14 CFR 27.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... after the time the rotorcraft is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the rotorcraft is exposed to lightning. (b) For... recovers normal operation in a timely manner after the rotorcraft is exposed to lightning. [Doc. No. FAA...
14 CFR 27.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... after the time the rotorcraft is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the rotorcraft is exposed to lightning. (b) For... recovers normal operation in a timely manner after the rotorcraft is exposed to lightning. [Doc. No. FAA...
14 CFR 27.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... after the time the rotorcraft is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the rotorcraft is exposed to lightning. (b) For... recovers normal operation in a timely manner after the rotorcraft is exposed to lightning. [Doc. No. FAA...
NASA Astrophysics Data System (ADS)
1985-12-01
The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.
Certification of lightning protection for a full-authority digital engine control
NASA Technical Reports Server (NTRS)
Dargi, M.; Rupke, E.; Wiles, K.
1991-01-01
FADEC systems present many challenges to the lightning protection engineer. Verification of the protection-design adequacy for certification purposes presents additional challenges. The basic requirements of the certification plan of a FADEC is to demonstrate compliance with Federal Airworthiness Regulations (FAR) 25.1309 and 25.581. These FARs are intended for transport aircraft, but there are equivalent sections for general aviation aircraft, normal and transport rotorcraft. Military aircraft may have additional requirements. The criteria for demonstration of adequate lightning protection for a FADEC systems include the procedures outlined in FAA Advisory Circular (AC) 20-136, Protection of aircraft electrical/electronic systems against the indirect effects of lightning. As FADEC systems, including the interconnecting wiring, are generally not susceptible to direct attachment of lightning currents, the verification of protection against indirect effects is primarily described.
Designs for surge immunity in critical electronic facilities
NASA Technical Reports Server (NTRS)
Roberts, Edward F., Jr.
1991-01-01
In recent years, Federal Aviation Administration (FAA) embarked on a program replacing older tube type electronic equipment with newer solid state equipment. This replacement program dramatically increased the susceptibility of the FAA's facilities to lightning related damages. The proposal is presented of techniques which may be employed to lessen the susceptibility of new FAA electronic facility designs to failures resulting from lightning related surges and transients as well as direct strikes. The general concept espoused is one of a consistent system approach employing both perimeter and internal protection. It compares the technique presently employed to reduce electronic noise with other techniques which reduce noise while lowering susceptibility to lightning related damage. It is anticipated that these techniques will be employed in the design of an Air Traffic Control Tower in a high isokeraunic area. This facility would be subjected to rigorous monitoring over a multi-year period to provide quantitative data hopefully supporting the advantage of this design.
Implementation of the FAA research and development electromagnetic database
NASA Technical Reports Server (NTRS)
Mcdowall, R. L.; Grush, D. J.; Cook, D. M.; Glynn, M. S.
1991-01-01
The Idaho National Engineering Laboratory (INEL) has been assisting the FAA in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and ground-based lightning research projects. An outline of the data currently available in FRED is presented. The data sources which the FAA intends to incorporate into FRED are listed. In addition, it describes how the researchers may access and use the FRED menu system.
78 FR 11265 - Petition for Exemption; Summary of Petition Received
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... requirements of fuel-tank structural lightning protection for the fuel tanks on Boeing Model 767-2C airplanes... seeking relief from specified requirements of 14 CFR. The purpose of this notice is to improve the public's awareness of, and participation in, this aspect of the FAA's regulatory activities. Neither...
Implementation of the FAA research and development electromagnetic database
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowall, R.L.; Grush, D.J.; Cook, D.M.
1991-01-01
The Idaho National Engineering Laboratory (INEL) has been assisting the Federal Aviation Administration (FAA) in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and groundbased lightning research projects. This paper contains an outline of the data currently available in FRED. It also lists the data sources which the FAA intends to incorporate into FRED. In addition, it describes how the researcher may access and use the FRED menu system. 2 refs., 12 figs.
Rationales for the Lightning Launch Commit Criteria
NASA Technical Reports Server (NTRS)
Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.
2016-01-01
Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.
2013-01-01
To support FAA certification airworthiness standards, composite substrates are subjected to lightning direct-effect electrical waveforms to determine performance characteristics of the lightning strike protection (LSP) conductive layers used to protect composite substrates. Test results collected from independent LSP studies are often incomparable due to variability in test procedures & applied practices at different organizations, which impairs performance correlations between different LSP data sets. Under a NASA supported contract, The Boeing Company developed technical procedures and documentation as guidance in order to facilitate a test method for conducting universal common practice lightning strike protection test procedures. The procedures obtain conformity in future lightning strike protection evaluations to allow meaningful performance correlations across data sets. This universal common practice guidance provides the manufacturing specifications to fabricate carbon fiber reinforced plastic (CFRP) test panels, including finish, grounding configuration, and acceptable methods for pretest nondestructive inspection (NDI) and posttest destructive inspection. The test operations guidance elaborates on the provisions contained in SAE ARP5416 to address inconsistencies in the generation of damage protection performance data, so as to provide for maximum achievable correlation across capable lab facilities. In addition, the guidance details a direct effects test bed design to aid in quantification of the multi-physical phenomena surrounding a lightning direct attachment supporting validation data requirements for the development of predictive computational modeling. The lightning test bed is designed to accommodate a repeatable installation procedure to secure the test panel and eliminate test installation uncertainty. It also facilitates a means to capture the electrical waveform parameters in 2 dimensions, along with the mechanical displacement and thermal heating parameters which occur during lightning attachment. Following guidance defined in the universal common practice LSP test documents, protected and unprotected CFRP panels were evaluated at 20, 40 and 100KAmps. This report presents analyzed data demonstrating the scientific usefulness of the common practice approach. Descriptions of the common practice CFRP test articles, LSP test bed fixture, and monitoring techniques to capture the electrical, mechanical and thermal parameters during lightning attachment are presented here. Two methods of measuring the electrical currents were evaluated, inductive current probes and a newly developed fiberoptic sensor. Two mechanical displacement methods were also examined, optical laser measurement sensors and a digital imaging correlation camera system. Recommendations are provided to help users implement the common practice test approach and obtain LSP test characterizations comparable across data sets.
77 FR 24357 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... tubes, and actuator control electronics. In the event of a lightning strike, loss of lightning ground... ; Internet https://www.myboeingfleet.com . You may review copies of the referenced service information at the... availability of this material at the FAA, call 425-227-1221. Examining the AD Docket You may examine the AD...
76 FR 33139 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... availability and implement changes already adopted by the United States Air Force. DATES: Effective July 25... identify the docket and amendment numbers of this rulemaking. I. Background On August 25, 2006, the FAA... lightning during flight. Licensing and Safety Requirements for Launch, 71 FR 50508 (Aug. 25, 2006). An ELV...
Lightning Impacts on Airports - Challenges of Balancing Safety & Efficiency
NASA Astrophysics Data System (ADS)
Steiner, Matthias; Deierling, Wiebke; Nelson, Eric; Stone, Ken
2013-04-01
Thunderstorms and lightning pose a safety risk to personnel working outdoors, such as people maintaining airport grounds (e.g., mowing grass or repairing runway lighting) or servicing aircraft on ramps (handling baggage, food service, refueling, tugging and guiding aircraft from/to gates, etc.). Since lightning strikes can cause serious injuries or death, it is important to provide timely alerts to airport personnel so that they can get to safety when lightning is imminent. This presentation discusses the challenges and uncertainties involved in using lightning information and stakeholder procedures to ensure safety of outdoor personnel while keeping ramp operations as efficient as possible considering thunderstorm impacts. The findings presented are based on extensive observations of airline operators under thunderstorm impacts. These observations reveal a complex picture with substantial uncertainties related to the (1) source of lightning information (e.g., sensor type, network, data processing) used to base ramp closure decisions on, (2) uncertainties involved in the safety procedures employed by various stakeholders across the aviation industry (yielding notably different rules being applied by multiple airlines even at a single airport), and (3) human factors issues related to the use of decision support tools and the implementation of safety procedures. This research is supported by the United States Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.
76 FR 43825 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... Vehicles AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Direct final rule; Confirmation of... launch vehicle through or near an electrified environment in or near a cloud. These changes also increase...
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lightning protection. 25.581 Section 25.581...
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lightning protection. 25.581 Section 25.581...
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lightning protection. 25.581 Section 25.581...
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a) The airplane must be protected against catastrophic effects from lightning. (b) For metallic... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lightning protection. 25.581 Section 25.581...
Lightning protection: challenges, solutions and questionable steps in the 21st century
NASA Astrophysics Data System (ADS)
Berta, István
2011-06-01
Besides the special primary lightning protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary lightning protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of Lightning Protection plays an important role in the research and education of lightning and development of lightning protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive Lightning Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional lightning protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional lightning protection systems reported in the literature are the radioactive lightning rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).
NASA Manned Launch Vehicle Lightning Protection Development
NASA Technical Reports Server (NTRS)
McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.
2009-01-01
Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after lightning events at the launch pad. Because of high-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of lightning. A review of the vehicle design and potential concerns will be presented as well as the new catenary lightning protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle lightning effects protection might be compromised by such items as umbilical connections and open access hatches.
NASA Technical Reports Server (NTRS)
1980-01-01
Computer simulations and laboratory tests were used to evaluate the hazard posed by lightning flashes to ground on the Solar Power Satellite rectenna and to make recommendations on a lightning protection system for the rectenna. The distribution of lightning over the lower 48 of the continental United States was determined, as were the interactions of lightning with the rectenna and the modes in which those interactions could damage the rectenna. Lightning protection was both required and feasible. Several systems of lightning protection were considered and evaluated. These included two systems that employed lightning rods of different lengths and placed on top of the rectenna's billboards and a third, distribution companies; it consists of short lightning rods all along the length of each billboard that are connected by a horizontal wire above the billboard. The distributed lightning protection system afforded greater protection than the other systems considered and was easier to integrate into the rectenna's structural design.
14 CFR 25.581 - Lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning protection. 25.581 Section 25.581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Lightning Protection § 25.581 Lightning protection. (a...
30 CFR 56.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 56.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 56.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 56.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 56.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 56... Electricity § 56.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 57.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 57.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 57.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 57.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
30 CFR 57.12065 - Short circuit and lightning protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit and lightning protection. 57... MINES Electricity Surface Only § 57.12065 Short circuit and lightning protection. Powerlines, including trolley wires, and telephone circuits shall be protected against short circuits and lightning. ...
Faraday Cage Protects Against Lightning
NASA Technical Reports Server (NTRS)
Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.
1992-01-01
Faraday cage protects electronic and electronically actuated equipment from lightning. Follows standard lightning-protection principles. Whether lightning strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.
The Design of Lightning Protection
NASA Technical Reports Server (NTRS)
1983-01-01
Engineering study guides design and monitoring of lightning protection. Design studies for project are collected in 150-page report, containing wealth of information on design of lightning protection systems and on instrumentation for monitoring current waveforms of lightning strokes.
Lightning Technology: Proceedings of a Technical Symposium
NASA Technical Reports Server (NTRS)
1980-01-01
Several facets of lightning technology are considered including phenomenology, measurement, detection, protection, interaction, and testing. Lightning electromagnetics, protection of ground systems, and simulated lightning testing are emphasized. The lightning-instrumented F-106 aircraft is described.
Development of concepts for the protection of space launchers against lightning
NASA Astrophysics Data System (ADS)
Taillet, Joseph
1988-12-01
Following a review of the characteristics of lightning and the effects of lightning on space launchers, various strategies for protection against lightning are discussed. Special attention is given to the damage inflicted on the Apollo 12 and Atlas/Centaur vehicles by lightning. It is demonstrated that the protection of space launchers is best performed by the real-time observation of atmospheric discharges at high altitude by such systems as the interferometric lightning alert system, SAFIR.
Space Shuttle Lightning Protection
NASA Technical Reports Server (NTRS)
Suiter, D. L.; Gadbois, R. D.; Blount, R. L.
1979-01-01
The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics.
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
Lightning Protection Guidelines for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Goodloe, C. C.
1999-01-01
This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
14 CFR 23.954 - Fuel system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 23.954... Fuel System § 23.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct lightning strikes to areas having a...
30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of the point where the circuit enters the mine. Lightning arrestors shall be connected to a low... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and...
30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of the point where the circuit enters the mine. Lightning arrestors shall be connected to a low... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and...
30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the point where the circuit enters the mine. Lightning arrestors shall be connected to a low... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omidiora, M. A.; Lehtonen, M.
2008-05-08
This paper deals with the effect of shield wires on lightning overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of lightning protection in Finnish distribution networks where lightning is most severe. The true index of lightning severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple lightning strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). Themore » response of the distribution line to lightning strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.« less
30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet of the point where the circuit enters the mine. Lightning arrestors shall be connected to a low resistance grounding... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lightning protection for telephone wires and...
30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet of the point where the circuit enters the mine. Lightning arrestors shall be connected to a low resistance grounding... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lightning protection for telephone wires and...
30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lightning shall be equipped with suitable lightning arrestors of approved type within 100 feet of the point where the circuit enters the mine. Lightning arrestors shall be connected to a low resistance grounding... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lightning protection for telephone wires and...
Aircraft Lightning Electromagnetic Environment Measurement
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.
2011-01-01
This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.
Structural Analysis of Lightning Protection System for New Launch Vehicle
NASA Technical Reports Server (NTRS)
Cope, Anne; Moore, Steve; Pruss, Richard
2008-01-01
This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.
High current lightning test of space shuttle external tank lightning protection system
NASA Technical Reports Server (NTRS)
Mumme, E.; Anderson, A.; Schulte, E. H.
1977-01-01
During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.
21st Century Lightning Protection for High Altitude Observatories
NASA Astrophysics Data System (ADS)
Kithil, Richard
2013-05-01
One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.
14 CFR 27.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against... static electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of...
14 CFR 27.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against... static electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of...
14 CFR 27.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against... static electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of...
14 CFR 27.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against... static electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of...
14 CFR 27.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lightning and static electricity protection....610 Lightning and static electricity protection. (a) The rotorcraft must be protected against... static electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of...
Lightning threat to aircraft: Do we know all we need to know?
NASA Technical Reports Server (NTRS)
Mazur, Vladislav
1991-01-01
The problem of lightning threat to aircraft has two aspects: strike avoidance and aircraft protection. These two issues are addressed under the following topics: (1) lightning strikes, weather conditions, and natural lightning rate; (2) the engineering vs. scientific approach to aircraft protection; and (3) the additional information needed to understand lightning threat to aircraft.
14 CFR 29.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected... electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of electric...
14 CFR 29.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected... electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of electric...
14 CFR 29.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected... electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of electric...
14 CFR 29.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected... electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of electric...
14 CFR 29.610 - Lightning and static electricity protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lightning and static electricity protection... § 29.610 Lightning and static electricity protection. (a) The rotorcraft structure must be protected... electricity must— (1) Minimize the accumulation of electrostatic charge; (2) Minimize the risk of electric...
A comparison between initial continuous currents of different types of upward lightning
NASA Astrophysics Data System (ADS)
Wang, D.; Sawada, N.; Takagi, N.
2009-12-01
We have observed the lightning to a wind turbine and its lightning-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and lightning-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its lightning protection tower, (3) normal video and high speed image of lightning optical channels. Totally, we have obtained the data for 42 lightning that hit either on wind turbine or its lightning protection tower or both. Among these 42 lightning, 38 are upward lightning and 2 are downward lightning. We found the upward lightning can be sub-classified into two types. Type 1 upward lightning are self-triggered from a high structure, while type 2 lightning are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward lightning in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered lightning tends to rise significantly faster and to a bigger peak value than the other-triggered lightning, although both types of lightning transferred similar amount of charge to the ground.
Lightning protection technology for small general aviation composite material aircraft
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Setzer, T. E.; Siddiqi, S.
1993-01-01
An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.
Lightning protection for shuttle propulsion elements
NASA Technical Reports Server (NTRS)
Goodloe, Carolyn C.; Giudici, Robert J.
1991-01-01
The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.
Regulatory Guidance for Lightning Protection in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Wilgen, John B; Ewing, Paul D
2006-01-01
Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.« less
Regulatory guidance for lightning protection in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.
2006-07-01
Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)« less
NASA Technical Reports Server (NTRS)
1991-01-01
Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.
Lightning attachment process to common buildings
NASA Astrophysics Data System (ADS)
Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.
2017-05-01
The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.
Grounding and lightning protection. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, M.D.
1987-12-31
Grounding systems protect personnel and equipment by isolating faulted systems and dissipating transient currents. Lightning protection systems minimize the possible consequences of a direct strike by lightning. This volume focuses on design requirements of the grounding system and on present-day concepts used in the design of lightning protection systems. Various types of grounding designs are presented, and their advantages and disadvantages discussed. Safety, of course, is the primary concern of any grounding system. Methods are shown for grounding the non-current-carrying parts of electrical equipment to reduce shock hazards to personnel. Lightning protection systems are installed on tall structures (such asmore » chimneys and cooling towers) to minimize the possibility of structural damage caused by direct lightning strokes. These strokes may carry currents of 200,000 A or more. The volume examines the formation and characteristics of lightning strokes and the way stroke characteristics influence the design of lightning protection systems. Because a large portion of the grounding system is buried in soil or concrete, it is not readily accessible for inspection or repair after its installation. The volume details the careful selection and sizing of materials needed to ensure a long, maintenance-free life for the system. Industry standards and procedures for testing the adequacy of the grounding system are also discussed.« less
How to protect a wind turbine from lightning
NASA Technical Reports Server (NTRS)
Dodd, C. W.; Mccalla, T., Jr.; Smith, J. G.
1983-01-01
Techniques for reducing the chances of lightning damage to wind turbines are discussed. The methods of providing a ground for a lightning strike are discussed. Then details are given on ways to protect electronic systems, generating and power equipment, blades, and mechanical components from direct and nearby lightning strikes.
14 CFR 25.1316 - System lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... systems to perform these functions are not adversely affected when the airplane is exposed to lightning... these functions can be recovered in a timely manner after the airplane is exposed to lightning. (c) Compliance with the lightning protection criteria prescribed in paragraphs (a) and (b) of this section must...
Space shuttle program: Lightning protection criteria document
NASA Technical Reports Server (NTRS)
1975-01-01
The lightning environment for space shuttle design is defined and requirements that the design must satisfy to insure protection of the vehicle system from direct and indirect effects of lightning are imposed. Specifications, criteria, and guidelines included provide a practical and logical approach to protection problems.
NASA Technical Reports Server (NTRS)
Collier, Richard S.
1997-01-01
This report describes finite difference computer calculations for the Space Shuttle Launch Pad which predict lightning induced electric currents and electric and magnetic fields caused by a lightning strike to the Lightning Protection System caternary wire. Description of possible lightning threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of lightning induced electric and magnetic fields inside and outside the during a lightning event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or lightning protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.
Lightning strike protection of composites
NASA Astrophysics Data System (ADS)
Gagné, Martin; Therriault, Daniel
2014-01-01
Aircraft structures are being redesigned to use fiber-reinforced composites mainly due to their high specific stiffness and strength. One of the main drawbacks from changing from electrically conductive metals to insulating or semi-conducting composites is the higher vulnerability of the aircraft to lightning strike damage. The current protection approach consists of bonding a metal mesh to the surface of the composite structure, but this weight increase negatively impact the fuel efficiency. This review paper presents an overview of the lightning strike problematic, the regulations, the lightning damage to composite, the current protection solutions and other material or technology alternatives. Advanced materials such as polymer-based nanocomposites and carbon nanotube buckypapers are promising candidates for lightweight lightning strike protection technology.
Lightning protection design external tank /Space Shuttle/
NASA Technical Reports Server (NTRS)
Anderson, A.; Mumme, E.
1979-01-01
The possibility of lightning striking the Space Shuttle during liftoff is considered and the lightning protection system designed by the Martin Marietta Corporation for the external tank (ET) portion of the Shuttle is discussed. The protection system is based on diverting and/or directing a lightning strike to an area of the spacecraft which can sustain the strike. The ET lightning protection theory and some test analyses of the system's design are reviewed including studies of conductivity and thermal/stress properties in materials, belly band feasibility, and burn-through plug grounding and puncture voltage. The ET lightning protection system design is shown to be comprised of the following: (1) a lightning rod on the forward most point of the ET, (2) a continually grounded, one inch wide conductive strip applied circumferentially at station 371 (belly band), (3) a three inch wide conductive belly band applied over the TPS (i.e. the insulating surface of the ET) and grounded to a structure with eight conductive plugs at station 536, and (4) a two inch thick TPS between the belly bands which are located over the weld lands.
14 CFR 29.954 - Fuel system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 29.954...
14 CFR 29.954 - Fuel system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 29.954...
14 CFR 27.954 - Fuel system lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 27.954...
14 CFR 25.954 - Fuel system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 25.954...
14 CFR 29.954 - Fuel system lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 29.954...
14 CFR 27.954 - Fuel system lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 27.954...
14 CFR 29.954 - Fuel system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 29.954...
14 CFR 27.954 - Fuel system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 27.954...
14 CFR 25.954 - Fuel system lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 25.954...
14 CFR 25.954 - Fuel system lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system lightning protection. 25.954...
14 CFR 25.954 - Fuel system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 25.954...
14 CFR 27.954 - Fuel system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system lightning protection. 27.954...
14 CFR 29.954 - Fuel system lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system lightning protection. 29.954...
14 CFR 27.954 - Fuel system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system lightning protection. 27.954...
14 CFR 25.954 - Fuel system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.954 Fuel system lightning protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system lightning protection. 25.954...
14 CFR 23.867 - Electrical bonding and protection against lightning and static electricity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical bonding and protection against lightning and static electricity. 23.867 Section 23.867 Aeronautics and Space FEDERAL AVIATION... Electrical bonding and protection against lightning and static electricity. (a) The airplane must be...
14 CFR 23.867 - Electrical bonding and protection against lightning and static electricity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical bonding and protection against lightning and static electricity. 23.867 Section 23.867 Aeronautics and Space FEDERAL AVIATION... Electrical bonding and protection against lightning and static electricity. (a) The airplane must be...
14 CFR 23.867 - Electrical bonding and protection against lightning and static electricity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical bonding and protection against lightning and static electricity. 23.867 Section 23.867 Aeronautics and Space FEDERAL AVIATION... Electrical bonding and protection against lightning and static electricity. (a) The airplane must be...
14 CFR 23.867 - Electrical bonding and protection against lightning and static electricity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical bonding and protection against lightning and static electricity. 23.867 Section 23.867 Aeronautics and Space FEDERAL AVIATION... Electrical bonding and protection against lightning and static electricity. (a) The airplane must be...
14 CFR 23.867 - Electrical bonding and protection against lightning and static electricity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical bonding and protection against lightning and static electricity. 23.867 Section 23.867 Aeronautics and Space FEDERAL AVIATION... Electrical bonding and protection against lightning and static electricity. (a) The airplane must be...
30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is directly...
30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed to...
30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed to...
30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is directly...
NASA Astrophysics Data System (ADS)
Vinh, T.
1980-08-01
There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.
Lightning and its effects on railroad signal circuits
DOT National Transportation Integrated Search
1975-12-31
This study discusses the occurrence of lightning, its effects on railroad signal equipment, and protection of such equipment from lightning damage, with special attention to known protective techniques which are employed in a variety of situations in...
Summary report of the Lightning and Static Electricity Committee
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1979-01-01
Lightning protection technology as applied to aviation and identifying these technology needs are presented. The flight areas of technical needs include; (1) the need for In-Flight data on lightning electrical parameters; (2) technology base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from General Aviation; (6) lightning detection systems; (7) obtain pilot reports of lightning strikes; and (8) better training in lightning awareness. The nature of each problem, timeliness, impact of solutions, degree of effort required, and the roles of government and industry in achieving solutions are discussed.
Lightning Instrumentation at KSC
NASA Technical Reports Server (NTRS)
Colon, Jose L.; Eng, D.
2003-01-01
This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.
Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area
NASA Astrophysics Data System (ADS)
Sugimoto, Hitoshi; Shimasaki, Katsuhiko
The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.
1983-10-01
PHOTOGRAPH THIS SHEET !P...vTEjAT//V,41 AEP.oSPfqc-/ &rJ Raulvn (C MFCeAX.NC; CA) D LEVEL INVENTORY’z.~~F/ er-/lcn I - CD . A-DDENDUM L’&/NTCJG...061 DATE RECEIVED IN I)TI( REGISTERED OR CERTIFIED NO. PHOTOGRAPH THIS SHEET AM) RI-TURN TO I)TIC-I)I)AC OTIC FORM 70A I’IMNT PRO(ESSIN( SHI’ET...New Jersey 08405 15. Supplementary Noses The NICG consists of members from the U.S. Air Force, U.S. Army, U.S. Navy, NASA , NOAA, and the FAA. lt 16
Lightning Protection and Instrumentation at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Colon, Jose L.
2005-01-01
Lightning is a natural phenomenon, but can be dangerous. Prevention of lightning is a physical impossibility and total protection requires compromises on costs and effects, therefore prediction and measurements of the effects that might be produced by iightn:ing is a most at locat:ions where people or sensitive systems and equipment are exposed. This is the case of the launching pads for the Space Shuttle at Kennedy Space Center (KSC) of the National Aeronautics and Space Administration. This report summarizes lightring phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at the launching pads for measurements of lightning effects with alternatives to improve the protection system and up-grade the actual instrumentation system is indicated.
75 FR 16676 - Airworthiness Standards; Electrical and Electronic System Lightning Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... systems that allow them to operate into instrument meteorological conditions (IMC), where lightning... 27 standards that operate in VFR-only operations with electrical or electronic systems installed for... Airworthiness Standards; Electrical and Electronic System Lightning Protection AGENCY: Federal Aviation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... by the manufacturer. We are proposing this AD to increase the level of protection from lightning... could result in a reduced level of protection against a lightning strike which could be a potential... conducted by the manufacturer. We are issuing this AD to increase the level of protection from lightning...
1985-09-01
Gallon External Fuel Tank. a. This is a filament-wound fuel tank with nomex honeycomb core, inner layers of Kevlar and glass , outer layers of...MD 20910 Dr. A. Carro FAA Technical Center Mr. Jack Lippert ACT-340 AFWAL/FIEA Atlantic City Airport, NJ 08405 Air Force Wright Aeronautical Lab
Lightning protection design and testing of an all composite wet wing for the Egrett
NASA Technical Reports Server (NTRS)
Burrows, B. J. C.; Haigh, S. J.; Chessum, C.; Dunkley, V. P.
1991-01-01
The Egrett aircraft has an all composite wing comprising CFC(carbon fiber composite)/Nomex sandwich skins, full length CFC main spar caps, and GFRP (glass fiber reinforced plastics) main and auxiliary spar webs. It also has short inboard CFC auxiliary spar caps. It has fine aluminum wires woven into the surface for protection. It has an integral fuel tank using the CFC/Nomex skins as the upper and lower tank walls, and lies between the forward auxiliary spar and the forward of the two main spar webs. The fuel tank is not bagged, i.e., it is in effect a wet wing tank. It has conventional capacitive type fuel gauging. The aircraft was cleared to IFR standards and so required full lightning protection and demonstration that it would survive the lightning environment. The lightning protection was designed for the wing (and also for the remainder of the aircraft). An inner wing test samples (which included a part of the fuel tank) were tested as part of the proving program. The protection design and the testing process are described. The intrinsic structural features are indicated that improve lightning protection design and which therefore minimize the weight and cost of any added lightning protection components.
Lightning protection of wind turbines
NASA Technical Reports Server (NTRS)
Dodd, C. W.
1982-01-01
Possible damages to wind turbine components due to lightning strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against lightning damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a lightning waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and lightning-resistant components be chosen early in the design phase.
Lightning protection of wind turbines
NASA Astrophysics Data System (ADS)
Dodd, C. W.
1982-05-01
Possible damages to wind turbine components due to lightning strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against lightning damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a lightning waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and lightning-resistant components be chosen early in the design phase.
Lightning Effects in the Payload Changeout Room
NASA Technical Reports Server (NTRS)
Thomas, Garland L.; Fisher, Franklin A.; Collier, Richard S.; Medelius, Pedro J.
1997-01-01
Analytical and empirical studies have been performed to provide better understanding of the electromagnetic environment inside the Payload Changeout Room and Orbiter payload bay resulting from lightning strikes to the launch pad lightning protection system. The analytical studies consisted of physical and mathematical modeling of the pad structure and the Payload Changeout Room. Empirical testing was performed using a lightning simulator to simulate controlled (8 kA) lightning strikes to the catenary wire lightning protection system. In addition to the analyses and testing listed above, an analysis of the configuration with the vehicle present was conducted, in lieu of testing, by the Finite Difference, Time Domain method.
Lightning protection of distribution lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, T.E.; Short, T.A.; Anderson, J.G.
1994-01-01
This paper reports a study of distribution line lightning performance, using computer simulations of lightning overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby lightning strokes need not be a significant lightning performance problem for most distribution lines.
Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.
2009-01-01
The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.
DOT National Transportation Integrated Search
2002-08-09
This document mandates standard lightning protection, transient protection, electrostatic discharge (ESD), grounding, bonding and shielding configurations and procedures for new facilities, facility modifications, facility up grades, new equipment in...
NASA Technical Reports Server (NTRS)
1998-01-01
With technical assistance from Marshall Space Flight Center and Kennedy Space Center, Protective Cable and Wire developed Lightning Retardant Cable (LRC). LRC improves lightning protection over standard coaxial cable by 100 percent. The LRC design keeps lightning from traveling through the cable, preventing damage to satellites, antennas, and cable systems. LRC is now being used in homes as well as airports.
14 CFR 25.1316 - System lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... airplane; (5) Establishing the susceptibility of the systems to the internal and external lightning...) Determining the lightning strike zones for the airplane; (2) Establishing the external lightning environment for the zones; (3) Establishing the internal environment; (4) Identifying all the electrical and...
Mathematical models for determining the protected spaces of the vertical lightning rod
NASA Technical Reports Server (NTRS)
Mladenovic, I.; Vorgucic, A.
1991-01-01
Two mathematical models are presented for determining the protected spaces of the vertical lightning-rod. In the first model there was applied the circular approximation. Through the introduction of the modified striking distance in the second improved approximation there was obtained a new model for the protected space of the lightning-rod. The models are of general type, foreseen for the three-dimensional space and they are simply applied on solving the practical problems.
A review of advances in lightning observations during the past decade in Guangdong, China
NASA Astrophysics Data System (ADS)
Zhang, Yijun; Lü, Weitao; Chen, Shaodong; Zheng, Dong; Zhang, Yang; Yan, Xu; Chen, Lüwen; Dong, Wansheng; Dan, Jianru; Pan, Hanbo
2016-08-01
This paper reviews recent advances in understanding the physical processes of artificially triggered lightning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experiments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was revealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.
NASA Technical Reports Server (NTRS)
Mata, C. T.; Rakov, V. A.; Mata, A. G.
2010-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new lightning protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new Lightning Protection System (LPS) of LC39B was built at the International Center for Lightning Research and Testing, Camp Blanding, FL. This scaled down lightning protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct lightning strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.
NASA Astrophysics Data System (ADS)
Aulich, G. D.; Moore, C. B.; Rison, W.
2006-12-01
Most people know that Ben Franklin invented the lightning rod and that his rods have successfully protected structures for over 250 years. What people don't know is that he invented them on the basis of two misconceptions. The first, that an elevated pointed conductor would discharge a thunderstorm, thereby preventing lightning. The second, that, should the first process fail, the elevated conductor, by virtue of its pointed tip, would serve as a preferred receptor for any lightning strokes that did occur. It has long been known that grounded, elevated, pointed conductors can not discharge thunderstorms and experiments conducted at the Langmuir Laboratory during the 1990s have shown that moderately blunt, rather than pointed, rods are the best receptors for lightning strokes. Nevertheless, Franklin's incorrect ideas about lightning rods persist in many minds, even among some people in the lightning protection business.
Atmospheric electricity. [lightning protection criteria in spacecraft design
NASA Technical Reports Server (NTRS)
Daniels, G. E.
1973-01-01
Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.
NASA Technical Reports Server (NTRS)
Harwood, T. L.
1991-01-01
The Navy A-6E aircraft is presently being modified with a new wing which uses graphite/epoxy structures and substructures around a titanium load-bearing structure. The ability of composites to conduct electricity is less than that of aluminum. This is cause for concern when the wing may be required to conduct large lightning currents. The manufacturer attempted to solve lightning protection issues by performing a risk assessment based on a statistical approach which allows relaxation of the wing lightning protection design levels over certain locations of the composite wing. A sensitivity study is presented designed to define the total risk of relaxation of the design levels.
30 CFR 77.508-1 - Lightning arresters; wires entering buildings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lightning arresters; wires entering buildings... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.508-1 Lightning arresters; wires entering buildings. Lightning arresters protecting exposed telephone wires entering buildings shall be provided at...
30 CFR 77.508-1 - Lightning arresters; wires entering buildings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters; wires entering buildings... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.508-1 Lightning arresters; wires entering buildings. Lightning arresters protecting exposed telephone wires entering buildings shall be provided at...
30 CFR 77.508-1 - Lightning arresters; wires entering buildings.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lightning arresters; wires entering buildings... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.508-1 Lightning arresters; wires entering buildings. Lightning arresters protecting exposed telephone wires entering buildings shall be provided at...
30 CFR 77.508-1 - Lightning arresters; wires entering buildings.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lightning arresters; wires entering buildings... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.508-1 Lightning arresters; wires entering buildings. Lightning arresters protecting exposed telephone wires entering buildings shall be provided at...
30 CFR 77.508-1 - Lightning arresters; wires entering buildings.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lightning arresters; wires entering buildings... OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.508-1 Lightning arresters; wires entering buildings. Lightning arresters protecting exposed telephone wires entering buildings shall be provided at...
NASA Astrophysics Data System (ADS)
Wang, D.; Takagi, N.
2012-12-01
We have observed the lightning occurred on a 100 m high windmill and its 105 m high standalone lightning-protection tower about 45 m separated from the windmill in the Hokuriku area of Japan for 7 consecutive winter seasons from 2005 to 2012. Our main observation items include: (1) Lightning current at the bottom of both the windmill and the tower. (2) Thunderstorm electric fields and the electric field changes caused by lightning at multiple sites. (3) Optical images by both low and high speed imaging systems. During the 7 winter seasons, over 100 lightning have hit either the tower or the windmill or both. All the lightning but two observed are of upward lightning. Those upward lightning can be sub-classified into self-initiated types and other-triggered types according to whether there is a discharge activity prior to the upward leaders or not. Self-initiated and other-triggered upward lightning tend to have biased percentages in terms of striking locations (windmill versus tower) and thunderstorm types (active versus weak). All the upward lightning but one contained only initial continuous current stages. In the presentation, we will first give a review on those results we have reported before [1-3]. As an update, we will report the following results. (1) The electric field change required for triggering a negative upward leader is usually more than twice bigger than that for triggering a positive upward leader. (2) An electric current pulse with an amplitude of several tens of Amperes along a high structure has been observed to occur in response to a rapid electric change generated by either a nearby return stroke or K-change. References [1] D.Wang, N.Takagi, T.Watanebe, H. Sakurano, M. Hashimoto, Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower, Geophys. Res. Lett., Vol.35, L02803, doi:10.1029/2007GL032136, 2008. [2] W. Lu, D.Wang, Y. Zhang and N. Takagi, Two associated upward lightning flashes that produced opposite polarity electric field changes, Geophys. Res. Lett., Vol.36, L05801, doi:10.1029/2008GL036598, 2009. [3] D. Wang, N. Takagi, Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in Japan, IEEJ Trans. on Power and Energy, Vol. 132, No.6, pp.568-572, Doi:10.1541/ieejpes.132.568, 2012.
Protection against lightning at a geomagnetic observatory
NASA Astrophysics Data System (ADS)
Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.
2014-08-01
The Sinji Vrh Geomagnetic Observatory was built on the brow of Gora, the mountain above Ajdovščina, which is a part of Trnovo plateau, and all over Europe one can hardly find an area which is more often struck by lightning than this southwestern part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes an additional electrical charge of stormy clouds. The reliability of operations performed in every section of the observatory could be increased by understanding the formation of lightning in a thunderstorm cloud and the application of already-proven methods of protection against a stroke of lightning and against its secondary effects. To reach this goal the following groups of experts have to cooperate: experts in the field of protection against lightning, constructors and manufacturers of equipment and observatory managers.
NASA Technical Reports Server (NTRS)
Wilson, Timmy R.; Kichak, Robert; Rakov, Vladimir; Kithil, Richard, Jr.; Sargent, Noel B.
2009-01-01
The existing lightning protection system at Pad 39B for the Space Shuttle is an outgrowth of a system that was put in place for the Apollo Program. Dr. Frank Fisher of Lightning Technologies was a key participant in the design and implementation of that system. He conveyed to the NESC team that the catenary wire provision was put in place quickly (as assurance against possible vehicle damage causing critical launch delays) rather than being implemented as a comprehensive system designed to provide a high degree of guaranteed protection. Also, the technology of lightning protection has evolved over time with considerable work being conducted by groups such as the electric utilities companies, aircraft manufacturers, universities, and others. Several accepted present-day methods for analysis of lightning protection were used by Drs. Medelius and Mata to study the expected lightning environment for the Pad 39B facility and to analyze the degree of protection against direct lightning attachment to the Space Shuttle. The specific physical configuration directly affects the vulnerability, so cases that were considered included the RSS next to and rolled back from the Space Shuttle, and the GOx Vent Arm both extended and withdrawn from the ET. Elements of the lightning protection system at Pad 39B are shown in Figure 6.0-1 and consist of an 80 foot insulating mast on top of the Fixed Support Structure (FSS), a catenary wire system that runs from the mast in a North/South direction to grounds 1000 feet away on each side of the mast, the RSS which can either be next to or away from the Space Shuttle, and a GOx vent that can either be extended or retracted from the top of the ET.
14 CFR 25.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... time the airplane is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the airplane is exposed to lightning. (b) Each electrical... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical and electronic system lightning...
14 CFR 25.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... time the airplane is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the airplane is exposed to lightning. (b) Each electrical... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical and electronic system lightning...
14 CFR 25.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... time the airplane is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the airplane is exposed to lightning. (b) Each electrical... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical and electronic system lightning...
Magnetic field generated by lightning protection system
NASA Astrophysics Data System (ADS)
Geri, A.; Veca, G. M.
1988-04-01
A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.
Simulation study on the lightning overvoltage invasion control transformer intelligent substation
NASA Astrophysics Data System (ADS)
Xi, Chuyan; Hao, Jie; Zhang, Ying
2018-04-01
By simulating lightning on substation line of one intelligent substation, research the influence of different lightning points on lightning invasion wave overvoltage, and the necessity of arrester for the main transformer. The results show, in a certain lightning protection measures, the installation of arrester nearby the main transformer can effectively reduce the overvoltage value of bus and the main transformer [1].
14 CFR 23.1306 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... affected during and after the time the airplane is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the airplane is exposed to lightning... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical and electronic system lightning...
14 CFR 23.1306 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... affected during and after the time the airplane is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the airplane is exposed to lightning... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical and electronic system lightning...
14 CFR 29.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... after the time the rotorcraft is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the rotorcraft is exposed to lightning. (b) Each... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical and electronic system lightning...
14 CFR 29.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... after the time the rotorcraft is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the rotorcraft is exposed to lightning. (b) Each... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical and electronic system lightning...
14 CFR 23.1306 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... affected during and after the time the airplane is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the airplane is exposed to lightning... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical and electronic system lightning...
14 CFR 29.1316 - Electrical and electronic system lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... after the time the rotorcraft is exposed to lightning; and (2) The system automatically recovers normal operation of that function in a timely manner after the rotorcraft is exposed to lightning. (b) Each... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical and electronic system lightning...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, T J; Brown, C G; Ong, M M
2006-01-11
Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the Nationalmore » Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.« less
NASA Astrophysics Data System (ADS)
Ullah, Irshad; Baharom, MNR; Ahmed, H.; Luqman, HM.; Zainal, Zainab
2017-11-01
Protection against lightning is always a challenging job for the researcher. The consequences due to lightning on different building shapes needs a comprehensive knowledge in order to provide the information to the common man. This paper is mainly concern with lightning pattern when it strikes on the building with different shape. The work is based on the practical experimental work in high voltage laboratory. Different shapes of the scaled structures have been selected in order to investigate the equal distribution of lightning voltage. The equal distribution of lightning voltage will provide the maximum probability of lightning strike on air terminal of the selected shapes. Building shapes have a very important role in lightning protection. The shapes of the roof tops have different geometry and the Franklin rod installation is also varies with changing the shape of the roof top. According to the ambient weather condition of Malaysia high voltage impulse is applied on the lightning rod installed on different geometrical shape. The equal distribution of high voltage impulse is obtained as the geometry of the scaled structure is identical and the air gap for all the tested object is kept the same. This equal distribution of the lightning voltage also proves that the probability of lightning strike is on the corner and the edges of the building structure.
NASA Astrophysics Data System (ADS)
Fujii, Toshiaki; Yasuda, Yoh; Ueda, Toshiaki
With the worldwide spread of wind turbine installations, various problems such as landscape issues, bird strikes and grid connections have arisen. Protection of wind turbines from lightning is cited as one of the main problems. Wind turbines are often struck by lightning because of their open-air locations, such as in mountainous areas, and their special configuration and very-high construction. Especially, low-voltage and control circuits can fail or suffer burnout while blades can incur serious damage if struck by lightning. Wind turbine failures caused by lightning strikes account for approximately 25% of all failures. The problem is regarded as a global one that needs immediate resolution. It is important to understand the impedance characteristics of wind turbine earthing systems from the viewpoint of lightning protection. A report from IEC TR61400-24 recommends a “ring earth electrode”. This was originally defined in IEC 61024 (currently revised and re-numbered as IEC 62305), where such an electrode is recommended to reduce touch and step voltages in households and buildings. IEC TR61400-24 also recommended additional electrodes of vertical or horizontal rods. However, these concepts have not been fully discussed from the viewpoint of its application to wind turbines. To confirm the effect of a combination of a ring earth electrode and additional vertical rods for protection of a wind turbine, this report uses the Finite Difference Time Domain (FDTD) method to present an electromagnetic transient analysis on such a wind turbine earthing system. The results show that an optimal combination can be arranged from viewpoints of lightning protection and construction cost. Thus, this report discusses how to establish a quantitative design methodology of the wind turbine earthing system to provide effective lightning protection.
Lightning protection system for a wind turbine
Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT
2008-05-27
In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).
NASA Astrophysics Data System (ADS)
Du, Patrick Y.; Zhou, Qi-Bin
This paper presents an analysis of lightning-induced magnetic fields in a building. The building of concern is protected by the lightning protection system with an insulated down conductor. In this paper a system model for metallic structure of the building is constructed first using the circuit approach. The circuit model of the insulated down conductor is discussed extensively, and explicit expressions of the circuit parameters are presented. The system model was verified experimentally in the laboratory. The modeling approach is applied to analyze the impulse magnetic fields in a full-scale building during a direct lightning strike. It is found that the impulse magnetic field is significantly high near the down conductor. The field is attenuated if the down conductor is moved to a column in the building. The field can be reduced further if the down conductor is housed in an earthed metal pipe. Recommendations for protecting critical equipment against lightning-induced magnetic fields are also provided in the paper.
Electrically conductive carbon fibre-reinforced composite for aircraft lightning strike protection
NASA Astrophysics Data System (ADS)
Katunin, Andrzej; Krukiewicz, Katarzyna; Turczyn, Roman; Sul, Przemysław; Bilewicz, Marcin
2017-05-01
Aircraft elements, especially elements of exterior fuselage, are subjected to damage caused by lightning strikes. Due to the fact that these elements are manufactured from polymeric composites in modern aircraft, and thus, they cannot conduct electrical charges, the lightning strikes cause burnouts in composite structures. Therefore, the effective lightning strike protection for such structures is highly desired. The solution presented in this paper is based on application of organic conductive fillers in the form of intrinsically conducting polymers and carbon fabric in order to ensure electrical conductivity of whole composite and simultaneously retain superior mechanical properties. The presented studies cover synthesis and manufacturing of the electrically conductive composite as well as its characterization with respect to mechanical and electrical properties. The performed studies indicate that the proposed material can be potentially considered as a constructional material for aircraft industry, which characterizes by good operational properties and low cost of manufacturing with respect to current lightning strike protection materials solutions.
Interpretation of F106B and CV580 in-flight lightning data and form factor determination
NASA Technical Reports Server (NTRS)
Rudolph, T.; Horembala, J.; Eriksen, F. J.; Weigel, H. S.; Elliott, J. R.; Parker, S. L.; Perala, R. A.
1989-01-01
Two topics of in-flight aircraft/lightning interaction are addressed. The first is the analysis of measured data from the NASA F106B Thunderstorm Research Aircraft and the CV580 research program run by the FAA and Wright-Patterson Air Force Base. The CV580 data was investigated in a mostly qualitative sense, while the F106B data was subjected to both statistical and quantitative analysis using linear triggered lightning finite difference models. The second main topic is the analysis of field mill data and the calibration of the field mill systems. The calibration of the F106B field mill system was investigated using an improved finite difference model of the aircraft having a spatial resolution of one-quarter meter. The calibration was applied to measured field mill data acquired during the 1985 thunderstorm season. The experimental determination of form factors useful for field mill calibration was also investigated both experimentally and analytically. The experimental effort involved the use of conducting scale models and an electrolytic tank. An analytic technique was developed to aid in the understanding of the experimental results.
Lightning protection of a modern wind energy system
NASA Astrophysics Data System (ADS)
Jaeger, D.
Due to their considerable height and frequent location above flat terrain, wind energy systems may be struck by lightning, with two types of severe effects: the physical destruction of structurally and/or mechanically important elements, such as a rotor blade, or the damage or interruption of system electrical and electronic equipment. The GROWIAN II DEMO lightning protection program has undertaken the development of measures which in their sophistication and complexity approximate those for aircraft. These protective measures are applied to the carbon fiber-reinforced plastic composite rotor blades, the rotor bearing, and electrical circuitry installed within the wind turbine's nacelle.
NASA Technical Reports Server (NTRS)
Wanaselja, O.
1979-01-01
Of interest to the communications industry are the amplitude, waveshape, duration and frequency of lightning-originated voltage surges and transients on the communications network, including the distribution system and AC power supply circuits. The cloud-to-ground lightning discharge and its characteristics are thought to be most meaningful. Of specific interest are peak current, waveshape, number of flashes, strokes per flash, and zone of influence. Accurate and meaningful lightning data at the local level (telephone district office) is necessary for a decision on the appropriate protection level. In addition to lightning, the protection engineer must consider other factors such as: AC induction, switching surges, ground potential rise, soil resistivity, bonding and grounding techniques, shielding and isolation, and exposure of the telephone loop.
Lightning fires in southwestern forests
Jack S. Barrows
1978-01-01
Lightning is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by lightning. The Southwestern region leads all other regions of the United States both in total number of lightning fires and in the area burned by these fires...
NASA Technical Reports Server (NTRS)
Nakamura, Koichi; Wada, Atsushi; Horii, Kenji
1991-01-01
The triggered lightning experiments using a rocket have been carried out on a winter mountain in Japan since 1986. For the four years from 1986 to 1989, 39 rockets were launched and 19 of them triggered lightning strikes. The emphasis here is on the methodology for triggering lightning to the transmission system. Completed experiments are discussed. The failure of lightning protection and the striking distance are noted.
Protecting Your Park When Lightning Strikes.
ERIC Educational Resources Information Center
Frydenlund, Marvin M.
1987-01-01
A formula for assessing specific risk of lightning strikes is provided. Recent legal cases are used to illustrate potential liability. Six actions park managers can take to minimize danger from lightning are presented, and commonsense rules which should be publicly posted are listed. (MT)
F-106 data summary and model results relative to threat criteria and protection design analysis
NASA Technical Reports Server (NTRS)
Pitts, F. L.; Finelli, G. B.; Perala, R. A.; Rudolph, T. H.
1986-01-01
The NASA F-106 has acquired considerable data on the rates-of-change of electromagnetic parameters on the aircraft surface during 690 direct lightning strikes while penetrating thunderstorms at altitudes ranging from 15,000 to 40,000 feet. These in-situ measurements have provided the basis for the first statistical quantification of the lightning electromagnetic threat to aircrat appropriate for determining lightning indirect effects on aircraft. The data are presently being used in updating previous lightning criteria and standards developed over the years from ground-based measurements. The new lightning standards will, therefore, be the first which reflect actual aircraft responses measured at flight altitudes. The modeling technique developed to interpret and understand the direct strike electromagnetic data acquired on the F-106 provides a means to model the interaction of the lightning channel with the F-106. The reasonable results obtained with the model, compared to measured responses, yield confidence that the model may be credibly applied to other aircraft types and uses in the prediction of internal coupling effects in the design of lightning protection for new aircraft.
Lightning protection for aircraft
NASA Technical Reports Server (NTRS)
Fisher, F. A.; Plumer, J. A.
1980-01-01
Reference book summarizes current knowledge concerning potential lightning effects on aircraft and means available to designers and operators to protect against effects. Book is available because of increasing use of nonmetallic materials in aircraft structural components and use of electronic equipment for control of critical flight operations and navigation.
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Lightning protection. 420.71 Section 420.71 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth...
The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability
NASA Astrophysics Data System (ADS)
Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing
2018-01-01
Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.
NASA Technical Reports Server (NTRS)
1984-01-01
The indirect effects of lightning on digital systems, ground system protection, and the corrosion properties of conductive materials are addressed. The responses of a UH-60A helicopter and tactical shelters to lightning and nuclear electromagnetic pulses are discussed.
Lightning protection of distribution systems
NASA Astrophysics Data System (ADS)
Darveniza, M.; Uman, M. A.
1982-09-01
Research work on the lightning protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize lightning in the Tampa Bay area, and to identify the lightning parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on lightning - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of lightning activity; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.
Modern Protection Against Lightning Strikes
NASA Astrophysics Data System (ADS)
Moore, C.
2005-05-01
The application of science to provide protection against lightning strikes began around 1750 when Benjamin Franklin who invented the lightning rod in an effort to discharge thunderclouds. Instead of preventing lightning as he expected, his rods have been quite successful as strike receptors, intercepting cloud-to ground discharges and conducting them to Earth without damage to the structures on which they are mounted. In the years since Franklin's invention there has been little attention paid to the rod configuration that best serves as a strike receptor but Franklin's original ideas continue to be rediscovered and promoted. Recent measurements of the responses of variously configured rods to nearby strikes indicate that sharp-tipped rods are not the optimum configuration to serve as strike receptors since the ionization of the air around their tips limits the strength of the local electric fields created by an approaching lightning leader. In these experiments, fourteen blunt-tipped rods exposed in strike-reception competitions with nearby sharp-tipped rods were struck by lightning but none of the sharp-tipped rods were struck.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A
2008-10-09
The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.
The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 2
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the conference are reported. The conference focussed on lightning protection, detection, and forecasting. The conference was divided into 26 sessions based on research in lightning, static electricity, modeling, and mapping. These sessions spanned the spectrum from basic science to engineering, concentrating on lightning prediction and detection and on safety for ground facilities, aircraft, and aerospace vehicles.
2009-01-02
CAPE CANAVERAL, Fla. – CAPE CANAVERAL, Fla. -- On Launch Pad 39B at NASA's Kennedy Space Center in Florida, another lightning tower is being constructed as part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
2009-02-12
CAPE CANAVERAL, Fla. – A lightning mast remains to be lifted atop the third and final lightning tower erected on Launch Pad 39B at NASA's Kennedy Space Center. Three towers surround the pad. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
Protection against lightning on the geomagnetic observatory
NASA Astrophysics Data System (ADS)
Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.
2014-04-01
The Sinji Vrh Geomagnetic Observatory was built on the brow of the mountain Gora, above Ajdovščina, and all over Europe one may hardly find an area which is more often struck by lightning than this south-western part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes the additional electrical charge of stormy clouds. The reliability of operations performed in the every building of observatory could be increased by understanding the formation of lightning in the thunderstorm cloud, the application of already proven methods of protection against a strike of lightning and against its secondary effects. To reach this goal the following groups of experts have to co-operate: the experts in the field of protection against lightening phenomenon, the constructors and manufacturers of equipment and the observatory managers.
Lightning and Gunpowder in the 18th Century
NASA Astrophysics Data System (ADS)
Krider, E. P.
2006-12-01
On or before June, 1751, Benjamin Franklin and co-workers showed that gunpowder could be ignited by a small electric spark, and subsequently people used gunpowder to enhance the explosions of "thunder houses" to demonstrate that grounded metallic rods would protect model structures against lightning damage. Even before the sentry box and kite experiments proved that thunderclouds are electrified and that lightning is an electrical discharge in 1752, Franklin had hypothesized that a tall, well-grounded conductor might reduce or prevent lightning damage by silently discharging the cloud, and if a discharge did occur, then the tall rod would offer a preferred place for the lightning to strike, and the grounding conductors would guide the current into the ground in a harmless fashion. Over the next 10 years, experience gained through practice showed that grounded rods did indeed protect ordinary structures from lightning damage, but a question remained about the best way to protect gunpowder magazines. In 1762, Franklin recommended a tall "mast not far from it, which may reach 15 or 20 feet above the top of it, with a thick iron rod in one piece fastened to it, pointed at the highest end, and reaching down through the earth till it comes to water," and in 1772 he made a similar recommendation for protecting the British powder magazine at Purfleet. In 1780, Jan Ingenhousz asked Franklin to "communicate to me some short hints, which may occur to you about the most convenient manner of constructing gun powder magazines, the manner of preserving the powder from moisture and securing the building in the best manner from the effects of lightning." In his reply, Franklin detailed a method of protection that is almost perfect, "they should be constructed in the Ground; that the Walls should be lin'd with Lead, the Floor Lead, all 1/4 Inch thick & the Joints well solder'd; the Cover Copper; with a little Scuttle to enter, the whole in the Form of a Canister for Tea. If the Edges of the Cover scuttle fall into a Copper Channel containing Mercury, not the smallest Particle of Air or Moisture can enter to the Powder, even tho' the Walls stood in Water, or the whole was under Water." In 1876, the Scottish physicist, James Clerk Maxwell, made almost exactly the same recommendation for protecting against lightning, a method known today as a "Faraday cage."
LSP Composite Susbtrate Destructive Evaluation Test Assessment Manual
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Erickson, Grant J.
2013-01-01
This document specifies the processes to perform post-strike destructive damage evaluation of tested CFRP panels.It is recognized that many factors besides lightning damage protection are involved in the selection of an appropriate Lightning Strike Protection (LSP) for a particular system (e.g., cost, weight, corrosion resistance, shielding effectiveness, etc.). This document strives primarily to address the standardized generation of damage protection performance data.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.
2014-01-01
Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment.
11th International Conference on Atmospheric Electricity
NASA Technical Reports Server (NTRS)
Christian, H. J. (Compiler)
1999-01-01
This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.
Step voltage analysis for the catenoid lightning protection system
NASA Technical Reports Server (NTRS)
Chai, J. C.; Briet, R.; Barker, D. L.; Eley, H. E.
1991-01-01
The main objective of the proposed overhead Catenoid Lightning Protection System (CLPS) is personnel safety. To ensure working personnel's safety in lightning situations, it is necessary that the potential difference developed across a distance equal to a person's pace (step voltage) does not exceed a separately established safe voltage in order to avoid electrocution (ventricular fibrillation) of humans. Therefore, the first stage of the analytical effort is to calculate the open circuit step voltage. An impedance model is developed for this purpose. It takes into consideration the earth's complex impedance behavior and the transient nature of the lightning phenomenon. In the low frequency limit, this impedance model is shown to reduce to results similar to those predicted by the conventional resistor model in a DC analysis.
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
75 FR 43097 - Airworthiness Directives; The Boeing Company Model 757 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... must be sealed for lightning strike protection. Relevant Service Information AD 2008-23-19 referred to... additional fasteners in the main fuel tanks must be sealed for lightning strike protection. The Federal... bundles inside the left and right equipment cooling system bays, on the left and right rear spars, and on...
NASA Astrophysics Data System (ADS)
Orville, Richard E.
2004-03-01
Lightning Physics and Effects is not a lightning book; it is a lightning encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of lightning, including lightning physics, lightning protection, and the interaction of lightning with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in lightning and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Calhoun, Kristin K.; Terborg, Amanda M.
2014-01-01
Since 2010, the de facto Geostationary Lightning Mapper (GLM) demonstration product has been the Pseudo-Geostationary Lightning Mapper (PGLM) product suite. Originally prepared for the Hazardous Weather Testbed's Spring Program (specifically the Experimental Warning Program) when only four ground-based lightning mapping arrays were available, the effort now spans collaborations with several institutions and eight collaborative networks. For 2013, NASA's Short-term Prediction Research and Transition (SPoRT) Center and NOAA's National Severe Storms Laboratory have worked to collaborate with each network to obtain data in real-time. This has gone into producing the SPoRT variant of the PGLM that was demonstrated in AWIPS II for the 2013 Spring Program. Alongside the PGLM products, the SPoRT / Meteorological Development Laboratory's total lightning tracking tool also was evaluated to assess not just another visualization of future GLM data but how to best extract more information while in the operational environment. Specifically, this tool addressed the leading request by forecasters during evaluations; provide a time series trend of total lightning in real-time. In addition to the Spring Program, SPoRT is providing the PGLM "mosaic" to the Aviation Weather Center (AWC) and Storm Prediction Center. This is the same as what is used at the Hazardous Weather Testbed, but combines all available networks into one display for use at the national centers. This year, the mosaic was evaluated during the AWC's Summer Experiment. An important distinction between this and the Spring Program is that the Summer Experiment focuses on the national center perspective and not at the local forecast office level. Specifically, the Summer Experiment focuses on aviation needs and concerns and brings together operational forecaster, developers, and FAA representatives. This presentation will focus on the evaluation of SPoRT's pseudo-GLM products in these separate test beds. The emphasis will be on how future GLM observations can support operations at both the local and national scale and how the PGLM was used in combination with other lightning data sets. Evaluations for the PGLM were quite favorable with forecasters appreciating the high temporal resolution, the ability to look for rapid increases in lightning activity ahead of severe weather, as well as situational awareness for where convection is firing and for flight routing.
2009-02-13
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 100-foot lightning mast has been raised to vertical. It will be lifted and installed on top of the third and final new lightning tower being erected around the pad. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places the 100-foot fiberglass mast atop the new lightning tower constructed on the pad. The towers are part of the new lightning protection system for the Constellation Program and Ares/Orion launches. At left of the service structures is another tower under construction. Each of the three new lightning towers will be 500 feet tall with the additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Kim Shiflett
Lightning and surge protection of large ground facilities
NASA Astrophysics Data System (ADS)
Stringfellow, Michael F.
1988-04-01
The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.
Lightning research: A user's lament
NASA Technical Reports Server (NTRS)
Golub, C. N.
1984-01-01
As a user of devices and procedures for lightning protection, the author is asking the lightning research community for cookbook recipes to help him solve his problems. He is lamenting that realistic devices are scarce and that his mission does not allow him the time nor the wherewithal to bridge the gap between research and applications. A few case histories are presented. In return for their help he is offering researchers a key to lightning technology--the use of the Eastern Test Range and its extensive resources as a proving ground for their experiment in the lightning capital of the United States. A current example is given--a joint lightning characterization project to take place there. Typical resources are listed.
Lightning protection of aircraft
NASA Technical Reports Server (NTRS)
Fisher, F. A.; Plumer, J. A.
1977-01-01
The current knowledge concerning potential lightning effects on aircraft and the means that are available to designers and operators to protect against these effects are summarized. The increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation functions have served as impetus for this study.
Analysis and discussion on anti-thunder scheme of wind power generation system
NASA Astrophysics Data System (ADS)
Sun, Shuguang
2017-01-01
Anti-thunder scheme of wind power generation system is discussed in this paper. Through the research and analysis on the harm of the thunder, division of lightning protection zone and lightning protection measures are put forward, which has a certain practical significance on the design and application of wind power generation system.
Lightning protection of the Fokker 100 CFRP rudder
NASA Technical Reports Server (NTRS)
Ruiter, A. J. M.
1991-01-01
The construction of the structural parts of the Fokker 100 CFRP rudder is described with respect to the requirements for electrical bonding and lightning protection. Furthermore, the philosophy for the selection of a consumable trailing edge is given. A description of possible alternative designs for trailing edges and their advantages and disadvantages with respect to damage after lightning impact will also be reviewed. An overview of the tests performed on test samples and the rudder construction are presented and discussed. The effectiveness of both the selected structural provisions and trailing edge are described (and proven) by reporting the results of the simulated lightning tests performed. Proof is given that the trailing edge construction and its bonding through the structural parts of the rudder to the main aircraft structure is a solution which results in minor damage to the rudder after lightning impact. Furthermore, it is shown that the selected trailing edge construction is less favored by the structural designers due to the weight penalty.
Lightning Overvoltage on Low-Voltage Distribution System
NASA Astrophysics Data System (ADS)
Michishita, Koji
The portion of the faults of a medium-voltage line, cause by lightning, tends to increase with often reaching beyond 30%. However, due to the recent progress of the lightning protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further development of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective lightning protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the lightning overvoltage on a low-voltage distribution system.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National Lightning Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the LMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.
Meteorological and Environmental Inputs to Aviation Systems
NASA Technical Reports Server (NTRS)
Camp, Dennis W. (Editor); Frost, Walter (Editor)
1988-01-01
Reports on aviation meteorology, most of them informal, are presented by representatives of the National Weather Service, the Bracknell (England) Meteorological Office, the NOAA Wave Propagation Lab., the Fleet Numerical Oceanography Center, and the Aircraft Owners and Pilots Association. Additional presentations are included on aircraft/lidar turbulence comparison, lightning detection and locating systems, objective detection and forecasting of clear air turbulence, comparative verification between the Generalized Exponential Markov (GEM) Model and official aviation terminal forecasts, the evaluation of the Prototype Regional Observation and Forecast System (PROFS) mesoscale weather products, and the FAA/MIT Lincoln Lab. Doppler Weather Radar Program.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... manufacturer. We are issuing this AD to increase the level of protection from lightning strikes and prevent the... of protection from lightning strikes and prevent the potential of ignition sources inside fuel tanks... existing unshielded fuel quantity indication system (FQIS) wire bundles with double shielded FQIS wire...
2009-02-12
CAPE CANAVERAL, Fla. – The faint sunrise sky over NASA's Kennedy Space Center casts the newly erected lightning towers on Launch Pad 39B in silhouette. The two towers at left contain the lightning mast on top; the one at right does not. At center are the fixed and rotating service structures that have served the Space Shuttle Program. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
Status of research into lightning effects on aircraft
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1976-01-01
Developments in aircraft lightning protection since 1938 are reviewed. Potential lightning problems resulting from present trends toward the use of electronic controls and composite structures are discussed, along with presently available lightning test procedures for problem assessment. The validity of some procedures is being questioned because of pessimistic results and design implications. An in-flight measurement program is needed to provide statistics on lightning severity at flight altitudes and to enable more realistic tests, and operators are urged to supply researchers with more details on electronic components damaged by lightning strikes. A need for review of certain aspects of fuel system vulnerability is indicated by several recent accidents, and specific areas for examination are identified. New educational materials and standardization activities are also noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrov, Yu. K.; Zhuravkov, I. V.; Ostapenko, E. I.
2010-12-15
The effect of air gap breakdown voltage reduction in the circuit with an opening microswitch is substantiated from the physical point of view. This effect can be used to increase the efficiency of lightning protection system with a rod lightning protector. The processes which take place in the electric circuit of a lightning protector with a microswitch during a voltage breakdown are investigated. Openings of the microswitch are shown to lead to resonance overvoltages in the dc circuit and, as a result, efficient reduction in the breakdown voltage in a lightning protector-thundercloud air gap.
Code of Federal Regulations, 2010 CFR
2010-01-01
....S.C. 44905, regarding information about threats to civil aviation. (b) Additional disclosures. For... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Will the FAA ever disclose information that... VOLUNTARILY SUBMITTED INFORMATION § 193.9 Will the FAA ever disclose information that is designated as...
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
F-5F Shark Nose radome lightning test
NASA Technical Reports Server (NTRS)
Scott, G. W.
1980-01-01
A unique F-5F radome wtih a geometry similar to a Shark Nose profile was tested with a high voltage Marx generator, 1,200,000 volts in order to demonstrate the effectiveness of the lightning protection system with currents from 5,000 amperes or greater. An edge discontinuity configuration is a characteristic feature in the forward region of the radome and occasionally serves as an attachment point. The results of nineteen attachment tests at various aspect angles with an air gap of one meter indicated that no damage occurred to the dielectric material of the radom. The test proved the effectiveness of the lightning protection system.
2009-01-26
CAPE CANAVERAL, Fla. – Construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Here, a 100-foot fiberglass lightning mast is being prepared to be lifted on top of one of the 500-foot towers. The mast will support a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – In the rosy dawn light, construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – In the rosy dawn light, construction of the towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida continues on the new lightning protection system for the Constellation Program and Ares/Orion launches. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane traveling long one of the crawlerway tracks makes the turn toward Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane travels along one of the crawlerway tracks on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane moves past the Vehicle Assembly Building on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Launch pad lightning protection effectiveness
NASA Technical Reports Server (NTRS)
Stahmann, James R.
1991-01-01
Using the striking distance theory that lightning leaders will strike the nearest grounded point on their last jump to earth corresponding to the striking distance, the probability of striking a point on a structure in the presence of other points can be estimated. The lightning strokes are divided into deciles having an average peak current and striking distance. The striking distances are used as radii from the points to generate windows of approach through which the leader must pass to reach a designated point. The projections of the windows on a horizontal plane as they are rotated through all possible angles of approach define an area that can be multiplied by the decile stroke density to arrive at the probability of strokes with the window average striking distance. The sum of all decile probabilities gives the cumulative probability for all strokes. The techniques can be applied to NASA-Kennedy launch pad structures to estimate the lightning protection effectiveness for the crane, gaseous oxygen vent arm, and other points. Streamers from sharp points on the structure provide protection for surfaces having large radii of curvature. The effects of nearby structures can also be estimated.
Relativistic-microwave theory of ball lightning.
Wu, H-C
2016-06-22
Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.
Relativistic-microwave theory of ball lightning
NASA Astrophysics Data System (ADS)
Wu, H.-C.
2016-06-01
Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.
Relativistic-microwave theory of ball lightning
Wu, H.-C.
2016-01-01
Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835
Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Vaughan, W. W.
1999-01-01
This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.
Methods to estimate lightning activity using WWLLN and RS data
NASA Astrophysics Data System (ADS)
Baranovskiy, Nikolay V.; Belikova, Marina Yu.; Karanina, Svetlana Yu.; Karanin, Andrey V.; Glebova, Alena V.
2017-11-01
The aim of the work is to develop a comprehensive method for assessing thunderstorm activity using WWLLN and RS data. It is necessary to group lightning discharges to solve practical problems of lightning protection and lightningcaused forest fire danger, as well as climatology problems using information on the spatial and temporal characteristics of thunderstorms. For grouping lightning discharges, it is proposed to use clustering algorithms. The region covering Timiryazevskiy forestry (Tomsk region, borders (55.93 - 56.86)x(83.94 - 85.07)) was selected for the computational experiment. We used the data on lightning discharges registered by the WWLLN network in this region on July 23, 2014. 273 lightning discharges were sampling. A relatively small number of discharges allowed us a visual analysis of solutions obtained during clustering.
Chemical Safety Alert: Lightning Hazard to Facilities Handling Flammable Substances
Raises awareness about lightning strikes, which cause more death/injury and damage than all other environmental elements combined, so industry can take proper precautions to protect equipment and storage or process vessels containing flammable materials.
Lightning Protection and Detection System
NASA Technical Reports Server (NTRS)
Mielnik, John J. (Inventor); Woodard, Marie (Inventor); Smith, Laura J. (Inventor); Wang, Chuantong (Inventor); Koppen, Sandra V. (Inventor); Dudley, Kenneth L. (Inventor); Szatkowski, George N. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)
2017-01-01
A lightning protection and detection system includes a non-conductive substrate material of an apparatus; a sensor formed of a conductive material and deposited on the non-conductive substrate material of the apparatus. The sensor includes a conductive trace formed in a continuous spiral winding starting at a first end at a center region of the sensor and ending at a second end at an outer corner region of the sensor, the first and second ends being open and unconnected. An electrical measurement system is in communication with the sensor and receives a resonant response from the sensor, to perform detection, in real-time, of lightning strike occurrences and damage therefrom to the sensor and the non-conductive substrate material.
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane (at left) completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. At right, another tower is being constructed. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
Cherington, M
1995-12-01
It is a little-known fact that lightning casualties often involve travel or transportation. López and colleagues, in their studies on the epidemiology of lightning injuries, have reported that 10% of lightning injuries are categorized under transportation. In the majority of their cases, victims were struck while standing outside or near their vehicles during a thunderstorm. During my review of the neurologic complications of lightning injuries, I was impressed by the number of case reports in which the victim was struck while either in or near a vehicle, airplane or vessel. In this article, I shall put forth information on four aspects of lightning that relate to the danger to people traveling in vehicles, boats, and airplanes. First, I shall deal with lightning safety on ships and boats. People who enjoy recreational sailing, including the "weekend sailor" and those who enjoy fishing from a boat, should be fortified with knowledge about lightning protection. Second, I shall consider the matter of lightning strikes to aircraft. In the third section, I shall discuss the question of lightning safety in automobiles. Fourth, I shall review those cases found in my literature review in which the victim was struck while in or near a vehicle, boat, or airplane.
Lightning studies using LDAR and LLP data
NASA Technical Reports Server (NTRS)
Forbes, Gregory S.
1993-01-01
This study intercompared lightning data from LDAR and LLP systems in order to learn more about the spatial relationships between thunderstorm electrical discharges aloft and lightning strikes to the surface. The ultimate goal of the study is to provide information that can be used to improve the process of real-time detection and warning of lightning by weather forecasters who issue lightning advisories. The Lightning Detection and Ranging (LDAR) System provides data on electrical discharges from thunderstorms that includes cloud-ground flashes as well as lightning aloft (within cloud, cloud-to-cloud, and sometimes emanating from cloud to clear air outside or above cloud). The Lightning Location and Protection (LLP) system detects primarily ground strikes from lightning. Thunderstorms typically produce LDAR signals aloft prior to the first ground strike, so that knowledge of preferred positions of ground strikes relative to the LDAR data pattern from a thunderstorm could allow advance estimates of enhanced ground strike threat. Studies described in the report examine the position of LLP-detected ground strikes relative to the LDAR data pattern from the thunderstorms. The report also describes other potential approaches to the use of LDAR data in the detection and forecasting of lightning ground strikes.
NASA Astrophysics Data System (ADS)
Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.
1991-08-01
The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.
NASA Technical Reports Server (NTRS)
Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.
1991-01-01
The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.
The effects of lightning on digital flight control systems
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Malloy, W. A.; Craft, J. B.
1976-01-01
Present practices in lightning protection of aircraft deal primarily with the direct effects of lightning, such as structural damage and ignition of fuel vapors. There is increasing evidence of troublesome electromagnetic effects, however, in aircraft employing solid-state microelectronics in critical navigation, instrumentation and control functions. The potential impact of these indirect effects on critical systems such as digital fly by wire (DFBW) flight controls was studied. The results indicate a need for positive steps to be taken during the design of future fly by wire systems to minimize the possibility of hazardous effects from lightning.
Preliminary tests of vulnerability of typical aircraft electronics to lightning-induced voltages
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Walko, L. C.
1974-01-01
Tests made on two pieces of typical aircraft electronics equipment to ascertain their vulnerability to simulated lightning-induced transient voltages representative of those which might occur in flight when the aircraft is struck by lightning were conducted. The test results demonstrated that such equipment can be interfered with or damaged by transient voltages as low as 21 volts peak. Greater voltages can cause failure of semiconductor components within the equipment. The results emphasize a need for establishment of coordinated system susceptibility and component vulnerability criteria to achieve lightning protection of aerospace electrical and electronic systems.
F-106 data summary and model results relative to threat criteria and protection design analysis
NASA Technical Reports Server (NTRS)
Pitts, F. L.; Finelli, G. B.; Perala, R. A.; Rudolph, T. H.
1986-01-01
The NASA F-106 has acquired considerable data on the rates-of-change of EM parameters on the aircraft surface during 690 direct lightning strikes while penetrating thunderstorms at altitudes from 15,000 to 40,000 feet. The data are presently being used in updating previous lightning criteria and standards. The new lightning standards will, therefore, be the first which reflect actual aircraft responses measured at flight altitudes.
Aircraft Lightning Protection Handbook
1989-09-01
tape or metal braid . The shield. The effect of leakage through the connector can transfer characteristics can seldom be determined by thus be...62 REFERENCES 66 CHAPTER 4 LIGHTNING EFFECTS ON AIRCRAFT 69 4.1 Introduction 69 4.2 Direct Effects on Metal Structures 70 4.2.1 Pitting and Melt...Certification plans 112 5.8 Test Plans 113 REFERENCES 113 Chapter 6 DIRECT EFFECTS PROTECTION 115 6.1 Introduction 115 6.2 Direct Effects on Metal Structures
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
The influence of lightning induced voltage on the distribution power line polymer insulators.
Izadi, Mahdi; Abd Rahman, Muhammad Syahmi; Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam
2017-01-01
Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance.
The influence of lightning induced voltage on the distribution power line polymer insulators
Ab-Kadir, Mohd Zainal Abidin; Gomes, Chandima; Jasni, Jasronita; Hajikhani, Maryam
2017-01-01
Protection of medium voltage (MV) overhead lines against the indirect effects of lightning is an important issue in Malaysia and other tropical countries. Protection of these lines against the indirect effects of lightning is a major concern and can be improved by several ways. The choice of insulator to be used for instance, between the glass, ceramic or polymer, can help to improve the line performance from the perspective of increasing the breakdown strength. In this paper, the electrical performance of a 10 kV polymer insulator under different conditions for impulse, weather and insulator angle with respect to a cross-arm were studied (both experimental and modelling) and the results were discussed accordingly. Results show that the weather and insulator angle (with respect to the cross-arm) are surprisingly influenced the values of breakdown voltage and leakage current for both negative and positive impulses. Therefore, in order to select a proper protection system for MV lines against lightning induced voltage, consideration of the local information concerning the weather and also the insulator angles with respect to the cross-arm are very useful for line stability and performance. PMID:28234930
2009-02-12
CAPE CANAVERAL, Fla. – The faint sunrise sky over NASA's Kennedy Space Center casts the newly erected lightning towers on Launch Pad 39B in silhouette. They surround the fixed and rotating service structures at center that have served the Space Shuttle Program. The new lightning protection system is being built for the Constellation Program and Ares/Orion launches. Each of the towers is 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane completes construction of one of the towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. Other towers are being constructed at left and behind the service structures on the pad. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
Thunderstorm hazards flight research: Storm hazards 1980 overview
NASA Technical Reports Server (NTRS)
Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.
1981-01-01
A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.
DOT National Transportation Integrated Search
2016-11-01
The goal of this project was to collect the knowledge needed for the FDOT to either confirm or : improve the adequacy of the FDOTs existing minimum standards for lightning/surge protection, : including devices used and installation procedures. The...
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate origins of downward propagating leaders and a lognormal distribution to generate returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for 10,000 years with an assumed ground flash density and peak current distributions, and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
Evaluation of Lightning Incidence to Elements of a Complex Structure: A Monte Carlo Approach
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, V. A.
2008-01-01
There are complex structures for which the installation and positioning of the lightning protection system (LPS) cannot be done using the lightning protection standard guidelines. As a result, there are some "unprotected" or "exposed" areas. In an effort to quantify the lightning threat to these areas, a Monte Carlo statistical tool has been developed. This statistical tool uses two random number generators: a uniform distribution to generate the origin of downward propagating leaders and a lognormal distribution to generate the corresponding returns stroke peak currents. Downward leaders propagate vertically downward and their striking distances are defined by the polarity and peak current. Following the electrogeometrical concept, we assume that the leader attaches to the closest object within its striking distance. The statistical analysis is run for N number of years with an assumed ground flash density and the output of the program is the probability of direct attachment to objects of interest with its corresponding peak current distribution.
NASA Technical Reports Server (NTRS)
Spiller, Olaf
1991-01-01
The provisions applied to the Airbus A340 wing wiring against lightning indirect effects are presented. The construction and installation of the wiring's shielding systems are described, and the analysis and tests performed to determine the effectiveness of the measures taken are discussed. A first evaluation of the results of the theoretical analysis together with the provisional results of tests indicate a sufficient safety margin between required and achieved protection levels.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Effects of lightning on operations of aerospace vehicles
NASA Technical Reports Server (NTRS)
Fisher, Bruce D.
1989-01-01
Traditionally, aircraft lightning strikes were a major aviation safety issue. However, the increasing use of composite materials and the use of digital avionics for flight critical systems will require that more specific lightning protection measures be incorporated in the design of such aircraft in order to maintain the excellent lightning safety record presently enjoyed by transport aircraft. In addition, several recent lightning mishaps, most notably the loss of the Atlas/Centaur-67 vehicle at Cape Canaveral Air Force Station, Florida in March 1987, have shown the susceptibility of aircraft and launch vehicles to the phenomenon of vehicle-triggered lightning. The recent findings of the NASA Storm Hazards Program were reviewed as they pertain to the atmospheric conditions conducive to aircraft lightning strikes. These data are then compared to recent summaries of lightning strikes to operational aircraft fleets. Finally, the new launch commit criteria for triggered lightning being used by NASA and the U.S. Defense Department are summarized. The NASA Research data show that the greatest probability of a direct strike in a thunderstorm occurs at ambient temperatures of about -40 C. Relative precipitation and turbulence levels were characterized as negligible to light for these conditions. However, operational fleet data have shown that most aircraft lightning strikes in routine operations occur at temperatures near the freezing level in non-cumulonimbus clouds. The non-thunderstorm environment was not the subject of dedicated airborne lightning research.
Statistical analysis of lightning electric field measured under Malaysian condition
NASA Astrophysics Data System (ADS)
Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain
2014-02-01
Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.
Guidelines for a proposed lightning protection policy of a golf association or tournament sponsor
NASA Technical Reports Server (NTRS)
Hillyer, Charles C.
1991-01-01
Because lightning causes many deaths and injuries each year on golf courses, guidelines are given for measures to be taken during golf events. Recommendations are given relative to warning systems, shelters, suspension of play, and the distribution of written policy statements.
1977-01-31
point discharge on lightning propagation or direction of movement , or what the optimum technology of protection is, it has, nevertheless, illuminated...of which actually engulfed the top third of the tower. Dissipation currents rose and fell with the cell movement and its proximity with respect to...field at any point around the tower determines the movement of existing ions, if winds are neglected. Figure 3 is an instantaneous picture of the
Lightning protection using energized Franklin rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Salam, M.; Al-Abdul-Latif, U.
1995-12-31
In this paper, the onset criterion of the upward streamers from an energized Franklin rod is formulated as a function of the geometry of the rod and the height and current of the downward leader. The electric field in the vicinity of the lightning rod is calculated using the charge simulation technique. The dependency of the radius of protection on the amplitude of the pulse voltage applied to Franklin rod, the downward leader current and the tip radius and height of the rod is investigated.
76 FR 33129 - Airworthiness Standards; Electrical and Electronic System Lightning Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
.... At the time, most aircraft contained mechanical systems, or simple electrical and electronic systems... adversely affected during or after the time the aircraft is exposed to lightning, and that the system that... aircraft must be designed and installed so that the system automatically recovers normal operation of that...
2009-01-02
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, equipment surrounds the service structures for the construction of towers in the new lightning protection system for the Constellation Program and Ares/Orion launches. In the foreground is part of the giant crane used to place segments on the towers. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast (seen on the ground) atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Troy Cryder
A stepped leader model for lightning including charge distribution in branched channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Wei; Zhang, Li; Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn
2014-09-14
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statisticsmore » of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.« less
Nowcasting of Lightning-Related Accidents in Africa
NASA Astrophysics Data System (ADS)
Ihrlich, Laura; Price, Colin
2016-04-01
Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct lightning strikes. This region of the globe also has little lightning protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two lightning-caused accidents that got wide press coverage: A lightning strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide Lightning Location Network (WWLLN) we show that the lightning data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from lightning strikes. We have developed a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on lightning alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by lightning strikes.
NASA Astrophysics Data System (ADS)
Becerra, Marley
2014-11-01
Previous studies have suggested the possibility of using glow corona discharges to control the frequency of lightning flashes to grounded objects. In order to revisit the theoretical basis of this proposal, the self-consistent leader inception and propagation model - SLIM - is used together with a two-dimensional glow corona drift model. The analysis is performed to quantify the effect of glow corona generated at the tip of ground-based objects on the initiation and propagation of upward positive connecting leaders under the influence of downward lightning leaders. It is found that the presence of glow corona does not influence the performance of Franklin lightning rods shorter than 15 m, while it slightly reduces the lateral distance of rods up to 60 m tall by a maximum of 10%. Furthermore, the results indicate that it is not possible to suppress the initiation of upward connecting leaders by means of glow corona. It is found instead that unconventional lightning protection systems based on the generation of glow corona attract downward lightning flashes in a similar way as a standard lightning rod with the same height.
Lightning attachment patterns and flight conditions for storm hazards, 1980
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Keyser, G. L., Jr.; Deal, P. L.
1982-01-01
As part of the NASA Langley Research Center Storm Hazards Program, 69 thunderstorm pentrations were made in 1980 with an F-106B airplane in order to record direct strike lightning data and the associated flight conditions. Ground based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Center in Virginia. In 1980, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 6 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept flash patterns. This report presents pilot descriptions of the direct strikes to the airplane, shows the strike attachment patterns that were found, and discusses the implications of the patterns with respect to aircraft protection design. The flight conditions are also included. Finally, the lightning strike scenarios for three U.S. Air Force F-106A airplanes which were struck during routine operations are given in the appendix to this paper.
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane has removed the 80-foot lightning mast from the top of the fixed service structure. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
Drugs and alcohol in civil aviation accident pilot fatalities from 2004-2008.
DOT National Transportation Integrated Search
2011-09-01
The FAA Office of Aerospace Medicine sets medical standards needed to protect the public and pilots from death : or injury due to incapacitation of the pilot. As a part of this process, toxicology testing is performed by the FAA : on almost every pil...
Final results of the NASA storm hazards program
NASA Technical Reports Server (NTRS)
Fisher, Bruce D.; Brown, Philip W.; Plumer, J. Anderson; Wunschel, Alfred J., Jr.
1988-01-01
Lightning swept-flash attachment patterns and the associated flight conditions were recorded from 1980-1986 during 1496 thunderstorm penetrations and 714 direct strikes with a NASA F-1068 research airplane. These data were studied with an emphasis on lightning avoidance by aircraft and on aircraft protection design. The individual lightning attachment spots, along with crew comments and on-board photographic data were used to identify lightning swept-flash attachment patterns and the orientations of the lightning channels with respect to the airplane. The full-scale in-flight data were compared to results from scale-model arc-attachment tests. The airborne and scale-model data showed that any exterior surface of this airplane may be susceptible to direct lightning attachment. In addition, the altitudes, ambient temperatures, and the relative turbulence and precipitation levels at which the strikes occurred in thunderstorms are summarized and discussed. It was found that the peak strike rate occurred at pressure altitudes betwen 38,000 ft and 40,000 ft, corresponding to ambient temperatures colder than -40 C.
Observations of severe in-flight environments on airplane composite structural components
NASA Technical Reports Server (NTRS)
Howell, W. E.; Fisher, B. D.
1983-01-01
The development of relatively inexpensive, highly sophisticated avionics systems makes it now possible for general aviation aircraft to fly under more severe weather conditions than formerly. Increased instrument flying increases exposure of aircraft to potentially severe thunderstorm activity such as high rain rates, hail stones, and lightning strikes. In particular, the effects of lightning on aircraft can be catastrophic. Interest in aircraft lightning protection has been stimulated by the introduction of advanced composites as an aircraft structural material. The present investigation has the objective to report experiences with three composite components which have flown in thunderstorms, taking into account three F-106B composite fin caps. The only visible lightning strike damage to a flame sprayed aluminum coated glass/epoxy fin cap was a small area of the aluminum which was burned. Visible lightning strike damage to a Kevlar/epoxy fin cap was limited to the exterior ply of aluminum coated glass fabric. In the case of a graphite/epoxy fin cap, lightning currents could be conducted.
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2008-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) are located in a region of Florida that experiences the highest area density of lightning strikes to ground in the United States, with values approaching 16 fl/km 2/yr when accumulated in 10x10 km (100 sq km) grids (see Figure 1). Consequently, the KSC-ER use data derived from two cloud-to-ground (CG) lightning detection networks to detect hazardous weather, the "Cloud-to-Ground Lightning Surveillance System" (CGLSS) that is owned and operated by the Air Force and the U.S. National Lightning Detection Network (NLDN) that is owned and operated by Vaisala, Inc. These systems are used to provide lightning warnings for ground operations and to insure mission safety during space launches at the KSC-ER. In order to protect the rocket and shuttle fleets, NASA and the Air Force follow a set of lightning safety guidelines that are called the Lightning Launch Commit Criteria (LLCC). These rules are designed to insure that vehicles are not exposed to the hazards of natural or triggered lightning that would in any way jeopardize a mission or cause harm to the shuttle astronauts. Also, if any CG lightning strikes too close to a vehicle on a launch pad, it can cause time-consuming mission delays due to the extensive retests that are often required for vehicles and/or payloads when this occurs. If any CG lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail.
Tantalum capacitor behavior under fast transient overvoltages. [circuit protection against lightning
NASA Technical Reports Server (NTRS)
Zill, J. A.; Castle, K. D.
1974-01-01
Tantalum capacitors were tested to determine failure time when subjected to short-duration, high-voltage surges caused by lightning strikes. Lightning is of concern to NASA because of possible damage to critical spacecraft circuits. The test was designed to determine the minimum time for tantalum capacitor failure and the amount of overvoltage a capacitor could survive, without permanent damage, in 100 microseconds. All tested exhibited good recovery from the transient one-shot pulses with no failure at any voltage, forward or reverse, in less than 25 microseconds.
NASA Technical Reports Server (NTRS)
Mata, C. T.; Mata, A. G.; Rakov, V. A.; Nag, A.; Saul, J.
2012-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes seven synchronized high-speed video cameras, current sensors installed on the nine downconductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31 2011. The measured peak currents and locations are compared to those reported by the Cloud-to-Ground Lightning Surveillance System (CGLSS II) and the National Lightning Detection Network (NLDN). Results of comparison are presented and analyzed in this paper.
Submicrosecond risetimes in lightning return-stroke fields
NASA Technical Reports Server (NTRS)
Weidman, C. D.; Krider, E. P.
1980-01-01
Measurements of lightning electric field, E, and dE/dt signatures have been made near Tampa Bay, Florida, under conditions where the lightning locations were known and where the results were not significantly affected by the response time of the measuring system or groundwave propagation. The fast transitions found on the initial portion of return-stroke fields have 10-90% risetimes ranging from 40 to 200 nsec, with a mean of 90 nsec. The maximum field derivatives during return strokes range from 5 to 75 V/m per microsec with a mean of 29 V/m per microsec when normalized to a distance of 100 km. These field risetime and derivative values suggest that return-stroke currents contain large, submicrosecond components, and this in turn suggests that it may be necessary to reevaluate the possible effects of lightning and the performance of lightning-protection devices in many situations.
High-altitude electrical discharges associated with thunderstorms and lightning
NASA Astrophysics Data System (ADS)
Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.
2015-12-01
The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.
Lightning prevention systems for paper mills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.B. Jr.
1989-05-01
Paper mills are increasingly relying on sensitive electronic equipment to control their operations. However, the sensitivity of these devices has made mills vulnerable to the effects of lightning strokes. An interruption in the power supply or the destruction of delicate microcircuits can have devastating effects on mill productivity. The authors discuss how lightning strokes can be prevented by a Dissipation Array system (DAS). During the past 17 years, the concept has been applied to a host of applications in regions with a high incidence of lightning activity. With nearly 700 systems now installed, more than 4000 system-years of history havemore » been accumulated. Areas as large as 1 km{sup 2} and towers as high as 2000 ft have been protected and completely isolated from lightning strokes. There have been very few failures, and in every case, the cause of the failure was determined and corrected.« less
Lightning threat extent of a small thunderstorm
NASA Technical Reports Server (NTRS)
Nicholson, James R.; Maier, Launa M.; Weems, John
1988-01-01
The concern for safety of the personnel at the Kennedy Space Center (KSC) has caused NASA to promulgate strict safety procedures requiring either termination or substantial curtailment when ground lightning threat is believed to exist within 9.3 km of a covered operation. In cases where the threat is overestimated, in either space or time, an opportunity cost is accrued. This paper describes a small thunderstorm initiated over the KSC by terrain effects, that serves to exemplify the impact such an event may have on ground operations at the Center. Data from the Air Force Lightning Location and Protection System, the AF/NASA Launch Pad Lightning Warning System field mill network, radar, and satellite imagery are used to describe the thunderstorm and to discuss its impact.
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lowers the 80-foot lightning mast removed from the top of the fixed service structure (left) onto the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (behind it) is lowered onto the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (left) rests on the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane is being used to remove the 80-foot lightning mast from the top of the fixed service structure. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane is being used to remove the 80-foot lightning mast from the top of the fixed service structure. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, the 80-foot lightning mast removed from the top of the fixed service structure (center) rests on the pad surface. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
Lightning Protection and Structural Bonding for the B2 Test Stand
NASA Technical Reports Server (NTRS)
Kinard, Brandon
2015-01-01
With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.
NASA Astrophysics Data System (ADS)
Stepanenko, V. D.
Papers are presented on a wide range of studies of atmospheric electricity, from the problem of the global atmospheric-electricity circuit to the effects of atmospheric electricity on ground-based facilities and biological objects. The main topics considered are general problems of atmospheric electricity, studies of atmospheric ions and aerosols, cloud electricity, studies of lightning-storm activity and atmospherics, and lightning protection.
The laser lightning rod system: thunderstorm domestication.
Ball, L M
1974-10-01
An unusual application of the laser, namely protection of life and property from lightning, is described. The device relies on multiphoton ionization in mode-locked beams, rather than on collisional (avalanche) electron production. Feasibility is demonstrated numerically, and relevant principles explained. A method of mobile deployment is mentioned, by which economic (as opposed to scientific) feasibility might be achieved.
NASA Technical Reports Server (NTRS)
Vaughan, W. W.
1980-01-01
The phenomenology of lightning and lightning measurement techniques are briefly examined with a particular reference to aeronautics. Developments made in airborne and satellite detection methods are reported. NASA research efforts are outlined which cover topics including in-situ measurements, design factors and protection, remote optical and radio frequency measurements, and space vehicle design.
2006-01-16
KENNEDY SPACE CENTER, FLA. - Viewed from the east side, Launch Pads 39A and 39B tower over the bird-filled waters of the Banana River at NASA Kennedy Space Center. On the far right is seen the 300-gallon water tower. Rising above the fixed service structures are the 80-foot lightning masts that help protect the structures from lightning strikes.
LSP Composite Susbtrate Manufacturing Processing Guide
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Griess, Kenneth H.
2013-01-01
This document is intended to define Carbon Fiber Reinforced Plastic (CFRP) test panel configurations that can be employed for the purposes of evaluating the protection capabilities of Lightning Strike Protection (LSP) materials developed by the Aerospace Industry. The configurations are intended to provide consistent behavior in their response to simulated lightning strikes at pre-defined levels when tested by a capable vendor according to a test procedure written to enable consistent results (ref section 2.1.2). In response to an attachment of a simulated lightning strike on a CFRP panel, one can expect to see various levels of ablation and delamination, both through the thickness of the panel and with respect to the amount of panel surface area that exhibits damage. Panel configurations defined in this document include: An "unprotected" configuration 128694-1 (ref section 4.1), consisting of a cured CFRP laminate stackup of tape and fabric prepregs, coated with a typical aerospace primer and paint finishing scheme, attached to aluminum grounding bars intended to draw electrical current from the lightning attachment point to the panel edges and thus to ground. A "protected" configuration 128694-2 (ref section 4.1), wherein a layer of an LSP material form often used in the Aerospace Industry is included in the laminate stackup prior to cure. The CFRP materials, finishes and grounding arrangement for ths configuration are the same as for the "unprotected" configuration.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... Engineer, Wichita Aircraft Certification Office (ACO), FAA, 1801 Airport Road, Room 100; phone: (316) 946-4155; fax: (316) 946-4107; e- mail: [email protected] . SUPPLEMENTARY INFORMATION: Discussion The FAA.... Baktha, Senior Aerospace Engineer, 1801 Airport Road, Room 100; phone: (316) 946-4155; fax: (316) 946...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-19
... Administration 14 CFR Part 193 [Docket No.: FAA-2013-0375] Technical Operations Safety Action Program (T-SAP) and Air Traffic Safety Action Program (ATSAP) AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Notice of Proposed Order Designating Safety Information as Protected from...
78 FR 39057 - Environmental Impact Statement: T.F. Green Airport, Warwick, Rhode Island
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... of Availability. SUMMARY: The FAA is issuing this notice to advise the public that a Written Re..., Burlington, MA 01803, (781) 238-7613, or at [email protected]gov . SUPPLEMENTARY INFORMATION: The FAA has issued a Written Re-Evaluation and Record of Decision, which evaluates an updated noise mitigation...
Expanding the Operational Use of Total Lightning Ahead of GOES-R
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.
2015-01-01
NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach Control Facilities (TRACON) region around an airport. These collaborations continue to demonstrate, from the operational perspective, the utility of total lightning and the importance of continued training and preparation in advance of the Geostationary Lightning Mapper.
NASA Technical Reports Server (NTRS)
Edwards, Paul; Terseck, Alex; Trout, Dawn
2016-01-01
Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.
2008-11-25
CAPE CANAVERAL, Fla. - The new lightning towers are under construction on Launch Pad 39B at NASA’s Kennedy Space Center in Florida. Each of the three new lightning towers will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire centenary system. This improved lightning protection system allows for the taller height of the Ares I compared to the space shuttle. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is targeted for summer of 2009, as part of NASA’s Constellation Program. Photo credit: NASA/Tim Jacobs
2009-01-22
CAPE CANAVERAL, Fla. – A giant crane is used to add additional segments to the new lightning towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett
Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites
NASA Astrophysics Data System (ADS)
Kawakami, Hirohide
Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch-repaired CFRP plates were selected as structural elements likely to be susceptible to lightning event. This study forms a solid foundation for the understanding of lightning damage mechanism of CFRPs, and become an important first step toward building a practical damage prediction tool of lighting event.
NASA Astrophysics Data System (ADS)
Li, Xiangchao; Wan, Zhicheng
2018-04-01
In order to solve the damage and interference problems to the electronic devices, which are induced by overvoltage excited by the coupling process between lightning electromagnetic wave and overhead lines, the lightning channel is set to be equivalent to a radiant wire antenna. Based on the integration model of lightning return stroke channel, transmission line, and ground, we take advantage of the derived formula gotten from the transmission line model. By combing the theoretical and experimental methods, we conduct a comparative analysis on the coupling process between natural/simulated lightning and overhead line. Besides, we also calculate the amplitude and energy of overvoltage, which is caused by the coupling process between lightning electromagnetic wave and overhead lines. Upon these experimental results, we can draw several conclusions as follows: when the amplitude of the lightning current in the channel is between 5 kA and 41 kA, it takes on an excellent linear relation between the amplitude of overvoltage and the magnitude of the lightning current, the relation between coupling energy and magnitude of the lightning current takes on an exponential trend. When lightning wave transmits on the transmission lines, the high-order mode will be excited. Through analysis on the high-order mode's characteristics, we find that the theoretical analysis is consistent with the experimental results, which has a certain reference value to the protection on overhead lines.
2009-03-03
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, workers attach more cables to the 80-foot lightning mast removed from the top of the fixed service structure. The mast will be lowered to horizontal for transport from the pad. The mast is no longer needed with the erection of the three lightning towers around the pad. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. The three new lightning towers are 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Amanda Diller
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
...; Flight Envelope Protection: High Speed Limiting AGENCY: Federal Aviation Administration (FAA), DOT... protection: high speed limiting. As published, the document contained an error in that the Special Conditions...
The protection of photovoltaic power systems from lightning
NASA Astrophysics Data System (ADS)
Rogers, C. B.
Lightning protection techniques at nine prototype photovoltaic power system sites with outputs from 18-225 kW are described. Noting that protection schemes are devised to fit isokeraunic data for specific sites, grounding is cited as a common feature for all systems. The grounds are, in separate instances, connected to junction boxes, frames of the solar cell panels, lead from the dc center, from the dc negative terminal, from the frames and equipment, at the array turntable, or from the building rebar frames. The dc power cables are protected by either metal conduit, metal conduit ground wire, direct burial, by rigid metal conduit, ground conductors, or by ground conductors at the ends of the conduit run. Costs run from 0.01-0.28$/W, with all the systems outfitted with bypass and blocking diodes. Direct stroke protection is viewed as less important than isokeraunic data.
NASA Technical Reports Server (NTRS)
Santiago-Perez, Julio
1988-01-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
NASA Astrophysics Data System (ADS)
Santiago-Perez, Julio
1988-10-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
Effects of lightning on trees: A predictive model based on in situ electrical resistivity.
Gora, Evan M; Bitzer, Phillip M; Burchfield, Jeffrey C; Schnitzer, Stefan A; Yanoviak, Stephen P
2017-10-01
The effects of lightning on trees range from catastrophic death to the absence of observable damage. Such differences may be predictable among tree species, and more generally among plant life history strategies and growth forms. We used field-collected electrical resistivity data in temperate and tropical forests to model how the distribution of power from a lightning discharge varies with tree size and identity, and with the presence of lianas. Estimated heating density (heat generated per volume of tree tissue) and maximum power (maximum rate of heating) from a standardized lightning discharge differed 300% among tree species. Tree size and morphology also were important; the heating density of a hypothetical 10 m tall Alseis blackiana was 49 times greater than for a 30 m tall conspecific, and 127 times greater than for a 30 m tall Dipteryx panamensis . Lianas may protect trees from lightning by conducting electric current; estimated heating and maximum power were reduced by 60% (±7.1%) for trees with one liana and by 87% (±4.0%) for trees with three lianas. This study provides the first quantitative mechanism describing how differences among trees can influence lightning-tree interactions, and how lianas can serve as natural lightning rods for trees.
JPS heater and sensor lightning qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.
Experimental and analytical investigation on metal damage suffered from simulated lightning currents
NASA Astrophysics Data System (ADS)
Yakun, LIU; Zhengcai, FU; Quanzhen, LIU; Baoquan, LIU; Anirban, GUHA
2017-12-01
The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.
NASA Astrophysics Data System (ADS)
Syssoev, V. S.; Kostinskiy, A. Yu.; Makalskiy, L. M.; Rakov, A. V.; Andreev, M. G.; Bulatov, M. U.; Sukharevsky, D. I.; Naumova, M. U.
2014-04-01
In this work, the results of experiments on initiating the upward and descending leaders during the development of a long spark when studying lightning protection of objects with the help of large-scale models are shown. The influence of the counterpropagating leaders on the process of the lightning strike of ground-based and insulated objects is discussed. In the first case, the upward negative leader is initiated by the positive downward leader, which propagates from the high-voltage electrode of the "rod-rod"-type Marx generator (the rod is located on the plane and is 3-m high) in the gap with a length of 9-12 m. The positive-voltage pulse with a duration of 7500 μs had an amplitude of up to 3 MV. In the second case, initiation of the positive upward leader was performed in the electric field created by a cloud of negatively charged aerosol, which simulates the charged thunderstorm cell. In this case, all the phases characteristic of the ascending lightnings initiated by the tall ground-based objects and the triggered lightnings during the experiments with an actual thunderstorm cloud were observed in the forming spark discharge with a length of 1.5-2.0 m. The main parameters of the counterpropagating leader, which is initiated by the objects during the large-scale model experiments with a long spark, are shown.
Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data
NASA Astrophysics Data System (ADS)
Herrera, J.; Younes, C.; Porras, L.
2018-05-01
This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false How must design and production approval... REGULATIONS PROTECTION OF VOLUNTARILY SUBMITTED INFORMATION § 193.17 How must design and production approval... under § 193.9(a)(2) to the holders of design approvals of production approvals issued by the FAA, the...
A survey of laser lightning rod techniques
NASA Technical Reports Server (NTRS)
Barnes, Arnold A., Jr.; Berthel, Robert O.
1991-01-01
The work done to create a laser lightning rod (LLR) is discussed. Some ongoing research which has the potential for achieving an operational laser lightning rod for use in the protection of missile launch sites, launch vehicles, and other property is discussed. Because of the ease with which a laser beam can be steered into any cloud overhead, an LLR could be used to ascertain if there exists enough charge in the clouds to discharge to the ground as triggered lightning. This leads to the possibility of using LLRs to test clouds prior to launching missiles through the clouds or prior to flying aircraft through the clouds. LLRs could also be used to probe and discharge clouds before or during any hazardous ground operations. Thus, an operational LLR may be able to both detect such sub-critical electrical fields and effectively neutralize them.
78 FR 55327 - Advisory Committee for Aviation Consumer Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... Committee for Aviation Consumer Protection AGENCY: Office of the Secretary (OST), Department of... fifth meeting of the Advisory Committee for Aviation Consumer Protection. DATES: The fifth meeting of... Federal Aviation Administration (FAA) headquarters at 800 Independence Avenue SW., Washington, DC...
1984-12-01
Security Classification) * C3 1 TERADATA STUDY 2 PERSONAL AUTHOR(S) , John Deckera 1 3a TYPE OF REPORT 12Tb TME COVEPED 4 T)A7C ’)E R- I) C ,,- vear Month...the paper. .Pi Tipaper was not available for incorporation into this book. 19-1 YSb . * THE RISK FACTOR IN AIRCRAFT LIGHTNING PROTECTION John C . Corbin...34Elect. World, Transmission Systems. Second edition, Vol.116, pp.1720-1721, 1766-1767, Nov John Wiley & Sons, Inc., New York, 1951. 1941. 5. Bruce, C . E. R
2009-01-22
CAPE CANAVERAL, Fla. – Progress is being made on construction of the new lightning towers on Launch Pad 39B at NASA's Kennedy Space Center in Florida. New sections are being added with the help of a giant crane. Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett
Study on the Transient Process of 500kV Substations Secondary Equipment
NASA Astrophysics Data System (ADS)
Li, Hongbo; Li, Pei; Zhang, Yanyan; Niu, Lin; Gao, Nannan; Si, Tailong; Guo, Jiadong; Xu, Min-min; Li, Guofeng; Guo, Liangfeng
2017-05-01
By analyzing on the reason of the lightning accident occur in the substation, the way of lightning incoming surge invading the secondary system is summarized. The interference source acts on the secondary system through various coupling paths. It mainly consists of four ways: the conductance coupling mode, the Capacitive Coupling Mode, the inductive coupling mode, The Radiation Interference Model. Then simulated the way with the program-ATP. At last, from the three aspects of low-voltage power supply system, the impact potential distribution of grounding grid, the secondary system and the computer system. The lightning protection measures is put forward.
VLF long-range lightning location using the arrival time difference technique (ATD)
NASA Technical Reports Server (NTRS)
Ierkic, H. Mario
1996-01-01
A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.
NASA Technical Reports Server (NTRS)
Fisher, B. D.; Plumer, J. A.
1984-01-01
The direct lightning strike data and associated flight conditions recorded from 1980 to 1983 during 742 thunderstorm penetrations with a NASA F-106B in Oklahoma and Virginia are studied with an emphasis on aircraft protection design. The individual lightning attachment spots were plotted on isometric projections of the aircraft to identify lightning entry and exit points and swept flash patterns. The altitudes, ambient temperatures, turbulence, and precipitation at which the strikes occurred are summarized and discussed. It was noted that peak strike rates (0.81 strikes/min and 3 strikes/penetration) occurred at altitudes between 11 km and 11.6 km corresponding to ambient temperatures between -40 C and -45 C. The data confirmed that initial entry and exit points most frequently occur at aircraft extremities, in this case the nose boom, the wing tips, the vertical fin cap, and the afterburner. The swept-flash attachment paths and burn marks found in this program indicate that the mid-span areas of swept aircraft may be more susceptible to lightning than previously thought. It was also found that lightning strikes may attach to spots within the engine tail pipe.
Applications of Geostationary Satellite Data to Aviation
NASA Astrophysics Data System (ADS)
Ellrod, Gary P.; Pryor, Kenneth
2018-03-01
Weather is by far the most important factor in air traffic delays in the United States' National Airspace System (NAS) according to the Federal Aviation Administration (FAA). Geostationary satellites have been an effective tool for the monitoring of meteorological conditions that affect aviation operations since the launch of the first Synchronous Meteorological Satellite (SMS) in the United States in 1974. This paper will review the global use of geostationary satellites in support of aviation weather since their inception, with an emphasis on the latest generation of satellites, such as Geostationary Operational Environmental Satellite (GOES)-R (16) with its Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM). Specific applications discussed in this paper include monitoring of convective storms and their associated hazards, fog and low stratus, turbulence, volcanic hazards, and aircraft icing.
Lightning protection guidelines and test data for adhesively bonded aircraft structures
NASA Technical Reports Server (NTRS)
Pryzby, J. E.; Plumer, J. A.
1984-01-01
The highly competitive marketplace and increasing cost of energy has motivated manufacturers of general aviation aircraft to utilize composite materials and metal-to-metal bonding in place of conventional fasteners and rivets to reduce weight, obtain smoother outside surfaces and reduce drag. The purpose of this program is protection of these new structures from hazardous lightning effects. The program began with a survey of advance-technology materials and fabrication methods under consideration for future designs. Sub-element specimens were subjected to simulated lightning voltages and currents. Measurements of bond line voltages, electrical sparking, and mechanical strength degradation were made to comprise a data base of electrical properties for new technology materials and basic structural configurations. The second hase of the program involved tests on full scale wing structures which contained integral fuel tanks and which were representative of examples of new technology structures and fuel systems. The purpose of these tests was to provide a comparison between full scale structural measurements and those obtained from the sub-element specimens.
DOT National Transportation Integrated Search
2014-03-01
As of March 2013, USEPA requires the usage of MOVES as a replacement for MOBILE. This means that EDMS analysts must use MOVES with EDMS instead of MOBILE. The plan is not to modify EDMS which continues to be integrated with MOBILE6; but instead, FAA ...
Explosion safety in industrial electrostatics
NASA Astrophysics Data System (ADS)
Szabó, S. V.; Kiss, I.; Berta, I.
2011-01-01
Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.
Design of lightning protection for a full-authority digital engine control
NASA Technical Reports Server (NTRS)
Dargi, M.; Rupke, E.; Wiles, K.
1991-01-01
The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G A
2004-06-08
In general, the Phase Retrieval from Modulus problem is very difficult. In this report, we solve the difficult, but somewhat more tractable case in which we constrain the solution to a minimum phase reconstruction. We exploit the real-and imaginary part sufficiency properties of the Fourier and Hilbert Transforms of causal sequences to develop an algorithm for reconstructing spectral phase given only spectral modulus. The algorithm uses homeomorphic signal processing methods with the complex cepstrum. The formal problem of interest is: Given measurements of only the modulus {vert_bar}H(k){vert_bar} (no phase) of the Discrete Fourier Transform (DFT) of a real, finite-length, stable,more » causal time domain signal h(n), compute a minimum phase reconstruction {cflx h}(n) of the signal. Then compute the phase of {cflx h}(n) using a DFT, and exploit the result as an estimate of the phase of h(n). The development of the algorithm is quite involved, but the final algorithm and its implementation are very simple. This work was motivated by a Phase Retrieval from Modulus Problem that arose in LLNL Defense Sciences Engineering Division (DSED) projects in lightning protection for buildings. The measurements are limited to modulus-only spectra from a spectrum analyzer. However, it is desired to perform system identification on the building to compute impulse responses and transfer functions that describe the amount of lightning energy that will be transferred from the outside of the building to the inside. This calculation requires knowledge of the entire signals (both modulus and phase). The algorithm and software described in this report are proposed as an approach to phase retrieval that can be used for programmatic needs. This report presents a brief tutorial description of the mathematical problem and the derivation of the phase retrieval algorithm. The efficacy of the theory is demonstrated using simulated signals that meet the assumptions of the algorithm. We see that for the noiseless case, the reconstructions are extremely accurate. When moderate to heavy simulated white Gaussian noise was added, the algorithm performance remained reasonably robust, especially in the low frequency part of the spectrum, which is the part of most interest for lightning protection. Limitations of the algorithm include the following: (1) It does not account for noise in the given spectral modulus. Fortunately, the lightning protection signals of interest generally have a reasonably high signal-to-noise ratio (SNR). (2) The DFT length N must be even and larger than the length of the nonzero part of the measured signals. These constraints are simple to meet in practice. (3) Regardless of the properties of the actual signal h(n), the phase retrieval results are constrained to have the minimum phase property. In most problems of practical interest, these assumptions are very reasonable and probably valid. They are reasonable assumptions for Lightning Protection applications. Proposed future work includes (a) Evaluating the efficacy of the algorithm with real Lightning Protection signals from programmatic applications, (b) Performing a more rigorous analysis of noise effects, (c) Using the algorithm along with advanced system identification algorithms to estimate impulse responses and transfer functions, (d) Developing algorithms to deal with measured partial (truncated) spectral moduli, and (e) R & D of phase retrieval algorithms that specifically deal with general (not necessarily minimum phase) signals, and noisy spectral moduli.« less
NASA Astrophysics Data System (ADS)
Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.
2017-02-01
Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.
Properties of Lightning Strike Protection Coatings
NASA Astrophysics Data System (ADS)
Gagne, Martin
Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.
2011-08-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the water tower and lightning protection system, consisting of three 600-foot-tall lightning towers, remain at Launch Pad 39B after the pad's deconstruction. Each lightning tower is 500 feet tall and topped off with an additional 100-foot fiberglass mast which supports a wire catenary system. In 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit http://www.nasa.gov/exploration. Photo credit: NASA/Kim Shiflett
2009-01-22
CAPE CANAVERAL, Fla. – Brilliant beams of sunlight bounce off the new lightning tower under construction on Launch Pad 39B at NASA's Kennedy Space Center in Florida. New sections are being added with the help of a giant crane (at right). Three new lightning towers on the pad will be 500 feet tall with an additional 100-foot fiberglass mast atop supporting a wire catenary system. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Photo credit: NASA/Kim Shiflett
Lightning Protection for the Orion Space Vehicle
NASA Technical Reports Server (NTRS)
Scully, Robert
2015-01-01
The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.
2008-12-19
CAPE CANAVERAL, Fla. -- On Launch Pad 39B at NASA's Kennedy Space Center in Florida, one of the new lightning towers is under construction. The towers will hold catenary wires as part of the new lightning protection system for the Constellation Program and Ares/Orion launches. Pad 39B will be the site of the first Ares vehicle launch, including Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Tim Jacobs
Lightning-related mortality and morbidity in Florida.
Duclos, P J; Sanderson, L M; Klontz, K C
1990-01-01
Cases of lightning-related deaths and injuries that occurred in Florida in 1978-87 were reviewed to determine the factors involved, to quantify the morbidity and mortality related to lightning strikes, and to describe epidemiologically the injuries and circumstances involved. Statewide information on deaths was obtained from death certificates, autopsy reports, and investigative reports. Information about morbidity was obtained from the Florida Hospital Cost Containment Board data base and the National Climatic Data Center data base for all Florida counties, as well as from hospitals in selected counties. Lightning-related deaths totaled 101 in Florida during the period 1978-87, an annual average of 10.1. Eight percent of the victims were from other States. The overall yearly death rate for State residents was 0.09 per 100,000 population, with the highest rate being that for men aged 15-19 years, 0.38 per 100,000. Thirteen percent of victims were females. The ratio of lightning-related injuries to deaths in Florida was estimated at about four to one. Thirty percent of all deaths were occupationally related. The first strikes of lightning from a thunderstorm may be the most dangerous, not in terms of impact, but because of the element of surprise. During thunderstorms, people may seek shelter under isolated trees because they believe erroneously that a tree offers protection from lightning, or perhaps because their top priority is to escape from rain rather than lightning. People may not seek adequate shelter during thunderstorms because they do not know the dangers of remaining outdoors or their judgment is impaired by drugs or alcohol. PMID:2113687
Lightning-related mortality and morbidity in Florida.
Duclos, P J; Sanderson, L M; Klontz, K C
1990-01-01
Cases of lightning-related deaths and injuries that occurred in Florida in 1978-87 were reviewed to determine the factors involved, to quantify the morbidity and mortality related to lightning strikes, and to describe epidemiologically the injuries and circumstances involved. Statewide information on deaths was obtained from death certificates, autopsy reports, and investigative reports. Information about morbidity was obtained from the Florida Hospital Cost Containment Board data base and the National Climatic Data Center data base for all Florida counties, as well as from hospitals in selected counties. Lightning-related deaths totaled 101 in Florida during the period 1978-87, an annual average of 10.1. Eight percent of the victims were from other States. The overall yearly death rate for State residents was 0.09 per 100,000 population, with the highest rate being that for men aged 15-19 years, 0.38 per 100,000. Thirteen percent of victims were females. The ratio of lightning-related injuries to deaths in Florida was estimated at about four to one. Thirty percent of all deaths were occupationally related. The first strikes of lightning from a thunderstorm may be the most dangerous, not in terms of impact, but because of the element of surprise. During thunderstorms, people may seek shelter under isolated trees because they believe erroneously that a tree offers protection from lightning, or perhaps because their top priority is to escape from rain rather than lightning. People may not seek adequate shelter during thunderstorms because they do not know the dangers of remaining outdoors or their judgment is impaired by drugs or alcohol.
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the rotating service structure (RSS) on Launch Pad 39B is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews are dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews are dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews are dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the rotating service structure (RSS) on Launch Pad 39B is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-09-30
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the rotating service structure (RSS) on Launch Pad 39B is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jim Grossmann
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crews continue dismantling the rotating service structure (RSS) on Launch Pad 39B. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Orville, R. E.
2004-12-01
A major field program will occur in summer 2005 to determine the sources and causes for the enhanced cloud-to-ground lightning over Houston, Texas. This program will be in association with simultaneous experiments supported by the Environmental Protection Agency (EPA) and the Texas Commission on Environmental Quality (TCEQ), formally the Texas Natural Resource Conservation Commission (TNRCC). Recent studies covering the period 1989-2002 document a 60 percent increase of cloud-to-ground lightning in the Houston area as compared to surrounding background values, which is second in flash density only to the Tampa Bay, Florida area. We suggest that the elevated flash densities could result from several factors, including 1) the convergence due to the urban heat island effect and complex sea breeze (thermal hypothesis), and 2) the increasing levels of air pollution from anthropogenic sources producing numerous small cloud droplets and thereby suppressing mean droplet size (aerosol hypothesis). The latter effect would enable more cloud water to reach the mixed phase region where it is involved in the formation of precipitation and the separation of electric charge, leading to an enhancement of lightning. The primary goals of HEAT are to examine the effects of (1) pollution, (2) the urban heat island, and (3) the complex coastline on storms and lightning characteristics in the Houston area. The transport of air pollutants by Houston thunderstorms will be investigated. In particular, the relative amounts of lightning-produced and convectively transported NOx into the upper troposphere will be determined, and a comparison of the different NOx sources in the urban area of Houston will be developed. The HEAT project is based on the observation that there is an enhancement in cloud-to-ground (CG) lightning. Total lightning (intracloud (IC) and CG) will be measured using a lightning mapping system (LDAR II) to observe if there is an enhancement in intracloud lightning as well.
NASA Astrophysics Data System (ADS)
Nína Petersen, Guðrún; Arason, Þórður; Bjornsson, Halldór
2013-04-01
Eruption of subglacial volcanoes may lead to catastrophic floods and therefore early determination of the exact eruption site may be critical to civil protection evacuation plans. Poor visibility due to weather or darkness often inhibit positive identification of exact eruption location for many hours. However, because of the proximity and abundance of water in powerful subglacial volcanic eruptions, they are probably always accompanied by early lightning activity in the volcanic column. Lightning location systems, designed for weather thunderstorm monitoring, based on remote detection of electromagnetic waves from lightning, can provide valuable real-time information on location of eruption site. Important aspect of such remote detection is its independence of weather, apart from thunderstorms close to the volcano. Individual lightning strikes can be 5-10 km in length and are sometimes tilted and to the side of the volcanic column. This adds to the lightning location uncertainty, which is often a few km. Furthermore, the volcanic column may be swayed by the local wind to one side. Therefore, location of a single lightning can be misleading but by calculating average location of many lightning strikes and applying wind correction a more accurate eruption site location can be obtained. In an effort to assess the expected accuracy, the average lightning locations during the past five volcanic eruptions in Iceland (1998-2011) were compared to the exact site of the eruption vent. Simultaneous weather thunderstorms might have complicated this analysis, but there were no signs of ordinary thunderstorms in Iceland during these eruptions. To identify a suitable wind correction, the vector wind at the 500 hPa pressure level (5-6 km altitude) was compared to mean lightning locations during the eruptions. The essential elements of a system, which predicts the eruption site during the first hour(s) of an eruption, will be described.
The FAA's Approach to Quality Assurance in the Flight Safety Analysis of Launch and Reentry Vehicles
NASA Astrophysics Data System (ADS)
Murray, Daniel P.; Weil, Andre
2010-09-01
The U.S. Federal Aviation Administration(FAA) Office of Commercial Space Transportation’s safety mission is to ensure protection of the public, property, and the national security and foreign policy interests of the United States during commercial launch and reentry activities. As part of this mission, the FAA issues licenses to the operators of launch and reentry vehicles who successfully demonstrate compliance with FAA regulations. To meet these regulations, vehicle operators submit an application that contains, among other things, flight safety analyses of their proposed missions. In the process of evaluating these submitted analyses, the FAA often conducts its own independent analyses, using input data from the submitted license application. These analyses are conducted according to approved procedures using industry developed tools. To assist in achieving the highest levels of quality in these independent analyses, the FAA has developed a quality assurance program that consists of multiple levels of review. These reviews rely on the work of multiple teams, as well as additional, independently performed work of support contractors. This paper describes the FAA’s quality assurance process for flight safety analyses. Members of the commercial space industry may find that elements of this process can be easily applied to their own analyses, improving the quality of the material they submit to the FAA in their license applications.
29 CFR 1910.307 - Hazardous (classified) locations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for the location shall be of a type and design that the employer demonstrates will provide protection... breakers, fuses, motor controllers, receptacles, attachment plugs, meters, relays, instruments, resistors..., local loud speaker and communication systems, ventilation piping, live parts, lightning surge protection...
29 CFR 1910.307 - Hazardous (classified) locations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for the location shall be of a type and design that the employer demonstrates will provide protection... breakers, fuses, motor controllers, receptacles, attachment plugs, meters, relays, instruments, resistors..., local loud speaker and communication systems, ventilation piping, live parts, lightning surge protection...
A NASA Lightning Parameterization for CMAQ
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard
2009-01-01
Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and number of strokes per flash are accounted for. LNOM combines all of these factors in a straightforward approach that is easily implemented into CMAQ. We anticipate that future applications of LNOM will produce significant and important changes in CMAQ trace gas concentrations for various regions and times. We also anticipate that these changes will have a direct impact on decision makers responsible for NAAQS attainment.
Vicente, Roberto; Potiens, Ademar; Sakata, Solange; Dellamano, José
2013-11-01
Radioactive lightning rods (RLR) were manufactured and installed in Brazil for almost two decades, before they were prohibited in 1989. Structures protected by this type of lightning preventers included residential buildings, schools, commercial and industrial facilities, among others. It is estimated that about 3.4 TBq of 241Am were used by manufacturers, and a total of 75,000 pieces with a mean activity of about 46 MBq were in the market. While only a fraction of the total has been recovered, the almost twenty thousand pieces already collected at the Nuclear and Energy Research Institute (IPEN) had their sources successfully separated from the remaining recyclable metal scrap and are now encapsulated in lead containers for final disposal.
The Case for Using Blunt-Tipped Lightning Rods as Strike Receptors.
NASA Astrophysics Data System (ADS)
Moore, C. B.; Aulich, G. D.; Rison, William
2003-07-01
Conventional lightning rods used in the United States have sharp tips, a practice derived from Benjamin Franklin's discovery of a means to obtain protection from lightning. However, the virtue of sharp tips for strike reception has never been established. An examination of the relevant physics shows that very strong electric fields are required above the tips of rods in order that they function as strike receptors but that the gradients of the field strength over sharp-tipped rods are so great that, at distances of a few millimeters, the local fields are often too weak for the development of upward-going streamers. In field tests, rods with rounded tips have been found to be better strike receptors than were nearby sharp-tipped rods.
Corona discharges from a windmill and its lightning protection tower in winter thunderstorms
NASA Astrophysics Data System (ADS)
Wu, Ting; Wang, Daohong; Rison, William; Thomas, Ronald J.; Edens, Harald E.; Takagi, Nobuyuki; Krehbiel, Paul R.
2017-05-01
This paper presents lightning mapping array (LMA) observations of corona discharges from a windmill and its lightning protection tower in winter thunderstorms in Japan. Corona discharges from the windmill, called windmill coronas, and those from the tower, called tower coronas, are distinctly different. Windmill coronas occur with periodic bursts, generally radiate larger power, and possibly develop to higher altitudes than tower coronas do. A strong negative electric field is necessary for the frequent production of tower coronas but is not apparently related with windmill coronas. These differences are due to the periodic rotation of the windmill and the moving blades which can escape space charges produced by corona discharges and sustain a large local electric field. The production period of windmill coronas is related with the rotation period of the windmill. Surprisingly, for one rotation of the windmill, only two out of the three blades produce detectable discharges and source powers of discharges from these two blades are different. The reason for this phenomenon is still unclear. For tower coronas, the source rate can get very high only when there is a strong negative electric field, and the source power can get very high only when the source rate is very low. The relationship between corona discharges and lightning flashes is investigated. There is no direct evidence that corona discharges can increase the chance of upward leader initiation, but nearby lightning flashes can increase the source rate of corona discharges right after the flashes. The peak of the source height distribution of corona discharges is about 100 m higher than the top of the windmill and the top of the tower. Possible reasons for this result are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-11-29
The Federal Aviation Administration has determined not to prescribe the proposed amendment to the FAA Regulations as submitted by the Environmental Protection Agency (40 F.R. 1072) on January 6, 1975, regarding noise abatement minimum altitudes for civil turbojet-powered airplanes. Instead, an internal directive is being issued aimed at the air traffic control function, which is designed to firmly integrate safety, fuel conservation, and noise abatement objectives into a single national program. It provides the flexibility needed to allow and encourage change with experience. (PCS)
NASA Technical Reports Server (NTRS)
Mata, C.T.; Mata, A.G.
2012-01-01
A Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida in 2009. This LPS was instrumented with comprehensive meteorological and lightning data acquisition systems that were deployed from late 2010 until mid 2011. The first direct strikes to the LPS were recorded in March of 2011, when a limited number of sensors had been activated. The lightning instrumentation system detected a total of 70 nearby strokes and 19 direct strokes to the LPS, 2 of the 19 direct strokes to the LPS had two simultaneous ground attachment points (in both instances one channel terminated on the LPS and the other on the nearby ground). Additionally, there are more unaccounted nearby strokes seen on video records for which limited data was acquired either due to the distance of the stroke or the settings of the data acquisition system. Instrumentation deployment chronological milestones, a summary of lightning strikes (direct and nearby), high speed video frames, downconductor currents, and dH/dt and dE/dt typical waveforms for direct and nearby strokes are presented.
40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions
Code of Federal Regulations, 2012 CFR
2012-07-01
... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...
40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions
Code of Federal Regulations, 2011 CFR
2011-07-01
... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...
40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions
Code of Federal Regulations, 2010 CFR
2010-07-01
... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...
40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions
Code of Federal Regulations, 2014 CFR
2014-07-01
... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...
40 CFR Appendix A to Subpart Gg of... - Specialty Coating Definitions
Code of Federal Regulations, 2013 CFR
2013-07-01
... electromagnetic energy spectrum, such as the ultraviolet, visible, infrared, or microwave regions. Uses include, but are not limited to, lightning strike protection, electromagnetic pulse (EMP) protection, and radar.... Electrostatic discharge and electromagnetic interference (EMI) coating—A coating applied to space vehicles...
MUSIC for localization of thunderstorm cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Lewis, P.S.; Rynne, T.M.
1993-12-31
Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surfacemore » electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.« less
Lightning discharge protection rod
NASA Technical Reports Server (NTRS)
Bryan, Charles F., Jr. (Inventor)
1987-01-01
A system for protecting an in-air vehicle from damage due to a lighning strike is disclosed. It is an extremely simple device consisting of a sacrificial graphite composite rod, approximately the diameter of a pencil with a length of about five inches. The sacrificial rod is constructed with the graphite fibers running axially within the rod in a manner that best provides a path of conduction axially from the trailing edge of an aircraft to the trailing end of the rod. The sacrificial rod is inserted into an attachment hole machined into trailing edges of aircraft flight surfaces, such as a vertical fin cap and attached with adhesive in a manner not prohibiting the conduction path between the rod and the aircraft. The trailing end of the rod may be tapered for aerodynamic and esthetic requirements. This rod is sacrificial but has the capability to sustain several lightning strikes and still provide protection.
2006-08-26
KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.
2006-08-26
KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.
1983-06-01
fighter aircraft. The entire test bed is from testing of a representative digital supported above the ground plane by non - control system(s)l e.g... control and Increased systems Integration a. Raw data must be collected and Introduce new requirements for protection, experimental setups and An accurate...presented, several possible solutions to the grounding prob! - are suggested. All rely on establishing initial ground contact through a controlled non -zero
A Study of Lightning Protection Systems
1981-10-01
from lightning, we must bear in mind that it does not follow the law of electric currents such as we are familiar with or those we read about as...radius equal to twice its height. Later on Guy Lussac Introduced M. Charles’ single cone--ie, a similar cone having a base with a radius equal to...or nforms with orrect. Th required d preservatio 1901 two mention the ned. Dr. of Science, Guy Lussac curity, but less good the e means
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, this image shows the progress of the rotating service structure (RSS) on Launch Pad 39B as it is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, this long range view shows the progress of the rotating service structure (RSS) on Launch Pad 39B as it is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
2010-10-04
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, this image shows the progress of the rotating service structure (RSS) on Launch Pad 39B as it is being dismantled. Sand, reinforcing steel and large wooden mats were put down under the RSS to protect the structure's concrete from falling debris during deconstruction. Starting in 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. The new lightning protection system, consisting of three lightning towers and a wire catenary system will remain. Photo credit: NASA/Jack Pfaller
High Energy Failure Containment for Spacecraft
NASA Technical Reports Server (NTRS)
Pektas, Pete; Baker, Christopher
2011-01-01
Objective: The objective of this paper will be to investigate advancements and any commonality between spacecraft debris containment and the improvements being made in ballistic protection. Scope: This paper will focus on cross application of protection devices and methods, and how they relate to protecting humans from failures in spacecraft. The potential gain is to reduce the risk associated with hardware failure, while decreasing the weight and size of energy containment methods currently being used by the government and commercial industry. Method of Approach: This paper will examine testing that has already been accomplished in regards to the failure of high energy rotating hardware and compare it to advancements in ballistic protection. Examples are: DOT research and testing of turbine containment as documented in DOT/FAA/AR-96/110, DOT/FAA/AR-97/82, DOT/FAA/AR-98/22. It will also look at work accomplished by companies such as ApNano and IBD Deisenroth in the development of nano ceramics and nanometric steels. Other forms of energy absorbent materials and composites will also be considered and discussed. New Advances in State of the Art: There have been numerous advances in technology in regards to high energy debris containment and in the similar field of ballistic protection. This paper will discuss methods such as using impregnated or dry Kevlar, ceramic, and nano-technology which have been successfully tested but are yet to be utilized in spacecraft. Reports on tungsten disulfide nanotubes claim that they are 4-5 times stronger than steel and reports vary about the magnitude increase over Kevlar, but it appears to be somewhere in the range of 2-6 times stronger. This technology could also have applications in the protection of pressure vessels, motor housings, and hydraulic component failures.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Mata, Angel G.; Rakov, V. A.; Nag, A.; Saul, Jon
2012-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida. This new instrumentation system includes six synchronized high-speed video cameras, current sensors installed on the nine downcouductors of the new lightning protection system (LPS) for LC39B; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. The LPS received 8 direct lightning strikes (a total of 19 strokes) from March 31 through December 31, 2011. The measured peak currents and locations are compared to those reported by the CGLSS 11 and the NLDN. Results of comparison are presented and analyzed in this paper.
Lightning Protection System for HE Facilities at LLNL - Certification Template
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, T J; Ong, M M; Brown, C G
2005-12-08
This document is meant as a template to assist in the development of your own lighting certification process. Aside from this introduction and the mock representative name of the building (Building A), this document is nearly identical to a lightning certification report issued by the Engineering Directorate at Lawrence Livermore National Laboratory. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facilities. In Chapters 1 and 2 respectively, we address the need and methods of lightning certification for HE processing and storage facilities at LLNL. We present the preferredmore » method of lightning protection in Chapter 3, as well as the likely building modifications that are needed to comply with this method. In Chapter 4, we present the threat assessment and resulting safe work areas within a cell. After certification, there may be changes to operations during a lightning alert, and this is discussed in Chapter 5. Chapter 6 lists the maintenance requirements for the continuation of lighting certification status. Appendices of this document are meant as an aid in developing your own certification process, and they include a bonding list, an inventory of measurement equipment, surge suppressors in use at LLNL, an Integrated Work and Safety form (IWS), and a template certification sign-off sheet. The lightning certification process involves more that what is spelled out in this document. The first steps involve considerable planning, the securing of funds, and management and explosives safety buy-in. Permits must be obtained, measurement equipment must be assembled and tested, and engineers and technicians must be trained in their use. Cursory building inspections are also recommended, and surge suppression for power systems must be addressed. Upon completion of a certification report and its sign-off by management, additional work is required. Training will be needed in order to educate workers and facility managers of the requirements of lightning certification. Operating procedures will need to be generated and/or modified with additional controls. Engineering controls may also be implemented requiring the modification of cells. Careful planning should bring most of these issues to light, making it clear where this document is helpful and were additional assistance may be necessary.« less
Three “lightning round” presentations and brief panel discussion on each of five topics including water quality and quantity, river protection and restoration, climate resiliance, Brownfields revitalization, and trails, parks, and open space.
Development of a positive corona from a long grounded wire in a growing thunderstorm field
NASA Astrophysics Data System (ADS)
Mokrov, M. S.; Raizer, Yu P.; Bazelyan, E. M.
2013-11-01
The properties of a non-stationary corona initiated from a long grounded wire suspended horizontally above the ground and coronating in a slowly varying thundercloud electric field are studied. A two-dimensional (2D) model of the corona is developed. On the basis of this model, characteristics of the corona produced by a lightning protection wire are calculated under thunderstorm conditions. The corona characteristics are also found by using approximate analytical and quasi-one-dimensional numerical models. The results of these models agree reasonably well with those obtained from the 2D simulation. This allows one to estimate the corona parameters without recourse to the cumbersome simulation. This work was performed with a view to study the efficiency of lightning protection wires later on.
Feasibility study of a CO2-laser based lightning-protection system realization
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.
2005-01-01
The feasibility of producing a continuous laser spark (CLS) with low resistance by focusing radiation from a CO2 laser with a conic mirror is demonstrated. The laser energy input per unit length required for this is experimentally found to be equal to ≈200 J/m. The possibility to efficiently control the trajectory of an electric discharge by means of a CLS is demonstrated. The effect of polarity in the electric breakdown of the air gaps between the CLS plasma channel and a metal rod is discovered and interpreted. The transverse structure of CLS conductivity is investigated. The possibility of producing a long laser spark (LLS) with much higher resistance by focusing radiation from a CO2 laser with a spherical mirror used to protect objects against lightning is studied. The conditions under which the electric discharges from clouds can be guided reproducibly along a LLS are determined. Experiments reveal that the interaction between the LLS and the discharge from an electrode (lightning rod) leads to a decrease in the lifetime of the streamer corona burst, as well as to an increase in the current of the developing leader and its velocity compared to the case without the LLS.
Lightning forecasting studies using LDAR, LLP, field mill, surface mesonet, and Doppler radar data
NASA Technical Reports Server (NTRS)
Forbes, Gregory S.; Hoffert, Steven G.
1995-01-01
The ultimate goal of this research is to develop rules, algorithms, display software, and training materials that can be used by the operational forecasters who issue weather advisories for daily ground operations and launches by NASA and the United States Air Force to improve real-time forecasts of lightning. Doppler radar, Lightning Detection and Ranging (LDAR), Lightning Location and Protection (LLP), field mill (Launch Pad Lightning Warning System -- LPLWS), wind tower (surface mesonet) and additional data sets have been utilized in 10 case studies of thunderstorms in the vicinity of KSC during the summers of 1994 and 1995. These case studies reveal many intriguing aspects of cloud-to-ground, cloud-to-cloud, in-cloud, and cloud-to-air lightning discharges in relation to radar thunderstorm structure and evolution. They also enable the formulation of some preliminary working rules of potential use in the forecasting of initial and final ground strike threat. In addition, LDAR and LLP data sets from 1993 have been used to quantify the lightning threat relative to the center and edges of LDAR discharge patterns. Software has been written to overlay and display the various data sets as color imagery. However, human intervention is required to configure the data sets for proper intercomparison. Future efforts will involve additional software development to automate the data set intercomparisons, to display multiple overlay combinations in a windows format, and to allow for animation of the imagery. The software package will then be used as a tool to examine more fully the current cases and to explore additional cases in a timely manner. This will enable the formulation of more general and reliable forecasting guidelines and rules.
2005-12-05
KENNEDY SPACE CENTER, FLA. - The Lockheed Martin Atlas V rocket (center) undergoes a tanking test on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket was fully fueled with liquid hydrogen, liquid oxygen and RP 1 kerosene fuel. Seen surrounding the rocket are lightning towers that support the catenary wire that provides lightning protection. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch during a 35-day window that opens Jan. 11, and fly through the Pluto system as early as summer 2015.
2005-12-05
KENNEDY SPACE CENTER, FLA. - The Lockheed Martin Atlas V rocket (center) undergoes a tanking test on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket was fully fueled with liquid hydrogen, liquid oxygen and RP 1 kerosene fuel. Seen surrounding the rocket are lightning towers that support the catenary wire that provides lightning protection. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch during a 35-day window that opens Jan. 11, and fly through the Pluto system as early as summer 2015.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane begins lifting a 100-foot fiberglass lightning mast to place it on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane lifts a 100-foot fiberglass lightning mast alongside the 500-foot tower where it will be installed. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane holds a 100-foot fiberglass lightning mast that will be placed on top of one of the 500-foot towers being constructed for the Constellation Program and Ares/Orion launches. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. Another tower is seen at right. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
... Envelope Protection: Performance Credit for Automatic Takeoff Thrust Control System (ATTCS) During Go... Automatic Takeoff Thrust Control System (ATTCS) during go-around. The applicable airworthiness regulations... FAA-2012-1199 using any of the following methods: Federal eRegulations Portal: Go to http://www...
DOT National Transportation Integrated Search
1989-05-01
This study was undertaken, on request, to evaluate the performance of the Puritan-Bennett portable crew protective breathing device for contaminant leaks. O2, CO2 levels, inhalation/exhalation pressure, and inhalation temperature. Tests were conducte...
Thunderstorm incidence in southeastern Brazil estimated from different data sources
NASA Astrophysics Data System (ADS)
Pinto, O., Jr.; Naccarato, K. P.; Pinto, I. R. C. A.
2013-07-01
This paper describes a comparative analysis of the thunderstorm incidence in southeastern Brazil obtained from thunderstorm days observed at two different epochs (from 1910 to 1951 and from 1971 to 1984) and from lightning data provided by the Brazilian lightning location system RINDAT (from 1999 to 2006) and the Lightning Imaging Sensor (LIS) on board the Tropical Rainfall Measuring Mission (TRMM) satellite (from 1998 to 2010). The results are interpreted in terms of the main synoptic patterns associated with thunderstorm activity in this region, indicating that the prevailing synoptic pattern associated with thunderstorm activity is the occurrence of frontal systems and their modulation by the South Atlantic Convergence Zone (SACZ) and topography. Evidence of urban effects is also found. The results are also discussed in the context of practical applications involving their use in the Brazilian lightning protection standards, suggesting that the present version of the Brazilian standards should be revised incorporating RINDAT and LIS data. Finally, the results are important to improve our knowledge about the limitations of the different techniques used to record the thunderstorm activity and support future climatic studies.
Submicrosecond characteristics of lightning return-stroke currents
NASA Technical Reports Server (NTRS)
Leteinturier, Christiane; Hamelin, Joel H.; Eybert-Berard, Andre
1991-01-01
The authors describe the experimental results obtained during 1987 and 1988 triggered-lightning experiments in Florida. Seventy-four simultaneous submicrosecond time-resolved measurements of triggered return-stroke current (I) and current derivative (dI/dt) were made in Florida in 1987 and 1988. Peak currents ranged from about 5 to 76 kA, peak dI/dt amplitude from 13 to 411 kA/microsec and rise time from 90 to 1000 ns. The mean peak dI/dt values of 110 kA/microsec were 2-3 times higher than data from instrumented towers and peak I and dI/dt appear to be positively correlated. These data confirm previous experiments and conclusions supported by forty measurements. They are important in order to define, for example, standards for lightning protection. Present standards give a dI/dt maximum of 140 kA/microsec.
Investigation on Improvements in Lightning Retest Criteria for Spacecraft
NASA Technical Reports Server (NTRS)
Terseck, Alex; Trout, Dawn
2016-01-01
Spacecraft are generally protected from a direct strike by launch the vehicle and ground structures, but protocols to evaluate the impact of nearby strikes are not consistent. Often spacecraft rely on the launch vehicle constraints to trigger a retest, but launch vehicles can typically evaluate the impact of a strike within minutes while spacecraft evaluation times can be on the order of hours or even days. For launches at the Kennedy Space Center where lightning activity is among the highest in the United States, this evaluation related delay could be costly with the possibility of missing the launch window altogether. This paper evaluated available data from local lightning measurements systems and computer simulations to predict the coupled effect from various nearby strikes onto a typical payload umbilical. Recommendations are provided to reduce the typical trigger criteria and costly delays.
Studies in geophysics: The Earth's electrical environment
NASA Astrophysics Data System (ADS)
The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.
Studies in geophysics: The Earth's electrical environment
NASA Technical Reports Server (NTRS)
1986-01-01
The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, Vladimir A.; Mata, Angel G.; Bonilla Tatiana; Navedo, Emmanuel; Snyder, Gary P.
2010-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras, currents through the nine downconductors of the new lightning protection system, four B-dot, 3-axis measurement stations, and five D-dot stations composed of two antennas each. The instrumentation system is composed of centralized transient recorders and digitizers that located close to the sensors in the field. The sensors and transient recorders communicate via optical fiber. The transient recorders are triggered by the B-dot sensors, the E-dot sensors, or the current through the downlead conductors. The high-speed cameras are triggered by the transient recorders when the latter perceives a qualified trigger.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... indicating system, initial inspection of lightning and static bonding jumpers......... Installation of GFIs... Bulletin 382- (GFIs) and flame arrestors for 28-20, Revision 11, dated protection of the fuel system in... GFIs for protection of the Paragraph 2.C.(2) of the fuel system in accordance with Accomplishment...
33 CFR 127.003 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Requirements, Combustible Gas Detectors, 1986 127.1203 American Petroleum Institute (API) 1220 L Street NW., Washington, DC 20005: API RP 2003, Protection Against Ignitions Arising Out of Static, Lightning and Stray...
33 CFR 127.003 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Requirements, Combustible Gas Detectors, 1986 127.1203 American Petroleum Institute (API) 1220 L Street NW., Washington, DC 20005: API RP 2003, Protection Against Ignitions Arising Out of Static, Lightning and Stray...
33 CFR 127.003 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Requirements, Combustible Gas Detectors, 1986 127.1203 American Petroleum Institute (API) 1220 L Street NW., Washington, DC 20005: API RP 2003, Protection Against Ignitions Arising Out of Static, Lightning and Stray...
33 CFR 127.003 - Incorporation by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Requirements, Combustible Gas Detectors, 1986 127.1203 American Petroleum Institute (API) 1220 L Street NW., Washington, DC 20005: API RP 2003, Protection Against Ignitions Arising Out of Static, Lightning and Stray...
Chemical composition of inks of diverse marine molluscs suggests convergent chemical defenses.
Derby, Charles D; Kicklighter, Cynthia E; Johnson, P M; Zhang, Xu
2007-05-01
Some marine molluscs, notably sea hares, cuttlefish, squid, and octopus, release ink when attacked by predators. The sea hare Aplysia californica releases secretions from the ink gland and opaline gland that protect individuals from injury or death from predatory spiny lobsters through a combination of mechanisms that include chemical deterrence, sensory disruption, and phagomimicry. The latter two mechanisms are facilitated by millimolar concentrations of free amino acids (FAA) in sea hare ink and opaline, which stimulate the chemosensory systems of predators, ultimately leading to escape by sea hares. We hypothesize that other inking molluscs use sensory disruption and/or phagomimicry as a chemical defense. To investigate this, we examined concentrations of 21 FAA and ammonium in the defensive secretions of nine species of inking molluscs: three sea hares (Aplysia californica, Aplysia dactylomela, Aplysia juliana) and six cephalopods (cuttlefish: Sepia officinalis; squid: Loligo pealei, Lolliguncula brevis, Dosidicus gigas; octopus: Octopus vulgaris, Octopus bimaculoides). We found millimolar levels of total FAA and ammonium in these secretions, and the FAA in highest concentration were taurine, aspartic acid, glutamic acid, alanine, and lysine. Crustaceans and fish, which are major predators of these molluscs, have specific receptor systems for these FAA. Our chemical analysis supports the hypothesis that inking molluscs have the potential to use sensory disruption and/or phagomimicry as a chemical defense.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; James, Arthur M.
1985-01-01
The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
[email protected]nz ; Internet: http://www.alphaaviation.co.nz . You may review copies of the referenced service... 7070; fax: 011 64 7843 8040; email: [email protected]nz ; Internet: http://www.alphaaviation.co.nz . You may review copies of the referenced service information at the FAA, Small Airplane...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... Activities: Requests for Comments; Clearance of New Approval of Information Collection: Activation of Ice... requirement imposed by the new rule ``Part 121 Activation of Ice Protection''. The NPRM for that rule was...: Activation of Ice Protection Rule--Flight Manual Requirements. Form Numbers: There are no FAA forms...
External tank project new technology plan. [development of space shuttle external tank system
NASA Technical Reports Server (NTRS)
1973-01-01
A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.
Code of Federal Regulations, 2013 CFR
2013-10-01
... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...
Code of Federal Regulations, 2014 CFR
2014-10-01
... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...
Code of Federal Regulations, 2012 CFR
2012-10-01
... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...
Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials
NASA Astrophysics Data System (ADS)
Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier
2014-02-01
Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.
NASA Technical Reports Server (NTRS)
Jeck, R. K.
1985-01-01
A growing requirement over the past decade for a new assessment of aircraft icing conditions in wintertime clouds at altitudes up to about 10,000 feet is discussed. The requirement was documented in past workshops and comes primarily from the helicopter community which wants ice-protected rotorcraft to meet increasing demands for all-weather operations. Currently, only a few of the larger helicopters are equipped with certification of ice-protection devices. This is because the current FAA criteria for design and certification of ice-protection equipment results in power and payload penalties that smaller rotorcraft cannot tolerate. The FAA criteria were actually designed for large, transport-category aircraft capable of flying to 20,000 feet or more. For this reason, there have been concerns that the current criteria may be too severe for low-performance aircraft, such as helicopters, which generally operate at altitudes below 10,000 feet.
NASA Astrophysics Data System (ADS)
Ito, Katsuji; Hirose, Yasuo
Overvoltage induced by surge currents due to thunderstorm lightnings causes harmful breakdown troubles of CATV communication equipment installed in and with power distribution systems. In this paper, the origin and natures of surge currents, their invading route into the system, and the system components such as earth impedances affecting over voltages are studied. Transient analyses are then performed using an equivalent circuit to evaluate over voltages. Application of the obtained results to the field fault data of communication equipment and possible protection method of them are discussed.
2009-01-26
CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, a crane places a 100-foot fiberglass lightning mast on top of the 500-foot tower. The tower is one of three being constructed for the Constellation Program and Ares/Orion launches. Another tower is seen at right. This improved lightning protection system allows for the taller height of the Ares I rocket compared to the space shuttle. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X test flight that is targeted for July 2009. Photo credit: NASA/Jack Pfaller
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
DOT National Transportation Integrated Search
1989-11-01
Two types of crewmember protective breathing equipment (PBE) were performance tested for compliance with Action Notice A-8150.2 at ground level (- 1,300 feet) and 8,000 feet altitude. PBE 1 was a 'hood with oral-nasal mask,' which used potassium supe...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
..., except federal holidays. FOR FURTHER INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew... protection features include limitations on angle-of- attack, normal load factor, bank angle, pitch angle, and... characteristics, and High angle-of-attack. Section Sec. 25.143, however, does not adequately ensure that the novel...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... Envelope Protection: High Speed Limiting AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... inadvertently or intentionally exceeding a speed approximately equivalent to V FC or attaining V DF . Current Title 14 Code of Federal Regulations (14 CFR) part 25 do not relate to a high speed limiter that might...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... the dive from non-symmetric attitudes, unless the airplane is protected by the flight control laws... that the Administrator considers necessary to establish a level of safety equivalent to that... regulatory adequacy pursuant to section 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The FAA...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... the dive from non-symmetric attitudes, unless the airplane is protected by the flight control laws... necessary to establish a level of safety equivalent to that established by the existing airworthiness... 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as...
NASA Technical Reports Server (NTRS)
Wu, Janet P.
2003-01-01
Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.
NASA Technical Reports Server (NTRS)
Day, Arthur C.; Griess, Kenneth H.
2013-01-01
This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.
Lightning protection of full authority digital electronic systems
NASA Astrophysics Data System (ADS)
Crofts, David
1991-08-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
Lightning protection of full authority digital electronic systems
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
Modern electronic systems are vulnerable to transient and they now provide safety critical functions such as full authority digital electronic control (FADEC) units for fly by wire aircraft. Of the traditional suppression technologies available diodes have gained the wider acceptance, however, they lack the current handling capacity to meet existing threat levels. The development of high speed fold back devices where, at a specified voltage, the off state resistance switches to a very low on state one has provided the equivalent to a semiconductor spark gap. The size of the technology enables it to be integrated into connectors of interconnection cables. To illustrate the performance the technology was developed to meet the Lightning Protection requirements for FADEC units within aeroengines. Work was also carried out to study switching behavior with the waveform 5, the 500 us, 10 kA pulse applied to cable assemblies. This test enabled all the switches in a connector to be fired simultaneously.
2011-08-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, cleanup of Launch Pad 39B is in progress beside the pad's flame trench. The trench is 450 feet long, 58 feet wide and 42 feet deep with an inner inverted V-shaped steel flame deflector. Sand, reinforcing steel and large wooden mats were placed over the pad's concrete surfaces during deconstruction to protect them from falling debris. In the distance is the 525-foot-tall Vehicle Assembly Building. In 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of rockets and spacecraft. The lightning protection system, consisting of three lightning towers and a wire catenary system, will remain. For information on NASA's future plans, visit http://www.nasa.gov/exploration. Photo credit: NASA/Kim Shiflett
2011-08-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, cleanup of Launch Pad 39B is in progress beside the pad's flame trench. The trench is 450 feet long, 58 feet wide and 42 feet deep with an inner inverted V-shaped steel flame deflector. Sand, reinforcing steel and large wooden mats were placed over the pad's concrete surfaces during deconstruction to protect them from falling debris. In 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of rockets and spacecraft. The lightning protection system, consisting of three lightning towers and a wire catenary system, will remain. For information on NASA's future plans, visit http://www.nasa.gov/exploration. Photo credit: NASA/Kim Shiflett
2011-08-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, cleanup of Launch Pad 39B is in progress beside the pad's flame trench. The trench is 450 feet long, 58 feet wide and 42 feet deep with an inner inverted V-shaped steel flame deflector. Sand, reinforcing steel and large wooden mats were placed over the pad's concrete surfaces during deconstruction to protect them from falling debris. In the distance is the 525-foot-tall Vehicle Assembly Building. In 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of rockets and spacecraft. The lightning protection system, consisting of three lightning towers and a wire catenary system, will remain. For information on NASA's future plans, visit http://www.nasa.gov/exploration. Photo credit: NASA/Kim Shiflett
2011-08-03
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, cleanup of Launch Pad 39B is in progress beside the pad's flame trench. The trench is 450 feet long, 58 feet wide and 42 feet deep with an inner inverted V-shaped steel flame deflector. Sand, reinforcing steel and large wooden mats were placed over the pad's concrete surfaces during deconstruction to protect them from falling debris. In the distance is the 525-foot-tall Vehicle Assembly Building. In 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of rockets and spacecraft. The lightning protection system, consisting of three lightning towers and a wire catenary system, will remain. For information on NASA's future plans, visit http://www.nasa.gov/exploration. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Hill, Jonathan D.; Mata, Angel G.; Cummins, Kenneth L.
2014-01-01
From May 2011 through July 2013, the lightning instrumentation at Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida, has obtained high-speed video records and field change waveforms (dE/dt and three-axis dH/dt) for 54 negative polarity return strokes whose strike termination locations and times are known with accuracy of the order of 10 m or less and 1 µs, respectively. A total of 18 strokes terminated directly to the LC39B lighting protection system (LPS), which contains three 181 m towers in a triangular configuration, an overhead catenary wire system on insulating masts, and nine down conductors. An additional 9 strokes terminated on the 106 m lightning protection mast of Launch Complex 39A (LC39A), which is located about 2.7 km southeast of LC39B. The remaining 27 return strokes struck either on the ground or attached to low-elevation grounded objects within about 500 m of the LC39B LPS. Leader/return stroke sequences were imaged at 3200 frames/sec by a network of six Phantom V310 high-speed video cameras. Each of the three towers on LC39B had two high-speed cameras installed at the 147 m level with overlapping fields of view of the center of the pad. The locations of the strike points of 54 return strokes have been compared to time-correlated reports of the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the National Lightning Detection Network (NLDN), and the results of this comparison will be presented and discussed.
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Manabu, A.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Miki, M.; Shimizu, M.
2009-12-01
In this paper, we present observations of positive cloud-to-ground (+CG) lightning flashes obtained with the VHF BDITF (VHF Broadband Digital InTerFerometer) and the ALPS (Automatic Lightning Discharge Progressing Feature Observation System). The VHF BDITF observed two- (2D) and three-dimensional (3D) developments of lightning flashes with high time resolution. The ALPS observed the luminous propagation of the local process at low altitudes within its observational range. At 2028:59 JST on 8 August, 2008, we observed the 3D spatiotemporal development channels of +CG lightning flash with the VHF BDITF and the RS with the lightning location and protection (LLP) system. This flash is divided before and after the RS. In the former stage, the in-cloud negative breakdown (NB) progress about 15 km horizontally between 6 and 10 km high. The LLP system detects the RS near the initiation point of that negative breakdown (NB) at the end of the former stage. In the latter stage, the new NB runs through the same path as the first NB before the RS. The luminous intensity of the RS near the ground obtained with the ALPS is synchronized with the development of the new NB. The time variation of luminous intensity by the ALPS has two peaks. The time difference of these peaks is corresponding to the blank of the VHF radiation. Since the new NB following the RS runs through the path of the first NB, the positive breakdown (PB), which is not visualized by the VHF BDITF, could be considered to progress from the starting point of the first NB and touches to the ground. The RS current propagates and penetrates in the opposite direction as visualized subsequent NB. This suggests the first NB and the PB progress together. This +CG lightning flash has the bi-directional leader. To assume the path of the PB is straight line, the velocity of the PB is about 4 × 104 m/s.
Verification tests of durable TPS concepts
NASA Technical Reports Server (NTRS)
Shideler, J. L.; Webb, G. L.; Pittman, C. M.
1984-01-01
Titanium multiwall, superalloy honeycomb, and Advanced Carbon-carbon (ACC) multipost Thermal Protection System (TPS) concepts are being developed to provide durable protection for surfaces of future space transportation systems. Verification tests including thermal, vibration, acoustic, water absorption, lightning strike, and aerothermal tests are described. Preliminary results indicate that the three TPS concepts are viable up to a surface temperature in excess of 2300 F.
Civil aircraft side-facing seat research summary.
DOT National Transportation Integrated Search
2012-11-01
The Federal Aviation Administration (FAA) has standards and regulations that are intended to protect aircraft : occupants in the event of a crash. However, side-facing seats were not specifically addressed when aircraft seat : dynamic test standards ...
78 FR 45052 - Airworthiness Directives; Hartzell Propeller, Inc. Propellers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... Planes, IL 60018; phone: 847-294-7377; fax: 847-294- 7834; email: [email protected] . SUPPLEMENTARY... Certification Office, FAA, Propulsion Branch, 2300 E. Devon Avenue, Des Planes, IL 60018; phone: 847-294-7377...
Evidence of negative leaders which precede fast rise ICC pulses of upward
NASA Astrophysics Data System (ADS)
Yoshida, S.; Akita, M.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Wang, D.; Takagi, N.
2008-12-01
During winter thunderstorm season in Japan, a lightning observation campaign was conducted with using a VHF broadband digital interferometer (DITF), a capacitive antenna, and Rogowski coils to study the charge transfer mechanism associated with ICC pulses of upward lightning. All the detection systems recorded one upward negative lightning stroke hitting a lightning protection tower. The upward lightning consists of only the Initial Stage (IS) with one upward positive leader and six ICC pulses. The six ICC pulses are sub-classified clearly into two types according to current pulse shapes. The type 1 ICC pulses have a higher geometric mean (GM) current peak of 17 kA and a shorter GM 10-90% risetime of 8.9 μs, while the type 2 ICC pulses have a lower GM current peak of 0.34 kA and longer GM 10-90% risetime of 55 μs. The type 1 ICC pulses have the preceding negative leaders connecting to the channel of the continuing current, while the type 2 ICC pulses have no clear preceding negative leader. These negative leaders prior to the type 1 ICC pulses probably caused the current increases of the ICC pulses, which means that the negative leaders created the channels for the ICC pulses. The height of the space charge transferred by one of the type 1 ICC pulses was estimated about 700 m above sea level at most. This observation result is the first evidence to show explicitly the existence of the negative leaders prior to the fast rise ICC pulse. Furthermore, the result shows that space charge could exist at a low attitude such as 700 m above sea level. This fact is one of the reasons why upward lightning occurs even from rather low structures during winter thunderstorm season in Japan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commitment for Guarantee. The Agency's written statement to the lender that the material submitted is..., windstorm, lightning, hail, explosion, riot, civil commotion, aircraft, vehicles, smoke, builder's risk... directly involved in the operation and management of the borrower. Protective advances. Advances made by...
NASA Astrophysics Data System (ADS)
Zhan, Qinghua; Chen, Zhucheng; Li, Hongtao; Liu, Yijun; Mei, Cheng; He, Zhijie
2017-05-01
In order to solve the accidents happened in the ponds or other special places around the tower which were caused by the diffusion current after lightning stroke the transmission tower, the protection measures for the problem tower in the area of Guangdong Province which occurred dead fish in the pond in thunderstorm weather were studied in this paper. The COMSOL mutiphysics simulation software was used in order to calculate the electromagnetic environment of the diffusion situation by grounding device after lightning stroke the power transmission tower. Study concluded that the safe distance between the fish pond and grounding device of transmission tower is 14 meter. The effects of the length and depth or stayed a gap of the insulation baffle on the fish in the fish pond were discussed. The protection method of the insulation baffle has important practical significance to the protection of the grounding device for diffusion current, and can provide some engineering guidance and basis for the grounding arrangement and transformation of the high voltage transmission line tower.
A new characterization of supercooled clouds below 10,000 feet AGL
NASA Technical Reports Server (NTRS)
Masters, C. O.
1985-01-01
Icing caused by supercooled clouds below 10,000 feet were characterized with a view toward a change in FAA standards for civil aircraft ice protection standards. Current techniques in cloud physics were employed.
78 FR 51126 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
...-AVS[email protected] . SUPPLEMENTARY INFORMATION: Comments Invited We invite you to participate in this... Directorate, FAA, 2601 Meacham Blvd., Fort Worth, Texas 76137; telephone (817) 222-5413; email 7-AVS-ASW-170...
System protection from atmospheric electricity for aerostats with conducting tethers
NASA Astrophysics Data System (ADS)
Wheeler, M. S.; Beach, G. R.; Jakubowski, P. R.; Fisher, F. A.
1988-04-01
Aerostat power tethers have demonstrated survival of lightning strikes, but they usually have to be reterminated or replaced afterward. Two requirements are given for the prevention of lightning damage to the tether to about 100 kA: installation of a metal-to-metal contact on the outer tether surface to ground the tether at the base flying sheave at typical flying positions; and installation of a shielding band within the outer tether jacket with a weight of about 0.05 lb/ft for a half-inch tether. This determination was made in part by high current tests and in part by electrical modeling.
DOT National Transportation Integrated Search
1989-06-01
Two types of crewmember protective breathing equipment (PBE) were performance tested for compliance with Action Notice A-8150.2 at ground level (-1,300 feet) and 8,000 feet altitude. PBE #1 was a "hood with oral-nasal mask," which used potassium supe...
Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective
NASA Technical Reports Server (NTRS)
Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee
2012-01-01
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.
Thermal Management Coating As Thermal Protection System for Space Transportation System
NASA Technical Reports Server (NTRS)
Kaul, Raj; Stuckey, C. Irvin
2003-01-01
This paper presents viewgraphs on the development of a non-ablative thermal management coating used as the thermal protection system material for space shuttle rocket boosters and other launch vehicles. The topics include: 1) Coating Study; 2) Aerothermal Testing; 3) Preconditioning Environments; 4) Test Observations; 5) Lightning Strike Test Panel; 6) Test Panel After Impact Testing; 7) Thermal Testing; and 8) Mechanical Testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... material submitted is approved subject to the completion of all conditions and requirements contained in.... Insurance. Fire, windstorm, lightning, hail, explosion, riot, civil commotion, aircraft, vehicles, smoke... borrower. Problem loan. A loan which is not complying with its terms and conditions. Protective advances...
Code of Federal Regulations, 2014 CFR
2014-01-01
... material submitted is approved subject to the completion of all conditions and requirements contained in.... Insurance. Fire, windstorm, lightning, hail, explosion, riot, civil commotion, aircraft, vehicles, smoke... borrower. Problem loan. A loan which is not complying with its terms and conditions. Protective advances...
Code of Federal Regulations, 2013 CFR
2013-01-01
... material submitted is approved subject to the completion of all conditions and requirements contained in.... Insurance. Fire, windstorm, lightning, hail, explosion, riot, civil commotion, aircraft, vehicles, smoke... borrower. Problem loan. A loan which is not complying with its terms and conditions. Protective advances...
RSRM top hat cover simulator lightning test, volume 1
NASA Technical Reports Server (NTRS)
1990-01-01
The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.
Science of Ball Lightning (Fire Ball)
NASA Astrophysics Data System (ADS)
Ohtsuki, Yoshi-Hiko
1989-08-01
The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants
33. Photocopied 1983 from original drawing (DP29179), Picatinny Arsenal, April ...
33. Photocopied 1983 from original drawing (DP-29179), Picatinny Arsenal, April 15, 1941. 'BUILDING NO. 454: BAG LOADING BUILDING, LIGHTNING PROTECTION--ELEVATION'. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
40 CFR 141.809 - Supplemental treatment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... treatment. (a) Any supplemental drinking water treatment units installed onboard existing or new aircraft... the manufacturer's plans and specifications and FAA requirements. (b) Water supplemental treatment and... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Supplemental treatment. 141.809...
77 FR 37283 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... INFORMATION CONTACT: Rose Len, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller...; email: rose[email protected] . SUPPLEMENTARY INFORMATION: Discussion We issued a notice of proposed... air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds...
DOT National Transportation Integrated Search
2004-07-30
The Aerospace Corporation was tasked by the Volpe National Transportation Systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), to develop guidelines for inspecting co...
40 CFR 141.809 - Supplemental treatment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Supplemental treatment. 141.809... treatment. (a) Any supplemental drinking water treatment units installed onboard existing or new aircraft... the manufacturer's plans and specifications and FAA requirements. (b) Water supplemental treatment and...
Classification of Small Negative Lightning Reports at the KSC-ER
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, Philip
2008-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) operate an extensive suite of lightning sensors because Florida experiences the highest area density of ground strikes in the United States, with area densities approaching 16 fl/sq km/yr when accumulated in 10x10 km (100 sq km) grids. The KSC-ER use data derived from two cloud-to-ground (CG) lightning detection networks, the "Cloud-to-Ground Lightning Surveillance System" (CGLSS) and the U.S. National Lightning Detection Network (TradeMark) (NLDN) plus a 3-dimensional lightning mapping system, the Lightning Detection and Ranging (LDAR) system, to provide warnings for ground operations and to insure mission safety during space launches. For operational applications at the KSC-ER it is important to understand the performance of each lightning detection system in considerable detail. In this work we examine a specific subset of the CGLSS stroke reports that have low values of the negative inferred peak current, Ip, i.e. values between 0 and -7 kA, and were thought to produce a new ground contact (NGC). When possible, the NLDN and LDAR systems were used to validate the CGLSS classification and to determine how many of these reported strokes were first strokes, subsequent strokes in a pre-existing channel (PEC), or cloud pulses that the CGLSS misclassified as CG strokes. It is scientifically important to determine the smallest current that can reach the ground either in the form of a first stroke or by way of a subsequent stroke that creates a new ground contact. In Biagi et al (2007), 52 low amplitude, negative return strokes ([Ip] < or = 10 kA) were evaluated in southern Arizona, northern Texas, and southern Oklahoma. The authors found that 50-87% of the small NLDN reports could be classified as CG (either first or subsequent strokes) on the basis of video and waveform recordings. Low amplitude return strokes are interesting because they are usually difficult to detect, and they are thought to bypass conventional lightning protection that relies on a sufficient attractive radius to prevent "shielding failure" (Golde, 1977). They also have larger location errors compared to the larger current events. In this study, we use the estimated peak current provided by the CGLSS and the results of our classification to determine the minimum Ip for each category of CG stroke and its probability of occurrence. Where possible, these results are compared to the findings in the literature.
Detection of Lightning-produced NOx by Air Quality Monitoring Stations in Israel
NASA Astrophysics Data System (ADS)
Yair, Y.; Shalev, S.; Saaroni, H.; Ziv, B.
2011-12-01
Lightning is the largest natural source for the production of nitrogen oxides (LtNOx) in the troposphere. Since NOx are greenhouse gases, it is important to know the global production rate of LtNOx for climate studies (present estimates range from 2 to 8 Tg per year) and to model its vertical distribution (Ott et al., 2010). One of the key factors for such an estimate is the yield of a single lightning flash, namely the number of molecules produced for each Joule of energy deposited along the lightning channel. We used lightning stroke data from the Israel Lightning Location System (ILLS) together with NOx data obtained from the national network of air quality monitoring stations operated by the Israeli Ministry of Environmental Protection. Looking for the fingerprints of LtNOx in the general ambient concentrations, usually most affected by pollution from urban sources, we looked only for CG strokes occurring within a radius of 3 km from the location of an air-quality monitoring station. This lowered the number of relevant cases from 605,413 strokes detected in the 2004/5 through 2009/10 seasons to 1,897 strokes. We applied a threshold of > 60kA reducing the number of events to 35. The results showed that there was no consistent rising trend in the NOx concentrations in the hour following the lightning (the lifetime near the ground is expected to be a few hours; Zhang et al., 2003). However, when considering only those events when the prevailing wind was in the direction from the stroke location toward the sensor (7 cases), a clear increase of few ppb following the stroke was observed in 5 cases [see Fig.]. This increase is well correlated with the wind speed, suggesting an effective transport from the stroke location to the sensor. Weaker winds allow dilution and result in smaller observed increases of LtNOx. Separate analysis of additional 17 cases in which the strokes were located < 500 m from the monitoring station (with any peak current above 7 kA) showed no consistent trend. When excluding the 7 events that occurred during rush hour traffic, we found 6 (of 10) cases with an average increase in NOx concentrations of 16 ppb in the hour following the lightning. These results suggest a contribution of CG lightning strokes to the ground level concentrations of NOx. L. E. Ott, K. E. Pickering, G. L. Stenchikov, D. J. Allen, A. J. DeCaria, B. Ridley, R.F. Lin, S. Lang, and W.K. Tao (2010), Production of lightning NOx and its vertical distribution calculated from three dimensional cloud scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi:10.1029/2009JD011880
NASA Technical Reports Server (NTRS)
Pickering, Kenneth; Prados, Ana; Bucsela, Eric
2010-01-01
This talk will be presented in two parts: 1) an analysis of tropospheric column NO2 trends in the eastern half of the United States over the period 2005 to 2009 and 2) estimation of lightning NO(x) production rates based on OMI observations and lightning flash rate data. The air quality trends in the eastern US will be determined for specific subregions using tropospheric column NO2 data from OMI for 2005 through 2008 and from GOME-2 for 2007 through 2009. This period is characterized by significant NO(x) emission reductions at power plants within most of this region. The air quality trends will be compared with those estimated from continuous emission monitoring data from the power plants compiled by the US Environmental Protection Agency. OMI NO2 data have also been used to estimate lightning NOx production per flash in selected storms near Costa Rica and Panama during the 2007 NASA TC4 field campaign and over the continental US, Gulf of Mexico, and western Atlantic during the summers of 2005 and 2006. The lightning signal is extracted from the OMI data through a custom retrieval in which an NO2 profile representative of convective outflow is used in the airmass factor calculation and the background NO2 column is subtracted from the tropospheric column. When combined with NO(x)/NO2 ratios from the NASA GMT model and observed flash rates, the resulting estimates of NO(x) production per flash are comparable to those estimated obtained from analyses of aircraft data and cloud-resolving modeling.
NASA Astrophysics Data System (ADS)
Arason, Þórður; Bjornsson, Halldór; Nína Petersen, Guðrún
2013-04-01
Eruption of subglacial volcanoes may lead to catastrophic floods and thus early determination of the exact eruption site may be critical to civil protection evacuation plans. A system is being developed that automatically monitors and analyses volcanic lightning in Iceland. The system predicts the eruption site location from mean lightning locations, taking into account upper level wind. In estimating mean lightning locations, outliers are automatically omitted. A simple wind correction is performed based on the vector wind at the 500 hPa pressure level in the latest radiosonde from Keflavík airport. The system automatically creates a web page with maps and tables showing individual lightning locations and mean locations with and without wind corrections along with estimates of uncetainty. A dormant automatic monitoring system, waiting for a rare event, potentially for several years, is quite susceptible to degeneration during the waiting period, e.g. due to computer or other IT-system upgrades. However, ordinary weather thunderstorms in Iceland should initiate special monitoring and automatic analysis of this system in the same fashion as during a volcanic eruption. Such ordinary weather thunderstorm events will be used to observe anomalies and malfunctions in the system. The essential elements of this system will be described. An example is presented of how the system would have worked during the first hours of the Grímsvötn 2011 eruption. In that case the exact eruption site, within the Grímsvötn caldera, was first known about 15 hours into the eruption.
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
NASA Astrophysics Data System (ADS)
Tüchler, Lukas; Meyer, Vera
2013-04-01
The new radar-data and lightning-data based automatic cell identification, tracking and nowcasting tool A-TNT (Austrian Thunderstorm Nowcasting Tool), which has been developed at ZAMG, has been applied to investigate the appearance of thunderstorms at Europe scale. Based on the ec-TRAM-method [1], the algorithm identifies and monitors regions of intense precipitation and lightning activity separately by analyzing sequential two-dimensional intensity maps of radar precipitation rate or lightning densities, respectively. Each data source is processed by a stand-alone identification, tracking and nowcasting procedure. The two tracking results are combined to a "main" cell in a final step. This approach allows that the output derived from the two data sources complement each other giving a more comprehensive picture about the current storm situation. So it is possible to distinguish between pure precipitation cells and thunderstorms, to observe regions, where one data source is not or poorly available, and to compensate for occasional data failures. Consequently, the combined cell-tracks are expected to be more consistent and the cell-tracking more robust. Input data for radar-cell tracking on European Scale is the OPERA radar-composite, which is provided every 15 minutes on a 2 km x 2 km grid, indicating the location and intensity of precipitation over Europe. For the lightning-cell tracking, the lightning-detection data of the EUCLID network is mapped on the OPERA grid. Every five minutes, flash density maps with recorded strokes are created and analyzed. This study will present a detailed investigation of the quality of the identification and tracking results using radar and lightning data. The improvements concerning the robustness and reliability of the cell tracking achieved by combining both data sources will be shown. Analyses about cell tracks and selected storm parameters like frequency, longevity and area will give insight into occurrence, appearance and impact of different severe precipitation events. These studies are performed to support the project HAREN (Hazard Assessment based on Rainfall European Nowcasts, funded by the EC Directorate General for Humanitarian Aid and Civil Protection), which has the objective to improve warnings for hazards induced by precipitation at local scale all over Europe. REFERENCES: [1] Meyer, V. K., H. Höller, and H. D. Betz 2012: Automated thunderstorm tracking and nowcasting: utilization of three-dimensional lightning and radar data. Manuscript accepted for publication in ACPD.
2009-01-08
CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The radome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder
2009-01-08
CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The radome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder
2009-01-08
CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed in the radome on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The dome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder
2009-01-08
CAPE CANAVERAL, Fla. -- A replacement weather Doppler radar has been installed on top of this tower in a remote field located west of NASA's Kennedy Space Center in Florida. The radome houses the rotating antenna and pedestal and protects them from the elements. The tower is 100 feet high; the radome is 22 feet in diameter, the antenna 14 feet in diameter. It rotates at 6 rpm. The structure can withstand 130 mph winds. It is undergoing initial testing and expected to become operational in the summer. The weather radar is essential in issuing lightning and other severe weather warnings and vital in evaluating lightning launch commit criteria for space shuttle and rocket launches. Photo credit: NASA/Troy Cryder
2006-08-02
KENNEDY SPACE CENTER, FLA. - Reflected in the nearby pool of water, Space Shuttle Atlantis, propelled by the crawler-transporter, arrives on the hard stand on Launch Pad 39B. Atop the fixed service structure at right can be seen the 80-foot lightning mast that helps provide lightning protection. The slow speed of the crawler results in a 6- to 8-hour trek to the pad approximately 4 miles away. Atlantis' launch window begins Aug. 27 for an 11-day mission to the International Space Station. The STS-115 crew of six astronauts will continue construction of the station and install their cargo, the Port 3/4 truss segment with its two large solar arrays. Photo credit: NASA/Tony Gray
Parameters of triggered-lightning flashes in Florida and Alabama
NASA Astrophysics Data System (ADS)
Fisher, R. J.; Schnetzer, G. H.; Thottappillil, R.; Rakov, V. A.; Uman, M. A.; Goldberg, J. D.
1993-12-01
Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. Additionally, 16-mm cinematic records with 3- or 5-ms resolution were obtained for all flashes, and streak camera records were obtained for three of the Florida flashes. The 17 flashes analyzed here contained 69 strokes, all lowering negative charge from cloud to ground. Statistics on interstroke interval, no-current interstroke interval, total stroke duration, total stroke charge, total stroke action integral (∫ i2dt), return stroke current wave front characteristics, time to half peak value, and return stroke peak current are presented. Return stroke current pulses, characterized by rise times of the order of a few microseconds or less and peak values in the range of 4 to 38 kA, were found not to occur until after any preceding current at the bottom of the lightning channel fell below the noise level of less than 2 A. Current pulses associated with M components, characterized by slower rise times (typically tens to hundreds of microseconds) and peak values generally smaller than those of the return stroke pulses, occurred during established channel current flow of some tens to some hundreds of amperes. A relatively strong positive correlation was found between return stroke current average rate of rise and current peak. There was essentially no correlation between return stroke current peak and 10-90% rise time or between return stroke peak and the width of the current waveform at half of its peak value. Parameters of the lightning flashes triggered in Florida and Alabama are similar to each other but are different from those of triggered lightning recorded in New Mexico during the 1981 Thunderstorm Research International Program. Continuing currents that follow return stroke current peaks and last for more than 10 ms exhibit a variety of wave shapes that we have subdivided into four categories. All such continuing currents appear to start with a current pulse presumably associated with an M component. A brief summary of lightning parameters important for lightning protection, in a form convenient for practical use, is presented in an appendix.
Protection characteristics of a Faraday cage compromised by lightning burnthrough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt
2012-01-01
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scopemore » and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).« less
NASA Technical Reports Server (NTRS)
Evans, R. W.
1997-01-01
These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.
76 FR 14115 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
..., Telephone (202) 267-3168, Fax (202) 267-5075, or e-mail at [email protected] . SUPPLEMENTARY INFORMATION... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT... Rulemaking Advisory Committee [[Page 14116
77 FR 54796 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA), DOT... France Model AS350 helicopters. This AD requires installing protection sleeves over certain forward... helicopters have been approved by the aviation authority of France and are approved for operation in the...
NASA Astrophysics Data System (ADS)
Smeltzer, C. D.; Wang, Y.; Koshak, W. J.
2014-12-01
Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.
Response of surge protection devices to fast rising pulses
NASA Technical Reports Server (NTRS)
Mindel, I. N.
1980-01-01
Two types of lightning protection modules incorporating leadless (pill type) Zener like devices were evaluated with regard to their ability to suppress EMP induced transients. Two series of tests were performed to evaluate the ability of these modules to react to fast rate of rise ( 1Kv/ns) transients, and the attenuation introduced and the ability to limit damped sinusoid pulses which may be induced due to an EMP resulting from a nuclear detonation.
Modern concepts of treatment and prevention of lightning injuries.
Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B
2005-01-01
Lightning is the second most common cause of weather-related death in the United States. Lightning is a natural atmospheric discharge that occurs between regions of net positive and net negative electric charges. There are several types of lightning, including streak lightning, sheet lightning, ribbon lightning, bead lightning, and ball lightning. Lightning causes injury through five basic mechanisms: direct strike, flash discharge (splash), contact, ground current (step voltage), and blunt trauma. While persons struck by lightning show evidence of multisystem derangement, the most dramatic effects involve the cardiovascular and central nervous systems. Cardiopulmonary arrest is the most common cause of death in lightning victims. Immediate resuscitation of people struck by lightning greatly affects the prognosis. Electrocardiographic changes observed following lightning accidents are probably from primary electric injury or burns of the myocardium without coronary artery occlusion. Lightning induces vasomotor spasm from direct sympathetic stimulation resulting in severe loss of pulses in the extremities. This vasoconstriction may be associated with transient paralysis. Damage to the central nervous system accounts for the second most debilitating group of injuries. Central nervous system injuries from lightning include amnesia and confusion, immediate loss of consciousness, weakness, intracranial injuries, and even brief aphasia. Other organ systems injured by lightning include the eye, ear, gastrointestinal system, skin, and musculoskeletal system. The best treatment of lightning injuries is prevention. The Lightning Safety Guidelines devised by the Lightning Safety Group should be instituted in the United States and other nations to prevent these devastating injuries.
14 CFR 413.13 - Complete application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... information required by this chapter, the FAA requires other information necessary for a determination that public health and safety, safety of property, and national security and foreign policy interests of the United States are protected during the conduct of a licensed or permitted activity, an applicant must...
14 CFR 413.13 - Complete application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... information required by this chapter, the FAA requires other information necessary for a determination that public health and safety, safety of property, and national security and foreign policy interests of the United States are protected during the conduct of a licensed or permitted activity, an applicant must...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Systems Fire Protection Working Group (IASFPWG) to draft a revision to the current AC 20-42C, issued on... approved replacement agents for Halon 1211 and establishes an FAA approved minimum performance standard...
Produce documents and media information. [on lightning
NASA Technical Reports Server (NTRS)
Alzmann, Melanie A.; Miller, G.A.
1994-01-01
Lightning data and information were collected from the United States, Germany, France, Brazil, China, and Australia for the dual purposes of compiling a global lightning data base and producing publications on the Marshall Space Flight Center's lightning program. Research covers the history of lightning, the characteristics of a storm, types of lightningdischarges, observations from airplanes and spacecraft, the future fole of planes and spacecraft in lightning studies, lightning detection networks, and the relationships between lightning and rainfall. Descriptions of the Optical Transient Dectector, the Lightning Imaging Sensor, and the Lightning Mapper Sensor are included.
NASA Technical Reports Server (NTRS)
Smith, Stephan B.; Pace, David; Goodman, Steven J.; Burgess, Donald W.; Smarsh, David; Roberts, Rita D.; Wolfson, Marilyn M.; Goodman, H. Michael (Technical Monitor)
2001-01-01
Thunderstorms are high impact weather phenomena. They also pose an extremely challenging forecast problem. The National Oceanic and Atmospheric Administration (NOAA), the Federal Aviation Administration (FAA), the National Aeronautic and Space Administration (NASA), and the Air Force Weather Agency (AFWA), have decided to pool technology and scientific expertise into an unprecedented effort to better observe, diagnose, and forecast thunderstorms. This paper describes plans for an operational field test called the THunderstorm Operational Research (THOR) Project beginning in 2002, the primary goals of which are to: 1) Reduce the number of Thunderstorm-related Air Traffic Delays with in the National Airspace System (NAS) and, 2) Improve severe thunderstorm, tornado and airport thunderstorm warning accuracy and lead time. Aviation field operations will be focused on the prime air traffic bottleneck in the NAS, the airspace bounded roughly by Chicago, New York City and Washington D.C., sometimes called the Northeast Corridor. A variety of new automated thunderstorm forecasting applications will be tested here that, when implemented into FAA-NWS operations, will allow for better tactical decision making and NAS management during thunderstorm days. Severe thunderstorm operations will be centered on Northern Alabama. NWS meteorologists from the forecast office in Birmingham will test the utility of experimental lightning, radar, and profiler data from a mesoscale observing network being established by NASA's Marshall Space Flight Center. In addition, new tornado detection and thunderstorm nowcasting algorithms will be examined for their potential for improving warning accuracy. The Alabama THOR site will also serve as a test bed for new gridded, digital thunderstorm and flash flood warning products.
Using an A-10 Aircraft for Airborne Measurements of TGFs
NASA Astrophysics Data System (ADS)
Fishman, G. J.; Christian, H. J.; Blakeslee, R. J.; Grove, J.; Chekhtman, A.; Jonsson, H.; Detwiler, A. G.
2012-12-01
Work is underway to modify an A-10 combat attack aircraft to become a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft will be terrestrial gamma-ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x- and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into the TGF production mechanism. The A-10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.
Using an A-10 Aircraft for Airborne measurements of TGFs
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.
2012-01-01
Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.
Principles of Lightning Physics
NASA Astrophysics Data System (ADS)
Mazur, Vladislav
2016-12-01
Principles of Lightning Physics presents and discusses the most up-to-date physical concepts that govern many lightning events in nature, including lightning interactions with man-made structures, at a level suitable for researchers, advanced students and well-educated lightning enthusiasts. The author's approach to understanding lightning-to seek out, and show what is common to all lightning flashes-is illustrated by an analysis of each type of lightning and the multitude of lightning-related features. The book examines the work that has gone into the development of new physical concepts, and provides critical evaluations of the existing understanding of the physics of lightning and the lexicon of terms and definitions presently used in lightning research.
Indirect Lightning Safety Assessment Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, M M; Perkins, M P; Brown, C G
2009-04-24
Lightning is a safety hazard for high-explosives (HE) and their detonators. In the However, the current flowing from the strike point through the rebar of the building The methodology for estimating the risk from indirect lighting effects will be presented. It has two parts: a method to determine the likelihood of a detonation given a lightning strike, and an approach for estimating the likelihood of a strike. The results of these two parts produce an overall probability of a detonation. The probability calculations are complex for five reasons: (1) lightning strikes are stochastic and relatively rare, (2) the quality ofmore » the Faraday cage varies from one facility to the next, (3) RF coupling is inherently a complex subject, (4) performance data for abnormally stressed detonators is scarce, and (5) the arc plasma physics is not well understood. Therefore, a rigorous mathematical analysis would be too complex. Instead, our methodology takes a more practical approach combining rigorous mathematical calculations where possible with empirical data when necessary. Where there is uncertainty, we compensate with conservative approximations. The goal is to determine a conservative estimate of the odds of a detonation. In Section 2, the methodology will be explained. This report will discuss topics at a high-level. The reasons for selecting an approach will be justified. For those interested in technical details, references will be provided. In Section 3, a simple hypothetical example will be given to reinforce the concepts. While the methodology will touch on all the items shown in Figure 1, the focus of this report is the indirect effect, i.e., determining the odds of a detonation from given EM fields. Professor Martin Uman from the University of Florida has been characterizing and defining extreme lightning strikes. Using Professor Uman's research, Dr. Kimball Merewether at Sandia National Laboratory in Albuquerque calculated the EM fields inside a Faraday-cage type facility, when the facility is struck by lightning. In the following examples we will use Dr. Merewether's calculations from a poor quality Faraday cage as the input for the RF coupling analysis. coupling of radio frequency (RF) energy to explosive components is an indirect effect of currents [1]. If HE is adequately separated from the walls of the facility that is struck by disassembled have been turned into Faraday-cage structures to protect against lightning is initiation of the HE. last couple of decades, DOE facilities where HE is manufactured, assembled, stored or lightning. The most sensitive component is typically a detonator, and the safety concern lightning, electrons discharged from the clouds should not reach the HE components. radio receiver, the metal cable of a detonator can extract energy from the EM fields. This to the earth will create electromagnetic (EM) fields in the facility. Like an antenna in a« less
Safety engineering in handling fuels and lubricants in civil aviation
NASA Astrophysics Data System (ADS)
Protoereiskii, Aleksandr Stepanovich
The book is concerned with methods of improving working conditions, work hygiene, safety engineering, and fire and explosion prevention during the storage and handling of petroleum products at fuel and lubricant storage facilities. The discussion covers methods of protection against static and atmospheric discharges, lightning protection, safety engineering in fuel and lubricant laboratories, and methods of fire prevention and fire extinction. Attention is also given to methods for administering first aid in case of accidents and poisoning.
The North Alabama Lightning Warning Product
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.
2009-01-01
The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.
NASA Astrophysics Data System (ADS)
Argemí, O.; Bech, J.; Pineda, N.; Rigo, T.
2009-09-01
Remote sensing observing systems of the Meteorological Service of Catalonia (SMC) have been upgraded during the last years with newer technologies and enhancements. Recent changes on the weather radar network have been motivated to improve precipitation estimates by radar as well as meteorological surveillance in the area of Catalonia. This region has approximately 32,000 square kilometres and is located in the NE of Spain, limited by the Pyrenees to the North (with mountains exceeding 3000 m) and by the Mediterranean Sea to the East and South. In the case of the total lightning (intra-cloud and cloud-to-ground lightning) detection system, the current upgrades will assure a better lightning detection efficiency and location accuracy. Both upgraded systems help to enhance the tracking and the study of thunderstorm events. Initially, the weather radar network was designed to cover the complex topography of Catalonia and surrounding areas to support the regional administration, which includes civil protection and water authorities. The weather radar network was upgraded in 2008 with the addition of a new C-band Doppler radar system, which is located in the top of La Miranda Mountain (Tivissa) in the southern part of Catalonia enhancing the coverage, particularly to the South and South-West. Technically the new radar is very similar to the last one installed in 2003 (Creu del Vent radar), using a 4 m antenna (i.e., 1 degree beam width), a Vaisala-Sigmet RVP-8 digital receiver and processor and a low power transmitter using a Travelling Wave Tube (TWT) amplifier. This design allows using pulse-compression techniques to enhance radial resolution and sensitivity. Currently, the SMC is upgrading its total lightning detection system, operational since 2003. While a fourth sensor (Amposta) was added last year to enlarge the system coverage, all sensors and central processor will be upgraded this year to the new Vaisala’s total lightning location technology. The new LS8000 sensor configuration integrates two lightning detection technologies: VHF interferometry technology provides high performance in detection of cloud lightning, while LF combined magnetic direction finding and time-of-arrival technology offers a highest detection efficiency and accurate location for cloud-to-ground lightning strokes. The presentation describes in some detail all this innovation in remote sensing observing networks and also reports some examples over Catalonia which is frequently affected by different types of convective events, including severe weather (large hail, tornadic events, etc.) and heavy rainfall episodes.
A Lightning Safety Primer for Camps.
ERIC Educational Resources Information Center
Attarian, Aram
1992-01-01
Provides the following information about lightning, which is necessary for camp administrators and staff: (1) warning signs of lightning; (2) dangers of lightning; (3) types of lightning injuries; (4) prevention of lightning injury; and (5) helpful training tips. (KS)
DOT National Transportation Integrated Search
2009-05-01
Congress passed the National Parks Air Tour Management Act of 2000 (NPATMA) to regulate commercial air tour operations over units of the National Park System. The Federal Aviation Administration (FAA) and the National Park Service (NPS) are jointly d...
78 FR 52230 - Government/Industry Aeronautical Charting Forum Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
...: [email protected] . For information relating to the Charting Group, contact Valerie S. Watson...) 427-5155; Email: valerie.s.watson@faa.gov . SUPPLEMENTARY INFORMATION: Pursuant to Sec. 10(a)(2) of... if time permits. Issued in Washington, DC, on August 15, 2013. Valerie S. Watson, Co-Chair...
DOT National Transportation Integrated Search
1980-10-01
This report describes the methods used in the evaluation of a new continuous-flow, phase-dilution passenger oxygen mask for compliance to FAA technical Standard Order (TSO)-C64 requirements. Data presented include end expiratory partial pressures for...
77 FR 15291 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-15
... wiring conduit and the wing bottom skin. This proposed AD would require modifying the wiring installation... modification of the wiring installation to improve the routing and the protection of the harnesses in the zone... wiring conduit and the wing bottom skin. This condition, in the scope of published FAA SFAR88 [Special...
75 FR 76928 - Safety Management System for Certificated Airports; Extension of Comment Period
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
[email protected] . SUPPLEMENTARY INFORMATION: See the Additional Information section for information on how to comment on this proposal and how the FAA will handle comments received. The ``Additional... views. The agency also invites comments relating to the economic, environmental, energy, or federalism...
Salomé, Christophe; Salomé-Grosjean, Elise; Stables, James P.; Kohn, Harold
2010-01-01
Functional amino acids (FAAs) and α-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4′-((3″-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED50 values of 13, 14, ~10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases. PMID:20394379
Salomé, Christophe; Salomé-Grosjean, Elise; Stables, James P; Kohn, Harold
2010-05-13
Functional amino acids (FAAs) and alpha-aminoamides (AAAs) are two classes of antiepileptic drugs (AEDs) that exhibit pronounced anticonvulsant activities. We combined key structural pharmacophores present in FAAs and AAAs to generate a new series of compounds and document that select compounds exhibit activity superior to either the prototypical FAA (lacosamide) or the prototypical AAA (safinamide) in the maximal electroshock (MES) seizure model in rats. A representative compound, (R)-N-4'-((3''-fluoro)benzyloxy)benzyl 2-acetamido-3-methoxypropionamide ((R)-10), was tested in the MES (mice, ip), MES (rat, po), psychomotor 6 Hz (32 mA) (mice, ip), and hippocampal kindled (rat, ip) seizure tests providing excellent protection with ED(50) values of 13, 14, approximately 10 mg/kg, and 12 mg/kg, respectively. In the rat sciatic nerve ligation model (ip), (R)-10 (12 mg/kg) provided an 11.2-fold attenuation of mechanical allodynia. In the mouse biphasic formalin pain model (ip), (R)-10 (15 mg/kg) reduced pain responses in the acute and the chronic inflammatory phases.
A Study of Transport Airplane Crash-Resistant Fuel Systems
NASA Technical Reports Server (NTRS)
Jones, Lisa (Technical Monitor); Robertson, S. H.; Johnson, N. B.; Hall, D. S.; Rimson, I. J.
2002-01-01
This report presents the results of a study, funded by the Federal Aviation Administration (FAA), of transport airplane crash-resistant fuel system (CRFS). The report covers the historical studies related to aircraft crash fires and fuel containment concepts undertaken by the FAA, NASA, and the U.S. Army, which ultimately led to the current state of the art in CRFS technology. It describes the basic research, testing, field investigations and production efforts which have led to the highly successful military CRFS, which has saved many lives and reduced costs of accidents. Current CRFS technology used in transport category airplanes is defined and compared to the available state-of-the-art technology. The report provides information to the FAA and other government organizations which can help them plan their efforts to improve the state of crash fire protection in the transport airplane fleet. The report provides guidance to designers looking for information about CRFS design problems, analysis tools to use for product improvement, and a summary of current and proposed regulations for transport category airplane fuel systems.
Characteristics of downward leaders in a cloud-to-ground lightning strike on a lightning rod
NASA Astrophysics Data System (ADS)
Wang, Caixia; Sun, Zhuling; Jiang, Rubin; Tian, Yangmeng; Qie, Xiushu
2018-05-01
A natural downward negative cloud-to-ground (CG) lightning was observed at a close distance of 370 m by using electric field change measurements and a high-speed camera at 5400 frames per second (fps). Two subsequent leader-return strokes of the lightning hit a lightning rod installed on the top of a seven-story building in Beijing city, while the grounding point for the stepped leader-first return stroke was 12 m away, on the roof of the building. The 2-D average speed of the downward stepped leader (L1) before the first return stroke (R1) was approximately 5.1 × 104 m/s during its propagation over the 306 m above the building, and those before the subsequent strokes (R2 and R3) ranged from 1.1 × 106 m/s to 2.2 × 106 m/s. An attempted leader (AL) occurred 201 ms after R1 and 10 ms before R2 reached approximately 99 m above the roof and failed to connect to the ground. The 2-D average speed of the AL was approximately 7.4 × 104 m/s. The luminosity at tip of the leader was brighter than the channel behind it. The leader inducing the R2 with an alteration of terminating point was a dart-stepped leader (DSL), which propagated through the channel of AL and continued to develop downward with new branches at about 17 m above the roof. The 2-D speed of the DSL at the bottom 99 m was 6.6 × 105 m/s. The average time interval between the stepped pulses of the DSL was approximately 10 μs, smaller than that of L1 with value of about 17 μs. The average step lengths of the DSL were approximately 6.6 m. The study shows that the stepped leader-first return stroke of lightning will not always hit the tip of a tall metal rod due to the significant branching property of the leader. However, under certain conditions, the subsequent return strokes may alter the grounding point to the tip of a tall metal rod. For the lightning rod, the protection against subsequent return strokes may be better than that against the first return stroke.
Thunderstorm distribution and frequency in Saudi Arabia
NASA Astrophysics Data System (ADS)
Shwehdi, M. H.
2005-09-01
A new average annual thunder day map for Saudi Arabia is presented. Based on this map, the distribution of thunderstorms over Saudi Arabia is analysed in terms of the factors related to the lightning performance of transmission lines such as thunderstorm days per year (Td/yr). Lightning activity continues for the present to be represented by thunderstorm frequency, which is routinely recorded at meteorological observation sites. Thunderstorm occurrence at a particular location is usually expressed as the number of days in a calendar year when thunder was heard, averaged over several years. This paper examines thunderstorm days in different areas of Saudi Arabia and specifically those areas where lightning strikes are more frequent; for this purpose, the software ArcGIS is used to produce contour maps which demonstrate areas of concern in Saudi Arabia in the period 1985-2003. Establishing the annual and seasonal Td/yr for Saudi Arabia enables transmission and distribution line engineers to calculate and better design a lightning protection system. Maps of thunder days/year (Td/yr) were constructed on the basis of the database records available on lightning incidence in Saudi Arabia at the Presidency of Meteorology and Environment (PME) (http://www.pme.gov.sa/). Annual thunderstorms are most frequent over the southwestern parts of the country, and generally decrease towards the west and east. Due to its low latitude and less temporal change, the west coast of the Red Sea recorded the lowest Td/yr. A secondary maximum Td/yr is apparent in the southeast to central part of the country. Thunderstorm frequency does not, in general, appear to vary in any consistent way with rainfall. There appears to be no evidence of any widespread temporal trend in thunderstorm frequency. The southern region in general, and especially the cities of Abha, Taif and Al-Baha, has shown greater numbers of thunderstorm days all year round. Similarly, this variation did show higher frequency throughout the year. The development of lightning incidence and the counting of Td/yr, as well as the establishment of annual and seasonal lightning maps of Saudi Arabia, are initiating a new era of producing and archiving thunderstorm maps and data records which serve the PME, the utilities, industry and the public.
Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.
The Intra-Cloud Lightning Fraction in the Contiguous United States
NASA Technical Reports Server (NTRS)
Medici, Gina; Cummins, Kenneth L.; Koshak, William J.; Rudlosky, Scott D.; Blakeslee, Richard J.; Goodman, Steven J.; Cecil, Daniel J.; Bright, David R.
2015-01-01
Lightning is dangerous and destructive; cloud-to-ground (CG) lightning flashes can start fires, interrupt power delivery, destroy property and cause fatalities. Its rate-of-occurrence reflects storm kinematics and microphysics. For decades lightning research has been an important focus, and advances in lightning detection technology have been essential contributors to our increasing knowledge of lightning. A significant step in detection technology is the Geostationary Lightning Mapper (GLM) to be onboard the Geostationary Operational Environment Satellite R-Series (GOES-R) to be launched in early 2016. GLM will provide continuous "Total Lightning" observations [CG and intra-cloud lightning (IC)] with near-uniform spatial resolution over the Americas by measuring radiance at the cloud tops from the different types of lightning. These Total Lightning observations are expected to significantly improve our ability to nowcast severe weather. It may be important to understand the long-term regional differences in the relative occurrence of IC and CG lightning in order to understand and properly use the short-term changes in Total Lightning flash rate for evaluating individual storms.
[Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].
Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai
2012-07-01
Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.
75 FR 2925 - Petition for Exemption; Summary of Petition Received
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... petitioner seeks relief from the requirements of fuel-tank structural lightning protection for its EMB-135BJ... seeking relief from specified requirements of 14 CFR. The purpose of this notice is to improve the public... publication of this notice nor the inclusion or omission of information in the summary is intended to affect...
NASA Astrophysics Data System (ADS)
Ekonomou, L.; Karampelas, P.; Vita, V.; Chatzarakis, G. E.
2011-04-01
One of the most popular methods of protecting high voltage transmission lines against lightning strikes and internal overvoltages is the use of arresters. The installation of arresters in high voltage transmission lines can prevent or even reduce the lines' failure rate. Several studies based on simulation tools have been presented in order to estimate the critical currents that exceed the arresters' rated energy stress and to specify the arresters' installation interval. In this work artificial intelligence, and more specifically a Q-learning artificial neural network (ANN) model, is addressed for evaluating the arresters' failure probability. The aims of the paper are to describe in detail the developed Q-learning ANN model and to compare the results obtained by its application in operating 150 kV Greek transmission lines with those produced using a simulation tool. The satisfactory and accurate results of the proposed ANN model can make it a valuable tool for designers of electrical power systems seeking more effective lightning protection, reducing operational costs and better continuity of service.
LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision
NASA Astrophysics Data System (ADS)
Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.
2018-03-01
Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
[Neurological diseases after lightning strike : Lightning strikes twice].
Gruhn, K M; Knossalla, Frauke; Schwenkreis, Peter; Hamsen, Uwe; Schildhauer, Thomas A; Tegenthoff, Martin; Sczesny-Kaiser, Matthias
2016-06-01
Lightning strikes rarely occur but 85 % of patients have lightning-related neurological complications. This report provides an overview about different modes of energy transfer and neurological conditions related to lightning strikes. Moreover, two case reports demonstrate the importance of interdisciplinary treatment and the spectrum of neurological complications after lightning strikes.
The NASA Lightning Nitrogen Oxides Model (LNOM): Recent Updates and Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yee-Hun
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are presented. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(tm) (NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx (= NO + NO2). Lightning channel length distributions and lightning 10-m segment altitude distributions are also provided. In addition to NOx production from lightning return strokes, the LNOM now includes non-return stroke lightning NOx production due to: hot core stepped and dart leaders, stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NOx for an August 2006 run of CMAQ is discussed.
Visual Analytics approach for Lightning data analysis and cell nowcasting
NASA Astrophysics Data System (ADS)
Peters, Stefan; Meng, Liqiu; Betz, Hans-Dieter
2013-04-01
Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong wind and tornadoes, are responsible for most weather damages (Bonelli & Marcacci 2008). Thus to understand, identify, track and predict lightning cells is essential. An important aspect for decision makers is an appropriate visualization of weather analysis results including the representation of dynamic lightning cells. This work focuses on the visual analysis of lightning data and lightning cell nowcasting which aim to detect and understanding spatial-temporal patterns of moving thunderstorms. Lightnings are described by 3D coordinates and the exact occurrence time of lightnings. The three-dimensionally resolved total lightning data used in our experiment are provided by the European lightning detection network LINET (Betz et al. 2009). In all previous works, lightning point data, detected lightning cells and derived cell tracks are visualized in 2D. Lightning cells are either displayed as 2D convex hulls with or without the underlying lightning point data. Due to recent improvements of lightning data detection and accuracy, there is a growing demand on multidimensional and interactive visualization in particular for decision makers. In a first step lightning cells are identified and tracked. Then an interactive graphic user interface (GUI) is developed to investigate the dynamics of the lightning cells: e.g. changes of cell density, location, extension as well as merging and splitting behavior in 3D over time. In particular a space time cube approach is highlighted along with statistical analysis. Furthermore a lightning cell nowcasting is conducted and visualized. The idea thereby is to predict the following cell features for the next 10-60 minutes including location, centre, extension, density, area, volume, lifetime and cell feature probabilities. The main focus will be set to a suitable interactive visualization of the predicted featured within the GUI. The developed visual exploring tool for the purpose of supporting decision making is investigated for two determined user groups: lightning experts and interested lay public. Betz HD, Schmidt K, Oettinger WP (2009) LINET - An International VLF/LF Lightning Detection Network in Europe. In: Betz HD, Schumann U, Laroche P (eds) Lightning: Principles, Instruments and Applications. Springer Netherlands, Dordrecht, pp 115-140 Bonelli P, Marcacci P (2008) Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy. Nat. Hazards Earth Syst. Sci 8(5):1187-1198
Does Wilson's cloud chamber offer clues on lightning initiation in thunderclouds?
NASA Astrophysics Data System (ADS)
Cooray, V.; Rakov, V.
2007-12-01
The experimental evidence indicates that the large scale electric field in the cloud at the time of lightning initiation is about 100 kV/m [1], which is an order of magnitude lower than the expected conventional breakdown field. One important problem in atmospheric physics is to understand how lightning flashes are initiated in such low fields. Some scientists suggest that the electric field could reach higher values momentarily in small regions and this combined with the field enhancing action of hydrometeors in the cloud could provide trigger for lightning initiation [2, 3]. Others suggest that energetic electrons produced by cosmic rays could give rise to runaway electron avalanches generating the initial ionization necessary for lightning initiation [4]. Nguyen and Michnowski [2] suggested that in small cloud regions the electric field may exceed 200 to 400 kV/m and in these locations the discharges between hydrometeors could facilitate lightning initiation. This mechanism was further investigated by Cooray et al. [3] who showed that interaction between adjacent hydrometeors cannot produce a streamer discharge, a prerequisite for electric breakdown, unless the field exceeds about 830 kV/m. They also found that long chains of hydrometeors could initiate streamer discharges in relatively low electric fields. For example, in order to generate a streamer discharge in 100 kV/m electric field the length of the chain of hydrometeors of 0.1 mm radius should be about 65 mm with more than 100 particles constituting the chain. However, the question remains on how such long chains of hydrometeors can be produced in the cloud. We suggest the following possibility. Consider an energetic particle passing through the cloud producing ionization in its wake. The passage of such a particle will lead to a stream of positive ions and electrons with the latter being captured within a few tens of nanoseconds by oxygen molecules to form negative ions. If the water vapor in the region under consideration is supersaturated, water molecules will condense on the ions and the resulting droplets can grow to tens of micrometers in a fraction of a second. This is the mechanism utilized in Wilson's cloud chamber to visualize the tracks of ionizing particles. If the track of ionizing particle is aligned with the direction of the electric field in the cloud, the resultant drift of the oppositely charged particles in opposite directions will facilitate collisions among them leading to production of larger droplets. This process can potentially generate long chains of droplets in the cloud which may provide the trigger necessary for the initiation of lightning flashes. [1] Marshall, T. C., M. P. McCarthy and W. D. Rust, Electric field magnitudes and lightning initiation in thunderstorms, J. Geophys. Res., vol. 100, pp. 7097 - 7103, 1995. [2] Nguyen, M. D. and S. Michnowski, On the initiation of lightning discharges in a cloud, 2. The lightning initiation on precipitation particles, J. Geophys. Res., vol. 101, pp. 26 675 - 26 680, 1996. [3] Cooray, V., M. Berg, M. Akyuz and A. Larsson, Initiation of ground flashes: some microscopic electrical processes associated with precipitation particles, Proc. International Conference on Lightning Protection, Birmingham, UK, 2002. [4] Gurevich, A. V., G. M. Milikh and J. A. Valdivia, Model of X-ray emission and fast preconditioning during a thunderstorm, Phys. Lett., A 231, pp. 402 - 408, 1997.
NASA Technical Reports Server (NTRS)
Christian, Hugh J.
2004-01-01
Our knowledge of the global distribution of lightning has improved dramatically since the advent of spacebased lightning observations. Of major importance was the 1995 launch of the Optical Transient Detector (OTD), followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous eight-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (cloud-to-ground and intra-cloud) has been observed over large regions with high detection efficiency and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (44 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available over large areas of the earth (+/- 72 deg. latitude). Ocean-land contrasts as a function of season are clearly reveled, as are orographic effects and seasonal and interannual variability. The space-based observations indicate that air mass thunderstorms, not large storm system dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated that this capability could lead to significantly improved severe weather warning times and reduced false warning rates. This talk will summarize our space-based lightning measurements, will discuss how lightning observations can be used to monitor severe weather, and present a concept for continuous geostationary-based lightning observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikiforov, E. P.
2009-07-15
Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less
Lightning Protection System for Space Shuttle
NASA Technical Reports Server (NTRS)
1977-01-01
The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.
2008-10-14
CAPE CANAVERAL, Fla. – A videographer captures the dramatic sunset on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Space shuttle Atlantis is on the pad. Atop the fixed service structure at right is the 80-foot tall lightning mast that helps provide lightning protection for the shuttle on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder
2008-10-14
CAPE CANAVERAL, Fla. – Launch Pad 39A at NASA's Kennedy Space Center in Florida is silhouetted against a sunset sky. Space shuttle Atlantis is on the pad. Atop the fixed service structure at right is the 80-foot tall lightning mast that helps provide lightning protection for the shuttle on the pad. Atlantis’ October target launch date for the STS-125 Hubble Space Telescope servicing mission was delayed after a device on board Hubble used in the storage and transmission of science data to Earth shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. In the interim, Atlantis will be rolled back to the Vehicle Assembly Building until a new target launch date can be set for the mission in 2009. Photo credit: NASA/Troy Cryder
NASA Astrophysics Data System (ADS)
Hui, W.; Huang, F.; Guo, Q.; Li, D.; Yao, Z.; Zou, W.
2017-12-01
The development of lightning detection technology accumulates a large amount of long-term data for investigating the lightning activities. Ground-based lightning networks provide continuous lightning location but offer limited spatial coverage because of the complex underlying surface conditions. Space-based optical sensors can detect lightning with global homogeneity. However, observing from satellites in low-earth orbit has fixed locations at the ground very shortly during its overpasses. The latest launched geostationary satellite-based lightning imagers can detect lightning in real time, and provide complete life-cycle coverage of each observed thunderstorm. In this study, based on multi-source lightning data, the lightning activities in southwest China, which with complex terrain and prone to appear lightning, are researched. Firstly, the climatological characteristics of lightning activities in this region from 1998 to 2013 are analyzed by using very-high resolution (0.1°) Lightning Imaging Sensor (LIS)-derived data. The results indicate that the lightning activity is more intense in eastern and southern regions of southwest China than in western and northern regions; the monthly and hourly flash densities also show its obvious seasonal and diurnal variation respectively, which is consistent with the development of the convective systems in the region. The results show that the spatial and temporal distribution of lightning activities in southwest China is related to its topography, water vapor, and atmospheric conditions. Meanwhile, by comparing with the analysis derived data from Chinese Ground-based Lightning Location System, the LIS-based detection results are confirmed. Furthermore, the process of a thunderstorm in southwest China from 29 to 30 March 2017 is investigated by using the new-generation monitoring data of Chinese Fengyun-4 geostationary satellite-based Lightning Mapping Imager (LMI) and the rainfall data. The results tell us more about the behavior of lightning while the thunderstorm traverses through the region, and also demonstrate the correlation between the rainfall amounts and the storm track. This study will contribute to applications of lightning data to improve monitoring and forecasting of severe weather.
Severe weather detection by using Japanese Total Lightning Network
NASA Astrophysics Data System (ADS)
Hobara, Yasuhide; Ishii, Hayato; Kumagai, Yuri; Liu, Charlie; Heckman, Stan; Price, Colin
2015-04-01
In this paper we demonstrate the preliminary results from the first Japanese Total Lightning Network. The University of Electro-Communications (UEC) recently deployed Earth Networks Total Lightning System over Japan to conduct various lightning research projects. Here we analyzed the total lightning data in relation with 10 severe events such as gust fronts and tornadoes occurred in 2014 in mainland Japan. For the analysis of these events, lightning jump algorithm was used to identify the increase of the flash rate in prior to the severe weather events. We found that lightning jumps associated with significant increasing lightning activities for total lightning and IC clearly indicate the severe weather occurrence than those for CGs.
Total Lightning as an Indicator of Mesocyclone Behavior
NASA Technical Reports Server (NTRS)
Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.
2014-01-01
Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.
Nowcasting and forecasting of lightning activity: the Talos project.
NASA Astrophysics Data System (ADS)
Lagouvardos, Kostas; Kotroni, Vassiliki; Kazadzis, Stelios; Giannaros, Theodore; Karagiannidis, Athanassios; Galanaki, Elissavet; Proestakis, Emmanouil
2015-04-01
Thunder And Lightning Observing System (TALOS) is a research program funded by the Greek Ministry of Education with the aim to promote excellence in the field of lightning meteorology. The study focuses on exploring the real-time observations provided by the ZEUS lightning detection system, operated by the National Observatory of Athens since 2005, as well as the 10-year long database of the same system. More precisely the main research issues explored are: - lightning climatology over the Mediterranean focusing on lightning spatial and temporal distribution, on the relation of lightning with topographical features and instability and on the importance of aerosols in lightning initiation and enhancement. - nowcasting of lightning activity over Greece, with emphasis on the operational aspects of this endeavour. The nowcasting tool is based on the use of lightning data complemented by high-time resolution METEOSAT imagery. - forecasting of lightning activity over Greece based on the use of WRF numerical weather prediction model. - assimilation of lightning with the aim to improve the model precipitation forecast skill. In the frame of this presentation the main findings of each of the aforementioned issues are highlighted.
Lightning Safety Tips and Resources
... Safety Brochure U.S. Lightning Deaths in 2018 : 5 Youtube: Lightning Safety for the Deaf and Hard of ... for Hard of Hearing: jpg , high res png YouTube: Lightning Safety Tips Lightning Safety When Working Outdoors : ...
Where are the lightning hotspots on Earth?
NASA Astrophysics Data System (ADS)
Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.
2015-12-01
The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM) aboard GOES-R. This study provides context to forecasters as to total lightning activity and locations within GLM field of view as well as around the world.
The electric field changes and UHF radiations caused by the triggered lightning in Japan
NASA Technical Reports Server (NTRS)
Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi
1991-01-01
In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.
Cross-Referencing GLM and ISS-LIS with Ground-Based Lightning Networks
NASA Astrophysics Data System (ADS)
Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.
2017-12-01
The Geostationary Lightning Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the Lightning Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total lightning activity from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare lightning observations across multiple space-based optical lightning sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with lightning detected by the ground-based Earth Networks Global Lightning Network (ENGLN) and the Vaisala Global Lightning Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of lightning observed by the satellite and ground-based instruments, with an emphasis on the lightning flashes uniquely identified by the satellites.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Astrophysics Data System (ADS)
Koshak, W. J.
2017-12-01
With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.
75 FR 10551 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
..., Telephone (202) 267-3168, Fax (202) 267-5075, or e-mail at [email protected] . SUPPLEMENTARY INFORMATION... participating by telephone, PLEASE CONTACT Ralen Gao by e-mail or phone for the teleconference call-in number... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT...
76 FR 60115 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-28
... (202) 267-5075, or e-mail at [email protected] . SUPPLEMENTARY INFORMATION: Pursuant to Section 10(a)(2... by October 12, 2011. For persons participating by telephone, please contact Ralen Gao by e-mail or... Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... purposes. The property is located at 3595 Industrial Park Drive, Marianna, Florida 32446, in the... Airport will also receive a benefit of enhanced safety by acquiring Runway Protection Zone lands... Municipal Airport, and the FAA Airports District Office, 5950 Hazeltine National Drive, Suite 400, Orlando...
75 FR 32272 - Revision of Class E Airspace; Kaltag, AK
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
...-0082; Airspace Docket No. 10-AAL-4] Revision of Class E Airspace; Kaltag, AK AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action revises Class E airspace at Kaltag, AK, to..., Anchorage, AK 99513-7587; telephone number (907) 271-5898; fax: (907) 271-2850; e-mail: [email protected
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
... Resolution Procedures for Protests and Contact Disputes AGENCY: Federal Aviation Administration (FAA), DOT... CONTACT: Carla Scott on (202) 385-4293, or by e-mail at: [email protected] . SUPPLEMENTARY INFORMATION: OMB Control Number: 2120-0632. Title: Office of Dispute Resolution Procedures for Protests and Contact...
The performance of cable braids and terminations to lightning induced transients
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.