight tests the F/A-18E unexpectedly experienced uncommanded lateral motions in the power approach configuration. The objective of this study was to determine the feasibility of using the free-to-roll technique for the detection of uncommanded lateral motions for the pre-production F/A-18E in the power approach configuration. The data revealed that this technique in conjunction with static data revealed insight into the cause of the lateral motions. The free-to-roll technique identified uncommanded lateral motions at the same angle-of-attack range as experienced in flight tests. The cause of the uncommanded lateral motions was unsteady asymmetric wing stall. The paper also shows that free-to-roll data or static force and moment data alone are not enough to accurately capture the potential for an aircraft to experience uncommanded lateral motion.

  6. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells.

    PubMed

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-03-17

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.

  7. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network.

    PubMed

    Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu

    2018-03-01

    The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.

  8. MISCIBILITY, SOLUBILITY, VISCOSITY, AND DENSITY MEASUREMENTS FOR R-236FA WITH POTENTIAL LUBRICANTS

    EPA Science Inventory

    The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants . (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oi...

  9. Exercise activates the phosphatidylinositol 3-kinase pathway.

    PubMed

    Chen, Michael J; Russo-Neustadt, Amelia A

    2005-04-27

    Physical exercise is known to enhance psychological well-being and coping capacity. Voluntary physical exercise in rats also robustly and rapidly up-regulates hippocampal brain-derived neurotrophic factor (BDNF) mRNA levels, which are potentiated following a regimen of chronic antidepressant treatment. Increased BDNF levels are associated with enhanced activity of cyclic AMP response element binding protein (CREB). So far, relatively little is known about the intracellular signaling mechanisms mediating this effect of exercise. We wished to explore the possibility that exercise and/or antidepressant treatment activate the hippocampal phosphatidylinositol-3 (PI-3) kinase pathway, which mediates cellular survival. In young male Sprague-Dawley rats, we examined the effects of 2 weeks of daily voluntary wheel-running activity and/or tranylcypromine (n = 7 per group) on the levels of the active forms of protein-dependent kinase-1 (PDK-1), PI-3 kinase, phospho-thr308-Akt, phospho-ser473-Akt, and phospho-glycogen synthase kinase-3beta (GSK3beta; inactive form), as well as BDNF, activated CREB, and the phospho-Trk receptor, in the rat hippocampus, and compared these with sedentary saline-treated controls. Immunoblotting analyses revealed that in exercising rats, there was a significant increase in PI-3 kinase expression (4.61 times that of controls, P = 0.0161) and phosphorylation of PDK-1 (2.73 times that of controls, P = 0.0454), thr308-Akt (2.857 times that of controls, P = 0.0082), CREB (60.27 times that of controls, P = 0.05), and Trk (35.3 times that of controls, P < 0.0001) in the hippocampi of exercising animals; BDNF was also increased (3.2 times that of controls), but this was not statistically significant. In rats receiving both exercise and tranylcypromine, BDNF (4.51 times that of controls, P = 0.0068) and PI-3 kinase (4.88 times that of controls, P = 0.0103), and the phospho- forms of Trk (13.67 times that of controls, P = 0.0278), thr308-Akt (3.644 times

  10. Exterior building details of Building C, east façade: historic fouroverfour ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, east façade: historic four-over-four window, brick lintel, brick quoins, corbelled brick cornice, spiral metal staircase to inclined stairs rising to second floor cantilever wooden walkway; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  11. Exterior building details of Building A; west façade: exposed common ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; west façade: exposed common bond brick wall, arched brick lintels over a two single-light casement window with brick sills, arched brick lintel over door cornice; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  12. Conformational Transition Pathway in the Activation Process of Allosteric Glucokinase

    PubMed Central

    Shi, Ting; Zhao, Yaxue; Chen, Yingyi; Li, Xiaobai; Liu, Xinyi; Huang, Zhimin; Zhang, Jian

    2013-01-01

    Glucokinase (GK) is a glycolytic enzyme that plays an important role in regulating blood glucose level, thus acting as a potentially attractive target for drug discovery in the treatment of diabetes of the young type 2 and persistent hyperinsulinemic hypoglycemia of infancy. To characterize the activation mechanism of GK from the super-open state (inactive state) to the closed state (active state), a series of conventional molecular dynamics (MD) and targeted MD (TMD) simulations were performed on this enzyme. Conventional MD simulation showed a specific conformational ensemble of GK when the enzyme is inactive. Seven TMD simulations depicted a reliably conformational transition pathway of GK from the inactive state to the active state, and the components important to the conformational change of GK were identified by analyzing the detailed structures of the TMD trajectories. In combination with the inactivation process, our findings showed that the whole conformational pathway for the activation-inactivation-activation of GK is a one-direction circulation, and the active state is less stable than the inactive state in the circulation. Additionally, glucose was demonstrated to gradually modulate its binding pose with the help of residues in the large domain and connecting region of GK during the activation process. Furthermore, the obtained energy barriers were used to explain the preexisting equilibrium and the slow binding kinetic process of the substrate by GK. The simulated results are in accordance with the recent findings from the mutagenesis experiments and kinetic analyses. Our observations reveal a complicated conformational process in the allosteric protein, resulting in new knowledge about the delicate mechanisms for allosteric biological macromolecules that will be useful in drug design for targeting allosteric proteins. PMID:23409066

  13. Bcr/Abl interferes with the Fanconi anemia/BRCA pathway: implications in the chromosomal instability of chronic myeloid leukemia cells.

    PubMed

    Valeri, Antonio; Alonso-Ferrero, Maria Eugenia; Río, Paula; Pujol, María Roser; Casado, José A; Pérez, Laura; Jacome, Ariana; Agirre, Xabier; Calasanz, Maria José; Hanenberg, Helmut; Surrallés, Jordi; Prosper, Felipe; Albella, Beatriz; Bueren, Juan A

    2010-12-28

    Chronic myeloid leukemia (CML) is a malignant clonal disorder of the hematopoietic system caused by the expression of the BCR/ABL fusion oncogene. Although it is well known that CML cells are genetically unstable, the mechanisms accounting for this genomic instability are still poorly understood. Because the Fanconi anemia (FA) pathway is believed to control several mechanisms of DNA repair, we investigated whether this pathway was disrupted in CML cells. Our data show that CML cells have a defective capacity to generate FANCD2 nuclear foci, either in dividing cells or after DNA damage. Similarly, human cord blood CD34(+) cells transduced with BCR/ABL retroviral vectors showed impaired FANCD2 foci formation, whereas FANCD2 monoubiquitination in these cells was unaffected. Soon after the transduction of CD34(+) cells with BCR/ABL retroviral vectors a high proportion of cells with supernumerary centrosomes was observed. Similarly, BCR/ABL induced a high proportion of chromosomal abnormalities, while mediated a cell survival advantage after exposure to DNA cross-linking agents. Significantly, both the impaired formation of FANCD2 nuclear foci, and also the predisposition of BCR/ABL cells to develop centrosomal and chromosomal aberrations were reverted by the ectopic expression of BRCA1. Taken together, our data show for the first time a disruption of the FA/BRCA pathway in BCR/ABL cells, suggesting that this defective pathway should play an important role in the genomic instability of CML by the co-occurrence of centrosomal amplification and DNA repair deficiencies.

  14. Wnt/beta-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion.

    PubMed

    Mermelstein, Cláudia S; Portilho, Débora M; Mendes, Fábio A; Costa, Manoel L; Abreu, José Garcia

    2007-03-01

    Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.

  15. An artificial HSE promoter for efficient and selective detection of heat shock pathway activity.

    PubMed

    Ortner, Viktoria; Ludwig, Alfred; Riegel, Elisabeth; Dunzinger, Sarah; Czerny, Thomas

    2015-03-01

    Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.

  16. SNIP1: a new activator of HSE signaling pathway.

    PubMed

    Li, Qiang; An, Jian; Liu, Xianghua; Zhang, Mingjun; Ling, Yichen; Wang, Chenji; Zhao, Jing; Yu, Long

    2012-03-01

    In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.

  17. Higher integrity of the motor and visual pathways in long-term video game players.

    PubMed

    Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.

  18. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos

    PubMed Central

    El Husseini, Nazem; Schlisser, Ava E.; Hales, Barbara F.

    2016-01-01

    Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. PMID:27208086

  19. [Modifications in myocardial energy metabolism in diabetic patients

    NASA Technical Reports Server (NTRS)

    Grynberg, A.

    2001-01-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimetazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  20. A highly active ATP-insensitive K+ import pathway in plant mitochondria.

    PubMed

    Ruy, Fernando; Vercesi, Anibal E; Andrade, Paula B M; Bianconi, M Lucia; Chaimovich, Hernan; Kowaltowski, Alicia J

    2004-04-01

    We describe here a regulated and highly active K+ uptake pathway in potato (Solanum tuberosum), tomato (Lycopersicon esculentum), and maize (Zea mays) mitochondria. K+ transport was not inhibited by ATP, NADH, or thiol reagents, which regulate ATP-sensitive K+ channels previously described in plant and mammalian mitochondria. However, K+ uptake was completely prevented by quinine, a broad spectrum K+ channel inhibitor. Increased K+ uptake in plants leads to mitochondrial swelling, respiratory stimulation, heat release, and the prevention of reactive oxygen species formation. This newly described ATP-insensitive K+ import pathway is potentially involved in metabolism regulation and prevention of oxidative stress.

  1. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin*

    PubMed Central

    Kazmin, Roman; Rose, Alexander; Szczepek, Michal; Elgeti, Matthias; Ritter, Eglof; Piechnick, Ronny; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W.; Bartl, Franz J.

    2015-01-01

    Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences. PMID:26105054

  2. Proteasome activity is important for replication recovery, CHK1 phosphorylation and prevention of G2 arrest after low-dose formaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega-Atienza, Sara; Green, Samantha E.; Zhitkovich, Anatoly, E-mail: anatoly_zhitkovich@brown.edu

    2015-07-15

    Formaldehyde (FA) is a human carcinogen with numerous sources of environmental and occupational exposures. This reactive aldehyde is also produced endogenously during metabolism of drugs and other processes. DNA–protein crosslinks (DPCs) are considered to be the main genotoxic lesions for FA. Accumulating evidence suggests that DPC repair in high eukaryotes involves proteolysis of crosslinked proteins. Here, we examined a role of the main cellular proteolytic machinery proteasomes in toxic responses of human lung cells to low FA doses. We found that transient inhibition of proteasome activity increased cytotoxicity and diminished clonogenic viability of FA-treated cells. Proteasome inactivation exacerbated suppressive effectsmore » of FA on DNA replication and increased the levels of the genotoxic stress marker γ-H2AX in normal human cells. A transient loss of proteasome activity in FA-exposed cells also caused delayed perturbations of cell cycle, which included G2 arrest and a depletion of S-phase populations at FA doses that had no effects in control cells. Proteasome activity diminished p53-Ser15 phosphorylation but was important for FA-induced CHK1 phosphorylation, which is a biochemical marker of DPC proteolysis in replicating cells. Unlike FA, proteasome inhibition had no effect on cell survival and CHK1 phosphorylation by the non-DPC replication stressor hydroxyurea. Overall, we obtained evidence for the importance of proteasomes in protection of human cells against biologically relevant doses of FA. Biochemically, our findings indicate the involvement of proteasomes in proteolytic repair of DPC, which removes replication blockage by these highly bulky lesions. - Highlights: • Proteasome inhibition enhances cytotoxicity of low-dose FA in human lung cells. • Active proteasomes diminish replication-inhibiting effects of FA. • Proteasome activity prevents delayed G2 arrest in FA-treated cells. • Proteasome inhibition exacerbates replication stress

  3. Missionaries and Tonic Sol-fa Music Pedagogy in 19th-Century China

    ERIC Educational Resources Information Center

    Southcott, Jane E.; Lee, Angela Hao-Chun

    2008-01-01

    In the 19th century, Christian missionaries in China, as elsewhere, used the Tonic Sol-fa method of music instruction to aid their evangelizing. This system was designed to improve congregational singing in churches, Sunday schools and missions. The London Missionary Society and other evangelical groups employed the method. These missionaries took…

  4. Anticipatory UPR Activation: A Protective Pathway and Target in Cancer

    PubMed Central

    Shapiro, David J.; Livezey, Mara; Yu, Liqun; Zheng, Xiaobin; Andruska, Neal

    2016-01-01

    The endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), plays a key role in regulating intracellular protein homeostasis. The extensively studied reactive mode of UPR activation is characterized by unfolded protein, or other EnR stress, triggering UPR activation. Here we focus on the emerging anticipatory mode of UPR activation in which mitogenic steroid and peptide hormones and other effectors pre-activate the UPR and anticipate a future need for increased protein folding capacity. Mild UPR activation in breast cancer can be protective and contributes to antiestrogen resistance. Hyperactivation of the anticipatory UPR pathway in cancer cells with a small molecule converts it from cytoprotective to cytotoxic, highlighting its potential as a therapeutic target in estrogen receptor positive breast cancer. PMID:27354311

  5. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    PubMed Central

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  6. Cross talk between the TM4SF5/focal adhesion kinase and the interleukin-6/STAT3 pathways promotes immune escape of human liver cancer cells.

    PubMed

    Ryu, Jihye; Kang, Minkyung; Lee, Mi-Sook; Kim, Hye-Jin; Nam, Seo Hee; Song, Haeng Eun; Lee, Doohyung; Lee, Jung Weon

    2014-08-01

    TM4SF5 overexpressed in hepatocellular carcinoma activates focal adhesion kinase (FAK) during tumor cell migration. However, it remains unknown how TM4SF5 in hepatocellular carcinoma cells compromises with immune actions initiated by extracellular cytokines. Normal and cancerous hepatocytes with or without TM4SF5 expression were analyzed for the effects of cytokine signaling activity on TM4SF5/FAK signaling and metastatic potential. We found that interleukin-6 (IL-6) was differentially expressed in hepatocytes depending on cancerous malignancy and TM4SF5 expression. IL-6 treatment activated FAK and STAT3 and enhanced focal adhesion (FA) formation in TM4SF5-null cells, but it decreased TM4SF5-dependent FAK activity and FA formation in SNU761-TM4SF5 cells. STAT3 suppression abolished the IL-6-mediated effects in normal Chang cells, but it did not recover the TM4SF5-dependent FAK activity that was inhibited by IL-6 treatment in cancerous SNU761-TM4SF5 cells. In addition, modulation of FAK activity did not change the IL-6-mediated STAT3 activity in either the Chang or SNU761 cell system. TM4SF5 expression in SNU761 cells caused invasive extracellular matrix degradation negatively depending on IL-6/IL-6 receptor (IL-6R) signaling. Thus, it is likely that hepatic cancer cells adopt TM4SF5-dependent FAK activation and metastatic potential by lowering IL-6 expression and avoiding its immunological action through the IL-6-STAT3 pathway. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway.

    PubMed

    Islam, Rafique; Wei, Shu-Yi; Chiu, Wei-Hsin; Hortsch, Michael; Hsu, Jui-Chou

    2003-05-01

    echinoid (ed) encodes an cell-adhesion molecule (CAM) that contains immunoglobulin domains and regulates the EGFR signaling pathway during Drosophila eye development. Based on our previous genetic mosaic and epistatic analysis, we proposed that Ed, via homotypic interactions, activates a novel, as yet unknown pathway that antagonizes EGFR signaling. In this report, we demonstrate that Ed functions as a homophilic adhesion molecule and also engages in a heterophilic trans-interaction with Drosophila Neuroglian (Nrg), an L1-type CAM. Co-expression of ed and nrg in the eye exhibits a strong genetic synergy in inhibiting EGFR signaling. This synergistic effect requires the intracellular domain of Ed, but not that of Nrg. In addition, Ed and Nrg colocalize in the Drosophila eye and are efficiently co-immunoprecipitated. Together, our results suggest a model in which Nrg acts as a heterophilic ligand and activator of Ed, which in turn antagonizes EGFR signaling.

  8. Birth order and recalled childhood gender nonconformity in Samoan men and fa'afafine.

    PubMed

    Semenyna, Scott W; VanderLaan, Doug P; Vasey, Paul L

    2017-04-01

    Having a greater than average number of older biological brothers is a robust correlate of male androphilia (i.e., sexual attraction and arousal to adult males). Previous investigations have sought to understand whether this fraternal birth order (FBO) effect is also systematically related to recalled indicators of childhood gender nonconformity (CGN). However, these investigations have relied on data from low-fertility Western populations in which expressions of femininity in male children are routinely stigmatized and consequently, suppressed. The present study examined the FBO effect (among other sibship characteristics) and recalled indicators of CGN in Samoa, a high-fertility population, whose members are relatively tolerant of male femininity. Indeed, Samoans identify feminine androphilic males as belonging to an alternative gender category, known locally as fa'afafine. The present study compared the sibship characteristics of 231 fa'afafine and 231 opposite-sex attracted men from Samoa, as well as how these characteristics related to recalled CGN. Results replicated the well-established FBO effect for predicting male sexual orientation, with each older brother increasing the odds of being androphilic by 21%. However, no relationship was found between the number of older brothers (or other siblings) a participant had and their recalled CGN. Although fa'afafine reported significantly more CGN than Samoan men, CGN did not mediate the FBO effect, nor did the FBO effect and CGN interact to predict male sexual orientation. These findings are consistent with previous studies suggesting that the FBO effect is associated with male sexual orientation, but not childhood female-typical gender expression among androphilic males. © 2017 Wiley Periodicals, Inc.

  9. Recoveries of rat lymph FA after administration of specific structured 13C-TAG.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2003-09-01

    The potential of the specific structured TAG MLM [where M = caprylic acid (8:0) and L = linoleic acid (18:2n-6)] is the simultaneous delivery of energy and EFA. Compared with long-chain TAG (LLL), they may be more rapidly hydrolyzed and absorbed. This study examined the lymphatic recoveries of intragastrically administered L*L*L*, M*M*M*, ML*M, and ML*L* (where * = 13C-labeled FA) in rats. Lymph lipids were separated into lipid classes and analyzed by GC combustion isotope ratio MS. The recoveries of lymph TAG 18:2n-6 8 h after administration of L*L*L*, ML*M, and ML*L* were 38.6, 48.4, and 49.1%, respectively, whereas after 24 h the recoveries were approximately 50% in all experimental groups. The exogenous contribution to lymph TAG 18:2n-6 was approximately 80 and 60% at maximum absorption of the specific structured TAG and L*L*L*, respectively, 3-6 h after administration. The tendency toward more rapid recovery of exogenous long-chain FA following administration of specific structured TAG compared with long-chain TAG was probably due to fast hydrolysis. The lymphatic recovery of 8:0 was 2.2% 24 h after administration of M*M*M*. This minor lymphatic recovery of exogenous 8:0 was probably due to low stimulation of chylomicron formation. These results demonstrate tendencies toward faster lymphatic recovery of long-chain FA after administration of specific structured TAG compared with long-chain TAG.

  10. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    PubMed

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  11. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    PubMed Central

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  12. Sulforaphane Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity by Activating the Keap1-Nrf2-ARE Pathway and Inhibiting the MAPKs and NF-κB Pathways.

    PubMed

    Jang, Minhee; Cho, Ik-Hyun

    2016-05-01

    The potential neuroprotective value of sulforaphane (SFN) in Huntington's disease (HD) has not been established yet. We investigated whether SFN prevents and improves the neurological impairment and striatal cell death in a 3-nitropropionic acid (3-NP)-induced mouse model of HD. SFN (2.5 and 5.0 mg/kg/day, i.p.) was given daily 30 min before 3-NP treatment (pretreatment) and from onset/progression/peak points of the neurological scores. Pretreatment with SFN (5.0 mg/kg/day) produced the best neuroprotective effect with respect to the neurological scores and lethality among other conditions. The protective effects due to pretreatment with SFN were associated with the following: suppression of the formation of a lesion area, neuronal death, succinate dehydrogenase activity, apoptosis, microglial activation, and mRNA or protein expression of inflammatory mediators, including tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2 in the striatum after 3-NP treatment. Also, pretreatment with SFN activated the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and inhibited the mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways in the striatum after 3-NP treatment. As expected, the pretreatment with activators (dimethyl fumarate and antioxidant response element inducer-3) of the Keap1-Nrf2-ARE pathway decreased the neurological impairment and lethality after 3-NP treatment. Our findings suggest that SFN may effectively attenuate 3-NP-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways and that SFN has a wide therapeutic time-window for HD-like symptoms.

  13. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    PubMed

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  14. Association of desaturase activity and C-reactive protein in European children.

    PubMed

    Wolters, Maike; Börnhorst, Claudia; Schwarz, Heike; Risé, Patrizia; Galli, Claudio; Moreno, Luis A; Pala, Valeria; Russo, Paola; Veidebaum, Toomas; Tornaritis, Michael; Fraterman, Arno; De Henauw, Stefaan; Eiben, Gabriele; Lissner, Lauren; Molnár, Dénes; Ahrens, Wolfgang

    2017-01-01

    Desaturase enzymes influence the fatty acid (FA) composition of body tissues and their activity affects the conversion rate of saturated to monounsaturated FA and of polyunsaturated FA (PUFA) to long-chain PUFA. Desaturase activity has further been shown to be associated with inflammation. We investigate the association between delta-9 (D9D), delta-6 (D6D) and delta-5 desaturase (D5D) activity and high-sensitive C-reactive protein (CRP) in young children. In the IDEFICS (Identification and prevention of dietary- and lifestyle-induced health effects in children and infants) cohort study children were examined at baseline (T0) and after 2 y (T1). D9D, D6D, and D5D activities were estimated from T0 product-precursor FA ratios. CRP was measured at T0 and T1. In a subsample of 1,943 children with available information on FA, CRP, and covariates, the cross-sectional and longitudinal associations of desaturase activity and CRP were analyzed. Cross-sectionally, a D9D increase of 0.01 units was associated with a 11% higher risk of having a serum CRP ≥ Percentile 75 (P75) (OR, 99% CI: 1.11 (1.01; 1.22)) whereas D6D and D5D were not associated with CRP. No significant associations were observed between baseline desaturase activity and CRP 2 y later. Cross-sectionally, our results indicate a positive association of D9D and CRP independent of weight status. High D9D activity may increase the risk of subclinical inflammation which is associated with metabolic disorders. As D9D expression increases with higher intake of saturated FA and carbohydrates, dietary changes may influence D9D activity and thus CRP. However, it remains to be investigated whether there is a causal relationship between D9D activity and CRP.

  15. Role of the combination of FA and T2* parameters as a new diagnostic method in therapeutic evaluation of parkinson's disease.

    PubMed

    Fang, Yuan; Zheng, Tao; Liu, Lanxiang; Gao, Dawei; Shi, Qinglei; Dong, Yanchao; Du, Dan

    2017-11-17

    Simple diffusion delivery (SDD) has attained good effects with only tiny amounts of drugs. Fractional anisotropy (FA) and relaxation time T2* that indicate the integrity of fiber tracts and iron concentration within brain tissue were used to evaluate the therapeutic effect of SDD. To evaluate therapeutic effect of SDD in the Parkinson's disease (PD) rat model with FA and T2* parameters. Prospective case-control animal study. Thirty-two male Sprague Dawley rats (eight normal, eight PD, eight SDD, and eight subcutaneous injection rats). Single-shot spin echo echo-planar imaging and fast low-angle shot T 2 WI sequences at 3.0T. Parameters of FA and T2* on the treated side of the substantia nigra were measured to evaluate the therapeutic effect of SDD in a PD rat model. The effects of time on FA and T2* values were analyzed by repeated measurement tests. A one-way analysis of variance was conducted, followed by individual comparisons of the mean FA and T2* values at different timepoints. The FA values on the treated side of the substantia nigra in the SDD treatment group and subcutaneous injection treatment group were significantly higher at week 1 and lower at week 6 than that of the PD control group (SDD vs. PD, week 1, adjusted P = 0.012; subcutaneous vs. PD, week 1, adjusted P < 0.001; SDD vs. PD, week 6, adjusted P = 0.004; subcutaneous vs. PD, week 6, adjusted P = 0.024). The T2* parameter in the SDD treatment group and subcutaneous injection treatment group was significantly higher than that in the PD control group at week 6 (SDD vs. PD, adjusted P = 0.032; subcutaneous vs. PD, adjusted P < 0.001). The combination of FA and T2* parameters can potentially serve as a new effective evaluation method of the therapeutic effect of SDD. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity

    PubMed Central

    Lee, Vincent K.; Nau, Amy C.; Laymon, Charles; Chan, Kevin C.; Rosario, Bedda L.; Fisher, Chris

    2014-01-01

    Purpose: Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). Methods: We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). Results: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p ≤ 0.025) in the bilateral optic radiations and some visual association connections between all three groups. No relationship was found between FA and functional performance with the BrainPort. Discussion: All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible

  17. Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection.

    PubMed

    Qi, Feifei; Bai, Song; Wang, Dandan; Xu, Lei; Hu, Haiyan; Zeng, Sheng; Chai, Ruonan; Liu, Beixing

    2017-07-01

    It has been reported that RSV infection can enhance IL-33 production in lung macrophages. However, little is known about specific signaling pathways for activation of macrophages during RSV infection. In the present study, by using real-time RT-PCR as well as western blot assay, it became clear that RSV infection can enhance not only the expression of mRNAs for MAPK molecules (including p38, JNK1/2, and ERK1/2), but also the levels of MAPK proteins in lung macrophages as well as RAW264.7 cells. Furthermore, infection with RSV resulted in an increased level of phosphorylated MAPK proteins in RAW264.7 cells, suggesting that MAPK signaling pathway may participate in the process of RSV-induced IL-33 secretion by macrophages. In fact, the elevated production of IL-33 in RAW264.7 was attenuated significantly by pretreatment of the cells with special MAPK inhibitor before RSV infection, further confirming the function of MAPKs pathway in RSV-induced IL-33 production in macrophages. In contrast, the expression of NF-κB mRNA as well as the production of NF-κB protein in lung macrophages and RAW264.7 cells was not enhanced markedly after RSV infection. Moreover, RSV infection failed to induce the phosphorylation of NF-κB in RAW264.7 cells, suggesting that NF-κB signaling pathway may be not involved in RSV-induced IL-33 production in macrophages. Conclusion, these results indicate that RSV-induced production of IL-33 in macrophages is dependent on the activation of MAPK signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com; Wan, Fuqiang; Li, Zhengling

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D,more » a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.« less

  19. Exterior building details of Building C, east façade: inscribed date ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, east façade: inscribed date panel "hospital 1885", corbelled brick belt course, parapet, second floor historic four-over-four window with brick lintels, quoins and decorative metal grilled, cantilever wooden walkway; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  20. F/A-18 forebody vortex control. Volume 1: Static tests

    NASA Technical Reports Server (NTRS)

    Kramer, Brian R.; Suarez, Carlos J.; Malcolm, Gerald N.; Ayers, Bert F.

    1994-01-01

    A wind tunnel test was conducted on a six percent model of the F/A-18 at the NASA Ames 7 X 10-Foot Low Speed Wind Tunnel. The primary objective of the test was to evaluate several forebody vortex control configurations at high angles of attack in order to determine the most effective method of obtaining well behaved yawing moments, in preparation for the rotary balance test. Both mechanical and pneumatic systems were tested. Single and dual rotating nose tip strakes and a vertical nose strake were tested at different sizes and deflections. A series of jet blowing configurations were located at various fuselage stations, azimuth angles, and pointing angles ranging from straight aft to 60 deg canted inboard. Slot blowing was investigated for several slot lengths and fuselage stations. The effect of blowing rate was tested for both of these pneumatic systems. The most effective configurations were then further tested with a variation of both sideslip angle and Reynolds number over a range of angles of attack from 0 to 60 deg. It was found that a very robust system can be developed that provides yawing moments at angles of attack up to 60 deg that significantly exceeds that available from 30 deg of rudder deflection (F/A-18 maximum) at 0 deg angle of attack.

  1. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila

    PubMed Central

    Hampel, Stefanie; McKellar, Claire E

    2017-01-01

    A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al., 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response. PMID:28887878

  2. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  3. Novel mechanism of JNK pathway activation by adenoviral E1A

    PubMed Central

    Morrison, Helen; Pospelova, Tatiana V.; Pospelov, Valery A.; Herrlich, Peter

    2014-01-01

    The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action. PMID:24742962

  4. Filter paper-assisted cell transfer (FaCT) technique: A novel cell-sampling technique for intraoperative diagnosis of central nervous system tumors.

    PubMed

    Kawamura, Jumpei; Kamoshida, Shingo; Shimakata, Takaaki; Hayashi, Yurie; Sakamaki, Kuniko; Denda, Tamami; Kawai, Kenji; Kuwao, Sadahito

    2017-04-01

    Intraoperative diagnosis of central nervous system (CNS) tumors provides critical guidance to surgeons in the determination of surgical resection margins and treatment. The techniques and preparations used for the intraoperative diagnosis of CNS tumors include frozen sectioning and cytologic methods (squash smear and touch imprint). Cytologic specimens, which do not have freezing artifacts, are important as an adjuvant tool to frozen sections. However, if the amount of submitted tissue samples is limited, then it is difficult to prepare both frozen sections and squash smears or touch imprint specimens from a single sample at the same time. Therefore, the objective of this study was to derive cells directly from filter paper on which tumor samples are placed. The authors established the filter paper-assisted cell transfer (FaCT) smear technique, in which tumor cells are transferred onto a glass slide directly from the filter paper sample spot after the biopsy is removed. Cell yields and diagnostic accuracy of the FaCT smears were assessed in 40 CNS tumors. FaCT smears had ample cell numbers and well preserved cell morphology sufficient for cytologic diagnosis, even if the submitted tissues were minimal. The overall diagnostic concordance rates between frozen sections and FaCT smears were 90% and 87.5%, respectively (no significant differences). When combining FaCT smears with frozen sections, the diagnostic concordance rate rose to 92.5%. The current results suggest that the FaCT smear technique is a simple and effective processing method that has significant value for intraoperative diagnosis of CNS tumors. Cancer Cytopathol 2017;125:277-282. © 2016 American Cancer Society. © 2017 American Cancer Society.

  5. Effects of Curcumin on Tobacco Smoke-induced Hepatic MAPK Pathway Activation and Epithelial-Mesenchymal Transition In Vivo.

    PubMed

    Liang, Zhaofeng; Wu, Rui; Xie, Wei; Xie, Chunfeng; Wu, Jieshu; Geng, Shanshan; Li, Xiaoting; Zhu, Mingming; Zhu, Weiwei; Zhu, Jianyun; Huang, Cong; Ma, Xiao; Xu, Wenrong; Zhong, Caiyun; Han, Hongyu

    2017-08-01

    Tobacco smoke is a major risk factor for hepatic cancer. Epithelial-mesenchymal transition (EMT) induced by tobacco smoke is crucially involved in the initiation and development of cancer. Mitogen-activated protein kinase (MAPK) pathways play important roles in tobacco smoke-associated carcinogenesis including EMT process. The chemopreventive effect of curcumin supplementation against cancers has been reported. In this study, we investigated the effects of tobacco smoke on MAPK pathway activation and EMT alterations, and then the preventive effect of curcumin was examined in the liver of BALB/c mice. Our results indicated that exposure of mice to tobacco smoke for 12 weeks led to activation of ERK1/2, JNK, p38 and ERK5 pathways as well as activator protein-1 (AP-1) proteins in liver tissue. Exposure of mice to tobacco smoke reduced the hepatic mRNA and protein expression of the epithelial markers, while the hepatic mRNA and protein levels of the mesenchymal markers were increased. Treatment of curcumin effectively attenuated tobacco smoke-induced activation of ERK1/2 and JNK MAPK pathways, AP-1 proteins and EMT alterations in the mice liver. Our data suggested the protective effect of curcumin in tobacco smoke-triggered MAPK pathway activation and EMT in the liver of BALB/c mice, thus providing new insights into the chemoprevention of tobacco smoke-associated hepatic cancer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos.

    PubMed

    El Husseini, Nazem; Schlisser, Ava E; Hales, Barbara F

    2016-08-01

    Hydroxyurea, an anticancer agent and potent teratogen, induces oxidative stress and activates a DNA damage response pathway in the gestation day (GD) 9 mouse embryo. To delineate the stress response pathways activated by this drug, we investigated the effect of hydroxyurea exposure on the transcriptome of GD 9 embryos. Timed pregnant CD-1 mice were treated with saline or hydroxyurea (400 mg/kg or 600 mg/kg) on GD 9; embryonic gene and protein expression were examined 3 h later. Microarray analysis revealed that the expression of 1346 probe sets changed significantly in embryos exposed to hydroxyurea compared with controls; the P53 signaling pathway was highly affected. In addition, P53 related family members, P63 and P73, were predicted to be activated and had common and unique downstream targets. Western blot analysis revealed that active phospho-P53 was significantly increased in drug-exposed embryos; confocal microscopy showed that the translocation of phospho-P53 to the nucleus was widespread in the embryo. Furthermore, qRT-PCR showed that the expression of P53-regulated genes (Cdkn1A, Fas, and Trp53inp1) was significantly upregulated in hydroxyurea-exposed embryos; the concentration of the redox sensitive P53INP1 protein was also increased in a hydroxyurea dose-dependent fashion. Thus, hydroxyurea elicits a significant effect on the transcriptome of the organogenesis stage murine embryo, activating several key developmental signaling pathways related to DNA damage and oxidative stress. We propose that the P53 pathway plays a central role in the embryonic stress response and the developmental outcome after teratogen exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways.

    PubMed

    Wang, Q; Shi, C-J; Lv, S-H

    2017-03-30

    Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  8. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    PubMed

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  9. The insulator protein BEAF-32 is required for Hippo pathway activity in the terminal differentiation of neuronal subtypes.

    PubMed

    Jukam, David; Viets, Kayla; Anderson, Caitlin; Zhou, Cyrus; DeFord, Peter; Yan, Jenny; Cao, Jinshuai; Johnston, Robert J

    2016-07-01

    The Hippo pathway is crucial for not only normal growth and apoptosis but also cell fate specification during development. What controls Hippo pathway activity during cell fate specification is incompletely understood. In this article, we identify the insulator protein BEAF-32 as a regulator of Hippo pathway activity in Drosophila photoreceptor differentiation. Though morphologically uniform, the fly eye is composed of two subtypes of R8 photoreceptor neurons defined by expression of light-detecting Rhodopsin proteins. In one R8 subtype, active Hippo signaling induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5), whereas in the other subtype, inactive Hippo signaling induces Rh5 and represses Rh6. The activity state of the Hippo pathway in R8 cells is determined by the expression of warts, a core pathway kinase, which interacts with the growth regulator melted in a double-negative feedback loop. We show that BEAF-32 is required for expression of warts and repression of melted Furthermore, BEAF-32 plays a second role downstream of Warts to induce Rh6 and prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback, indicating that BEAF-32 differentially regulates warts and Rhodopsins. Loss of BEAF-32 does not noticeably impair the functions of the Hippo pathway in eye growth regulation. Our study identifies a context-specific regulator of Hippo pathway activity in post-mitotic neuronal fate, and reveals a developmentally specific role for a broadly expressed insulator protein. © 2016. Published by The Company of Biologists Ltd.

  10. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity.

    PubMed

    Kabacik, Sylwia; Ortega-Molina, Ana; Efeyan, Alejo; Finnon, Paul; Bouffler, Simon; Serrano, Manuel; Badie, Christophe

    2011-04-01

    Ionizing radiation induces DNA Double-Strand Breaks (DSBs) which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g. Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients, and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility.

  11. Exterior building details of Building B, west façade: two paintedwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building B, west façade: two painted-wood single-light casements over two-light casements with concrete sill and arch brick lintel, over infilled brick patch with arch brick lintel, brick lintel above windows and brick infilled oval; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  12. Exterior building details of Building C, east façade: historic six ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building C, east façade: historic six light entry double door with three light transom, historic six light door with a one light transom, arch brick lintels and quoins, scored cement plaster finished brick walls; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  13. PPARα signal pathway gene expression is associated with fatty acid content in yak and cattle longissimus dorsi muscle.

    PubMed

    Qin, W; Liang, C N; Guo, X; Chu, M; Pei, J; Bao, P J; Wu, X Y; Li, T K; Yan, P

    2015-11-19

    Intramuscular fatty acid (FA) is related to meat qualities such as juiciness, tenderness, palatability, and shear force. PPARα plays an important role in lipid metabolism in the liver and skeletal muscle. This study investigated FA composition in yaks and cattle, in order to ascertain whether a correlation between PPARα signal pathway genes as candidate genes and meat FA composition in yaks and cattle exists. Statistical analyses revealed that levels of monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) in yaks were significantly higher than those in cattle (P < 0.01), whereas saturated fatty acid (SFA) levels were significantly lower than those in cattle (P < 0.05). The mRNA expression levels of FABP4 (P < 0.05), SCP2 (P < 0.05), and APOA1 (P < 0.01) in yaks were significantly lower than those in cattle. However, LPL expression in yaks was significantly higher than that in cattle (P < 0.05). In yaks, the expression levels of FABP3 (P < 0.05) and LPL (P < 0.01) were negatively correlated with MUFA, and those of FABP4 and SCD were positively correlated with PUFA (P < 0.01). In cattle, the mRNA level of PLTP was positively correlated with SFA (P < 0.05), and LPL was positively correlated with MUFA (P < 0.05). These results suggest that these genes may participate in the regulation and control of intramuscular FA metabolism in yaks, so they could be used as candidate markers to improve yak meat quality.

  14. CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway.

    PubMed

    Cathomas, Flurin; Fuertig, Rene; Sigrist, Hannes; Newman, Gregory N; Hoop, Vanessa; Bizzozzero, Manuela; Mueller, Andreas; Luippold, Andreas; Ceci, Angelo; Hengerer, Bastian; Seifritz, Erich; Fontana, Adriano; Pryce, Christopher R

    2015-11-01

    The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Crosstalk between Signaling Pathways in Pemphigus: A Role for Endoplasmic Reticulum Stress in p38 Mitogen-Activated Protein Kinase Activation?

    PubMed

    Cipolla, Gabriel A; Park, Jong Kook; Lavker, Robert M; Petzl-Erler, Maria Luiza

    2017-01-01

    Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome-desmoglein (DSG) 1 and/or DSG3-has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus' pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa . However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.

  16. Loss of the Spectraplakin Short Stop Activates the DLK Injury Response Pathway in Drosophila

    PubMed Central

    Valakh, Vera; Walker, Lauren J.; Skeath, James B.

    2013-01-01

    The MAPKKK dual leucine zipper-containing kinase (DLK, Wallenda in Drosophila) is an evolutionarily conserved component of the axonal injury response pathway. After nerve injury, DLK promotes degeneration of distal axons and regeneration of proximal axons. This dual role in coordinating degeneration and regeneration suggests that DLK may be a sensor of axon injury, and so understanding how DLK is activated is important. Two mechanisms are known to activate DLK. First, increasing the levels of DLK via overexpression or loss of the PHR ubiquitin ligases that target DLK activate DLK signaling. Second, in Caenorhabditis elegans, a calcium-dependent mechanism, can activate DLK. Here we describe a new mechanism that activates DLK in Drosophila: loss of the spectraplakin short stop (shot). In a genetic screen for mutants with defective neuromuscular junction development, we identify a hypomorphic allele of shot that displays synaptic terminal overgrowth and a precocious regenerative response to nerve injury. We demonstrate that both phenotypes are the result of overactivation of the DLK signaling pathway. We further show that, unlike mutations in the PHR ligase Highwire, loss of function of shot activates DLK without a concomitant increase in the levels of DLK. As a spectraplakin, Shot binds to both actin and microtubules and promotes cytoskeletal stability. The DLK pathway is also activated by downregulation of the TCP1 chaperonin complex, whose normal function is to promote cytoskeletal stability. These findings support the model that DLK is activated by cytoskeletal instability, which is a shared feature of both spectraplakin mutants and injured axons. PMID:24198375

  17. Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin.

    PubMed

    Kameyama, Kazuhisa; Motoyama, Keiichi; Tanaka, Nao; Yamashita, Yuki; Higashi, Taishi; Arima, Hidetoshi

    2017-01-01

    Mitophagy is the specific autophagic elimination system of mitochondria, which regulates cellular survival via the removal of damaged mitochondria. Recently, we revealed that folate-appended methyl-β-cyclodextrin (FA-M-β-CyD) provides selective antitumor activity in folate receptor-α (FR-α)-expressing cells by the induction of autophagy. In this study, to gain insight into the detailed mechanism of this antitumor activity, we focused on the induction of mitophagy by the treatment of FR-α-expressing tumor cells with FA-M-β-CyD. In contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered KB cells, human epithelial cells from a fatal cervical carcinoma (FR-α (+)) through FR-α-mediated endocytosis. The transmembrane potential of isolated mitochondria after treatment with FA-M-β-CyD was significantly elevated. In addition, FA-M-β-CyD lowered adenosine triphosphate (ATP) production and promoted reactive oxygen species production in KB cells (FR-α (+)). Importantly, FA-M-β-CyD enhanced light chain 3 (LC3) conversion (LC3-I to LC3-II) in KB cells (FR-α (+)) and induced PTEN-induced putative kinase 1 (PINK1) protein expression, which is involved in the induction of mitophagy. Furthermore, FA-M-β-CyD had potent antitumor activity in BALB/c nu/nu mice xenografted with KB cells (FR-α (+)) without any significant side effects. Taken together, these findings demonstrate that the autophagic cell death elicited by FA-M-β-CyD could be associated with mitophagy induced by an impaired mitochondrial function.

  18. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles1

    PubMed Central

    Medina-Puche, Laura; Molina-Hidalgo, Francisco Javier; Boersma, Maaike; Schuurink, Robert C.; López-Vidriero, Irene; Solano, Roberto; Franco-Zorrilla, José-Manuel; Caballero, José Luis; Blanco-Portales, Rosario; Muñoz-Blanco, Juan

    2015-01-01

    Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (EMISSION OF BENZENOID II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of CINNAMYL ALCOHOL DEHYDROGENASE1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles. PMID:25931522

  19. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  20. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  1. Leptin activates STAT and ERK2 pathways and induces gastric cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Rama; Lin Cal; Tran, Teresa

    2005-06-17

    Although leptin is known to induce proliferative response in gastric cancer cells, the mechanism(s) underlying this action remains poorly understood. Here, we provide evidence that leptin-induced gastric cancer cell proliferation involves activation of STAT and ERK2 signaling pathways. Leptin-induced STAT3 phosphorylation is independent of ERK2 activation. Leptin increases SHP2 phosphorylation and enhances binding of Grb2 to SHP2. Inhibition of SHP2 expression with siRNA but not SHP2 phosphatase activity abolished leptin-induced ERK2 activation. While JAK inhibition with AG490 significantly reduced leptin-induced ERK2, STAT3 phosphorylation, and cell proliferation, SHP2 inhibition only partially reduced cancer cell proliferation. Immunostaining of gastric cancer tissues displayedmore » local overexpression of leptin and its receptor indicating that leptin might be produced and act locally in a paracrine or autocrine manner. These findings indicate that leptin promotes cancer growth by activating multiple signaling pathways and therefore blocking its action at the receptor level could be a rational therapeutic strategy.« less

  2. Pathways to URM Retention: IBP's Professional Development and Mentoring Activities

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Williamson Whitney, V.; Ricciardi, L.; Detrick, L.; Siegfried, D.; Fauver, A.; Ithier-Guzman, W.; Thomas, S. H.; Valaitis, S.

    2013-05-01

    As a not for profit organization, the Institute for Broadening Participation (IBP) hosts a variety of initiatives designed to increase the retention of underrepresented minority (URM) students pursuing pathways in STEM. IBP also assists with formative program evaluation design and implementation to help strengthen URM recruitment and retention elements. Successful initiatives include virtual and face-to-face components that bring together URM students with established URM and other scientists in academia, government and industry. These connections provide URMs with mentoring, networking opportunities, and professional skill development contributing to an improved retention rate of URM students. IBP's initiatives include the NASA One Stop Shopping Initiative (NASA OSSI), Pathways to Ocean Science and Engineering, and the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science (ESS) Professional Development Program. The NASA OSSI recruits and facilitates student engagement in NASA education and employment opportunities. Pathways to Ocean Science connects and supports URM students with Ocean Science REU programs and serves as a resource for REU program directors. Pathways to Engineering has synthesized mentoring resources into an online mentoring manual for URM students that has been extensively vetted by mentoring experts throughout the country. The mentoring manual, which is organized by roles, provides undergraduates, graduates, postdocs, faculty and project directors with valuable resources. MS PHD'S, one of IBP's longest running and most successful initiatives, focuses on increasing the retention rate of URM students receiving advanced degrees in ESS. The program addresses barriers to retention in ESS including isolation, lack of preparation and professional development, and lack of mentoring. Program activities center on peer-to-peer community building, professional development exercises, networking experiences, one

  3. The PI3K/Akt pathway is required for LPS activation of microglial cells.

    PubMed

    Saponaro, Concetta; Cianciulli, Antonia; Calvello, Rosa; Dragone, Teresa; Iacobazzi, Francesco; Panaro, Maria Antonietta

    2012-10-01

    Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.

  4. Near-infrared laser increases MDPC-23 odontoblast-like cells proliferation by activating redox sensitive pathways.

    PubMed

    Rizzi, Manuela; Migliario, Mario; Rocchetti, Vincenzo; Tonello, Stelvio; Renò, Filippo

    2016-11-01

    Near infrared laser is known to induce biostimulatory effects, resulting in cell proliferation enhancement. Although such positive effect is widely exploited in various clinical applications, molecular mechanisms involved are still poorly understood. The aim of the study was to investigate the ability of laser stimulation to increase cell proliferation through an early activation of three redox sensitive pathways, namely Nrf-2, NF-κB and ERK in a rat odontoblast-like cell line (MDPC-23 cells). MDPC-23 cells were irradiated with different energy settings (0-50J, corresponding to 0-32.47J/cm 2 ) and cell proliferation was evaluated by cell counting. Nrf-2, NF-κB and ERK signaling pathways activation was investigated through Western blot analysis. Our results show that a single 25J laser stimulation is able to increase cell proliferation and that this effect could be increased by repeating the stimulation twice with a time lapse of 24h. Western blot experiments demonstrated that laser stimulation is able to induce an early activation response in intracellular signaling, with an overlapping time pattern between the three considered pathways. Results discussed in this paper reveal a complex mechanism underlying near-infrared induced increase in pre-odontoblasts proliferation, involving three survival pathways that can act both separately or through reciprocal crosstalk. In particular, data presented suggest an important role for ERK pathway that could act directly by stimulating cell proliferation but can also induce both Nrf-2 and NF-κB activation, acting as a critical cellular checkpoint in response to imbalanced redox state generated by a laser induced increase in ROS production. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    PubMed Central

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  6. A Comparison of the Reproductive Output Among the Relatives of Samoan Androphilic Fa'afafine and Gynephilic Men.

    PubMed

    Semenyna, Scott W; Petterson, Lanna J; VanderLaan, Doug P; Vasey, Paul L

    2017-01-01

    The sexually antagonistic gene hypothesis (SAGH) for male androphilia posits that genes associated with androphilia (i.e., sexual attraction to adult males) will result in lowered reproduction when present in males, but increased reproduction when present in females. Findings derived from some Western European samples furnish support for the SAGH; however, results from studies conducted in other regions of the world have been more equivocal. Our previous research in Samoa indicated that the mothers as well as the maternal and paternal grandmothers of androphilic males (known locally as fa'afafine) exhibit elevated reproductive output when compared to the relatives of gynephilic men (i.e., males that are sexually attracted to adult females). The present replication study tested the SAGH in Samoa using a sample that was 122 % larger than the one previously studied by our group (VanderLaan, Forrester, Petterson, & Vasey, 2012). In line with the predictions of the SAGH, we hypothesized that the grandmothers, aunts, and mothers of fa'afafine would show elevated reproductive output compared to those of Samoan gynephilic men. Data were collected from 191 fa'afafine and 191 gynephilic men on the reproductive output of their paternal and maternal biological relatives (i.e., mothers, grandmothers, aunts, uncles). The mothers and maternal grandmothers of fa'afafine showed elevated reproductive output compared to those of gynephilic men. The paternal grandmother effect was not replicated. Although these results are consistent with the SAGH, a lack of difference in the reproductive output of aunts renders support for the SAGH in Samoa equivocal.

  7. These two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project o

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project over California's Mojave Desert. This second flight phase is mapping the wingtip vortex of the lead aircraft, the Systems Research Aircraft (tail number 847), on the trailing F/A-18 tail number 847. Wingtip vortex is a spiraling wind flowing from the wing during flight. The project is studying the drag and fuel reduction of precision formation flying.

  8. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology

    PubMed Central

    Huang, Jihan; Cheung, Fan; Tan, Hor-Yue; Hong, Ming; Wang, Ning; Yang, Juan; Feng, Yibin; Zheng, Qingshan

    2017-01-01

    Yinchenhao decoction (YCHD) is a traditional Chinese medicine formulation, which has been widely used for the treatment of jaundice for 2,000 years. Currently, YCHD is used to treat various liver disorders and metabolic diseases, however its chemical/pharmacologic profiles remain to be elucidated. The present study identified the active compounds and significant pathways of YCHD based on network pharmacology. All of the chemical ingredients of YCHD were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Absorption, distribution, metabolism and excretion screening with oral bioavailability (OB) screening, drug-likeness (DL) and intestinal epithelial permeability (Caco-2) evaluation were applied to discover the bioactive compounds in YCHD. Following this, target prediction, pathway identification and network construction were employed to clarify the mechanism of action of YCHD. Following OB screening, and evaluation of DL and Caco-2, 34 compounds in YCHD were identified as potential active ingredients, of which 30 compounds were associated with 217 protein targets. A total of 31 significant pathways were obtained by performing enrichment analyses of 217 proteins using the JEPETTO 3.x plugin, and 16 classes of gene-associated diseases were revealed by performing enrichment analyses using Database for Annotation, Visualization and Integrated Discovery v6.7. The present study identified potential active compounds and significant pathways in YCHD. In addition, the mechanism of action of YCHD in the treatment of various diseases through multiple pathways was clarified. PMID:28791364

  9. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

    PubMed Central

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2015-01-01

    Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739

  10. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.

    PubMed

    Wang, Xiuyun; Huang, Wanlu; Liu, Jun; Yang, Zhimin; Huang, Bingru

    2017-02-01

    Heat stress transcription factors (HSFs) compose a large gene family, and different members play differential roles in regulating plant responses to abiotic stress. The objectives of this study were to identify and characterize an A2-type HSF, FaHsfA2c, in a cool-season perennial grass tall fescue (Festuca arundinacea Schreb.) for its association with heat tolerance and to determine the underlying physiological functions and regulatory mechanisms of FaHsfA2c imparting plant tolerance to heat stress. FaHsfA2c was localized in nucleus and exhibited a rapid transcriptional increase in leaves and roots during early phase of heat stress. Ectopic expression of FaHsfA2c improved basal and acquired thermotolerance in wild-type Arabidopsis and also restored heat-sensitive deficiency of hsfa2 mutant. Overexpression of FaHsfA2c in tall fescue enhanced plant tolerance to heat by triggering transcriptional regulation of heat-protective gene expression, improving photosynthetic capacity and maintaining plant growth under heat stress. Our results indicated that FaHsfA2c acted as a positive regulator conferring thermotolerance improvement in Arabidopsis and tall fescue, and it could be potentially used as a candidate gene for genetic modification and molecular breeding to develop heat-tolerant cool-season grass species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. An alternative mode of CD43 signal transduction activates pro-survival pathways of T lymphocytes.

    PubMed

    Bravo-Adame, Maria Elena; Vera-Estrella, Rosario; Barkla, Bronwyn J; Martínez-Campos, Cecilia; Flores-Alcantar, Angel; Ocelotl-Oviedo, Jose Pablo; Pedraza-Alva, Gustavo; Rosenstein, Yvonne

    2017-01-01

    CD43 is one of the most abundant co-stimulatory molecules on a T-cell surface; it transduces activation signals through its cytoplasmic domain, contributing to modulation of the outcome of T-cell responses. The aim of this study was to uncover new signalling pathways regulated by this sialomucin. Analysis of changes in protein abundance allowed us to identify pyruvate kinase isozyme M2 (PKM2), an enzyme of the glycolytic pathway, as an element potentially participating in the signalling cascade resulting from the engagement of CD43 and the T-cell receptor (TCR). We found that the glycolytic activity of this enzyme was not significantly increased in response to TCR+CD43 co-stimulation, but that PKM2 was tyrosine phosphorylated, suggesting that it was performing moonlight functions. We report that phosphorylation of both Y 105 of PKM2 and of Y 705 of signal transducer and activator of transcription 3 was induced in response to TCR+CD43 co-stimulation, resulting in activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway. ERK5 and the cAMP response element binding protein (CREB) were activated, and c-Myc and nuclear factor-κB (p65) nuclear localization, as well as Bad phosphorylation, were augmented. Consistent with this, expression of human CD43 in a murine T-cell hybridoma favoured cell survival. Altogether, our data highlight novel signalling pathways for the CD43 molecule in T lymphocytes, and underscore a role for CD43 in promoting cell survival through non-glycolytic functions of metabolic enzymes. © 2016 John Wiley & Sons Ltd.

  12. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  14. Exterior building details of Building A; east façade: concrete staircase, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building A; east façade: concrete staircase, profiled cement, plaster door surround, recessed panel inscribed "1859", historic window opening with concrete sill above door, cement plaster dentil course and cornice truncated wood beam ends, plaster finished brick wall, granite base; westerly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  15. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation

    PubMed Central

    Yu, Fa-Xing; Zhang, Yifan; Park, Hyun Woo; Jewell, Jenna L.; Chen, Qian; Deng, Yaoting; Pan, Duojia; Taylor, Susan S.; Lai, Zhi-Chun; Guan, Kun-Liang

    2013-01-01

    The Hippo tumor suppressor pathway plays an important role in tissue homeostasis that ensures development of functional organs at proper size. The YAP transcription coactivator is a major effector of the Hippo pathway and is phosphorylated and inactivated by the Hippo pathway kinases Lats1/2. It has recently been shown that YAP activity is regulated by G-protein-coupled receptor signaling. Here we demonstrate that cyclic adenosine monophosphate (cAMP), a second messenger downstream from Gαs-coupled receptors, acts through protein kinase A (PKA) and Rho GTPases to stimulate Lats kinases and YAP phosphorylation. We also show that inactivation of YAP is crucial for PKA-induced adipogenesis. In addition, PKA activation in Drosophila inhibits the expression of Yorki (Yki, a YAP ortholog) target genes involved in cell proliferation and death. Taken together, our study demonstrates that Hippo–YAP is a key signaling branch of cAMP and PKA and reveals new insight into mechanisms of PKA in regulating a broad range of cellular functions. PMID:23752589

  16. The ERK pathway regulates Na(+)-HCO(3)(-) cotransport activity in adult rat cardiomyocytes.

    PubMed

    Baetz, Delphine; Haworth, Robert S; Avkiran, Metin; Feuvray, Danielle

    2002-11-01

    The sarcolemmal Na(+)-HCO cotransporter (NBC) is stimulated by intracellular acidification and acts as an acid extruder. We examined the role of the ERK pathway of the MAPK cascade as a potential mediator of NBC activation by intracellular acidification in the presence and absence of angiotensin II (ANG II) in adult rat ventricular myocytes. Intracellular pH (pH(i)) was recorded with the use of seminaphthorhodafluor-1. The NH method was used to induce an intracellular acid load. NBC activation was significantly decreased with the ERK inhibitors PD-98059 and U-0126. NBC activity after acidification was increased in the presence of ANG II (pH(i) range of 6.75-7.00). ANG II plus PD-123319 (AT(2) antagonist) still increased NBC activity, whereas ANG II plus losartan (AT(1) antagonist) did not affect it. ERK phosphorylation (measured by immunoblot analysis) during intracellular acidification was increased by ANG II, an effect that was abolished by losartan and U-0126. In conclusion, the MAPK(ERK)-dependent pathway facilitates the rate of pH(i) recovery from acid load through NBC activity and is involved in the AT(1) receptor-mediated stimulation of such activity by ANG II.

  17. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa.

    PubMed

    Osthoff, Michael; Brown, Karl D; Kong, David C M; Daniell, Mark; Eisen, Damon P

    2014-01-01

    Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT-PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed.

  18. Activation of the lectin pathway of complement in experimental human keratitis with Pseudomonas aeruginosa

    PubMed Central

    Osthoff, Michael; Brown, Karl D.; Kong, David C.M.; Daniell, Mark

    2014-01-01

    Purpose Pseudomonas aeruginosa (P. aeruginosa) microbial keratitis (MK) is a sight-threatening disease. Previous animal studies have identified an important contribution of the complement system to the clearance of P. aeruginosa infection of the cornea. Mannose-binding lectin (MBL), a pattern recognition receptor of the lectin pathway of complement, has been implicated in the host defense against P. aeruginosa. However, studies addressing the role of the lectin pathway in P. aeruginosa MK are lacking. Hence, we sought to determine the activity of the lectin pathway in human MK caused by P. aeruginosa. Methods Primary human corneal epithelial cells (HCECs) from cadaveric donors were exposed to two different P. aeruginosa strains. Gene expression of interleukin (IL)-6, IL-8, MBL, and other complement proteins was determined by reverse transcription-polymerase chain reaction (RT–PCR) and MBL synthesis by enzyme-linked immunosorbent assay and intracellular flow cytometry. Results MBL gene expression was not detected in unchallenged HCECs. Exposure of HCECs to P. aeruginosa resulted in rapid induction of the transcriptional expression of MBL, IL-6, and IL-8. In addition, expression of several complement proteins of the classical and lectin pathways, but not the alternative pathway, were upregulated after 5 h of challenge, including MBL-associated serine protease 1. However, MBL protein secretion was not detectable 18 h after challenge with P. aeruginosa. Conclusions MK due to P. aeruginosa triggers activation of MBL and the lectin pathway of complement. However, the physiologic relevance of this finding is unclear, as corresponding MBL oligomer production was not observed. PMID:24426774

  19. Polyubiquitination events mediate polymethylmethacrylate (PMMA) particle activation of NF-kappaB pathway.

    PubMed

    Yamanaka, Yasuhiro; Karuppaiah, Kannan; Abu-Amer, Yousef

    2011-07-08

    The pathologic response to implant wear-debris constitutes a major component of inflammatory osteolysis and remains under intense investigation. Polymethylmethacrylate (PMMA) particles, which are released during implant wear and loosening, constitute a major culprit by virtue of inducing inflammatory and osteolytic responses by macrophages and osteoclasts, respectively. Recent work by several groups has identified important cellular entities and secreted factors that contribute to inflammatory osteolysis. In previous work, we have shown that PMMA particles contribute to inflammatory osteolysis through stimulation of major pathways in monocytes/macrophages, primarily NF-κB and MAP kinases. The former pathway requires assembly of large IKK complex encompassing IKK1, IKK2, and IKKγ/NEMO. We have shown recently that interfering with the NF-κB and MAPK activation pathways, through introduction of inhibitors and decoy molecules, impedes PMMA-induced inflammation and osteolysis in mouse models of experimental calvarial osteolysis and inflammatory arthritis. In this study, we report that PMMA particles activate the upstream transforming growth factor β-activated kinase-1 (TAK1), which is a key regulator of signal transduction cascades leading to activation of NF-κB and AP-1 factors. More importantly, we found that PMMA particles induce TAK1 binding to NEMO and UBC13. In addition, we show that PMMA particles induce TRAF6 and UBC13 binding to NEMO and that lack of TRAF6 significantly attenuates NEMO ubiquitination. Altogether, these observations suggest that PMMA particles induce ubiquitination of NEMO, an event likely mediated by TRAF6, TAK1, and UBC13. Our findings provide important information for better understanding of the mechanisms underlying PMMA particle-induced inflammatory responses.

  20. Targeting property and toxicity of a novel ultrasound contrast agent microbubble carrying the targeting and drug-loaded complex FA-CNTs-PTX on MCF7 cells.

    PubMed

    Zhang, Jie; Zhang, Yu; Liu, Junxi; Li, Guozhong; Wen, Zhaohui; Zhao, Yue; Zhang, Xiangyu; Liu, Fenghua

    2017-10-01

    The application of ultrasound contrast agents not only is confined to the enhancement of ultrasound imaging but also has started to be used as a drug system for diagnosis and treatment. In this paper, Span60 and PEG1500 were used as membrane materials, and a new targeting and drug-loading multifunctional ultrasound contrast agent microbubble enveloping the FA-CNTs-PTX complex was successfully prepared by acoustic cavitation. With the breast cancer cell line MCF7 as the research target, the effects of the microbubble with FA-CNTs-PTX on the proliferation and toxicity of MCF7 cells were studied using a CCK-8 and AO/EB double-staining method. The influences of the microbubbles with FA-CNTs-PTX on the cellular morphology and apoptosis period of the MCF7 cells were detected using an inverted fluorescence microscope. The apoptosis of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was investigated with flow cytometry and an annexin and PI double staining fluorescence quantitative analysis. The results indicated that the ultrasound contrast agent microbubble with FA-CNTs-PTX remarkably inhibited the proliferation of MCF7 cells, which was mainly controlled by the drug loading rate and the nanometer size of the microbubbles. Moreover, the proliferative inhibition rate of the microbubbles with FA-CNTs-PTX was related to the cell apoptosis period of MCF7 cells. Its inhibition degree on the proliferation of MCF7 cells was higher than that of the hepatoma HepG2 cells. The apoptosis rate of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was higher than that of normal human umbilical vein endothelial cells (HUVECs), and the microbubbles with FA-CNTs-PTX could target the MCF7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.