Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba *
Qian, Xiao-Wei; Luo, Wei-Hua; Zheng, Ou-Xiang
2006-01-01
The mutagenic effects of microwave and chromium trioxide (CrO3) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO3. The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO3, in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO3 concentration. We concluded that microwave and CrO3 had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells. PMID:16502510
Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba.
Qian, Xiao-wei; Luo, Wei-hua; Zheng, Ou-xiang
2006-03-01
The mutagenic effects of microwave and chromium trioxide (CrO(3)) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO(3). The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO(3), in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO(3) concentration. We concluded that microwave and CrO(3) had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells.
[Study on teratogenic effect of potassium dichromate on Vicia faba root tip cells].
Qian, Xiao-Wei
2004-05-01
We studied the aberrant effects of different concentrations of potassium dichromate on Vicia faba root tip cells. The micronucleus and chromosome aberration assay was conducted to determine the micronucleus rate and chromosome aberration rate of Vicia faba root tip cells induced by potassium dichromate. The result indicated that potassium dichromate could increase the micronucleus rate of Vicia faba root tip cells. Within certain range of concentration the rate of micronucleus was found to be increased with the increase of potassium dichromate concentration,but beyond this range the rate of micronucleus decreased with further increase of potassium dichromate concentration. The potassium dichromate at different concentrations could increase the cell mitosis index. Besides,it also caused various types of chromosome aberration,and the rates of chromosome aberration were always higher than that of the control group. The conclusion of this study was that potassium dichromate has obvious teratogenic effect on Vicia faba root tip cells.
Ma, L J; Zhang, Y; Bu, N; Wang, S H
2010-02-01
Cadmium has been shown to prevent Vicia faba growth by inhibiting cell mitosis. In this study we investigated the role of Alginate-derived Oligosaccharides (ADO) in alleviating Vicia faba root tip cells damaged by 6 and 8 mg L(-1) CdCl2. Micronucleus assay and chromosomal aberration assay were used to determine mitotic index, micronucleus frequency and chromosomal aberration frequency. The results showed that micronucleus frequency of Vicia faba root tip cells was inhibited under all the ADO concentrations. Especially, the inhibition ratio of 0.125% ADO highly reached 66.11 and 67.17% in 6 and 8 mg L(-1) CdCl2, respectively. Furthermore, the mitotic index increased (p < 0.05) and chromosomal aberration frequency decreased (p < 0.05) under all the ADO concentrations. This indicated that ADO had a significant alleviation effect on Vicia faba root tip cells damaged by cadmium.
[Effects of chlorobenzene stress on seedling growth and cell division of Vicia faba].
Liu, Wan; Zhou, Qixing; Li, Peijun; Sun, Tieheng; Tai, Peidong; Xu, Huaxia; Zhang, Chungui; Zhang, Hairong
2003-04-01
Effects of 1, 2, 4-trichlorobenzene (TCB) stress on seedling growth, cell division and chromosomal aberration frequency of root-tip cells of Vicia faba were studied. The results indicated that the growth of the root length and mitotic index of root tip cells were successively decreased and even stopped with the increase of TCB concentrations and treatment duration. Numerical and structural chromosomal aberrations at metaphase and anaphase of root-tip cells in Vicia faba seedlings were produced by 50-300 micrograms.g-1 TCB treatment for 12-96 h. The percentage of c-mitosis, chromosomal bridge and chromosomal asymmetry array in root tip cells exposed to 50-100 micrograms.g-1 TCB for 12-24 h was up to 1.0-10.3%. The percentage of chromosomal stickness (S), chromosomal stickiness + chromosomal breakage (S + B), chromosomal stickness + chromosomal ring (S + R), chromosomal stickiness + chromosomal asymmetry array (S + A) and chromosomal stickness + chromosomal bridge (S + Be) in root tip cells reached 47.9-88.9%, and 18.1-29.6% for different kinds of chromosomal breakage at 300 micrograms.g-1 TCB for 12-96 h. Thus, the chromosomal aberration of root tip cells in Vicia faba seedlings could be used as a sensitive biomarker of monitoring soil contaminated with TCB.
Wang, Lan-jun; Wang, Jin-hua; Zhu, Lu-sheng; Wang, Jun; Zhao, Xiang
2016-04-15
In order to determine the degree of biological genetic injury induced by PPCPs, the genotoxic effects of the doxycycline (DOX), ciprofloxacin (CIP), triclocarban (TCC) and carbamazepine (CBZ) in the concentration range of 12.5-100 mg · L⁻¹ were studied using micronucleus rate and micronucleus index of Vicia-fabe and garlic. The results showed that: (1) When the Vicia-faba root- tip cells were exposed to DOX, CIP, TCC and CBZ, micronucleus rates were higher than 1.67 ‰ (CK₁), it was significantly different from that of the control group (P < 0.05), and the micronucleus index was even greater than 3.5; With the increasing concentrations of the PPCPs, the micronucleus rates first increased and then decreased. (2) When the garlic root tip cells were exposed to DOX, CIP, TCC and CBZ respectively, the micronucleus rates were less than those of the Vicia-faba, while in most treatments significantly higher than that of the control group (0.67‰). The micronucleus index was higher than 3.5 in the groups exposed to CIP with concentrations of 25, 50, 100 mg · L⁻¹ and TCC and CBZ with concentrations of 25 mg · L⁻¹; With the increase of exposure concentrations, the micronucleus rate showed a trend of first increasing and then decreasing as well. (3) Under the same experimental conditions, the cells micronucleus rates of the garlic cells caused by the four tested compounds were significantly lower than those of Vicia-faba. (4) The micronucleus index of the root tip cells of Vicia-faba and garlic treated with the four kinds of compounds followed the order of CIP > CBZ > TCC > DOX. These results demonstrated that the four compounds caused biological genetic injury to root-tip cells of Vicia-faba and garlic, and the genetic damage caused to garlic was significantly lower than that to Vicia-faba. The damages caused by the four kinds of different compounds were also different.
Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba.
Unyayar, Serpil; Celik, Ayla; Cekiç, F Ozlem; Gözel, Aysin
2006-01-01
Cadmium (Cd) is one of the most toxic environmental pollutants affecting cytogenetically the various organisms. The cytogenetic damage in root tip cells exposed to cadmium nitrate (CdNO3) solutions at four different concentrations (1, 10, 100 and 200 microM) was evaluated with biological tests based on micronucleus (MN) assay in two plant species, Allium sativum and Vicia faba. Additionally to the cytogenetic analysis, lipid peroxidation analyses were performed in both A.sativum and V.faba roots. Cd enhanced the MN frequency in both A.sativum and V.faba root tip cells, but no dose-dependent. Induction of MN is not depending on CdNO3 concentrations. Besides, high concentrations of Cd decreased the mitotic index and caused the delay in mitosis stages in both plants, mainly in V.faba. On the other hand, lipid peroxidation was significantly enhanced with external Cd in V.faba. The results clearly indicate that high concentrations of cadmium induce the lipid peroxidation resulting in oxidative stress that may contribute to the genotoxicity and cytotoxicity of Cd ions.
Shahin, S A; el-Amoodi, K H
1991-11-01
The 2 fungicides nimrod and rubigan-4 were tested for genotoxicity using Vicia faba root tips as the biological test system. Treating lateral roots with different concentrations of each fungicide for different periods showed that both fungicides were able to produce numerical but not structural chromosomal aberrations. The percentage of total aberrations in root tips exposed to nimrod reached 54.39% at 250 ppm for 4 h, and 64.69% in root tips exposed to rubigan-4 at 250 ppm for 6 h. The types of numerical chromosomal aberrations produced by both fungicides included: binucleate cells, c-metaphases, sticky chromosomes, polyploid cells, and laggards. Recovery experiments for 24, 48, and 96 h showed no significant differences between the percentage of total aberrations in treated and control groups.
Genotoxicity of fenpropathrin and fenitrothion on root tip cells of Vicia faba.
Bu, N; Wang, S H; Yu, C M; Zhang, Y; Ma, C Y; Li, X M; Ma, L J
2011-11-01
The genotoxicity of fenpropathrin and fenitrothion on root tip cells of Vicia faba was studied. The symptoms were investigated about the mitotic index, the micronucleus frequency and chromosomal aberration frequency of root tip cells of Vicia faba which were induced by different concentrations of fenpropathrin and fenitrothion (1 × 10(-10)-1 × 10(-2) g L(-1)). Results showed that fenpropathrin and fenitrothion could induce the micronucleus of root tip cells of Vicia faba. It occurred in a dose-dependent manner. Peaks were observed at 1 × 10( -6) g L(-1) fenpropathrin and 1 × 10(-4) g L(-1) fenitrothion, and micronucleus frequency reached 14.587 ± 1.511‰ and 14.164 ± 1.623‰, respectively. From 1 × 10(-10) g L(-1) to 1 × 10( -6) g L(-1) fenpropathrin and 1 × 10(-4) g L(-1) fenitrothion, the micronucleus frequency increased with the increase of the concentrations, but beyond this range, the micronucleus frequency decreased with the further increase of the concentrations. A similar trend was observed for mitotic index. Moreover, fenpropathrin and fenitrothion could induce various types of chromosome aberration, such as lagging chromosomes, chromosome fragment, chromosome bridge, multipolar, nuclear buds, karyorrhexis, etc.
Genotoxic effects and induction of phytochelatins in the presence of cadmium in Vicia faba roots.
Béraud, Eric; Cotelle, Sylvie; Leroy, Pierre; Férard, Jean-François
2007-10-04
This study investigates different effects in roots of Vicia faba (broad bean) after exposure to cadmium. Genotoxic effects were assessed by use of the well-known Vicia root tip micronucleus assay. Cytotoxic effects were evaluated by determining the mitotic index in root tip cells. Finally, molecular induction mechanisms were evaluated by measuring phytochelatins with HPLC. After hydroponical exposure of V. faba roots to a range of cadmium concentrations and during different exposure times, the results of this approach showed large variations, according to the endpoint measured: after 48 h of exposure, genotoxic effects were found between 7.5 x 10(-8) and 5 x 10(-7)M CdCl(2), and cytotoxic effects were observed between 2.5 x 10(-7) and 5 x 10(-7)M CdCl(2). Statistically significant phytochelatin (PC) concentrations were measured at >or=10(-6)M CdCl(2) for PC(2), and at >or=10(-5)M CdCl(2) for PC3 and PC4.
Qin, Rong; Zhang, Huaning; Li, Shaoshan; Jiang, Wusheng; Liu, Donghua
2014-09-01
Results from our previous investigation indicated that Al could affect the nucleolus and induce extrusion of silver-staining nucleolar particles containing argyrophilic proteins from the nucleolus into the cytoplasm in root tip cells of Vicia faba L. So far, the nucleolar proteins involved have not been identified. It is well known that nucleophosmin (B23), nucleolin (C23), and fibrillarin are three major and multifunctional nucleolar proteins. Therefore, effects of Al on B23, C23, and fibrillarin in root tip cells of V. faba exposed to 100 μM Al for 48 h were observed and analyzed using indirect immunofluorescence microscopy and Western blotting. The results from this work demonstrated that after 100 μM of Al treatment for 48 h, B23 and C23 migrated from the nucleolus to the cytoplasm and fibrillarin from the nucleolus to the nucleoplasm. In some cells, fibrillarin was present only in the cytoplasm. Western blotting data revealed higher expression of the three major nucleolar proteins in Al-treated roots compared with the control and that the B23 content increased markedly. These findings confirmed our previous observations.
Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.
Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin
2017-01-01
Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.
[Research on the cytotoxic and genotoxic effects of rare-earth element holmium to Vicia faba].
Qu, Ai; Wang, Cheng-Run; Bo, Jun
2004-03-01
Crystal of nitrate, made by the reaction of holmium trioxide and nitric acid, was dissolved in distilled water, thus diluted into gradient solution. Soaked in the solution for 6 hours (6h), the root tips of Vicia faba were then recovered and cultivated for 22 h and 24 h, respectively. By observing the change of root tips and calculating the frequency of micronucleus (FMN), the frequency of chromosomal aberrations(CAF) and mitosis index (MI),we find that the dosage below 4mg/L (expressed by concentration of holmium trioxide) could accelerate the growth of root tips of Vicia faba. CAF and FMN increased while MI decreased with the rise of concentrations. From it a dosage effect relationship is clearly seen. And it indicated that the rare earth element holmium has certain cytotoxic and genotoxic effects. Furthermore, the different recovery groups have different FMN, CAF and MI, and the difference lies in the fact that FMN of 22 h recovery group was lower than that of 24 h recovery group, while CAF and MI were higher than those of 24 h recovery group. The results suggest that the statistics of FMN should be made after that of CAF.
Genotoxicity of municipal landfill leachate on root tips of Vicia faba.
Sang, Nan; Li, Guangke
2004-06-13
The genotoxicity of municipal landfill leachate was studied using the Vicia faba root-tip cytogenetic bioassay. Results show that landfill leachates collected in different seasons decreased the mitotic index (MI) and caused significant increases of micronucleus (MN) frequencies and anaphase aberration (AA) frequencies in a concentration-dependent manner (concentration expressed as 'chemical oxygen demand' measured by the method of potassium dichromate oxidation (COD(Cr))). In addition, a seasonal difference in genotoxicity induced by leachate was observed. The results confirm that leachate is a genotoxic agent in plant cells and imply that exposure to leachate in the aquatic environment may pose a potential genotoxic risk to organisms. The results also show that the V. faba cytogenetic bioassay is efficient, simple and reproducible in genotoxicity studies of leachate, and that there is a correlation between the genotoxicity and the chemical measurement (COD(Cr)) of leachate.
A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L.
Doležel, J; Cíhalíková, J; Lucretti, S
1992-08-01
A new method is described for the isolation of large quantities of Vicia faba metaphase chromosomes. Roots were treated with 2.5 mM hydroxyurea for 18 h to accumulate meristem tip cells at the G1/S interface. After release from the block, the cells re-entered the cell cycle with a high degree of synchrony. A treatment with 2.5 μM amiprophos-methyl (APM) was used to accumulate mitotic cells in metaphase. The highest metaphase index (53.9%) was achieved when, 6 h after the release from the hydroxyurea block, the roots were exposed to APM for 4 h. The chromosomes were released from formaldehyde-fixed root tips by chopping with a scalpel in LB01 lysis buffer. Both the quality and the quantity of isolated chromosomes, examined microscopically and by flow cytometry, depended on the extent of the fixation. The best results were achieved after fixation with 6% formaldehyde for 30 min. Under these conditions, 1 · 10(6) chromosomes were routinely obtained from 30 root tips. The chromosomes were morphologically intact and suitable both for high-resolution chromosome studies and for flow-cytometric analysis and sorting. After the addition of hexylene glycol, the chromosome suspensions could be stored at 4° C for six months without any signs of deterioration.
Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z
2000-07-20
Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.
Wang, Chengrun; Lu, Xianwen; Tian, Yuan; Cheng, Tao; Hu, Lingling; Chen, Fenfen; Jiang, Chuanjun; Wang, Xiaorong
2011-11-01
Effects of lanthanum (La) on mineral nutrients, cell cycles, and root lengthening have been little reported. The present work investigated these physiological responses in roots of Vicia faba seedlings cultivated in La3+-contained solutions for 15 days. The results showed that the increasing contents of La in the roots and leaves contributed to disbalances of contents of Ca, Fe, Cu, Zn, Mg, Mn, P, and K elements, and potential redistributions of some elements in the roots and leaves. These disbalances might be involved in the subsequent alteration of cell cycle phases in the root tips. Low-dose promotion and high-dose inhibition (Hormetic effects) were demonstrated as the dose responses of G0/G1-, S- or G2/M-phase ratios. The cell cycles were most probably arrested at G1/S interphase by La3+ in the root tips. The fact that the root lengths were not consistent with the changes of cell cycle phases suggested that the cell proliferation activities might be masked by other factors (e.g., cell expansion) under long-time exposure to La3+.
Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong
2012-01-01
The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth.
Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong
2011-01-01
The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth. PMID:22423233
Kontek, Renata; Osiecka, Regina; Kontek, Bodgan
2007-01-01
Plant bioassays are an important and integral part of the test battery used in detecting genotoxic/carcinogenic contamination in the environment. Highly sensitive biomonitoring of plant models have been developed, which enables the detection of hazards arising from pesticides, insecticides, industrial contamination, heavy metals and radiation. Root tips of Vicia faba ssp. minor were treated with 1-60 mM of the organophosphorus insecticide dichlorvos (DDVP) for 2 h, followed by a 20-h recovery period. Maleic acid hydrazide (MH) was used as a positive control for the mitotic index, micronucleus and chromosomal aberration assays performed on the Vicia model system. All treatments with DDVP significantly decreased the mitotic activity and increased the frequency of chromosomal aberrations at the metaphase. The frequency of micronuclei was significantly increased at DDVP concentrations starting from 10 mM. The results demonstrate clastogenic and mitodepressive effects of DDVP on Vicia faba cells.
deKergommeaux, D J; Grant, W F; Sandhu, S S
1983-10-01
9 common pesticides were assayed for clastogenic and physiological activity using Vicia faba as a eukaryotic, whole-organism, test system. The compounds tested included the insecticides acephate, demeton, monocrotophos, parathion-methyl, and trichlorfon; the fungicides captan and folpet; and the herbicides bromacil and simazine. The chemicals have been grouped according to relative genotoxicity (strongly positive: demeton, parathion-methyl; positive: folpet, acephate, monocrotophos, captan; weakly positive: bromacil, trichlorfon, simazine). The results were compared with those reported from other assay systems.
Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo
2016-01-01
Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Patlolla, Anita K.; Berry, Ashley; May, LaBethani; Tchounwou, Paul B.
2012-01-01
The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there have been some attempts to determine the toxic effects of AgNPs in mammalian and human cell-lines, there is little information on plants which play a vital role in ecosystems. The study reports the use of Vicia faba root-tip meristem to investigate the genotoxicity of AgNPs under modified GENE-TOX test conditions. The root tip cells of V. faba were treated with four different concentrations of engineered AgNPs dispersion to study toxicological endpoints such as mitotic index (MI), chromosomal aberrations (CA) and micronucleus induction (MN). For each concentration, five sets of microscopy observations were carried out. The results demonstrated that AgNPs exposure significantly increased (p < 0.05) the number of chromosomal aberrations, micronuclei, and decreased the MI in exposed groups compared to control. From this study we infer that AgNPs might have penetrated the plant system and may have impaired mitosis causing CA and MN. The results of this study demonstrate that AgNPs are genotoxic to plant cells. Since plant assays have been integrated as a genotoxicity component in risk assessment for detection of environmental mutagens, they should be given full consideration when evaluating the overall toxicological impact of the nanoparticles in the environment. PMID:22754463
Patlolla, Anita K; Berry, Ashley; May, LaBethani; Tchounwou, Paul B
2012-05-01
The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there have been some attempts to determine the toxic effects of AgNPs in mammalian and human cell-lines, there is little information on plants which play a vital role in ecosystems. The study reports the use of Vicia faba root-tip meristem to investigate the genotoxicity of AgNPs under modified GENE-TOX test conditions. The root tip cells of V. faba were treated with four different concentrations of engineered AgNPs dispersion to study toxicological endpoints such as mitotic index (MI), chromosomal aberrations (CA) and micronucleus induction (MN). For each concentration, five sets of microscopy observations were carried out. The results demonstrated that AgNPs exposure significantly increased (p < 0.05) the number of chromosomal aberrations, micronuclei, and decreased the MI in exposed groups compared to control. From this study we infer that AgNPs might have penetrated the plant system and may have impaired mitosis causing CA and MN. The results of this study demonstrate that AgNPs are genotoxic to plant cells. Since plant assays have been integrated as a genotoxicity component in risk assessment for detection of environmental mutagens, they should be given full consideration when evaluating the overall toxicological impact of the nanoparticles in the environment.
In vitro root induction of faba bean (Vicia faba L.).
Ismail, Roba M; Elazab, Heba E M; Hussein, Gihan M H; Metry, Emad A
2011-01-01
A major challenge for regeneration of faba bean (Vicia faba L.) plants is the difficulty of in vitro root induction. In the present study, in vitro rooting and its architecture have been studied. Adventitious root formation was successfully induced from regenerated faba bean shoots of four Egyptian cultivars, i.e., Giza 461, Giza 40, Giza 834 and Giza 716 on hormone free MS medium supplemented with 5 mg/l silver nitrate. Among the four cultivars, Giza 461 and Giza 40 were recorded as the highest root formation response (75 % and 65) followed by cultivars Giza716 and Giza843 (20%, and 10%). Anatomical study proved that the produced roots are initiated as the adventitious lateral root (LR) with tri-arch xylem strands as compared with the penta-arch of the primary roots of the intact faba bean seedling. The obtained results overcome the root induction problem in faba bean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, D.; Jiang, W.; Wang, W.
Metal toxicity in plants has been known for a long time. Much importance has increasingly been attached to the problems of metal pollution with the development of modern industry and agriculture. If metals in plants are accumulated to a large extent, it might seriously affect them. The cytological effects of cobalt and mercury have been studied in Allium cepa by documentation of c-mitosis. Also, the quantification of chromosome aberration in Vicia faba root-tip cells treated by magnesium sulphate and in Allium cepa by metyl mercury chloride and mercuric chloride has been reported. Cytological research on the poisoning effects of Mg,more » Co and Hg on the nuclei and nucleoli in root-tip cells of plants has hardly been reported. The aim of this study was to determine the effects of different concentrations of magnesium, cobalt and mercury ions on root growth, and on the nuclei and nucleoli of root tip cells of Allium-cepa. 20 refs., 3 figs.« less
Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation
Li, Bai; Li, Yu-Ying; Wu, Hua-Mao; Zhang, Fang-Fang; Li, Chun-Jie; Li, Xue-Xian; Lambers, Hans; Li, Long
2016-01-01
Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root–root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone–flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root–root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity. PMID:27217575
Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays.
Dong, Yiru; Zhang, Jintun
2010-07-01
The coking wastewater induces severe environmental problems in China, however, its toxicity has not been well known. In the present study, the genotoxicity of coking wastewater was studied using Vicia faba and Hordeum vulgare root tip cytogenetic bioassays. Results show that the tested coking wastewater decreased the mitotic index, and significantly enhanced the frequencies of micronucleus, sister chromatid exchange and pycnotic cell in concentration-dependent manners. Exposure to the same concentration wastewater, the increasing ratios of above genetic injuries were higher in V. faba than that in H. vulgare. The results imply that coking wastewater is a genotoxic agent in plant cells and exposure to the wastewater in environment may pose a potential genotoxic risk to organisms. It also suggests that both bioassays can be used for testing the genotoxicity of coking wastewater, but the V. faba assay is more sensitive than H. vulgare assay during the process. Copyright (c) 2010. Published by Elsevier Inc.
Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.
Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K
2004-04-01
The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 129-133, 2004.
Yi, Min; Yi, Huilan; Li, Honghai; Wu, Lihua
2010-04-01
Aluminum (Al) exists naturally in air, water, and soil, and also in our diet. Al can be absorbed into the human body and accumulates in different tissues, which has been linked to the occurrence of Alzheimer's disease and various neurological disorders. By using Vicia cytogenetic tests, which are commonly used to monitor the genotoxicity of environmental pollutants, cytogenetic effects of aluminum (AlCl(3)) were investigated in this study. Present results showed that Al caused significant increases in the frequencies of micronuclei (MN) and anaphase chromosome aberrations in Vicia faba root tips exposed to Al over a concentration-tested range of 0.01-10 mM for 12 h. The frequency of micronucleated cells was higher in Al-treated groups at pH 4.5 than that at pH 5.8. Similarly, AlCl(3) treatment caused a decrease in the number of mitotic cells in a dose- and pH-dependent manner. The number of cells in each mitotic phase changed in Al-treated samples. Mitotic indices (MI) decreased with the increases of pycnotic cells. Our results demonstrate that aluminum chloride is a clear clastogenic/genotoxic and cytotoxic agent in Vicia root cells. The V. faba cytogenetic test could be used for the genotoxicity monitoring of aluminum water contamination.
Cytotoxic effects of cylindrospermopsin in mitotic and non-mitotic Vicia faba cells.
Garda, Tamás; Riba, Milán; Vasas, Gábor; Beyer, Dániel; M-Hamvas, Márta; Hajdu, Gréta; Tándor, Ildikó; Máthé, Csaba
2015-02-01
Cylindrospermopsin (CYN) is a cyanobacterial toxin known as a eukaryotic protein synthesis inhibitor. We aimed to study its effects on growth, stress responses and mitosis of a eukaryotic model, Vicia faba (broad bean). Growth responses depended on exposure time (3 or 6d), cyanotoxin concentration, culture conditions (dark or continuous light) and V. faba cultivar ("Standard" or "ARC Egypt Cross"). At 6d of exposure, CYN had a transient stimulatory effect on root system growth, roots being possibly capable of detoxification. The toxin induced nucleus fragmentation, blebbing and chromosomal breaks indicating double stranded DNA breaks and programmed cell death. Root necrotic tissue was observed at 0.1-20 μg mL(-1) CYN that probably impeded toxin uptake into vascular tissue. Growth and cell death processes observed were general stress responses. In lateral root tip meristems, lower CYN concentrations (0.01-0.1 μg mL(-1)) induced the stimulation of mitosis and distinct mitotic phases, irrespective of culture conditions or the cultivar used. Higher cyanotoxin concentrations inhibited mitosis. Short-term exposure of hydroxylurea-synchronized roots to 5 μg mL(-1) CYN induced delay of mitosis that might have been related to a delay of de novo protein synthesis. CYN induced the formation of double, split and asymmetric preprophase bands (PPBs), in parallel with the alteration of cell division planes, related to the interference of cyanotoxin with protein synthesis, thus it was a plant- and CYN specific alteration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian
2014-07-01
Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was significantly higher than that of YM42. In conclusion, intercropping influenced the microbial activity and substrate utilization of soil microorganisms, altered the microbial community diversity in rhizosphere of faba bean, reduced the amount of F. oxysporum and disease index of faba bean fusarium wilt, and promoted faba bean growth. Effects of intercropping on disease control were influenced by the intercropped wheat variety, suggesting that the differences of root exudates of wheat were important factors that affected soil-borne diseases control in intercropping.
Gowrishanker, B; Vivekanandan, O S
1994-09-01
The genotoxic effects of two types of tannery effluent (Raw-to-Wetblue and Wetblue-to-Finish) and the antigenotoxic property of a crude extract of Phyllanthus amarus L. were evaluated using the root meristem of Vicia faba L. as the in vivo test system. The root tip cells were exposed to the tannery effluents at different concentrations for varying durations. Squash preparations were made following Haematoxylin staining procedures. Cytological investigations revealed a duration- and concentration-dependent decrease in mitotic frequency and an increase in chromosomal irregularities. The root meristems pre-treated with effluents for 8 h (Raw-to-Wetblue) and 24 h (Wetblue-to-Finish) which caused the maximum incidence of mitotic anomalies, were then exposed to the crude extract of Phyllanthus amarus (0.25, 0.5, 0.75 and 1%) to study its efficacy modifying genetic damage. It was observed that the root meristems post-treated with Phyllanthus showed a significant reduction in the frequency of chromosomal alterations. However, there was no significant variation in the mitotic frequency. The study suggests that Phyllanthin, a principle of Phyllanthus amarus, is antigenotoxic.
Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun
2012-01-01
The freshwater luminescent bacteria Vibrio-qinghaiensis sp.-Q67 test and the Vicia faba root tip test associated with solid-phase extraction were applied for cytotoxicity and genotoxicity assessment of organic substances in three rivers, two lakes and effluent flows from two wastewater treatment plants (WWTPs) in Xi'an, China. Although the most seriously polluted river with high chemical oxygen demand (COD) and total organic carbon (TOC) showed high cytotoxicity (expressed as TII50, the toxicity impact index) and genotoxicity (expressed as RMCN, the relative frequency of micronucleus), no correlative relation was found between the ecotoxicity and organic content of the water samples. However, there was a linear correlative relation between TII50 and RMCN for most water samples except that from the Zaohe River, which receives discharge from WWTP and untreated industrial wastewaters. The ecotoxicity of the organic toxicants in the Chanhe River and Zaohe River indicated that cytotoxic and genotoxic effects were related to the pollutant source. The TII50 and RMCN were also found to correlate roughly to the dissolved oxygen concentration of the water. Sufficient dissolved oxygen in surface water is thus proved to be an indicator of a healthy water environmental condition.
Assessment of arsenic toxicity using Allium/Vicia root tip micronucleus assays.
Wu, Lihua; Yi, Huilan; Yi, Min
2010-04-15
Arsenic is ubiquitous in the environment and is a potential human carcinogen. Its carcinogenicity has been demonstrated in several models. In this study, broad bean (Vicia faba L.) and common onion (Allium cepa L.), two plant species which are commonly used for detecting the genotoxic effects of environmental pollutants, were used to measure possible genotoxic effect of arsenite (0.3-30 mg/l). Present results showed that arsenite (As(III)) induced micronuclei (MN) formation in both Allium and Vicia root tips. MN frequency significantly increased in Vicia root cells exposed to 0.3-10 mg/l arsenite and in Allium root cells exposed to 1-30 mg/l arsenite, which indicated that Vicia root tip cells are more sensitive to arsenite than Allium. Mitotic index (MI) decreased in a concentration-dependent manner and showed significant differences in Vicia/Allium roots among treatments and the control, after exposure to 1-30 mg/l arsenite for at least 4 h. In the present study, MN frequency was positively associated with lipid peroxidation, which indicated that arsenite exposure can induce oxidative stress, cytotoxicity and genotoxicity in plant cells. The results also suggested that Vicia/Allium root micronucleus (MN) assays are simple, efficient and reproducible methods for the genotoxicity monitoring of arsenic water contamination. 2009 Elsevier B.V. All rights reserved.
Khalifa, Noha S; Barakat, Hoda S; Elhallouty, Salwa; Salem, Dina
2015-01-01
We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment.
Effects of Extremely Low Frequency Electric and Magnetic Fields on Roots of ’Vicia faba’.
those near the Sanguine transmitter: growth rate, mitotic index , chromosomal abnormalities in dividing meristematic cells. The choice of Vicia faba ...Roots of Vicia faba were exposed to electric and magnetic fields comparable to but at levels higher than those associated with Project Sanguine...There were no differences among control and exposed roots for growth or mitotic index . Also, there were no chromosomal anomalies. Three indices are
Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdődi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba
2012-01-01
Background and Aims Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Methods Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Key Results Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL−1 MCY-LR, accelerated cell cycle at 10 µg mL−1 MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. Conclusions MCY-LR delayed metaphase–anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation. PMID:22819947
Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdodi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba
2012-09-01
Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL(-1) MCY-LR, accelerated cell cycle at 10 µg mL(-1) MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. MCY-LR delayed metaphase-anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation.
Effect of Extremely Low Frequency Electric and Magnetic Fields on Roots of ’Vicia Faba’.
Roots of Vicia faba were exposed to electric and magnetic fields comparable to those of Project SANGUINE. There were no differences among control...and exposed roots for growth or mitotic index . Also, there were no chromosomal anomalies. (Author)
Zhang, Shanshan; Zhang, Huimin; Qin, Rong; Jiang, Wusheng; Liu, Donghua
2009-10-01
The effects of different concentrations (1-50 microM) of Cd on root growth, cell division and nucleoli in root tip cells, protective enzyme activities and lipid peroxidation in Vicia faba were investigated in order to better understand the processes of Cd-induced senescence. The results indicated that lower concentration of Cd (1 microM) had no obviously influence on the root growth during 24-48 h treatment, but higher concentrations (5-50 microM) inhibited significantly after 48 and 72 h. The mitotic index decreased with increasing of Cd concentration and duration of treatment except for the group exposed to 1 microM Cd. Cd induced c-mitosis, chromosome bridges, chromosome stickiness and lagging chromosomes. The rate of aberrant dividing cells increased with prolonging duration of treatment and increasing of Cd concentration. On nucleolus, some particulates containing the argyrophilic proteins were extruded from the nucleus into the cytoplasm in the cells stressed by Cd and some were scattered in the nucleus. After the treatment with Cd (10 microM Cd, 48 h), the nucleolus did not disaggregate normally and still remain its characteristic structure during metaphase and the particles of similar silver-stained materials were localized on chromosomes. In leaves, Catalase (CAT) activity declined but Peroxidase (POD) activity increased with increasing of the duration of treatment. In roots, CAT activity increased with increasing of the duration of treatment, POD activity increased during early days and then declined. Superoxide dismutase (SOD) activity showed an upward trend with increasing of the duration of treatment after 3 and 6 days, then declined both in leaves and roots (9 days). SOD and POD had highest activities at 50 microM Cd in leaves. CAT activity was lowest at 50 microM Cd. Malondialdehyde (MDA) content increased with the increasing of Cd concentrations and duration of treatment in leaves. In roots, MDA content showed an upward trend with increasing of the duration of treatment at early time and then declined.
The Rejoining Time of Chromatid Breaks Induced by Gamma Radiation in Vicia faba Root Tips at 3 °C
Savage, J. R. K.; Neary, G. J.; Evans, H. J.
1960-01-01
The observation was made previously that the reduction in radiosensitivity in Vicia faba (as measured by postirradiation root growth) by prolonging the exposure time from about 10 minutes to 24 hours is much less marked at 3°C. than at 19°C. If chromosome damage is mainly responsible for the reduced root growth, this observation might be explained by a smaller drop in the "two-hit" aberration component, resulting from an increased time for which breaks are available for rejoining at 3°C. This hypothesis was tested by comparing chromatid aberration frequencies in root meristem cells produced by 105 rads of 60Co γ rays, given at dose rates of 19.4 and 0.073 rads per minute. Beans were maintained in aerated water at 2°C. prior to and during irradiation, and at this temperature the rate of development of cells was such that the two different exposure times both occupied a period during which the cell sensitivity was approximately constant. Immediately subsequent to irradiation, the roots were returned to 19°C. and examined cytologically. All chromatid aberrations were less frequent after low dose rate treatment, but only the chromatid interchange reduction was significant. The average time for which breaks are available for reunion, calculated from Lea's G function, was found to be 12 hours (95 per cent C.L. 6 to 24 hours). PMID:14442001
Dong, Yan; Dong, Kun; Yang, Zhi Xian; Zheng, Yi; Tang, Li
2016-06-01
A field trial was conducted to investigate effects of wheat and faba bean intercropping on incidence and index of fusarium wilt, amount of Fusarium oxysporum of faba bean, oxidase activity and membrane peroxidation of faba bean roots. Functional diversity of microbial community in rhizosphere soil of faba bean was analyzed by using Biolog microbial analysis system, contents of pheno-lic acids in faba bean rhizosphere soil were determined with high performance liquid chromatography (HPLC). Results showed that in comparison with that of monocropped faba bean, wheat and faba bean intercropping tended to reduce the incidence and disease index of faba bean. The fusarium wilt was significantly decreased by 15.8% and 22.8% during the peak infection and late infection stages, and the average well color development (AWCD value) was promoted obviously. The Shannon diversity (H) and richness (S) increased by 4.4% and 19.4% during the peak infection stage and 5.3% and 37.1% during the late infection stage, respectively. Principal component analysis demonstrated that intercropping significantly changed the rhizospheric microbial community composition. The amount of F. oxysporum in rhizosphere soil of intercropped faba bean was significantly decreased by 53.8% and 33.1%, respectively, during the peak infection and late infection stages, and contents of 4-hydroxy benzoic acid, vanillic acid, syringic acid, ferulic acid, benzoic acid and cinnamic acid also significantly decreased, peroxidase (POD), catalases (CAT) activities in roots of intercropped faba bean increased significantly by 20.0% and 31.3%, respectively during the peak infection stage and 38.5% and 66.7% respectively during the late infection stage, and the malondialdehyd (MDA) content decreased significantly by 36.3% and 46.3%, respectively during peak infection stage and late infection stage. It was concluded that wheat with faba bean intercropping could significantly promote the soil microbial activity and diversity, reduce the accumulation of phenolic allelochemicals and the amount of F. oxysporum in rhizosphere soil, increase the activities of CAT and POD, reduce MDA content in roots, and thus promote the resistance of faba bean to F. oxysporum infection.
Sequential effects of cadmium on genotoxicity and lipoperoxidation in Vicia faba roots.
Souguir, D; Ferjani, E; Ledoigt, G; Goupil, Pascale
2011-03-01
Kinetics of stress responses to Cd exposure (50, 100 and 200 μM) expanding from 12 to 48 h were studied in roots of hydroponically cultivated-Vicia faba seedlings. The heavy metal induced toxicity symptoms and growth arrest of Vicia roots gradually to the Cd concentration and duration of the treatment. The intracellular oxidative stress was evaluated with the H(2)O(2) production. The H(2)O(2) content increased gradually with the sequestered Cd and root growth inhibition. Lipid peroxidation-evidenced by malondialdehyde (MDA) content and Evans blue uptake-and genotoxicity-evidenced by mitotic index (MI) and micronuclei (MCN) values-were concomitantly investigated in root tips. By 12 h, root meristematic cells lost 15% of their mitotic activity under 50 or 100 μM Cd treatment and 50% under 200 μM Cd treatment and led cells with MCN, while the MDA content and Evans blue absorption were not affected. The loss of membrane integrity occurred subsequently by 24 h. The increase in MDA content in root cells treated with 50, 100 and 200 μM Cd was significantly higher than the control. By 48 h, the MDA content increased 134, 178 or 208% in root cells treated with 50, 100 and 200 μM Cd, respectively. The Evans blue absorption was also affected by 24 h in roots when treated with 200 μM Cd and gradually increase by 48 h with the Cd concentration of the treatment. The decrease of mitotic activity triggered by 12 h was even higher by 24 h and the MI reduced to 44, 56 or 80% compared to the control in the three different Cd concentrations tested. The different kinetics of early in vivo physiological and cytogenetic responses to Cd might be relevant to the characterization of its toxicity mechanisms in disrupting primarily the mitosis process.
Duquesnoy, Isabelle; Champeau, Gabrielle Marie; Evray, Germaine; Ledoigt, Gérard; Piquet-Pissaloux, Agnès
2010-01-01
Agronomic plant species may display physiological and biochemical responses to oxidative stress caused by heavy metals and metalloids. Zea mays plants were grown hydroponically for eight days at different concentrations of As (0, 134 and 668 μM) and at different pH (4, 7 and 9). Metabolic variations in response to As toxicity were measured using physiological parameters and antioxidant enzymatic activities. A significant decrease in SOD activity was observed in the leaves and roots of Z. mays with the majority of As treatments. As decreased G-POX activity less in leaves than in roots. An increase in the concentration of As increased APX activity in leaves and roots, except As(V) at pH 4 and pH 9 in the leaves and As(III) at pH 9 in the roots, when there was a significant decrease in APX activity at low As concentrations. After exposure to As(V), CAT activity was the same as in the control. As(III) led to an increase in CAT activity in leaves and to a decrease in roots. With increasing concentrations of As(III), CAT activity increased in both leaves and roots whatever the pH. To obtain more detailed knowledge on the effects of arsenate and arsenite exposure on Vicia faba and Z. mays, root meristems were also examined. Roots were fed hydroponically with 134, 334, 534 and 668 μM arsenate or arsenite and 4 × 10(-3)M of maleic hydrazide as positive control, at three different pH. Physiological parameters, the mitotic index and micronuclei frequencies were evaluated in root meristems. At all three pH, the highest As(V) and As(III) concentrations induced a substantial modification in root colour, increased root thickness with stiffening, and reduced root length. High concentrations also caused a significant decrease in the mitotic index, and micronucleus chromosomic aberrations were observed in the root meristems of both species. 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Orobanche foetida resistance in two new faba bean genotypes produced by radiation mutagenesis.
Mejri, Sonia; Mabrouk, Yassine; Belhadj, Omrane; Saidi, Mouldi
2018-06-12
Broomrape produces serious damage to many legume crops and particularly becomes a limiting factor for faba bean (Vicia faba L.) production in the Mediterranean basin. Currently, several traditional methods of control have been developed, but none has proved to be effective for this parasite. However, breeding for resistance to this pest remains as one of the most feasible and environmentally friendly methods for managing broomrape, but the mechanisms governing the interaction between the parasite and the host are not yet well understood. Therefore, we studied behaviours and the molecular and enzymatic changes associated with resistance to Orobanche foetida in faba bean mutants that were obtained through radiation mutagenesis. Three faba bean genotypes were used in this study, the variety 'Badï 'characterized by high productivity in Orobanche-free soils and susceptibility to O. foetida and two mutant lines P2M3 and P7M3 (derived from radio mutagenesis program) selected for their higher resistance to O. foetida in field evaluation. The infection progress and the relative changes in the co culture response, the enzymatic activities changes and the efficiency of the root extract stimulants from the host plant were followed and evaluated in all genotypes. Experiments showed that low induction of seed germination is a major component of resistance in these lines against O. foetida. This is confirmed by in vitro experiments with root exudates. In parallel reduction in infection was accompanied by the continuously enhancement of the peroxidase activity, the polyphenol oxidase activity and the phenylalanine ammonia lyase activity in faba bean roots. These data suggest the contribution of these enzymes in faba bean resistance to O. foetida broomrape induced by the use of gamma rays. Management of Orobanche by way of crop selection based on these enzyme systems is a possible option.
Rubiales, Diego; Rojas-Molina, Maria M; Sillero, Josefina C
2016-01-01
Faba bean ( Vicia faba ) production in Mediterranean and Near East agriculture is severely constrained by broomrape infection. The most widely distributed broomrape species affecting faba bean is Orobanche crenata , although O. foetida and Phelipanche aegyptiaca are of local importance. Only moderately resistant cultivars are available to farmers. Rizotrons studies allowed the dissection of resistance components in faba bean accessions against the very infective species O. crenata, O. foetida var. broteri and P. aegyptiaca , and to the inappropriate P. ramosa and O. foetida var. foetida . Results confirm that some levels of incomplete resistance are available, resulting in a reduced number of broomrape tubercles successfully formed per faba bean plant. Interestingly, the intermediate levels of resistance of cv. Baraca were operative against all broomrape populations and species studied, confirming previous reports on the stability of resistance of Baraca in field trials in different countries. Low induction of seed germination played a major role in the resistance against the inappropriate O. foetida var. foetida but not against the also inappropriate P. ramosa , neither to the infective species O. crenata, O. foetida var. broteri , or P. aegyptiaca . Negative tropism of germinated seeds with radicles growing away from faba bean roots was marked for both inappropriate species but was not observed in any of the infective species. Also, a proportion of radicles that had successfully contacted faba bean roots became necrotic, failing in starting tubercle development, particularly frequent for the two inappropriate species. Such necrosis was significant also on radicles contacting resistant faba bean accessions, being particularly relevant for Spanish O. crenata population, and lower although still significant in some accessions against Syrian O. crenata and P. aegyptiaca , suggesting that this might also be an operative mechanism to be selected and further exploited in faba bean resistance breeding. Even formed broomrape tubercles might later become necrotic, particularly in the case of some of the resistant faba bean accessions to the Spanish O. crenata and to P. aegyptiaca but not to the very infective Syrian O. crenata or O. foetida var. broteri .
Grant, W F; Lee, H G; Logan, D M; Salamone, M F
1992-11-01
Tests have shown plant bioassays to be excellent for mutagenicity studies. Most studies with plant bioassays, however, have been carried out either in the laboratory, or if, in situ, as monitors of atmospheric contaminants. The primary purpose of this study was to assess the utility of in situ plant mutagenicity bioassays in monitoring water contaminants. The assay systems tested were the Tradescantia stamen hair and micronucleus assays for the detection of gene mutations and chromosomal aberrations respectively, and the Vicia faba bioassay system which detects chromosomal aberrations in root tips. The assays were used to test the effluent from a pulp and paper mill located on the north shore of Lake Superior. Assays were performed in a creek containing raw effluent and in the bay of Lake Superior into which the creek emptied. All in situ treatments were carried out for 24 h. The effluent from the creek was heavy with pulp and debris which coated the plant cuttings and the Vicia faba seedlings and may have restricted the uptake from the effluent. In the creek, at test sites 11.5 km from the source, the effluent was toxic to the Vicia faba roots as evidenced by a reduction in the mitotic index. The data for the Tradescantia stamen hair assay in the creek were equivocal. The cuttings from the creek test sites and the air and water control sites appeared to have undergone a physiological delay. Within a day or two after the return to the laboratory, that is 6-8 days after testing, flowering almost ceased and did not fully resume until about day 35. This reduction in flowering was particularly severe with the cuttings from the effluent and air control sites, making it very difficult to interpret the results. In contrast, the Tradescantia micronucleus and Vicia faba chromosomal aberration data were unequivocal; each produced positive responses at both test sites relative to the air and water controls. The results obtained for the bay sites with all 3 assays were in agreement. In that section of the bay visibly contaminated by the creek effluent, increases in stamen hair mutants, micronuclei, and chromosome aberrations were measured. In general, there was a considerable reduction in the number of mutant events observed for the water samples brought back from the test sites and tested in the laboratory.(ABSTRACT TRUNCATED AT 400 WORDS)
Physiological aspects of fungi isolated from root nodules of faba bean (Vicia faba L.).
Omar, S A; Abd-Alla, M H
2000-03-01
The present study was made to isolate and assess some physiological characteristics of root nodule-colonizing fungi. During this study, 17 fungal species were isolated from root nodule samples taken from faba bean plants (Vicia faba L.) collected from different sites at Assiut area (Egypt). The growth of faba bean plants in pots was significantly promoted by soil inoculation with most fungi. Growth was checked in pots with inocula of Cladosporium cladosporioides, Fusarium moniliforme, F: oxysporium, F solani, Macrophominia phaseolina and Rhizoctonia solani which were added separately. All growth-promoting fungi were capable of producing cellulase, pectin lyase, polygalacturonase, protease, urease, amidase, acid phosphatase, alkaline phosphatase and arylsulfatase in growth medium supplemented with the corresponding substrates. Four fungal species, Aspergillus awamori, A. flavus, Penicillium chrysogenum and Trichoderma koningii showed the highest rates of enzyme formation. The effect of the addition of six trace elements to the growth media at 30 micromol/ml on enzyme production revealed some dependency on species, enzyme and metal ion. Cd2+, Hg2+ and Zn2+ generally inhibited enzyme activity. Cu(1+), Fe3+ and Al3+ showed a stimulatory effect. Fungicides (afugan and tilt) and herbicides (brominal and fusilade) at 50 ppm generally promoted enzyme activity, but insecticides (kelthane and fenvalerate) caused some inhibition to enzyme activities. Salinization of the growth media with NaCl strongly inhibited the enzymatic activity of all fungi at concentrations between 0.5 and 1.5%.
Genotoxicity potential of a new natural formicide.
Cotelle, Sylvie; Testolin, Renan C; Foltête, Anne-Sophie; Bossardi-Rissardi, Georgiana; Silveira, Rosilene A; Radetski, Claudemir M
2012-03-01
Assessment of environmental impacts from pesticide utilization should include genotoxicity studies, where the possible effects of mutagenic/genotoxic substances on individuals are assessed. In this study, the genotoxicity profile of the new formicide Macex® was evaluated with two genotoxicity tests, namely, the micronucleus test with mouse bone marrow and Vicia faba, and a mutagenicity test using the Ames Salmonella assay. The bacterial reverse mutation test (Salmonella typhimurium strains TA97, TA98, TA100, TA102, and TA1535), the Vicia root tip and mouse micronucleus tests were conducted according to published protocols. In the range of the formicide Macex® concentrations tested from 0.06 to 1.0 g L⁻¹ (or mgkg⁻¹ in the mouse test), no genotoxicity was observed in the prokaryotic or eukaryotic test organisms. However, at Macex® concentrations of 0.5 g L⁻¹ and above a significant decrease in the mitotic index (P ≤ 0.05) in the V. faba was observed. Micronucleus formation was likewise increased in the test organism at concentrations starting at 2.0 g L⁻¹. These data allow us to classify this natural formicide preparation as a product with no geno-environmental-impact when applied at recommended concentrations.
STRANDEDNESS OF VICIA FABA CHROMOSOMES AS REVEALED BY ENZYME DIGESTION STUDIES
Trosko, James E.; Wolff, Sheldon
1965-01-01
Chromosomes and nuclei isolated from neutral formalin-fixed Vicia faba lateral roots were treated with trypsin, pepsin, RNase, or DNase. Only trypsin affected the morphology of the chromosomes and nuclei. The appearance of the chromosomes after trypsin digestion indicated that each chromatid contained four strands that could be seen with an ordinary light microscope. The experiments are interpreted as indicating that mitotic chromosomes of Vicia faba are multistranded and that the linear continuity of the chromosome is dependent on protein. PMID:5323605
Ma, T H; Xu, Z; Xu, C; McConnell, H; Rabago, E V; Arreola, G A; Zhang, H
1995-04-01
The meristematic mitotic cells of plant roots are appropriate and efficient cytogenetic materials for the detection of clastogenicity of environmental pollutants, especially for in situ monitoring of water contaminants. Among several cytological endpoints in these fast dividing cells, such as chromosome/chromatid aberrations, sister-chromatid exchanges and micronuclei, the most effective and simplest indicator of cytological damage is micronucleus formation. Although the Allium cepa and Vicia faba root meristem micronucleus assays (Allium/Vicia root MCN) have been used in clastogenicity studies about 12 times by various authors in the last 25 years, there is no report on the comparison of the efficiency of these two plant systems and in different cell populations (meristem and F1) of the root tip as well as under adequate recovery duration. In order to maximize the efficiency of these bioassays, the current study was designed to compare the Allium and the Vicia root MCN assays on the basis of chromosome length, peak sensitivity of the mitotic cells, and the regions of the root tip where the MCN are formed. The total length of the 2n complement of Allium chromosomes is 14.4 microns and the total length of the 2n complement of Vicia is 9.32 microns. The peak sensitivity determined by serial fixation at 12-h intervals after 100 R of X-irradiation is 44 h. The slope of the X-ray dose-response curve of Allium roots derived from the meristematic regions was lower than that derived from cells in the F1 region. Higher efficiency was also demonstrated when the MCN frequencies were scored from the F1 cells in both Allium and Vicia treated with formaldehyde (FA), mitomycin C (MMC), and maleic hydrazide (MH). The results indicated that scoring of MCN frequencies from the F1 cell region of the root tip was more efficient than scoring from the meristematic region. The X-ray linear regression dose-response curves were established in both Allium and Vicia cell systems and the coefficients of correlations, slope values were used to verify the reliability and efficiency of these two plant cell systems. Based on the dose-response slope value of 0.894 for Allium and 0.643 for Vicia, the Allium root MCN was a more efficient test system. The greater sensitivity of the Allium roots is probably due to the greater total length of the diploid complement and the higher number of metacentric chromosomes.(ABSTRACT TRUNCATED AT 400 WORDS)
2014-01-01
Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7–12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants. PMID:25541699
Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo
2014-01-01
Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.
Aquatic humic substances inhibit clastogenic events in germinating seeds of herbaceous plants.
Ferrara, G; Loffredo, E; Senesi, N
2001-03-01
One humic acid (HA) and two fulvic acids (FAs) of aquatic origin have been tested for their capacity to inhibit clastogenic events caused by maleic hydrazide (MH) in germinating seeds of the herbaceous plant species Allium cepa and Vicia faba. Either HA or FA at concentrations of 50 and 500 mg L(-)(1) was interacted with 10 mg L(-)(1) MH for 24 h before addition to the seeds. The evaluation of genotoxic activity was made by counting micronuclei (MN) and aberrant anatelophases (AT) in root tip cells after treatment with HA or FA alone, MH alone, and interacted HA + MH and FA + MH. Regular AT were also counted as an index of mitotic activity. In all cases HA and FA interacted with MH showed an evident anticlastogenic action indicated by the marked reduction of genetic anomalies. In A. cepa, the anticlastogenic effect of HA and FA was more significant for aberrant AT than for MN, whereas the opposite was true in the case of V. faba. The protective effect exhibited for both anomalies by HA was slightly higher than that of the corresponding FA in A. cepa, whereas no significant differences between these HA and FA treatments were observed in the case of V. faba. The two FAs generally showed similar anticlastogenic behaviors with slight quantitative differences observed as a function of the type of anomaly and the plant species. The effects of HA and FA concentration differed depending on the type of anomaly observed, the plant species, and FA origin. In V. faba, cell division, that is, the number of regular AT, was generally depressed by HA and FA at either concentration with respect to the control. In A. cepa, HA and FA produced either stimulating or inhibiting effects on regular AT depending on their nature, origin, and concentration.
Modulation of flyash-induced genotoxicity in Vicia faba by vermicomposting.
Jain, Kavindra; Singh, Jitendra; Chauhan, L K S; Murthy, R C; Gupta, S K
2004-09-01
Cytogenetic effects of pre- and postvermicomposted flyash samples were evaluated on the root meristem cells of Vicia faba. Seedlings of V. faba were directly sown in flyash and cow dung-soil mixtures (20%, 40%, 60%, and 80%) and the lateral roots grown in these test mixtures were sampled at 5 days. Negative control was run parallel in cow dung-soil (CS) mixture alone. One set of flyash-cow dung-soil (FCS) mixture was subjected to vermicomposting by introducing Eisenia foetida species of earthworms for 30 days and the cytogenetic effects were reinvestigated through V. faba root meristems. Chemical analysis carried out prior to vermicomposting revealed high concentrations of heavy metals such as Cr, Cu, Pb, Zn, and Ni in FCS samples. CS samples also showed the presence of these metals. Cytogenetic examinations of root meristems exposed to the FCS mixtures showed significant inhibition of mitotic index (MI), induction of chromosome aberrations (CA), and a significantly increased frequency of mitotic aberrations (MA). The increase of the aberrations was dependent on the flyash concentrations. Roots grown in CS samples also showed chromosomal and MAs; however, the percentage was lower than that observed with FCS and also statistically nonsignificant. Cytogenetic analysis of vermicomposted samples of FCS revealed a 15-45% decline in the aberration frequencies whereas chemical analysis showed a 10-50% decline in the metal concentrations, viz. Cr, Cu, Pb, Zn, and Ni, which indicates E. foetida a potential accumulator of heavy metals and the decline in metal concentrations may be the cause of the decrease in aberration frequencies. The present study indicates the genotoxicity potential of flyash and also the feasibility of vermicomposting for cleanup of metal-contaminated soil to mitigate the toxicity/genotoxicity. Copyright 2004 Elsevier Inc.
Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields.
Inoue, M; Miller, M W; Cox, C; Carstesen, E L
1985-01-01
Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane.
Göl, Şurhan; Doğanlar, Sami; Frary, Anne
2017-10-01
Faba bean (Vicia faba L.) is an important legume species because of its high protein and starch content. Broad bean can be grown in different climatic conditions and is an ideal rotation crop because of the nitrogen fixing bacteria in its roots. In this work, 255 faba bean germplasm accessions were characterized using 32 SSR primers which yielded 302 polymorphic fragments. According to the results, faba bean individuals were divided into two main groups based on the neighbor-joining algorithm (r = 0.91) with some clustering based on geographical origin as well as seed size. Population structure was also determined and agreed with the dendrogram analysis in splitting the accessions into two subpopulations. Analysis of molecular variance (AMOVA) revealed high levels of within population genetic variation. Genetic similarity and geographical proximity were related with separation of European accessions from African and Asian ones. Interestingly, there was no significant difference between landrace (38%) and cultivar (40%) diversity indicating that genetic variability has not yet been lost due to breeding. A total of 44 genetically well-characterized faba bean individuals were selected for a core collection to be further examined for yield and nutritional traits.
Effects of 1.9 MeV monoenergetic neutrons on Vicia faba chromosomes: microdosimetric considerations.
Geard, C R
1980-01-01
Aerated Vicia faba root meristems were irradiated with 1.9 MeV monoenergetic neutrons. This source of neutrons optimally provides one class of particles (recoil protons) with ranges able to traverse cell nuclei at moderate to high-LET. The volumes of the Vicia faba nuclei were log-normally distributed with a mean of 1100 micrometer3. The yield of chromatid-type aberrations was linear against absorbed dose and near-constant over 5 collection periods (2-12 h), after irradiation. Energy deposition events (recoil protons) determined by microdosimetry were related to cytological changes with the finding that 19% of incident recoil protons initiate visible changes in Vicia faba chromosomes. It is probable that a substantial fraction of recoil proton track length and deposited energy is in insensitive (non-DNA containing) portions of the nuclear volume.
Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips.
Gustavino, Bianca; Carboni, Giovanni; Petrillo, Roberto; Paoluzzi, Giovanni; Santovetti, Emanuele; Rizzoni, Marco
2016-03-01
The increasing use of mobile phones and wireless networks raised a great debate about the real carcinogenic potential of radiofrequency-electromagnetic field (RF-EMF) exposure associated with these devices. Conflicting results are reported by the great majority of in vivo and in vitro studies on the capability of RF-EMF exposure to induce DNA damage and mutations in mammalian systems. Aimed at understanding whether less ambiguous responses to RF-EMF exposure might be evidenced in plant systems with respect to mammalian ones, in the present work the mutagenic effect of RF-EMF has been studied through the micronucleus (MN) test in secondary roots of Vicia faba seedlings exposed to mobile phone transmission in controlled conditions, inside a transverse electro magnetic (TEM) cell. Exposure of roots was carried out for 72h using a continuous wave (CW) of 915 MHz radiation at three values of equivalent plane wave power densities (23, 35 and 46W/m(2)). The specific absorption rate (SAR) was measured with a calorimetric method and the corresponding values were found to fall in the range of 0.4-1.5W/kg. Results of three independent experiments show the induction of a significant increase of MN frequency after exposure, ranging from a 2.3-fold increase above the sham value, at the lowest SAR level, up to a 7-fold increase at the highest SAR. These findings are in agreement with the limited number of data on cytogenetic effects detected in other plant systems exposed to mobile phone RF-EMF frequencies and clearly show the capability of radiofrequency exposure to induce DNA damage in this eukaryotic cell system. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ecotoxicological evaluation of municipal sludge.
Srivastava, Richa; Tewari, Anamika; Chauhan, Lalit K S; Kumar, Dinesh; Gupta, Shrawan K
2005-02-01
Municipal wastes originating from urban and industrial areas have become a major source of soil, ground and surface water pollution. These undesirable agents in our environment significantly interact with our flora and fauna. The aim of this study was to test samples of municipal sludge (MS) for their ecotoxicological potential by using sensitive bioassays involving a plant, Vicia faba, and the earthworm, Eisenia foetida. A 10% leachate of MS was prepared for the experiments, and V. faba seedlings were exposed to three leachate concentrations (2.5%, 5% and 10%) for 5 days. The findings revealed chromosome aberrations during the metaphase as well as the anaphase of cell division, and inhibition of the mitotic index, which reflects that MS originating from domestic and other human activities may be genotoxic to the living organisms of the ecosystem. Abnormalities in chlorophyll content, plant growth, root length, shoot length and root/shoot length ratio in V. faba clearly indicated the toxicity of the sludge. Behavioural and reproduction studies with E. foetida also provided evidence for the toxic nature of the MS.
Krajcarová, L; Novotný, K; Kummerová, M; Dubová, J; Gloser, V; Kaiser, J
2017-10-01
The manuscript presents a procedure for optimal sample preparation and the mapping of the spatial distribution of metal ions and nanoparticles in plant roots using laser-induced breakdown spectroscopy (LIBS) in a double-pulse configuration (DP LIBS) in orthogonal reheating mode. Two Nd:YAG lasers were used; the first one was an ablation laser (UP-266 MACRO, New Wave, USA) with a wavelength of 266nm, and the second one (Brilliant, Quantel, France), with a fundamental wavelength of 1064nm, was used to reheat the microplasma. Seedlings of Vicia faba were cultivated for 7 days in CuSO 4 or AgNO 3 solutions with a concentration of 10µmoll -1 or in a solution of silver nanoparticles (AgNPs) with a concentration of 10µmoll -1 of total Ag, and in distilled water as a control. The total contents of the examined metals in the roots after sample mineralization as well as changes in the concentrations of the metals in the cultivation solutions were monitored by ICP-OES. Root samples embedded in the TissueTek medium and cut into 40µm thick cross sections using the Cryo-Cut Microtome proved to be best suited for an accurate LIBS analysis with a 50µm spatial resolution. 2D raster maps of elemental distribution were created for the emission lines of Cu(I) at 324.754nm and Ag(I) at 328.068nm. The limits of detection of DP LIBS for the root cross sections were estimated to be 4pg for Cu, 18pg for Ag, and 3pg for AgNPs. The results of Ag spatial distribution mapping indicated that unlike Ag + ions, AgNPs do not penetrate into the inner tissues of Vicia faba roots but stay in their outermost layers. The content of Ag in roots cultivated in the AgNP solution was one order of magnitude lower compared to roots cultivated in the metal ion solutions. The significantly smaller concentration of Ag in root tissues cultivated in the AgNP solution also supports the conclusion that the absorption and uptake of AgNPs by roots of Vicia faba is very slow. LIBS mapping of root sections represents a fast analytical method with sufficient precision and spatial resolution that can provide very important information for researchers, particularly in the fields of plant science and ecotoxicology. Copyright © 2017 Elsevier B.V. All rights reserved.
Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.
Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie
2014-09-01
A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
The induction of chromosomal abnormalities by inhalational anaesthetics.
Grant, C J; Powell, J N; Radford, S G
1977-06-01
When Vicia faba root tips are exposed for 2 h to clinically useful concentrations of halothane or methoxyflurane in air, or to halothane in 80% nitrous oxide/20% oxygen, there is a transient increase in mitotic index and then abnormal interphase cells are produced in proportion to the anaesthetic concentrations. After exposure there is a period of mitotic inhibition during which the cells become partially synchronised. When colchicine-metaphase cells collected 28 h after exposure are compared with controls and with metaphases collected only 4 h after exposure, they show a significant increase in the incidence of aneuploidy, tetraploidy and the results of chromosome breakage. It is suggested that all the abnormalities seen can be accounted for by the effects of the anaesthetics on spindle movements, and that at the concentrations used the anaesthetics have no mutagenic effects on chromosomes in interphase.
Establishment of the regeneration system for Vicia faba L.
Bahgat, Shimaa; Shabban, Omer A; El-Shihy, Osama; Lightfoot, David A; El-Shemy, Hany A
2009-01-01
A reliable regeneration system for faba bean has been difficult to establish and therefore, the genetic improvement of Vicia faba L. was delayed. The paper describes a method of somatic embryo induction in callus of V. faba. Two Egyptian faba bean cultivars 'Giza 2' and '24 Hyto' were used. Callus was induced from epicotyls and shoot tips cultured on MS or Gamborg medium supplemented with 3% sucrose and 0.025% (w/v) for each of ascorbic and citric acid, 0.8% agar and different concentrations of 10 mg/l BAP, 0.5 mg/l of each NAA and 2,4-dichlorophenoxyacetic acid (M1) and 1 mg/l BAP and 0.5 mg/l NAA (M2) . The media with BAP, NAA and 2,4-D were optimal for embryogenic callus induction. Somatic embryos developed after transfer of the callus to 1/2 B5 medium with no plant growth regulators. There were various stages of somatic embryo development present including globular, heart-shaped, torpedo, and cotyledonary stages. Embryos developed into plantlets and plants were regenerated. RAPD analyses were performed to investigate the genetic stability of the regenerated plants obtained from different treatments and different explants. The cultivar Giza 2 exhibited more genetic stability than cultivar 24 Hyto. In conclusion, a regeneration system was established suitable for both gene transformation and the isolation of somaclonal mutants. The regeneration system will be used in order to improve the nutritional value of faba bean.
Marshall, I; Bianchi, M
1983-08-01
Micronucleus indication in Vicia faba roots has been evaluated after irradiation with 60Co gamma-rays. The dependence of the damage on dose, dose rate, fractionation, and oxygen has been studied. The best fit to the experimental data in the dose region between 7 and 190 cGy is represented, for single-dose exposures, by a linear + quadratic relationship. In the low-dose region, between 7 and 20 cGy, where the linear dose dependence is dominant, no dose-rate, fractionation, or oxygen effect could be observed. These effects were, however, present in the high-dose region, where the quadratic dependence is dominant.
Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Donnarumma, Lucia; Mercurio, Giuseppe; Mecozzi, Mauro
2016-01-01
Over the last few years, there has been an increased interest in exploiting allelopathy in organic agriculture. The aim of this investigation was to examine the effects of essential oil mixtures in order to establish their allelopathic use in agriculture. Two mixtures of essential oils consisting respectively of tea tree oil (TTO) and clove plus rosemary (C + R) oils were tested. Phytotoxicity and genotoxicity tests on the root meristems of Vicia faba minor were performed. A phytotoxic influence was particularly relevant for C + R mixture, while genotoxicity tests revealed significant results with both C + R oil mixture and TTO. Phenotypic analysis on Vicia faba minor primary roots following C + R oil mixture treatment resulted in callose production, an early symptom attributed to lipid peroxidation. The approach described in this study, based on genotoxicity bioassays, might identify specific DNA damage induced by essential oil treatments. These tests may represent a powerful method to evaluate potential adverse effects of different mixtures of essential oils that might be useful in alternative agriculture. Future studies are focusing on the positive synergism of more complex mixtures of essential oils in order to reduce concentrations of potentially toxic components while at the same time maintaining efficacy in antimicrobial and antifungal management.
Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses
Stoddard, Frederick L.
2017-01-01
Background Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. Methods A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Result Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al3+ challenge. Discussion The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H+ and Al3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean roots for evaluation of their growth. PMID:28194315
Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses.
Belachew, Kiflemariam Y; Stoddard, Frederick L
2017-01-01
Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al 3+ challenge. The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H + and Al 3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean roots for evaluation of their growth.
Barbafieri, Meri; Giorgetti, Lucia
2016-12-01
In this work, the model plant for genotoxicity studies Vicia faba L. was used to investigate the relation between Boron (B) content and bioavailability in soil and plant genotoxic/phytotoxic response. A total of nine soil samples were investigated: two soil samples were collected from a B-polluted industrial area in Cecina (Tuscany, Italy), the other samples were obtained by spiking control soil (from a not polluted area of the basin) with seven increased doses of B, from about 20 to 100 mg B kg -1 . As expected, B availability, evaluated by chemical extraction, was higher (twofold) in spiked soils when compared with collected polluted soils with the same B total content. To analyze the phytotoxic effects of B, seed germination, root elongation, biomass production, and B accumulation in plant tissues were considered in V. faba plants grown in the various soils. Moreover, the cytotoxic/genotoxic effects of B were investigated in root meristems by mitotic index (MI) and micronuclei frequency (MCN) analysis. The results highlighted that V. faba was a B-sensitive plant and the appearance of phytotoxic effects, which altered plant growth parameters, were linearly correlated to the bioavailable B concentration in soils. Concerning the occurrence of cytotoxic/genotoxic effects induced by B, no linear correlation was observed even if MCN frequency was logarithmic correlated with the concentration of B bioavailable in soils.
Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.
Shukla, Pratiksha; Singh, A K
2015-09-01
The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.
Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz
2015-06-01
In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.
Effects of soil pH on the Vicia-micronucleus genotoxicity assay.
Dhyèvre, Adrien; Foltête, Anne Sophie; Aran, Delphine; Muller, Serge; Cotelle, Sylvie
2014-11-01
In the field of contaminated sites and soil management, chemical analyses only bring typological data about pollution. As far as bioavailability and effects on organisms are concerned, we need ecotoxicology tools. In this domain, among many existing tests, we chose to study genotoxicity because it is a short-term endpoint with long-term consequences. The aim of this study is to assess the effects of soil pH on the results of the Vicia faba root tip micronucleus test for the two following reasons: (i) to define the pH range within which the test can be performed without modifying the soil to be tested, within the framework of the ISO standard of the test and (ii) to provides information about the effects of the pH on the genotoxic potential of soils. In this context, we modified the pH of a standard soil with HCl or NaOH and we spiked the matrix with copper (2, 4 and 8 mmol kg(-1) dry soil) or with maleic hydrazide, an antigerminative chemical (5, 10 and 20 μmol kg(-1) dry soil). We concluded that the pH had no effect on the mitotic index or micronucleus frequency in the root cells of the negative controls: extreme pH values did not induce micronucleus formation in root cells. Moreover, according to our results, the Vicia-micronucleus test can be performed with pH values ranging between 3.2 and 9.0, but in the ISO 29200 "Soil quality--assessment of genotoxic effects on higher plants--V. faba micronucleus test" we recommended to use a control soil with a pH value ranging between 5 and 8 for a more accurate assessment of chemical genotoxicity. We also found that acid pH could increase the genotoxic potential of pollutants, especially heavy metals. With hydrazide maleic spiked soil, plants were placed in a situation of double stress, i.e. toxicity caused by extreme pH values and toxicity induced by the pollutant. Copyright © 2014 Elsevier B.V. All rights reserved.
Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo
2016-01-01
The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491
Rybaczek, Dorota; Musiałek, Marcelina Weronika; Balcerczyk, Aneta
2015-01-01
We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD. PMID:26545248
[Allelopathic effects of extracts from fibrous roots of Coptis chinensis on two leguminous species].
Li, Qian; Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo
2013-03-01
An experiment was carried out to study the allelopathic effects of Coptis chinensis fibrous root extracts (CRE) on the germination and seedling growth of Vicia faba and Pisum sativum in order to alleviate the allelopathic effects and increase land productivity. The seeds of both garden pea (P. sativum) and broad been (V. faba) were germinated in CRE solution of various concentrations, the germination rate, seedling growth and related physiological indexes were measured. The result indicated that there were no significant effects of CRE in low concentrations on seed germination, including both the rate and index, and seed vitality and membrane permeability. With the increment of CRE concentrations, however, the high seed membrane permeability and germination inhibition were observed. For example, the germination rates were reduced by 23.4% (P. sativum) and 9.5% (V. faba), respectively, in CRE solution with 800 mg . L-1. Simultaneously, soluble sugars and the free amino acids in the seeds were lower than those in the control (without CRE) after soaking seeds in CRE solutions. In addition, the seedling growth and nitrate reductase activity were stimulated by CRE at low concentrations in contrast to high concentrations which behaved otherwise and inhibited the nutrient utilization in endosperm. Therefore, the large amount of allelochemicals released from the roots and remains of C. chinensis in soils could inhibit the seed germination and seedling growth of legumes, which may lead to decrease even fail crop yields after growing this medical plant.
Zaki, M M; Mahmoud, S A; Hamed, A S; Sahab, A F
1979-01-01
The effect of different concentrations of Dithan A-40 fungicide on the metabolic activities of the wilt fungus Fusarium oxysporum f. fabae and the root rot agent Rhizoctonia solani was studied. All toxicant concentrations reduced energy generation, total phosphorus and nitrogen content of both fungi. In addition, the toxicant caused a shift in free amino acids pool. As a result of these changes, the mycelium dry weight of both fungi was greatly reduced. R. solani was more sensitive to the toxic effect of Dithan A-40 than F. oxysporum.
NASA Astrophysics Data System (ADS)
Sheng, Cheng; Bol, Roland; Vetterlein, Doris; Vanderborght, Jan; Schnepf, Andrea
2017-04-01
Different types of root exudates and their effect on soil/rhizosphere properties have received a lot of attention. Since their influence of rhizosphere properties and processes depends on their concentration in the soil, the assessment of the spatial-temporal exudate concentration distribution around roots is of key importance for understanding the functioning of the rhizosphere. Different root systems have different root architectures. Different types of root exudates diffuse in the rhizosphere with different diffusion coefficient. Both of them are responsible for the dynamics of exudate concentration distribution in the rhizosphere. Hence, simulations of root exudation involving four kinds of plant root systems (Vicia faba, Lupinus albus, Triticum aestivum and Zea mays) and two kinds of root exudates (citrate and mucilage) were conducted. We consider a simplified root architecture where each root is represented by a straight line. Assuming that root tips move at a constant velocity and that mucilage transport is linear, concentration distributions can be obtained from a convolution of the analytical solution of the transport equation in a stationary flow field for an instantaneous point source injection with the spatial-temporal distribution of the source strength. By coupling the analytical equation with a root growth model that delivers the spatial-temporal source term, we simulated exudate concentration distributions for citrate and mucilage with MATLAB. From the simulation results, we inferred the following information about the rhizosphere: (a) the dynamics of the root architecture development is the main effect of exudate distribution in the root zone; (b) a steady rhizosphere with constant width is more likely to develop for individual roots when the diffusion coefficient is small. The simulations suggest that rhizosphere development depends in the following way on the root and exudate properties: the dynamics of the root architecture result in various development patterns of the rhizosphere. Meanwhile, Results improve our understanding of the impact of the spatial and temporal heterogeneity of exudate input on rhizosphere development for different root system types and substances. In future work, we will use the simulation tool to infer critical parameters that determine the spatial-temporal extent of the rhizosphere from experimental data.
A Cytological Analysis of the Antimetabolite Activity of 5-Hydroxyuracil in Vicia faba Roots
Schreiber, Richard W.; Duncan, Robert E.
1958-01-01
The effects of 5-hydroxyuracil (5-HU) (isobarbituric acid) upon cell elongation, mitosis, and DNA synthesis were studied in Vicia faba roots. 5-HU had no consistent effect upon root elongation. It blocked DNA synthesis (analyzed by photometric measurements of Feulgen dye in nuclei) during the first 6 hours of treatment; the block spontaneously disappeared by the 12th hour of treatment. Uracil and thymine had no effect upon this block of synthesis. Both thymidine and uridine reversed the block in 6 and 9 hours respectively. In all cases blockage of DNA synthesis was followed by inhibition of mitosis (determined by changes in the percentage of cells in mitosis) and resumption of DNA synthesis was followed by resumption of mitosis. Inhibition indices calculated from the mitotic data indicated a competitive relationship between 5-HU and thymidine and 5-HU and uridine. 5-HU is considered to block DNA synthesis by competing with thymidine for sites on enzymes involved in the synthesis. It is suggested that uridine reverses the block in synthesis by undergoing a conversion to thymidine. PMID:13610946
De Marco, A; De Salvia, R; Polani, S; Ricordy, R; Sorrenti, F; Perticone, P; Cozzi, R; D'Ambrosio, C; De Simone, C; Guidotti, M; Albanesi, T; Duranti, G; Festa, F; Gensabella, G; Owczarek, M
2000-07-01
In a program coordinated by the Italian Ministry of Works, we tested in vitro four pesticides widely employed in a developed agricultural region of central Italy. The four commercial agents were chosen on the basis of their diffusion in agricultural practice, knowledge of their active principle(s), and scant availability of data concerning their toxic and genotoxic activity. The agents were Cirtoxin, Decis, Tramat Combi (TC), and Lasso Micromix (LM). All substances were tested in three in vitro systems: Chinese hamster ovary (CHO) cells, a metabolically competent hamster cell line (Chinese hamster epithelial liver; CHEL), and root tips of Vicia faba (VF). The cytotoxic and genotoxic end points challenged were micronuclei and root tip length (RTL) in VF and mitotic index (MI), proliferation index (PI), cell survival (CS), cell growth (CG), cell cycle length (CCL), sister chromatid exchanges, chromosomal aberrations, and single-cell gel electrophoresis, or comet assay, in CHEL and CHO cells. Tested doses ranged from the field dose up to 200x the field dose to take into account accumulation effects. On the whole, tested agents appear to induce genotoxic damage only at subtoxic or toxic doses, indicating a low clastogenic risk. MI, PI, CS, CG, RTL, and CCL appear to be the less sensitive end points, showing no effects in the presence of a clear positive response in some or all of the other tests. Using cytogenetic tests, we obtained positive results for TC and LM treatments in CHO but not in CHEL cells. These data could be accounted for by postulating a detoxifying activity exerted by this cell line. However, cytogenetic end points appear to be more sensitive than those referring to cytotoxicity.
Effect of fertilizers on faba bean (V. faba) growth and soil pH
NASA Astrophysics Data System (ADS)
Angel, C.
2013-12-01
The purpose of this experiment was to see the effect of fertilizers on faba bean (V. faba) growth and soil pH. This experiment is important because of the agriculture here in California and the damage fertilizers are doing to the soil. Three Broad Fava Windsor beans (Vicia faba) were planted per pot, with at least three pots per treatment. There were four treatments: soil with phosphorus (P) fertilizer, soil with nitrogen (N) fertilizer, soil with both N and P fertilizer, and soil without any fertilizers (control). The soil pH was 7.7, and it had 26.6mg/kg Olsen-P, 2.2mg/kg ammonium-N and no nitrate-N (Data from UCD Horwath Lab). All pots were put in a greenhouse with a stable temperature of 80 degrees. I watered them 2-3 times a week. After two months I measured the soil pH using a calibrated pHep HI 98107 pocket-sized pH meter. After letting the plants dry I weighed the shoots and roots separately for dry biomass. From testing pH of the soil of the faba bean plants with and without fertilizer I found that only the nitrogen fertilizer made the soil more acidic than the other ones. The other ones became more basic. Also the N-fertilized plants weighed more than the other ones. This shows how the nitrogen fertilizer had a greater impact on the plants. I think the reason why the nitrogen and the phosphorus fertilizers didn't work as well is because there was an interaction between the fertilizers and the nitrogen one made the soil more acidic because of the way nitrogen is made.
NASA Astrophysics Data System (ADS)
Huber, Katrin; Koebernick, Nicolai; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vetterlein, Doris; Vereecken, Harry
2014-05-01
A faba bean was grown in a column filled with a sandy soil, which was initially close to saturation and then subjected to a single drying cycle of 30 days. The column was divided in four hydraulically separated compartments using horizontal paraffin layers. Paraffin is impermeable to water but penetrable by roots. Thus by growing deeper, the roots can reach compartments that still contain water. The root architecture was measured every second day by X-ray CT. Transpiration rate, soil matric potential in four different depths, and leaf area were measured continously during the experiment. To investigate the influence of the partitioning of available soil water in the soil column on water uptake, we used R-SWMS, a fully coupled root and soil water model [1]. We compared a scenario with and without the split layers and investigated the influence on root xylem pressure. The detailed three-dimensional root architecture was obtained by reconstructing binarized root images manually with a virtual reality system, located at the Juelich Supercomputing Centre [2]. To verify the properties of the root system, we compared total root lengths, root length density distributions and root surface with estimations derived from Minkowski functionals [3]. In a next step, knowing the change of root architecture in time, we could allocate an age to each root segment and use this information to define age dependent root hydraulic properties that are required to simulate water uptake for the growing root system. The scenario with the split layers showed locally much lower pressures than the scenario without splits. Redistribution of water within the unrestricted soil column led to a more uniform distribution of water uptake and lowers the water stress in the plant. However, comparison of simulated and measured pressure heads with tensiometers suggested that the paraffin layers were not perfectly hydraulically isolating the different soil layers. We could show compensation efficiency of water uptake by the roots in the lower and wetter compartments. By comparing transpiration rates of experiments with and without additional paraffin layers, we were able to quantify restrictions of plant growth to available soil water. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, Vadose Zone Journal, 7(3), 1079-1079. [2] Stingaciu, L., H. Schulz, A. Pohlmeier, S. Behnke, H. Zilken, M. Javaux, H. Vereecken (2013), In Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Water Uptake Modeling, Vadose Zone Journal, 12(1). [3] Koebernick, N., U. Weller, K. Huber, S. Schlüter, H.-J. Vogel, R. Jahn; H. Vereecken, D. Vetterlein, In situ visualisation and quantification of root-system architecture and growth with X-ray CT, Manuscript submitted for publication.
Karuppanapandian, T; Geilfus, C-M; Mühling, K-H; Novák, O; Gloser, V
2017-02-01
Changes in pH of the apoplast have recently been discussed as an important factor in adjusting transpiration and water relations under conditions of drought via modulatory effect on abscisic acid (ABA) concentration. Using Vicia faba L., we investigated whether changes in the root, shoot and leaf apoplastic pH correlated with (1) a drought-induced reduction in transpiration and with (2) changes in ABA concentration. Transpiration, leaf water potential and ABA in leaves were measured and correlated with root and shoot xylem pH, determined by a pH microelectrode, and pH of leaf apoplast quantified by microscopy-based in vivo ratiometric analysis. Results revealed that a reduction in transpiration rate in the early phase of soil drying could not be linked with changes in the apoplastic pH via effects on the stomata-regulating hormone ABA. Moreover, drought-induced increase in pH of xylem or leaf apoplast was not the remote effect of an acropetal transport of alkaline sap from root, because root xylem acidified during progressive soil drying, whereas the shoot apoplast alkalized. We reason that other, yet unknown signalling mechanism was responsible for reduction of transpiration rate in the early phase of soil drying. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kaufman, P B; Duke, J A; Brielmann, H; Boik, J; Hoyt, J E
1997-01-01
Over 80 taxa of mostly agriculturally important legumes were surveyed as sources of the metabolites, genistein and daidzein. Remarkably high concentrations (over 2 g.kg-1 dry weight) of the anticancer metabolite, genistein, were found in the leaves of Psoralea corylifolia (Indian bread root). All other legumes, with the exception of fermented soybean miso, had genistein levels < 400 mg.kg-1 dry weight. Concentrations of over 1 g.kg-1 dry weight and 0.95 g.kg-1 dry weight of the anticancer metabolite, daidzein, were found in the stems of the fava bean (Vicia faba) and roots of kudzu vine (Pueraria lobata), respectively. From this survey, our results indicate that the legumes, lupine (Lupinus spp.), fava bean, (Vicia faba), soybeans (Glycine max), kudzu (Pueraria lobata), and psoralea (Psoralea corylifolia), are excellent food sources for both genistein and daidzein. Miso, a fermented soybean product, is also a rich source of both isoflavones.
Olszewska, M J; Marciniak, K; Kuran, H
1990-10-01
After cycloheximide treatment (1 h, 2.5 micrograms/ml) protein synthesis was decreased by 70% and was partially restored after 7 h of postincubation (still 20% decrease). In partially synchronized root meristems of Vicia faba L. treated with cycloheximide at middle G2, a strong decrease of the mitotic index was observed. Exposure to the drug at late G2 did not modify the mitotic index; the changes in the phase indices suggested that the course of mitosis was blocked at prophase-metaphase/anaphase-telophase transitions. The use of indirect immunocytochemical staining of tubulin (second antibody labeled with peroxidase) made it possible to show a decreased number of cells with preprophase bands in cycloheximide-treated meristems and the mitotic spindles and phragmoplasts containing a reduced number of shortened bands of microtubules. As a result of these structural and functional disturbances, binucleate cells and polyploid nuclei were observed.
THE MECHANISM OF 5-AMINOURACIL-INDUCED SYNCHRONY OF CELL DIVISION IN VI CIA FABA ROOT MERISTEMS
Prensky, Wolf; Smith, Harold H.
1965-01-01
Cessation of mitosis was brought about in Vicia faba roots incubated for 24 hours in the thymine analogue, 5-aminouracil. Recovery of mitotic activity began 8 hours after removal from 5-aminouracil and reached a peak at 15 hours. If colchicine was added 4 hours before the peak of mitoses, up to 80 per cent of all cells accumulated in mitotic division stages. By use of single and double labeling techniques, it was shown that synchrony of cell divisions resulted from depression in the rate of DNA synthesis by 5-aminouracil, which brought about an accumulation of cells in the S phase of the cell cycle. Treatment with 5-aminouracil may have also caused a delay in the rate of exit of cells from the G2 period. It appeared to have no effect on the duration of the G1 period. When roots were removed from 5-aminouracil, DNA synthesis resumed in all cells in the S phase. Although thymidine antagonized the effects of 5-aminouracil, an exogenous supply of it was not necessary for the resumption of DNA synthesis, as shown by incorporation studies with tritiated deoxycytidine. PMID:19866644
Analysis of growth of tetraploid nuclei in roots of Vicia faba.
Bansal, J; Davidson, D
1978-03-01
Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.
Eleftheriou, Eleftherios P; Michalopoulou, Vasiliki A; Adamakis, Ioannis-Dimosthenis S
2015-05-01
Because the detrimental effects of chromium (Cr) to higher plants have been poorly investigated, the present study was undertaken to verify the toxic attributes of hexavalent chromium [Cr(VI)] to plant mitotic microtubules (MTs), to determine any differential disruption of MTs during mitosis of taxonomically related species and to clarify the relationship between the visualized chromosomal aberrations and the Cr(VI)-induced MT disturbance. For this purpose, 5-day-old uniform seedlings of Vicia faba, Pisum sativum, Vigna sinensis and Vigna angularis, all belonging to the Fabaceae family, were exposed to 250 μM Cr(VI) supplied as potassium dichromate (K₂Cr₂O₇) for 24, 72 and 120 h and others in distilled water serving as controls. Root tip samples were processed for tubulin immunolabelling (for MT visualization) and DNA fluorescent staining (for chromosomal visualization). Microscopic preparations of cell squashes were then examined and photographed by confocal laser scanning microscopy (CLSM). Cr(VI) halted seedling growth turning roots brown and necrotic. Severe chromosomal abnormalities and differential disturbance of the corresponding MT arrays were found in all mitotic phases. In particular, in V. faba MTs were primarily depolymerized and replaced by atypical tubulin conformations, whereas in P. sativum, V. sinensis and V. angularis they became bundled in a time-dependent manner. In P. sativum, the effects were milder compared to those of the other species, but in all cases MT disturbance adversely affected the proper aggregation of chromosomes on the metaphase plate, their segregation at anaphase and organization of the new nuclei at telophase. Cr(VI) is very toxic to seedling growth. The particular effect depends on the exact stage the cell is found at the time of Cr(VI) entrance and is species-specific. Mitotic MT arrays are differentially deranged by Cr(VI) in the different species examined, even if they are taxonomically related, while their disturbance underlies chromosomal abnormalities. Results furthermore support the view that MTs may constitute a reliable, sensitive and universal subcellular marker for monitoring heavy metal toxicity.
INTERNATIONAL PROGRAM ON CHEMICAL SAFETY'S COLLABORATIVE STUDY ON PLANT TEST SYSTEMS
This article presents the status report on the International Program's Collaborative Study on Plant Test Systems. n the first phase of this program, 16 laboratories submitted data on the genetic effects of EMS evaluated in three bioassays; i.e., Vicia faba root hair, Tradescantia...
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.
1986-01-01
Roots of Allium cepa L. grown in aerated water elongate rapidly, but are not graviresponsive. These roots (1) possess extensive columella tissues comprised of cells containing numerous sedimented amyloplasts, (2) lack mucilage on their tips, and (3) are characterized by a weakly polar movement of calcium (Ca) across their tips. Placing roots in humid air correlates positively with the (1) onset of gravicurvature, (2) appearance of mucilage on tips of the roots, and (3) onset of the ability to transport Ca polarly to the lower side of the root tip. Gravicurvature of roots previously submerged in aerated water is more rapid when roots are oriented vertically for 1-2 h in humid air prior to being oriented horizontally. The more rapid gravicurvature of these roots correlates positively with the accumulation of mucilage at the tips of roots during the time the roots are oriented vertically. Therefore, the onset of gravicurvature and the ability of roots to transport Ca to the lower sides of their tips correlate positively with the presence of mucilage at their tips. These results suggest that mucilage may be important for the transport of Ca across root caps.
Xu, Xianghua; Huang, Zhicheng; Wang, Chengrun; Zhong, Li; Tian, Yuan; Li, Dongdong; Zhang, Gaojian; Shi, Jian
2015-09-01
Copper (Cu) contamination has become a global concern because of industrial, agricultural, and other anthropogenic activities. In the present experiments, the toxicological effects, mechanisms, and potential toxicity thresholds were investigated in the roots of Vicia faba L. seedlings that were cultivated in Cu-amended soils (0, 6.25, 12.5, 25, 50, 100, 200, 400, and 600 mg kg(-1)) for 20 days, based on an analysis of the soil physicochemical properties, native Cu, available Cu, and root-enriched Cu contents. The superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) isozymes and activities, as well as glutathione (GSH) and heat shock protein 70 (HSP70), changed like biphasic dose-response curves, cooperating to control the redox homeostasis. The APX and POD enzymes exhibited enhanced activities and became H2O2 scavengers primarily when the catalase (CAT) activities tended to decrease. Endoprotease (EP) isozymes and activities might be enhanced to degrade carbonylated proteins and alleviate metabolic disturbance in the roots. Additionally, HSP70 may not be suitable as a biomarker for relatively higher soil Cu concentrations and relatively longer exposure times for the roots. As a result, the isozymes and activities of SOD, CAT, and EP, as well as GSH, can be adopted as the most sensitive biomarkers. The toxicity threshold is estimated as 0.76-1.21 mg kg(-1) of available Cu in the soils or 25.04-36.65 μg Cu g(-1) dry weights (DW) in the roots.
THE RELATION BETWEEN DNA SYNTHESIS AND CHROMOSOME STRUCTURE AS RESOLVED BY X-RAY DAMAGE
Evans, H. J.; Savage, J. R. K.
1963-01-01
Vicia faba root tip cells were treated for short periods with tritiated thymidine, either immediately before or after exposure of roots to x-rays, and autoradiograph preparations were analysed in an attempt to test the hypothesis that chromatid type (B') aberrations are induced only in those chromosome regions that have synthesized DNA prior to x-irradiation, whereas chromosome type (B'') aberrations are induced only in unduplicated chromosome regions. Studying the relation between presence or absence of label at loci involved in aberrations, in cells irradiated at different development stages, and the pattern of labelling in cells carrying both types of aberration leads to the conclusion that B'' aberrations are induced only in unreplicated chromosome regions. Following replication, only B' aberrations are induced, but these aberrations are also induced in chromosome regions preparing to incorporate DNA. It is suggested that the doubled response of the chromosome to x-rays prior to DNA incorporation might reflect a physical separation of replicating units prior to replication. The aberration yields in damaged cells which were irradiated in G 1 S, and early G 2 were in the ratio of 1.0:2.0:3.2. The data indicate that the increased yield of B' in early G 2 relative to S cells may be a consequence of changes in the spatial distribution of the chromosomes within the nucleus. PMID:14064107
RESPIRATION AND GEOTROPISM IN VICIA FABA. I
Navez, A. E.
1929-01-01
In this paper there are given the results of a study of the relation of respiration to temperature, in seedlings of Vicia faba, and of the onset of geotropic response. It is shown that with due care and very accurate control of temperature constancy, one can get constant excretion of CO2 even over fairly long periods. The treatment of the experimental data shows that the Q 10 ratio is of course a valueless "constant," as it is variable; but that the figure obtained for µ, the temperature characteristic (critical thermal increment), 16,250, is perfectly consistent with the values previously obtained for µ in respiratory oxidative processes in similar material. New data on the reaction time for the root of Vicia faba seedlings excited geotropically are given also. The study of the dependence of this time relation on temperature shows µ = 16,110, agreeing quantitatively with the value deduced previously from the relevant data of earlier investigators (Crozier, 1924). This points to the importance of some respiratory oxidative process as the agency controlling the onset of geotropic curvature. PMID:19872489
Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots
Daniel L. Lindner; Mark T. Banik
2009-01-01
To better understand the effects of cloning on observations of fungal ITS sequences from Picea glauca (white spruce) roots two techniques were compared: (i) direct sequencing of fungal ITS regions from individual root tips without cloning and (ii) cloning and sequencing of fungal ITS regions from individual root tips. Effect of root tip size was...
Xu, Weifeng; Jia, Liguo; Shi, Weiming; Liang, Jiansheng; Zhou, Feng; Li, Qianfeng; Zhang, Jianhua
2013-01-01
Maintenance of root growth is essential for plant adaptation to soil drying. Here, we tested the hypothesis that auxin transport is involved in mediating ABA's modulation by activating proton secretion in the root tip to maintain root growth under moderate water stress. Rice and Arabidopsis plants were raised under a hydroponic system and subjected to moderate water stress (-0.47 MPa) with polyethylene glycol (PEG). ABA accumulation, auxin transport and plasma membrane H(+)-ATPase activity at the root tip were monitored in addition to the primary root elongation and root hair density. We found that moderate water stress increases ABA accumulation and auxin transport in the root apex. Additionally, ABA modulation is involved in the regulation of auxin transport in the root tip. The transported auxin activates the plasma membrane H(+)-ATPase to release more protons along the root tip in its adaption to moderate water stress. The proton secretion in the root tip is essential in maintaining or promoting primary root elongation and root hair development under moderate water stress. These results suggest that ABA accumulation modulates auxin transport in the root tip, which enhances proton secretion for maintaining root growth under moderate water stress. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators
NASA Technical Reports Server (NTRS)
Lee, J. S.; Mulkey, T. J.; Evans, M. L.
1983-01-01
The application of calcium chelating agents (EDTA or EGTA) to the tips of maize roots caused a loss of gravitropic sensitivity. When the chelator was replaced with calcium chloride, gravitropic sensitivity was restored. Asymmetric application of calcium chloride near the tip of a vertical root caused curvature toward the calcium source. When the calcium was applied to the upper surface of the tip of a root oriented horizontally, the root curved upward even though control roots exhibited strong downward curvature. Application of calcium chloride to the tips of decapped roots, which are known to be gravitropically insensitive, did not restore gravitropic sensitivity. However, asymmetric application of calcium chloride near the tips of decapped roots caused curvature toward the calcium source. Calcium may play a key role in linking gravity detection to gravitropic curvature in roots.
Antagonistic effects of pemoline to colchicine and caffeine.
Röper, W
1975-10-15
Pemoline, the constituent of Tradon, is able to slow down the decrease of the mitotic index caused by 0.1% caffeine in roots of Vicia faba, and mitotic aberrations are reduced. With 0.005% colchicine and 3 x 10(-4) g/ml pemoline, no metaphase-accumulation can be observed, and anaphase-disorder is delayed.
Socher, S. H.; Davidson, D.
1971-01-01
Treatment of Vicia faba lateral roots with a range of concentrations of 5-aminouracil (5-AU) indicate that cells are stopped at a particular point in interphase. The timing of the fall in mitotic index suggests that cells are held at the S - G2 transition. When cells are held at this point, treatments with 5-AU can be used to estimate the duration of G2 + mitosis/2 of proliferating cells. Treatment with 5-AU can also be used to demonstrate the presence of subpopulations of dividing cells that differ in their G2 duration. Using this method, 5-AU-induced inhibition, we have confirmed that in V. faba lateral roots there are two populations of dividing cells: (a) a fast-dividing population, which makes up ∼85% of the proliferating cell population and has a G2 + mitosis/2 duration of 3.3 hr, and (b) a slow-dividing population, which makes up ∼15% of dividing cells and has a G2 duration in excess of 12 hr. These estimates are similar to those obtained from percentage labeled mitosis (PLM) curves after incorporation of thymidine-3H. PMID:5551658
5-Aminouracil treatment. A method for estimating G2.
Socher, S H; Davidson, D
1971-02-01
Treatment of Vicia faba lateral roots with a range of concentrations of 5-aminouracil (5-AU) indicate that cells are stopped at a particular point in interphase. The timing of the fall in mitotic index suggests that cells are held at the S - G(2) transition. When cells are held at this point, treatments with 5-AU can be used to estimate the duration of G(2) + mitosis/2 of proliferating cells. Treatment with 5-AU can also be used to demonstrate the presence of subpopulations of dividing cells that differ in their G(2) duration. Using this method, 5-AU-induced inhibition, we have confirmed that in V. faba lateral roots there are two populations of dividing cells: (a) a fast-dividing population, which makes up approximately 85% of the proliferating cell population and has a G(2) + mitosis/2 duration of 3.3 hr, and (b) a slow-dividing population, which makes up approximately 15% of dividing cells and has a G(2) duration in excess of 12 hr. These estimates are similar to those obtained from percentage labeled mitosis (PLM) curves after incorporation of thymidine-(3)H.
Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN
Kirchgessner, Norbert; Walter, Achim
2017-01-01
Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344
Benidire, Loubna; Lahrouni, Majida; Daoui, Khalid; Fatemi, Zain El Abidine; Gomez Carmona, Ricardo; Göttfert, Michael; Oufdou, Khalid
2018-01-01
Rhizobia are symbiotic nitrogen-fixing bacteria in root nodules of legumes. In Morocco, faba bean (Vicia faba L.), which is the main legume crop cultivated in the country, is often grown in marginal soils of arid and semi-arid regions. This study examines the phenotypic diversity of rhizobia nodulating V. faba isolated from different regions in Morocco for tolerance to some abiotic stresses. A total of 106 rhizobia strains isolated from nodules were identified at the species level by analysing 16S rDNA. Additionally, for selected strains recA, otsA, kup and nodA fragments were sequenced. 102 isolates are likely to belong to Rhizobium leguminosarum or R. laguerreae and 4 isolates to Ensifer meliloti. All strains tolerating salt concentrations of 428 or 342mM NaCl as well as 127 or 99mM Na2SO4 were highly resistant to alkaline conditions (pH 10) and high temperature (44°C). Three strains: RhOF4 and RhOF53 (both are salt-tolerant) and RhOF6 (salt-sensitive) were selected to compare the influence of different levels of salt stress induced by NaCl on growth and on trehalose and potassium accumulation. We find a direct correlation between the trehalose contents of the rhizobial strains and their osmotolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.
Austruy, A; Wanat, N; Moussard, C; Vernay, P; Joussein, E; Ledoigt, G; Hitmi, A
2013-04-01
In order to revegetate an industrial soil polluted by trace metals and metalloids (As, Pb, Cu, Cd, Sb), the impact of pollution on three plant species, Solanum nigrum and Agrostis capillaris, both native species in an industrial site, and Vicia faba, a plant model species, is studied. Following the study of soil pollution from the industrial wasteland of Auzon, it appears that the As is the principal pollutant. Particular attention is given to this metalloid, both in its content and its speciation in the soil that the level of its accumulation in plants. In V. faba and A. capillaris, the trace metals and metalloids inhibit the biomass production and involve a lipid peroxidation in the leaves. Furthermore, these pollutants cause a photosynthesis perturbation by stomatal limitations and a dysfunction of photosystem II. Whatever the plant, the As content is less than 0.1 percent of dry matter, the majority of As absorbed is stored in the roots which play the role of trap organ. In parallel, the culture of S. nigrum decreases significantly the exchangeable and weakly adsorbed fraction of As in rhizospheric soil. This study has highlighted the ability of tolerance to trace metals of S. nigrum and to a lesser extent A. capillaris. Our data indicate that V. faba is not tolerant to soil pollution and is not a metallophyte species. Copyright © 2012 Elsevier Inc. All rights reserved.
Xu, Kai Wei; Zou, Lan; Penttinen, Petri; Wang, Ke; Heng, Nan Nan; Zhang, Xiao Ping; Chen, Qiang; Zhao, Ke; Chen, Yuan Xue
2015-10-01
A total of 54 rhizobial strains were isolated from faba bean root nodules in 21 counties of Sichuan hilly areas in China, and their symbiotic effectiveness, genetic diversity and phylogeny were assessed. Only six strains increased the shoot dry mass of the host plant significantly (P ≤ 0.05). Based on the cluster analysis of combined 16S rDNA and intergenic spacer region (IGS) PCR-RFLP, the strains were divided into 31 genotypes in 11 groups, indicating a high degree of genetic diversity among the strains. The sequence analysis of three housekeeping genes (atpD, glnII and recA) and 16S rDNA indicated that the strains represented two R. leguminosarum, two Rhizobium spp., R. mesosinicum, Agrobacterium sp. and A. tumefaciens. The strains representing four Rhizobium species were divided into two distinct nodC and nifH genotypes. However, the phylogeny of housekeeping genes and symbiotic genes was not congruent, implying that the strains had been shaped by vertical evolution of the housekeeping genes and lateral evolution of the symbiotic genes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Renna, Massimiliano; Signore, Angelo; Paradiso, Vito M; Santamaria, Pietro
2018-01-01
Globe artichoke ( Cynara cardunculus L. subsp. [L.] scolymus Hayek), summer squash ( Cucurbita pepo L.) and faba bean ( Vicia faba L.) are widely cultivated for their immature inflorescences, fruits and seeds, respectively. Nevertheless, in some areas of Puglia (Southern Italy), other organs of these species are traditionally used as vegetables, instead of being considered as by-products. Offshoots (so-called cardoni or carducci ) of globe artichoke, produced during the vegetative growing cycle and removed by common cultural procedures, are used like to the cultivated cardoons ( C. cardunculus L. var. altilis DC). The stems, petioles, flowers and smaller leaves of summer squash are used as greens (so-called cime di zucchini ), like other leafy vegetables such as chicory ( Cichorium intybus L.) and Swiss chard ( Beta vulgaris L.). Also the plant apex of faba bean, about 5-10 cm long, obtained from the green pruning, are used as greens (so-called cime di fava ) like spinach leaves. Moreover, crenate broomrape ( Orobanche crenata Forssk.), a root parasite plant that produces devastating effects on many crops (mostly legumes), is used like asparagus ( Asparagus officinalis L.) to prepare several traditional dishes. In this study ethnobotanical surveys and quality assessment of these unconventional vegetables were performed. For their content of fiber, offshoots of globe artichokes can be considered a useful food to bowel. Summer squash greens could be recommended as a vegetable to use especially in the case of hypoglycemic diets considering both content and composition of their carbohydrates. For their low content of nitrate, faba greens could be recommended as a substitute of nitrate-rich leafy vegetables. Crenate broomrape shows a high antioxidant activity and may be considered as a very nutritious agri-food product. Overall, the results of the present study indicate that offshoots of globe artichoke, summer squash greens, faba greens and crenate broomrape have good potential as novel foods, being nutritious and refined products. Their exploitation aiming to the obtainment of labeled and/or new potential ready-to-eat retail products could satisfy the demand for local functional foods.
Renna, Massimiliano; Signore, Angelo; Paradiso, Vito M.; Santamaria, Pietro
2018-01-01
Globe artichoke (Cynara cardunculus L. subsp. [L.] scolymus Hayek), summer squash (Cucurbita pepo L.) and faba bean (Vicia faba L.) are widely cultivated for their immature inflorescences, fruits and seeds, respectively. Nevertheless, in some areas of Puglia (Southern Italy), other organs of these species are traditionally used as vegetables, instead of being considered as by-products. Offshoots (so-called cardoni or carducci) of globe artichoke, produced during the vegetative growing cycle and removed by common cultural procedures, are used like to the cultivated cardoons (C. cardunculus L. var. altilis DC). The stems, petioles, flowers and smaller leaves of summer squash are used as greens (so-called cime di zucchini), like other leafy vegetables such as chicory (Cichorium intybus L.) and Swiss chard (Beta vulgaris L.). Also the plant apex of faba bean, about 5–10 cm long, obtained from the green pruning, are used as greens (so-called cime di fava) like spinach leaves. Moreover, crenate broomrape (Orobanche crenata Forssk.), a root parasite plant that produces devastating effects on many crops (mostly legumes), is used like asparagus (Asparagus officinalis L.) to prepare several traditional dishes. In this study ethnobotanical surveys and quality assessment of these unconventional vegetables were performed. For their content of fiber, offshoots of globe artichokes can be considered a useful food to bowel. Summer squash greens could be recommended as a vegetable to use especially in the case of hypoglycemic diets considering both content and composition of their carbohydrates. For their low content of nitrate, faba greens could be recommended as a substitute of nitrate-rich leafy vegetables. Crenate broomrape shows a high antioxidant activity and may be considered as a very nutritious agri-food product. Overall, the results of the present study indicate that offshoots of globe artichoke, summer squash greens, faba greens and crenate broomrape have good potential as novel foods, being nutritious and refined products. Their exploitation aiming to the obtainment of labeled and/or new potential ready-to-eat retail products could satisfy the demand for local functional foods. PMID:29636760
Byczkowska, Anna; Kunikowska, Anita; Kaźmierczak, Andrzej
2013-02-01
Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green-yellow, yellow-orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.
Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G
2013-12-01
Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Abd El-Baki, G K; Mostafa, Doaa
2014-12-01
The interaction between sodium chloride and Trichoderma harzianum (T24) on growth parameters, ion contents, MDA content, proline, soluble proteins as well as SDS page protein profile were studied in Vicia faba Giza 429. A sharp reduction was found in fresh and dry mass of shoots and roots with increasing salinity. Trichoderma treatments promoted the growth criteria as compared with corresponding salinized plants. The water content and leaf area exhibited a marked decrease with increasing salinity. Trichoderma treatments induced a progressive increase in both parameters. Both proline and MDA contents were increased progressively as the salinity rose in the soil. Trichoderma treatments considerably retarded the accumulation of both parameters in shoots and roots. Both Na+ and K+ concentration increased in both organs by enhancing salinity levels. The treatment with Trichoderma harzianum enhanced the accumulation of both ions. Exposure of plants to different concentrations of salinity, or others treated with Trichoderma harzianum produced marked changes in their protein pattern. Three types of alterations were observed: the synthesis of certain proteins declined significantly, specific synthesis of certain other proteins were markedly observed and synthesis of a set specific protein was induced de novo in plant treated with Trichoderma harzianum.
Yi, Huilan; Si, Liangyan
2007-06-15
Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0mg/L, induced a 1.9-3.9-fold increase in MN frequency and a 1.5-1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P<0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15-80% decrease in mitotic indices (MI), but at the lowest concentration (0.005mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.
NASA Technical Reports Server (NTRS)
Ransom, J. S.; Moore, R.
1985-01-01
Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.
Miyabayashi, Sachiko; Sugita, Tomoki; Kobayashi, Akie; Yamazaki, Chiaki; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki
2018-01-01
In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots. PMID:29324818
Direct amplification of DNA from fresh and preserved ectomycorrhizal root tips
Elizabeth Bent; D. Lee Taylor
2009-01-01
Methods are described by which DNA can be amplified directly from ectomycorrhizal root tip homogenates of a variety of plant species (Picea mariana (black spruce), Betula papyrifera (paper birch), Populus tremuloides (trembling aspen) and Alnus sp.(alder)), including root tips that have...
Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan
2016-07-20
The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.
Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan
2016-01-01
The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109
Liu, Tong; Wang, Jun; Wang, Jinhua; Zhu, Lusheng
2018-05-15
Imidazolium-based ionic liquids (ILs) have attracted increasing attention in recent years. The IL 1-dodecyl-3-methylimidazolium chloride ([C 12 mim]Cl) has been widely used in the chemical industry. In this study, the influence of [C 12 mim]Cl on Vicia faba seedlings, soil physicochemical properties and soil enzyme activities was investigated for the first time. Meanwhile, the variation of [C 12 mim]Cl concentrations in soil was monitored during the exposure period. The present results showed that the concentration of [C 12 mim]Cl remained stable in the tested soil with a change rate of no more than 10% during the exposure period. The 50% effective concentration (EC 50 ) values for shoot length, root length and dry weight were 188, 69 and 132 mg kg -1 , respectively. At 200 mg kg -1 and 400 mg kg -1 , [C 12 mim]Cl had significant influence on soil organic matter content, pH value and conductivity value. At 40 mg kg -1 , the reactive oxygen species (ROS) levels were obviously enhanced, resulting in oxidative stress effects in Vicia faba seedling leaves. Additionally, the soil enzyme activities changed significantly at 40 mg kg -1 . Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko
2016-01-01
Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip. Copyright © 2015 Elsevier B.V. All rights reserved.
Dispersion of near-infrared laser energy through radicular dentine when using plain or conical tips.
Teo, Christine Yi Jia; George, Roy; Walsh, Laurence J
2018-02-01
The aim of this study was to investigate the influence of tip design on patterns of laser energy dispersion through the dentine of tooth roots when using near-infrared diode lasers. Diode laser emissions of 810 or 940 nm were used in combination with optical fiber tips with either conventional plain ends or conical ends, to irradiate tooth roots of oval or round cross-sectional shapes. The lasers were operated in continuous wave mode at 0.5 W for 5 s with the distal end of the fiber tip placed in the apical or coronal third of the root canal at preset positions. Laser light exiting through the roots and apical foramen was imaged, and the extent of lateral spread calculated. There was a significant difference in infrared light exiting the root canal apex between plain and conical fiber tips for both laser wavelengths, with more forward transmission of laser energy through the apex for plain tips. For both laser wavelengths, there were no significant differences in emission patterns when the variable of canal shape was used and all other variables were kept the same (plain vs conical tip, tip position). To ensure optimal treatment effect and to prevent the risks of inadvertent laser effects on the adjacent periapical tissues, it is important to have a good understanding of laser transmission characteristics of the root canal and root dentine. Importantly, it is also essential to understand transmission characteristics of plain and conical fibers tips.
Curlango-Rivera, Gilberto
2011-01-01
Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030
Aluminum and calcium in fine root tips of red spruce collected from the forest floor
K.T. Smith; W.C. Shortle; W.D. Ostrofsky
1995-01-01
Root chemistry is being increasingly used as a marker of biologically relevant soil chemistry. To evaluate this marker, we determined the precision of measurement, the effect of organic soil horizon, and the effect of stand elevation on the chemistry of fine root tips of red spruce (Picea rubens Sarg.) Fine root tips were collected from the F and H...
Kaźmierczak, Andrzej; Doniak, Magdalena; Kunikowska, Anita
2017-11-01
Programmed cell death (PCD) is a crucial process in plant development. In this paper, proteolytically related aspects of kinetin-induced PCD in cortex cells of Vicia faba ssp. minor seedlings were examined using morphological, fluorometric, spectrophotometric, and fluorescence microscopic analyses. Cell viability estimation after 46 μM kinetin treatment of seedling roots showed that the number of dying cortex cells increased with treatment duration, reaching maximum after 72 h. Weight of the apical root segments increased with time and was about 2.5-fold greater after 96 h, while the protein content remained unchanged, compared to the control. The total and cysteine-dependent proteolytic activities fluctuated during 1-96-h treatment, which was not accompanied by the changes in the protein amount, indicating that the absolute protein amounts decreased during kinetin-induced PCD. N-ethylmaleimide (NEM), phenylmethylsulfonyl fluoride (PMSF), and Z-Leu-Leu-Nva-H (MG115), the respective cysteine, serine, and proteasome inhibitors, suppressed kinetin-induced PCD. PMSF significantly decreased serine-dependent proteolytic activities without changing the amount of proteins, unlike NEM and MG115. More pronounced effect of PMSF over NEM indicated that in the root apical segments, the most important proteolytic activity during kinetin-induced PCD was that of serine proteases, while that of cysteine proteases may be important for protein degradation in the last phase of the process. Both NEM and PMSF inhibited apoptotic-like structure formation during kinetin-induced PCD. The level of caspase-3-like activity of β1 proteasome subunit increased after kinetin treatment. Addition of proteasome inhibitor MG-115 reduced the number of dying cells, suggesting that proteasomes might play an important role during kinetin-induced PCD.
Modeling the Kinetics of Root Gravireaction
NASA Astrophysics Data System (ADS)
Kondrachuk, Alexander V.; Starkov, Vyacheslav N.
2011-02-01
The known "sun-flower equation" (SFE), which was originally proposed to model root circumnutating, was used to describe the simplest tip root graviresponse. Two forms of the SFE (integro-differential and differential-delayed) were solved, analyzed and compared with each other. The numerical solutions of these equations were found to be matching with arbitrary accuracy. The analysis of the solutions focused on time-lag effects on the kinetics of tip root bending. The results of the modeling are in good correlation with an experiment at the initial stages of root tips graviresponse. Further development of the model calls for its systematic comparison with some specially designed experiments, which would include measuring the kinetics of root tip bending before gravistimulation over the period of time longer than the time lag.
Carbohydrate composition of mature and immature faba bean (Vicia faba L.) seeds from diverse origins
USDA-ARS?s Scientific Manuscript database
Faba bean (Vicia faba L.) is a valuable pulse crop for human consumption. The low molecular weight carbohydrates (LMWC): glucose, fructose, sucrose (GFS), raffinose, stachyose, and verbascose (RFO- raffinose family oligosaccharides) in faba bean seeds are significant components of human nutrition an...
Effect of ultrasonic tip and root-end filling material on bond strength.
Vivan, Rodrigo Ricci; Guerreiro-Tanomaru, Juliane Maria; Bernardes, Ricardo Affonso; Reis, José Mauricio Santos Nunes; Hungaro Duarte, Marco Antonio; Tanomaru-Filho, Mário
2016-11-01
The objective of this study was to evaluate the bond strength of three root-end filling materials (MTAA-MTA Angelus, MTAS-experimental MTA Sealer, and ZOE- zinc oxide and eugenol cement) in retrograde preparations performed with different ultrasonic tips (CVD, Trinity, and Satelec). Ninety 2-mm root sections from single-rooted human teeth were used. The retrograde cavities were prepared by using the ultrasonic tips, coupled to a device for position standardization. The specimens were randomly divided into nine groups: CVD MTAA; CVD MTAS; CVD ZOE; Trinity MTAA; Trinity MTAS; Trinity ZOE; Satelec MTAA; Satelec MTAS; Satelec ZOE. Each resin disc/dentin/root-end filling material was placed in the machine to perform the push-out test. The specimens were examined in a stereomicroscope to evaluate the type of failure. Data were submitted to statistical analysis using ANOVA and Tukey tests (α = 0.05). The highest bond strength was observed for the CVD tip irrespective of the material used (P < 0.05). There was no significant difference for the Trinity TU-18 diamond and S12 Satelec tips (P > 0.05). MTAA and MTAS showed highest bond strength. The most common type of failure was adhesion between the filling material and dentin wall, except for ZOE, where mixed failure was predominant. The CVD tip favored higher bond strength of the root-end filling materials. MTA Angelus and experimental MTAS presented bond strength to dentin prepared with ultrasonic tips. Root-end preparation with the CVD tip positively influences the bond strength of root-end filling materials. MTA Angelus and experimental MTAS present bond strength to be used as root-end filling materials.
Rusin, Milena; Gospodarek, Janina; Nadgórska-Socha, Aleksandra; Barczyk, Gabriela
2017-04-01
The aim of the study was to determine the effects of various petroleum-derived substances, namely petrol, diesel fuel and spent engine oil, on life history traits and population dynamics of the black bean aphid Aphis fabae Scop. and on growth and chemical composition of its host plant Vicia faba L. Each substance was tested separately, using two concentrations (9 g kg -1 and 18 g kg -1 ). The experiment was conducted in four replications (four pots with five plants in each pot per treatment). Plants were cultivated in both control and contaminated soils. After six weeks from soil contamination and five weeks from sowing the seeds, observations of the effect of petroleum-derived substances on traits of three successive generations of aphids were conducted. Aphids were inoculated separately on leaves using cylindrical cages hermetically closed on both sides. Contamination of aphid occurred through its host plant. Results showed that all tested substances adversely affected A. fabae life history traits and population dynamics: extension of the prereproductive period, reduction of fecundity and life span, reduction of the population intrinsic growth rate. In broad bean, leaf, roots, and shoot growth was also impaired in most conditions, whereas nutrient and heavy metal content varied according to substances, their concentration, as well as plant part analysed. Results indicate that soil contamination with petroleum-derived substances entails far-reaching changes not only in organisms directly exposed to these pollutants (plants), but also indirectly in herbivores (aphids) and consequently provides information about potential negative effects on further links of the food chain, i.e., for predators and parasitoids.
Root elongation against a constant force: experiment with a computerized feedback-controlled device
NASA Technical Reports Server (NTRS)
Kuzeja, P. S.; Lintilhac, P. M.; Wei, C.
2001-01-01
Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.
Observations on the Feeding and Symptomatology of Xiphinema and Longidorus on Selected Host Roots
Cohn, E.
1970-01-01
In vitro feeding of Xiphinema brevicolle, X. index and Longidorus africanus on roots of host seedlings is described. Both Xiphinema spp. fed mainly along roots rather than at tips and up to several days at a single site. Feeding of L. africanus was confined to root tips and lasted up to 15 min. No visible short term reaction of roots parasitized by the Xiphinema spp. could be discerned, but both swelling and cessation of growth of root tips were observed within 20 hr after feeding by L. africanus. Long-term (12-month) symptoms on roots of several host plants caused by cultured populations of X. brevicolle, X. index, X. italiae, L. africanus and L. brevicaudatus are described. All the Xiphinema spp. caused a thinning and distinct darkening of root systems and, at some sites, a breakdown of the cortex. Both species of Longidorus caused stubby and swollen root tips. Root symptom severity was in proportion to nematode population levels. PMID:19322291
A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.
1988-01-01
Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.
A novel tracking tool for the analysis of plant-root tip movements.
Russino, A; Ascrizzi, A; Popova, L; Tonazzini, A; Mancuso, S; Mazzolai, B
2013-06-01
The growth process of roots consists of many activities, such as exploring the soil volume, mining minerals, avoiding obstacles and taking up water to fulfil the plant's primary functions, that are performed differently, depending on environmental conditions. Root movements are strictly related to a root decision strategy, which helps plants to survive under stressful conditions by optimizing energy consumption. In this work, we present a novel image-analysis tool to study the kinematics of the root tip (apex), named analyser for root tip tracks (ARTT). The software implementation combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. The resulting paths, or tracks, arise from the sampled tip positions through the acquired images during the growth. ARTT allows work with no markers and deals autonomously with new emerging root tips, as well as handling a massive number of data relying on minimum user interaction. Consequently, ARTT can be used for a wide range of applications and for the study of kinematics in different plant species. In particular, the study of the root growth and behaviour could lead to the definition of novel principles for the penetration and/or control paradigms for soil exploration and monitoring tasks. The software capabilities were demonstrated by experimental trials performed with Zea mays and Oryza sativa.
Kaźmierczak, Andrzej; Soboska, Kamila
2018-07-01
In animals during apoptosis, the best examined type of programmed cell death (PCD), three main phases are distinguished: (i) specification (signaling), (ii) killing and (iii) execution one. It has bean postulated that plant PCD also involves three subsequent phases: (i) transmission of death signals to cells (signaling), (ii) initiation of killing processes and (iii) destruction of cells. One of the most important hallmarks of animal and plant PCD are those regarding nucleus, not thoroughly studied in plants so far. To study kinetin-induced PCD (Kin-PCD) in the context of nuclear material faith, 2-cm apical parts of Vicia faba ssp. minor seedling roots were used. Applied assays involving spectrophotometry, transmission electron microscopy, fluorescence and white light microscopy allowed to examine metabolic and cytomorphologic hallmarks such as changes in DNA content, ssDNA formation and activity of acidic and basic nucleases (DNases and RNases) as well as malformations and fragmentation of nucleoli and nuclei. The obtained results concerning the PCD hallmarks and influence of ZnSO 4 on Kin-PCD allowed us to confirmed presence of specification/signaling, killing and execution/degradation phases of the process and broaden the knowledge about processes affecting nuclei during PCD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Winnicki, Konrad; Maszewski, Janusz
2012-11-01
Genotoxic stress caused by a variety of chemical and physical agents may lead to DNA breaks and genome instability. Response to DNA damage depends on ATM/ATR sensor kinases and their downstream proteins, which arrange cell cycle checkpoints. Activation of ATM (ataxia-telangiectasia-mutated)/ATR (ATM and Rad 3-related) signaling pathway triggers cell cycle arrest (by keeping cyclin-Cdk complexes inactive), combined with gamma-phosphorylation of histone H2A.X and induction of DNA repair processes. However, genotoxic stress activates also mitogen-activated protein kinases (MAPKs) which may control the functions of checkpoint proteins both directly, by post-translational modifications, or indirectly, by regulation of their expression. Our results indicate that in root meristem cells of Vicia faba, MAP kinase signaling pathway takes part in response to hydroxyurea-induced genotoxic stress. It is shown that SB202190, an inhibitor of p38 MAP kinase, triggers PCC (premature chromosome condensation) more rapidly, but only if cell cycle checkpoints are alleviated by caffeine. Since SB202190 and, independently, caffeine reduces HU-mediated histone H4 Lys5 acetylation, it may be that there is a cooperation of MAP kinase signaling pathways and ATM/ATR-dependent checkpoints during response to genotoxic stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Proteomic and metabolomic analyses of soybean root tips under flooding stress.
Komatsu, Setsuko; Nakamura, Takuji; Sugimoto, Yurie; Sakamoto, Kazunori
2014-01-01
Flooding is one of the serious problems for soybean plants because it inhibits growth. Proteomic and metabolomic techniques were used to determine whether proteins and metabolites are altered in the root tips of soybeans under flooding stress. Two-day-old soybean plants were flooded for 2 days, and proteins and metabolites were extracted from root tips. Flooding-responsive proteins were identified using two-dimensional- or SDS-polyacrylamide gel electrophoresis- based proteomics techniques. Using both techniques, 172 proteins increased and 105 proteins decreased in abundance in the root tips of flood-stressed soybean. The abundance of methionine synthase, heat shock cognate protein, urease, and phosphoenol pyruvate carboxylase was significantly increased by flooding stress. Furthermore, 73 flooding-responsive metabolites were identified using capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric acid, glycine, NADH2, and phosphoenol pyruvate were increased by flooding stress. Taken together, these results suggest that synthesis of phosphoenol pyruvate by way of oxaloacetate produced in the tricarboxylic acid cycle is activated in soybean root tips in response to flooding stress, and that flooding stress also leads to modulation of the urea cycle in the root tips.
Klug, Benjamin; Specht, André; Horst, Walter J.
2011-01-01
Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10–20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation. PMID:21831842
Hummel, Edmund; Kleeberg, Hubertus
2002-01-01
NeemAzal PC (0.5% Azadirachtin) is a new standardised powder formulation from the seed kernels of the tropical Neem tree (Azadirachta indica A. Juss) with an inert carrier. First experiments with beans--as a model-system for hydroponics--show that active ingredient is taken up by the plants through the roots and is transported efficiently with the plant sap to the leaves. After application of NeemAzal PC solution (0.01-1%) to the roots sucking (Aphis fabae Hom., Aphididae) and free feeding (Heliothis armigera Lep., Noctuidae) pest insects can be controlled efficiently. The effects are concentration and time dependent.
Gunes, Betul; Aydinbelge, Hale Ali
2014-09-01
The aim of this in vitro study was to evaluate the effects of different ultrasonic surgical-tips and power-settings on micro-leakage of root-end filling material. The root canals were instrumented using rotary-files and were filled with tapered gutta-percha and root canal sealer using a single-cone technique. The apical 3 mm of each root was resected and the roots were divided into six experimental groups; negative and positive control groups. Root-end cavities were prepared with diamond-coated, zirconum-nitride-coated and stainless-steel ultrasonic retro-tips at half-power and high-power settings. The time required to prepare the root-end cavities for each group was recorded. Root-end cavities were filled with Super-EBA. Leakage values of all samples evaluated with glucose penetration method on 7, 14, 21 and 28(th) days. The results were statistically analyzed with Kruskal-Wallis and Hollander-Wolfe tests. The mean time required to prepare retro cavities using diamond-coated surgical tip at high-power setting was significantly less than other groups (P < 0.01). There were no statistically significant differences in the glucose penetration between the groups at first and second weeks (P > 0.01). Diamond-coated surgical tip showed the least leakage at high-power setting at 3(rd) and 4(th) weeks (P < 0.01). Under the conditions of this study, cavity preparation time was the shortest and the leakage of the root-end filling was the least when diamond-coated retro-tip used at high-power setting.
Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik
2011-07-17
In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.
Lepse, Līga; Dane, Sandra; Zeipiņa, Solvita; Domínguez-Perles, Raul; Rosa, Eduardo As
2017-10-01
Monoculture is used mostly in conventional agriculture, where a single crop is cultivated on the same land for a period of at least 12 months. In an organic and integrated growing approach, more attention is paid to plant-environment interactions and, as a result, diverse growing systems applying intercropping, catch crops, and green manure are being implemented. Thus, field experiments for evaluation of vegetable/faba bean full intercropping efficiency, in terms of vegetable and faba bean yield and protein content, were set up during two consecutive growing seasons (2014 and 2015). Data obtained showed that the most efficient intercropping variants were cabbage/faba bean (cabbage yield 1.27-2.91 kg m -2 , immature faba bean pods 0.20-0.43 kg m -2 ) and carrot/faba bean (carrot yield 1.67-2.28 kg m -2 , immature faba bean pods 0.10-0.52 kg m -2 ), whilst onion and faba bean intercrop is not recommended for vegetable growing since it induces a very low onion yield (0.66-1.09 kg m -2 ), although the highest immature faba bean pod yield was found in the onion/faba bean intercropping scheme (up to 0.56 kg m -2 ). Vegetable/faba bean intercropping can be used in practical horticulture for carrot and cabbage growing in order to ensure sustainable farming and environmentally friendly horticultural production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
[Rhizosphere microbial impacts of alleviating faba bean Fusarium wilt with inoculating AM fungi].
Dong, Yan; Dong, Kun; Yang, Zhi Xian; Tang, Li; Zheng, Yi
2016-12-01
Greenhouse pot trials were conducted to investigate the effects of arbuscular mycorrhizal fungus (Glomus mosseae, Glomus tortuosum, Glomus intraradices and Glomus etunicatum) inoculation on the seedling growth, occurance of Fusarium wilt, population of Fusarium oxysporum and rhizosphere microbial community functional diversity in faba bean rhizosphere soil. Results showed that after inoculation of G. mosseae, G. tortuosum, G. intraradices and G. etunicatum, the shoot and root fresh mass of faba bean seedlings increased significantly, the disease index of faba bean fusarium wilt decreased significantly by 94.0%, 60.0%, 64.0% and 94.0%, respectively, the amount of F. oxysporum of faba bean rhizosphere decreased significantly by 98.6%, 74.3%, 77.8% and 90.4%, respectively. The best inhibitory effects to Fusarium wilt were with G. mosseae and G. etunicatum treatments. Inoculation of G. mosseae, G. tortuosum and G. etunicatum significantly increased carbon sources utilization ability of carbohydrates, amino acids, carboxylic acids and phenolic acids, with the average well color development (AWCD) value being increased by 34.4%, 31.5% and 50.8% respectively, but such significant differences were not observed with inoculation of G. intraradice. Principal component analyses showed that inoculation of G. mosseae, G. tortuosum and G. etunicatum fungi changed the rhizospheric microbial community composition. Correlation analyses showed that the utilization of carbohydrates carbon sources (β-Methyl-D-glucoside, D-Galacturonic acid, D-Mannitol, N-Acetyl-D-Glucosamine, D-Cellobiose,) and carboxylic acids carbon sources (D-Galactonic acid-γ-Lactone) were significantly increased after inoculation of G. tortuosum, and the utilization of L-Arginine and 4-Hydroxy benzoic acid significantly increased after inoculation of G. mosseae and G. etunicatum. Carbohydrates, carboxylic acids were main carbon sources utilized by rhizosphere microbes after G. tortuosum and G. intraradices inoculation, and amino acids and phenolic acids were main carbon sources utilized by rhizosphere microbes after G. mosseae and G. etunicatum inoculation. Inoculation of AM fungi significantly increased the activities of rhizosphere microbes, changed soil microbe community functional diversity, and thus inhibited the growth of F. oxysporum. The inhibitory impacts of AM fungi inoculations depended on the changes of microbes utilizing carbon sources.
USDA-ARS?s Scientific Manuscript database
Winter-hardy faba bean (Vicia faba L.) from northern Europe is represented by a rather narrow gene pool. Limited selection gains for overwintering beyond a maximum of -25°C have restricted the adoption of this crop. Therefore, the faba bean collection maintained by the USDA-ARS National Plant Germpl...
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru
2015-04-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru
2015-01-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713
NASA Technical Reports Server (NTRS)
Fondren, W. M.; Moore, R.
1987-01-01
We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).
Turbine bucket for use in gas turbine engines and methods for fabricating the same
Garcia-Crespo, Andres
2014-06-03
A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.
1987-11-01
and Carsteen E L (1985). Growth Rate and Mitotic Index Analysis of Vicia Faba L. Roots Exposed to 60-Hz Electric Fields. Bioelectromagnetics, Vol. 6...the observed effects. The mitotic index was also influenced. 5) In monkeys, central nervous system excitability was influenced by applying fields...Literature Search and Retrieval ...................... 16 2.2 Literature Culling and Indexing ...................... 18 2.3 Foreign Literature
Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation
Wang, Tao; Li, Chengxiang; Wu, Zhihua; Jia, Yancui; Wang, Hong; Sun, Shiyong; Mao, Chuanzao; Wang, Xuelu
2017-01-01
Abscisic acid (ABA) plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10) had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2) had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development. PMID:28702040
Rams, Thomas E; Alwaqyan, Abdulaziz Y
2017-10-01
This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.
Root Border Cells and Their Role in Plant Defense.
Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo
2016-08-04
Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.
Tufarelli, Vincenzo; Laudadio, Vito
2015-01-01
The present study aimed to assess the effect of dietary substitution of soybean meal (SBM) with dehulled-micronized faba bean (Vicia faba var. minor) in guinea fowl broilers on their growth traits, carcass quality, and meat fatty acids composition. In this trial, 120 day-old guinea fowl keets were randomly assigned to two treatments which were fed from hatch to 12 weeks of age. Birds were fed two wheat middlings-based diets comprising of a control treatment which contained SBM (78.3 g/kg) and a test diet containing dehulled-micronized faba bean (130 g/kg) as the main protein source. Substituting SBM with faba bean had no adverse effect on growth traits, dressing percentage, or breast and thigh muscles relative weight of the guinea fowls. Conversely, a decrease (p<0.05) of abdominal fat was found in guinea fowls fed the faba bean-diet. Breast muscle of birds fed faba bean had higher L* score (p<0.05) and water-holding capacity (p<0.05) than the SBM control diet. Meat from guinea fowls fed faba bean had less total lipids (p<0.05) and cholesterol (p<0.01), and higher concentrations of phospholipids (p<0.01). Feeding faba bean increased polyunsaturated fatty acid concentrations in breast meat and decreased the saturated fatty acid levels. Moreover, dietary faba bean improved the atherogenic and thrombogenic indexes in guinea fowl breast meat. Results indicated that substitution of SBM with faba bean meal in guinea fowl diet can improve carcass qualitative traits, enhancing also meat lipid profile without negatively affecting growth performance. PMID:26323403
Tufarelli, Vincenzo; Laudadio, Vito
2015-10-01
The present study aimed to assess the effect of dietary substitution of soybean meal (SBM) with dehulled-micronized faba bean (Vicia faba var. minor) in guinea fowl broilers on their growth traits, carcass quality, and meat fatty acids composition. In this trial, 120 day-old guinea fowl keets were randomly assigned to two treatments which were fed from hatch to 12 weeks of age. Birds were fed two wheat middlings-based diets comprising of a control treatment which contained SBM (78.3 g/kg) and a test diet containing dehulled-micronized faba bean (130 g/kg) as the main protein source. Substituting SBM with faba bean had no adverse effect on growth traits, dressing percentage, or breast and thigh muscles relative weight of the guinea fowls. Conversely, a decrease (p<0.05) of abdominal fat was found in guinea fowls fed the faba bean-diet. Breast muscle of birds fed faba bean had higher L* score (p<0.05) and water-holding capacity (p<0.05) than the SBM control diet. Meat from guinea fowls fed faba bean had less total lipids (p<0.05) and cholesterol (p<0.01), and higher concentrations of phospholipids (p<0.01). Feeding faba bean increased polyunsaturated fatty acid concentrations in breast meat and decreased the saturated fatty acid levels. Moreover, dietary faba bean improved the atherogenic and thrombogenic indexes in guinea fowl breast meat. Results indicated that substitution of SBM with faba bean meal in guinea fowl diet can improve carcass qualitative traits, enhancing also meat lipid profile without negatively affecting growth performance.
NASA Technical Reports Server (NTRS)
Lee, J. S.; Mulkey, T. J.; Evans, M. L.
1984-01-01
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.
The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth1[OPEN
Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Fu, Ying
2017-01-01
Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth. PMID:28314794
NASA Technical Reports Server (NTRS)
Marcum, H.; Moore, R.
1990-01-01
Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.
Breeding and genomics status in faba bean (Vicia faba L)
USDA-ARS?s Scientific Manuscript database
Faba bean is an important legume crop due to its high yield potential and nutrition dense grains. There are significant achievements in faba bean improvement during the last four decades, leading to the doubling the global yield average. This paper intends to review the genetic diversity, the breedi...
Sarda, X; Tousch, D; Ferrare, K; Cellier, F; Alcon, C; Dupuis, J M; Casse, F; Lamaze, T
1999-05-01
We isolated five sunflower (Helianthus annuus) cDNAs belonging to the TIP (tonoplast intrinsic protein) family. SunRb7 and Sun gammaTIP (partial sequence) are homologous to tobacco TobRb7 and Arabidopsis gamma-TIP, respectively. SunTIP7, 18 and 20 (SunTIPs) are closely related and homologous to Arabidopsis delta-TIP (SunTIP7 and 20 have already been presented in Sarda et al., Plant J. 12 (1997) 1103-1111). As was previously shown for SunTIP7 and 20, expression of SunTIP18 and SunRb7 in Xenopus oocytes caused an increase in osmotic water permeability demonstrating that they are aquaporins. In roots, in situ hybridization revealed that SunTIP7 and 18 mRNAs accumulate in phloem tissues. The expression of TIP-like genes was studied in roots during 24 h water deprivation through exposure to air. During the course of the treatment, each SunTIP gene displayed an individual response: SunTIP7 transcript abundance increased, SunTIP18 decreased whereas that of SunTIP20 was transitorily enhanced. By contrast, SunRb7 and Sun gammaTIP mRNA levels did not fluctuate. Due to the changes in their transcript levels, it is proposed that SUNTIP aquaporins encoded by delta-TIP-like genes play a role in the sunflower response to drought.
Bustos, Dolores; Lascano, Ramiro; Villasuso, Ana Laura; Machado, Estela; Senn, María Eugenia; Córdoba, Alicia; Taleisnik, Edith
2008-10-01
Experimental evidence in the literature suggests that O(2)(*-) produced in the elongation zone of roots and leaves by plasma membrane NADPH oxidase activity is required for growth. This study explores whether growth changes along the root tip induced by hyperosmotic treatments in Zea mays are associated with the distribution of apoplastic O(2)(*-). Stress treatments were imposed using 150 mm NaCl or 300 mM sorbitol. Root elongation rates and the spatial distribution of growth rates in the root tip were measured. Apoplastic O(2)(*-) was determined using nitro blue tetrazolium, and H(2)O(2) was determined using 2', 7'-dichlorofluorescin. In non-stressed plants, the distribution of accelerating growth and highest O(2)(*-) levels coincided along the root tip. Salt and osmotic stress of the same intensity had similar inhibitory effects on root elongation, but O(2)(*-) levels increased in sorbitol-treated roots and decreased in NaCl-treated roots. The lack of association between apoplastic O(2)(*-) levels and root growth inhibition under hyper-osmotic stress leads us to hypothesize that under those conditions the role of apoplastic O(2)(*-) may be to participate in signalling processes, that convey information on the nature of the substrate that the growing root is exploring.
A complete system for 3D reconstruction of roots for phenotypic analysis.
Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J
2015-01-01
Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.
Tamás, L; Budíková, S; Huttová, J; Mistrík, I; Simonovicová, M; Siroká, B
2005-06-01
The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H(2)O(2) generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H(2)O(2). Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body.
Rothwell, Shane A.; Elphinstone, E. David; Dodd, Ian C.
2015-01-01
To meet future requirements for food production, sustainable intensive agricultural systems need to optimize nutrient availability to maximize yield, traditionally achieved by maintaining soil pH within an optimal range (6–6.5) by applying lime (calcium carbonate). However, a field trial that applied recommended liming rates to a sandy loam soil (increasing soil pH from 5.5 to 6.2) decreased pod yield of field bean (Vicia faba L. cv. Fuego) by ~30%. Subsequent pot trials, with liming that raised soil pH to 6.3–6.7, reduced stomatal conductance (g s) by 63, 26, and 59% in V. faba, bean (Phaseolus vulgaris), and pea (Pisum sativum), respectively. Furthermore, liming reduced shoot dry biomass by 16–24% in these species. Ionomic analysis of root xylem sap and leaf tissue revealed a decrease in phosphorus concentration that was correlated with decreased g s: both reductions were partially reversed by adding superphosphate fertilizer. Further analysis of pea suggests that leaf gas exchange was reduced by a systemic increase (roots, xylem sap, and leaves) in the phytohormone abscisic acid (ABA) in response to lime-induced suboptimal plant phosphorus concentrations. Supplying synthetic ABA via the transpiration stream to detached pea leaves, at the same xylem sap concentrations induced by liming, decreased transpiration. Furthermore, the g s of the ABA-deficient mutant pea wilty was unresponsive to liming, apparently confirming that ABA mediates some responses to low phosphorus availability caused by liming. This research provides a detailed mechanistic understanding of the physiological processes by which lime application can limit crop yields, and questions the suitability of current liming recommendations. PMID:25740925
Ederli, Luisa; Brunetti, Cecilia; Centritto, Mauro; Colazza, Stefano; Frati, Francesca; Loreto, Francesco; Marino, Giovanni; Salerno, Gianandrea; Pasqualini, Stefania
2017-01-01
The response of broad bean ( Vicia faba ) plants to water stress alone and in combination with green stink bug ( Nezara viridula ) infestation was investigated through measurement of: (1) leaf gas exchange; (2) plant hormone titres of abscisic acid (ABA) and its metabolites, and of salicylic acid (SA); and (3) hydrogen peroxide (H 2 O 2 ) content. Furthermore, we evaluated the effects of experimentally water-stressed broad-bean plants on N. viridula performance in terms of adult host-plant preference, and nymph growth and survival. Water stress significantly reduced both photosynthesis ( A ) and stomatal conductance ( g s ), while infestation by the green stink bug had no effects on photosynthesis but significantly altered partitioning of ABA between roots and shoots. Leaf ABA was decreased and root ABA increased as a result of herbivore attack, under both well-watered and water-deprived conditions. Water stress significantly impacted on SA content in leaves, but not on H 2 O 2 . However, infestation of N. viridula greatly increased both SA and H 2 O 2 contents in leaves and roots, which suggests that endogenous SA and H 2 O 2 have roles in plant responses to herbivore infestation. No significant differences were seen for green stink bug choice between well-watered and water-stressed plants. However, for green stink bug nymphs, plant water stress promoted significantly lower weight increases and significantly higher mortality, which indicates that highly water-stressed host plants are less suitable for N. viridula infestation. In conclusion two important findings emerged: (i) association of water stress with herbivore infestation largely changes plant response in terms of phytohormone contents; but (ii) water stress does not affect the preference of the infesting insects, although their performance was impaired.
Ederli, Luisa; Brunetti, Cecilia; Centritto, Mauro; Colazza, Stefano; Frati, Francesca; Loreto, Francesco; Marino, Giovanni; Salerno, Gianandrea; Pasqualini, Stefania
2017-01-01
The response of broad bean (Vicia faba) plants to water stress alone and in combination with green stink bug (Nezara viridula) infestation was investigated through measurement of: (1) leaf gas exchange; (2) plant hormone titres of abscisic acid (ABA) and its metabolites, and of salicylic acid (SA); and (3) hydrogen peroxide (H2O2) content. Furthermore, we evaluated the effects of experimentally water-stressed broad-bean plants on N. viridula performance in terms of adult host–plant preference, and nymph growth and survival. Water stress significantly reduced both photosynthesis (A) and stomatal conductance (gs), while infestation by the green stink bug had no effects on photosynthesis but significantly altered partitioning of ABA between roots and shoots. Leaf ABA was decreased and root ABA increased as a result of herbivore attack, under both well-watered and water-deprived conditions. Water stress significantly impacted on SA content in leaves, but not on H2O2. However, infestation of N. viridula greatly increased both SA and H2O2 contents in leaves and roots, which suggests that endogenous SA and H2O2 have roles in plant responses to herbivore infestation. No significant differences were seen for green stink bug choice between well-watered and water-stressed plants. However, for green stink bug nymphs, plant water stress promoted significantly lower weight increases and significantly higher mortality, which indicates that highly water-stressed host plants are less suitable for N. viridula infestation. In conclusion two important findings emerged: (i) association of water stress with herbivore infestation largely changes plant response in terms of phytohormone contents; but (ii) water stress does not affect the preference of the infesting insects, although their performance was impaired. PMID:28642773
NASA Astrophysics Data System (ADS)
Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian
2017-02-01
Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.
Agabeĭli, R A; Kasimova, T E; Alekperov, U K
2004-01-01
Antimutagene activity and high efficiency of antimutagene action of plant extracts from horseradish roots (Armoracia rusticana), fig brunches (Ficus carica) and mays seedlings (Zea mays) and their ability to decrease the frequency of spontaneous and induced by gamma-rays chromosome aberrations in meristematic cells of Vicia faba and marrow cells of mice have been shown. Comparative assessment of genoprotective properties of peroxidase and the studied extracts has revealed higher efficiency of antimutagene action of peroxidase.
UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.
Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin
2018-01-01
Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.
UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis
Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin
2018-01-01
Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074
Tank, Jigna G; Thaker, Vrinda S
2014-01-01
Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.
Tank, Jigna G.; Thaker, Vrinda S.
2014-01-01
Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358
Structure and function of seed storage proteins in faba bean (Vicia faba L.).
Liu, Yujiao; Wu, Xuexia; Hou, Wanwei; Li, Ping; Sha, Weichao; Tian, Yingying
2017-05-01
The protein subunit is the most important basic unit of protein, and its study can unravel the structure and function of seed storage proteins in faba bean. In this study, we identified six specific protein subunits in Faba bean (cv. Qinghai 13) combining liquid chromatography (LC), liquid chromatography-electronic spray ionization mass (LC-ESI-MS/MS) and bio-information technology. The results suggested a diversity of seed storage proteins in faba bean, and a total of 16 proteins (four GroEL molecular chaperones and 12 plant-specific proteins) were identified from 97-, 96-, 64-, 47-, 42-, and 38-kD-specific protein subunits in faba bean based on the peptide sequence. We also analyzed the composition and abundance of the amino acids, the physicochemical characteristics, secondary structure, three-dimensional structure, transmembrane domain, and possible subcellular localization of these identified proteins in faba bean seed, and finally predicted function and structure. The three-dimensional structures were generated based on homologous modeling, and the protein function was analyzed based on the annotation from the non-redundant protein database (NR database, NCBI) and function analysis of optimal modeling. The objective of this study was to identify the seed storage proteins in faba bean and confirm the structure and function of these proteins. Our results can be useful for the study of protein nutrition and achieve breeding goals for optimal protein quality in faba bean.
A practical toxicity bioassay for vicine and convicine levels in faba bean (Vicia faba).
Getachew, Fitsum; Vandenberg, Albert; Smits, Judit
2018-04-02
Faba bean (Vicia faba) vicine and convicine (V-C) aglycones (divicine and isouramil respectively) provoke an acute hemolytic anemia called favism in individuals with a glucose-6-phosphate dehydrogenase (G6PD) enzyme defect in their red blood cells. Geneticists/plant breeders are working with faba bean to decrease V-C levels to improve public acceptance of this high-protein pulse crop. Here, we present a fast and simple ex vivo in vitro bioassay for V-C toxicity testing of faba bean or faba bean food products. We have shown that 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU)-treated (i.e., sensitized) normal red blood cells, like G6PD-defective blood, displayed (i) continuous glutathione (GSH) depletion with no regeneration as incubation time and the dose of aglycones increased, (ii) progressive accumulation of denatured hemoglobin products into high molecular weight (HMW) proteins with increased aglycone dose, (iii) both band 3 membrane proteins and hemichromes, in HMW protein aggregates. We have also demonstrated that sensitized red blood cells can effectively differentiate various levels of toxicity among faba bean varieties through the two hemolysis biomarkers: GSH depletion and HMW clumping. BCNU-sensitized red blood cells provide an ideal model for favism blood, to assess and compare the toxicity of faba bean varieties and their food products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Faba bean (Vicia faba L.) has been selected to adapt to a wide range of environments worldwide and is grown for different end-uses such as food, feed, forage and green manure. Particularly noteworthy in faba bean is the medicinally important component L-3,4-dihydroxy phenylalanine (L-DOPA), the majo...
USDA-ARS?s Scientific Manuscript database
Faba bean (Vicia faba L.) has been selected to adapt to a wide range of environments worldwide and is grown for different end-uses such as food, feed, forage and green manure. Particularly noteworthy in faba bean is the medicinally important component L-3,4-dihydroxy phenylalanine (L-DOPA), the majo...
Luo, Yu-Wei; Xie, Wei-Hua; Cui, Qun-Xiang
2010-02-24
Simulations of gastrointestinal digestion were used to try to identify the nature of the complexes between antinutritional factors and iron and zinc in faba bean and legume fractions. In digestible residue of raw faba bean flour, simultaneous action of cellulase and phytases made it possible to release about 28% units more iron than that released with the treatment without enzymes. About 49.8% of iron in raw faba bean flour was solubilized after in vitro digestion and simultaneous action of cellulase and phytase. In the hull fraction, the action of phytases and the simultaneous action of cellulase and phytase allowed about 7 and 35% units of additional zinc to be solubilized, respectively. Single enzymatic degradation of phytates from dehulled faba bean allowed solubilization from 65 to 93% of zinc, depending upon the treatment. In dehulled faba bean, iron was chelated by phytates and by fibers, whereas zinc was almost exclusively chelated by phytates. In the hull of faba bean, a high proportion of iron was chelated by iron-tannins, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers.
Hefni, Mohammed E; Shalaby, Mohamed T; Witthöft, Cornelia M
2015-01-01
Faba beans are an important source of folate and commonly consumed in Egypt. This study examined the effects of Egyptian industrial food processing (e.g., canning and freezing), germination, cultivar, and maturity stages on folate content, with the aim to develop a candidate functional canned faba bean food with increased folate content. The folate content in four cultivars of green faba beans ranged from 110 to 130 μg 100 g(-1) fresh weight (535-620 μg 100 g(-1) dry matter [DM]), which was four- to sixfold higher than in dried seeds. Industrial canning of dried seeds resulted in significant folate losses of ∼20% (P = 0.004), while industrial freezing had no effect. Germination of faba beans increased the folate content by >40% (P < 0.0001). A novel industrial canning process involving pregermination of dried faba beans resulted in a net folate content of 194 μg 100 g(-1) DM, which is 52% more than in conventional canned beans. The consumption of green faba beans should be recommended, providing ∼120 μg dietary folate equivalents per 100 g/portion.
Xia, J. H.; Roberts, JKM.
1996-05-01
We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.
Gibberellin Biosynthesis in Developing Pumpkin Seedlings12
Lange, Theo; Kappler, Jeannette; Fischer, Andreas; Frisse, Andrea; Padeffke, Tania; Schmidtke, Sabine; Lange, Maria João Pimenta
2005-01-01
A gibberellin (GA) biosynthetic pathway was discovered operating in root tips of 7-d-old pumpkin (Cucurbita maxima) seedlings. Stepwise analysis of GA metabolism in cell-free systems revealed the conversion of GA12-aldehyde to bioactive GA4 and inactive GA34. Highest levels of endogenous GA4 and GA34 were found in hypocotyls and root tips of 3-d-old seedlings. cDNA molecules encoding two GA oxidases, CmGA20ox3 and CmGA3ox3, were isolated from root tips of 7-d-old LAB150978-treated seedlings. Recombinant CmGA20ox3 fusion protein converted GA12 to GA9, GA24 to GA9, GA14 to GA4, and, less efficiently, GA53 to GA20, and recombinant CmGA3ox3 protein oxidized GA9 to GA4. Transcript profiles were determined for four GA oxidase genes from pumpkin revealing relatively high transcript levels for CmGA7ox in shoot tips and cotyledons, for CmGA20ox3 in shoot tips and hypocotyls, and for CmGA3ox3 in hypocotyls and roots of 3-d-old seedlings. Transcripts of CmGA2ox1 were mainly found in roots of 7-d-old seedlings. In roots of 7-d-old seedlings, transcripts of CmGA7ox, CmGA20ox3, and CmGA3ox3 were localized in the cap and the rhizodermis by in situ hybridization. We conclude that hypocotyls and root tips are important sites of GA biosynthesis in the developing pumpkin seedling. PMID:16126862
Nakano, Takako; Hotokezaka, Hitoshi; Hashimoto, Megumi; Sirisoontorn, Irin; Arita, Kotaro; Kurohama, Takeshi; Darendeliler, M Ali; Yoshida, Noriaki
2014-11-01
To investigate differences in the amount of tooth movement and root resorption that occurred after tipping and bodily movement of the maxillary first molar in rats. Ten-week-old female Wistar rats were divided into two groups according to type of tooth movement and subdivided into four subgroups according to the magnitude of applied force. Nickel-titanium closed-coil springs exerting forces of 10, 25, 50, or 100 g were applied to the maxillary left first molars to induce mesial tooth movement. We designed a novel orthodontic appliance for bodily tooth movement. Tooth movement distance and root resorption were measured using microcomputed tomography and scanning electron and scanning laser microscopy. The amount of tooth movement in the bodily tooth movement group was less than half that in the tipping tooth movement group. The greatest amount of tooth movement occurred in the 10-g tipping and 50-g bodily tooth movement subgroups, and the amount of tooth movement decreased with the application of an excessive magnitude of force. Conversely, root resorption increased when the heavier orthodontic force was applied in both groups. Root resorption in the tipping tooth movement group was approximately twice that in the bodily tooth movement group. Root resorption in the tipping tooth movement group was more pronounced than that in the bodily tooth movement group. Although the amount of tooth movement decreased when extremely heavy forces were applied, root resorption increased in both the tipping and bodily tooth movement groups in rats.
SSR analysis of genetic diversity and structure of the germplasm of faba bean (Vicia faba L.).
El-Esawi, Mohamed A
Assessing the diversity and genetic structure of faba bean (Vicia faba L.) germplasm is essential to improve the quality and yield of this economically important crop. In this study, simple sequence repeats (SSRs) were utilized to evaluate the diversity and structure of 35 faba bean genotypes originating from three different geographical regions (Northern Africa, Eastern Africa, and Near East). All 15 SSR loci generated a total of 100 alleles. The allele number per locus varied from 4 to 11, with a mean of 6.67. The expected heterozygosity (H e ) of SSR loci ranged between 0.51 and 0.81, with a mean of 0.63. The PIC value also varied from 0.44 to 0.78, with an average of 0.58. The expected heterozygosity of 22 faba bean genotypes was higher than the observed one. Interestingly, AMOVA analysis showed that much of variability resided within accessions (79.2%). A highly significant difference among regions was also evidenced, and represented 5.3% of the total variation. Moreover, cluster analysis divided the 35 faba bean genotypes into two main clusters. The first main cluster comprised all faba bean genotypes originating from the Near East region, whereas the second main cluster comprised all the genotypes originating from the Northern and Eastern Africa regions, indicating that the Northern and Eastern African faba bean genotypes were more closely related to each other than to the Near East genotypes. Structure analysis also revealed that the 35 faba bean genotypes might be assigned to two populations, in complete accordance with cluster analysis data. In conclusion, this study showed high levels of diversity in the analysed genotypes of faba bean, and could be utilized in future breeding programmes to develop new cultivars of high yield. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Population Dynamics of Empoasca fabae (Hemiptera: Cicadellidae) in Central Iowa Alfalfa Fields
Weiser Erlandson, L. A.; Obrycki, J. J.
2015-01-01
Adults and nymphs of Empoasca fabae Harris (Hemiptera: Cicadellidae) and adults of predatory species in the families Coccinellidae, Anthocoridae, Nabidae, Chrysopidae, and Hemerobiidae were sampled in Iowa alfalfa fields from June to September in 1999 and 2000. The relationship between each predatory taxa and E. fabae was examined using regression analysis. In 2000, all predators were found to be positively correlated with the presence of E. fabae during all periods sampled and most likely contributed to mortality. Orius insidiosus (Say) (Hemiptera: Anthoridae) was the most numerous insect predatory species; population numbers ranged from 0 to 1 and 0.1 to 3.7 adults per 0.25 m2 in 1999 and 2000, respectively. Partial life tables were constructed for E. fabae nymphs for two alfalfa-growing periods. Nymphs were grouped into three age intervals: first and second, third and fourth, and fifth instars. For the first alfalfa growing period examined, E. fabae nymphal mortality was 70% in 1999 and 49% in 2000. During the last growing period of each season (August–September), total nymphal mortality was relatively low (<25%). Adult E. fabae density ranged from 5.4 to 25.6 and 1.4–9.2 per 0.25 m2 in 1999 and 2000, respectively. E. fabae population peaks were similar for each age interval in all growing periods. This study provides further information on the population dynamics of E. fabae and its relationship with select predatory species in Iowa alfalfa fields. PMID:26320260
Hefni, Mohammed E; Shalaby, Mohamed T; Witthöft, Cornelia M
2015-01-01
Faba beans are an important source of folate and commonly consumed in Egypt. This study examined the effects of Egyptian industrial food processing (e.g., canning and freezing), germination, cultivar, and maturity stages on folate content, with the aim to develop a candidate functional canned faba bean food with increased folate content. The folate content in four cultivars of green faba beans ranged from 110 to 130 μg 100 g−1 fresh weight (535–620 μg 100 g−1 dry matter [DM]), which was four- to sixfold higher than in dried seeds. Industrial canning of dried seeds resulted in significant folate losses of ∼20% (P = 0.004), while industrial freezing had no effect. Germination of faba beans increased the folate content by >40% (P < 0.0001). A novel industrial canning process involving pregermination of dried faba beans resulted in a net folate content of 194 μg 100 g−1 DM, which is 52% more than in conventional canned beans. The consumption of green faba beans should be recommended, providing ∼120 μg dietary folate equivalents per 100 g/portion. PMID:25650294
Cellular distribution of calmodulin and calmodulin-binding proteins in Vicia faba L
NASA Technical Reports Server (NTRS)
Ling, V.; Assmann, S. M.
1992-01-01
The distribution of calmodulin (CaM) and CaM-binding proteins within Vicia faba was investigated. Both CaM and CaM-binding proteins were found to be differentially distributed among organs, tissues, and protoplast types. CaM levels, on a per protein basis, were found to be the highest in leaf epidermis, containing 3-fold higher levels of CaM than in total leaf. Similarly, guard cell and epidermal cell protoplasts were also found to have higher levels of CaM than mesophyll cell protoplasts. 125I-CaM blot overlay assays were performed to qualitatively examine CaM-binding proteins in these protoplast types as well as in whole tissues and organs. CaM-binding proteins with Mr 52,000, 78,000, and 115,000 were common in all metabolically active plant parts. Unique CaM-binding protein bands were detected in guard cell protoplasts (Mr 39,000, 88,000), stems (Mr 45,000, 60,000, 64,000), and roots (Mr 62,000), suggesting the presence of specialized CaM-dependent processes in these cells and organs.
Singh, Aradhana; Srivastava, Anjil Kumar; Singh, Ashok Kumar
2013-12-01
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations. Copyright © 2011 Wiley Periodicals, Inc.
Abscisic Acid Stimulates Elongation of Excised Pea Root Tips
Gaither, Douglas H.; Lutz, Donald H.; Forrence, Leonard E.
1975-01-01
Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 μm abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 μm abscisic acid. Prior to two hours, stimulation of elongation by 1 μm abscisic acid was not detectable. Increased elongation did not occur in abscisic acid-treated root tips of Lens culinaris L., Phaseolus vulgaris L., or Zea mays L. PMID:16659198
Ivanchenko, Maria G.; den Os, Désirée; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednářová, Andrea; Krishnan, Natraj
2013-01-01
Background and Aims The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Methods Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs. Key Results The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level. Conclusions The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip. PMID:23965615
Basset , Gilles; Raymond, Philippe; Malek, Lada; Brouquisse, Renaud
2002-01-01
The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of α3 and β6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations. PMID:11891269
Actin polymerization drives polar growth in Arabidopsis root hair cells.
Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas
2014-01-01
In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.
Calcium-Dependent Protein Kinase Genes in Corn Roots
NASA Technical Reports Server (NTRS)
Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.
1996-01-01
Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.
2013-01-01
Background Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. Results A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. Conclusion We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different marker technologies. Combined with syntenic approaches, the consensus map will increase marker density in selected genomic regions and will be useful for future faba bean molecular breeding applications. PMID:24377374
2010-01-01
Background Plants grown under iron deficiency show different morphological, biochemical and physiological changes. These changes include, among others, the elicitation of different strategies to improve the acquisition of Fe from the rhizosphere, the adjustment of Fe homeostasis processes and a reorganization of carbohydrate metabolism. The application of modern techniques that allow the simultaneous and untargeted analysis of multiple proteins and metabolites can provide insight into multiple processes taking place in plants under Fe deficiency. The objective of this study was to characterize the changes induced in the root tip proteome and metabolome of sugar beet plants in response to Fe deficiency and resupply. Results Root tip extract proteome maps were obtained by 2-D isoelectric focusing polyacrylamide gel electrophoresis, and approximately 140 spots were detected. Iron deficiency resulted in changes in the relative amounts of 61 polypeptides, and 22 of them were identified by mass spectrometry (MS). Metabolites in root tip extracts were analyzed by gas chromatography-MS, and more than 300 metabolites were resolved. Out of 77 identified metabolites, 26 changed significantly with Fe deficiency. Iron deficiency induced increases in the relative amounts of proteins and metabolites associated to glycolysis, tri-carboxylic acid cycle and anaerobic respiration, confirming previous studies. Furthermore, a protein not present in Fe-sufficient roots, dimethyl-8-ribityllumazine (DMRL) synthase, was present in high amounts in root tips from Fe-deficient sugar beet plants and gene transcript levels were higher in Fe-deficient root tips. Also, a marked increase in the relative amounts of the raffinose family of oligosaccharides (RFOs) was observed in Fe-deficient plants, and a further increase in these compounds occurred upon short term Fe resupply. Conclusions The increases in DMRL synthase and in RFO sugars were the major changes induced by Fe deficiency and resupply in root tips of sugar beet plants. Flavin synthesis could be involved in Fe uptake, whereas RFO sugars could be involved in the alleviation of oxidative stress, C trafficking or cell signalling. Our data also confirm the increase in proteins and metabolites related to carbohydrate metabolism and TCA cycle pathways. PMID:20565974
Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.
1984-04-24
An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.
Thorn, C.E.; Chasman, C.; Baltz, A.J.
1981-11-19
An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.
Nitric Oxide Is Associated with Long-Term Zinc Tolerance in Solanum nigrum1[W
Xu, Jin; Yin, Hengxia; Li, Yulong; Liu, Xiaojing
2010-01-01
Nitric oxide (NO) has been identified as a signal molecule that interplays with reactive oxygen species in response to heavy metal stresses. Roles of NO in regulating cadmium toxicity and iron deficiency have been proposed; however, the function of NO in zinc (Zn) tolerance in plants remains unclear. Here, we investigated NO accumulation and its role in plant Zn tolerance. Zn-induced NO production promoted an increase in reactive oxygen species accumulation in Solanum nigrum roots by modulating the expression and activity of antioxidative enzymes. Subsequently, programmed cell death (PCD) was observed in primary root tips. Inhibiting NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (a specific NO scavenger) or NG-nitro-l-arginine-methyl ester (a NO synthase inhibitor) prevented the increase of superoxide radical and hydrogen peroxide as well as the subsequent cell death in the root tips, supporting the role of NO in Zn-induced PCD in the root tips. Zn-induced NO production affected the length of primary roots, the number of lateral roots, and root hair growth and thereby modulated root system architecture and activity. Investigation of metal contents in Zn-treated roots suggests that NO is required for metal (especially iron) uptake and homeostasis in plants exposed to excess Zn. Taken together, our results indicate that NO production and the subsequent PCD in root tips exposed to excess Zn are favorable for the S. nigrum seedling response to long-term Zn toxicity by modulating root system architecture and subsequent adaptation to Zn stress. PMID:20855519
Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan
2014-03-01
The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.
Mosca, E; Montecchio, L; Barion, G; Dal Cortivo, C; Vamerali, T
2017-05-01
Oak decline is a complex phenomenon, characterized by symptoms of canopy transparency, bark cracks and root biomass reduction. Root health status is one of the first stress indicators, and root turnover is a key process in plant adaptation to unfavourable conditions. In this study, the combined effects of decline and thinning were evaluated on fine root dynamics in an oak forest adjoining the Italian Pre-Alps by comparison of acute declining trees with non-declining trees, both with and without thinning treatment of surrounding trees. Dynamics of volumetric root length density (RLD V ) and tip density (RTD V ), root tip density per unit length of root (RTD L ), diameter, branching index (BI) and mycorrhizal colonization were monitored by soil coring over 2 years as possible descriptors of decline. At the beginning of the experiment, the relationship between canopy transparency and root status was weak, declining trees having slightly lower RLD V (-20 %) and RTD V (-11 %). After a 1 year lag, during which the parameters were almost unaffected, BI and RLD V , together with tip density, tip vitality and mycorrhizal colonization, became the descriptors most representative of both decline class and thinning. Thinning of declining trees increased RLD V (+12 %) and RTD V (+32 %), but reduced tip mycorrhizal colonization and vitality over time compared with non-thinned trees, whereas the opposite occurred in healthy trees, together with a marked decrease in branching. After thinning, there was an initial reduction in the structure of the ectomycorrhizal community, although recovery occurred about 10 months later, regardless of decline severity. Decline causes losses of fine root length, and a moderate recovery can be achieved by thinning, allowing better soil exploration by oak roots. The close correlation between root vitality and mycorrhizal colonization and their deterioration after thinning indicates that decline does not benefit from reduced root competition, excluding the hypothesis of limited water and nutrient availability as a possible cause of the syndrome in this forest. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Montecchio, L.; Barion, G.; Dal Cortivo, C.; Vamerali, T.
2017-01-01
Abstract Aims Oak decline is a complex phenomenon, characterized by symptoms of canopy transparency, bark cracks and root biomass reduction. Root health status is one of the first stress indicators, and root turnover is a key process in plant adaptation to unfavourable conditions. In this study, the combined effects of decline and thinning were evaluated on fine root dynamics in an oak forest adjoining the Italian Pre-Alps by comparison of acute declining trees with non-declining trees, both with and without thinning treatment of surrounding trees. Methods Dynamics of volumetric root length density (RLDV) and tip density (RTDV), root tip density per unit length of root (RTDL), diameter, branching index (BI) and mycorrhizal colonization were monitored by soil coring over 2 years as possible descriptors of decline. Key Results At the beginning of the experiment, the relationship between canopy transparency and root status was weak, declining trees having slightly lower RLDV (–20 %) and RTDV (–11 %). After a 1 year lag, during which the parameters were almost unaffected, BI and RLDV, together with tip density, tip vitality and mycorrhizal colonization, became the descriptors most representative of both decline class and thinning. Thinning of declining trees increased RLDV (+12 %) and RTDV (+32 %), but reduced tip mycorrhizal colonization and vitality over time compared with non-thinned trees, whereas the opposite occurred in healthy trees, together with a marked decrease in branching. After thinning, there was an initial reduction in the structure of the ectomycorrhizal community, although recovery occurred about 10 months later, regardless of decline severity. Conclusions Decline causes losses of fine root length, and a moderate recovery can be achieved by thinning, allowing better soil exploration by oak roots. The close correlation between root vitality and mycorrhizal colonization and their deterioration after thinning indicates that decline does not benefit from reduced root competition, excluding the hypothesis of limited water and nutrient availability as a possible cause of the syndrome in this forest. PMID:28334145
Weiller, Florent; Moore, John P; Young, Philip; Driouich, Azeddine; Vivier, Melané A
2017-03-01
Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Weiller, Florent; Young, Philip; Driouich, Azeddine; Vivier, Melané A.
2017-01-01
Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana, have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1–4) have previously been characterized from Heliophila coronopifolia, a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia. Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1–4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. PMID:27481828
Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize
NASA Technical Reports Server (NTRS)
Young, L. M.; Evans, M. L.
1996-01-01
Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.
Rizzello, Carlo G; Verni, Michela; Koivula, Hanna; Montemurro, Marco; Seppa, Laila; Kemell, Marianna; Katina, Kati; Coda, Rossana; Gobbetti, Marco
2017-02-22
Faba bean has gained increasing attention from the food industry and the consumers mainly due to the quality of its protein fraction. Fermentation has been recently recognized as the most efficient tool for improving its nutritional and organoleptic properties. In this study, faba bean flour fermented with Lactobacillus plantarum DPPMAB24W was used to fortify semolina pasta. Pasta samples including different percentages of fermented faba bean flour were produced at the pilot-plant level and characterized using an integrated approach for chemical, nutritional, technological, and sensory features. At a substitution level of 30%, pasta had a more homogeneous texture and lower cooking loss compared to 50% addition. The impact of faba bean flour addition on pasta technological functionality, particularly of the protein fraction, was also assessed by scanning electron microscopy and textural profile analysis. Compared to traditional (semolina) pasta and pasta containing unfermented faba bean flour, the nutritional profile (in vitro protein digestibility and nutritional indexes - chemical score (CS), sequence of limiting essential amino acids, Essential Amino Acid Index (EAAI), Biological Value (BV), Protein Efficiency Ratio (PER), and Nutritional Index (NI)) and the resistant starch content of pasta containing 30% fermented faba bean flour markedly improved, while the starch hydrolysis rate decreased, without negatively affecting technological and sensory features. The use of fermentation technology appears to be a promising tool to enhance the quality of pasta and to promote the use of faba bean flour.
Prabhu, D Sathya; Rajeswari, V Devi
2018-06-20
The agonists of peroxisome proliferator-activated receptor gamma (PPARγ) from natural victual products were used as antidiabetic agents. Faba bean (Vicia faba L.) is a consequential legume that was known to possess potential antidiabetic activity, whose mechanism of action was unknown. The current study was focused to ascertain gene expression of the nuclear receptor PPARγ by Faba bean pod extract in rat cell lines (RINm5F).The real-time polymerase chain reaction analysis demonstrated that Faba bean pod extract in concentrations of 160 µg/mL have shown 4.97-fold stimulation compared with control. The cells treated with 320 µg/mL has shown 5.89-fold upregulation, respectively. Furthermore, in silico docking analysis was carried out against PPARγ, using the bioactive compounds identified from Faba bean pod extracts, which were known reported compounds from the literature. The results suggest that gene expression of PPARγ was inhibited by the constituents in Faba bean. In silico analysis prognosticates, butein has a high binding energy (-8.6 kcal/mol) with an atomic contact energy of -214.10, followed by Apigenin and Quercetin against PPARγ. Similarly, the percentage of interaction was high for butein, followed by Apigenin and Quercetin than other compounds comparatively. Hence, the results conclude inhibition of PPARγ by the bioactive compounds from Faba bean, which may provide insights into developing future therapeutic molecules for diabetes mellitus. © 2018 Wiley Periodicals, Inc.
Peeters, Harry Huiz; De Moor, Roeland J G
2015-07-01
The use of Er,Cr:YSGG laser to activate irrigants results in the creation of vapour bubbles and shockwaves. The present study evaluated the magnitude of pressure changes in the root canal during laser-activated irrigation. The root canal of a single extracted maxillary canine was enlarged to a size 40/0.06 file. A pressure sensor was inserted apically into the root canal. The tooth was processed as follows. In the EDTA condition, the tooth was irrigated with 17 % EDTA; in the NaOCl condition, the tooth was irrigated with 3 % NaOCl. In all conditions, the irrigants were activated at 0.75 and 1.75 W for 60 s using RFT2 and MZ2 tips; to analyse the effect of tip placement, the tip was activated at the orifice and after inserting the tip 5 mm deeper than the orifice. Data showed no significant difference between irrigation regimens (p > 0.05). There were no significant differences of the pressure between RFT2 and MZ2 tips (p > 0.05). The placement of tips closer to the apex resulted in significantly higher pressure than at the orifice (p < 0.001). The use of 1.75 W power resulted in a significantly higher increase of pressure compared to 0.75 W (p < 0.001), regardless either the type of solutions or tips used. The magnitude of the pressure changes in the root canal at 0.75 W was significantly lower than 1.75 W regardless of either type of tips or solutions used. The closer the insertion of the tip to the apex, the higher the pressure.
Wang, Hai-Fei; Zong, Xu-Xiao; Guan, Jian-Ping; Yang, Tao; Sun, Xue-Lian; Ma, Yu; Redden, Robert
2012-03-01
Genetic diversity and relationships of 802 faba bean (Vicia faba L.) landraces and varieties from different geographical locations of China and abroad were examined using ISSR markers. A total of 212 repeatable amplified bands were generated with 11 ISSR primers, of which 209 were polymorphic. Accessions from North China showed highest genetic diversity, while accessions from central China showed low level of diversity. Chinese spring faba bean germplasm was clearly separated from Chinese winter faba bean, based on principal component analysis and UPGMA clustering analysis. Winter accessions from Zhejiang (East China), Jiangxi (East China), Sichuan (Southwest China) and Guizhou (Southwest China) were quite distinct to that from other provinces in China. Great differentiation between Chinese accessions and those from rest of the world was shown with a UPGMA dendrogram. AMOVA analyses demonstrated large variation and differentiation within and among groups of accessions from China. As a continental geographic group, accessions from Europe were genetically closer to those from North Africa. Based on ISSR data, grouping results of accessions from Asia, Europe and Africa were obviously associated with their geographical origin. The overall results indicated that the genetic relationship of faba bean germplasm was closely associated with their geographical origin and their ecological habit.
Nutritive quality and protein production from grain legumes in a boreal climate.
Lizarazo, Clara I; Lampi, Anna-Maija; Liu, Jingwei; Sontag-Strohm, Tuula; Piironen, Vieno; Stoddard, Frederick L
2015-08-15
Boreal cropping systems are heavily focused on the production of small-grain cereals; to improve their resilience to climate change and to achieve food and feed security, diversification is needed. This study investigated the potential of faba bean, narrow-leafed lupin and lentil as protein crops in southern Finland, where faba bean is traditional but the other two are novel. Early cultivars of narrow-leafed lupin and lentil matured adequately. Protein concentration in faba bean was, at 32%, higher than the world average of 29%, while those of narrow-leafed lupin and lentil were close to their world averages. Protein yields decreased in the order faba bean > narrow-leafed lupin > lentil. Lipid content of faba bean and lentil was about 1.2% and that of narrow-leafed lupin about 5.5%, and fatty acid composition was largely oleic and linoleic in all three species. Both lentil and narrow-leafed lupin can be added to the range of feed and food crops produced at high latitudes in Europe. While faba bean produces the greatest protein yield and lysine concentration, the higher sulfur amino acid concentration in lupin, its oil content and its adaptation to acid, sandy soils not suitable for faba bean make it an attractive alternative. © 2014 Society of Chemical Industry.
Lamp, William O.
2015-01-01
Climate change can benefit individual species, but when pest species are enhanced by warmer temperatures agricultural productivity may be placed at greater risk. We analyzed the effects of temperature anomaly on arrival date and infestation severity of potato leafhopper, Empoasca fabae Harris, a classic new world long distance migrant, and a significant pest in several agricultural crops. We compiled E. fabae arrival dates and infestation severity data at different states in USA from existing literature reviews and agricultural extension records from 1951–2012, and examined the influence of temperature anomalies at each target state or overwintering range on the date of arrival and severity of infestation. Average E. fabae arrival date at different states reveal a clear trend along the south-north axis, with earliest arrival closest to the overwintering range. E. fabae arrival has advanced by 10 days over the last 62 years. E. fabae arrived earlier in warmer years in relation to each target state level temperature anomaly (3.0 days / °C increase in temperature anomaly). Increased temperature had a significant and positive effect on the severity of infestation, and arrival date had a marginal negative effect on severity. These relationships suggest that continued warming could advance the time of E. fabae colonization and increase their impact on affected crops. PMID:25970705
NASA Technical Reports Server (NTRS)
Masson, P. H.
1995-01-01
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.
Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula
2013-01-01
Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365
Hydrotropism and its interaction with gravitropism in maize roots
NASA Technical Reports Server (NTRS)
Takahashi, H.; Scott, T. K.
1991-01-01
We have partially characterized root hydrotropism and its interaction with gravitropism in maize (Zea mays L.). Roots of Golden Cross Bantam 70, which require light for orthogravitropism, showed positive hydrotropism; bending upward when placed horizontally below a hydrostimulant (moist cheesecloth) in 85% relative humidity (RH) and in total darkness. However, the light-exposed roots of Golden Cross Bantam 70 or roots of a normal maize cultivar, Burpee Snow Cross, showed positive gravitropism under the same conditions; bending downward when placed horizontally below the hydrostimulant in 85% RH. Light-exposed roots of Golden Cross Bantam 70 placed at 70 degrees below the horizontal plane responded positively hydrotropically, but gravitropism overcame the hydrotropism when the roots were placed at 45 degrees below the horizontal. Roots placed vertically with the tip down in 85% RH bent to the side toward the hydrostimulant in both cultivars, and light conditions did not affect the response. Such vertical roots did not respond when the humidity was maintained near saturation. These results suggest that hydrotropic and gravitropic responses interact with one another depending on the intensity of one or both factors. Removal of the approximately 1.5 millimeter root tip blocked both hydrotropic and gravitropic responses in the two cultivars. However, removal of visible root tip mucilage did not affect hydrotropism or gravitropism in either cultivar.
Tice, Kathy R.; Parker, David R.; DeMason, Darleen A.
1992-01-01
Knowledge of the mechanistic basis of differential aluminum (Al) tolerance depends, in part, on an improved ability to quantify Al located in the apoplastic and symplastic compartments of the root apex. Using root tips excised from seedlings of an Al-tolerant wheat cultivar (Triticum aestivum L. cv Yecora Rojo) grown in Al solutions for 2 d, we established an operationally defined apoplastic Al fraction determined with six sequential 30-min washes using 5 mm CaCl2 (pH 4.3). Soluble symplastic Al was eluted by freezing root tips to rupture cell membranes and performing four additional 30-min CaCl2 washes, and a residual fraction was determined via digestion of root tips with HNO3. The three fractions were then determined in Yecora Rojo and a sensitive wheat cultivar (Tyler) grown at 18, 55, or 140 μm total solution Al (AlT). When grown at equal AlT, Tyler contained more Al than Yecora Rojo in all fractions, but both total Al and fractional distribution were similar in the two cultivars grown at AlT levels effecting a 50% reduction in root growth. Residual Al was consistently 50 to 70% of the total, and its location was elucidated by staining root tips with the fluorophore morin and examining them using fluorescence and confocal laser scanning microscopy. Wall-associated Al was only observed in tips prior to any washing, and the residual fraction was manifested as distinct staining of the cytoplasm and nucleus but not of the apoplastic space. Accordingly, the residual fraction was allocated to the symplastic compartment for both cultivars, and recalculated apoplastic Al was consistently approximately 30 to 40% of the total. Distributions of Al in the two cultivars did not support a symplastic detoxification hypothesis, but the role of cytoplasmic exclusion remains unsettled. Images Figure 4 Figure 5 PMID:16652962
NASA Technical Reports Server (NTRS)
Moore, R.; McClelen, C. E.
1989-01-01
Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.
NASA Technical Reports Server (NTRS)
Ogbuehi, Cyriacus R.; Loretan, Phil A.; Bonsi, C. K.; Hill, Walter A.; Morris, Carlton E.; Biswas, P. K.; Mortley, Desmond G.
1989-01-01
Sweet potato shoot tips have been shown to be a nutritious green vegetable. A study was conducted to determine the effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown in the greenhouse using the nutrient film technique (NFT). The nutrient solution consisted of a modified half Hoagland solution. Biweekly shoot tip harvests, beginning 42 days after planting, provided substantial amounts of vegetable greens and did not affect the fresh and dry foliage weights or the storage root number and fresh and dry storage root weights at final harvest. The rates of anion and cation uptake were not affected by tip harvests.
Yin, Xiaojian; Komatsu, Setsuko
2016-07-01
To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.
Forensic DNA typing from teeth using demineralized root tips.
Corrêa, Heitor Simões Dutra; Pedro, Fabio Luis Miranda; Volpato, Luiz Evaristo Ricci; Pereira, Thiago Machado; Siebert Filho, Gilberto; Borges, Álvaro Henrique
2017-11-01
Teeth are widely used samples in forensic human genetic identification due to their persistence and practical sampling and processing. Their processing, however, has changed very little in the last 20 years, usually including powdering or pulverization of the tooth. The objective of this study was to present demineralized root tips as DNA sources while, at the same time, not involving powdering the samples or expensive equipment for teeth processing. One to five teeth from each of 20 unidentified human bodies recovered from midwest Brazil were analyzed. Whole teeth were demineralized in EDTA solution with daily solution change. After a maximum of approximately seven days, the final millimeters of the root tip was excised. This portion of the sample was used for DNA extraction through a conventional organic protocol. DNA quantification and STR amplification were performed using commercial kits followed by capillary electrophoresis on 3130 or 3500 genetic analyzers. For 60% of the unidentified bodies (12 of 20), a full genetic profile was obtained from the extraction of the first root tip. By the end of the analyses, full genetic profiles were obtained for 85% of the individuals studied, of which 80% were positively identified. This alternative low-tech approach for postmortem teeth processing is capable of extracting DNA in sufficient quantity and quality for forensic casework, showing that root tips are viable nuclear DNA sources even after demineralization. Copyright © 2017 Elsevier B.V. All rights reserved.
Del Mar Rojas-Molina, María; Rubiales, Diego; Prats, Elena; Sillero, Josefina Carmen
2007-01-01
ABSTRACT Effects on penetration and hypersensitive resistance of the cinnamyl acid dehydrogenase (CAD) suicide inhibitor ([(2-hydroxyphenyl) amino] sulphinyl) acetic acid, 1.1 dimethyl ester, which suppresses phenylpro-panoid biosynthesis, and of D-mannose, which sequesters phosphate and reduces energy available in host cells, were studied in faba bean (Vicia faba) genotypes with differing resistance mechanisms to faba bean rust (Uromyces viciae-fabae). Inhibition of CAD reduced penetration resistance in lines 2N-34, 2N-52, V-1271, and V-1272, revealing an important role for phenylpropanoid biosynthesis in the resistance of these lines. Inhibition of CAD also inhibited hypersensitive cell death in these lines. D-mannose had little or no effect on resistance. By contrast, CAD inhibition did not affect penetration resistance of line BPL-261, which has a high degree of penetration resistance not associated with hypersensitive cell death. In BPL-261, D-mannose inhibited penetration resistance. The parallelism between the faba bean genotype responses to rust observed here and the response of barley genotypes with differing resistance mechanisms to powdery mildew after similar inhibitor treatments is analyzed and discussed.
Autoradiography and the Cell Cycle.
ERIC Educational Resources Information Center
Jones, C. Weldon
1992-01-01
Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…
Auxin, ethylene and the regulation of root growth under mechanical impedance
NASA Astrophysics Data System (ADS)
Sharma, Rameshwar; Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju
2012-07-01
Among the multitude functions performed by plant roots, little information is available about the mechanisms that allow roots to overcome the soil resistance, in order to grow in the soil to obtain water and nutrient. Tomato (Solanum lycopersicum) seedlings grown on horizontally placed agar plates showed a progressive decline in the root length with the increasing impedance of agar media. The incubation with 1-methylcyclopropane (1-MCP), an inhibitor of ethylene perception, led to aerial growth of roots. In contrast, in absence of 1-MCP control roots grew horizontally anchored to the agar surface. Though 1-MCP-treated and control seedlings showed differential ability to penetrate in the agar, the inhibition of root elongation was nearly similar for both treatments. While increased mechanical impedance also progressively impaired hypocotyl elongation in 1-MCP treated seedlings, it did not affect the hypocotyl length of control seedlings. The decline in root elongation was also associated with increased expression of DR5::GUS activity in the root tip signifying accumulation of auxin at the root tip. The increased expression of DR5::GUS activity in the root tip was also observed in 1-MCP treated seedlings, indicating independence of this response from ethylene signaling. Our results indicate operation of a sensing mechanism in root that likely operates independently of ethylene but involves auxin to determine the degree of impedance of the substratum.
[The effect of pemolin on the mitotic activity of Vicia faba L (author's transl)].
Brabec, F; Röper, W
1976-02-01
The effect of diverse concentrations of 5-phenyl-2-imino-4-oxazolidone (PIO, pemolin, Tradon) on the mitotic activity in lateral roots of Vicia faba L. was studied by aerated and non-aerated hydrocultivation with and without mineral nutrition, respectively. With optimal conditions (aerated nutrient solution) weak PIO-concentrations, most significantly 10(-6) g/ml, effected a marked increase of the mitotic index. Contrarily, strong PIO-concentrations (10(-4) and 3 X 10(-4) g/ml = saturated solution) significantly decreased the mitotic index though simultaneously preserving the mitotic activity in long-term experiments, when on account of nutrient deficiency it had already collapsed in weak PIO-concentrations and the controls. The activating effect of weak PIO-concentrations compared with the controls is more significant in stress situations (nutrient deficiency, O2-deficiency) than under optimal conditions. Furthermore a slight acceleration of mid-mitotic phases (metaphase--anaphase) recognized by a marked decrease in percentage of these phases, can be stated with weak PIO-concentrations, again particularly so with 10(-6) g/ml. In total, dependent on concentration, pemolin presumably may either activate or suppress cell metabolism and particularly the mitotic cycle. The exact site of action of the substance is still unknown.
Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?
NASA Technical Reports Server (NTRS)
Edwards, K. L.
1985-01-01
The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.
Changes in extracellular calcium activity during gravity sensing in maize roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjoerkman, T.; Cleland, R.E.
1990-05-01
A redistribution of calcium downward across the root cap has been proposed as an essential part of gravitropism in roots. Exogenous {sup 45}Ca moves preferentially downward across gravistimulated maize root tips. However, because of the many calcium-binding sites in the apoplast, this might not result in a physiologically effect change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity with calcium-specific microelectrodes. Decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. Themore » calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 {plus minus} 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for about five minutes after gravistimulation, then decreased by about one half. On the lower side, after a similar lag the calcium activity doubled. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips.« less
George, Roy; Walsh, Laurence J
2010-04-01
To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.
Root hairs aid soil penetration by anchoring the root surface to pore walls
Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.
2016-01-01
The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027
Root hairs aid soil penetration by anchoring the root surface to pore walls.
Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M
2016-02-01
The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Verslues, Paul E.; Sharp, Robert E.
1999-01-01
The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (ψw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low ψw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low ψw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low ψw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low ψw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-ψw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low ψw is also discussed. PMID:10198094
A RAPID DNA EXTRACTION METHOD IS SUCCESSFULLY APPLIED TO ITS-RFLP ANALYSIS OF MYCORRHIZAL ROOT TIPS
A rapid method for extracting DNA from intact, single root tips using a Xanthine solution was developed to handle very large numbers of analyses of ectomycorrhizas. By using an extraction without grinding we have attempted to bias the extraction towards the fungal DNA in the man...
Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips
NASA Technical Reports Server (NTRS)
Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.
1987-01-01
Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.
Lipid-modifying enzymes in oat and faba bean.
Yang, Zhen; Piironen, Vieno; Lampi, Anna-Maija
2017-10-01
The aim was to study lipase, lipoxygenase (LOX) and peroxygenase (POX) activities in oat and faba bean samples to be able to evaluate their potential in formation of lipid-derived off-flavours. Lipase and LOX activities were measured by spectroscopy, and POX activities via the formation of epoxides. An ultra-high performance liquid chromatography method was developed to study the formation of fatty acid epoxides. The epoxides of esters were measured by gas chromatography. Mass spectroscopy was used to verify the identity of the epoxides. Both oat and faba bean possessed high lipase activities. In faba bean, LOX catalysed the formation of hydroperoxides, whose break-down products are the likely cause of off-flavours. Since oat had low LOX activity, autoxidation is needed to initiate lipid oxidation. Oat had high POX activity, which is able to convert hydroperoxides to epoxy and hydroxy fatty acids that could contribute significantly to off-flavours. POX activity in the faba bean was low. Thus, in faba bean volatile lipid oxidation products could rapidly be formed by LOX, whereas in oat reactions are slower due to the need of autoxidation prior to further reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel Growing Device Inspired by Plant Root Soil Penetration Behaviors
Sadeghi, Ali; Tonazzini, Alice; Popova, Liyana; Mazzolai, Barbara
2014-01-01
Moving in an unstructured environment such as soil requires approaches that are constrained by the physics of this complex medium and can ensure energy efficiency and minimize friction while exploring and searching. Among living organisms, plants are the most efficient at soil exploration, and their roots show remarkable abilities that can be exploited in artificial systems. Energy efficiency and friction reduction are assured by a growth process wherein new cells are added at the root apex by mitosis while mature cells of the root remain stationary and in contact with the soil. We propose a new concept of root-like growing robots that is inspired by these plant root features. The device penetrates soil and develops its own structure using an additive layering technique: each layer of new material is deposited adjacent to the tip of the device. This deposition produces both a motive force at the tip and a hollow tubular structure that extends to the surface of the soil and is strongly anchored to the soil. The addition of material at the tip area facilitates soil penetration by omitting peripheral friction and thus decreasing the energy consumption down to 70% comparing with penetration by pushing into the soil from the base of the penetration system. The tubular structure provides a path for delivering materials and energy to the tip of the system and for collecting information for exploratory tasks. PMID:24587244
Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio
2013-10-01
Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000μgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.
Andrade, L F; Davide, L C; Gedraite, L S
2010-05-01
SPL (spent pot liner) is a solid waste produced by the aluminum industry. This waste has a highly variable composition, consisting of cyanides, fluorides, organics, and metals. The aim of this work was to study the effect of SPL on root tips of Lactuca sativa using current plant bioassays. We observed a decrease in the germination rate with increasing concentrations of SPL. In addition, SPL was found to reduce root growth, which is correlated with a decrease in the mitotic index. Nevertheless, we noticed a significant enhancement in the percentage of stickiness, c-metaphase, anaphase bridges, and laggard chromosomes in dividing cells and also an increase in the number of cells with condensed nuclei. Moreover, SPL was found to alter the root tip surface, resulting in a reduction in the amount of root hair. These results demonstrate that SPL is a toxic agent that leads to cell damage and disturbance. Copyright 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunleavy, H.; Mack, M. C.
2017-12-01
The role of ectomycorrhizae (ECM) in Arctic nutrient cycling may be changing as temperature, nutrient availability, and ECM shrub abundance and size increase. A shift in ECM function has been proposed as a possible mechanism for shrub expansion. While several studies demonstrate a higher abundance of ECM as well as community compositional shifts in response to long-term experimental warming and fertilization, direct measurements of functional responses are missing. To understand the potential role of ECM in soil biogeochemical processes of the changing Arctic, we investigated the functional response of ECM to 30 years of summer warming and increased nutrient availability by measuring potential activities of extracellular enzymes associated with nitrogen (N) and phosphorous (P) acquisition on ECM root tips. We hypothesize ECM enzyme activities will be higher with warmer temperatures. Conversely, fertilization will lower ECM enzyme activities as N and P become less limiting to host plants. Preliminary results strongly support our latter hypothesis, but not the first. Warming decreased hydrolytic P-associated and labile N-associated enzyme activities on individual root tips (pmol/min/mm2 root tip) by 30% and 83%, respectively. However, warming increased ECM abundance and did not alter community-level activities (pmol/min/cm3 soil). Fertilization decreased hydrolytic and oxidative enzymatic activities on individual root tips by 34 to 80% as well as on a community level by 67 to 93%, even though ECM shrubs were almost monodominant. The combined effect of warming and fertilization decreased labile N-associated enzyme activity by 82%, but had little effect on oxidative and other hydrolytic enzyme activities. Although both warming and fertilization decreased root tip activities, reflecting a potential reduction in plant allocation to mycorrhizal nutrient acquisition, only fertilization lowered rates of ECM nutrient cycling. The indirect relationship between ECM abundance and individual root tip activity highlights the importance of measuring ECM function to assess the role of this symbiosis in nutrient cycling.
Gunawardena, C K; Zijlstra, R T; Beltranena, E
2010-02-01
Most pulse (nonoilseed legume) seed flours can be fractionated rapidly and economically by air classification into protein and starch concentrates. The nutritional value of air-classified field pea and faba bean concentrates requires characterization to assess the feeding opportunity for pigs. Thus, the objectives were to characterize the apparent total tract digestibility (ATTD) of DM, OM, energy, starch, CP, fat, and ash; apparent ileal digestibility of CP and starch; standardized ileal digestibility (SID) of AA; and the SID AA, DE, and NE content of air-classified zero-tannin faba bean and field pea protein and starch concentrates in grower pigs. Pulse protein and starch concentrates were compared with soy protein concentrate and corn starch, respectively, as corresponding standards. The corn starch diet served as an N-free diet to correct for basal endogenous AA losses. In a Youden square design, 8 ileal-cannulated barrows (24.9 +/- 2.3 kg of BW) were fed 6 diets over 7 periods at 3 times the maintenance DE requirement. Periods encompassed a 5-d diet acclimation, 3-d feces collection, and 3-d ileal digesta collection. The ATTD of GE was 2% greater (P < 0.05) for faba bean than soy and was intermediate for field pea protein (95.6, 93.7, and 94.9%, respectively). The ATTD of GE was 3.6% greater (P < 0.05) for corn and field pea than faba bean starch (96.2, 95.1, and 92.3%, respectively). The DE content of faba bean was 5.0% greater (P < 0.05) than for field pea or soy protein (4.47, 4.23, and 4.26 Mcal/kg, respectively). The DE content of faba bean and field pea was 1.7% greater (P < 0.05) than for corn starch (3.72, 3.77, and 3.68 Mcal/kg, respectively). The NE content was 5% greater (P < 0.05) for faba bean than field pea and soy protein (3.08, 2.94, and 2.92 Mcal/kg, respectively). The NE content for field pea starch was 2.0% greater (P < 0.05) than for corn starch and faba bean starch (2.68, 2.63, and 2.61 Mcal/kg, respectively). Protein concentrates had a 14 and 11% greater (P < 0.05) DE and NE content, respectively, than starch concentrates. The SID of Lys was 6.0% greater (P < 0.05) for faba bean and field pea protein than soy protein (95.5, 92.6, and 88.7%, respectively). The SID of Lys was 6.0% greater (P < 0.05) for faba bean than field pea starch. Nutrient digestibility and digestible nutrient profiles indicated that air-classified fractions of zero-tannin faba bean and field pea constitute concentrated sources of AA and energy for pigs with high nutritional demands.
Zeleznik, P; Hrenko, M; Then, C; Koch, N; Grebenc, T; Levanic, T; Kraigher, H
2007-03-01
Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital mycorrhizal root tips, fine root (mass) density, root tip density per surface, root area index, concentration of Zn, and Ca/Al ratio. Due to the general reduction in root growth indices and nutrient cycling in ozone-fumigated plants, alterations in soil carbon pools could be predicted.
Floating retained root lesion mimicking apical periodontitis.
Chung, Ming-Pang; Chen, Chih-Ping; Shieh, Yi-Shing
2009-10-01
A case of a retained root tip simulating apical periodontitis on radiographic examination is described. The retained root tip, originating from the left lower first molar, floated under the left lower second premolar apical region mimicking apical periodontitis. It appeared as an ill-defined periapical radiolucency containing a smaller radiodense mass on radiograph. The differential diagnosis included focal sclerosing osteomyelitis (condensing osteitis) and ossifying fibroma. Upon exicisional biopsy, a retained root associated with granulation tissue was found. After 1-year follow-up, the patient was asymptomatic and the periradicular lesion was healing. Meanwhile, the associated tooth showed a normal response to stimulation testing.
Zhang, Ping-juan; Chen, Wen-xia; Zeng, Qi-xin; Xie, Fang-fang
2013-04-01
To compare the cleanliness of root end preparations by using ultrasonic instrumentation and slow-speed handpiece. Thirty-two mesial roots of the first mandibular molars with two canals and mature root apices were assigned randomly to 2 groups, each group had 16 teeth. The root-end preparations were made respectively using ultrasonic diamond tip Berutti and NiTi tip RE2 and slow-speed handpiece with No.2 round bur. Root end cavities were examined under scanning electron microscope for further evaluation of the superficial debris and smear layer of the root end preparations. SPSS 13.0 software package was used for Kruskal Wallis test. Ultrasonic preparation had significantly less superficial debris and smear layer than slow-speed handpiece preparation (P<0.05). Ultrasonic instrument creates cleaner surfaces for root end cavities than slow-speed handpiece preparation in posterior teeth root end preparation.
Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells.
Abdelsalam, Nader R; Abdel-Megeed, Ahmed; Ali, Hayssam M; Salem, Mohamed Z M; Al-Hayali, Muwafaq F A; Elshikh, Mohamed S
2018-07-15
The distribution and use of nanoparticles have rapidly increased over recent years, but the available knowledge regarding their mode of action, ecological tolerance and biodegradability remains insufficient. Wheat (Triticum aestivum L.) is the most important crop worldwide. In the current study, the effects of silver nanoparticles (AgNPs) obtained from two different sources, namely, green and chemical syntheses, on chromosomal aberrations and cell division were investigated. Wheat root tips were treated with four different AgNP concentrations (10, 20, 40 and 50 ppm) for three different exposure durations (8, 16 and 24 h), and the different concentrations of the nanoparticles were added to the tested grains until the root lengths reached 1.5-2 cm. For each concentration, the mitotic indexes (%) were obtained from an analysis of ~ 2000 cells. The treated root-tip cells exhibited various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase, fragmentation, scattering, unequal separation, scattering, chromosomal gaps, multipolar anaphase, erosion, and distributed and lagging chromosomes. These results demonstrate that the root tip cells of wheat can readily internalize the AgNPs and that the internalized AgNPs can interfere with the cells' normal function. Copyright © 2018 Elsevier Inc. All rights reserved.
Heneberg, Petr; Faltýnková, Anna; Bizos, Jiří; Malá, Milena; Žiak, Juraj; Literák, Ivan
2015-02-08
The cutaneous monostome trematode Collyriclum faba (Bremser in Schmalz, 1831) is a bird parasite with a hitherto unknown life cycle and highly focal occurrence across the Holarctic and Neotropic ecozones. Representative specimens of benthic organisms were sampled at multiple sites and dates within the known foci of C. faba occurrence in Slovakia. A combined approach involving detailed morphological examination and sequencing of two independent DNA loci was used for their analysis. We elucidated the complete life cycle of C. faba, which we determined to include the aquatic gastropod mollusk Bythinella austriaca (Frauenfeld, 1857) as the first intermediate host, the mayflies of the family Heptageniidae, Ecdyonurus venosus (Fabricius, 1775) and Rhithrogena picteti Sowa, 1971 x iridina (Kolenati, 1839), as the second intermediate hosts, and birds (primarily but not exclusively passeriform birds) as the definitive hosts. Bythinella austriaca occurs focally in the springs of tributaries of the Danube in the Alpine-Carpathian region. The restricted distribution of B. austriaca explains the highly focal distribution of C. faba noticed previously in spite of the broad distribution of its second intermediate and definitive host species. Utilization of both larval and adult Ephemeroptera spp. as the second intermediate hosts explains the known spectrum of the definitive host species, with the highest prevalence in species feeding on larvae of Ephemeroptera, such as Cinclus cinclus (Linnaeus, 1758) and Motacilla cinerea Tunstall, 1771, or adults of Ephemeroptera, such as Sylvia atricapilla (Linnaeus, 1758) and Regulus regulus (Linnaeus, 1758). In this study, we also determine the prevalence and DNA sequences of other immature trematode specimens found in the examined benthic organisms (particularly the families Microphallidae, Troglotrematidae and Nanophyetidae and Euryhelmis zelleri Grabda-Kazubska, 1980, Heterophyidae), and describe cercariae of C. faba. We determined the full life cycle of the Central European populations of C. faba. We speculate that other species of Bythinella and the closely related genus Amnicola may serve as first intermediate hosts in other parts of the distribution range of C. faba. Similarly, other Ephemeroptera of the family Heptageniidae may serve as the second intermediate hosts of C. faba in the Americas.
New theories of root growth modelling
NASA Astrophysics Data System (ADS)
Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry
2016-04-01
In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way, we were able to simulate root growth and root water uptake in soil with macropores. The model was parametrized using experimental results of studies by Hirth et al. (2005) and Stirzaker et al. (1996). It proved to be capable of reproducing observed root growth responses to structured soil both at the single root and the plant root system scale. This new approach enables us to investigate how plant roots use macropores to gain access to water and nutrient reservoirs in deeper, highly dense soil layers. Acknowledgements: Funding by German Research Foundation within the Research Unit 888 is gratefully acknowledged. The James Hutton Institute receives funding from the Scottish Government.
A Finite Element Analysis of a Carbon Fiber Composite Micro Air Vehicle Wing
2012-03-22
3. Errors in the manufacturing of the laminate resulting in errors in ply orientation. Each of these was examined in order to determine a root ...material properties. 4.2.4. Vein Width The widths of the individual veins of the manufactured wing were varied linearly from root to tip of the...wing. In the sizing of the engineered wing, the width of the veins were varied linearly from the root of the vein to the tip. For manufacturing
Aluminum fractions in root tips of slash pine and loblolly pine families differing in Al resistance
Jaroslaw Nowak; Alexander L. Friend
2005-01-01
Aluminum (Al) distribution among several cellular fractions was investigated in root tips of seedlings of one Al-resistant and one Al-sensitive family of slash pine (Pinus elliottii Engelm.) and loblolly pine (Pinus taeda L.) grown in nutrient solution containing 100 M AlCl3 (pH 4) for 167 h....
Theoretical parametric study of the relative advantages of winglets and wing-tip extensions
NASA Technical Reports Server (NTRS)
Heyson, H. H.; Riebe, G. D.; Fulton, C. L.
1977-01-01
It was found that for identical increases in bending moment, a winglet provides a greater gain in induced efficiency than a tip extension. Winglet toe-in angle allows design trades between efficiency and root moment. A winglet showed the greatest benefit when the wing loads were heavy near the tip. Washout diminished the benefit of either tip modification, and the gain in induced efficiency became a function of lift coefficient; heavy wing loadings obtained the greatest benefit from a winglet, and low speed performance was enhanced even more than cruise performance. Both induced efficiency and bending moment increased with winglet length and outward cant. The benefit of a winglet relative to a tip extension was greatest for a nearly vertical winglet. Root bending moment was proportional to the minimum weight of bending material required in the wing; it is a valid index of the impact of tip modifications on a new wing design.
Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions
NASA Technical Reports Server (NTRS)
Heyson, H. H.; Riebe, G. D.; Fulton, C. L.
1977-01-01
For identical increases in bending moment, a winglet provides a greater gain in induced efficiency than tip extension. Winglet toe angle allows design trades between efficiency and root moment. A winglet shows the greatest benefit when the wing loads are heavy near the tip. Washout diminishes the benefit of either tip modification, and the gain in induced efficiency becomes a function of lift coefficient; thus, heavy wing loadings obtain the greatest benefit from a winglet, and low-speed performance is enhanced even more than cruise performance. Both induced efficiency and bending moment increase with winglet length and outward cant. The benefit of a winglet relative to a tip extension is greatest for a nearly vertical winglet. Root bending moment is proportional to the minimum weight of bending material required in the wing; thus, it is a valid index of the impact of tip modifications on a new wing design.
Cortés-Eslava, Josefina; Gómez-Arroyo, Sandra; Risueño, Maria C; Testillano, Pilar S
2018-05-02
The ubiquity of pollutants, such as agrochemicals and heavy metals, constitute a serious risk to human health. To evaluate the induction of DNA damage and programmed cell death (PCD), root cells of Allium cepa and Vicia faba were treated with two organophosphate insecticides (OI), fenthion and malathion, and with two heavy metal (HM) salts, nickel nitrate and potassium dichromate. An alkaline variant of the comet assay was performed to identify DNA breaks; the results showed comets in a dose-dependent manner, while higher concentrations induced clouds following exposure to OIs and HMs. Similarly, treatments with higher concentrations of OIs and HMs were analyzed by immunocytochemistry, and several structural characteristics of PCD were observed, including chromatin condensation, cytoplasmic vacuolization, nuclear shrinkage, condensation of the protoplast away from the cell wall, and nuclei fragmentation with apoptotic-like corpse formation. Abiotic stress also caused other features associated with PCD, such as an increase of active caspase-3-like protein, changes in the location of cytochrome C (Cyt C) toward the cytoplasm, and decreases in extracellular signal-regulated protein kinase (ERK) expression. Genotoxicity results setting out an oxidative via of DNA damage and evidence the role of the high affinity of HM and OI by DNA molecule as underlying cause of genotoxic effect. The PCD features observed in root cells of A. cepa and V. faba suggest that PCD takes place through a process that involves ERK inactivation, culminating in Cyt C release and caspase-3-like activation. The sensitivity of both plant models to abiotic stress was clearly demonstrated, validating their role as good biosensors of DNA breakage and PCD induced by environmental stressors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare).
Ligaba, Ayalew; Katsuhara, Maki; Shibasaka, Mineo; Djira, Gemechis
2011-02-01
In one of the most important crops, barley (Hordeum vulgare L.), gene expression and physiological roles of most major intrinsic proteins (MIPs) remained to be elucidated. Here we studied expression of five tonoplast intrinsic protein isoforms (HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP4;1), a NOD26-like intrinsic protein (HvNIP2;1) and a plasma membrane intrinsic protein (HvPIP2;1) by using the quantitative real-time RT-PCR. Five-day-old seedlings were exposed to abiotic stresses (salt, heavy metals and nutrient deficiency), abscisic acid (ABA) and gibberellic acid (GA) for 24 h. Treatment with 100 mM NaCl, 0.1 mM ABA and 1 mM GA differentially regulated gene expression in roots and shoots. Nitrogen and prolonged P-deficiency downregulated expression of most MIP genes in roots. Intriguingly, gene expression was restored to the values in the control three days after nutrient supply was resumed. Heavy metals (0.2 mM each of Cd, Cu, Zn and Cr) downregulated the transcript levels by 60-80% in roots, whereas 0.2 mM Hg upregulated expressions of most genes in roots. This was accompanied by a 45% decrease in the rate of transpiration. In order to study the physiological role of the MIPs, cDNA of three genes (HvTIP2;1, HvTIP2;3 and HvNIP2;1) have been cloned and heterologous expression was performed in Xenopus laevis oocytes. Osmotic water permeability was determined by a swelling assay. However, no water uptake activity was observed for the three proteins. Hence, the possible physiological role of the proteins is discussed. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Molecular characterization of faba bean necrotic yellows viruses in Tunisia.
Kraberger, Simona; Kumari, Safaa G; Najar, Asma; Stainton, Daisy; Martin, Darren P; Varsani, Arvind
2018-03-01
Faba bean necrotic yellows virus (FBNYV) (genus Nanovirus; family Nanoviridae) has a genome comprising eight individually encapsidated circular single-stranded DNA components. It has frequently been found infecting faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) in association with satellite molecules (alphasatellites). Genome sequences of FBNYV from Azerbaijan, Egypt, Iran, Morocco, Spain and Syria have been determined previously and we now report the first five genome sequences of FBNYV and associated alphasatellites from faba bean sampled in Tunisia. In addition, we have determined the genome sequences of two additional FBNYV isolates from chickpea plants sampled in Syria and Iran. All individual FBNYV genome component sequences that were determined here share > 84% nucleotide sequence identity with FBNYV sequences available in public databases, with the DNA-M component displaying the highest degree of diversity. As with other studied nanoviruses, recombination and genome component reassortment occurs frequently both between FBNYV genomes and between genomes of nanoviruses belonging to other species.
Purves, Randy W; Khazaei, Hamid; Vandenberg, Albert
2018-02-01
Faba bean (Vicia faba L.) provides environmental and health benefits; however, the presence of the pyrimidine glycosides vicine and convicine (v-c) in its seeds limits consumption. Low v-c genotypes have been introduced, but the convicine levels in these genotypes have not been quantified. To improve detection, the polar nature of v-c was exploited by implementing hydrophilic interaction liquid chromatography (HILIC). A sample preparation method using a two-step extraction was developed for use with UV and/or tandem mass spectrometry (SRM) detection. The HILIC-UV method was suitable for over three orders of magnitude, covering the range of v-c concentrations in faba bean seeds across all genotypes tested. The linear range of HILIC-SRM was slightly less (∼3 orders of magnitude), but improved sensitivity and selectivity make it more suitable for quantifying low v-c samples. The analysis of 13 genotypes suggests that v-c concentrations in faba bean seeds may be independent quantitative traits. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling
2015-01-01
The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat. PMID:25631933
Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling
2015-01-29
The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat.
Treatments for reducing total vicine in Egyptian faba bean (Giza 2 variety).
Abd Allah, M A; Foda, Y H; Abu Salem, F M; Abd Allah, Z S
1988-01-01
The response of faba bean 'Vicia faba' (Giza 2 variety) towards soaking conditions differed greatly since the absorbed quantities of water (either by the whole or the decorticated forms) are a function of their chemical constituents. On the other hand, 28.45% of the total vicine (vicine & convicine) present in the whole faba bean samples was extracted after soaking for 72 h at room temperature. Subsequently, other soaking mediums, i.e., 0.5% sodium carbonate and/or 1% acetic acid were used in an attempt to increase the level of vicine elimination. Percentage removal of total vicine in whole faba bean was higher in the acidic (61.31%) than the alkaline (38.40%) medium under the conditions tested, i.e., at room temperature for 72 hours. The rates of vicine + convicine elimination in decorticated faba bean for the acidic acid and alkaline soaking media were 78.46 and 79.13%, respectively. The solubility ratio of total vicine relative to soaking solutions (H2O:Na2CO3:Acetic acid) was 1:1.35:2.16 in the whole broad bean and 1:2.41:2.39 in the decorticated samples. The residual amounts of total vicine (78.33% and 77.27%) present after stewing under normal and under pressure cooking conditions could be expected to be decreased to 30.33% for the former and 29.92% for the later after 72 h of soaking. Regression analysis was used to estimate the theoretical zero point of vicine elimination from faba bean through soaking in 1% acetic acid.
Herron, Patrick M.; Gage, Daniel J.; Arango Pinedo, Catalina; Haider, Zane K.; Cardon, Zoe G.
2013-01-01
The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to) environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constitutive promoter nptII and luxCDABE (coding for light-emitting proteins) from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L.), black poplar (Populus nigra L.), or tomato (Solanum lycopersicum L.) was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1–4 and 20–35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots. PMID:24032034
Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei
2017-01-01
It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase (XTH-32) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW. PMID:29311970
Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei
2017-01-01
It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase ( XTH-32 ) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW.
Li, Yang; Li, Qi; Hong, Qiang; Lin, Yichun; Mao, Wang; Zhou, Shumin
2018-05-01
Programmed cell death (PCD) plays a positive role in the systemic response of plants to pathogen resistance. It has been confirmed that local tobacco mosaic virus (TMV) infecting tomato leaves can induce systemic PCD process in root-tip tissues. But up to now the underlying physiological mechanisms are poorly understood. This study focused on the detailed investigation of the physiological responses of root-tip cells during the initiation of systemic PCD. Physiological, biochemical examination and cytological observation showed that 1 day post-inoculation (dpi) of TMV inoculation there was an increase in calcium fluorescence intensity in root tip tissue cells. Then at 2 dpi, 4 dpi, 8 dpi and 15 dpi, the fluorescence intensity of calcium ion continued to increase. However, at 5 dpi, the reactive oxygen species (ROS) began to accumulate in the root-tip cells. And finally at 20 dpi, the obvious PCD reaction was detected. In addition, the experimental results also showed that the above process involved the elevation of two types of intracellular Ca 2+ , including cytoplasmic calcium ([Ca 2+ ] cyt ) and nuclear calcium ([Ca 2+ ] nuc ). The [Ca 2+ ] cyt , as a pilot signal could lead to the subsequent elevation of intracellular ROS concentration. Then, the high levels of ROS stimulated an increase of [Ca 2+ ] nuc and eventually caused PCD reactions in the root-tip tissues. In particular, the high level of nuclear calcium is an essential mediator in systemic PCD of plants. Copyright © 2018 Elsevier B.V. All rights reserved.
[Introduction of hexaploid of Chinese narcissus and analysis of its chromosome change].
Wang, Rui; Zhang, Ya Nan; Wang, Ya Ying; Tian, Hui Qiao
2007-06-01
Anthers of Chinese narcissus (Narcissus tazetta L. var chinesis Roem) were used as explants for callus induction and plant regeneration. About 80% anthers produced callus and 28% of the callus differentiated out bulbs, making a good experiment system of tissue culture of Chinese narcissus for further cellular and gene engineering. The 700 callus were treated by 0.5% colchicin for 5-6 days and then transformed into a MS medium containing 3 mg/L 6-BA to induce differentiation. 90 bulbs were obtained and 55 bulbs among them were checked the chromosome number from their root tips for three times. 29 bulbs (53%, 29/55) still kept triploidy and the most cells of root tips contained 30 chromosomes. 22 bulbs (40%, 22/55) displayed aneuploidy and the most cells of its root tips contained 10-50 chromosomes. 4 bulbs displayed hexaploidy and contained 60 chromosomes. After three months growing, the cells of root tips containing aneuploidy chromosomes disappeared, and the bulbs became triploidy. The chromosomes of 4 hexaploidy bulbs did not changed during three checks. The origin and disappearance of aneuploidy cells of Chinese narcissus after treated by colchicin were discussed.
Initiation and elongation of lateral roots in Lactuca sativa
NASA Technical Reports Server (NTRS)
Zhang, N.; Hasenstein, K. H.
1999-01-01
Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.
Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.
2012-01-01
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022
Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J
2012-03-20
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe
2007-11-01
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.
Gunawardena, C K; Zijlstra, R T; Goonewardene, L A; Beltranena, E
2010-08-01
Air-classified pulse (non-oilseed legume) protein and starch may replace specialty protein and starch feedstuffs in diets for weaned pigs. In Exp. 1, three specialty protein sources (5% soy protein concentrate, 5% corn gluten meal, and 5% menhaden meal in the control diet) were replaced with 16% zero-tannin hulled or dehulled faba bean, or 17.5% field pea protein concentrate. In total, 192 group-housed pigs (2 gilts and 2 barrows per pen; BW = 7.5 +/- 1.4 kg) were fed wheat-based diets (3.60 Mcal/kg of DE and 3.3 g of standardized ileal digestible Lys/Mcal DE) over 28 d for 12 pen observations per each of 4 diets. Overall, protein source did not affect ADFI, ADG, or G:F. Apparent total tract digestibility (ATTD) of DM, GE, and P was greater (P < 0.05) for dehulled faba bean and field pea protein concentrate diets than the diet with 3 specialty protein sources. In Exp. 2, faba bean and field pea starch concentrates were compared with corn, wheat, tapioca, and potato starch as dietary energy sources. In total, 36 individually housed barrows (BW = 8.0 +/- 1.5 kg) were fed 1 of 6 diets for 15 d. Feces and urine were collected from d 8 to 14, and jugular blood was sampled after overnight fast and refeeding on d 15. Starch source did not affect N retention as a percentage of N intake. For d 0 to 14, ADFI of pigs fed field pea starch was greater (P < 0.05) than pigs fed corn, wheat, potato, and faba bean starch. Pigs fed tapioca, field pea, wheat, or corn starch grew faster (P < 0.05) than those fed faba bean or potato starch. For d 0 to 14, pigs fed corn or wheat starch had a 0.1 greater (P < 0.05) G:F than pigs fed faba bean, field pea, or potato starch. The ATTD of DM, GE, CP, and starch and the DE value of potato starch were much less (P < 0.05) than those of other starch diets. Postprandial plasma glucose was 4.9, 6.3, and 9 mmol/L greater (P < 0.05) for pigs fed tapioca than for pigs fed faba bean, wheat, and potato starch, respectively. However, postprandial plasma insulin tended to be 844 and 577 pmol/L greater (P < 0.10) for pigs fed faba bean and corn starch, respectively, than for pigs fed potato starch. The high insulin response of pigs fed faba starch could not be explained. In conclusion, air-classified pulse protein concentrates can replace specialty protein feedstuffs in diets for weaned pigs. Feeding air-classified pulse starch concentrates to starter pigs achieved a similar N retention as a percentage of N intake. The factors responsible for the reduced ADFI associated with feeding faba bean starch remain unclear.
Evidence from thymidine-3H-labeled meristems of Vicia faba of two cell populations.
Webster, P L; Davidson, D
1968-11-01
Treatments with tritiated thymidine (TdR-(3)H) have revealed the existence of two populations of mitotically active cells in meristems of lateral roots of Vicia faba. A rapidly dividing population, with a cycle time of 14 hr, constitutes about half the cells in the meristem. A second population of cells, with a cycle time in excess of 30 hr, is also present. Estimates of the relative size of this slowly dividing population are more difficult to make, but we calculate that this population includes 27-43% of meristem cells. The remaining fraction of the meristem is made up of cells that divide rarely or not at all. Since, at all times, both populations contribute to the mitotic index, the curve of the percentage of labeled mitoses that can be determined after a pulse label with TdR-(3)H differs from the curve expected of an ideal population in an important way: the peak value of the curve of the percentage of labeled mitoses is always less than 100%, usually between 75 and 80%. This heterogeneity within a meristem must be borne in mind in terms of the response of meristems to disruptive treatments, the mechanisms controlling mitotic cycle duration, and the spatial organization of a heterogeneous population in an organ that shows polarized growth.
Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina
2016-01-01
Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may control frost tolerance genes. The two genetic backgrounds were useful in detecting new variation for improving frost tolerance in winter faba bean. Of the five validated SNP markers, one (VF_Mt3g086600) was found to be associated with frost tolerance and FAC in both populations. This marker was also associated with winter hardiness and high yield in earlier studies. This marker is located in a gene of unknown function.
Sallam, Ahmed; Arbaoui, Mustapha; El-Esawi, Mohamed; Abshire, Nathan; Martsch, Regina
2016-01-01
Frost stress is one of the abiotic stresses that causes a significant reduction in winter faba bean yield in Europe. The main objective of this work is to genetically improve frost tolerance in winter faba bean by identifying and validating QTL associated with frost tolerance to be used in marker-assisted selection (MAS). Two different genetic backgrounds were used: a biparental population (BPP) consisting of 101 inbred lines, and 189 genotypes from single seed descent (SSD) from the Gottingen Winter bean Population (GWBP). All experiments were conducted in a frost growth chamber under controlled conditions. Both populations were genotyped using the same set of 189 SNP markers. Visual scoring for frost stress symptoms was used to define frost tolerance in both populations. In addition, leaf fatty acid composition (FAC) and proline content were analyzed in BPP as physiological traits. QTL mapping (for BPP) and genome wide association studies (for GWBP) were performed to detect QTL associated with frost tolerance. High genetic variation between genotypes, and repeatability estimates, were found for all traits. QTL mapping and GWAS identified new putative QTL associated with promising frost tolerance and related traits. A set of 54 SNP markers common in both genetic backgrounds showed a high genetic diversity with polymorphic information content (PIC) ranging from 0.31 to 0.37 and gene diversity ranging from 0.39 to 0.50. This indicates that these markers may be polymorphic for many faba bean populations. Five SNP markers showed a significant marker-trait association with frost tolerance and related traits in both populations. Moreover, synteny analysis between Medicago truncatula (a model legume) and faba bean genomes was performed to identify candidate genes for these markers. Collinearity was evaluated between the faba bean genetic map constructed in this study and the faba bean consensus map, resulting in identifying possible genomic regions in faba bean which may control frost tolerance genes. The two genetic backgrounds were useful in detecting new variation for improving frost tolerance in winter faba bean. Of the five validated SNP markers, one (VF_Mt3g086600) was found to be associated with frost tolerance and FAC in both populations. This marker was also associated with winter hardiness and high yield in earlier studies. This marker is located in a gene of unknown function. PMID:27540381
NASA Technical Reports Server (NTRS)
Mullen, J. L.; Ishikawa, H.; Evans, M. L.
1998-01-01
Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is < or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.
Genetic ablation of root cap cells in Arabidopsis
NASA Technical Reports Server (NTRS)
Tsugeki, R.; Fedoroff, N. V.
1999-01-01
The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.
Yang, Ching-Hong; Crowley, David E.
2000-01-01
Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status. PMID:10618246
UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.
Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund
2015-08-12
A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.
Genetic diversity of Palestine landraces of faba bean (Vicia faba) based on RAPD markers.
Basheer-Salimia, R; Shtaya, M; Awad, M; Abdallah, J; Hamdan, Y
2013-09-03
Until now, neither phenotypic nor molecular approaches have been used to characterize the landraces of Palestine faba beans (Vicia faba). We used PCR-based RAPD markers to determine the genetic diversity and relatedness among 26 Palestinian faba bean landraces (traditional farmers' varieties) from 8 localities in the West Bank, Palestine. In tests with 37 primers, 14 generated no polymorphic bands, 12 exhibited weak and unclear products, and 11 primers produced good amplification products with high intensity and pattern stability. Ninety-four DNA fragments (loci) were detected, with an average of 8.54 loci per primer and size ranging from 160 to 1370 bp. A minimum of 4 and a maximum of 14 DNA fragments were obtained using (OPA-05 and OPA-09) and (BC-261) primers, respectively. The maximum percentage of polymorphic markers was 71.4 (BC-298) and the minimum was 50.0 (OPA-05, -09, -16). The 11 primers exhibited relatively high collective resolving power (Rp) values of 26.316, and varied from 0.154 for the OPA-09 primer to 5.236 for the BC-261, with an overall mean of 2.392. The primers BC-261, -322, and -298 were found to be the most useful RAPD primers to assess the genetic diversity of Palestinian faba beans, as they revealed relatively high Rp rates (5.236, 3.618, and 3.150, respectively). Based on the Jaccard coefficient, the genetic distance ranged from 0.358 to 0.069, with a mean of 0.213. We conclude that the RAPD technique is useful for determining genetic diversity and for developing suitable fingerprints for faba bean landraces grown in Palestine.
Gasim, Seif; Hamad, Solafa A A; Abdelmula, Awadalla; Mohamed Ahmed, Isam A
2015-11-01
Faba beans (Vicia faba L.) represent an essential source of food protein for many people in Sudan, especially those who cannot afford to buy animal meat. The demand for faba bean seeds is greatly increased in recent years, and consequently its production area was extended southward where the climate is marginally suitable. Therefore, this study was aimed to evaluate seed yield and nutritional quality of five faba bean inbred lines grown under marginal environmental conditions of Sudan. The inbred lines have considerable (P ≤ 0.05) variability in yield and yield components, and seed chemical composition. The mean carbohydrate content was very high (501.1 g kg(-1)) and negatively correlated with seed yield, whereas the average protein content was relatively high (253.1 g kg(-1)) and positively correlated with seed yield. Globulin was the significant fraction (613.5 g kg(-1)protein) followed by albumin (200.2 g kg(-1)protein). Biplot analysis indicates that inbred lines Hudeiba/93-S5 and Ed-damar-S5 outscore other lines in terms of seed yield and nutritional quality. This study demonstrates that Hudeiba/93-S5 and Ed-damar-S5 are useful candidates in faba bean breeding program to terminate the protein deficiency malnutrition and provide healthy and nutritious meal for people living in subtropical areas.
Reciprocal trade of Carbon and Nitrogen at the root-fungus interface in ectomycorrhizal beech plants
NASA Astrophysics Data System (ADS)
Kaiser, Christina; Mayerhofer, Werner; Dietrich, Marlies; Gorka, Stefan; Schintlmeister, Arno; Reipert, Siegfried; Schweiger, Peter; Weidinger, Marieluise; Wiesenbauer, Julia; Martin, Victoria; Richter, Andreas; Woebken, Dagmar
2017-04-01
Plants deliver recently assimilated carbon (C) to mycorrhizal fungi, and receive nutrients, such as N and P, in exchange. A reciprocal exchange of C and nutrients between plants and mycorrhizal fungi (i.e., fungi which deliver more nutrients receive more plant C in return and vice versa) has been suggested for arbuscular mycorrhizal symbioses by some studies, but challenged by others. For ectomycorrhizal associations even less is known on how the exchange of C for nutrients is regulated, and whether it is based on reciprocity, or other controls. The aim of this study was to test the concept of reciprocal rewards between beech (Fagus sylvatica) and their associated ectomycorrhizal fungi on different scales, namely (a) across associations between individual root tips of beech and different fungal partners, and (b) at the subcellular scale at the plant-fungus interface. We exposed young beech trees associated with natural mycorrhizal fungal communities to a 13CO2 atmosphere and added 15N-labelled amino acids to a 'litter compartment', that mycorrhizal hyphae, but not plant roots could access. Plants were harvested within 2 days after application of 15N and less than one day after applying 13CO2. If the trading of C for N was reciprocal, we expect that 13C would be correlated to 15N across individual plant-fungal connections and at the subcellular scale within one mycorrhizal root tip, respectively. We collected individual mycorrhizal root-tips from 8 plants right after harvest, analyzed their 13C and 15N content by isotope-ratio mass spectrometry (EA-IRMS) and performed ITS sequencing to identify fungal communities associated with individual root tips. Selected mycorrhizal root tips were also prepared for nano-scale secondary ion mass spectrometry (NanoSIMS) to visualize the spatial distribution of 13C and 15N in cross-sections of mycorrhizal root-tips at the subcellular scale. Our results showed a significant, albeit weak correlation between 13C and 15N across collected mycorrhizal root-tips, the variability of which was seemingly influenced by fungal colonization pattern. Within a cross-section of an individual root-tip, however, NanoSIMS imaging revealed not only a high spatial heterogeneity of 13C and 15N across plant and fungal cells, but also a strong spatial correlation between 13C and 15N in both, plant cells and fungal cells of the Hartig Net, the fungal mantle and external hyphae. Intriguingly, individual 'hotspots' of external fungal hyphae that were highly enriched in 15N (delivering high amounts of the added 15N to the plant), were also always extraordinarily enriched in 13C (receiving more 13C in return). Our results provide first evidence for a reciprocal exchange of C for N between plants and ectomycorrhizal fungi at the subcellular scale. This indicates that a mechanism at the cellular level exists, that (i) either allows plants to direct their C flow into N-delivering parts of the mycorrhizal hyphal network or (ii) allow the fungus to 'draw' more C from the plant (develop a higher sink strength) when it has access to N. While such a mechanism still remains to be elucidated, our study shows, for the first time, direct evidence for its existence.
Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang
2008-05-01
We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.
75 FR 78932 - Federal Seed Act Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
....'', ``Broccoli-- Brassica oleracea L. var. botrytis L.'', ``Brussels sprouts--Brassica oleracea L. var. gemmifera...--Vicia faba L. var. faba'', ``Broccoli-- Brassica oleracea L. var. italica Plenck'', ``Brussels sprouts...
Osman, Asha Mohamed Ali; Hassan, Amro B; Osman, Gammaa A M; Mohammed, Nagat; Rushdi, Mohamed A H; Diab, Eiman E; Babiker, Elfadil E
2014-08-01
The effect of gamma irradiation (0.5 and 1.0 kGy) and/or cooking on the proximate composition, mineral content, tannin content, phytic acid content and the in vitro protein digestibility (IVPD) of two Sudanese faba bean cultivars (BB7-S1 and SH-S2) was investigated in the present study. The results obtained revealed that gamma irradiation and/or cooking treatments have slight effect in chemical composition and mineral content, while they caused significant (P ≤ 0.05) reduction on tannin content for both cultivars. Cooking of faba bean seeds also insignificantly (P ≤ 0.05) reduced phytic acid content for both cultivars, while irradiation process and/or cooking had fluctuated effect. For both cultivars, irradiation of seeds and/or cooking increased the in vitro protein digestibility (IVPD), with maximum value of IVPD (79.97%) obtained for cultivar BB7-S1. The results indicate that the treatments used in this study might improve the nutritive quality of faba bean seed due to reduction in antinutritional factors with a concomitant increase in IVPD.
Silicon uptake and transport is an active process in Cucumis sativus.
Liang, Yongchao; Si, Jin; Römheld, Volker
2005-09-01
Cucumis sativus is a species known to accumulate high levels of silicon (Si) in the tops, though the mechanism for its high Si uptake is little understood. In a series of hydroponic experiments, we examined uptake and xylem loading of Si in C. sativus along with Vicia faba at three levels of Si (0.085, 0.17 and 1.70 mm). Measured Si uptake in C. sativus was more than twice as high as calculated from the rate of transpiration assuming no discrimination between silicic acid and water in uptake. Measured Si uptake in V. faba, however, was significantly lower than the calculated uptake. Concentration of Si in xylem exudates was several-fold higher in C. sativus, but was significantly lower in V. faba compared with the Si concentration in external solutions, regardless of Si levels. Silicon uptake was strongly inhibited by low temperature and 2,4-dinitrophenol, a metabolic inhibitor, in C. sativus but not in V. faba. It can be concluded that Si uptake and transport in C. sativus is active and independent of external Si concentrations, in contrast to the process in V. faba.
Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank
2014-09-01
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Alpizar-Reyes, E; Castaño, J; Carrillo-Navas, H; Alvarez-Ramírez, J; Gallardo-Rivera, R; Pérez-Alonso, C; Guadarrama-Lezama, A Y
2018-03-01
Freeze-dried faba bean ( Vicia faba L.) protein adsorption isotherms were determined at 25, 35 and 40 °C and fitted with the Guggenheim-Anderson-de Boer model. The pore radius of protein was in the range of 0.87-6.44 nm, so that they were considered as micropores and mesopores. The minimum integral entropy ranged between 4.33 and 4.44 kg H 2 O/100 kg d.s., was regarded as the point of maximum of stability. The glass transition temperature of the protein equilibrated at the different conditions of storage was determined, showing that the protein remained in glassy state for all cases. The protein showed compact and rigid structures, evidenced by microscopy analysis.
Berson, Tobias; von Wangenheim, Daniel; Takáč, Tomáš; Šamajová, Olga; Rosero, Amparo; Ovečka, Miroslav; Komis, George; Stelzer, Ernst H K; Šamaj, Jozef
2014-09-27
Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. RabA1d is located in early endosomes/TGN and is involved in vesicle trafficking. RabA1d participates in both cell plate formation and root hair oscillatory tip growth. The specific GFP-RabA1d subcellular localization confirms a correlation between its specific spatio-temporal accumulation and local vesicle trafficking requirements during cell plate and root hair formation.
Jaeger; Lindow; Miller; Clark; Firestone
1999-06-01
We developed a technique to map the availability of sugars and amino acids along live roots in an intact soil-root matrix with native microbial soil flora and fauna present. It will allow us to study interactions between root exudates and soil microorganisms at the fine spatial scale necessary to evaluate mechanisms of nitrogen cycling in the rhizosphere. Erwinia herbicola 299R harboring a promoterless ice nucleation reporter gene, driven by either of two nutrient-responsive promoters, was used as a biosensor. Strain 299RTice exhibits tryptophan-dependent ice nucleation activity, while strain 299R(p61RYice) expresses ice nucleation activity proportional to sucrose concentration in its environment. Both biosensors exhibited up to 100-fold differences in ice nucleation activity in response to varying substrate abundance in culture. The biosensors were introduced into the rhizosphere of the annual grass Avena barbata and, as a control, into bulk soil. Neither strain exhibited significant ice nucleation activity in the bulk soil. Both tryptophan and sucrose were detected in the rhizosphere, but they showed different spatial patterns. Tryptophan was apparently most abundant in soil around roots 12 to 16 cm from the tip, while sucrose was most abundant in soil near the root tip. The largest numbers of bacteria (determined by acridine orange staining and direct microscopy) occurred near root sections with the highest apparent sucrose or tryptophan exudation. High sucrose availability at the root tip is consistent with leakage of photosynthate from immature, rapidly growing root tissues, while tryptophan loss from older root sections may result from lateral root perforation of the root epidermis.
Kumar, Sunil; Rai, Manoj K; Singh, Narender; Mangal, Manisha
2010-12-01
Shoot tips excised from in vitro proliferated shoots derived from nodal explants of jojoba [Simmondsia chinensis (Link) Schneider] were encapsulated in calcium alginate beads for germplasm exchange and distribution. A gelling matrix of 3 % sodium alginate and 100 mM calcium chloride was found most suitable for formation of ideal calcium alginate beads. Best response for shoot sprouting from encapsulated shoot tips was recorded on 0.8 % agar-solidified full-strength MS medium. Rooting was induced upon transfer of sprouted shoots to 0.8 % agar-solidified MS medium containing 1 mg l(-1) IBA. About 70 % of encapsulated shoot tips were rooted and converted into plantlets. Plants regenerated from encapsulated shoot tips were acclimatized successfully. The present encapsulation approach could also be applied as an alternative method of propagation of desirable elite genotype of jojoba.
Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin
2015-08-04
Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.
Yang, Zhimin; Chen, Yu; Hu, Baoyun; Tan, Zhiqun; Huang, Bingru
2015-01-01
Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.
Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol; Kim, Hyeon-Cheol
2014-11-01
The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.
Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol
2014-01-01
Objectives The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. Materials and Methods The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. Results There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Conclusions Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency. PMID:25383346
Wegi, Teklu; Tolera, Adugna; Wamatu, Jane; Animut, Getachew; Rischkowsky, Barbara
2017-12-19
A study was conducted to evaluate the varietal differences among faba bean straws and also to assess the potentials of faba bean straws supplemented with concentrate fed at the rate 70% straws and 30% concentrate mixture on feed intake, digestibility, body weight gain and carcass characteristics of the animals. Forty yearling Arsi-Bale sheep with initial body weight of 19.85+0.29 kg (mean + SD were grouped in a randomized complete block design into eight blocks of five animals each based on their initial body weight. Straws include in the study were from Mosisa (T1M), Walki (T2W), Degaga (T3D), Shallo (T4S) and local (T5L) varieties of faba bean and concentrate (2:1 ratio of wheat bran to "noug" seed cake). The experiment consisted of seven days of digestibility and 90 days of feeding trials followed by evaluation of carcass parameters at the end. Local variety had lower (P<0.05) in grain and straw yield compared to improved varieties but higher in crude protein, metabolizable energy contents and in vitro organic matter digestibility. The apparent digestibility of dry matter and crude protein of sheep fed Walki and Mosisa straws were higher than (P<0.05) straws from Shallo varieties. Sheep fed Walki straw had greater (P<0.05) dry matter intake, average daily gain and feed conversion efficiency than sheep fed local and Shallo straws. Slaughter body weight and empty body weight were higher (P<0.05) for sheep fed Mosisa and Walki straws as compared to sheep fed Shallo straws. Apart from this, the other carcass components were not affected (P>0.05) by variety of the faba bean straws. There is significant varietal differences between faba bean straws both in quality and quantity. Similarly, significant variation observed among sheep in feed intake, digestibility, body weight gain and feed conversion efficiency among sheep fed different straws of faba bean varieties with concentrate supplement. Based on these results, Walki and Mosisa varieties could be recommended as pulse crop rotation with cereals in the study area.
Wang, Jian-hong; Zhang, Xian; Cao, Kai; Hua, Jin-wei
2015-05-01
A field experiment was conducted on paddy soil derived from alluvial materials at Bihu Town, Lishui City, Zhejiang Province, China to explore the effects of combined application of faba bean fresh straw and different-rate chemical fertilizer on nutrient uptake, nutrient use efficiencies, and yields of single cropping late rice and to determine the optimal rate of chemical fertilizer under the condition of application of faba bean fresh straw at the rate of 15 t · hm(-2) (GM15) in 2012, April to December. The experiments consisted of 7 treatments: CK (no fertilizers) , CF (conventional chemical fertilizer rate) , and combined application of 15 t · hm(-2) of faba bean fresh straw and 0%, 20%, 40%, 60% and 80% of the conventional chemical fertilizer rate. The results showed that the highest total uptake amounts of N, P and K by the aboveground part were obtained from the treatments of GM15 + 60%CF and GM15 + 80% CF, but the highest nutrient agronomy use efficiencies of N, P and K in rice grains were obtained from the treatments of GM15 + 60% CF and GM15 + 40% CF. The agronomy use efficiencies and physiological use efficiencies of N, P, and K were significantly correlated with rice grain yields, thus they could be used for accurate comprehensive evaluation of fertilizer efficiencies of N, P, and K. Compared with no fertilizer treatment, the treatments of 100% CF and combined application of faba bean fresh straw and different-rate chemical fertilizer increased rice gain yields by 25.0% and 6.1%-29.2%, respectively. In the cropping system of faba bean-single cropping late rice, returning of 15 t · hm2 faba bean fresh straw to the paddy field did not result in the runt seedling of rice. From the point of improving fertilizer use efficiency and reducing environmental risk perspective, the optimum rate of chemical fertilizer was 60% of the conventional chemical fertilizer rate when 15 t · h(-2) of faba bean fresh straw was applied.
Bone condition of the maxillary zygomatic process prior to orthodontic anchorage plate fixation.
Präger, T M; Brochhagen, H G; Mischkowski, R; Jost-Brinkmann, P G; Müller-Hartwich, R
2015-01-01
The clinical success of orthodontic miniplates depends on the stability of the miniscrews used for fixation. For good stability, it is essential that the application site provides enough bone of good quality. This study was performed to analyze the amount of bone available for orthodontic miniplates in the zygomatic process of the maxilla. We examined 51 dental CT scans (Somatom Plus 4; Siemens, Erlangen, Germany) obtained from 51 fully dentate adult patients (mean age 24.0 ± 8.1 years; 27 male and 24 female) prior to third molar surgery. The amount of bone in the zygomatic process region at the level of the first molar root tips and at several other cranial levels as far as 15 mm from the root tips was measured Bone thickness at the root tip level averaged 4.1 ± 1.0 mm; the lowest value measured at this level in any of the patients was 2.7 mm. Bone thickness averaged 8.3 ± 1.0 mm at 15 mm cranial to the root tips; 6.9 mm was the lowest value. The zygomatic process appears to provide sufficient bone to accommodate screws for miniplate fixation. While some patients may possess a borderline amount of bone at more caudal levels, lack of volume is not a problem near the zygomatic bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less
Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I
2010-06-01
In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.
Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; ...
2016-09-19
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less
Fan, Ling; Linker, Raphael; Gepstein, Shimon; Tanimoto, Eiichi; Yamamoto, Ryoichi; Neumann, Peter M.
2006-01-01
Water deficit caused by addition of polyethylene glycol 6000 at −0.5 MPa water potential to well-aerated nutrient solution for 48 h inhibited the elongation of maize (Zea mays) seedling primary roots. Segmental growth rates in the root elongation zone were maintained 0 to 3 mm behind the tip, but in comparison with well-watered control roots, progressive growth inhibition was initiated by water deficit as expanding cells crossed the region 3 to 9 mm behind the tip. The mechanical extensibility of the cell walls was also progressively inhibited. We investigated the possible involvement in root growth inhibition by water deficit of alterations in metabolism and accumulation of wall-linked phenolic substances. Water deficit increased expression in the root elongation zone of transcripts of two genes involved in lignin biosynthesis, cinnamoyl-CoA reductase 1 and 2, after only 1 h, i.e. before decreases in wall extensibility. Further increases in transcript expression and increased lignin staining were detected after 48 h. Progressive stress-induced increases in wall-linked phenolics at 3 to 6 and 6 to 9 mm behind the root tip were detected by comparing Fourier transform infrared spectra and UV-fluorescence images of isolated cell walls from water deficit and control roots. Increased UV fluorescence and lignin staining colocated to vascular tissues in the stele. Longitudinal bisection of the elongation zone resulted in inward curvature, suggesting that inner, stelar tissues were also rate limiting for root growth. We suggest that spatially localized changes in wall-phenolic metabolism are involved in the progressive inhibition of wall extensibility and root growth and may facilitate root acclimation to drying environments. PMID:16384904
Hennion, Nils; Durand, Mickael; Vriet, Cécile; Doidy, Joan; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie
2018-04-28
In plants, root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars towards these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, SUT/SUC and SWEET) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors. This article is protected by copyright. All rights reserved.
Martínez-Velasco, Alejandro; Lobato-Calleros, Consuelo; Hernández-Rodríguez, Blanca E; Román-Guerrero, Angélica; Alvarez-Ramirez, Jose; Vernon-Carter, E Jaime
2018-06-01
Response surface methodology was used for establishing the amplitude (72.67%) and time (17.29 min) high-intensity ultrasound (HIUS) conditions leading to an optimized faba bean protein isolate (OFPI) with lower interfacial tension, zeta potential and viscosity, and higher solubility than native faba bean protein isolate (NFPI). OFPI showed significantly higher adsorption dynamics at the air-water interface, and produced foam with significant smaller bubble diameter, higher overrun, stability and yield stress, and lower liquid drainage than NFPI. Fourier Transform Spectroscopy (FT-IR) revealed that the secondary structure of OFPI deferred from NFPI in terms of increases in β conformations (6.61% β-sheet, 19.6% β-turn, 0.8% anti-parallel β-sheet) and decreases in inter-molecular aggregates (43.54%). Multienzyme study pinpointed that the structural changes could have induced a decrease on the relative protein digestibility of OFPI respect that of NFPI. The results of this work demonstrate that HIUS technology improves the surface and foaming properties of faba bean protein isolate, which may favour the revalorisation of this crop. Copyright © 2018 Elsevier B.V. All rights reserved.
UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction
Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund
2015-01-01
A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964
Morphology of Er:YAG-laser-treated root surfaces
NASA Astrophysics Data System (ADS)
Keller, Ulrich; Stock, Karl; Hibst, Raimund
1997-12-01
From previous studies it could be demonstrated that an efficient ablation of dental calculus is possible using an Er:YAG laser with a special contact fiber tip. After improving of the design and the efficiency of light transmission of the contact tip laser treated tooth root surfaces were investigated due to morphological changes in comparison to conventional root scaling and planing. Surface modifications were observed histologically under the light microscope and by means of a Scanning Electron Microscope. During laser treatment the intrapulpal temperature increase was measured. The results show that the improved contact tip a microstructured surface can be generated, which shows no signs of thermal effects even when a laser pulse repetition rate of 15 Hz was used. Temperature increase was limited to 4 K at a repetition rate of 10 Hz and to 5.5 K at a repetition rate of 15 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.
1996-05-01
Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole andmore » crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.« less
Moore, Randy; Pasieniuk, John
1984-01-01
Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818
The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli.
Mochizuki, Susumu; Harada, Akiko; Inada, Sayaka; Sugimoto-Shirasu, Keiko; Stacey, Nicola; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka; Sakai, Tatsuya
2005-02-01
To understand how the direction of root growth changes in response to obstacles, light, and gravity, we characterized an Arabidopsis thaliana mutant, wavy growth 2 (wav2), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The roots of the wav2 mutant bent with larger curvature than those of the wild-type seedlings in wavy growth and in gravitropic and phototropic responses. The cell file rotations of the root epidermis of wav2-1 in the wavy growth pattern were enhanced in both right-handed and left-handed rotations. WAV2 encodes a protein belonging to the BUD EMERGENCE 46 family with a transmembrane domain at the N terminus and an alpha/beta-hydrolase domain at the C terminus. Expression analyses showed that mRNA of WAV2 was expressed strongly in adult plant roots and seedlings, especially in the root tip, the cell elongation zone, and the stele. Our results suggest that WAV2 is not involved in sensing environmental stimuli but that it negatively regulates stimulus-induced root bending through inhibition of root tip rotation.
Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris
2015-01-01
Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID:26074935
Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M; Sparks, J Alan; Blancaflor, Elison B
2008-08-01
Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.
Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M.; Sparks, J. Alan; Blancaflor, Elison B.
2008-01-01
Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs. PMID:18539780
NASA Technical Reports Server (NTRS)
Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.
2001-01-01
We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.
Plant root and shoot dynamics during subsurface obstacle interaction
NASA Astrophysics Data System (ADS)
Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel
As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.
Assimilation and conversion of 3,4-benzpyrene by plants under sterile conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durmishidze, S.V.; Devdariani, T.V.; Kavtaradze, L.K.
1974-01-01
In this article the authors discuss the results of the oxidative conversion of BP to various individual compounds in plant roots and leaves. The experiments were conducted on 14-day alfalfa plants (Medicago sativa), ryegrass (Lolium multiflorum), chick-pea (Cicer arientinum), cucumbers (Cucumis sativus), pumpkin (Cucurbita), orchard grass (Dactylis glomerata), and vetch (Vicia faba), grown under sterile conditions on Knop's nutrient medium. Labeled 1,2-/sup 14/C-BP was synthesized in several steps using phthalic and 1,2-/sup 14/C-acetic anhydrides as the starting materials. The results of the experiments showed that the roots and leaves of various plants assimilate BP and subject it to profound chemicalmore » transformations. The conversion products are transported from the roots to the leaves and from the leaves to the roots. Low-molecular weight compounds, in particular, organic acids, provided most radioactive. The distribution of the radioactivity of the low-molecular weight substances among the plant organs depends on the site of the primary assimilation of 1,2-/sup 14/C-BP. In the case of assimilation of BP by the roots, the most radioactive are the low-molecular weight compounds of the root themselves, while in the case of assimilation of BP by the leaves, the most radioactive are the low-molecular weight compounds of the leaves. The same pattern is observed in the distribution of radioactivity among the organs of plants in the case of organic acids.« less
Boursiac, Yann; Chen, Sheng; Luu, Doan-Trung; Sorieul, Mathias; van den Dries, Niels; Maurel, Christophe
2005-01-01
Aquaporins facilitate the uptake of soil water and mediate the regulation of root hydraulic conductivity (Lpr) in response to a large variety of environmental stresses. Here, we use Arabidopsis (Arabidopsis thaliana) plants to dissect the effects of salt on both Lpr and aquaporin expression and investigate possible molecular and cellular mechanisms of aquaporin regulation in plant roots under stress. Treatment of plants by 100 mm NaCl was perceived as an osmotic stimulus and induced a rapid (half-time, 45 min) and significant (70%) decrease in Lpr, which was maintained for at least 24 h. Macroarray experiments with gene-specific tags were performed to investigate the expression of all 35 genes of the Arabidopsis aquaporin family. Transcripts from 20 individual aquaporin genes, most of which encoded members of the plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) subfamilies, were detected in nontreated roots. All PIP and TIP aquaporin transcripts with a strong expression signal showed a 60% to 75% decrease in their abundance between 2 and 4 h following exposure to salt. The use of antipeptide antibodies that cross-reacted with isoforms of specific aquaporin subclasses revealed that the abundance of PIP1s decreased by 40% as early as 30 min after salt exposure, whereas PIP2 and TIP1 homologs showed a 20% to 40% decrease in abundance after 6 h of treatment. Expression in transgenic plants of aquaporins fused to the green fluorescent protein revealed that the subcellular localization of TIP2;1 and PIP1 and PIP2 homologs was unchanged after 45 min of exposure to salt, whereas a TIP1;1-green fluorescent protein fusion was relocalized into intracellular spherical structures tentatively identified as intravacuolar invaginations. The appearance of intracellular structures containing PIP1 and PIP2 homologs was occasionally observed after 2 h of salt treatment. In conclusion, this work shows that exposure of roots to salt induces changes in aquaporin expression at multiple levels. These changes include a coordinated transcriptional down-regulation and subcellular relocalization of both PIPs and TIPs. These mechanisms may act in concert to regulate root water transport, mostly in the long term (≥6 h). PMID:16183846
Chandra, Vinay; Gandi, Padma; Shivanna, Anil Kumar; Srinivas, Siva; Himgiri, S; Nischith, K G
2013-07-01
To evaluate the efficacy of NaviTip FX in removing the canal debris during root canal preparation using scanning electron microscopic study. Thirty single rooted teeth with completely formed apices were used in this study. Standard endodontic access cavity preparations were performed. Then the teeth were randomly divided into two groups: groups 1 and 2 of 15 teeth each group. For group 1, NaviTip FX (brush covered needle) was used to irrigate the canal with 5.25% sodium hypochlorite after each instrument use. For group 2, NaviTip (brushless needle) was used for irrigation following each instrument use. ProTaper rotary files were used for the canal preparation. The teeth were then cleaned and dried before splitting them into two halves. The half with most visible part of the apex was used for scanning electron microscopic evaluation. The results were statistically analyzed using the Mann-Whitney U-test at significance level p < 0.005. The mean values for coronal and middle third of group 1 showed lower debris scores than group 2 and this difference was statistically significant at a p-value 0.01 and 0.05 respectively, but no significance difference between them at the apical third at a p-value of < 0.05. The NaviTip FX (brush covered needle) showed effectively better canal wall debris removal than the NaviTip (brushless needle).
Arenas-Alfonseca, Lucía; Gotor, Cecilia; Romero, Luis C; García, Irene
2018-05-01
In Arabidopsis thaliana, cyanide is produced concomitantly with ethylene biosynthesis and is mainly detoxified by the ß-cyanoalanine synthase CAS-C1. In roots, CAS-C1 activity is essential to maintain a low level of cyanide for proper root hair development. Root hair elongation relies on polarized cell expansion at the growing tip, and we have observed that CAS-C1 locates in mitochondria and accumulates in root hair tips during root hair elongation, as shown by observing the fluorescence in plants transformed with the translational construct ProC1:CASC1-GFP, containing the complete CAS-C1 gene fused to green fluorescent protein (GFP). Mutants in the SUPERCENTIPEDE (SCN1) gene, that regulate the NADPH oxidase gene ROOT HAIR DEFECTIVE 2 (RHD2)/AtrbohC, are affected at the very early steps of the development of root hair that do not elongate and do not show a preferential localization of the GFP accumulation in the tips of the root hair primordia. Root hairs of mutants in CAS-C1 or RHD2/AtrbohC, whose protein product catalyzes the generation of ROS and the Ca2+ gradient, start to grow out correctly, but they do not elongate. Genetic crosses between the cas-c1 mutant and scn1 or rhd2 mutants were performed, and the detailed phenotypic and molecular characterization of the double mutants demonstrates that scn1 mutation is epistatic to cas-c1 and cas-c1 is epistatic to rhd2 mutation, indicating that CAS-C1 acts in early steps of the root hair development process. Moreover, our results show that the role of CAS-C1 in root hair elongation is independent of H2O2 production and of a direct NADPH oxidase inhibition by cyanide.
Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria.
Verni, Michela; Wang, Changyin; Montemurro, Marco; De Angelis, Maria; Katina, Kati; Rizzello, Carlo G; Coda, Rossana
2017-01-01
This study investigated the metabolic traits of 27 lactic acid bacteria (LAB) strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8-9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus , while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes . Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications.
Khazaei, Hamid; Street, Kenneth; Bari, Abdallah; Mackay, Michael; Stoddard, Frederick L.
2013-01-01
Efficient methods to explore plant agro-biodiversity for climate change adaptive traits are urgently required. The focused identification of germplasm strategy (FIGS) is one such approach. FIGS works on the premise that germplasm is likely to reflect the selection pressures of the environment in which it developed. Environmental parameters describing plant germplasm collection sites are used as selection criteria to improve the probability of uncovering useful variation. This study was designed to test the effectiveness of FIGS to search a large faba bean (Vicia faba L.) collection for traits related to drought adaptation. Two sets of faba bean accessions were created, one from moisture-limited environments, and the other from wetter sites. The two sets were grown under well watered conditions and leaf morpho-physiological traits related to plant water use were measured. Machine-learning algorithms split the accessions into two groups based on the evaluation data and the groups created by this process were compared to the original climate-based FIGS sets. The sets defined by trait data were in almost perfect agreement to the FIGS sets, demonstrating that ecotypic differentiation driven by moisture availability has occurred within the faba bean genepool. Leaflet and canopy temperature as well as relative water content contributed more than other traits to the discrimination between sets, indicating that their utility as drought-tolerance selection criteria for faba bean germplasm. This study supports the assertion that FIGS could be an effective tool to enhance the discovery of new genes for abiotic stress adaptation. PMID:23667581
Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria
Verni, Michela; Wang, Changyin; Montemurro, Marco; De Angelis, Maria; Katina, Kati; Rizzello, Carlo G.; Coda, Rossana
2017-01-01
This study investigated the metabolic traits of 27 lactic acid bacteria (LAB) strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8–9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus, while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes. Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications. PMID:29312174
In Vivo potassium-39 NMR spectra by the burg maximum-entropy method
NASA Astrophysics Data System (ADS)
Uchiyama, Takanori; Minamitani, Haruyuki
The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.
Walker, Jennifer K M; Cohen, Hannah; Higgins, Logan M; Kennedy, Peter G
2014-04-01
Alnus trees associate with ectomycorrhizal (ECM) fungi and nitrogen-fixing Frankia bacteria and, although their ECM fungal communities are uncommonly host specific and species poor, it is unclear whether the functioning of Alnus ECM fungal symbionts differs from that of other ECM hosts. We used exoenzyme root tip assays and molecular identification to test whether ECM fungi on Alnus rubra differed in their ability to access organic phosphorus (P) and nitrogen (N) when compared with ECM fungi on the non-Frankia host Pseudotsuga menziesii. At the community level, potential acid phosphatase (AP) activity of ECM fungal root tips from A. rubra was significantly higher than that from P. menziesii, whereas potential leucine aminopeptidase (LA) activity was significantly lower for A. rubra root tips at one of the two sites. At the individual species level, there was no clear relationship between ECM fungal relative root tip abundance and relative AP or LA enzyme activities on either host. Our results are consistent with the hypothesis that ECM fungal communities associated with Alnus trees have enhanced organic P acquisition abilities relative to non-Frankia ECM hosts. This shift, in combination with the chemical conditions present in Alnus forest soils, may drive the atypical structure of Alnus ECM fungal communities. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Rodrigo-Moreno, Ana; Andrés-Colás, Nuria; Poschenrieder, Charlotte; Gunsé, Benet; Peñarrubia, Lola; Shabala, Sergey
2013-04-01
Transition metals such as copper can interact with ascorbate or hydrogen peroxide to form highly reactive hydroxyl radicals (OH(•) ), with numerous implications to membrane transport activity and cell metabolism. So far, such interaction was described for extracellular (apoplastic) space but not cytosol. Here, a range of advanced electrophysiological and imaging techniques were applied to Arabidopsis thaliana plants differing in their copper-transport activity: Col-0, high-affinity copper transporter COPT1-overexpressing (C1(OE) ) seedlings, and T-DNA COPT1 insertion mutant (copt1). Low Cu concentrations (10 µm) stimulated a dose-dependent Gd(3+) and verapamil sensitive net Ca(2+) influx in the root apex but not in mature zone. C1(OE) also showed a fivefold higher Cu-induced K(+) efflux at the root tip level compared with Col-0, and a reduction in basal peroxide accumulation at the root tip after copper exposure. Copper caused membrane disruptions of the root apex in C1(OE) seedlings but not in copt1 plants; this damage was prevented by pretreatment with Gd(3+) . Our results suggest that copper transport into cytosol in root apex results in hydroxyl radical generation at the cytosolic side, with a consequent regulation of plasma membrane OH(•) -sensitive Ca(2+) and K(+) transport systems. © 2012 Blackwell Publishing Ltd.
Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I.
2010-01-01
In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response. PMID:20562236
Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo
2013-06-01
Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.
Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka
2014-05-01
Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.
Watson, Bonnie S.; Bedair, Mohamed F.; Urbanczyk-Wochniak, Ewa; Huhman, David V.; Yang, Dong Sik; Allen, Stacy N.; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W.
2015-01-01
Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4′-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4′-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously. PMID:25667316
The Effect of Low Oxygen Stress on Phytophthora cinnamomi Infection and Disease of Cork Oak Roots
Karel A. Jacobs; James D. MacDonald; Alison M. Berry; Laurence R. Costello
1997-01-01
The incidence and severity of Phytophthora cinnamomi Rands root disease was quantified in cork oak (Quercus suber L.) roots subjected to low oxygen (hypoxia) stress. Seedling root tips were inoculated with mycelial plugs of the fungus and incubated in ≤1, 3-4, or 21 percent oxygen for 5 days. Ninety-four percent of roots...
EVIDENCE FROM THYMIDINE-3H-LABELED MERISTEMS OF VICIA FABA OF TWO CELL POPULATIONS
Webster, P. L.; Davidson, D.
1968-01-01
Treatments with tritiated thymidine (TdR-3H) have revealed the existence of two populations of mitotically active cells in meristems of lateral roots of Vicia faba. A rapidly dividing population, with a cycle time of 14 hr, constitutes about half the cells in the meristem. A second population of cells, with a cycle time in excess of 30 hr, is also present. Estimates of the relative size of this slowly dividing population are more difficult to make, but we calculate that this population includes 27–43% of meristem cells. The remaining fraction of the meristem is made up of cells that divide rarely or not at all. Since, at all times, both populations contribute to the mitotic index, the curve of the percentage of labeled mitoses that can be determined after a pulse label with TdR-3H differs from the curve expected of an ideal population in an important way: the peak value of the curve of the percentage of labeled mitoses is always less than 100%, usually between 75 and 80%. This heterogeneity within a meristem must be borne in mind in terms of the response of meristems to disruptive treatments, the mechanisms controlling mitotic cycle duration, and the spatial organization of a heterogeneous population in an organ that shows polarized growth. PMID:5677968
USDA-ARS?s Scientific Manuscript database
We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...
Valente, Inês M; Maia, Margarida R G; Malushi, Nertila; Oliveira, Hugo M; Papa, Lumturi; Rodrigues, José A; Fonseca, António J M; Cabrita, Ana R J
2018-08-01
Vicia faba L. pods are a by-product generated from the industrial processing of beans for human and animal consumption. As phenolic compounds may play important roles in health, the present work envisaged the phenolic characterization of seven European varieties and cultivars of V. faba (major and minor) pods and the assessment of their antioxidant activity. The V. faba methanolic extracts were characterized by HPLC-DAD-MS/MS for identification of polyphenolic compounds. The total phenolic content and antioxidant capacity of the extracts were evaluated by colorimetric methods (Folin-Ciocalteu, DPPH scavenging capacity assay, and FRAP assay). Main compounds identified by HPLC-DAD-MS/MS were derivatives of caffeic acid, coumaric acid and kaempferol. The broad bean Jögeva variety presented the highest content of free and esterified phenolics (26.3 and 26.7 mg 100 g -1 dry weight, respectively), followed by the horse bean varieties Bauska and Lielplatones. These results were corroborated by the analysis of total phenolic content, DPPH scavenging capacity and FRAP. This study confirmed the rich phenolic content of V. faba pods suggesting to be an interesting novel source for animal nutrition, promoting product quality and consumers' health. Copyright © 2018 Elsevier Ltd. All rights reserved.
Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour
Rizzello, Carlo Giuseppe; Losito, Ilario; Facchini, Laura; Katina, Kati; Palmisano, Francesco; Gobbetti, Marco; Coda, Rossana
2016-01-01
In spite of its positive repercussions on nutrition and environment, faba bean still remains an underutilized crop due to the presence of some undesired compounds. The pyrimidine glycosides vicine and convicine are precursors of the aglycones divicine and isouramil, the main factors of favism, a genetic condition which may lead to severe hemolysis after faba bean ingestion. The reduction of vicine and convicine has been targeted in several studies but little is known about their degradation. In this study, the hydrolysis kinetics of vicine and convicine and their derivatives during fermentation with L. plantarum DPPMAB24W was investigated. In particular, a specific HPLC method coupled to ESI-MS and MS/MS analysis, including the evaluation procedure of the results, was set up as the analytical approach to monitor the compounds. The degradation of the pyrimidine glycosides in the fermented flour was complete after 48 h of incubation and the aglycone derivatives could not be detected in any of the samples. The toxicity of the fermented faba bean was established through ex-vivo assays on human blood, confirming the experimental findings. Results indicate that mild and cost effective bioprocessing techniques can be applied to detoxify faba bean also for industrial applications. PMID:27578427
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection
Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare
2008-01-01
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an “RRP domain” specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling. PMID:18621693
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.
Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare
2008-07-15
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.
Brenner, Eric D.; Lambert, Kris N.; Kaloshian, Isgouhi; Williamson, Valerie M.
1998-01-01
A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms. PMID:9733543
Tip Vortices of Isolated Wings and Helicopter Rotor Blades.
1987-12-01
root to tip, as expected due to the induced downwash of the tip vor- tex and wake vortex sheet. Although the three different tip-caps produce very...the inherent limitation of not being able to model the vortex wake with these equations, although the Euler formulation has in it the necessary...physics to model vorticity transport correctly. These equations basically lack the physical mecha- nism needed to generate the vortex wake . However, in
Candeo, Alessia; Doccula, Fabrizio G; Valentini, Gianluca; Bassi, Andrea; Costa, Alex
2017-07-01
Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
CYTOLOGICAL STUDIES ON THE ANTIMETABOLITE ACTION OF 2,6-DIAMINOPURINE IN VICIA FABA ROOTS
Setterfield, George; Duncan, Robert E.
1955-01-01
At a concentration of 9.6 x 10–5 M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition of cell elongation and cell division and only a slight possible reversal of inhibition of DNA synthesis. PMID:13263329
Chabbi, A.; McKee, K.L.; Mendelssohn, I.A.
2000-01-01
The objective of this work was to determine whether radial oxygen loss (ROL) from roots of Typha domingensis and Cladium jamaicense creates an internal oxygen deficiency or, conversely, indicates adequate internal aeration and leakage of excess oxygen to the rhizosphere. Methylene blue in agar was used to quantify oxygen leakage. Typha's roots had a higher porosity than Cladium's and responded to flooding treatment by increasing cortical air space, particularly near the root tips. A greater oxygen release, which occurred along the subapical root axis, and an increase in rhizosphere redox potential (Eh) over time were associated with the well-developed aerenchyma system in Typha. Typha roots, regardless of oxygen release pattern, showed low or undetectable alcohol dehydrogenage (ADH) activity or ethanol concentrations, indicating that ROL did not cause internal deficiencies. Cladium roots also releases oxygen, but this loss primarily occurred at the root tips and was accompanied by increased root ADH activity and ethanol concentrations. These results support the hypothesis that oxygen release by Cladium is accompanied by internal deficiencies of oxygen sufficient to stimulate alcoholic fermentation and helps explain Cladium's lesser flood tolerance in comparison with Typha.
Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy.
Achouak, Wafa; Conrod, Sandrine; Cohen, Valérie; Heulin, Thierry
2004-08-01
Pseudomonas brassicacearum was isolated as a major root-colonizing population from Arabidopsis thaliana. The strain NFM421 of P. brassicacearum undergoes phenotypic variation during A. thaliana and Brassica napus root colonization in vitro as well as in soil, resulting in different colony appearance on agar surfaces. Bacteria forming translucent colonies (phase II cells) essentially were localized at the surface of young roots and root tips, whereas wild-type cells (phase I cells) were localized at the basal part of roots. The ability of phase II cells to spread and colonize new sites on root surface correlates with over-production of flagellin as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of surface proteins and microsequencing. Moreover, phase II cells showed a higher ability to swim and to swarm on semisolid agar medium. Phase I and phase II cells of P. brassicacearum NFM421 were tagged genetically with green fluorescent protein and red fluorescent protein. Confocal scanning laser microscopy was used to localize phase II cells on secondary roots and root tips of A. thaliana, whereas phase I cells essentially were localized at the basal part of roots. These experiments were conducted in vitro and in soil. Phenotypic variation on plant roots is likely to be a colonization strategy that may explain the high colonization power of P. brassicacearum.
Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O
2011-05-01
The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.
NASA Technical Reports Server (NTRS)
Ishikawa, H.; Evans, M. L.
1992-01-01
We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.
Enhancing faba bean (Vicia faba L.) germplasm for resilience to temperature extremes
USDA-ARS?s Scientific Manuscript database
The Western Regional Plant Introduction Station (WRPIS) is one of the four regional plant introduction stations in the US Department of Agriculture-ARS National Plant Germplasm System (NPGS) with the mission of acquiring, documenting, maintaining, characterizing, evaluating and distributing plant ge...
Khan, Mobashsher-Uddin; Lem, Nora W.; Chandorkar, Kashinath R.; Williams, John P.
1979-01-01
The fatty acids of the major glycerolipids from the leaves of Vicia faba and Hordeum vulgare plants treated with three different concentrations of pyridazinone derivatives were analyzed. These compounds showed multiple effects on the levels of lipids and pigments. At low concentrations, the primary effect of San 9785 was on the level of linolenic acid (18:3) in the galactolipids of V. faba, whereas the effect of San 6706 was primarily on the trans-Δ3-hexadecenoic acid (16:1) content in phosphatidylglycerol. At higher concentrations, the two compounds reduced the content of both fatty acids in the leaves. The results appear to indicate a differential effect of these herbicides on fatty acid accumulation and a difference in susceptibility of two fatty acids in the species examined. Electron microscopic studies revealed that two herbicides caused different abnormalities in V. faba chloroplast ultrastructure. Images PMID:16660953
Growth regulation in tip-growing cells that develop on the epidermis.
Honkanen, Suvi; Dolan, Liam
2016-12-01
Plants develop tip-growing extensions-root hairs and rhizoids-that initiate as swellings on the outer surface of individual epidermal cells. A conserved genetic mechanism controls the earliest stages in the initiation of these swellings. The same mechanism controls the formation of multicellular structures that develop from swellings on epidermal cells in early diverging land plants. Details of the molecular events that regulate the positioning of the swellings involve sterols and phosphatidylinositol phosphates. The final length of root hairs is determined by the intensity of a pulse of transcription factor synthesis. Genes encoding similar transcription factors control root hair development in cereals and are potential targets for crop improvement. Copyright © 2016. Published by Elsevier Ltd.
Effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in root tip cells of Allium cepa.
Ng, W Y; Chao, C Y
1981-01-01
The effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in the onion root tip cells as well as on the rate of DNA synthesis in onion seedlings were studied. Results obtained from the concentration and time course study in bulb and seeding root tip cells indicate that Rg1 promotes and Rb1 inhibits mitosis, both being dose-dependent. The promoting effect of Rg1 on the rate of DNA synthesis was observed at the peak hour which occurs at the same time as that of the control. Rb1 was found to shift the peak hour of DNA synthesis to a later period of the experiment. These results are in agreement with the results obtained from the study of the cell cycle by pulse labeling and autoradiography, which show that Rg1 shortens the mitotic cell cycle and S period while Rb1 lengthens them. They in turn increase and decrease the mitotic indices respectively.
Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin
2013-04-01
A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the quantities of rhizospheric bacteria and actinomyces, alter the microbial metabolic function, and decrease F. oxysporum density, being an effective measure to control the occurrence of faba bean fusarium wilt.
NASA Technical Reports Server (NTRS)
Nelson, A. J.; Evans, M. L.
1986-01-01
A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.
Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots
NASA Technical Reports Server (NTRS)
Massa, G. D.; Gilroy, S.
2003-01-01
Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Effect of ultrasonic tip designs on intraradicular post removal.
Aguiar, Anny Carine Barros; de Meireles, Daniely Amorim; Marques, André Augusto Franco; Sponchiado Júnior, Emílio Carlos; Garrido, Angela Delfina Bitencourt; Garcia, Lucas da Fonseca Roberti
2014-11-01
To evaluate the effect of different ultrasonic tip designs on intraradicular post removal. The crowns of forty human canine teeth were removed, and after biomechanical preparation and filling, the roots were embedded in acrylic resin blocks. The post spaces were made, and root canal molding was performed with self-cured acrylic resin. After casting (Cu-Al), the posts were cemented with zinc phosphate cement. The specimens were randomly separated into 4 groups (n = 10), as follows: G1 - no ultrasonic vibration (control); G2 - ultrasonic vibration using an elongated cylindrical-shaped and active rounded tip; G3 - ultrasonic vibration with a flattened convex and linear active tip; G4 - ultrasonic vibration with active semicircular tapered tip. Ultrasonic vibration was applied for 15 seconds on each post surface and tensile test was performed in a Universal Testing Machine (Instron 4444 - 1 mm/min). G4 presented the highest mean values, however, with no statistically significant difference in comparison to G3 (P > 0.05). G2 presented the lowest mean values with statistically significant difference to G3 and G4 (P < 0.05). Ultrasonic vibration with elongated cylindrical-shaped and active rounded tip was most effective in reducing force required for intraradicular post removal.
Hamberg, Leena; Velmala, Sannakajsa M; Sievänen, Risto; Kalliokoski, Tuomo; Pennanen, Taina
2018-06-01
The relationship between the growth rate of aboveground parts of trees and fine root development is largely unknown. We investigated the early root development of fast- and slow-growing Norway spruce (Picea abies (L.) H. Karst.) families at a developmental stage when the difference in size is not yet observed. Seedling root architecture data, describing root branching, were collected with the WinRHIZO™ image analysis system, and mixed models were used to determine possible differences between the two growth phenotypes. A new approach was used to investigate the spatial extent of root properties along the whole sample root from the base of 1-year-old seedlings to the most distal part of a root. The root architecture of seedlings representing fast-growing phenotypes showed ~30% higher numbers of root branches and tips, which resulted in larger root extensions and potentially a better ability to acquire nutrients. Seedlings of fast-growing phenotypes oriented and allocated root tips and biomass further away from the base of the seedling than those growing slowly, a possible advantage in nutrient-limited and heterogeneous boreal forest soils. We conclude that a higher long-term growth rate of the aboveground parts in Norway spruce may relate to greater allocation of resources to explorative roots that confers a competitive edge during early growth phases in forest ecosystems.
Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
Yin, Xiaojian; Sakata, Katsumi; Komatsu, Setsuko
2014-12-05
Flooding has severe negative effects on soybean growth. To explore the flooding-responsive mechanisms in early-stage soybean, a phosphoproteomic approach was used. Two-day-old soybean plants were treated without or with flooding for 3, 6, 12, and 24 h, and root tip proteins were then extracted and analyzed at each time point. After 3 h of flooding exposure, the fresh weight of soybeans increased, whereas the ATP content of soybean root tips decreased. Using a gel-free proteomic technique, a total of 114 phosphoproteins were identified in the root tip samples, and 34 of the phosphoproteins were significantly changed with respect to phosphorylation status after 3 h of flooding stress. Among these phosphoproteins, eukaryotic translation initiation factors were dephosphorylated, whereas several protein synthesis-related proteins were phosphorylated. The mRNA expression levels of sucrose phosphate synthase 1F and eukaryotic translation initiation factor 4 G were down-regulated, whereas UDP-glucose 6-dehydrogenase mRNA expression was up-regulated during growth but down-regulated under flooding stress. Furthermore, bioinformatic protein interaction analysis of flooding-responsive proteins based on temporal phosphorylation patterns indicated that eukaryotic translation initiation factor 4 G was located in the center of the network during flooding. Soybean eukaryotic translation initiation factor 4 G has homology to programmed cell death 4 protein and is implicated in ethylene signaling. The weight of soybeans was increased with treatment by an ethylene-releasing agent under flooding condition, but it was decreased when plants were exposed to an ethylene receptor antagonist. These results suggest that the ethylene signaling pathway plays an important role, via the protein phosphorylation, in mechanisms of plant tolerance to the initial stages of flooding stress in soybean root tips.
Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs.
Rounds, Caleb M; Lubeck, Eric; Hepler, Peter K; Winship, Lawrence J
2011-09-01
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.
The use of optical fiber in endodontic photodynamic therapy. Is it really relevant?
Garcez, Aguinaldo S; Fregnani, Eduardo R; Rodriguez, Helena M; Nunez, Silvia C; Sabino, Caetano P; Suzuki, Hideo; Ribeiro, Martha S
2013-01-01
This study analyzed the necessity of use of an optical fiber/diffusor when performing antimicrobial photodynamic therapy (PDT) associated with endodontic therapy. Fifty freshly extracted human single-rooted teeth were used. Conventional endodontic treatment was performed using a sequence of ProTaper (Dentsply Maillefer Instruments), the teeth were sterilized, and the canals were contaminated with Enterococcus faecalis 3 days' biofilm. The samples were divided into five groups: group 1--ten roots irradiated with a laser tip (area of 0.04 cm(2)), group 2--ten roots irradiated with a smaller laser tip (area of 0.028 cm(2)), and group 3--ten teeth with the crown, irradiate with the laser tip with 0.04 cm(2) of area. The forth group (G4) followed the same methodology as group 3, but the irradiation was performed with smaller tip (area of 0.028 cm(2)) and G5 ten teeth with crown were irradiated using a 200-mm-diameter fiber/diffusor coupled to diode laser. Microbiological samples were taken after accessing the canal, after endodontic therapy, and after PDT. Groups 1 and 2 showed a reduction of two logs (99%), groups 3 and 4 of one log (85% and 97%, respectively), and group 5 of four logs (99.99%). Results suggest that the use of PDT added to endodontic treatment in roots canals infected with E. faecalis with the optical fiber/diffusor is better than when the laser light is used directed at the access of cavity.
Wagatsuma, Tadao; Maejima, Eriko; Watanabe, Toshihiro; Toyomasu, Tomonobu; Kuroda, Masaharu; Muranaka, Toshiya; Ohyama, Kiyoshi; Ishikawa, Akifumi; Usui, Masami; Hossain Khan, Shahadat; Maruyama, Hayato; Tawaraya, Keitaro; Kobayashi, Yuriko; Koyama, Hiroyuki
2018-01-23
Aluminum-sensitive rice (Oryza sativa L.) cultivars showed increased Al tolerance under dark conditions, because less Al accumulated in the root tips (1 cm) under dark than under light conditions. Under dark conditions, the root tip concentration of total sterols, which generally reduce plasma membrane permeabilization, was higher in the most Al-sensitive japonica cultivar, Koshihikari (Ko), than in the most Al-tolerant cultivar, Rikuu-132 (R132), but the phospholipid content did not differ between the two. The Al treatment increased the proportion of stigmasterol (which has no ability to reduce membrane permeabilization) out of total sterols similarly in both cultivars under light conditions, but it decreased more in Ko under dark conditions. The carotenoid content in the root tip of Al-treated Ko was significantly lower under dark than under light conditions, indicating that isopentenyl diphosphate transport from the cytosol to plastids was decreased under dark conditions. HMG2 and HMG3 (encoding the key sterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase) transcript levels in the root tips were enhanced under dark conditions. We suggest that the following mechanisms contribute to the increase in Al tolerance under dark conditions: inhibition of stigmasterol formation to retain membrane integrity; greater partitioning of isopentenyl diphosphate for sterol biosynthesis; and enhanced expression of HMGs to increase sterol biosynthesis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Chen, M H; Wang, P J; Maeda, E
1987-10-01
The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, N.; Singh, R.S.; Singh, J.S.
The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density,more » water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.« less
Liu, Tong; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhang, Jun; Sun, Xi; Zhang, Cheng
2015-12-17
In the present study, the toxic effects of 1-octyl-3-methylimidazolium chloride ([Omim]Cl), 1-octyl-3-methylimidazolium bromide ([Omim]Br) and 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4) in soil on Vicia faba (V. faba) seedlings at 0, 100, 200, 400, 600 and 800 mg kg(-1) were assessed for the first time at the cellular and molecular level. Moreover, the toxicity of these three ionic liquids (ILs) was evaluated, and the influence of anions on the toxicity of the ILs was assessed. The results showed that even at 100 mg kg(-1), the growth of V. faba seedlings was inhibited after exposure to the three ILs, and the inhibitory effect was enhanced with increasing concentrations of the three ILs. The level of reactive oxygen species (ROS) was increased after exposure to the three ILs, which resulted in lipid peroxidation, DNA damage and oxidative damage in the cells of the V. faba seedlings. In addition, the anion structure could influence the toxicity of ILs, and toxicity of the three tested ILs decreased in the following order: [Omim]BF4 > [Omim]Br > [Omim]Cl. Moreover, oxidative damage is the primary mechanism by which ILs exert toxic effects on crops, and ILs could reduce the agricultural productivity.
Silicon enhances suberization and lignification in roots of rice (Oryza sativa).
Fleck, Alexander T; Nye, Thandar; Repenning, Cornelia; Stahl, Frank; Zahn, Marc; Schenk, Manfred K
2011-03-01
The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition, Si-induced alterations of the transcript levels of 265 genes related to suberin and lignin synthesis were studied by custom-made microarray and quantitative Real Time-PCR. Without Si supply, the oxidation zone of 12 cm long adventitious roots extended along the entire root length but with Si supply the oxidation zone was restricted to 5 cm behind the root tip. This pattern coincided with enhanced suberization of the exodermis and lignification of sclerenchyma by Si supply. Suberization of the exodermis started, with and without Si supply, at 4-5 cm and 8-9 cm distance from the root tip (drt), respectively. Si significantly increased transcript abundance of 12 genes, while two genes had a reduced transcript level. A gene coding for a leucine-rich repeat protein exhibited a 25-fold higher transcript level with Si nutrition. Physiological, histochemical, and molecular-biological data showing that Si has an active impact on rice root anatomy and gene transcription is presented here.
Effects of caffeine on mitotic index, mitotic aberrations and bimitosis with and without aeration.
Röper, W
1977-07-01
The effects of 1 to 3 h 0.2% caffeine treatment on mitosis in lateral roots of Vicia faba with and without aeration have been investigated. During the treatment a marked decrease of the mitotic index followed by strong deviations and changing phase indices can be stated. By means of aeration the number of mitotic aberrations increases with time of treatment, while it decreases without aeration until 3 h treatment. Tetraploid cells are supposed to be formed by spindle aberrations at early anaphase. The number of binucleate and tetraploid cells is affected by aeration during caffeine treatment. During division of the binucleate cells tetraploid nuclei are formed by fusions, so the population of binucleate cells may become smaller.
Barros, Sérgio Estelita; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo; Rösing, Cassiano
2018-04-01
Several uprighting mechanics and devices have been used for repositioning tipped molars. "Kissing molars" (KMs) are an uncommon tooth impaction involving 2 severely tipped mandibular molars with their occlusal surfaces positioned crown to crown, with the roots pointing in opposite directions. Orthodontic uprighting of KMs has not been a usual treatment protocol, and it can be a challenging task due to the severe tipping and double impaction, requiring efficient and well-controlled uprighting mechanics. An innovative skeletally anchored cantilever, which uses the torque principle for uprighting tipped molars, is suggested. This torqued cantilever is easy to manufacture, install, and activate; it is a well-known torque that is effective for producing root movement. A successful treatment of symptomatic KMs, involving the first and second molars, was achieved with this cantilever. Thus, clinicians should consider the suggested uprighting mechanics and orthodontic device as a more conservative alternative to extraction of KMs, depending on the patient's age, involved teeth in KMs, tipping severity, and impaction positions. Copyright © 2018 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stock, Karl; Graser, Rainer; Udart, Martin; Kienle, Alwin; Hibst, Raimund
2011-03-01
Diode lasers are used in dentistry mainly for oral surgery and disinfection of root canals in endodontic treatment. The purpose of this study was to investigate and to improve the laser induced bacteria inactivation in endodontic treatment. An essential prerequisite of the optimization of the irradiation process and device is the knowledge about the determinative factors of bacteria killing: light intensity? light dosis? temperature? In order to find out whether high power NIR laser bacterial killing is caused by a photochemical or a photothermal process we heated bacteria suspensions of E. coli K12 by a water bath and by a diode laser (940 nm) with the same temporal temperature course. Furthermore, bacteria suspensions were irradiated while the temperature was fixed by ice water. Killing of bacteria was measured via fluorescence labeling. In order to optimize the irradiation of the root canal, we designed special fiber tips with radial light emission characteristic by optical ray tracing simulations. Also, we calculated the resulting light distribution in dentin by voxelbased Monte Carlo simulations. Furthermore, we irradiated root canals of extracted human teeth using different fiber tip geometries and measured the resulting light and heat distribution by CCD-camera and thermography. Comparison of killing rates between laser and water based heating shows no significant differences, and irradiation of ice cooled suspensions has no substantial killing effect. Thus, the most important parameter for bacterial killing is the maximum temperature. Irradiation of root canals using fiber tips with radial light emission results in a more defined irradiated area with minor irradiation of the apex and higher intensity and therefore higher temperature increase on root canal surface. In conclusion, our experiments show that at least for E. coli bacteria inactivation by NIR laser irradiation is solely based on a thermal process and that heat distribution in root canal can be significantly improved by specially designed fiber tips.
NASA Astrophysics Data System (ADS)
Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng
2016-07-01
When growing on hard surfaces, Arabidopsis roots tend to grown downward, as dictated by positive gravitropism. At the same time, surface-derived stimuli promote a wavy pattern of growth that is superimposed to a rightward root-skewing trend. This behavior is believed to facilitate obstacle avoidance in soil. To better understand these complex behaviors, we have isolated and characterized mutations that affect them. Some of these mutations were shown to affect gravitropism whereas others did not. Within the latter group, most of the mutations affected mechanisms that control anisotropic cell expansion. We have also characterized mutations that affect early steps of gravity signal transduction within the gravity-sensing columella cells of the root cap. Upon reorientation within the gravity field, starch-filled plastids sediment to the bottom-side of these cells, triggering a pathway that leads to re-localization of auxin efflux facilitators to the bottom membrane. Lateral auxin transport toward the bottom flank ensues, leading to gravitropic curvature. Several of the mutations we characterized affect genes that encode proteins associated with the vesicle trafficking pathway needed for this cell polarization. Other mutations were shown to affect components of the plastid outer envelope protein import complex (TOC). Their functional analysis suggests an active role for plastids in gravity signal transduction, beyond a simple contribution as sedimenting gravity susceptors. Because most cultivated crops are monocots, not dicots like Arabidopsis, we have also initiated studies of root-growth behavior with Brachypodium distachyon. When responding to a gravistimulus, the roots of Brachypodium seedlings develop a strong downward curvature that proceeds until the tip reaches a ~50-degree curvature. At that time, an oscillatory tip movement occurs while the root continues its downward reorientation. These root-tip oscillations also occur if roots are allowed to simply grow downward on vertical surfaces, or fully embedded in agar-containing medium. Brachypodium distachyon accessions differ in their gravisensitivity, kinetics of gravitropism and occurrence, periodicity and amplitude of tip oscillations. Mathematical models are being built to fit the data, and used to estimate growth, gravitropism and oscillation parameters for incorporation into Genome-Wide Association Study (GWAS) algorithms aimed at identifying contributing loci. This work was supported by grants from the National Aeronautics and Space Administration (NASA) and from the National Science Foundation (NSF).
Turbine blade squealer tip rail with fence members
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A
2012-11-20
A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second locationmore » adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.« less
Hydraulic resistance of a plant root to water-uptake: A slender-body theory.
Chen, Kang Ping
2016-05-07
A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...
Furch, Alexandra C U; Buxa, Stefanie V; van Bel, Aart J E
2015-01-01
Sieve elements of legumes contain forisomes-fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures.
van Bel, Aart J. E.
2015-01-01
Sieve elements of legumes contain forisomes—fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures. PMID:26624625
Rabie, G H
1998-01-01
Infection of Vicia faba with Bothytis fabae causes significant decreases in growth vigour, total nitrogen content, number of nodules and nutrient accumulation. Na-uptake and phenolics concentration increased compared to that of noninfected plants. In contrast, dual inoculation of Rhizobium and VA mycorrhizae increased all above parameters suggesting a distinct improvement of the plants. The results also revealed that an inverse correlation may exist between phenolic, calcium, magnesium and zinc concentrations in mycorrhizal plant tissues grown in presence of rhizobial bacteria and the disease severity. From these findings we conclude a possible role of both VA mycorrhizal fungi and rhizobial bacteria in the decrease of susceptibility of plants.
Nanjappa, A Salin; Ponnappa, KC; Nanjamma, KK; Ponappa, MC; Girish, Sabari; Nitin, Anita
2015-01-01
Aims: (1) To compare the sealing ability of mineral trioxide aggregate (MTA), Biodentine, and Chitra-calcium phosphate cement (CPC) when used as root-end filling, evaluated under confocal laser scanning microscope using Rhodamine B dye. (2) To evaluate effect of ultrasonic retroprep tip and an erbium:yttrium aluminium garnet (Er:YAG) laser on the integrity of three different root-end filling materials. Materials and Methods: The root canals of 80 extracted teeth were instrumented and obturated with gutta-percha. The apical 3 mm of each tooth was resected and 3 mm root-end preparation was made using ultrasonic tip (n = 30) and Er:YAG laser (n = 30). MTA, Biodentine, and Chitra-CPC were used to restore 10 teeth each. The samples were coated with varnish and after drying, they were immersed in Rhodamine B dye for 24 h. The teeth were then rinsed, sectioned longitudinally, and observed under confocal laser scanning microscope. Statistical Analysis Used: Data were analyzed using one-way analysis of variance (ANOVA) and a post-hoc Tukey's test at P < 0.05 (R software version 3.1.0). Results: Comparison of microleakage showed maximum peak value of 0.45 mm for Biodentine, 0.85 mm for MTA, and 1.05 mm for Chitra-CPC. The amount of dye penetration was found to be lesser in root ends prepared using Er:YAG laser when compared with ultrasonics, the difference was found to be statistically significant (P < 0.05). Conclusions: Root-end cavities prepared with Er:YAG laser and restored with Biodentine showed superior sealing ability compared to those prepared with ultrasonics. PMID:26180420
A study on plant root apex morphology as a model for soft robots moving in soil
Pugno, Nicola Maria; Mazzolai, Barbara
2018-01-01
Plants use many strategies to move efficiently in soil, such as growth from the tip, tropic movements, and morphological changes. In this paper, we propose a method to translate morphological features of Zea mays roots into a new design of soft robots that will be able to move in soil. The method relies on image processing and curve fitting techniques to extract the profile of Z. mays primary root. We implemented an analytic translation of the root profile in a 3D model (CAD) to fabricate root-like probes by means of 3D printing technology. Then, we carried out a comparative analysis among the artificial root-like probe and probes with different tip shapes (cylindrical, conical, elliptical, and parabolic) and diameters (11, 9, 7, 5, and 3 mm). The results showed that the energy consumption and the penetration force of the bioinspired probe are better with respect to the other shapes for all the diameters of the developed probes. For 100 mm of penetration depth and 7 mm of probe diameter, the energy consumption of the bioinspired probe is 89% lesser with respect to the cylindrical probe and 26% lesser with respect to the conical probe. The penetration performance of the considered tip shapes was evaluated also by means of numerical simulations, obtaining a good agreement with the experimental results. Additional investigations on plant root morphology, movement strategies, and material properties can allow the development of innovative bioinspired solutions exploitable in challenging environments. This research can bring to breakthrough scenarios in different fields, such as exploration tasks, environmental monitoring, geotechnical studies, and medical applications. PMID:29874267
USDA-ARS?s Scientific Manuscript database
Empoasca species leafhoppers are a major insect pest of common bean, Phaseolus vulgaris that cause significant economic losses in both tropical (E. kraemeri) and temperate (E. fabae) regions of the Americas. The objective of this study was to use Indel and single nucleotide polymorphism (SNP) marker...
Purves, Randy W; Khazaei, Hamid; Vandenberg, Albert
2018-08-01
Although faba bean provides environmental and health benefits, vicine and convicine (v-c) limit its use as a source of vegetable protein. Crop improvement efforts to minimize v-c concentration require low-cost, rapid screening methods to distinguish between high and low v-c genotypes to accelerate development of new cultivars and to detect out-crossing events. To assist crop breeders, we developed a unique and rapid screening method that uses a 60 s instrumental analysis step to accurately distinguish between high and low v-c genotypes. The method involves flow injection analysis (FIA) coupled with tandem mass spectrometry (i.e., selective reaction monitoring, SRM). Using seeds with known v-c levels as calibrants, measured v-c levels were comparable with liquid chromatography (LC)-SRM results and the method was used to screen 370 faba bean genotypes. Widespread use of FIA-SRM will accelerate breeding of low v-c faba bean, thereby alleviating concerns about anti-nutritional effects of v-c in this crop. Copyright © 2018 Elsevier Ltd. All rights reserved.
al-Gaby, A M
1998-10-01
The biological effects of supplementing broad bean (Vicia faba) or corn (Zea maize) meal protein with black cumin (Nigella sativa) cake protein as well as their amino acid composition were investigated. The percentage of total protein content of Nigella cake was 22.7%. Lysine is existent in abundant amounts in faba meal protein, while leucine is the most abundant in corn meal protein (chemical score = 156) and valine is higher in Nagella cake protein. compared with rats fed sole corn or faba meal protein, substitution of 25% of corn or faba meal protein with Nigella cake protein in the diet remarkably raised the growth rate of rats and resulted in significant higher levels of rat total serum lipids and triglycerides. Also, the supplemented diet caused significant increases in serum total protein and its two fractions albumin and globulin and insignificantly increase the activity of serum phosphatases and transaminases within normal ranges. The supplementation did not have any adverse nutritional effects in the levels of lipid fractions in the serum.
NASA Technical Reports Server (NTRS)
Moore, R.
1985-01-01
Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.
Horst, Walter Johannes
2013-01-01
Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure. PMID:24123251
Rounds, Caleb M.; Lubeck, Eric; Hepler, Peter K.; Winship, Lawrence J.
2011-01-01
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca2+ binding. We first show that Ca2+ is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca2+ in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca2+-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca2+ gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca2+ in tip growth. PMID:21768649
Jansman, A J; Frohlich, A A; Marquardt, R R
1994-02-01
Feeding a casein-based diet with either 400 g/kg of tannin-containing faba bean hulls (Vicia faba L.) (1.41% condensed tannins) or 60 g/kg of a tannin-rich hull extract of faba beans (1.99% condensed tannins) to rats over a period of 7 d resulted in a 2.6 and 1.5 fold increase in weight of the parotid glands, respectively, (P < 0.05) and a corresponding 5.5 and 3.7 fold increase in the level of proline-rich proteins in the glands (P < 0.05). In a dose-response experiment, increasing the level of tannin-rich hull extract in the diet (0.0, 3.8, 7.5, 15.0, 30.0 and 60.0 g/kg) resulted in a linear increase in both the relative size of parotid glands (R2 = 0.90; P < 0.05) and the quantity of proline-rich proteins in the glands (R2 = 0.89; P < 0.05). The apparent digestibility of total (R2 = 0.97) and individual amino acids (R2 varied from 0.27 to 0.99) decreased linearly (P < 0.05). The quantity of proline-rich proteins in the cecum of rats was estimated from the decrease in digestibility of proline, glycine and glutamic acid. The estimated secretions of proline-rich proteins, when calculated on the basis of the three respective amino acids, were 3.5, 3.5 and 3.9 mg of proline-rich proteins per 10 mg of additional hull extract (21.8% condensed tannins). The results indicate that tannins from faba beans stimulate the parotid glands to increase the secretion of proline-rich proteins in rats. The proline-rich proteins then interact with dietary condensed tannins to reduce their antinutritional effects.
The Allium Test--A Simple, Eukaryote Genotoxicity Assay.
ERIC Educational Resources Information Center
Babich, H.; Segall, M. A.; Fox, K. D.
1997-01-01
Explains the allium test in which roots are excised from onion bulblets grown in aqueous solutions of a test agent. Root tips are then isolated and stained with aceto-orcein, and chromosomal aberrations are microscopically observed. (Author/AIM)
Philip M. Wargo; Kristiina Vogt; Daniel Vogt; Quintaniay Holifield; Joel Tilley; Gregory Lawrence; Mark David
2003-01-01
Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al, Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea...
Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio
2012-09-01
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis. © 2012 Blackwell Publishing Ltd.
Silk, Wendy Kuhn; Hsiao, Theodore C.; Diedenhofen, Ulrike; Matson, Christina
1986-01-01
Densities of osmoticum and potassium were measured as a function of distance from the tip of the primary root of Zea mays L. (cv WF9 × mo17). Millimeter segments were excised and analyzed for osmotic potential by a miniaturized freezing point depression technique, and for potassium by flame spectrophotometry. Local deposition rates were estimated from the continuity equation with values for density and growth velocity. Osmotic potential was uniform, −0.73 ± 0.05 megapascals, throughout the growth zone of well-watered roots. Osmoticum deposition rate was 260 μosmoles per gram fresh weight per hour. Potassium density fell from 117 micromoles per gram in the first mm region to 48 micromoles per gram at the base of the growth zone. Potassium deposition rates had a maximum of 29 micromoles per gram per hour at 3.5 millimeters from the tip and were positive (i.e. potassium was being added to the tissue) until 8 millimeters from the tip. The results are discussed in terms of ion relations of the growing zone and growth physics. PMID:16665121
Rajeshwari, A; Kavitha, S; Alex, Sruthi Ann; Kumar, Deepak; Mukherjee, Anita; Chandrasekaran, Natarajan; Mukherjee, Amitava
2015-07-01
The commercial usage of Al2O3 nanoparticles (Al2O3 NPs) has gone up significantly in the recent times, enhancing the risk of environmental contamination with these agents and their consequent adverse effects on living systems. The current study has been designed to evaluate the cytogenetic potential of Al2O3 NPs in Allium cepa (root tip cells) at a range of exposure concentrations (0.01, 0.1, 1, 10, and 100 μg/mL), their uptake/internalization profile, and the oxidative stress generated. We noted a dose-dependent decrease in the mitotic index (42 to 28 %) and an increase in the number of chromosomal aberrations. Various chromosomal aberrations, e.g. sticky, multipolar and laggard chromosomes, chromosomal breaks, and the formation of binucleate cells, were observed by optical, fluorescence, and confocal laser scanning microscopy. FT-IR analysis demonstrated the surface chemical interaction between the nanoparticles and root tip cells. The biouptake of Al2O3 in particulate form led to reactive oxygen species generation, which in turn probably contributed to the induction of chromosomal aberrations.
Graviresponsiveness of surgically altered primary roots of Zea mays
NASA Technical Reports Server (NTRS)
Maimon, E.; Moore, R.
1991-01-01
We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.
Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin
2015-02-01
L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.
Chacón-López, Alejandra; Ibarra-Laclette, Enrique; Sánchez-Calderón, Lenin; Gutiérrez-Alanís, Dolores
2011-01-01
Plants are exposed to several biotic and abiotic stresses. A common environmental stress that plants have to face both in natural and agricultural ecosystems that impacts both its growth and development is low phosphate (Pi) availability. There has been an important progress in the knowledge of the molecular mechanisms by which plants cope with Pi deficiency. However, the mechanisms that mediate alterations in the architecture of the Arabidopsis root system responses to Pi starvation are still largely unknown. One of the most conspicuous developmental effects of low Pi on the Arabidopsis root system is the inhibition of primary root growth that is accompanied by loss of root meristematic activity. To identify signalling pathways potentially involved in the Arabidpsis root meristem response to Pi-deprivation, here we report the global gene expression analysis of the root tip of wild type and low phosphorus insensitive4 (lpi4) mutant grown under Pi limiting conditions. Differential gene expression analysis and physiological experiments show that changes in the redox status, probably mediated by jasmonic acid and ethylene, play an important role in the primary root meristem exhaustion process triggered by Pi-starvation. PMID:21368582
An evaluation of root resorption after orthodontic treatment.
Thomas, E; Evans, W G; Becker, P
2012-08-01
Root resorption is commonly seen, albeit in varying degrees, in cases that have been treated orthodontically. In this retrospective study the objective was to compare the amount of root resorption observed after active orthodontic treatment had been completed with one of three different appliance systems, namely, Tip Edge, Modified Edgewise and Damon. The sample consisted of pre and post-treatment cephalograms of sixty eight orthodontic cases. Root resorption of the maxillary central incisor was assessed from pre- and post- treatment lateral ce phalograms using two methods. In the first, overall tooth length from the incisal edge to the apex was measured on both pre and post-treatment lateral cephalograms and root resorption was recorded as an actual millimetre loss of tooth length. There was a significant upward linear trend (p = 0.052) for root resorption from the Tip Edge Group to the Damon Group. In the second method root resorption was visually evaluated by using the five grade ordinal scale of Levander and Malmgren (1988). It was found that the majorty of cases in the sample came under Grade 1 and Grade 2 category of root resorption. Statistical evaluation tested the extent of agree ment in this study between visual measurements and actual measurements and demonstrated a significant association (p = 0.018) between the methods.
Prakash, Meppaloor G; Chung, Ill Min
2016-09-01
The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.
Characterization of root agravitropism induced by genetic, chemical, and developmental constraints
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.; Marcum, H.
1987-01-01
The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.
USDA-ARS?s Scientific Manuscript database
The Cool Season Food Legume Genome database (CSFL, www.coolseasonfoodlegume.org) is an online resource for genomics, genetics, and breeding research for chickpea, lentil,pea, and faba bean. The user-friendly and curated website allows for all publicly available map,marker,trait, gene,transcript, ger...
Huang, Li-Chun; Lius, Suwenza; Huang, Bau-Lian; Murashige, Toshio; Mahdi, El Fatih M.; Van Gundy, Richard
1992-01-01
Repeated grafting of 1.5-centimeter long shoot tips from an adult Sequoia sempervirens tree onto fresh, rooted juvenile stem cuttings in vitro resulted in progressive restoration of juvenile traits. After four successive grafts, stem cuttings of previously adult shoots rooted as well, branched as profusely, and grew with as much or more vigor as those of seedling shoots. Reassays disclosed retention for 3 years of rooting competence at similar levels as originally restored. Adventitious shoot formation was remanifested and callus development was depressed in stem segments from the repeatedly grafted adult. The reversion was associated with appearance and disappearance of distinctive leaf proteins. Neither gibberellic acid nor N6-beneyladenine as nutrient supplements duplicated the graft effects. ImagesFigure 2Figure 5Figure 8 PMID:16668609
Protocol for Removal of Third Molar Root Tips from the Inferior Alveolar Canal-Crossing the line.
Punga, Rohit; Keswani, Kiran
2014-12-01
The safe removal of third molars involved with the inferior alveolar canal (IAC) has been an area of concern since long. Many times we hesitate for the removal of third molars, fearing injury to the inferior alveolar nerve. The authors here describe a simple technique which can be used to remove third molars showing evidence of proximity to IAC on presurgical radiographic evaluation, as well as those root tips which, during removal, accidentally enter the IAC space. A step-by-step protocol is presented along with necessary precautions during the operative procedure.
Plant Evo-Devo: How Tip Growth Evolved.
Rensing, Stefan A
2016-12-05
Apical elongation of polarized plant cells (tip growth) occurs in root hairs of flowering plants and in rhizoids of bryophytes. A new report shows that the formation of these cells relies on genes already present in the first land plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Micronucleus induction in Vicia faba roots. Part 2. Biological effects of neutrons below 1 cGy.
Marshall, I; Bianchi, M
1983-08-01
A dose-effect relationship has been established for high-energy neutrons (maximum energy 600 MeV) within a dose range of 0.2 to 80 cGy and for low-energy neutrons produced by a 252Cf source (mean energy 2.35 MeV) for doses between 0.2 and 5 cGy. The frequency of micronuclei was found to increase linearly with dose. The relative biological effectiveness (r.b.e) values calculated using 60Co radiation as a reference were, in the high-dose region, 4.7 +/- 0.4 and 11.8 +/- 1.3 for the high- and low-energy neutrons, respectively. At doses below 1 cGy constant values of 25.4 +/- 4.4 and 63.7 +/- 12 were reached for the respective neutron energies.
Genome duplication improves rice root resistance to salt stress
2014-01-01
Background Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. Results Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased. Conclusions Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots. PMID:25184027
Mitochondrial β-Cyanoalanine Synthase Is Essential for Root Hair Formation in Arabidopsis thaliana[W
García, Irene; Castellano, José María; Vioque, Blanca; Solano, Roberto; Gotor, Cecilia; Romero, Luis C.
2010-01-01
Cyanide is stoichiometrically produced as a coproduct of the ethylene biosynthesis pathway and is detoxified by β-cyanoalanine synthase enzymes. The molecular and phenotypical analysis of T-DNA insertion mutants of the mitochondrial β-cyanoalanine synthase CYS-C1 suggests that discrete accumulation of cyanide is not toxic for the plant and does not alter mitochondrial respiration rates but does act as a strong inhibitor of root hair development. The cys-c1 null allele is defective in root hair formation and accumulates cyanide in root tissues. The root hair defect is phenocopied in wild-type plants by the exogenous addition of cyanide to the growth medium and is reversed by the addition of hydroxocobalamin or by genetic complementation with the CYS-C1 gene. Hydroxocobalamin not only recovers the root phenotype of the mutant but also the formation of reactive oxygen species at the initial step of root hair tip growth. Transcriptional profiling of the cys-c1 mutant reveals that cyanide accumulation acts as a repressive signal for several genes encoding enzymes involved in cell wall rebuilding and the formation of the root hair tip as well as genes involved in ethylene signaling and metabolism. Our results demonstrate that mitochondrial β-cyanoalanine synthase activity is essential to maintain a low level of cyanide for proper root hair development. PMID:20935247
Sankaranarayanan, Subramanian; Samuel, Marcus A
2015-01-01
Plants respond to limited soil nutrient availability by inducing more lateral roots (LR) to increase the root surface area. At the cellular level, nutrient starvation triggers the process of autophagy through which bulk degradation of cellular materials is achieved to facilitate nutrient mobilization. Whether there is any link between the cellular autophagy and induction of LR had remained unknown. We recently showed that the S-Domain receptor Kinase (ARK2) and U Box/Armadillo Repeat-Containing E3 ligase (PUB9) module is required for lateral root formation under phosphate starvation in Arabidopsis thaliana.(1) We also showed that PUB9 localized to autophagic bodies following either activation by ARK2 or under phosphate starvation and ark2-1/pub9-1 plants displayed lateral root defects with inability to accumulate auxin in the root tips under phosphate starvation.(1) Supplementing exogenous auxin was sufficient to rescue the LR defects in ark2-1/pub9-1 mutant. Blocking of autophagic responses in wild-type Arabidopsis also resulted in inhibition of both lateral roots and auxin accumulation in the root tips indicating the importance of autophagy in mediating auxin accumulation under phosphate starved conditions.(1) Here, we propose a model for ARK2/AtPUB9 module in regulation of lateral root development via selective autophagy.
Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L
2015-01-01
Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.
Verma, Ashutosh Kumar; Dhawan, Sunita Singh
2017-10-01
Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre . Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre . Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre . An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris . Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre . Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity.
Verma, Ashutosh Kumar; Dhawan, Sunita Singh
2017-01-01
Background: Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Objectives: Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre. Materials and Methods: Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre. Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Results: Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Conclusion: Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre. SUMMARY An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris. Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre. Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity. PMID:29142402
Gatta, Domenico; Russo, Claudia; Giuliotti, Lorella; Mannari, Claudio; Picciarelli, Piero; Lombardi, Lara; Giovannini, Luca; Ceccarelli, Nello; Mariotti, Lorenzo
2013-06-01
The study evaluated the partial substitution of soybean meal by faba beans (18%) or peas (20%) as additional protein sources in diets destined for typical Italian heavy pig production. It compared animal performances, meat quality, the presence of residual anti-nutritional factors (ANF) and phytoestrogens in plasma and meat and the possible effects on pig health, by evaluating oxidative, inflammatory and pro-atherogenic markers. The results showed that the productive performances, expressed as body weight and feed conversion ratio, of pigs fed with faba bean and pea diets were similar to those of pigs fed only the soybean meal. Meat quality of pigs fed with the three diets was similar in colour, water-holding capacity, tenderness and chemical composition. Despite the higher levels of phytoestrogen in the plasma of pigs fed only the soybean meal, phytoestrogen concentration in the muscle was equivalent to that of animals fed diets with faba beans, whereas pigs fed a diet with peas showed a lower concentration. Inflammation and pro-atherogenic parameters did not show significant differences among the three diets. Overall, the partial substitution of soybean meal by faba beans appears more interesting than with peas, particularly in relation to the higher amount of polyphenols in the diet and the highest concentration of phytoestrogens found in the plasma and muscle of animals, while the pyrimidine anti-nutritional compounds present in the diet did not appear to accumulate and had no effect on the growth performance of animals.
NASA Astrophysics Data System (ADS)
Sánchez-Navarro, Virginia; Zornoza, Raúl; Faz, Ángel; Fernández, Juan A.
2017-04-01
In this study we assessed the effect of two different rotations based on winter (faba bean) or summer (cowpea) legumes on the direct emissions of CO2 and CH4. Faba bean was rotated with the summer melon crop (Cucumis melo) while cowpea was rotated with the winter broccoli crop (Brassica oleracea). We also assessed if different legume cultivars and management practices (conventional and organic) significantly influenced gas emissions. The study was randomly designed in blocks with four replications, in plots of 10 m2, during two complete cycles. Gas samples were taken in different times (0, 30 and 60 minutes) once a week using the static gas chamber technique for each crop. Results showed that cumulative CO2 emissions in broccoli decreased after the rotation with both cowpea cultivars under conventional management practices. Faba bean cultivars and management practices had no influence on cumulative CO2 emissions in melon crop. Cumulative CH4 emissions in broccoli crop were lowest after the rotation with Grey-eyed pea than Black-eyed pea cultivar, under both management practices. However, faba bean cultivars and management practices had no influence on cumulative CH4 emissions in melon crop. Cumulative CH4 emissions in melon crop were highest than in the rest of crops. Cowpea cultivar and management practice influenced cumulative CH4 and CO2 emissions of broccoli crop, respectively. Faba bean cultivar and management practice had no effect on cumulative CH4 and CO2 emissions of melon crop. Acknowledgements: This research was financed by the FP7 European Project Eurolegume (FP7-KBBE-613781).
Occurrence of mycorrhizae after logging and slash burning in the Douglas-fir forest type.
Ernest Wright; Robert F. Tarrant
1958-01-01
The association of certain fungi with plant roots results in formation of an organ called a mycorrhiza. There are two principal types of mycorrhizae: those with the fungus confined internally in the root, or endotrophic mycorrhizae, and those with both internal fungus development and an external fungal mantle enveloping the root tips, or ectotrophic mycorrhizae....
Correlation of toxicity with lead content in root tip cells (Allium cepa L.).
Carruyo, Ingrid; Fernández, Yusmary; Marcano, Letty; Montiel, Xiomara; Torrealba, Zaida
2008-12-01
The present study determines lead content in onion root tip cells (Allium cepa L.), correlating it with its toxicity. The treatment was carried at 25 +/- 0.5 degrees C using aqueous solutions of lead chloride at 0.1, 0.25, 0.50, 0.75, and 1 ppm for 12, 24, 48, and 72 h. For each treatment, a control where the lead solution was substituted by distilled water was included. After treatment, the meristems were fixed with a mixture of alcohol-acetic acid (3:1) and colored according to the technique of Feulgen. Lead content was quantified by graphite furnace absorption atomic spectrometry. The lead content in the roots ranged from 3.25 to 244.72 microg/g dry weight, with a direct relation with the concentration and time of exposure. A significant negative correlation was presented (r = -0.3629; p < 0.01) among lead content and root growth increment, and a positive correlation (r = 0.7750; p < 0.01) with the induction of chromosomic aberrations. In conclusion, lead is able to induce a toxic effect in the exposed roots, correlated with its content.
2005-01-01
We have identified and characterized a novel NADP+-dependent D-arabitol dehydrogenase and the corresponding gene from the rust fungus Uromyces fabae, a biotrophic plant pathogen on broad bean (Vicia faba). The new enzyme was termed ARD1p (D-arabitol dehydrogenase 1). It recognizes D-arabitol and mannitol as substrates in the forward reaction, and D-xylulose, D-ribulose and D-fructose as substrates in the reverse reaction. Co-factor specificity was restricted to NADP(H). Kinetic data for the major substrates and co-factors are presented. A detailed analysis of the organization and expression pattern of the ARD1 gene are also given. Immunocytological data indicate a localization of the gene product predominantly in haustoria, the feeding structures of these fungi. Analyses of metabolite levels during pathogenesis indicate that the D-arabitol concentration rises dramatically as infection progresses, and D-arabitol was shown in an in vitro system to be capable of quenching reactive oxygen species involved in host plant defence reactions. ARD1p may therefore play an important role in carbohydrate metabolism and in establishing and/or maintaining the biotrophic interaction in U. fabae. PMID:15796718
Kwankua, W; Sengsai, S; Kuleung, C; Euawong, N
2010-07-01
Utilization of neem plant (Azadirachta indica A. Juss) extract for pest control in agriculture has raised concerns over contamination by the residues to the environment. Such residues, particularly azadirachtin (Aza), may cause deleterious effect to non-target organisms. This investigation was conducted to find out if Aza could be inactivated through exposures to sunlight. Activity of Aza was assessed as its ability to cause cytotoxic and genotoxic effects in the forms of nuclei abnormality and chromosome aberration as measured by mitotic index (MI) and mitotic aberration (MA). Varying concentrations of Aza were tested on Allium cepa and Eucrosia bicolor. It was found that the MI of all root tip meristematic cells of A. cepa and E. bicolor treated with 0.00005%, 0.00010%, 0.00015%, and 0.00020% (w/v) Aza-containing neem extract for 24h, were significantly lower than the controls. Complementary to the lower levels of MI, the Aza-treated groups showed higher MA levels in all cases investigated. Furthermore, the decreasing levels of MI and the increasing levels of MA related well with the increasing concentration of Aza. Microscopic examination of root tip meristematic cells revealed that the anomaly found most often were mitotic disturbances and chromosomal bridges. Exposures of 0.00020% (w/v) Aza to sunlight for 3 days and 7 days decreased Aza ability to induce cytotoxicity and genotoxicity, both in terms of MI and MA, to root tip meristematic cells in A. cepa and E. bicolor. Photodegradation of Aza upon exposure to direct sunlight was confirmed by HPLC. The study implicates that Aza would unlikely cause long term deleterious effects to the environment since it would be inactivated by sunlight. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Plastic responses of native plant root systems to the presence of an invasive annual grass.
Phillips, Allison J; Leger, Elizabeth A
2015-01-01
• The ability to respond to environmental change via phenotypic plasticity may be important for plants experiencing disturbances such as climate change and plant invasion. Responding to belowground competition through root plasticity may allow native plants to persist in highly invaded systems such as the cold deserts of the Intermountain West, USA.• We investigated whether Poa secunda, a native bunchgrass, could alter root morphology in response to nutrient availability and the presence of a competitive annual grass. Seeds from 20 families were grown with high and low nutrients and harvested after 50 d, and seeds from 48 families, grown with and without Bromus tectorum, were harvested after ∼2 or 6 mo. We measured total biomass, root mass fraction, specific root length (SRL), root tips, allocation to roots of varying diameter, and plasticity in allocation.• Plants had many parallel responses to low nutrients and competition, including increased root tip production, a trait associated with tolerance to reduced resources, though families differed in almost every trait and correlations among trait changes varied among experiments, indicating flexibility in plant responses. Seedlings actively increased SRL and fine root allocation under competition, while older seedlings also increased coarse root allocation, a trait associated with increased tolerance, and increased root mass fraction.• The high degree of genetic variation for root plasticity within natural populations could aid in the long-term persistence of P. secunda because phenotypic plasticity may allow native species to persist in invaded and fluctuating resource environments. © 2015 Botanical Society of America, Inc.
González-Mendoza, Víctor; Zurita-Silva, Andrés; Sánchez-Calderón, Lenin; Sánchez-Sandoval, María Eugenia; Oropeza-Aburto, Araceli; Gutiérrez-Alanís, Dolores; Alatorre-Cobos, Fulgencio; Herrera-Estrella, Luis
2013-05-01
Proper root growth is crucial for anchorage, exploration, and exploitation of the soil substrate. Root growth is highly sensitive to a variety of environmental cues, among them water and nutrient availability have a great impact on root development. Phosphorus (P) availability is one of the most limiting nutrients that affect plant growth and development under natural and agricultural environments. Root growth in the direction of the long axis proceeds from the root tip and requires the coordinated activities of cell proliferation, cell elongation and cell differentiation. Here we report a novel gene, APSR1 (Altered Phosphate Starvation Response1), involved in root meristem maintenance. The loss of function mutant apsr1-1 showed a reduction in primary root length and root apical meristem size, short differentiated epidermal cells and long root hairs. Expression of APSR1 gene decreases in response to phosphate starvation and apsr1-1 did not show the typical progressive decrease of undifferentiated cells at root tip when grown under P limiting conditions. Interestingly, APSR1 expression pattern overlaps with root zones of auxin accumulation. Furthermore, apsr1-1 showed a clear decrease in the level of the auxin transporter PIN7. These data suggest that APSR1 is required for the coordination of cell processes necessary for correct root growth in response to phosphate starvation conceivably by direct or indirect modulation of PIN7. We also propose, based on its nuclear localization and structure, that APSR1 may potentially be a member of a novel group of transcription factors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A New Model for Root Growth in Soil with Macropores
NASA Astrophysics Data System (ADS)
Landl, M.; Huber, K.; Schnepf, A.; Vanderborght, J.; Javaux, M.; Bengough, G.; Vereecken, H.
2016-12-01
In order to study soil-root interaction processes, dynamic root architecture models which are linked to models that simulate water flow and nutrient transport in the soil-root system are needed. Such models can be used to predict the impact of soil structural features, e.g. the presence of macropores in dense subsoil, on water and nutrient uptake by plants. In dynamic root architecture models, root growth is represented by moving root tips whose growth trajectory results in the creation of linear root segments. Typically, the direction of each new root segment is calculated as the vector sum of various direction-affecting components. The use of these established methods to simulate root growth in soil containing macropores, however, failed to reproduce experimentally observed root growth patterns. We therefore developed an alternative modelling approach where we distinguish between, firstly, the driving force for root growth which is determined by the orientation of the previous root segment as well as the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by root conductance which represents the inverse of soil penetration resistance and is treated similarly to hydraulic conductivity in Darcy's law. At the presence of macropores, root conductance is anisotropic which leads to a difference between the direction of the driving force and the direction of the root tip movement. The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. The model simulated root growth trajectories in structured soil at both single root and whole root-system scales, generating root systems that were similar to images from experiments. Its implementation in the three dimensional soil and root water uptake model R-SWMS enables the use of the model in the future to evaluate the effect of macropores on crop access to water and nutrients.
The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.
Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam
2016-12-05
To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Stowell, Elbridge Z; Schwartz, Edward B; Houbolt, John C
1945-01-01
A theoretical investigation was made of the behavior of a cantilever beam in rotational motion about a transverse axis through the root determining the stresses, the deflections, and the accelerations that occur in the beam as a result of the arrest of motion. The equations for bending and shear stress reveal that, at a given percentage of the distance from root to tip and at a given trip velocity, the bending stresses for a particular mode are independent of the length of the beam and the shear stresses vary inversely with the length. When examined with respect to a given angular velocity instead of a given tip velocity, the equations reveal that the bending stress is proportional to the length of the beam whereas the shear stress is independent of the length. Sufficient experimental verification of the theory has previously been given in connection with another problem of the same type.
Séne, Seynabou; Avril, Raymond; Chaintreuil, Clémence; Geoffroy, Alexandre; Ndiaye, Cheikh; Diédhiou, Abdala Gamby; Sadio, Oumar; Courtecuisse, Régis; Sylla, Samba Ndao; Selosse, Marc-André; Bâ, Amadou
2015-10-01
We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.
Turbine airfoil with ambient cooling system
Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.
2016-06-07
A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
Eysholdt-Derzsó, Emese
2017-01-01
When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. PMID:28698356
Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan
2015-01-01
A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494
The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.
Sakai, Tatsuya; Mochizuki, Susumu; Haga, Ken; Uehara, Yukiko; Suzuki, Akane; Harada, Akiko; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka
2012-04-01
Regulation of the root growth pattern is an important control mechanism during plant growth and propagation. To better understand alterations in root growth direction in response to environmental stimuli, we have characterized an Arabidopsis thaliana mutant, wavy growth 3 (wav3), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The wav3 mutant shows a greater curvature of root bending in response to gravity, but a smaller curvature in response to light, suggesting that it is a root gravitropism-enhancing mutation. This wav3 phenotype also suggests that enhancement of the gravitropic response in roots strengthens root tip impedance after contact with the agar surface and/or causes an increase in subsequent root bending in response to obstacle-touching stimulus in these mutants. WAV3 encodes a protein with a RING finger domain, and is mainly expressed in root tips. RING-containing proteins often function as an E3 ubiquitin ligase, and the WAV3 protein shows such activity in vitro. There are three genes homologous to WAV3 in the Arabidopsis genome [EMBRYO SAC DEVELOPMENT ARREST 40 (EDA40), WAVH1 and WAVH2 ], and wav3 wavh1 wavh2 triple mutants show marked root gravitropism abnormalities. This genetic study indicates that WAV3 functions positively rather than negatively in root gravitropism, and that enhancement of the gravitropic response in wav3 roots is dependent upon the function of WAVH2 in the absence of WAV3. Hence, our results demonstrate that the WAV3 family of proteins are E3 ligases that are required for root gravitropism in Arabidopsis. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Congdon, B S; Coutts, B A; Renton, M; Flematti, G R; Jones, R A C
2017-09-15
Pea seed-borne mosaic virus (PSbMV) infection causes a serious disease of field pea (Pisum sativum) crops worldwide. The PSbMV transmission efficiencies of five aphid species previously found landing in south-west Australian pea crops in which PSbMV was spreading were studied. With plants of susceptible pea cv. Kaspa, the transmission efficiencies of Aphis craccivora, Myzus persicae, Acyrthosiphon kondoi and Rhopalosiphum padi were 27%, 26%, 6% and 3%, respectively. Lipaphis erysimi did not transmit PSbMV in these experiments. The transmission efficiencies found for M. persicae and A. craccivora resembled earlier findings, but PSbMV vector transmission efficiency data were unavailable for A. kondoi, R. padi and L. erysimi. With plants of partially PSbMV resistant pea cv. PBA Twilight, transmission efficiencies of M. persicae, A. craccivora and R. padi were 16%, 12% and 1%, respectively, reflecting putative partial resistance to aphid inoculation. To examine aphid alighting preferences over time, free-choice assays were conducted with two aphid species representing efficient (M. persicae) and inefficient (R. padi) vector species. For this, alatae were set free on multiple occasions (10-15 repetitions each) amongst PSbMV-infected and mock-inoculated pea or faba bean (Vicia faba) plants. Following release, non-viruliferous R. padi alatae exhibited a general preference for PSbMV-infected pea and faba bean plants after 30min-4h, but preferred mock-inoculated plants after 24h. In contrast, non-viruliferous M. persicae alatae alighted on mock-inoculated pea plants preferentially for up to 48h following their release. With faba bean, M. persicae preferred infected plants at the front of assay cages, but mock-inoculated ones their backs, apparently due to increased levels of natural light there. When preliminary analyses were performed to detect PSbMV-induced changes in the volatile organic compound profiles of pea and faba bean plants, higher numbers of volatiles representing a range of compound groups (such as aldehydes, ketones and esters) were found in the headspaces of PSbMV-infected than of mock-inoculated pea or faba bean plants. This indicates PSbMV induces physiological changes in these hosts which manifest as altered volatile emissions. These alterations could be responsible for the differences in alighting preferences. Information from this study enhances understanding of virus-vector relationships in the PSbMV-pea and faba bean pathosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Lessire, M; Gallo, V; Prato, M; Akide-Ndunge, O; Mandili, G; Marget, P; Arese, P; Duc, G
2017-08-01
The faba bean (Vicia faba L.) is a potential source of proteins for poultry, mainly for laying hens whose protein requirements are lower than those of other birds such as growing broilers and turkeys. However, this feedstuff contains anti-nutritional factors, that is, vicine (V) and convicine (C) that are already known to reduce laying hen performance. The aim of the experiment reported here was to evaluate the effects of a wide range of dietary V and C concentrations in laying hens. Two trials were performed with laying hens fed diets including 20% or 25% of faba bean genotypes highly contrasting in V+C content. In Trial 1, faba beans from two tannin-containing cultivars, but with high or low V+C content were dehulled in order to eliminate the tannin effect. In addition to the contrasting levels of V+C in the two cultivars, two intermediate levels of V+C were obtained by mixing the two cultivars (70/30 and 30/70). In Trial 2, two isogenic zero-tannin faba bean genotypes with high or low V+C content were used. In both trials, a classical corn-soybean diet was also offered to control hens. Each experimental diet was given to 48 laying hens for 140 (Trial 1) or 89 (Trial 2) days. Laying performance and egg quality were measured. The redox sensitivity of red blood cells (RBCs) was assessed by measuring hemolysis and reduced glutathione (GSH) concentration in these cells. Egg weight was significantly reduced by the diets containing the highest concentrations of V+C (P<0.0001) in Trial 1 and slightly reduced (P<0.10) in Trial 2, but only weak linear relationships between egg weight and dietary V+C concentration were established. No negative effect of V+C level was observed for egg quality parameters. In contrast, certain parameters (i.e. Haugh units, yolk color) were improved by feeding low V+C diets (P<0.05). Hemolysis of RBCs was higher in hens fed high V+C diets. A decrease in GSH concentration in RBCs of hens fed the highest levels of V+C was observed. Faba bean genotypes with low concentrations of V+C can therefore be used in laying hen diets up to 25% without any detrimental effects on performance levels or egg characteristics, without any risk of hemolysis of RBCs.
Yang, Zhong-Bao; Eticha, Dejene; Albacete, Alfonso; Rao, Idupulapati Madhusudana; Roitsch, Thomas; Horst, Walter Johannes
2012-01-01
Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al–drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (–0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought. PMID:22371077
2015-01-01
We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130
Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon?
Will, Torsten; Kornemann, Sarah R; Furch, Alexandra C U; Tjallingii, W Fred; van Bel, Aart J E
2009-10-01
Ca2+-binding proteins in the watery saliva of Megoura viciae counteract Ca2+-dependent occlusion of sieve plates in Vicia faba and so prevent the shut-down of food supply in response to stylet penetration. The question arises whether this interaction between aphid saliva and sieve-element proteins is a universal phenomenon as inferred by the coincidence between sieve-tube occlusion and salivation. For this purpose, leaf tips were burnt in a number of plant species from four different families to induce remote sieve-plate occlusion. Resultant sieve-plate occlusion in these plant species was counteracted by an abrupt switch of aphid behaviour. Each of the seven aphid species tested interrupted its feeding behaviour and started secreting watery saliva. The protein composition of watery saliva appeared strikingly different between aphid species with less than 50% overlap. Secretion of watery saliva seems to be a universal means to suppress sieve-plate occlusion, although the protein composition of watery saliva seems to diverge between species.
Simão, Mariela J; Collin, Myriam; Garcia, Renata O; Mansur, Elisabeth; Pacheco, Georgia; Engelmann, Florent
2018-05-01
Cryopreservation stands out as the main strategy to ensure safe and cost efficient long-term conservation of plant germplasm, especially for biotechnological materials. However, the injuries associated with the procedure may result in structural damage and low recovery rates after cooling. Histological analysis provides useful information on the effects of osmotic dehydration, LN exposure, and recovery conditions on cellular integrity and tissue organization, allowing the determination of the critical steps of the cryopreservation protocol and, thus, the use of optimized treatments. Passiflora pohlii Mast. (Passifloraceae) is a native species from Brazil with potential agronomic interest. Recent studies showed the presence of saponins in its roots, which presented antioxidant activity. The goal of this work was to develop a cryopreservation technique for root tips of in vitro-derived plants of P. pohlii using the V-Cryo-plate technique and to characterize the anatomical alterations that occurred during the successive steps of the protocol. Root tips were excised from in vitro plants and precultured before adhesion to cryo-plates and then treated for different periods with the plant vitrification solutions PVS2 or PVS3. Treatment with PVS2 for 45 min resulted in higher recovery (79%) when compared with PVS3 (43%). The greatest number of adventitious roots per cryopreserved explant was also observed after a 45-min exposure to PVS2. Plasmolysis levels were higher in cortical cells of cryopreserved explants treated with PVS2, while pericycle and central cylinder cells were not damaged after this treatment. Thirty days after rewarming, no plasmolysis could be detected, regardless of the experimental conditions.
USDA-ARS?s Scientific Manuscript database
Faba bean is one of the a few plant species that can produce the medicinally important molecule, L-3,4-dihydroxy phenylalanine (L-DOPA), the major ingredient of several prescription drugs used to treat Parkinson’s disease. L-DOPA can cross the blood-brain barrier, where it is converted to dopamine, ...
Smith, L A; Houdijk, J G M; Homer, D; Kyriazakis, I
2013-08-01
To reduce reliance on imported soybean meal (SBM) in temperate environments, pea and faba bean may be alternative protein sources for pig diets. We assessed the effects of dietary pea and faba bean inclusion on grower and finisher pig performance and carcass quality. There were 9 dietary treatments tested on both grower (30 to 60 kg) and finisher (60 to 100 kg) pigs in a dose response feeding trial. The control diet included SBM at 14 and 12% for grower and finisher pigs, respectively, whereas in the test diets, pea or faba bean were included at 7.5, 15, 22.5, and 30%, gradually and completely replacing SBM. Diets were formulated to be isoenergetic for NE and with the same standard ileal digestible Lys content. After a 1-wk adaptation period, each diet was available on an ad libitum basis to 4 pens of pigs with 4 pigs per pen (2 entire males and 2 females) for 4 wk. Weekly BW for individual pigs, and pen intakes were recorded to assess ADG, ADFI, and G:F. Finisher pigs were then slaughtered at a commercial slaughter house to record carcass quality and assess skatole and indole concentration in the backfat. There were no effects (P > 0.10) on grower ADG, ADFI, and G:F, but pulse inclusion reduced finisher ADG (P = 0.04), with a quadratic effect of pulse inclusion (P = 0.03), as ADG tended to be reduced over initial inclusion levels only. There were no associated effects (P > 0.10) on ADFI or G:F, and pea and faba bean diets resulted in similar finisher performance. Increasing pulse inclusion linearly increased fecal DM content both in grower pigs (P = 0.02) and finisher pigs (P < 0.01). There were no effects on carcass quality or backfat skatole concentrations, but indole concentration was linearly reduced with increasing pulse inclusion (P = 0.05). It is concluded that pea and faba bean may be a viable alternative to SBM in grower and finisher pig diets.
Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins
NASA Astrophysics Data System (ADS)
Devoria, Adam C.; Ringuette, Matthew J.
2012-02-01
We investigate experimentally the unsteady, three-dimensional vortex formation of low-aspect-ratio, trapezoidal flat-plate fins undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103). The objectives are to characterize the unsteady three-dimensional vortex structure, examine vortex saturation, and understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a water tank facility, and the diagnostic tools are dye flow visualization and digital particle image velocimetry. The dye visualizations show that the low-aspect-ratio plate produces symmetric ring-like vortices comprised mainly of tip-edge vorticity. They also indicate the presence of the root-to-tip velocity. For large rotational amplitudes, the primary ring-like vortex sheds and a secondary ring-like vortex is generated while the plate is still in motion, indicating saturation of the leading vortex. The time-varying vortex circulation in the flow symmetry plane provides quantitative evidence of vortex saturation. The phenomenon of saturation is observed for several plate velocity programs. The temporal development of the vortex circulation is often complex, which prevents an objective determination of an exact saturation time. This is the result of an interaction between the developing vortex and the root-to-tip flow, which breaks apart the vortex. However, it is possible to define a range of time during which the vortex reaches saturation. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. This event is the lower bound on the saturation time range.
Multiple piece turbine engine airfoil with a structural spar
Vance, Steven J [Orlando, FL
2011-10-11
A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.
Role of plant-rock interactions in the N cycle of oligotrophic environments
NASA Astrophysics Data System (ADS)
Gaddis, E. E.; Zaharescu, D. G.; Dontsova, K.; Chorover, J.; Galey, M.; Huxman, T. E.
2013-12-01
The vital role of nitrogen--an abundant, but inaccessible building block for growth--in plants is well known. At the same time, plants and microorganisms are driving forces for accumulation of available N in the soils as they form. A deep understanding of N cycle initiation, progression, and link to ecological systems and their development is therefore necessary. A mesocosm experiment was set up with the goal of exploring the role of interactions between four rock types and biota on N fate in oligotrophic environments. Basalt, rhyolite, granite, and schist were used with 6 treatments: abiotic control; microbes only; grass and microbes; pine and microbes; grass, microbes, and mycorrhizal fungi; and pine, microbes, and mycorrhizal fungi. Pinus ponderosa and Buchloe dactyloides were seeded on the different rock media and maintained with purified air and water but no nutrient additions for 8 month. Throughout the experiment leachate solution was collected and its chemical composition characterized, including organic and inorganic C and N. In addition, plant roots were scanned and their images analyzed to quantify their morphological features. Root parameters included measurements of length, surface area, diameter, volume, the number of tips, forks and links, altitude, and overall plant biomass. Over the 8 month period, there was sustained vegetation growth on all rocks without N addition. A high C:N ratio was seen across all substrates, indicating N deficiency. A strong relationship was observed between total N removal in soil leachate and a number of plant parameters, including plant biomass, total surface area of the roots, sum of the root tips, and total root volume. These relationships were the strongest in basalt, where the pines had higher root surface area than grasses and this was accompanied by higher total N in leachate. There was also a positive correlation between total N removal and the total biomass, total N and the sum of the root tips, and total N and the sum of the root volume. This work shows the strong root-rock interactions effect on N that is characteristic of oligotrophic environments. Significant differences in total N between rock types
NASA Technical Reports Server (NTRS)
Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.
2003-01-01
N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.
Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H. Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M.
2009-01-01
Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane–localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gβ subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism. PMID:19602625
Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M
2009-07-01
Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.
Bioavailability of trace elements in beans and zinc-biofortified wheat in pigs.
Carlson, Dorthe; Nørgaard, Jan Værum; Torun, Bulent; Cakmak, Ismail; Poulsen, Hanne Damgaard
2012-12-01
The objectives of this experiment were to study bioavailability of trace elements in beans and wheat containing different levels of zinc and to study how the water solubility of trace elements was related to the bioavailability in pigs. Three wheat and two bean types were used: wheat of Danish origin as a control (CtrlW), two Turkish wheat types low (LZnW) and high (HZnW) in zinc, a common bean (Com), and a faba bean (Faba). Two diets were composed by combining 81 % CtrlW and 19 % Com or Faba beans. Solubility was measured as the trace element concentration in the supernatant of feedstuffs, and diets incubated in distilled water at pH 4 and 38°C for 3 h. The bioavailability of zinc and copper of the three wheat types and the two bean-containing diets were evaluated in the pigs by collection of urine and feces for 7 days. The solubility of zinc was 34-63 %, copper 18-42 %, and iron 3-11 %. The zinc apparent digestibility in pigs was similar in the three wheat groups (11-14 %), but was significantly higher in the CtrlW+Faba group (23 %) and negative in the CtrlW+Com group (-30 %). The apparent digestibility of copper was higher in the HZnW (27 %) and CtrlW+Faba (33 %) groups than in the CtrlW (17 %) and LZnW (18 %) groups. The apparent copper digestibility of the CtrlW+Com diet was negative (-7 %). The solubility and digestibility results did not reflect the concentration in feedstuffs. The in vitro results of water solubility showed no relationship to the results of trace mineral bioavailability in pigs.
Kimber, Matthew S; Martin, Fernando; Lu, Yingjie; Houston, Simon; Vedadi, Masoud; Dharamsi, Akil; Fiebig, Klaus M; Schmid, Molly; Rock, Charles O
2004-12-10
Type II fatty acid biosynthesis systems are essential for membrane formation in bacteria, making the constituent proteins of this pathway attractive targets for antibacterial drug discovery. The third step in the elongation cycle of the type II fatty acid biosynthesis is catalyzed by beta-hydroxyacyl-(acyl carrier protein) (ACP) dehydratase. There are two isoforms. FabZ, which catalyzes the dehydration of (3R)-hydroxyacyl-ACP to trans-2-acyl-ACP, is a universally expressed component of the bacterial type II system. FabA, the second isoform, as has more limited distribution in nature and, in addition to dehydration, also carries out the isomerization of trans-2- to cis-3-decenoyl-ACP as an essential step in unsaturated fatty acid biosynthesis. We report the structure of FabZ from the important human pathogen Pseudomonas aeruginosa at 2.5 A of resolution. PaFabZ is a hexamer (trimer of dimers) with the His/Glu catalytic dyad located within a deep, narrow tunnel formed at the dimer interface. Site-directed mutagenesis experiments showed that the obvious differences in the active site residues that distinguish the FabA and FabZ subfamilies of dehydratases do not account for the unique ability of FabA to catalyze isomerization. Because the catalytic machinery of the two enzymes is practically indistinguishable, the structural differences observed in the shape of the substrate binding channels of FabA and FabZ lead us to hypothesize that the different shapes of the tunnels control the conformation and positioning of the bound substrate, allowing FabA, but not FabZ, to catalyze the isomerization reaction.
Mitochondrial Genome Sequence of the Legume Vicia faba
Negruk, Valentine
2013-01-01
The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376
Mishra, Anand Kumar; Degl'Innocenti, Andrea; Mazzolai, Barbara
2018-04-25
Within the field of biorobotics, an emerging branch is plant-inspired robotics. Some effort exists in particular towards the production of digging robots that mimic roots; for these, a deeper comprehension of the role of root tip geometry in excavation would be highly desirable. Here we demonstrate a photogrammetry-based pipeline for the production of computer and manufactured replicas of moth orchid root apexes. Our methods yields faithful root reproductions. This can be used either for quantitative studies aimed at comparing different root morphologies, or directly to implement a particular root shape in a biorobot.
Ma, Jun; Guo, Donglin; Su, Wenyue; Wang, Dan; Guo, Changhong
2013-06-01
Nitrobenzene (NB) is an important organic compound intermediate that is used widely in industry. In the present study, to evaluate the phytotoxicity and genotoxicity of NB on plants, Vicia faba was exposed to increasing concentrations of NB (5 mg L(-1) , 10 mg L(-1) , 25 mg L(-1) , 50 mg L(-1) , and 100 mg L(-1) ). The data revealed that germination rate and radicle length of V. faba seedlings were promoted by low NB concentrations and short exposure periods, whereas these parameters were inhibited at greater NB concentrations and longer exposures. When assessed by mitotic index, micronucleus, and chromosomal aberration assays, NB showed dose-dependent genotoxicity at 0 mg L(-1) to 50 mg L(-1). Copyright © 2013 SETAC.
Martin Jurgensen; Dana Richter; Carl C. Trettin; Mary Davis
2000-01-01
Mycorrhizae, a mutual partnership between certain soil fungi and fine root tips, contribute to tree growth and vigor by increasing both water and nutrient uptake, especially nitrogen (N) and phosphorus (P). The fungal hyphae increase root surface contact with the soil, while the fungi are supplied with a reliable source of carbon (Allen 1991, George and Marschner 1995...
Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis
USDA-ARS?s Scientific Manuscript database
Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...
Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus
2016-01-01
Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Tetraploidy enhances B excess tolerance in citrange CarrizoExpression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidiesB tolerance is attributed to root anatomical modifications induced by genome duplicationThe rootstock 4x citrange carrizo may prevent citrus trees from B excess.
Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus
2016-01-01
Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Highlights Tetraploidy enhances B excess tolerance in citrange Carrizo Expression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidies B tolerance is attributed to root anatomical modifications induced by genome duplication The rootstock 4x citrange carrizo may prevent citrus trees from B excess. PMID:27252717
Ferl, Robert J; Paul, Anna-Lisa
2016-01-01
Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721
Molecular genetics of root gravitropism and waving in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Sedbrook, J.; Boonsirichai, K.; Chen, R.; Hilson, P.; Pearlman, R.; Rosen, E.; Rutherford, R.; Batiza, A.; Carroll, K.; Schulz, T.;
1998-01-01
When Arabidopsis thaliana seedlings grow embedded in an agar-based medium, their roots grow vertically downward. This reflects their ability to sense the gravity vector and to position their tip parallel to it (gravitropism). We have isolated a number of mutations affecting root gravitropism in Arabidopsis thaliana. One of these mutations, named arg1, affects root and hypocotyl gravitropism without promoting defects in starch content or in the ability of seedlings' organs to respond to plant hormones. The ARG1 gene was cloned and shown to code for a protein with a J domain at its amino terminus and a second sequence motif found in several cytoskeleton binding proteins. Mutations in the AGR1 locus promote a strong defect in root gravitropism. Some alleles also confer an increased root resistance to exogenous ethylene and an increased sensitivity to auxin. AGR1 was cloned and found to encode a putative transmembrane protein which might be involved in polar auxin transport, or in regulating the differential growth response to gravistimulation. When Arabidopsis seedlings grow on the surface of agar-based media tilted backward, their roots wave. That wavy pattern of root growth derives from a combined response to gravity, touch and other surface-derived stimuli. It is accompanied by a reversible rotation of the root tip about its axis. A number of mutations affect the presence or the shape of root waves on tilted agar-based surfaces. One of them, wvc1, promotes the formation of compressed root waves under these conditions. The physiological and molecular analyses of this mutant suggest that a tryptophan-derived molecule other than IAA might be an important regulator of the curvature responsible for root waving.
Wang, Yuqi; Li, Ruihong; Li, Demou; Jia, Xiaomin; Zhou, Dangwei; Li, Jianyong; Lyi, Sangbom M.; Hou, Siyu; Huang, Yulan
2017-01-01
Members of the aquaporin (AQP) family have been suggested to transport aluminum (Al) in plants; however, the Al form transported by AQPs and the roles of AQPs in Al tolerance remain elusive. Here we report that NIP1;2, a plasma membrane-localized member of the Arabidopsis nodulin 26-like intrinsic protein (NIP) subfamily of the AQP family, facilitates Al-malate transport from the root cell wall into the root symplasm, with subsequent Al xylem loading and root-to-shoot translocation, which are critical steps in an internal Al tolerance mechanism in Arabidopsis. We found that NIP1;2 transcripts are expressed mainly in the root tips, and that this expression is enhanced by Al but not by other metal stresses. Mutations in NIP1;2 lead to hyperaccumulation of toxic Al3+ in the root cell wall, inhibition of root-to-shoot Al translocation, and a significant reduction in Al tolerance. NIP1;2 facilitates the transport of Al-malate, but not Al3+ ions, in both yeast and Arabidopsis. We demonstrate that the formation of the Al-malate complex in the root tip apoplast is a prerequisite for NIP1;2-mediated Al removal from the root cell wall, and that this requires a functional root malate exudation system mediated by the Al-activated malate transporter, ALMT1. Taken together, these findings reveal a critical linkage between the previously identified Al exclusion mechanism based on root malate release and an internal Al tolerance mechanism identified here through the coordinated function of NIP1;2 and ALMT1, which is required for Al removal from the root cell wall, root-to-shoot Al translocation, and overall Al tolerance in Arabidopsis. PMID:28439024
Root damage induced by intraosseous anesthesia. An in vitro investigation.
Graetz, Christian; Fawzy-El-Sayed, Karim-Mohamed; Graetz, Nicole; Dörfer, Christof-Edmund
2013-01-01
The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this 'worst case scenario' comparing five commercially available IOA systems. Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p ≤ 0.05. All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper, Anesto, Intraflow, Stabident) or 100% (X-Tip) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper), 40% (Anesto), 60% (Intraflow), 90% (Stabident) and 100% (X-Tip) of all perforations. Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems.
Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L.
Liu, Donghua; Jiang, Wusheng; Meng, Qingmin; Zou, Jin; Gu, Jiegang; Zeng, Muai
2009-04-01
Different copper concentrations, as well as different exposure times, were applied to investigate both cytogenetical and ultrastructural alterations in garlic (Allium sativum L.) meristem cells. Results showed that the mitotic index decreased progressively when either copper concentration or exposure time increased. C-mitosis, anaphase bridges, chromosome stickiness and broken nuclei were observed in the copper treated root tip cells. Some particulates containing the argyrophilic NOR-associated proteins were distributed in the nucleus of the root-tip cells and the amount of this particulate material progressively increased with increasing exposure time. Finally, the nucleolar material was extruded from the nucleus into the cytoplasm. Also, increased dictyosome vesicles in number, formation of cytoplasmic vesicles containing electron dense granules, altered mitochondrial shape, disruption of nuclear membranes, condensation of chromatin material, disintegration of organelles were observed. The mechanisms of detoxification and tolerance of copper are briefly discussed.
Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista
2013-01-01
Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages. PMID:24032035
Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista
2013-01-01
Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.
Staal, Marten; De Cnodder, Tinne; Simon, Damien; Vandenbussche, Filip; Van Der Straeten, Dominique; Verbelen, Jean-Pierre; Elzenga, Theo; Vissenberg, Kris
2011-01-01
In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200–450 μm proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the adjacent proximal region (450 μm away from the root tip up to the first root hair) with a high rate of elongation. In this study, the surface pH was measured in both zones using the microelectrode ion flux estimation technique. The surface pH is highest in the apical part of the transition zone and is lowest at the basal part of the fast elongation zone. Fast cell elongation is inhibited within minutes by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid; concomitantly, apoplastic alkalinization occurs in the affected root zone. Fusicoccin, an activator of the plasma membrane H+-ATPase, can partially rescue this inhibition of cell elongation, whereas the inhibitor N,N′-dicyclohexylcarbodiimide does not further reduce the maximal cell length. Microelectrode ion flux estimation experiments with auxin mutants lead to the final conclusion that control of the activity state of plasma membrane H+-ATPases is one of the mechanisms by which ethylene, via auxin, affects the final cell length in the root. PMID:21282405
Root damage induced by intraosseous anesthesia–An in vitro investigation
Fawzy-El-Sayed, Karim M.; Graetz, Nicole; Dörfer, Christof-Edmund
2013-01-01
Objectives: The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this ‘worst case scenario’ comparing five commercially available IOA systems. Material and Methods: Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p≤0.05. Results: All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper®, Anesto®, Intraflow®, Stabident®) or 100% (X-Tip®) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper®), 40% (Anesto®), 60% (Intraflow®), 90% (Stabident®) and 100% (X-Tip®) of all perforations. Conclusion: Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems. Key words:Intraosseous anesthesia, complication, root damage. PMID:23229260
Immunolocalization of integrin-like proteins in Arabidopsis and Chara
NASA Technical Reports Server (NTRS)
Katembe, W. J.; Swatzell, L. J.; Makaroff, C. A.; Kiss, J. Z.
1997-01-01
Integrins are a large family of integral plasma membrane proteins that link the extracellular matrix to the cytoskeleton in animal cells. As a first step in determining if integrin-like proteins are involved in gravitropic signal transduction pathways, we have used a polyclonal antibody against the chicken beta1 integrin subunit in western blot analyses and immunofluorescence microscopy to gain information on the size and location of these proteins in plants. Several different polypeptides are recognized by the anti-integrin antibody in roots and shoots of Arabidopsis and in the internodal cells and rhizoids of Chara. These cross-reactive polypeptides are associated with cellular membranes, a feature which is consistent with the known location of integrins in animal systems. In immunofluorescence studies of Arabidopsis roots, a strong signal was obtained from labeling integrin-like proteins in root cap cells, and there was little or no immunolabel in other regions of the root tip. While the antibody stained throughout Chara rhizoids, the highest density of immunolabel was at the tip. Thus, in both Arabidopsis roots and Chara rhizoids, the sites of gravity perception/transduction appear to be enriched in integrin-like molecules.
Hormonal regulation of gravitropic bending
NASA Astrophysics Data System (ADS)
Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.
Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending
An improved method for chromosome counting in maize.
Kato, A
1997-09-01
An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.
Tsurumachi, Tamotsu; Takita, Toshiya; Hashimoto, Kazuhiro; Katoh, Takeshi; Ogiso, Bunnai
2010-12-01
We describe the successful use of a combination of nonsurgical root canal treatment and ultrasonic irrigation for collaborative management of a maxillary left lateral incisor with perforation of the apical third of the root. During the endodontic treatment procedure, the ultrasonically activated tip was used for intracanal irrigation. The area of perforation in the apical third of the root and the main root canal space were obturated with gutta-percha and root canal sealer, using a lateral condensation method. A follow-up clinical and radiographic examination at 5 years after treatment showed an asymptomatic tooth with excellent osseous healing.
Feng, Youjun; Cronan, John E
2011-04-01
Two transcriptional regulators, the FadR activator and the FabR repressor, control biosynthesis of unsaturated fatty acids in Escherichia coli. FabR represses expression of the two genes, fabA and fabB, required for unsaturated fatty acid synthesis and has been reported to require the presence of an unsaturated thioester (of either acyl carrier protein or CoA) in order to bind the fabA and fabB promoters in vitro. We report in vivo experiments in which unsaturated fatty acid synthesis was blocked in the absence of exogenous unsaturated fatty acids in a ΔfadR strain and found that the rates of transcription of fabA and fabB were unaffected by the lack of unsaturated thioesters. To examine the discrepancy between our in vivo results and the prior in vitro results we obtained active, natively folded forms of the E. coli and Vibrio cholerae FabRs by use of an in vitro transcription-translation system. We report that FabR bound the intact promoter regions of both fabA and fabB in the absence of unsaturated acyl thioesters, but bound the two promoters differently. Native FabR bound the fabA promoter region provided that the canonical FabR binding site is extended by inclusion of flanking sequences that overlap the neighbouring FadR binding site. In contrast, although binding to the fabB operator also required a flanking sequence, a non-specific sequence could suffice. However, unsaturated thioesters did allow FabR binding to the minimal FabR operator sites of both promoters which otherwise were not bound. Thus unsaturated thioester ligands were not essential for FabR/target DNA interaction, but acted to enhance binding. The gel mobility shift data plus in vivo expression data indicate that despite the remarkably similar arrangements of promoter elements, FadR predominately regulates fabA expression whereas FabR is the dominant regulator of fabB expression. We also report that E. coli fabR expression is not autoregulated. Complementation, qRT-PCR and fatty acid composition analyses demonstrated that V. cholerae FabR was a functional repressor of unsaturated fatty acid synthesis. However, in contrast to E. coli, gel mobility shift assays indicated that neither E. coli nor V. cholerae FabRs bound the V. cholerae fabB promoter, although both proteins efficiently bound the V. cholerae fabA promoter. This asymmetry was shown to be due to the lack of a FabR binding site within the V. cholerae fabB promoter region. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki
2018-05-01
To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model.
Rooting cuttings of shrub species for plantings in California wildlands
Eamor C. Nord; J. R. Goodin
1970-01-01
Selected shrub species are being studied in southern California for their possible fuel volume or slow burning characteristics. In propagation tests, five species-fourwing, Gardner's, Nuttall's, and allscale saltbushes; and creeping sage - rooted successfully from green tip and ripewood stem cuttings taken in spring and fall and placed under intermittent mist...
Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G.
2013-01-01
Background and Aims Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Methods Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. Key Results All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Conclusions Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses. PMID:23666887
Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice
Ma, Jian Feng; Goto, Shoko; Tamai, Kazunori; Ichii, Masahiko
2001-01-01
The rice plant (Oryza sativa L. cv Oochikara) is known to be a Si accumulator, but the mechanism responsible for the high uptake of Si by the roots is not well understood. We investigated the role of root hairs and lateral roots in the Si uptake using two mutants of rice, one defective in the formation of root hairs (RH2) and another in that of lateral roots (RM109). Uptake experiments with nutrient solution during both a short term (up to 12 h) and relatively long term (26 d) showed that there was no significant difference in Si uptake between RH2 and the wild type (WT), whereas the Si uptake of RM109 was much less than that of WT. The number of silica bodies formed on the third leaf in RH2 was similar to that in WT, but the number of silica bodies in RM109 was only 40% of that in WT, when grown in soil amended with Si under flooded conditions. There was also no difference in the shoot Si concentration between WT and RH2 when grown in soil under upland conditions. Using a multi-compartment transport box, the Si uptake at the root tip (0–1 cm, without lateral roots and root hairs) was found to be similar in WT, RH2, and RM109. However, the Si uptake in the mature zone (1–4 cm from root tip) was significantly lower in RM109 than in WT, whereas no difference was found in Si uptake between WT and RH2. All these results clearly indicate that lateral roots contribute to the Si uptake in rice plant, whereas root hairs do not. Analysis of F2 populations between RM109 and WT showed that Si uptake was correlated with the presence of lateral roots and that the gene controlling formation of lateral roots and Si uptake is a dominant gene. PMID:11743120
Shishkova, Svetlana; Las Peñas, María Laura; Napsucialy-Mendivil, Selene; Matvienko, Marta; Kozik, Alex; Montiel, Jesús; Patiño, Anallely; Dubrovsky, Joseph G
2013-07-01
Species of Cactaceae are well adapted to arid habitats. Determinate growth of the primary root, which involves early and complete root apical meristem (RAM) exhaustion and differentiation of cells at the root tip, has been reported for some Cactoideae species as a root adaptation to aridity. In this study, the primary root growth patterns of Cactaceae taxa from diverse habitats are classified as being determinate or indeterminate, and the molecular mechanisms underlying RAM maintenance in Cactaceae are explored. Genes that were induced in the primary root of Stenocereus gummosus before RAM exhaustion are identified. Primary root growth was analysed in Cactaceae seedlings cultivated in vertically oriented Petri dishes. Differentially expressed transcripts were identified after reverse northern blots of clones from a suppression subtractive hybridization cDNA library. All species analysed from six tribes of the Cactoideae subfamily that inhabit arid and semi-arid regions exhibited determinate primary root growth. However, species from the Hylocereeae tribe, which inhabit mesic regions, exhibited mostly indeterminate primary root growth. Preliminary results suggest that seedlings of members of the Opuntioideae subfamily have mostly determinate primary root growth, whereas those of the Maihuenioideae and Pereskioideae subfamilies have mostly indeterminate primary root growth. Seven selected transcripts encoding homologues of heat stress transcription factor B4, histone deacetylase, fibrillarin, phosphoethanolamine methyltransferase, cytochrome P450 and gibberellin-regulated protein were upregulated in S. gummosus root tips during the initial growth phase. Primary root growth in Cactoideae species matches their environment. The data imply that determinate growth of the primary root became fixed after separation of the Cactiodeae/Opuntioideae and Maihuenioideae/Pereskioideae lineages, and that the genetic regulation of RAM maintenance and its loss in Cactaceae is orchestrated by genes involved in the regulation of gene expression, signalling, and redox and hormonal responses.
A Galacturonic Acid–Containing Xyloglucan Is Involved in Arabidopsis Root Hair Tip Growth[W
Peña, Maria J.; Kong, Yingzhen; York, William S.; O’Neill, Malcolm A.
2012-01-01
Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is composed of both neutral and galacturonic acid–containing subunits, the latter containing the β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→ and/or α-l-fucosyl-(1→2)-β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→) side chains. Arabidopsis mutants lacking root hairs have no acidic xyloglucan. A loss-of-function mutation in At1g63450, a root hair–specific gene encoding a family GT47 glycosyltransferase, results in the synthesis of xyloglucan that lacks galacturonic acid. The root hairs of this mutant are shorter than those of the wild type. This mutant phenotype and the absence of galacturonic acid in the root xyloglucan are complemented by At1g63450. The leaf and stem cell walls of wild-type Arabidopsis contain no acidic xyloglucan. However, overexpression of At1g63450 led to the synthesis of galacturonic acid–containing xyloglucan in these tissues. We propose that At1g63450 encodes XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1, which catalyzes the formation of the galactosyluronic acid-(1→2)-α-d-xylopyranosyl linkage and that the acidic xyloglucan is present only in root hair cell walls. The role of the acidic xyloglucan in root hair tip growth is discussed. PMID:23175743
NASA Technical Reports Server (NTRS)
Kann, R. P.; O'Connor, S. A.; Levine, H. G.; Krikorian, A. D.
1991-01-01
Unopened flower heads of Haplopappus gracilis (2n = 4) provided primary explants for callus production and subsequent induction of organized growth. Callus was initiated from small (3-5 mm in length) floral buds with benzylaminopurine (BAP) (44.4 micromoles; 10 mg/l) and naphthalene acetic acid (NAA) (0.54 micromole; 0.1 mg/l). Lowering the BAP level to 4.44 micromoles (1 mg/l) but maintaining the NAA level, gave rise to organized but highly compressed shoot growing points from an otherwise undifferentiated callus mass. Shoots selected from such cultures were maintainable and could be proliferated by growing 1-1.5-cm stem tip cuttings on Murashige and Skoog basal medium (solidified with agar) containing 0.444 micromole (0.1 mg/l) BAP and 0.054 micromole (0.01 mg/l) NAA. The stem tip multiplication rates obtainable by these means permit reliable strategies for shoot multiplication or production of rooted plantlets. Prolonged subculture and maintenance of shoots on growth regulator-free medium leads to in vitro flowering and greatly reduces rooting capacity. Karyotype analysis of chromosomes from root tip cells at metaphase and chromosome measurements show that karyologically uniform plantlets (based on chromosome number and morphology) can be obtained.
NASA Technical Reports Server (NTRS)
Kiss, J. Z.; Giddings, T. H. Jr; Staehelin, L. A.; Sack, F. D.
1990-01-01
To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips of Nicotiana and Arabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.
Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons
Landeweert, Renske; Leeflang, Paula; Kuyper, Thom W.; Hoffland, Ellis; Rosling, Anna; Wernars, Karel; Smit, Eric
2003-01-01
Molecular identification techniques based on total DNA extraction provide a unique tool for identification of mycelium in soil. Using molecular identification techniques, the ectomycorrhizal (EM) fungal community under coniferous vegetation was analyzed. Soil samples were taken at different depths from four horizons of a podzol profile. A basidiomycete-specific primer pair (ITS1F-ITS4B) was used to amplify fungal internal transcribed spacer (ITS) sequences from total DNA extracts of the soil horizons. Amplified basidiomycete DNA was cloned and sequenced, and a selection of the obtained clones was analyzed phylogenetically. Based on sequence similarity, the fungal clone sequences were sorted into 25 different fungal groups, or operational taxonomic units (OTUs). Out of 25 basidiomycete OTUs, 7 OTUs showed high nucleotide homology (≥99%) with known EM fungal sequences and 16 were found exclusively in the mineral soil. The taxonomic positions of six OTUs remained unclear. OTU sequences were compared to sequences from morphotyped EM root tips collected from the same sites. Of the 25 OTUs, 10 OTUs had ≥98% sequence similarity with these EM root tip sequences. The present study demonstrates the use of molecular techniques to identify EM hyphae in various soil types. This approach differs from the conventional method of EM root tip identification and provides a novel approach to examine EM fungal communities in soil. PMID:12514012
Hattori, Etsuko; Uchida, Hiroshi; Harada, Norihiro; Ohta, Mari; Tsukada, Hideo; Hara, Yasuhiro; Suzuki, Tetsuya
2008-04-01
[(18)F]FDG (2-deoxy-2-[(18)F]fluoro-D-glucose) was fed to a sorghum plant [Sorghum bicolor (L.) Moench] from the tip of a leaf and its movement was monitored using a planar positron imaging system (PPIS). [(18)F]FDG was uptaken from the leaf tip and it was translocated to the basal part of the shoots from where it moved to the roots, the tillers and the sheaths. Autoradiographic analysis of the distribution of (18)F, [(18)F]FDG and/or its metabolites showed translocation to the roots, tillers, and to the leaves that were younger than the supplied leaf. Strong labelling was observed in the basal part of the shoots, in the sheaths, the youngest leaf and the root tips. Our results indicate that [(18)F]FDG and/or its metabolites were absorbed from the leaf and translocated to the sites where nutrients are required. This strongly suggests that [(18)F]FDG can be utilised as a tracer to study photoassimilate translocation in the living plant. This is the first report on the use of [(18)F]FDG, which is routinely used as a probe for clinical diagnosis, to study source to sink translocation of metabolites in whole plants in real time.
Use of higher plants as screens for toxicity assessment.
Kristen, U
1997-01-01
This review deals with the use of entire plants, seedlings, cell suspension cultures and pollen tubes for the estimation of potential toxicity in the environment, and for risk assessment of chemicals and formulations of human relevance. It is shown that the roots of onions and various crop seedlings, as well as in vitro growing pollen tubes of some mono- and dicotyledonous plants, are most frequently used to obtain toxicity data by determination of root and tube growth inhibition. Both roots and pollen tubes are chloroplast free, non-photosynthetic systems and, therefore, with regard to their cytotoxic reactions are closer to vertebrate tissues and cells than are chloroplast-containing plant organs. Root tips and anthers of flower buds are shown to be applicable to genotoxicity screening by microscopic analysis of mitotic or meiotic aberrations during cell division or microspore development, respectively. The processes of mitosis and meiosis are similar in plants and animals. Therefore, meristematic and sporogenic tissues of plants generally show patterns of cytotoxic response similar to those of embryogenic and spermatogenic tissues of vertebrates. The suitability of root tips, cell suspensions and pollen tubes for the investigation of mechanisms of toxic action and for the analysis of structure-activity relationships is also demonstrated. Two plant-based assays, the Allium test and the pollen tube growth test, both currently being evaluated alongside with established mammalian in vivo and in vitro protocols, are emphasized with regard to their potential use as alternatives to animal in vivo toxicity tests. For both assays, preliminary results indicate that the tips of growing roots and the rapidly elongating pollen tubes of certain higher plant species are as reliable as mammalian cell lines for detecting basal cytotoxicity. It is suggested that seeds and pollen grains, in particular, provide easily storable and convenient systems for inexpensive, relatively simple but precise toxicological assays. (c) 1997 Elsevier Science Ltd.
NASA Technical Reports Server (NTRS)
Ishikawa, H.; Hasenstein, K. H.; Evans, M. L.
1991-01-01
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.
Bishop, Jacob; Jones, Hannah E; O'Sullivan, Donal M; Potts, Simon G
2017-04-01
Climate change can threaten the reproductive success of plants, both directly, through physiological damage during increasingly extreme weather events, and indirectly, through disruption of plant-pollinator interactions. To explore how plant-pollinator interactions are modified by extreme weather, we exposed faba bean (Vicia faba) plants to elevated temperature for 5 d during flowering, simulating a heatwave. We then moved the plants to flight cages with either bumblebees or no pollinators, or to two field sites, where plants were enclosed in mesh bags or pollinated by wild insect communities. We used a morphological marker to quantify pollen movement between experimental plants. There was a substantial increase in the level of outcrossing by insect pollinators following heat stress. Proportion outcrossed seed increased from 17 % at control temperature, to 33 % following heat stress in the flight cages, and from 31 % to 80 % at one field site, but not at the other (33 % to 32 %). Abiotic stress can dramatically shift the relative contributions of cross- and self-pollination to reproduction in an insect pollinated plant. The resulting increases in gene flow have broad implications for genetic diversity and functioning of ecosystems, and may increase resilience by accelerating the selection of more stress-tolerant genotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Aphid Species Affect Foraging Behavior of Coccinella septempunctata (Coccinellidae: Coleoptera).
Farooq, Muhammad Umar; Qadri, Hafiz Faqir Hussain; Khan, Muhammad Ahmad
2017-01-01
Flowers are admirable in scenic good looks and artistic beautification. These are also playing necessary roles in therapeutic preparations. Aphid is an important sucking pest of various flowers in ornamental territories and it is generally controlled by predators, so it was necessary to evaluate which aphid species affect the predator more or less. Biocontrol agent Coccinella septempunctata was used against cosmos aphid (Aphis spiraecola, rose aphid (Macrosiphum rosea), gul e ashrafi aphid (Aphis fabae), kaner aphid (Aphis nerii), chandni aphid (Sitobion avenae), dahlia aphid (Myzus persicae) and annual chrysanthemum aphid (Macrosiphoniella sanborni). The grub of C. septempunctata consumed 283.8±9.04 M. rosea, 487.7±12.6 M. sanborni, 432.75±16.02 A. spiraecola, 478.2±8.07 A. fabae, 552.3±9.04 M. persicae, 142±1.32 A. nerii and 498.5±13.09 S. avenae in its whole larval life. The M. persicae and M. rosea consuming grubs showed 100% adult emergence while, M. sanborni, A. spiraecola, A. fabae and S. avenae showed 96.58, 89.02, 94.78 and 75.45% adult emergence, respectively. The C. septempunctata has significant predatory potential against A. spiraecola, M. rosea, A. fabae, S. avenae, M. persicae and M. sanborni except A. nerii. Thus, further studies are needed to find out alternate predator to control A. nerii on ornamentals.
Bailes, Emily J; Pattrick, Jonathan G; Glover, Beverley J
2018-03-01
Global consumption of crops with a yield that is dependent on animal pollinators is growing, with greater areas planted each year. However, the floral traits that influence pollinator visitation are not usually the focus of breeding programmes, and therefore, it is likely that yield improvements may be made by optimizing floral traits to enhance pollinator visitation rates. We investigated the variation present in the floral reward of the bee-pollinated crop Vicia faba (field bean). We examined the genetic potential for breeding flowers with a greater reward into current commercial varieties and used bee behavioral experiments to gain insight into the optimal nectar concentration to maximize bee preference. There was a large range of variation in the amount of pollen and nectar reward of flowers in the genotypes investigated. Bee behavioral experiments using nectar sugar concentrations found in V. faba lines suggest that Bombus terrestris prefers 55% w/w sugar solution over 40% w/w, but has no preference between 55% w/w and 68% w/w sugar solution. We provide a first indication of the force required to open V. faba flowers. Our results provide a valuable starting point toward breeding for varieties with optimized floral reward. Field studies are now needed to verify whether the genetic potential for breeding more rewarding flowers can translate into higher yield and yield stability.
NASA Technical Reports Server (NTRS)
Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1994-01-01
In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.
Genetical approach to gravitropism
NASA Astrophysics Data System (ADS)
Boonsirichai, K.; Chen, R.; Guan, C.; Rosen, E.; Young, L.; Masson, P.
Gravitropism guides the growth of plant organs at a defined angle from the gravity vector. Accordingly, most roots grow downward, undergoing positive gravitropism. Gravity perception by roots appears to involve the sedimentation of amyloplasts within the columella cells of the cap. Amyloplast sedimentation triggers a signal transduction pathway that promotes the development of an auxin gradient across the root tip. This gradient is then transmitted to the elongation zones where it promotes a differential cellular elongation, partly responsible for the development of a root-tip curvature. To better understand the mechanisms involved in gravity signal transduction, we have identified and characterized several Arabidopsis thaliana mutants that show specific defects in root gravitropism. Several of these genes were characterized. ARG1 functions in gravity signal transduction, and encodes a dnaJ-like protein whose structure suggests an interaction with the cytoskeleton. Two other genes encode similar proteins (ARL1 and ARL2) in Arabidopsis. One of them (ARL2) also appears to function in gravity signal transduction. Because loss-of-function mutations in ARG1 result in partial alterations of gravitropism, we were able to identify and characterize two genetic enhancers of arg1-2: mar1-1 and mar2-1. These enhancers increased the gravitropism defect of arg1-2 roots and hypocotyls, and changed its orientation. Hence, MAR1 and MAR2 also appear to function in gravity signal transduction. AGR1, on the other hand, encodes a transmembrane component of the auxin efflux carrier complex involved in polar auxin transport through the elongation zones of Arabidopsis root tips. It belongs to a large gene family, several members of which are expressed in the root cap. Upon gravistimulation, the AGR3 protein appears to quickly relocate within the columella cells, accumulating in membranes at the new physical bottom. Hence, the gravity signal transduction pathway that includes the ARG1, ARL2, MAR1 and MAR2 gene products, appears to control the cellular distribution of auxin efflux carriers in the columella cells of the root cap, thereby controlling the polarity of lateral auxin transport in response to gravistimulation. Work is in progress to identify new proteins that interact genetically or physically with ARG1, ARL2 or AGR1, and characterize their involvement in gravitropism.
Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro
2013-09-01
The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
Doppler-guided retrograde catheterization system
NASA Astrophysics Data System (ADS)
Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.
1991-05-01
The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the catheter tip is placed in the aortic root. Such technology may conceivably assist in allowing selective coronary catheterization. These studies have demonstrated that Doppler guided retrograde catheterization provides an accurate method to catheterization the aortic root and left ventricular chamber without x-ray. In humans, it may prove useful in a variety of settings including the development of invasive ultrasonic diagnostic and therapeutic technology.
Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong
2014-03-01
• Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NUCLEIC ACID AND PROTEIN METABOLISM DURING THE MITOTIC CYCLE IN VICIA FABA
Woodard, John; Rasch, Ellen; Swift, Hewson
1961-01-01
In order to investigate some of the cytochemical processes involved in interphase growth and culminating in cell division, a combined autoradiographic and microphotometric study of nucleic acids and proteins was undertaken on statistically seriated cells of Vicia faba root meristems. Adenine-8-C14 and uridine-H3 were used as ribonucleic acid (RNA) precursors, thymidine-H3 as a deoxyribonucleic acid (DNA) precursor, and phenylalanine-3-C14 as a protein precursor. Stains used in microphotometry were Feulgen (DNA), azure B (RNA), pH 2.0 fast green (total protein), and pH 8.1 fast green (histone). The autoradiographic data (representing rate of incorporation per organelle) and the microphotometric data (representing changes in amounts of the various components) indicate that the mitotic cycle may be divided into several metabolic phases, three predominantly anabolic (net increase), and a fourth phase predominantly catabolic (net decrease). The anabolic periods are: 1. Telophase to post-telophase during which there are high rates of accumulation of cytoplasmic and nucleolar RNA and nucleolar and chromosomal total protein. 2. Post-telophase to preprophase characterized by histone synthesis and a diphasic synthesis of DNA with the peak of synthesis at mid-interphase and a minor peak just preceding prophase. The minor peak is coincident with a relatively localized DNA synthesis in several chromosomal regions. This period is also characterized by minimal accumulations of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. 3. Preprophase to prophase in which there are again high rates of accumulation of cytoplasmic RNA, and nucleolar and chromosomal total protein and RNA. The catabolic phase is: 4. The mitotic division during which there are marked losses of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. PMID:13786522
Sylvia R. Mori; Richard A. Sniezko; Angelia Kegley; Jim Hamlin
2012-01-01
In a greenhouse trial to examine genetic resistance among seedling families (half-sib, full-sib, and selfed) of Port-Orford-cedar (Chamaecyparis lawsoniana (A. Murr.) Parl.) to the root pathogen Phytophthora lateralis, the root tips of seedlings were inoculated, and the subsequent mortality was followed over a 3 year period....
Ectomycorrihizae of Table Mountain Pine and the Influence of Prescribed Burning on their Survival
Lisa E. Ellis; Thomas A. Waldrop; Frank H. Tainter
2002-01-01
High-intensity prescribed fires have been recommended to regenerate Table Mountain pine (Pinus pungens). However, tests of these burns produced few seedlings, possibly due to soil sterilization. This study examined abundance of mycorrhizal root tips in the field after a high-intensity fire and in the laboratory after exposing rooting media to...
Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic
NASA Technical Reports Server (NTRS)
Moore, R.; Evans, M. L.; Fondren, W. M.
1990-01-01
Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.
Han, Chao; Ren, Jinghua; Tang, Hao; Xu, Di; Xie, Xianchuan
2016-11-01
Oxygen (O2) availability within the sediment-root interface is critical to the survival of macrophytes in O2-deficient sediment; however, our knowledge of the fine-scale impact of macrophyte roots upon the spatiotemporal dynamics of O2 is relatively limited. In this study, a non-invasive imaging technology was utilized to map O2 micro-distribution around Vallisneria spiralis. Long-term imaging results gathered during a 36day-period revealed an abundance of O2 spatiotemporal patterns ranging from 0 to 250μmolL(-1). The root-induced O2 leakage and consequent oxygenated area were stronger in the vicinity of the basal root compared to that found in the root tip. The O2 images revealed V. spiralis exhibited radial O2 loss (ROL) along the entire root, and the O2 distribution along the root length showed a high degree of small-scale spatial heterogeneity decreasing from 80% at the basal root surface to 10% at the root tip. The oxygenated zone area around the roots increased as O2 levels increased with root growth and irradiance intensities ranging from 0 to 216μmol photons m(-2)s(-1). A weak ROL measuring <20% air saturation around the basal root surface was maintained in darkness, which was presumably attributed to the O2 supply from overlying water via plant aerenchyma. The estimated total O2 release to the rhizosphere of V. spiralis was determined to range from 8.80±7.32 to 30.34±17.71nmolm(-2)s(-1), which is much higher than many other macrophyte species. This O2 release may be an important contribution to the high-capacity of V. spiralis for quickly colonizing anaerobic sediment. Copyright © 2016 Elsevier B.V. All rights reserved.
Wind blade spar cap and method of making
Mohamed, Mansour H [Raleigh, NC
2008-05-27
A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.
Rotor with Flattened Exit Pressure Profile
NASA Technical Reports Server (NTRS)
Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)
2015-01-01
A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.
Impact behavior of filament wound graphite/epoxy fan blades
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1978-01-01
The fabrication and impact tests of graphite/epoxy filament wound fan blades are discussed. Blades which were spin tested at tip speeds up to 305 meters per second retained their structural integrity. Two blades were each impacted with a 454 gram slice of a 908 gram simulated bird at a tip speed of 263 meters per second and impact angles of 22 and 32 deg. The impact tests were recorded with high-speed movie film. The blade which was impacted at 22 deg sustained some root delamination but remained intact. The 32 deg impact separated the blade from the root. No local damage other than leading edge debonding was observed for either blade. Results of a failure mode analysis are also discussed.
Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat.
Merchuk-Ovnat, Lianne; Fahima, Tzion; Ephrath, Jhonathan E; Krugman, Tamar; Saranga, Yehoshua
2017-01-01
A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat ( Triticum turgidum ssp. dicoccoides ) into the background of bread wheat ( T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2's agronomical superiority. Root-system architecture (dry matter and projected surface area) and shoot parameters of NIL-7A-B-2 and 'BarNir' were evaluated at 40, 62, and 82 days after planting (DAP) in a sand-tube experiment, and root tip number was assessed in a 'cigar-roll' seedling experiment, both under well-watered and water-limited (WL) treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40-100 cm) than 'BarNir,' with the most pronounced effect recorded in the 60-80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively). NIL-7A-B-2 had significantly higher root-tip numbers (∼48%) per plant than 'BarNir' under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat.
Endosomal Interactions during Root Hair Growth
von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef
2016-01-01
The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728
Endosomal Interactions during Root Hair Growth.
von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef
2015-01-01
The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.
Genotoxicity and growth inhibition effects of aniline on wheat.
Tao, Nan; Liu, Guanyi; Bai, Lu; Tang, Lu; Guo, Changhong
2017-02-01
Aniline is a synthetic compound widely used in industrial and pesticide production, which can lead to environmental pollution. Its high concentration in rivers and lakes is hazardous to aquatic species. Although the mechanism of aniline toxicity has been studied extensively in animals and algae, little is known about its genotoxicity in plants. In this study, we investigated the genotoxicity effects of aniline on wheat root tip cells. The mitotic index of wheat root tip cells decreased when the aniline test concentration was higher than 10 mg L -1 . The frequency of micronucleus and chromosomal aberrations increased at aniline concentrations ranging between 5 and 100 mg L -1 , and reached 23.3‰ ± 0.3‰ and 8.9‰ ± 0.68‰, respectively, at an aniline concentration of 100 mg L -1 . These values were sevenfold higher than those in the control group. The wheat seedlings showed various growth toxicity effects under different concentrations of aniline. The shoot height, root length, fresh weight, and dry weight of wheat seedlings decreased at aniline test concentrations ranging between 25 and 200 mg L -1 . At 200 mg L -1 aniline, the dry weight was only one-third that of the control group. Overall, the findings of this study provide evidence that aniline is a serious environmental pollutant causing deleterious genotoxic effects on wheat root tip cells and growth toxic effects on wheat seedlings. However, understanding the mechanisms that underlie aniline genotoxicity in plants needs further study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie
2016-01-01
Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. PMID:27473572
Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie
2016-10-01
Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Kitahama, Yasutaka; Itoh, Tamitake; Suzuki, Toshiaki
2018-05-15
To evaluate the shape of an Ag tip with regard to tip-enhanced Raman scattering (TERS) signal, the enhanced electromagnetic (EM) field and scattering spectrum, arising from surface plasmon resonance at the apex of the tip, were calculated using a finite-difference time domain (FDTD) method. In the calculated forward scattering spectra from the smooth Ag tip, the band appeared within the visible region, similar to the experimental results and calculation for a corrugated Ag cone. In the FDTD calculation of TERS, the Ag tip acting as a monopole antenna was adopted by insertion of a perfect electric conductor between the root of the tip and a top boundary surface of the calculation space. As a result, the EM field was only enhanced at the apex. The shape dependence i.e. the EM field calculated at the apex with various curvatures on the different tapered tips, obtained using the monopole antenna model, was different from that simulated using a conventional dipole antenna model. Copyright © 2018 Elsevier B.V. All rights reserved.
Clonal propagation of Stevia rebaudiana Bertoni by stem-tip culture.
Tamura, Y; Nakamura, S; Fukui, H; Tabata, M
1984-10-01
Clonal propagation of Stevia rebaudiana has been established by culturing stem-tips with a few leaf primordia on an agar medium supplemented with a high concentration (10 mg/l) of kinetin. Anatomical examination has suggested that these multiple shoots originate from a number of adventitious buds formed on the margin of the leaf. Innumerable shoots can be obtained by repeating the cycle of multiple-shoot formation from a single stem-tip of Stevia. These shoots produce roots when transferred to a medium containing NAA (0.1 mg/l) without kinetin. The regenerated plantlets can be transplanted to soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawes, M.C.
1995-03-01
The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less
Yang, Zhong-Bao; Eticha, Dejene; Rao, Idupulapati Madhusudana; Horst, Walter Johannes
2010-01-01
Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al3+, La3+, Sr2+, and Rb+ binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al3+ compared with other cations (Al3+ >> La3+ > Sr2+ > Rb+). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast. PMID:20511277
Response of long, flexible cantilever beams applied root motions. [spacecraft structures
NASA Technical Reports Server (NTRS)
Fralich, R. W.
1976-01-01
Results are presented for an analysis of the response of long, flexible cantilever beams to applied root rotational accelerations. Maximum values of deformation, slope, bending moment, and shear are found as a function of magnitude and duration of acceleration input. Effects of tip mass and its eccentricity and rotatory inertia on the response are also investigated. It is shown that flexible beams can withstand large root accelerations provided the period of applied acceleration can be kept small relative to the beam fundamental period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, C.M.; Powell, A.S.; McCormack, M.L.
The second version of the Fine-Root Ecology Database is available for download! Download the full FRED 2.0 data set, user guidance document, map, and list of data sources here. Prior to downloading the data, please read and follow the Data Use Guidelines, and it's worth checking out some tips for using FRED before you begin your analyses. Also, see here for an updating list of corrections to FRED 2.0.
Nutritional Value of Commercial Protein-Rich Plant Products.
Mattila, Pirjo; Mäkinen, Sari; Eurola, Merja; Jalava, Taina; Pihlava, Juha-Matti; Hellström, Jarkko; Pihlanto, Anne
2018-06-01
The goal of this work was to analyze nutritional value of various minimally processed commercial products of plant protein sources such as faba bean (Vicia faba), lupin (Lupinus angustifolius), rapeseed press cake (Brassica rapa/napus subsp. Oleifera), flaxseed (Linum usitatissimum), oil hemp seed (Cannabis sativa), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa). Basic composition and various nutritional components like amino acids, sugars, minerals, and dietary fiber were determined. Nearly all the samples studied could be considered as good sources of essential amino acids, minerals and dietary fiber. The highest content of crude protein (over 30 g/100 g DW) was found in faba bean, blue lupin and rapeseed press cake. The total amount of essential amino acids (EAA) ranged from 25.8 g/16 g N in oil hemp hulls to 41.5 g/16 g N in pearled quinoa. All the samples studied have a nutritionally favorable composition with significant health benefit potential. Processing (dehulling or pearling) affected greatly to the contents of analyzed nutrients.
Farming legumes in the pre-pottery Neolithic: New discoveries from the site of Ahihud (Israel).
Caracuta, Valentina; Vardi, Jacob; Paz, Ytzhak; Boaretto, Elisabetta
2017-01-01
New discoveries of legumes in the lower Galilee at the prehistoric site of Ahihud in Israel shed light on early farming systems in the southern Levant. Radiocarbon dating of twelve legumes from pits and floors indicate that the farming of legumes was practiced in southern Levant as early as 10.240-10.200 (1σ) ago. The legumes were collected from pits and other domestic contexts dated to the Early Pre-Pottery Neolithic B. The legumes identified include Vicia faba L. (faba bean), V. ervilia (bitter vetch), V. narbonensis (narbon vetch), Lens sp. (lentil), Pisum sp. (pea), Lathyrus inconspicuus (inconspicuous pea) and L. hirosolymitanus (jerusalem vetchling). Comparison with coeval sites in the region show how the presence of peas, narbon vetches, inconspicuous peas, jerusalem vetchlings and bitter vetches together with faba bean and lentils is unique to the Pre-Pottery Neolithic, and might indicate specific patterns in farming or storing at the onset of agriculture.
Extrafloral nectary phenotypic plasticity is damage- and resource-dependent in Vicia faba
Mondor, Edward B; Tremblay, Michelle N; Messing, Russell H
2006-01-01
Phenotypic plasticity enables many damaged plants to increase nectar secretion rates from extrafloral nectaries (EFNs), or in the case of broad bean, Vicia faba L., to produce additional EFNs, to attract natural enemies of herbivores. While plants benefit greatly from these defensive mutualisms, the costs of producing EFNs are largely unknown. We hypothesized that if EFN production is costly, then damaged plants with high resource levels would be able to produce more EFNs than plants that are resource-limited. Here, we show that this indirect inducible defence does follow this general pattern. Vicia faba enriched with 6 or 12 g of 14 : 14 : 14 NPK fertilizer increased EFN numbers after leaf damage by 46 and 60%, respectively, compared with nutrient-poor plants. Thus, EFN production is both damage- and resource-dependent. Analogous to direct defences, production of EFNs may limit the overall loss of leaf tissue when risk of herbivory increases. PMID:17148294
Fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds.
Ozcan, Hakki Mevlut; Sagiroglu, Ayten
2014-08-01
In this study, a novel fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds was developed. The biosensor was constructed by immobilizing tissue homogenate of fresh broad (Vicia faba) on to glassy carbon electrode. For the stability of the biosensor, general immobilization techniques were used to secure the fresh broad tissue homogenate in gelatin-glutaraldehyde cross-linking matrix. In the optimization and characterization studies, the amount of fresh broad tissue homogenate and gelatin, glutaraldehyde percentage, optimum pH, optimum temperature and optimum buffer concentration, thermal stability, interference effects, linear range, storage stability, repeatability and sample applications (Wine, beer, fruit juices) were also investigated. Besides, the detection ranges of thirteen phenolic compounds were obtained with the help of the calibration graphs. A typical calibration curve for the sensor revealed a linear range of 5-60 μM catechol. In reproducibility studies, variation coefficient (CV) and standard deviation (SD) were calculated as 1.59%, 0.64×10(-3) μM, respectively.
Farming legumes in the pre-pottery Neolithic: New discoveries from the site of Ahihud (Israel)
Vardi, Jacob; Paz, Ytzhak; Boaretto, Elisabetta
2017-01-01
New discoveries of legumes in the lower Galilee at the prehistoric site of Ahihud in Israel shed light on early farming systems in the southern Levant. Radiocarbon dating of twelve legumes from pits and floors indicate that the farming of legumes was practiced in southern Levant as early as 10.240–10.200 (1σ) ago. The legumes were collected from pits and other domestic contexts dated to the Early Pre-Pottery Neolithic B. The legumes identified include Vicia faba L. (faba bean), V. ervilia (bitter vetch), V. narbonensis (narbon vetch), Lens sp. (lentil), Pisum sp. (pea), Lathyrus inconspicuus (inconspicuous pea) and L. hirosolymitanus (jerusalem vetchling). Comparison with coeval sites in the region show how the presence of peas, narbon vetches, inconspicuous peas, jerusalem vetchlings and bitter vetches together with faba bean and lentils is unique to the Pre-Pottery Neolithic, and might indicate specific patterns in farming or storing at the onset of agriculture. PMID:28542358
Multiple piece turbine rotor blade
Kimmel, Keith D.; Plank, William L.
2016-07-19
A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.
Wu, Xia; Cong, Xiao-Bing; Huang, Qi-Shun; Ai, Fang-Xin; Liu, Yu-Tian; Lu, Xiao-Cheng; Li, Jin; Weng, Yu-Xiong; Chen, Zhen-Bing
2017-12-01
This study aimed to investigate the reconstruction of the thumb and finger extension function in patients with middle and lower trunk root avulsion injuries of the brachial plexus. From April 2010 to January 2015, we enrolled in this study 4 patients diagnosed with middle and lower trunk root avulsion injuries of the brachial plexus via imaging tests, electrophysiological examinations, and clinical confirmation. Muscular branches of the radial nerve, which innervate the supinator in the forearm, were transposed to the posterior interosseous nerve to reconstruct the thumb and finger extension function. Electrophysiological findings and muscle strength of the extensor pollicis longus and extensor digitorum communis, as well as the distance between the thumb tip and index finger tip, were monitored. All patients were followed up for 24 to 30 months, with an average of 27.5 months. Motor unit potentials (MUP) of the extensor digitorum communis appeared at an average of 3.8 months, while MUP of the extensor pollicis longus appeared at an average of 7 months. Compound muscle action potential (CMAP) appeared at an average of 9 months in the extensor digitorum communis, and 12 months in the extensor pollicis longus. Furthermore, the muscle strength of the extensor pollicis longus and extensor digitorum communis both reached grade III at 21 months. Lastly, the average distance between the thumb tip and index finger tip was 8.8 cm at 21 months. In conclusion, for patients with middle and lower trunk injuries of the brachial plexus, transposition of the muscular branches of the radial nerve innervating the supinator to the posterior interosseous nerve for the reconstruction of thumb and finger extension function is practicable and feasible.
Impact of needle insertion depth on the removal of hard-tissue debris.
Perez, R; Neves, A A; Belladonna, F G; Silva, E J N L; Souza, E M; Fidel, S; Versiani, M A; Lima, I; Carvalho, C; De-Deus, G
2017-06-01
To evaluate the effect of depth of insertion of an irrigation needle tip on the removal of hard-tissue debris using micro-computed tomographic (micro-CT) imaging. Twenty isthmus-containing mesial roots of mandibular molars were anatomically matched based on similar morphological dimensions using micro-CT evaluation and assigned to two groups (n = 10), according to the depth of the irrigation needle tip during biomechanical preparation: 1 or 5 mm short of the working length (WL). The preparation was performed with Reciproc R25 file (tip size 25, .08 taper) and 5.25% NaOCl as irrigant. The final rinse was 17% EDTA followed by bidistilled water. Then, specimens were scanned again, and the matched images of the canals, before and after preparation, were examined to quantify the amount of hard-tissue debris, expressed as the percentage volume of the initial root canal volume. Data were compared statistically using the Mann-Whitney U-test. None of the tested needle insertion depths yielded root canals completely free from hard-tissue debris. The insertion depth exerted a significant influence on debris removal, with a significant reduction in the percentage volume of hard-tissue debris when the needle was inserted 1 mm short of the WL (P < 0.05). The insertion depth of irrigation needles significantly influenced the removal of hard-tissue debris. A needle tip positioned 1 mm short of the WL resulted in percentage levels of hard-tissue debris removal almost three times higher than when positioned 5 mm from the WL. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Wang, Xin; Komatsu, Setsuko
2016-07-01
Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.
LeBlanc, Chantal; Lee, Tae-Jin; Mulvaney, Patrick; Allen, George C.; Martienssen, Robert A.; Thompson, William F.
2017-01-01
All plants and animals must replicate their DNA, using a regulated process to ensure that their genomes are completely and accurately replicated. DNA replication timing programs have been extensively studied in yeast and animal systems, but much less is known about the replication programs of plants. We report a novel adaptation of the “Repli-seq” assay for use in intact root tips of maize (Zea mays) that includes several different cell lineages and present whole-genome replication timing profiles from cells in early, mid, and late S phase of the mitotic cell cycle. Maize root tips have a complex replication timing program, including regions of distinct early, mid, and late S replication that each constitute between 20 and 24% of the genome, as well as other loci corresponding to ∼32% of the genome that exhibit replication activity in two different time windows. Analyses of genomic, transcriptional, and chromatin features of the euchromatic portion of the maize genome provide evidence for a gradient of early replicating, open chromatin that transitions gradually to less open and less transcriptionally active chromatin replicating in mid S phase. Our genomic level analysis also demonstrated that the centromere core replicates in mid S, before heavily compacted classical heterochromatin, including pericentromeres and knobs, which replicate during late S phase. PMID:28842533
NASA Astrophysics Data System (ADS)
Ali, Md. Nesar; Alam, Mahbubul
2017-06-01
A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases, and the induced drag increases, reducing overall efficiency. To complement the high aspect ratio wing case, a slender wing model is formulated so that the lift and drag can be estimated for this limiting case as well. We analyze the stability performance of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing by using experimental method and simulation software. The experimental method includes fabrication of F-22 raptor, Supermarine Spitfire, F-7 BG Aircraft wing which making material is Gamahr wood. Testing this model wing in wind tunnel test and after getting expected data we also compared this value with analyzing software data for furthermore experiment.
Badagliacca, Giuseppe; Benítez, Emilio; Amato, Gaetano; Badalucco, Luigi; Giambalvo, Dario; Laudicina, Vito Armando; Ruisi, Paolo
2018-05-20
The introduction of legumes into crop sequences and the reduction of tillage intensity are both proposed as agronomic practices to mitigate the soil degradation and negative impact of agriculture on the environment. However, the joint effects of these practices on nitrous oxide (N 2 O) and ammonia (NH 3 ) emissions from soil remain unclear, particularly concerning semiarid Mediterranean areas. In the frame of a long-term field experiment (23 years), a 2-year study was performed on the faba bean (Vicia faba L.) to evaluate the effects of the long-term use of no tillage (NT) compared to conventional tillage (CT) on yield and N 2 O and NH 3 emissions from a Vertisol in a semiarid Mediterranean environment. Changes induced by the tillage system in soil bulk density, water filled pore space (WFPS), organic carbon (TOC) and total nitrogen (TN), denitrifying enzyme activity (DEA), and bacterial gene (16S, amoA, and nosZ) abundance were measured as parameters potentially affecting N gas emissions. No tillage, compared with CT, significantly increased the faba bean grain yield by 23%. The tillage system had no significant effect on soil NH 3 emissions. Total N 2 O emissions, averaged over two cropping seasons, were higher in NT than those in CT plots (2.58 vs 1.71 kg N 2 O-N ha -1 , respectively; P < 0.01). In addition, DEA was higher in NT compared to that in CT (74.6 vs 18.6 μg N 2 O-N kg -1 h -1 ; P < 0.01). The higher N 2 O emissions in NT plots were ascribed to the increase of soil bulk density and WFPS, bacteria (16S abundance was 96% higher in NT than that in CT) and N cycle genes (amoA and nosZ abundances were respectively 154% and 84% higher in NT than that in CT). The total N 2 O emissions in faba bean were similar to those measured in other N-fertilized crops. In conclusion, a full evaluation of NT technique, besides the benefits on soil characteristics (e.g. TOC increase) and crop yield, must take into account some criticisms related to the increase of N 2 O emissions compared to CT. Copyright © 2018 Elsevier B.V. All rights reserved.
Gavrin, Aleksandr; Kulikova, Olga; Bisseling, Ton; Fedorova, Elena E.
2017-01-01
Symbiotic bacteria (rhizobia) are maintained and conditioned to fix atmospheric nitrogen in infected cells of legume root nodules. Rhizobia are confined to the asymmetrical protrusions of plasma membrane (PM): infection threads (IT), cell wall-free unwalled droplets and symbiosomes. These compartments rapidly increase in surface and volume due to the microsymbiont expansion, and remarkably, the membrane resources of the host cells are targeted to interface membrane quite precisely. We hypothesized that the change in the membrane tension around the expanding microsymbionts creates a vector for membrane traffic toward the symbiotic interface. To test this hypothesis, we selected calcium sensors from the group of synaptotagmins: MtSyt1, Medicago truncatula homolog of AtSYT1 from Arabidopsis thaliana known to be involved in membrane repair, and two other homologs expressed in root nodules: MtSyt2 and MtSyt3. Here we show that MtSyt1, MtSyt2, and MtSyt3 are expressed in the expanding cells of the meristem, zone of infection and proximal cell layers of zone of nitrogen fixation (MtSyt1, MtSyt3). All three GFP-tagged proteins delineate the interface membrane of IT and unwalled droplets and create a subcompartments of PM surrounding these structures. The localization of MtSyt1 by EM immunogold labeling has shown the signal on symbiosome membrane and endoplasmic reticulum (ER). To specify the role of synaptotagmins in interface membrane formation, we compared the localization of MtSyt1, MtSyt3 and exocyst subunit EXO70i, involved in the tethering of post-Golgi secretory vesicles and operational in tip growth. The localization of EXO70i in root nodules and arbusculated roots was strictly associated with the tips of IT and the tips of arbuscular fine branches, but the distribution of synaptotagmins on membrane subcompartments was broader and includes lateral parts of IT, the membrane of unwalled droplets as well as the symbiosomes. The double silencing of synaptotagmins caused a delay in rhizobia release and blocks symbiosome maturation confirming the functional role of synaptotagmins. In conclusion: synaptotagmin-dependent membrane fusion along with tip-targeted exocytosis is operational in the formation of symbiotic interface. PMID:28265280
Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John
2014-01-01
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600
Cellular specificity of the gravitropic motor response in roots
NASA Technical Reports Server (NTRS)
Evans, M. L.; Ishikawa, H.
1997-01-01
A number of features of the gravitropic response of roots are not readily accounted for by the classical Cholodny-Went theory. These include the observations that (i) in the later stages of the response the growth gradient is reversed with no evident reversal of the auxin gradient; (ii) a major component of the acceleration of growth along the upper side occurs in the distal elongation zone (DEZ), a group of cells located between the meristem and the main elongation, not within the central elongation zone; and (iii) the initiation of differential growth in the DEZ appears to be independent of the establishment of auxin asymmetry. Alternative candidates for mediation of differential growth in the DEZ include calcium ions and protons. Gravi-induced curvature is accompanied by polar movement of calcium toward the lower side of the maize root tip and the DEZ is shown to be particularly sensitive to growth inhibition by calcium. Also, gravistimulation of maize roots causes enhanced acid efflux from the upper side of the DEZ. Evidence for gravi-induced modification of ion movements in the root tip includes changes in intracellular potentials and current flow. It is clear that there is more than one motor region in the root with regard to gravitropic responses and there is evidence that the DEZ itself consists of more than one class of responding cells. In order to gain a more complete understanding of the mechanism of gravitropic curvature, the physiological properties of the sub-zones of the root apex need to be thoroughly characterized with regard to their sensitivity to hormones, calcium, acid pH and electrical perturbations.
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1978-01-01
The fabrication and impact tests of graphite/epoxy filament wound fan blades are discussed. Blades which were spin tested at tip speeds up to 305 m/sec retained their structural integrity. Two blades were each impacted with a 454-g slice of a 908-g simulated bird at a tip speed of 263 deg and impact angles of 22 deg and 32 deg. The impact tests were recorded with high-speed movie film. The blade which was impacted at 22 deg sustained some root delamination but remained intact. The 32 deg impact separated the blade from the root. No local damage other than leading-edge debonding was observed for either blade. The results of a failure mode analysis are also discussed.
NASA Technical Reports Server (NTRS)
Graham, Robert C.; Hartmann, Melvin J.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
Experimental removal of subgingival calculus with the Er:YAG laser
NASA Astrophysics Data System (ADS)
Keller, Ulrich; Hibst, Raimund
1996-01-01
The purpose of this study was to evaluate the effects of the Er:YAG laser removal of subgingival calculi in periodontal treatment and to describe laser-induced cementum surface alterations. Freshly extracted human teeth with adherent plaques and mineralized calculi were laser treated using modified quartz fiber tips in direct contact to the root surface. For the fiber tip tested, the ablation threshold was 6.5 mJ. An effective removal of calculi was possible with 50 mJ resp. 150 mJ for a triple fiber. For the latter, a mass loss with a mean of about 5.1. mg/min was achieved. Histologic examinations of the cementum surface showed smoothed appearance alternately with rough depressions of the fiber tips, which can be discussed as a good precondition for periodontal tissue regeneration. Maximum temperature increase of 1.4 K was reached in the pulp, if an additional water irrigation was applied to the root surface. From these results it can be concluded that with the Er:YAG laser an effective removal of subgingival calculi can be performed without thermal risk for the pulp.
Sadeghi, Ali; Mondini, Alessio; Mazzolai, Barbara
2017-09-01
In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm.
Mondini, Alessio
2017-01-01
Abstract In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm. PMID:29062628
Zhu, Chun Q.; Zhang, Jun H.; Sun, Li M.; Zhu, Lian F.; Abliz, Buhailiqem; Hu, Wen J.; Zhong, Chu; Bai, Zhi G.; Sajid, Hussain; Cao, Xiao C.; Jin, Qian Y.
2018-01-01
Hydrogen sulfide (H2S) plays a vital role in Al3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H2S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1, and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1. The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H2O2 content in rice roots, thereby reducing the damage of Al3+ toxicity on membrane integrity in rice. H2S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H2S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots. PMID:29559992
Zhu, Chun Q; Zhang, Jun H; Sun, Li M; Zhu, Lian F; Abliz, Buhailiqem; Hu, Wen J; Zhong, Chu; Bai, Zhi G; Sajid, Hussain; Cao, Xiao C; Jin, Qian Y
2018-01-01
Hydrogen sulfide (H 2 S) plays a vital role in Al 3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H 2 S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al 3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1 , and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1 . The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H 2 O 2 content in rice roots, thereby reducing the damage of Al 3+ toxicity on membrane integrity in rice. H 2 S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H 2 S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots.
Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan
2013-01-01
On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266
NASA Technical Reports Server (NTRS)
Corrigan, Robert D.; Ensworth, Clinton B. F., III; Miller, Dean R.
1987-01-01
Tests were conducted on the DOE/NASA mod-0 horizontal axis wind turbine to compare and evaluate the performance and the power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor. The two aileron-controlled rotor configurations used 20 and 38 percent chord ailerons, while the tip-controlled rotor had a pitchable blade tip. The ability of the control surfaces to regulate power was determined by measuring the change in power caused by an incremental change in the deflection angle of the control surface. The data shows that the change in power per degree of deflection angle for the tip-controlled rotor was four times the corresponding value for the 2- percent chord ailerons. The root mean square power deviation about a power setpoint was highest for the 20 percent chord aileron, and lowest for the 38 percent chord aileron.