Sample records for fabric composite materials

  1. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  2. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  3. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  4. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  5. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  6. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  7. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  8. Fabricating Composite-Material Structures Containing SMA Ribbons

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Cano, Roberto J.; Lach, Cynthia L.

    2003-01-01

    An improved method of designing and fabricating laminated composite-material (matrix/fiber) structures containing embedded shape-memory-alloy (SMA) actuators has been devised. Structures made by this method have repeatable, predictable properties, and fabrication processes can readily be automated. Such structures, denoted as shape-memory-alloy hybrid composite (SMAHC) structures, have been investigated for their potential to satisfy requirements to control the shapes or thermoelastic responses of themselves or of other structures into which they might be incorporated, or to control noise and vibrations. Much of the prior work on SMAHC structures has involved the use SMA wires embedded within matrices or within sleeves through parent structures. The disadvantages of using SMA wires as the embedded actuators include (1) complexity of fabrication procedures because of the relatively large numbers of actuators usually needed; (2) sensitivity to actuator/ matrix interface flaws because voids can be of significant size, relative to wires; (3) relatively high rates of breakage of actuators during curing of matrix materials because of sensitivity to stress concentrations at mechanical restraints; and (4) difficulty of achieving desirable overall volume fractions of SMA wires when trying to optimize the integration of the wires by placing them in selected layers only.

  9. Solid Freeform Fabrication of Composite-Material Objects

    NASA Technical Reports Server (NTRS)

    Wang, C. Jeff; Yang, Jason; Jang, Bor Z.

    2005-01-01

    Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on

  10. Fabrication of microscale materials with programmable composition gradients.

    PubMed

    Laval, Cédric; Bouchaudy, Anne; Salmon, Jean-Baptiste

    2016-04-07

    We present an original microfluidic technique coupling pervaporation and the use of Quake valves to fabricate microscale materials (∼10 × 100 μm(2) × 1 cm) with composition gradients along their longest dimension. Our device exploits pervaporation of water through a thin poly(dimethylsiloxane) (PDMS) membrane to continuously pump solutions (or dispersions) contained in different reservoirs connected to a microfluidic channel. This pervaporation-induced flow concentrates solutes (or particles) at the tip of the channel up to the formation of a dense material. The latter invades the channel as it is constantly enriched by an incoming flux of solutes/particles. Upstream Quake valves are used to select which reservoir is connected to the pervaporation channel and thus which solution (or dispersion) enriches the material during its growth. The microfluidic configuration of the pervaporation process is used to impose controlled growth along the channel thus enabling one to program spatial composition gradients using appropriate actuations of the valves. We demonstrate the possibilities offered by our technique through the fabrication of dense assemblies of nanoparticles and polymer composites with programmed gradients of fluorescent dyes. We also address the key issue of the spatial resolution of our gradients and we show that well-defined spatial modulations down to ≈50 μm can be obtained within colloidal materials, whereas gradients within polymer materials are resolved on length scales down to ≈1 mm due to molecular diffusion.

  11. Effect of Sericin on Mechanical Behavior of Composite Material Reinforced by Silk Woven Fabric

    NASA Astrophysics Data System (ADS)

    Kimura, Teruo; Ino, Haruhiro; Hanada, Koji; Katori, Sigetaka

    Recent, attention has been given to shift from glass fibers and carbon fibers to natural fibers for FRP composites for the goal of protecting the environment. This paper concerned with the application of silk fabric for composite materials. Polypropylene (PP) was used for the matrix material and the silk fabric composites were molded using a compression molding method. Especially, the effect of sericin on mechanical behaviors of composite materials was discussed. Good adhesion between silk and PP was obtained by removing the sericin existing around the fibroin. The tensile modulus of composite decreased with decreasing the sericin because of the flexibility of silk fibers without sericin. In particular, the higher Izod impact value was obtained for the composites containing the silk fibers without sericin.

  12. Fabrication of cationic chitin nanofiber/alginate composite materials.

    PubMed

    Sato, Koki; Tanaka, Kohei; Takata, Yusei; Yamamoto, Kazuya; Kadokawa, Jun-Ichi

    2016-10-01

    We have already found that an amidinated chitin, which was prepared by the reaction of a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, was converted into an amidinium chitin bicarbonate with nanofiber morphology by CO2 gas bubbling and ultrasonic treatments in water. In this study, we performed the fabrication of composite materials of such cationic chitin nanofibers with an anionic polysaccharide, sodium alginate, by ion exchange. When the amidinium chitin bicarbonate nanofiber aqueous dispersion was added to an aqueous solution of sodium alginate, the composite material was agglomerated, which was isolated by centrifugation, filtration, and lyophilization, to form a manipulatable sheet. The morphology of the resulting sheet at nano-scale was evaluated by SEM measurement. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Structure and mechanical properties of a multilayer carbide-hardened niobium composite material fabricated by diffusion welding

    NASA Astrophysics Data System (ADS)

    Korzhov, V. P.; Ershov, A. E.; Stroganova, T. S.; Prokhorov, D. V.

    2016-04-01

    The structure, the bending strength, and the fracture mechanism of an artificial niobium-based composite material, which is fabricated by high-pressure diffusion welding of multilayer stacks assembled from niobium foils with a two-sided carbon coating, are studied. The microstructure of the composite material is found to consist of alternating relatively plastic layers of the solid solution of carbon in niobium and hardening niobium carbide layers. The room-temperature proportional limit of the developed composite material is threefold that of the composite material fabricated from coating-free niobium foils using the proposed technology. The proportional limit of the developed composite material and the stress corresponding to the maximum load at 1100°C are 500 and 560 MPa, respectively. The developed material is considered as an alternative to Ni-Al superalloys.

  14. The Layer of Kevlar Angle-interlock Woven Fabric Effect on the Tensile Properties of Composite Materials

    NASA Astrophysics Data System (ADS)

    Xie, Wan-Chen; Guo, Xu-Yi; Yan, Tao; Zhang, Shang-Yong

    2017-09-01

    This article is based on the structure of three-dimensional angle-interlock longitudinal.The 3-layer, 5-layer, 7-layer and 9-layer of angle-interlock 3D fabrics are woven on sample weaving machine respectively with the 1500D Kevlar fiber twist filament produced by United States DuPont. At the same time, Kevlar plain weave fabric is woven, and three, five, seven and nine layers’ fabric are to be compared. In the process of VARTM composite technology, epoxy resin is matrix material, acetone is diluent, triethylene tetramine is curing agent and the five different fabrics are the reinforced materials respectively. Finally, eight different three-dimensional woven fabric composites were prepared. In this paper, the tensile properties of eight kinds of three-dimensional woven fabric composites were tested respectively.Finally, it is concluded that the five-layer angle-interlock woven fabric prepared by Kevlar fiber shows the best tensile property.

  15. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  16. Fabrication and characterization of epoxy/silica functionally graded composite material

    NASA Astrophysics Data System (ADS)

    Misra, N.; Kapusetti, G.; Pattanayak, D. K.; Kumar, A.

    2011-09-01

    Increased use of composites in aerospace and defense application induces the search for heat resistant material. In present study silica reinforced epoxy functionally graded material using quartz fabric is prepared with different thickness. The gradation in silica : epoxy matrix is maintained with one side pure epoxy to opposite side pure silica. Thermal and mechanical behaviour of the composites were studied. It was found that the temperature gradient of 350°C to 950°C could be maintained for 2 to 5 min if the thickness of insulating silica layer is increased from 0.5 mm to 16 mm. Mechanical properties such as flexural modulus and strength of FGM composites were also evaluated. Strength and modulus decreased with increase of insulating layer.

  17. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    PubMed

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic- co -glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  18. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    PubMed Central

    Sampath, Udeni Gunathilake T.M.; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J.; Lin, Pai-Chen

    2016-01-01

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials. PMID:28774113

  19. An ultraviolet photodetector fabricated from WO₃ nanodiscs/reduced graphene oxide composite material.

    PubMed

    Shao, Dali; Yu, Mingpeng; Lian, Jie; Sawyer, Shayla

    2013-07-26

    A high sensitivity, fast ultraviolet (UV) photodetector was fabricated from WO₃ nanodiscs (NDs)/reduced graphene oxide (RGO) composite material. The WO₃ NDs/reduced GO composite material was synthesized using a facile three-step synthesis procedure. First, the Na₂WO₄/GO precursor was synthesized by homogeneous precipitation. Second, the Na₂WO₄/GO precursor was transformed into Na₂WO₄/GO composites by acidification. Finally, the Na₂WO₄/GO composites were reduced to WO₃ NDs/RGO via a hydrothermal reduction process. The UV photodetector showed a fast transient response and high responsivity, which are attributed to the improved carrier transport and collection efficiency through graphene. The excellent material properties of the WO₃ NDs/RGO composite demonstrated in this work may open up new possibilities for using WO₃ NDs/RGO for future optoelectronic applications.

  20. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    PubMed

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  1. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications.

    PubMed

    Veluswamy, Pandiyarasan; Sathiyamoorthy, Suhasini; Khan, Faizan; Ghosh, Aranya; Abhijit, Majumdar; Hayakawa, Yasuhiro; Ikeda, Hiroya

    2017-02-10

    The central idea of this paper is to innovate a new approach for the development of wearable device materials through the coating of cotton fabric with ZnO and Sb-/Ag-/ZnO composites. The study was designed in order to have a clear understanding of the role of ZnO as well as the modified composite thereof under investigation. Cotton fabric with uniform ZnO/ZnO-composite layers on the surface was successfully synthesized via a solvothermal method. The growth behaviors were investigated by comparing ZnO and ZnO-composites. The structural, morphological, chemical states, optical, electrical and thermopower properties of these fabrics were studied. Nanostructured ZnO-composite fabric had enhanced UV shielding with a value of 83.96. It is found that the ZnO-composite fabrics have increased electrical conductivity. The thermopower value of the ZnO-composite fabric could reach 471.9μVK -1 . Such materials are anticipated to be worthwhile as wearable electronic devices and as protective textiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Investigation of the Minimum Deployment Time of a Foam/Fabric Composite Material.

    DTIC Science & Technology

    1980-09-01

    Kevlar Fabric! use xperienced, trained personnel. The pres- Polyurethane Foam Composites. TR M-272/ADA076310 sure containers should be adequately...evaluated. High molecular ponent foam producing materials. (Polyurethanes, weight resin performed best because its solubility char- epoxies, phenolics , and...that was coated to a total Because earlier CERL tests had established the weight of about 10 oz/sq yd (237 gm/m 2 ). strength of Kevlar * fabric, it was

  3. Investigation of Springback Associated with Composite Material Component Fabrication (MSFC Center Director's Discretionary Fund Final Report, Project 94-09)

    NASA Technical Reports Server (NTRS)

    Benzie, M. A.

    1998-01-01

    The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

  4. Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development

    DOE PAGES

    Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour; ...

    2016-01-06

    Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less

  5. Design, Static Analysis And Fabrication Of Composite Joints

    NASA Astrophysics Data System (ADS)

    Mathiselvan, G.; Gobinath, R.; Yuvaraja, S.; Raja, T.

    2017-05-01

    The Bonded joints will be having one of the important issues in the composite technology is the repairing of aging in aircraft applications. In these applications and also for joining various composite material parts together, the composite materials fastened together either using adhesives or mechanical fasteners. In this paper, we have carried out design, static analysis of 3-D models and fabrication of the composite joints (bonded, riveted and hybrid). The 3-D model of the composite structure will be fabricated by using the materials such as epoxy resin, glass fibre material and aluminium rivet for preparing the joints. The static analysis was carried out with different joint by using ANSYS software. After fabrication, parametric study was also conducted to compare the performance of the hybrid joint with varying adherent width, adhesive thickness and overlap length. Different joint and its materials tensile test result have compared.

  6. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  7. Effect of the raw material composition of fabrics on the Limiting Oxygen Index (LOI)

    NASA Technical Reports Server (NTRS)

    Jeler, S.; Ceric, B.

    1986-01-01

    The raw material composition of fabrics is one of the most important factors for LOI value. LOI value was determined in samples of varying composition composed of cellulose, protein, and synthetic fibers and their mixtures, based on ASTM D 2863-76. Cellulose fibers and their mixtures exhibited the lowest value, while synthetic fibers had the highest LOI value.

  8. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  9. Fabrication of Lightweight Radiation Shielding Composite Materials by Field Assisted Sintering Technique (FAST)

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha; Trivedi, Sudhir; Chen, Henry; Kutcher, Susan; Zhang, Dajie; Singh, Jogender

    2017-01-01

    Advances in radiation shielding technologies are needed to protect humans and electronic components from all threats of space radiation over long durations. In this paper, we report on the use of the innovative and novel fabrication technology known as Field Assisted Sintering Technology (FAST) to fabricate lightweight material with enhanced radiation shielding strength to safeguard humans and electronics suitable for next generation space exploration missions. The base materials we investigated were aluminum (Al), the current standard material for space hardware, and Ultra-High Molecular Weight Polyethylene (UHMWPE), which has high hydrogen content and resistance to nuclear reaction from neutrons, making it a good shielding material for both gamma radiation and particles. UHMWPE also has high resistance to corrosive chemicals, extremely low moisture sensitivity, very low coefficient of friction, and high resistance to abrasion. We reinforced the base materials by adding high density (ie, high atomic weight) metallic material into the composite. These filler materials included: boron carbide (B4C), tungsten (W), tungsten carbide (WC) and gadolinium (Gd).

  10. Fabrication and Characterization of SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  11. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  12. Method of fabricating composite structures

    NASA Technical Reports Server (NTRS)

    Sigur, W. A. (Inventor)

    1990-01-01

    A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.

  13. Method of fabricating composite structures

    NASA Technical Reports Server (NTRS)

    Sigur, Wanda A. (Inventor)

    1992-01-01

    A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.

  14. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  15. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  16. Center for Composites Manufacturing : fabrication guide

    DOT National Transportation Integrated Search

    2003-06-01

    The objective of this report is to describe thermoplastic composite materials and processes and to demonstrate fabrication methods for molding these materials into transit bus flooring components or other large components for use in buses and other m...

  17. Tribological properties of the babbit B83-based composite materials fabricated by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. E.; Bolotova, L. K.; Bykov, P. A.; Kobeleva, L. I.; Katin, I. V.; Mikheev, R. S.; Kobernik, N. V.

    2016-07-01

    Technological processes are developed to fabricate composite materials based on B83 babbit using hot pressing of a mixture of powders in the presence of a liquid phase. As a result, the structure of the matrix B83 alloy is dispersed, the morphology of intermetallic phases is changed, and reinforcing micro- and nanosized fillers are introduced and uniformly distributed in the matrix. The tribological properties of the synthesized materials are studied. The friction of the B83 babbit + 0.5 wt % MSR + 3 wt % SiC (MSR is modified schungite rock) composite material at high loads is characterized by an increase in the stability coefficient, and the wear resistance of the material increases by a factor of 1.8 as compared to the as-cast alloy at comparable friction coefficients.

  18. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration.

    PubMed

    Petrini, Morena; Ferrante, Maurizio; Su, Bo

    2013-04-01

    Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.

  19. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    NASA Astrophysics Data System (ADS)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  20. Fabrication of angleply carbon-aluminum composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1974-01-01

    A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  2. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  3. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  4. Electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents as an innovative type of polymeric materials with superior antimicrobial efficacy.

    PubMed

    Sun, Xinbo; Zhang, Lifeng; Cao, Zhengbing; Deng, Ying; Liu, Li; Fong, Hao; Sun, Yuyu

    2010-04-01

    Herein we report that electrospun composite nanofiber fabrics containing uniformly dispersed antimicrobial agents and having large surface-to-mass ratios are an innovative type of antimicrobial polymeric materials with durable, nonleachable, and biocompatible characteristics, and more importantly, superior antimicrobial efficacy. Specifically, electrospun cellulose acetate (CA) nanofiber fabrics containing an N-halamine antimicrobial agent of bis(N-chloro-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (Cl-BTMP) were prepared and evaluated; the results of antimicrobial efficacy indicated that the electrospun composite nanofiber fabrics substantially outperformed the control samples that were solution-cast films containing identical amounts of CA and Cl-BTMP. Additionally, the results of trypan blue assay test suggested that the electrospun composite nanofiber fabrics also had excellent mammal cell viability. The developed electrospun composite nanofiber fabrics with superior antimicrobial efficacy are expected to find vital applications in biomedical, hygienic, and many other fields.

  5. Analysis of woven fabrics for reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Dow, Norris F.; Ramnath, V.; Rosen, B. Walter

    1987-01-01

    The use of woven fabrics as reinforcements for composites is considered. Methods of analysis of properties are reviewed and extended, with particular attention paid to three-dimensional constructions having through-the-thickness reinforcements. Methodology developed is used parametrically to evaluate the performance potential of a wide variety of reinforcement constructions including hybrids. Comparisons are made of predicted and measured properties of representative composites having biaxial and triaxial woven, and laminated tape lay-up reinforcements. Overall results are incorporated in advanced weave designs.

  6. Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning

    2017-12-01

    Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g-1 at a current density of 50 mA·g-1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.

  7. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    PubMed

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  8. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  9. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  10. Fabrication of a nanostructured gold-polymer composite material.

    PubMed

    Mallick, K; Witcomb, M; Scurrell, M

    2006-07-01

    A facile synthesis route is described for the preparation of a poly-(o-aminophenol)-gold nanoparticle composite material by polymerization of o-aminophenol (AP) monomer using HAuCl(4) as the oxidant. The synthesis was carried out in a methanol medium so that it could serve a dual solvent role, a solvent for both the AP and the water solution of HAuCl(4). It was found that oxidative polymerization of AP leads to the formation of poly-AP with a diameter of 50+/-10nm, while the reduction of AuCl(4) (-) results in the formation of gold nanoparticles ( approximately 2nm). The gold nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer composite material. The resultant composite material was characterized by means of different techniques, such as UV-vis, IR and Raman spectroscopy, which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the composite material and the distribution of the metal particles in the composite material.

  11. Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  12. Optimal fabrication processes for unidirectional metal-matrix composites - A computational simulation

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Murthy, P. L. N.; Morel, M.

    1990-01-01

    A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.

  13. Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries.

    PubMed

    Zhu, Jiangliu; Ren, Yurong; Yang, Bo; Chen, Wenkai; Ding, Jianning

    2017-12-16

    Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO 2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent. Simultaneously, it enhanced electronic conductivity during Li-ion insertion/extraction. The MR-Si/G composite is used as the anode material for lithium ion batteries, which shows high reversible capacity and ascendant cycling stability reach to 950 mAh·g -1 at a current density of 50 mA·g -1 after 60 cycles. These may be conducive to the further advancement of Si-based composite anode design.

  14. [Fabrication of a new composite scaffold material for delivering rifampicin and its sustained drug release in rats].

    PubMed

    Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming

    2016-03-01

    To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.

  15. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  16. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  17. Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; De Baets, Patrick

    2017-12-01

    Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.

  18. Fabrication and testing of SMA composite beam with shape control

    NASA Astrophysics Data System (ADS)

    Noolvi, Basavaraj; S, Raja; Nagaraj, Shanmukha; Mudradi, Varada Raj

    2017-07-01

    Smart materials are the advanced materials that have characteristics of sensing and actuation in response to the external stimuli like pressure, heat or electric charge etc. These materials can be integrated in to any structure to make it smart. From the different types of smart materials available, Shape Memory Alloy (SMA) is found to be more useful in designing new applications, which can offer more actuating speed, reduce the overall weight of the structure. The unique property of SMA is the ability to remember and recover from large strains of upto 8% without permanent deformation. Embedding the SMA wire/sheet in fiber-epoxy/flexible resin systems has many potential applications in Aerospace, Automobile, Medical, Robotics and various other fields. In this work the design, fabrication, and testing of smart SMA composite beam has been carried out. Two types of epoxy based resin systems namely LY 5210 resin system and EPOLAM 2063 resin system are used in fabricating the SMA composite specimens. An appropriate mould is designed and fabricated to retain the pre-strain of SMA wire during high temperature post curing of composite specimens. The specimens are fabricated using vacuum bag technique.

  19. Analysis of knitted fabric reinforced flexible composites and applications in thermoforming

    NASA Astrophysics Data System (ADS)

    Bekisli, Burak

    In this study, large deformation behavior of knitted fabric reinforced composites is investigated. In order to fully utilize the unique stretchability of knitted fabric reinforcements, elastomeric materials are used as the matrix material, resulting in "flexible composites" capable of reaching several hundred percent stretch before failing. These non-traditional composites are ideal candidates for many engineering applications where large deformation is desired, including energy/impact absorption and novel forming processes. A multi-level nonlinear finite element (FE) procedure is developed to analyze the deformation behavior of plain weft-knitted fabrics and the composites derived from these materials. The hierarchy of the model is composed of a 3D unit cell analysis (micro/meso-scale) and a 2D global analysis (macro scale). Using results from different numerical experiments performed in the micro/meso scale, a mechanical behavior database of knit fabric geometries is constructed, both for the uniaxial and biaxial stretch cases. Through an optimization procedure, these results are used to determine the mechanical properties of nonlinear truss elements needed for modeling in the macro scale. A hexagonal honeycomb structure, which closely resembles the knit fabric architecture, is formed using these nonlinear trusses. This truss structure is then used to efficiently model a large number of loops generally found in a fabric. Results from uniaxial experimental measurements are presented for knitted fabrics to validate the FE model. Appropriate hyperelastic material models are determined for the elastomeric matrix, using a curve fit to experimental data. Examples of raw fabric and composite deformation simulations in the global scale are presented in this study. Two types of composites are studied experimentally and numerically: (1) knitted fabric embedded in an elastomeric medium, and (2) the sandwich type composites with elastomeric skins and fabric core. The strain

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  1. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  2. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  3. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    PubMed

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fabrication, characterization and comparison of composite magnetic materials for high efficiency integrated voltage regulators with embedded magnetic core micro-inductors

    NASA Astrophysics Data System (ADS)

    Bellaredj, Mohamed L. F.; Mueller, Sebastian; Davis, Anto K.; Mano, Yasuhiko; Kohl, Paul A.; Swaminathan, Madhavan

    2017-11-01

    High-efficiency integrated voltage regulators (IVRs) require the integration of power inductors, which have low loss and reduced size at very high frequency. The use of a magnetic material core can reduce significantly the inductor area and simultaneously increase the inductance. This paper focuses on the fabrication, characterization and modeling of nickel zinc (NiZn) ferrite and carbonyl iron powder (CIP)-epoxy magnetic composite materials, which are used as the magnetic core materials of embedded inductors in a printed wiring board (PWB) for a system in package (SIP) based buck type IVR. The fabricated composite materials and process are fully compatible with FR4 epoxy resin prepreg and laminate. For 85% weight loading of the magnetic powder (around 100 MHz at room temperature), the composite materials show a relative permeability of 7.5-8.1 for the NiZn ferrite composite and 5.2-5.6 for the CIP composite and a loss tangent value of 0.24-0.28 for the NiZn ferrite composite and 0.09-0.1 for the CIP-composite. The room temperature saturation flux density values are 0.1351 T and 0.5280 T for the NiZn ferrite and the CIP composites, respectively. The frequency dispersion parameters of the magnetic composites are modeled using a simplified Lorentz and Landau-Lifshitz-Gilbert equation for a Debye type relaxation. Embedded magnetic core solenoid inductors were designed based on the composite materials for the output filter of a high-efficiency SIP based buck type IVR. Evaluation of a SIP based buck type IVR with the designed inductors shows that it can reach peak efficiencies of 91.7% at 11 MHz for the NiZn ferrite-composite, 91.6% at 14 MHz for CIP-composite and 87.5% (NiZn ferrite-composite) and 87.3% (CIP-composite) efficiency at 100 MHz for a 1.7 V:1.05 V conversion. For a direct 5 V:1 V conversion using a stacked topology, a peak efficiency of 82% at 10 MHz and 72% efficiency at 100 MHz can be achieved for both materials.

  5. Pin bearing evaluation of LTM25 composite materials

    NASA Technical Reports Server (NTRS)

    Shah, C. H.; Postyn, A. S.

    1996-01-01

    This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.

  6. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  7. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  8. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  9. Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System

    NASA Astrophysics Data System (ADS)

    Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane

    2017-06-01

    The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    NASA Astrophysics Data System (ADS)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  11. A Novel Silicone-Magnetite Composite Material Used in the Fabrication of Biomimetic Cilia

    NASA Astrophysics Data System (ADS)

    Carstens, B. L.; Evans, B. A.; Shields, A. R.; Su, J.; Washburn, S.; Falvo, M. R.; Superfine, R.

    2008-10-01

    We have developed a novel polymer-magnetite composite that we use to fabricate arrays of magnetically actuable biomimetic cilia. Biomimetic cilia are flexible nanorods 750 nm in diameter and 25 microns tall. They generate fluid flows similar to those produced by biological cilia. Polymer-magnetic nanoparticle materials such as ours are becoming increasingly useful in biomedical applications and microelectromechanical systems (MEMS). Comprised of magnetite (Fe3O4), the nanoparticles have a diameter of 5-7 nm and are complexed with a silicone copolymer and crosslinked into a flexible, magnetic solid. Amine groups make up 6-7 percent of the silicone copolymer, providing a simple means of functionalization. We present a detailed mechanical and magnetic analysis of our bulk crosslinked material. The high-aspect ratio biomimetic cilia we create with this magnetite-copolymer complex may have applications in microfluidic mixing, biofouling, and MEMS.

  12. Space fabrication: Graphite composite truss welding and cap forming subsystems

    NASA Technical Reports Server (NTRS)

    Jenkins, L. M.; Browning, D. L.

    1980-01-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  13. High-Throughput Fabrication Method for Producing a Silver-Nanoparticles-Doped Nanoclay Polymer Composite with Novel Synergistic Antibacterial Effects at the Material Interface.

    PubMed

    Cai, Shaobo; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2017-06-28

    In this study, we report a high-throughput fabrication method at industrial pilot scale to produce a silver-nanoparticles-doped nanoclay-polylactic acid composite with a novel synergistic antibacterial effect. The obtained nanocomposite has a significantly lower affinity for bacterial adhesion, allowing the loading amount of silver nanoparticles to be tremendously reduced while maintaining satisfactory antibacterial efficacy at the material interface. This is a great advantage for many antibacterial applications in which cost is a consideration. Furthermore, unlike previously reported methods that require additional chemical reduction processes to produce the silver-nanoparticles-doped nanoclay, an in situ preparation method was developed in which silver nanoparticles were created simultaneously during the composite fabrication process by thermal reduction. This is the first report to show that altered material surface submicron structures created with the loading of nanoclay enables the creation of a nanocomposite with significantly lower affinity for bacterial adhesion. This study provides a promising scalable approach to produce antibacterial polymeric products with minimal changes to industry standard equipment, fabrication processes, or raw material input cost.

  14. Combined micromechanical and fabrication process optimization for metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  15. Present State of the Art of Composite Fabric Forming: Geometrical and Mechanical Approaches

    PubMed Central

    Cherouat, Abel; Borouchaki, Houman

    2009-01-01

    Continuous fibre reinforced composites are now firmly established engineering materials for the manufacture of components in the automotive and aerospace industries. In this respect, composite fabrics provide flexibility in the design manufacture. The ability to define the ply shapes and material orientation has allowed engineers to optimize the composite properties of the parts. The formulation of new numerical models for the simulation of the composite forming processes must allow for reduction in the delay in manufacturing and an optimization of costs in an integrated design approach. We propose two approaches to simulate the deformation of woven fabrics: geometrical and mechanical approaches.

  16. Fabrication of flexible piezoelectric PZT/fabric composite.

    PubMed

    Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying

    2013-01-01

    Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C.

  17. Fabrication of Flexible Piezoelectric PZT/Fabric Composite

    PubMed Central

    Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying

    2013-01-01

    Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C. PMID:24348194

  18. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  19. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electronbeam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  1. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    NASA Astrophysics Data System (ADS)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  2. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1979-08-01

    block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were

  3. Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication

    NASA Astrophysics Data System (ADS)

    Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.

    2017-04-01

    This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.

  4. Improving Mechanical Properties of Molded Silicone Rubber for Soft Robotics Through Fabric Compositing.

    PubMed

    Wang, Yue; Gregory, Cherry; Minor, Mark A

    2018-06-01

    Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.

  5. Method of fabricating composite superconducting wire

    DOEpatents

    Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.

    1977-01-01

    An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

  6. Structure and properties of hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chernyshova, T. A.; Kobeleva, L. I.; Bolotova, L. K.; Katin, I. V.

    2013-03-01

    The structure and interfacial interaction are studied in the hybrid aluminum-matrix composite materials fabricated by reactive casting combined with mechanical mixing of fillers with a metallic melt. The following types of hardening are considered: hardening by ceramic particles and by the phases formed as isolated inclusions or coatings on ceramic particles during in situ reactions. The hardness and tribological properties of the composite materials as functions of their compositions are discussed.

  7. Concurrent micromechanical tailoring and fabrication process optimization for metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, Christos C.

    1990-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  8. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  9. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  10. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawerence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.; hide

    2000-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  11. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawrence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.

    2001-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  12. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  13. Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting

    NASA Technical Reports Server (NTRS)

    Wright, C. C.; Baker, D. J.; Corvelli, N.; Thurston, L.; Clary, R.; Illg, W.

    1971-01-01

    The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported.

  14. Method for Fabricating Composite Structures Using Continuous Press Forming

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method for fabricating composite structures at a low-cost. moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates. resulting in lower cost and high structural performance.

  15. Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates

    NASA Astrophysics Data System (ADS)

    Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi

    2017-06-01

    Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.

  16. Method of Fabricating a Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor)

    2007-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises making a piezoelectric fiber sheet by providing a plurality of wafers of piezoelectric material, bonding the wafers together with an adhesive material to from a stack of alternating layers of piezoelectric material and adhesive material, and cutting through the stack in a direction substantially parallel to the thickness of the stack and across the alternating layers of piezoelectric material and adhesive material to provide at least one piezoelectric fiber sheet having two sides comprising a plurality of piezoelectric fibers in juxtaposition to the adhesive material. The method further comprises bonding two electrically conductive films to the two sides of the piezoelectric fiber sheet. At least one conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric fiber sheet.

  17. Film Delivery Module For Fiber Placement Fabrication of Hybridized Composite Structures

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; Young, Greg

    2005-01-01

    A new fabrication technology has been developed at the NASA Marshall Space Flight Center that will allow for the fabrication of hybridized composite structures using fiber placement processing. This technology was originally developed in response to a need to address the issue of hydrogen permeation and microcracking in cryogenic propellant tanks. Numerous thin polymeric and metallized films were investigated under low temperatures conditions for use as barrier films in a composite tank. Manufacturing studies conducted at that time did not address the processing issues related to fabrication of a hybridized tank wall. A film processing head was developed that will allow for the processing of thin polymeric and metallized films, metallic foils, and adhesives using fiber placement processing machinery. The film head is designed to enable the simultaneous processing of film materials and composite tape/tow during the composite part layup process and is also capable of processing the film during an independent operation. Several initial demonstrations were conducted to assess the performance of the film module device. Such assessments included film strip lay-up accuracy, capability to fabricate panels having internal film liners, and fabrication of laminates with embedded film layers.

  18. Cardiovascular Computed Tomography Phantom Fabrication and Characterization through the Tailored Properties of Polymeric Composites and Cellular Foams

    NASA Astrophysics Data System (ADS)

    Hoy, Carlton F. O.

    The overall objective of this thesis was to control the fabrication technique and relevant material properties for phantom devices designated for computed tomography (CT) scanning. Fabrication techniques using polymeric composites and foams were detailed together with parametric studies outlining the fundamentals behind the changes in material properties which affect the characteristic CT number. The composites fabricated used polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and polyethylene (PE) with hydroxylapatite (hA) as additive with different composites made by means of different weight percentages of additive. Polymeric foams were fabricated through a batch foaming technique with the heating time controlled to create different levels of foams. Finally, the effect of fabricated phantoms under varied scanning media was assessed to determine whether self-made phantoms can be scanned accurately under non-water or rigid environments allowing for the future development of complex shaped or fragile material types.

  19. Optimisation of Fabric Reinforced Polymer Composites Using a Variant of Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana; Hudisteanu, Iuliana

    2017-12-01

    Fabric reinforced polymeric composites are high performance materials with a rather complex fabric geometry. Therefore, modelling this type of material is a cumbersome task, especially when an efficient use is targeted. One of the most important issue of its design process is the optimisation of the individual laminae and of the laminated structure as a whole. In order to do that, a parametric model of the material has been defined, emphasising the many geometric variables needed to be correlated in the complex process of optimisation. The input parameters involved in this work, include: widths or heights of the tows and the laminate stacking sequence, which are discrete variables, while the gaps between adjacent tows and the height of the neat matrix are continuous variables. This work is one of the first attempts of using a Genetic Algorithm ( GA) to optimise the geometrical parameters of satin reinforced multi-layer composites. Given the mixed type of the input parameters involved, an original software called SOMGA (Satin Optimisation with a Modified Genetic Algorithm) has been conceived and utilised in this work. The main goal is to find the best possible solution to the problem of designing a composite material which is able to withstand to a given set of external, in-plane, loads. The optimisation process has been performed using a fitness function which can analyse and compare mechanical behaviour of different fabric reinforced composites, the results being correlated with the ultimate strains, which demonstrate the efficiency of the composite structure.

  20. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.

    PubMed

    Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B

    2012-07-01

    For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  2. Evaluation of Double-Vacuum-Bag Process For Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Jensen, B. J.

    2004-01-01

    A non-autoclave vacuum bag process using atmospheric pressure alone that eliminates the need for external pressure normally supplied by an autoclave or a press is an attractive method for composite fabrication. This type of process does not require large capital expenditures for tooling and processing equipment. In the molding cycle (temperature/pressure profile) for a given composite system, the vacuum application point has to be carefully selected to achieve the final consolidated laminate net shape and resin content without excessive resin squeeze-out. The traditional single-vacuum- bag (SVB) process is best suited for molding epoxy matrix based composites because of their superior flow and the absence of reaction by-products or other volatiles. Other classes of materials, such as polyimides and phenolics, generate water during cure. In addition, these materials are commonly synthesized as oligomers using solvents to facilitate processability. Volatiles (solvents and reaction byproducts) management therefore becomes a critical issue. SVB molding, without additional pressure, normally fails to yield void-free quality composites for these classes of resin systems. A double-vacuum- bag (DVB) process for volatile management was envisioned, designed and built at the NASA Langley Research Center. This experimental DVB process affords superior volatiles management compared to the traditional SVB process. Void-free composites are consistently fabricated as measured by C-scan and optical photomicroscopy for high performance polyimide and phenolic resins.

  3. Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2013-07-01

    Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.

  4. Axiomatic Design and Fabrication of Composite Structures - Applications in Robots, Machine Tools, and Automobiles

    NASA Astrophysics Data System (ADS)

    Lee, Dai Gil; Suh, Nam Pyo

    2005-11-01

    The idea that materials can be designed to satisfy specific performance requirements is relatively new. With high-performance composites, however, the entire process of designing and fabricating a part can be worked out before manufacturing. The purpose of this book is to present an integrated approach to the design and manufacturing of products from advanced composites. It shows how the basic behavior of composites and their constitutive relationships can be used during the design stage, which minimizes the complexity of manufacturing composite parts and reduces the repetitive "design-build-test" cycle. Designing it right the first time is going to determine the competitiveness of a company, the reliability of the part, the robustness of fabrication processes, and ultimately, the cost and development time of composite parts. Most of all, it should expand the use of advanced composite parts in fields that use composites only to a limited extent at this time. To achieve these goals, this book presents the design and fabrication of novel composite parts made for machine tools and other applications like robots and automobiles. This book is suitable as a textbook for graduate courses in the design and fabrication of composites. It will also be of interest to practicing engineers learning about composites and axiomatic design. A CD-ROM is included in every copy of the book, containing Axiomatic CLPT software. This program, developed by the authors, will assist readers in calculating material properties from the microstructure of the composite. This book is part of the Oxford Series on Advanced Manufacturing.

  5. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  6. Energy absorption of composite material and structure

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.

  7. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1981-08-01

    necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules

  8. Finger materials for air cushion vehicles. Volume 2: Base fabrics for finger materials

    NASA Astrophysics Data System (ADS)

    Schoppee, M. M.; Skelton, J.; Toney, M. M.; Klemens, W.

    1984-12-01

    Since the short lifetimes of seal/skirt systems on surface effect vehicles (SEV's) severely limit the long-term serviceability on such craft, a systematic study was undertaken to evaluate the effects of fabric structure on the performance of rubber/fabric skirt materials under conditions of high speed, high-curvature flexing. A series of nylon fabrics was designed and manufactured in which the fiber denier, yarn denier, yarn twist, yarn crimp, weave pattern and float length were varied, but in which the tensile strength was kept constant throughout. Each one of the fabrics was rubber-coated using the same natural rubber/polybutadiene blend and the same coating technique. A flex-testing apparatus was designed and built for flexing the rubber/fabric composite materials in air at an average radius of curvature of 0.28 in. at a cycling frequency of 15 Hz. The lifetimes in flex of the experimental series of fabrics, as indicated by the appearance of flex cracks in the rubber layer, ranged from a low of 140,000 cycles to a high of 21.7 million cycles, a range of over two orders of magnitude. Factorial analysis of the test results showed that lower yarn denier, lower yarn crimp, and shorter float length (plain weave) in the fabric substrate offer significant advantages in the ability of the fabric to withstand flexing. Design of three broad fabrics for full-scale skirt trials on the SRN4 craft is described.

  9. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  10. Evaluation of composite materials providing improved acoustic transmission loss for UAVs

    NASA Astrophysics Data System (ADS)

    Callicoat, Jeffrey R.

    With the proliferation of Unmanned Aerial Vehicles (UAVs) in civilian airspace in the near future, community noise will be a major issue of concern. Numerous studies have shown a direct link between community noise pollution (i.e., road traffic noise and airport noise) and serious health problems. There exists, therefore, a pressing need to create quiet UAVs, and this drives the need for noise-attenuating materials and structures suitable for UAV airframe fabrication. By shrouding predominant noise sources such as the engine, exhaust, and even the propeller (in the case of a ducted fan) with the airframe structure, the airframe can serve as a noise transmission barrier and substantially reduce UAV noise profiles. The present research effort is an experimental investigation of light-weight fiber-reinforced composite materials to provide high acoustic transmission loss (TL) for use in fabricating UAV airframes. A transmission loss tube acoustic test system was designed, fabricated, and validated, and extensive testing was done on numerous composite layups of interest for UAV fabrication. Composites under study included carbon fiber, fiberglass, and Kevlar fabrics as skin materials along with vinyl foam, Nomex honeycomb, and balsawood as core materials. Results from testing small 3"x3" samples in the TL tube led to the selection of four composite sandwich panels of interest for further study. Larger 36"x36" test samples of these selected layups were then fabricated and tested using a 2-room methodology. Whereas the TL tube yielded results in the stiffness-controlled region of acoustic behavior, the 2-room tests produced results in the mass-controlled region for these materials, enabling relative performance comparisons over both acoustic regimes. Recognizing that a good material for airframe fabrication should possess not only high TL, but also low weight and high stiffness, load-deflection tests were conducted and overall material performance was compared in terms of

  11. Strain Sensing Based on Multiscale Composite Materials Reinforced with Graphene Nanoplatelets.

    PubMed

    Moriche, Rocío; Prolongo, Silvia G; Sánchez, María; Jiménez-Suárez, Alberto; Campo, Mónica; Ureña, Alejandro

    2016-11-07

    The electrical response of NH2-functionalized graphene nanoplatelets composite materials under strain was studied. Two different manufacturing methods are proposed to create the electrical network in this work: (a) the incorporation of the nanoplatelets into the epoxy matrix and (b) the coating of the glass fabric with a sizing filled with the same nanoplatelets. Both types of multiscale composite materials, with an in-plane electrical conductivity of ~10 -3 S/m, showed an exponential growth of the electrical resistance as the strain increases due to distancing between adjacent functionalized graphene nanoplatelets and contact loss between overlying ones. The sensitivity of the materials analyzed during this research, using the described procedures, has been shown to be higher than commercially available strain gauges. The proposed procedures for self-sensing of the structural composite material would facilitate the structural health monitoring of components in difficult to access emplacements such as offshore wind power farms. Although the sensitivity of the multiscale composite materials was considerably higher than the sensitivity of metallic foils used as strain gauges, the value reached with NH2 functionalized graphene nanoplatelets coated fabrics was nearly an order of magnitude superior. This result elucidated their potential to be used as smart fabrics to monitor human movements such as bending of fingers or knees. By using the proposed method, the smart fabric could immediately detect the bending and recover instantly. This fact permits precise monitoring of the time of bending as well as the degree of bending.

  12. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  13. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  14. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  15. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    polymer processing techniques can turn these composite materials into unique, custom parts for ground support, Shuttle, and Constellation needs. We fabricated test specimens of the composite and base materials for thermal and mechanical characterization and found that the strength of the composite material at nominal-percentage loading remained relatively unchanged from the base material.

  16. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  17. Early Damage Detection in Composites during Fabrication and Mechanical Testing.

    PubMed

    Chandarana, Neha; Sanchez, Daniel Martinez; Soutis, Constantinos; Gresil, Matthieu

    2017-06-22

    Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This study follows the resin infusion process during fabrication of the composite, monitoring the development of strain in-situ and in real time, and to gain better understanding of the resin rheology during curing. Piezoelectric wafer active sensors and electrical strain gauges are bonded to the plate after fabrication. This is followed by progressive loading/unloading cycles of mechanical four point bending. The strain values obtained from the optical fibre are in good agreement with strain data collected by surface mounted strain gauges, while the sensing regions clearly indicate the development of compressive, neutral, and tensile strain. Acoustic emission event detection suggests the formation of matrix (resin) cracks, with measured damage event amplitudes in agreement with values reported in published literature on the subject. The Felicity ratio for each subsequent loading cycle is calculated to track the progression of damage in the material. The methodology developed here can be used to follow the full life cycle of a composite structure, from manufacture to end-of-life.

  18. Early Damage Detection in Composites during Fabrication and Mechanical Testing

    PubMed Central

    Chandarana, Neha; Sanchez, Daniel Martinez; Soutis, Constantinos; Gresil, Matthieu

    2017-01-01

    Fully integrated monitoring systems have shown promise in improving confidence in composite materials while reducing lifecycle costs. A distributed optical fibre sensor is embedded in a fibre reinforced composite laminate, to give three sensing regions at different levels through-the-thickness of the plate. This study follows the resin infusion process during fabrication of the composite, monitoring the development of strain in-situ and in real time, and to gain better understanding of the resin rheology during curing. Piezoelectric wafer active sensors and electrical strain gauges are bonded to the plate after fabrication. This is followed by progressive loading/unloading cycles of mechanical four point bending. The strain values obtained from the optical fibre are in good agreement with strain data collected by surface mounted strain gauges, while the sensing regions clearly indicate the development of compressive, neutral, and tensile strain. Acoustic emission event detection suggests the formation of matrix (resin) cracks, with measured damage event amplitudes in agreement with values reported in published literature on the subject. The Felicity ratio for each subsequent loading cycle is calculated to track the progression of damage in the material. The methodology developed here can be used to follow the full life cycle of a composite structure, from manufacture to end-of-life. PMID:28773048

  19. Two-step fabrication of ZnO-PVP composites with tunable visible emissions

    NASA Astrophysics Data System (ADS)

    Agulto, Verdad C.; Empizo, Melvin John F.; Kawano, Keisuke; Minami, Yuki; Yamanoi, Kohei; Sarukura, Nobuhiko; Yago, Allan Christopher C.; Sarmago, Roland V.

    2018-02-01

    We report a two-step fabrication of zinc oxide-polyvinylpyrrolidone (ZnO-PVP) composites for potential phosphor-based applications. The composites are fabricated by initially preparing ZnO microrods using hydrothermal growth method and then dip-coating the microrods into aqueous PVP solutions with varying molar concentrations. The as-prepared ZnO microrods exhibit smooth surfaces and broad visible emissions, while the ZnO-PVP composites have pitted surfaces with shifted and reduced visible emissions. These changes in the structural and optical properties, which are found to depend on the PVP concentration, are attributed to the adsorption of PVP on the microrod surface. Although the surface morphology and visible emission are modified by PVP, the composites still maintain a hexagonal wurtzite crystal structure and near-band-edge ultraviolet (UV) emission similar with the as-prepared microrods. Our results therefore suggest that the ZnO-PVP composites can be used as phosphors that offer not only properties found in both ZnO and PVP but also tunable visible emissions which can be controlled during material fabrication.

  20. Composites of 3D-Printed Polymers and Textile Fabrics*

    NASA Astrophysics Data System (ADS)

    Martens, Yasmin; Ehrmann, Andrea

    2017-08-01

    3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.

  1. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  2. Fabrication of aluminum-carbon composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1973-01-01

    A screening, optimization, and evaluation program is reported of unidirectional carbon-aluminum composites. During the screening phase both large diameter monofilament and small diameter multifilament reinforcements were utilized to determine optimum precursor tape making and consolidation techniques. Difficulty was encountered in impregnating and consolidating the multifiber reinforcements. Large diameter monofilament reinforcement was found easier to fabricate into composites and was selected to carry into the optimization phase in which the hot pressing parameters were refined and the size of the fabricated panels was scaled up. After process optimization the mechanical properties of the carbon-aluminum composites were characterized in tension, stress-rupture and creep, mechanical fatigue, thermal fatigue, thermal aging, thermal expansion, and impact.

  3. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  4. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  5. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].

    PubMed

    Zhang, Yumin; Li, Baoxing; Li, Ji

    2007-02-01

    To fabricate a novel porous bioactive composite biomaterial consisting of poly lactic acid (PLA)-bone matrix gelatin (BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3 : 1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100-200 microm in diameter for the porosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblast-like MC3T3-E1 cells were cultured in the dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 microl of the MC3T3-E1 cell suspensions containing 2 X 10(6) cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 microg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 microg of the crushed PLA material was contained in each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis on the calcification area was performed by the staining of the alizarin red S. The co-cultured cells were harvested and lysated in 1 ml of 0. 2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. The porous PLA-BMG composite material showed a good homological porosity with a pore diameter of 50-150 microm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in

  6. Standard wool fabric as a reference material. [for fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Standard wool fabric is investigated as a potential reference material. A screening test method for relative toxicity exposes four albino male rats enclosed in a 4.2 liter hemispherical chamber to pyrolysis effluents produced by pyrolyzing a 1.00 g sample under a variety of test conditions (200-800 C with a 40 C/min heating rate). It is found that for fabrics containing 86-100% wool, animal response remains virtually unchanged, although a 100% wool fabric is preferred as it eliminates local composition differences as a source of variation.

  7. Development of a new generation of high-temperature composite materials

    NASA Technical Reports Server (NTRS)

    Brindley, Pamela K.

    1987-01-01

    There are ever-increasing demands to develop low-density materials that maintain high strength and stiffness properties at elevated temperatures. Such materials are essential if the requirements for advanced aircraft, space power generation, and space station plans are to be realized. Metal matrix composites and intermetallic matrix composites are currently being investigated at NASA Lewis for such applications because they offer potential increases in strength, stiffness, and use temperature at a lower density than the most advanced single-crystal superalloys presently available. Today's discussion centers around the intermetallic matrix composites proposed by Lewis for meeting advanced aeropropulsion requirements. The fabrication process currently being used at Lewis to produce intermetallic matrix composites will be reviewed, and the properties of one such composite, SiC/Ti3Al+Nb, will be presented. In addition, the direction of future research will be outlined, including plans for enhanced fabrication of aluminide composites by the arc spray technique and fiber development by the floating-zone process.

  8. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  9. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  10. Fabrication and characterization of bolus material using polydimethyl-siloxane

    NASA Astrophysics Data System (ADS)

    Wiratma Jaya, Gede; Sutanto, Heri

    2018-01-01

    Bolus has been used in radiotherapy to reduce tissue harm and to increase the superficial dose for skin cancer treatment. Commonly, a bolus is made of melamine in several hospitals. In this research, polydimethyl-siloxane (PDMS) material was used for bolus fabrication. The aims of the study are to investigate bolus density, percentage surface dose and its structural strength for each various composition. In bolus preparation, bolus material used composition variation between PDMS volume and catalyst volume. Composition variation were 20:1, 22:1, 24:1, 26:1, 28:1, 30:1 and 32:1. PDMS and catalyst were mixed by chemical solution deposition method. Bolus was molded by using glass cast with the size of 10 × 10 × 0.5 cm3. Bolus density was analyzed by mass per volume equation, for bolus radiation was examined by the linear accelerator using two electron energy (5 and 7 MeV) and bolus strain and tensile strength were examined by Brookfield CT 3 machine. The results of bolus density were similar with soft tissue density, while the lowest and highest density each variation are 22:1 and 28:1. In general, the use of bolus has increased the surface dose. Percentage of surface dose at 5 MeV energy is higher than 7 MeV energy. The highest percentage of surface dose at 5 MeV energy with 0.5 and 1.0 cm bolus thickness was achieved at composition of 32:1. For strain and tensile strength result, the lowest and highest strain each variation are 22:1 and 28:1, then the lowest and highest tensile strength each variation are 32:1 and 28:1. These results is important to select composition material for bolus fabrication in radiotherapy treatment.

  11. Processing composite materials

    NASA Technical Reports Server (NTRS)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  12. Method of Fabricating a Piezoelectric Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor); Little, Bruce D. (Inventor); Mirick, Paul H. (Inventor)

    2003-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises providing a piezoelectric material that has two sides and attaching one side upon an adhesive backing sheet. The method further comprises slicing the piezoelectric material to provide a plurality of piezoelectric fibers in juxtaposition. A conductive film is then adhesively bonded to the other side of the piezoelectric material, and the adhesive backing sheet is removed. The conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric material. The first and second conductive patterns of the conductive film each have a plurality of electrodes to form a pattern of interdigitated electrodes. A second film is then bonded to the other side of the piezoelectric material. The second film may have a pair of conductive patterns similar to the conductive patterns of the first film.

  13. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  14. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  15. Fabrication of Thermoplastic Composite Laminates Having Film Interleaves By Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. B.; Tiwari, S. N.; Marchello, J. M.; Johnston, Norman J. (Technical Monitor)

    2001-01-01

    Experiments were carried out at the NASA Langley Research Center automated Fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleaves. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.

  16. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  17. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  18. Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials.

    PubMed

    Mu, Boyuan; Li, Min

    2018-06-11

    In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite.

  19. Impregnation of Composite Materials: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Baché, Elliott; Dupleix-Couderc, Chloé; Arquis, Eric; Berdoyes, Isabelle

    2017-12-01

    Oxide ceramic matrix composites are currently being developed for aerospace applications such as the exhaust, where the parts are subject to moderately high temperatures (≈ 700 ∘C) and oxidation. These composite materials are normally formed by, among other steps, impregnating a ceramic fabric with a slurry of ceramic particles. This impregnation process can be complex, with voids possibly forming in the fabric depending on the process parameters and material properties. Unwanted voids or macroporosity within the fabric can decrease the mechanical properties of the parts. In order to design an efficient manufacturing process able to impregnate the fabric well, numerical simulations may be used to design the process as well as the slurry. In this context, a tool is created for modeling different processes. Thétis, which solves the Navier-Stokes-Darcy-Brinkman equation using finite volumes, is expanded to take into account capillary pressures on the mesoscale. This formulation allows for more representativity than for Darcy's law (homogeneous preform) simulations while avoiding the prohibitive simulation times of a full discretization for the composing fibers at the representative elementary volume scale. The resulting tool is first used to investigate the effect of varying the slurry parameters on impregnation evolution. Two different processes, open bath impregnation and wet lay-up, are then studied with emphasis on varying their input parameters (e.g. inlet velocity).

  20. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  1. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  2. Method for Fabricating Composite Structures Including Continuous Press Forming and Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate is disclosed. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply, and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform, and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length, and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  3. Wood-based Tri-Axial Sandwich Composite Materials: Design, Fabrication, Testing, Modeling and Application

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2014-01-01

    As the demand for sustainable materials increases, there are unique challenges and opportunities to develop light-weight green composites materials for a wide range of applications. Thus wood-based composite materials from renewable forests may provide options for some niche applications while helping to protect our environment. In this paper, the wood-based tri-axial...

  4. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    PubMed

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    NASA Astrophysics Data System (ADS)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  6. The stress analysis method for three-dimensional composite materials

    NASA Astrophysics Data System (ADS)

    Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki

    1994-05-01

    This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.

  7. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  8. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Townsend, James

    Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify

  9. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  10. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  11. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers

    NASA Astrophysics Data System (ADS)

    Zhang, Liqing; Ding, Siqi; Dong, Sufen; Li, Zhen; Ouyang, Jian; Yu, Xun; Han, Baoguo

    2017-12-01

    The use of conductive cement-based materials as sensors has attracted intense interest over past decades. In this paper, carbon nanotube (CNT)/nano carbon black (NCB) composite fillers made by electrostatic self-assembly are used to fabricate conductive cement-based materials. Electrical and piezoresistive properties of the fabricated cement-based materials are investigated. Effect of filler content, load amplitudes and rate on piezoresistive property within elastic regime and piezoresistive behaviors during compressive loading to destruction are explored. Finally, a model describing piezoresistive property of cement-based materials with CNT/NCB composite fillers is established based on the effective conductive path and tunneling effect theory. The research results demonstrate that filler content and load amplitudes have obvious effect on piezoresistive property of the composites materials, while load rate has little influence on piezoresistive property. During compressive loading to destruction, the composites also show sensitive piezoresistive property. Therefore, the cement-based composites can be used to monitor the health state of structures during their whole life. The built model can well describe the piezoresistive property of the composites during compressive loading to destruction. The good match between the model and experiment data indicates that tunneling effect actually contributes to piezoresistive phenomenon.

  12. Digital fabrication of multi-material biomedical objects.

    PubMed

    Cheung, H H; Choi, S H

    2009-12-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  13. Development of Engineering Data on Advanced Composite Materials

    DTIC Science & Technology

    1977-09-01

    O AFML-TR-77-15 1 ,* • DEVELOPMENT OF ENGINEERING DATA ON ’ ADVANCED COMPOSITE MATERIALS UNIVERSITY OF DAYTON RESEARCH INSTITUTE I - UNIVERSITY OF DA...SUMMARIZED COMPOSITE DATA 47 4.1 SP313 48 4.2 AS/3004 86 4.3 AS/4397 125 4.4 T300/F178 163 4.5 COMPARATIVE ENVIRONMENTAL BEHAVIOR 194 5 CONCLUSIONS 197...AGED INTERLAKINAR SHEAR DATA 452 vi -. -| |b. ~ - LIST OF ILLUSTRATIONS FIGURE PACE 1 Typical Cross Sections of Fabricated Composites 12 2 Heat-Up

  14. Design and fabrication of composite wing panels containing a production splice

    NASA Technical Reports Server (NTRS)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  15. Nickel-Graphite Composite Compliant Interface and/or Hot Shoe Material

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Chun-Yip Li, Billy; Ravi, Vilupanur A.; Fleurial, Jean-Pierre; Caillat, Thierry; Anjunyan, Harut

    2013-01-01

    Next-generation high-temperature thermoelectric-power-generating devices will employ segmented architectures and will have to reliably withstand thermally induced mechanical stresses produced during component fabrication, device assembly, and operation. Thermoelectric materials have typically poor mechanical strength, exhibit brittle behavior, and possess a wide range of coefficient of thermal expansion (CTE) values. As a result, the direct bonding at elevated temperatures of these materials to each other to produce segmented leg components is difficult, and often results in localized microcracking at interfaces and mec hanical failure due to the stresses that arise from the CTE mismatch between the various materials. Even in the absence of full mechanical failure, degraded interfaces can lead to increased electrical and thermal resistances, which adversely impact conversion efficiency and power output. The proposed solution is the insertion of a mechanically compliant layer, with high electrical and thermal conductivity, between the low- and high-temperature segments to relieve thermomechanical stresses during device fabrication and operation. This composite material can be used as a stress-relieving layer between the thermoelectric segments and/or between a thermoelectric segment and a hot- or cold-side interconnect material. The material also can be used as a compliant hot shoe. Nickel-coated graphite powders were hot-pressed to form a nickel-graphite composite material. A freestanding thermoelectric segmented leg was fabricated by brazing the compliant pad layer between the high-temperature p- Zintl and low-temperature p-SKD TE segments using Cu-Ag braze foils. The segmented leg stack was heated in vacuum under a compressive load to achieve bonding. The novelty of the innovation is the use of composite material that re duces the thermomechanical stresses en - countered in the construction of high-efficiency, high-temperature therm - o-electric devices. The

  16. Fabrication and Tribological Behavior of Stir Cast Mg/B4C Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Bala, Niraj

    2017-10-01

    Magnesium-based metal matrix composites (MMMCs) have emerged as good alternative material to conventional materials due to their promising advanced properties. In the present work, magnesium-based metal matrix composites (MMMCs) reinforced with B4C particles were successfully fabricated by cost-effective conventional stir casting technique. MMMCs with an average particle size of 63 µm and different weight percent (wt pct) of B4C between 3 and 12 were fabricated. Wear tests were carried out using a pin-on-disk against a steel disk under dry sliding condition at loads that varied between 1 and 5 kg at fixed sliding velocity of 1 m/s. The wear data clearly showed that wear resistance of cast composites is better than that of unreinforced magnesium, which is attributed to dispersion hardening caused by carbide particles. An increase in wt pct of B4C showed the wear resistance and hardness to increase significantly. The wear rate and coefficient of friction increased with an increase in applied load. The SEM and EDS analysis of the worn surfaces delineated the dominant wear mechanisms to be abrasion, adhesion, and oxidation under the different sliding conditions. At lower loads, the wear mechanism transformed from severe abrasive wear in pure magnesium (Mg) to mild abrasion, slight delamination, and oxidation in the Mg/12 wt pct B4C fabricated composite. At higher loads, severe abrasion, adhesion, delamination, and oxidation were found to be the major wear mechanisms in pure Mg, whereas in the Mg/12 wt pct B4C fabricated composites the corresponding mechanisms were mild abrasion, mild adhesion, slight delamination, and oxidation.

  17. Vegetable Fibers for Composite Materials In Constructive Sector

    NASA Astrophysics Data System (ADS)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  18. Materials Fabrication from Bombyx mori Silk Fibroin

    PubMed Central

    Rockwood, Danielle N.; Preda, Rucsanda C.; Yücel, Tuna; Wang, Xiaoqin; Lovett, Michael L.; Kaplan, David L.

    2013-01-01

    Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years, and it can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent processing methods can be used to generate silk biomaterials for a range of applications. In this protocol we include methods to extract silk from B. mori cocoons in order to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, and for drug delivery. PMID:21959241

  19. Fabrication of graphene/polydopamine/copper foam composite material and its application as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Lu, S. X.; Xu, W. G.; He, G.; Cheng, Y. Y.; Xiao, F. Y.; Zhang, Y.

    2018-01-01

    In this work, a composite electrode was fabricated by chemical deposition of polydopamine (PDA) and graphene oxide (GO) on the copper foam (CF) surface, followed by annealing treatment. Owing to the cohesive effect of the PDA middle film, GO was coated on CF surface successfully, and then reduced simultaneously while annealing. The resulted rGO/PDA/CF composite electrode was directly used as a supercapacitor electrode and exhibited excellent electrochemical performance, with a high specific capacitance of 1250 F g-1 at 2 A g-1 and favorable cycle stability.

  20. Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)

    NASA Technical Reports Server (NTRS)

    Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.

    2016-01-01

    The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.

  1. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  2. 3D finite element simulation of non-crimp fabric composites ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Saffari, N.; Fromme, P.

    2012-05-01

    Composite materials offer many advantages for aerospace applications, e.g., good strength to weight ratio. Different types of composites, such as non-crimp fabrics (NCF), are currently being investigated as they offer reduced manufacturing costs and improved damage tolerance as compared to traditional pre-impregnated composite materials. NCF composites are made from stitched fiber bundles (tows), which typically have a width and thickness of less than a millimeter. This results in strongly inhomogeneous and anisotropic material properties. Different types of manufacturing imperfections, such as porosity, resin pockets, tow crimp and misalignment can lead to reduced material strength and thus to defects following excessive loads or impact, e.g., fracture and delaminations. The ultrasonic non-destructive testing of NCF composites is difficult, as the tow size is comparable to the wavelength, leading to multiple scattering in this inherently three-dimensional structure. For typical material properties and geometry of an NCF composite, a full three-dimensional Finite Element (FE) model has been developed in ABAQUS. The propagation of longitudinal ultrasonic waves has been simulated and the effect of multiple scattering at the fiber tows investigated. The influence of porosity in the epoxy matrix as a typical manufacturing defect on the ultrasonic wave propagation and attenuation has been studied.

  3. Flame-Resistant Composite Materials For Structural Members

    NASA Technical Reports Server (NTRS)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  4. Composite material pedestrian bridge for the Port of Bilbao

    NASA Astrophysics Data System (ADS)

    Gorrochategui, I.; Manteca, C.; Yedra, A.; Miguel, R.; del Valle, F. J.

    2012-09-01

    Composite materials in comparison to traditional ones, steel and concrete, present advantages in civil works construction: lower weight, higher corrosion resistance (especially in the marine environment), and ease of installation. On the other hand, fabrication costs are generally higher. This is the reason why this technology is not widely used. This work illustrates the process followed for the design, fabrication and installation of a composite material pedestrian bridge in the Port of Bilbao (Northern Spain). In order to reduce the price of the bridge, the use of low cost materials was considered, therefore polyester resin was selected as the polymeric matrix, and glass fibres as reinforcement. Two material choices were studied. Currently in the market there is high availability of carbon nanoparticles: carbon nanotubes (CNT) and carbon nanofibres (CNF), so it was decided to add this kind of nanoparticles to the reference material with the objective of improving its mechanical properties. The main challenge was to transfer the CNT and CNF excellent properties to the polymeric matrix. This requires dispersing the nanoreinforcements as individual particles in the polymeric matrix to avoid agglomerates. For this reason, an advanced high shear forces dispersion technique (called "three roll mills") was studied and implemented. Also surface functionalization of the nanoreinforcements by chemical treatment was carried out. Herein, a comparison is performed between both materials studied, the explanation of the employment of the reference material (without nanoreinforcement) as the one used in the fabrication of the pedestrian bridge is justified and, finally, the main characteristics of the final design of the structural element are described.

  5. Application of Pi Preform Composite Joints in Fabrication of NASA Composite Crew Module Demonstration Structure

    NASA Technical Reports Server (NTRS)

    Higgins, John E.; Pelham, Larry

    2008-01-01

    This paper will describe unique and extensive use of pre-woven and impregnated pi cross-sections in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a) To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This paper will focus on the design and fabrication issues supporting selection of the Lockheed Martin patented Pi pre-form to provide sound composite joints a numerous locations in the structure. This abstract is based on Preliminary Design data. The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date.

  6. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  7. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunc, Vlastimil; Duty, Chad E.; Lindahl, John M.

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  8. NASA Composite Materials Development: Lessons Learned and Future Challenges

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  9. A MULTISCALE FRAMEWORK FOR THE STOCHASTIC ASSIMILATION AND MODELING OF UNCERTAINTY ASSOCIATED NCF COMPOSITE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrez, Loujaine; Ghanem, Roger; McAuliffe, Colin

    multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.

  10. Materials for the General Aviation Industry: Effect of Environment on Mechanical Properties of Glass Fabric/Rubber Toughened Vinyl Ester Laminates

    NASA Technical Reports Server (NTRS)

    McBride, Timothy M.

    1995-01-01

    A screening evaluation is being conducted to determine the performance of several glass fabric/vinyl ester composite material systems for use in primary General Aviation aircraft structures. In efforts to revitalize the General Aviation industry, the Integrated Design and Manufacturing Work Package for General Aviation Airframe and Propeller Structures is seeking to develop novel composite materials and low-cost manufacturing methods for lighter, safer and more affordable small aircraft. In support of this Work Package, this study is generating material properties for several glass fabric/rubber toughened vinyl ester composite systems and investigates the effect of environment on property retention. All laminates are made using the Seemann Composites Resin Infusion Molding Process (SCRIMP), a potential manufacturing method for the General Aviation industry.

  11. Flame-retardant composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1991-01-01

    The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.

  12. Investigation of Kevlar fabric-based materials for use with inflatable structures

    NASA Technical Reports Server (NTRS)

    Niccum, R. J.; Munson, J. B.; Rueter, L. L.

    1977-01-01

    Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported. The practicality of using Kevlar in aerostat materials is demonstrated, and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar-based materials are compared with conventional Dacron-reinforced counterparts. A comprehensive test and qualification program is discussed, and considerable quantitative biaxial tensile and shear test data are provided.

  13. Responsive materials: A novel design for enhanced machine-augmented composites

    PubMed Central

    Bafekrpour, Ehsan; Molotnikov, Andrey; Weaver, James C.; Brechet, Yves; Estrin, Yuri

    2014-01-01

    The concept of novel responsive materials with a displacement conversion capability was further developed through the design of new machine-augmented composites (MACs). Embedded converter machines and MACs with improved geometry were designed and fabricated by multi-material 3D printing. This technique proved to be very effective in fabricating these novel composites with tuneable elastic moduli of the matrix and the embedded machines and excellent bonding between them. Substantial improvement in the displacement conversion efficiency of the new MACs over the existing ones was demonstrated. Also, the new design trebled the energy absorption of the MACs. Applications in energy absorbers as well as mechanical sensors and actuators are thus envisaged. A further type of MACs with conversion ability, viz. conversion of compressive displacements to torsional ones, was also proposed. PMID:24445490

  14. Application of In Situ Fiberization for fabrication of improved strain isolation pads and graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Seibold, R. W.; Basiulis, D. I.

    1982-01-01

    The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising.

  15. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  16. Finite Element Modeling of the Thermographic Inspection for Composite Materials

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with

  17. Fabrication and characterization of jute fabrics reinforced polypropylene-based composites: effects of ionizing radiation and disaccharide (sucrose)

    NASA Astrophysics Data System (ADS)

    Sahadat Hossain, Md.; Uddin, Muhammad B.; Razzak, Md.; Sarwaruddin Chowdhury, A. M.; Khan, Ruhul A.

    2017-12-01

    Composites were prepared successfully by compression molding technique using jute fabrics (reinforcing agent) and polypropylene (matrix). Jute fabrics were treated with disaccharide (sucrose) solution and composites were fabricated with the treated fabric and polypropylene. The fiber content of the prepared composites was 40% by weight. It was found that the sucrose (2% solution) decreased the tensile strength (TS) and elongation at break about 6% and 37%, respectively, but tensile modulus and impact strength improved about 27% and 32%, respectively. When gamma radiation was applied through the untreated and treated composites the mechanical properties were improved much higher in non-treated Jute/PP-based composites than that of sucrose treated composites. For 5.0 kGy gamma dose the highest mechanical properties were observed for non-treated composites. At 5.0 kGy gamma dose the improvement of TS was 14% and 2% for non-treated and sucrose treated composites, respectively. The water uptake property of the sucrose treated composites was performed up to 10 days and composites absorbed 18% water. The functional groups of the both composites were analyzed by Fourier transform infrared spectroscopy machine. The scanning electron microscopic images of the both composites were taken for the surface and fiber adhesion analysis.

  18. Composite materials. Volume 3 - Engineering applications of composites. Volume 4 - Metallic matrix composites. Volume 8 - Structural design and analysis, Part 2

    NASA Technical Reports Server (NTRS)

    Noton, B. R. (Editor); Kreider, K. G.; Chamis, C. C.

    1974-01-01

    This volume discusses a vaety of applications of both low- and high-cost composite materials in a number of selected engineering fields. The text stresses the use of fiber-reinforced composites, along with interesting material systems used in the electrical and nuclear industries. As to technology transfer, a similarity is noted between many of the reasons responsible for the utilization of composites and those problems requiring urgent solution, such as mechanized fabrication processes and design for production. Features topics include road transportation, rail transportation, civil aircraft, space vehicles, builing industry, chemical plants, and appliances and equipment. The laminate orientation code devised by Air Force materials laboratory is included. Individual items are announced in this issue.

  19. Analysis, design, fabrication, and performance of three-dimensional braided composites

    NASA Astrophysics Data System (ADS)

    Kostar, Timothy D.

    1998-11-01

    Cartesian 3-D (track and column) braiding as a method of composite preforming has been investigated. A complete analysis of the process was conducted to understand the limitations and potentials of the process. Knowledge of the process was enhanced through development of a computer simulation, and it was discovered that individual control of each track and column and multiple-step braid cycles greatly increases possible braid architectures. Derived geometric constraints coupled with the fundamental principles of Cartesian braiding resulted in an algorithm to optimize preform geometry in relation to processing parameters. The design of complex and unusual 3-D braids was investigated in three parts: grouping of yarns to form hybrid composites via an iterative simulation; design of composite cross-sectional shape through implementation of the Universal Method; and a computer algorithm developed to determine the braid plan based on specified cross-sectional shape. Several 3-D braids, which are the result of variations or extensions to Cartesian braiding, are presented. An automated four-step braiding machine with axial yarn insertion has been constructed and used to fabricate two-step, double two-step, four-step, and four-step with axial and transverse yarn insertion braids. A working prototype of a multi-step braiding machine was used to fabricate four-step braids with surrogate material insertion, unique hybrid structures from multiple track and column displacement and multi-step cycles, and complex-shaped structures with constant or varying cross-sections. Braid materials include colored polyester yarn to study the yarn grouping phenomena, Kevlar, glass, and graphite for structural reinforcement, and polystyrene, silicone rubber, and fasteners for surrogate material insertion. A verification study for predicted yarn orientation and volume fraction was conducted, and a topological model of 3-D braids was developed. The solid model utilizes architectural parameters

  20. Design and Testing of Braided Composite Fan Case Materials and Components

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.

    2009-01-01

    Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.

  1. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.

  2. The behavior of delaminations in composite materials - experimental results

    NASA Astrophysics Data System (ADS)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.

    2016-02-01

    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  3. Fabric geometry distortion during composites processing

    NASA Technical Reports Server (NTRS)

    Chen, Julie

    1994-01-01

    Waviness and tow misalignment are often cited as possible causes of data scatter and lower compression stiffness and strength in textile composites. Strength differences of as much as 40 percent have been seen in composites that appear to have the same basic material and structural properties -- i.e., yarn orientation, yarn size, interlacing geometry. Fabric geometry distortion has been suggested as a possible reason for this discrepancy, but little quantitative data or substantial evidence exists. The focus of this research is to contribute to the present understanding of the causes and effects of geometric distortion in textile composites. The initial part of the study was an attempt to gather qualitative information on a variety of textile structures. Existing and new samples confirmed that structures with a significant direction presence would be more susceptible to distortion due to the compaction process. Thus, uniweaves (fiber vol frac: 54-72 percent) biaxial braids (vf: 34-58 percent) demonstrated very little fabric geometry distortion. In stitched panels, only slight buckling of z-direction stitches was observed, primarily near the surface. In contrast, for structures with high compaction ratios -- e.g., large cylindrical yarns (2.5:1) orpowder towpreg (4:1) -- there were visible distortions where previously smooth and periodic undulations were transformed to abrupt changes in direction. A controlled study of the effect of forming pressure on distortion was conducted on type 162 glass plain weave fabrics. Panels (6 x 6 in) were produced via a resin infusion type setup, but with an EPON 815 epoxy resin. Pressures ranging from hand layup to 200 psi were used (vf: 34-54 percent). Photomicrographs indicated that at pressures up to 50 psi, large changes in thickness were due primarily to resin squeeze out. At higher pressures, when intimate contact was made between the layers, there was some tow flattening and in-plane shifting to optimize nesting. However

  4. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  5. Fabrication and testing of fire resistant graphite composite panels

    NASA Technical Reports Server (NTRS)

    Roper, W. D.

    1986-01-01

    Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022m, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. Described are the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.

  6. Composite materials for precision space reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-01-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

  7. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in

  8. Challenges and Opportunities in Design, Fabrication, and Testing of High Temperature Joints in Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R. (Technical Monitor)

    2001-01-01

    Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.

  9. Material and fabrication strategies for artificial muscles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spinks, Geoffrey M.

    2017-04-01

    Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.

  10. Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration.

    PubMed

    Jiang, S; Huang, L J; An, Q; Geng, L; Wang, X J; Wang, S

    2018-05-01

    Titanium-magnesium (Ti-Mg) composites with bicontinuous structure have been successfully fabricated by powder metallurgy and ultrasonic infiltration for biomaterial potential. In the composites, Ti phase is distributed continuously by sintering necks, while Mg phase is also continuous, distributing at the interconnected pores surrounding the Ti phase. The results showed that the fabricated Ti-Mg composites exhibited low modulus and high strength, which are very suitable for load bearing biomedical materials. The composites with 100 µm and 230 µm particle sizes exhibited Young's modulus of 37.6 GPa and 23.4 GPa, 500.7 MPa and 340 MPa of compressive strength and 631.5 MPa and 375.2 MPa of bending strength, respectively. Moreover, both of the modulus and strength of the composites increase with decreasing of Ti particle sizes. In vitro study has been done for the preliminary evaluation of the Ti-Mg composites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Zirconia-hydroxyapatite composite material with micro porous structure.

    PubMed

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Mechanics of Platelet-Matrix Composites across Scales: Theory, Multiscale Modeling, and 3D Fabrication

    NASA Astrophysics Data System (ADS)

    Sakhavand, Navid

    Many natural and biomimetic composites - such as nacre, silk and clay-polymer - exhibit a remarkable balance of strength, toughness, and/or stiffness, which call for a universal measure to quantify this outstanding feature given the platelet-matrix structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures, which are composed of strong in-plane bonding networks but weak interplanar bonding matrices. In this regard, development of a universal composition-structure-property map for natural platelet-matrix composites, and stacked heterostructures opens up new doors for designing materials with superior mechanical performance. In this dissertation, a multiscale bottom-up approach is adopted to analyze and predict the mechanical properties of platelet-matrix composites. Design guidelines are provided by developing universally valid (across different length scales) diagrams for science-based engineering of numerous natural and synthetic platelet-matrix composites and stacked heterostructures while significantly broadening the spectrum of strategies for fabricating new composites with specific and optimized mechanical properties. First, molecular dynamics simulations are utilized to unravel the fundamental underlying physics and chemistry of the binding nature at the atomic-level interface of organic-inorganic composites. Polymer-cementitious composites are considered as case studies to understand bonding mechanism at the nanoscale and open up new venues for potential mechanical enhancement at the macro-scale. Next, sophisticated mathematical derivations based on elasticity and plasticity theories are presented to describe pre-crack (intrinsic) mechanical performance of platelet-matrix composites at the microscale. These derivations lead to developing a unified framework to construct series of universal composition

  13. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOEpatents

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  14. Margin adaptation of indirect composite inlays fabricated on flexible dies.

    PubMed

    Price, R B; Gerrow, J D

    2000-03-01

    Indirect composite restorations can be made in 1 appointment using a flexible die. Interactions between different impression materials and flexible die materials may affect the accuracy of fit and margin adaptation of the restoration. This study compared the margin adaptation of composite inlays made using the following 5 impression/flexible die material combinations; condensation silicone/polyvinyl siloxane (CS/PVS), wash viscosity polyvinyl siloxane/medium or heavy viscosity polyvinyl siloxane (PVS/PVS), irreversible hydrocolloid impression/medium viscosity polyvinyl siloxane (IH/PVS), wash viscosity polyvinyl siloxane impression/polyether (PVS/PE), with composite inlays made using a control system of a wash viscosity polyvinyl siloxane impression and a type IV stone die. For each test and control system, 10 impressions were made of a class II composite inlay preparation in a metal master die. One die was made from each impression and one composite inlay was made and finished on each die (a total of 60 inlays). Inlays were placed on the master die and the margin opening at the buccal, distal, and gingival sites was recorded with a measuring microscope (x40 magnification). The overall mean +/- SD margin openings of inlays made from the systems were as follows: PVS wash/PVS heavy viscosity 149.5 +/- 107. 4 microm; PVS wash/PVS medium viscosity 87.4 +/- 63.0 microm; IH/PVS medium viscosity 76.7 +/- 48.9 microm; CS/PVS 73.3 +/- 48.7 microm, PVS wash viscosity/PE 64.0 +/- 44.3 microm, PVS wash viscosity/stone 53.9 +/- 48.3 microm. Composite inlays made using the PVS wash viscosity/PVS heavy viscosity system had significantly larger distal, gingival, and overall mean margin openings than all other inlays (ANOVA and Fisher PLSD test; P =.05). The separating medium required between some impression and die materials did not work consistently. Composite inlays fabricated on dies made of material different than the impression material had mean buccal, distal, gingival, and

  15. Fabrication of TiCx-TiB₂/Al Composites for Application as a Heat Sink.

    PubMed

    Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng

    2016-07-29

    Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40-60 vol. % TiC x -TiB₂/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B₄C system. The effect of the TiC x -TiB₂ content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiC x -TiB₂/Al composite were studied and compared with the TiC x /Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiC x -TiB₂/Al composite are all better than those of the TiC x /Al composite, which confirms that the TiC x -TiB₂/Al composite is more appropriate for application as a heat sink.

  16. Fabrication and spin tests of composite flywheels

    NASA Astrophysics Data System (ADS)

    Hamamoto, A.; Inutake, T.; Kogai, K.

    Energy storage flywheels consisting of carbon fiber epoxy composite rims and aluminum or carbon fabric cloth epoxy composite hubs were designed, fabricated and tested. The composite rims were 38O mm in outer diameter and 300 mm in inner diameter with a thickness of 25 mm. The test rotor with a aluminum hub was spun to maximum peripheral speed of 982 m/s on burst test. This corresponds to an energy density, based upon total rotor weight, of approximately 71 Wh/kg. Another rotor, made use of a four rims configuration, was tested to 800 m/s successfully with no damage and no dynamic problem. The energy stored in the rotor is more than 500 Wh and the energy density is about 55 Wh/kg at that speed. The rotor with a composite hub was tested to the peripheral speed of 820 m/s. It was restricted by rotor dynamic problems.

  17. Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.

    2018-03-01

    Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.

  18. Innovative fabrication processing of advanced composite materials concepts for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.

    1992-01-01

    The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.

  19. Fabrication of near-net shape graphite/magnesium composites for large mirrors

    NASA Astrophysics Data System (ADS)

    Wendt, Robert; Misra, Mohan

    1990-10-01

    Successful development of space-based surveillance and laser systems will require large precision mirrors which are dimensionally stable under thermal, static, and dynamic (i.e., structural vibrations and retargeting) loading conditions. Among the advanced composites under consideration for large space mirrors, graphite fiber reinforced magnesium (Gr/Mg) is an ideal candidate material that can be tailored to obtain an optimum combination of properties, including a high modulus of elasticity, zero coefficient of thermal expansion, low density, and high thermal conductivity. In addition, an innovative technique, combining conventional filament winding and vacuum casting has been developed to produce near-net shape Gr/Mg composites. This approach can significantly reduce the cost of fabricating large mirrors by decreasing required machining. However, since Gr/Mg cannot be polished to a reflective surface, plating is required. This paper will review research at Martin Marietta Astronautics Group on Gr/Mg mirror blank fabrication and measured mechanical and thermal properties. Also, copper plating and polishing methods, and optical surface characteristics will be presented.

  20. Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parsons, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined.

  1. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Longtao, E-mail: longtaojiang@163.com; Wang, Pingping; Xiu, Ziyang

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. Themore » interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.« less

  2. Damage assessment of composite plate structures with material and measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, M.; Ganguli, Ranjan

    2016-06-01

    Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problem in damage assessment. A recently developed C0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data.

  3. Materials for microfluidic chip fabrication.

    PubMed

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  4. Investigating the weight ratio variation of alginate-hydroxyapatite composites for vertebroplasty method bone filler material

    NASA Astrophysics Data System (ADS)

    Lestari, Gusti Ruri; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska

    2017-02-01

    One of the newly developed methods for curing spinal fracture due to osteoporosis is vertebroplasty. The method is basically based on injection of special material directly to the fractured spine in order to commence the formation of new bone. Therefore, appropriate injectable materials are very important to the curing success. In this study, injectable alginate-hydroxyapatite (HA) composites were fabricated varying the weight percentage of alginate upon synthesis procedure. The result of injection capability and compressive tests as well as Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) suggested that bone filler composite containing 60 wt% alginate is the optimum composition obtaining a compressive modulus up to 0.15 MPa, injection capability of more than 85% and morphology with uniform porous and fibrous structure. This injectable composite fabrication process can be used for the development of injectable materials system for vertebroplasty method.

  5. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres.

    PubMed

    Kang, Edward; Jeong, Gi Seok; Choi, Yoon Young; Lee, Kwang Ho; Khademhosseini, Ali; Lee, Sang-Hoon

    2011-09-04

    Heterotypic functional materials with compositional and topographical properties that vary spatiotemporally on the micro- or nanoscale are common in nature. However, fabricating such complex materials in the laboratory remains challenging. Here we describe a method to continuously create microfibres with tunable morphological, structural and chemical features using a microfluidic system consisting of a digital, programmable flow control that mimics the silk-spinning process of spiders. With this method we fabricated hydrogel microfibres coded with varying chemical composition and topography along the fibre, including gas micro-bubbles as well as nanoporous spindle-knots and joints that enabled directional water collection. We also explored the potential use of the coded microfibres for tissue engineering applications by creating multifunctional microfibres with a spatially controlled co-culture of encapsulated cells.

  6. Low Cost, Net Shape Fabrication of Rhenium and High Temperature Materials for Rocket Engine Components

    DTIC Science & Technology

    2001-03-01

    tungsten thin wall nozzle liner removed from reusable mandrel. b) W and Re rocket, nozzle inserts (2 inserts per mandrel) for Air Force. Rhenium PPI...compares the fabrication time for the VPS nozzles with equivalent carbon / carbon composite (C/C) and forged tungsten materials. Table 5: Comparison of...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1181 TITLE: Low Cost, Net Shape Fabrication of Rhenium and High

  7. Influence of laminate sequence and fabric type on the inherent acoustic nonlinearity in carbon fiber reinforced composites.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel J; Dayal, Vinay

    2016-05-01

    This paper presents the study of influence of laminate sequence and fabric type on the baseline acoustic nonlinearity of fiber-reinforced composites. Nonlinear elastic wave techniques are increasingly becoming popular in detecting damage in composite materials. It was earlier observed by the authors that the non-classical nonlinear response of fiber-reinforced composite is influenced by the fiber orientation [Chakrapani, Barnard, and Dayal, J. Acoust. Soc. Am. 137(2), 617-624 (2015)]. The current study expands this effort to investigate the effect of laminate sequence and fabric type on the non-classical nonlinear response. Two hypotheses were developed using the previous results, and the theory of interlaminar stresses to investigate the influence of laminate sequence and fabric type. Each hypothesis was tested by capturing the nonlinear response by performing nonlinear resonance spectroscopy and measuring frequency shifts, loss factors, and higher harmonics. It was observed that the laminate sequence can either increase or decrease the nonlinear response based on the stacking sequence. Similarly, tests were performed to compare unidirectional fabric and woven fabric and it was observed that woven fabric exhibited a lower nonlinear response compared to the unidirectional fabric. Conjectures based on the matrix properties and interlaminar stresses were used in an attempt to explain the observed nonlinear responses for different configurations.

  8. Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing.

    PubMed

    Liu, Bai-Shuan; Yao, Chun-Hsu; Fang, Shr-Shin

    2008-05-13

    This study presents a novel design of an easily stripped bi-layer composite that consists of an upper layer of a soybean protein non-woven fabric coated with a lower layer, a genipin-crosslinked chitosan film, as a wound dressing material. This study examines the in vitro properties of the genipin-crosslinked chitosan film and the bi-layer composite. Furthermore, in vivo experiments are conducted to study wounds treated with the composite in a rat model. Experimental results show that the degree of crosslinking and the in vitro degradation rate of the genipin-crosslinked chitosan films can be controlled by varying the genipin contents. In addition, the genipin contents should exceed 0.025 wt.-% of the chitosan-based material if complete crosslinking reactions between genipin and chitosan molecules are required. Water contact angle analysis shows that the genipin-crosslinked chitosan film is not highly hydrophilic; therefore, the genipin-crosslinked chitosan layer is not entangled with the soybean protein non-woven fabric, which forms an easily stripped interface layer between them. Furthermore, this new wound dressing material provides adequate moisture, thereby minimizing the risk of wound dehydration, and exhibits good mechanical properties. The in vivo histological assessment results reveal that epithelialization and reconstruction of the wound are achieved by covering the wound with the composite, and the composite is easily stripped from the wound surface without damaging newly regenerated tissue.

  9. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.

    PubMed

    Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I

    2013-10-15

    Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow productionmore » rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.« less

  11. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications

    PubMed Central

    Kaplan, Jonah; Grinstaff, Mark

    2015-01-01

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications. PMID:26383018

  12. Orthotic devices using lightweight composite materials

    NASA Technical Reports Server (NTRS)

    Harrison, E., Jr.

    1983-01-01

    Potential applications of high strength, lightweight composite technology in the orthotic field were studied. Several devices were designed and fabricated using graphite-epoxy composite technology. Devices included shoe plates, assistive walker devices, and a Simes prosthesis reinforcement. Several other projects having medical application were investigated and evaluations were made of the potential for use of composite technology. A seat assembly was fabricated using sandwich construction techniques for the Total Wheelchair Project.

  13. Curing Composite Materials Using Lower-Energy Electron Beams

    NASA Technical Reports Server (NTRS)

    Byrne, Catherine A.; Bykanov, Alexander

    2004-01-01

    In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately

  14. Influence of the composite material thermal expansion on embedded highly birefringent polymer microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.

  15. Functionally graded polymeric materials: A brif review of current fabrication methods and introduction of a novel fabrication method.

    PubMed

    Almasi, Davood; Sadeghi, Maliheh; Lau, Woei Jye; Roozbahani, Fatemeh; Iqbal, Nida

    2016-07-01

    The present work reviews the current fabrication methods of the functionally graded polymeric material (FGPM) and introduces a novel fabrication method that is versatile in applications as compared to those of existing used methods. For the first time electrophoresis was used to control the distribution of the tetracycline hydrochloride (TC) in a film made of polylactic acid (PLA), aiming to induce antimicrobial effect on the film prepared. The elemental analysis on the film surface showed that by employing electrophoresis force, higher amount of TC was detected near the top surface of the film. Results also showed that the FGPM samples with higher percentage of the TC on the film surface were highly effective to minimize the growth of Escherichia coli. These findings are useful and important to improve dispersion quality of the particles in the composite material and further enhance its antibacterial property. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Prototype of low thermal expansion materials: fabrication of mesoporous silica/polymer composites with densely filled polymer inside mesopore space.

    PubMed

    Kiba, Shosuke; Suzuki, Norihiro; Okawauchi, Yoshinori; Yamauchi, Yusuke

    2010-09-03

    A prototype of novel low thermal expansion materials using mesoporous silica particles is demonstrated. Mesoporous silica/polymer composites with densely filled polymer inside the mesopore space are fabricated by mechanically mixing both organically modified mesoporous silica and epoxy polymer. The mesopores are easily penetrated by polymers as a result of the capillary force during the mechanical composite processing. Furthermore, we propose a new model of polymer mobility restriction using mesoporous silica with a large pore space. The robust inorganic frameworks covering the polymer effectively restrict the polymer mobility against thermal energy. As a result, the degree of total thermal expansion of the composites is drastically decreased. From the mass-normalized thermal mechanical analysis (TMA) charts of various composites with different amounts of mesoporous silica particles, it is observed that the coefficient of thermal expansion (CTE) values gradually increase with an increase of the polymer amount outside the mesopores. It is proven that the CTE values in the range over the glass-transition temperatures (T(g)) are perfectly proportional to the outside polymer amounts. Importantly, the Y-intercept of the relation equation obtained by a least-square method is the CTE value and is almost zero. This means that thermal expansion does not occur if no polymers are outside the mesopores. Through such a quantative discussion, we clarify that only the outside polymer affects the thermal expansion of the composites, that is, the embedded polymers inside the mesopores do not expand at all during the thermal treatment.

  17. Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review

    PubMed Central

    Nurul Fazita, M.R.; Jayaraman, Krishnan; Bhattacharyya, Debes; Mohamad Haafiz, M.K.; Saurabh, Chaturbhuj K.; Hussin, M. Hazwan; H.P.S., Abdul Khalil

    2016-01-01

    Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic) acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites. PMID:28773558

  18. Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink

    PubMed Central

    Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng

    2016-01-01

    Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40–60 vol. % TiCx-TiB2/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B4C system. The effect of the TiCx-TiB2 content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite were studied and compared with the TiCx/Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite are all better than those of the TiCx/Al composite, which confirms that the TiCx-TiB2/Al composite is more appropriate for application as a heat sink. PMID:28773765

  19. Development of Ceramic Fibers for Reinforcement in Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  20. The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites

    NASA Astrophysics Data System (ADS)

    Searles, Kevin H.

    In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions

  1. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  2. Investigation of Kevlar fabric based materials for use with inflatable structures

    NASA Technical Reports Server (NTRS)

    Niccum, R. J.; Munson, J. B.

    1974-01-01

    Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported in detail. The practicality of using Kevlar in aerostat materials is demonstrated and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar based materials are compared with conventional, Dacron reinforced counterparts. A comprehensive test and qualification program is discussed and quantitative biaxial tensile and shear test data are provided. The investigation shows that single ply laminates of Kevlar and plastic films offer significant strength to weight improvements, are less permeable than two ply coated materials, but have a lower flex life.

  3. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.

    PubMed

    Guillaume, O; Geven, M A; Sprecher, C M; Stadelmann, V A; Grijpma, D W; Tang, T T; Qin, L; Lai, Y; Alini, M; de Bruijn, J D; Yuan, H; Richards, R G; Eglin, D

    2017-05-01

    Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated biodegradable composite scaffolds using SLA and endowed them with osteopromotive properties in the absence of biologics. First we prepared photo-crosslinkable poly(trimethylene carbonate) (PTMC) resins containing 20 and 40wt% of hydroxyapatite (HA) nanoparticles and fabricated scaffolds with controlled macro-architecture. Then, we conducted experiments to investigate how the incorporation of HA in photo-crosslinked PTMC matrices improved human bone marrow stem cells osteogenic differentiation in vitro and kinetic of bone healing in vivo. We observed that bone regeneration was significantly improved using composite scaffolds containing as low as 20wt% of HA, along with difference in terms of osteogenesis and degree of implant osseointegration. Further investigations revealed that SLA process was responsible for the formation of a rich microscale layer of HA corralling scaffolds. To summarize, this work is of substantial importance as it shows how the fabrication of hierarchical biomaterials via surface-enrichment of functional HA nanoparticles in composite polymer stereolithographic structures could impact in vitro and in vivo osteogenesis. This study reports for the first time the enhance osteopromotion of composite biomaterials, with controlled macro-architecture and microscale distribution of hydroxyapatite particles, manufactured by stereolithography. In this process, the hydroxyapatite particles are not only embedded into an erodible polymer matrix, as reported so far in the literature, but concentrated at the surface of the structures. This leads to robust in vivo bone formation at low concentration of hydroxyapatite. The reported 3D self-corralling composite

  4. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    DTIC Science & Technology

    2013-01-01

    Figures iv  Acknowledgments v  1.  Introduction 1  2.  Experimental 2  2.1  Composite Laminate Fabrication...2 Figure 2. Image of fiberglass composite being fabricated using VARTM processing. 2. Experimental 2.1 Composite Laminate Fabrication...style 5 × 5 plain 5 weave prepreg S-2 fiberglass fabric and a honeycomb core cured in an autoclave, much like the composite parts fielded in

  5. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    PubMed

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Tissue Anisotropy Modeling Using Soft Composite Materials.

    PubMed

    Chanda, Arnab; Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.

  7. Tissue Anisotropy Modeling Using Soft Composite Materials

    PubMed Central

    Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996

  8. Nanocarbon materials fabricated using plasmas

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Rikizo

    2017-12-01

    Since the discovery of fullerenes more than three decades ago, new kinds of nanoscale materials of carbon allotropes called "nanocarbons" have so far been discovered or synthesized at successive intervals as cases such as carbon nanotubes, carbon nanohorns, graphene, carbon nanowalls, and a carbon nanobelt, while nanodiamonds were actually discovered before then. Their attractively excellent mechanical, physical, and chemical properties have driven researchers to continuously create one of the hottest frontiers in materials science and technology. While plasma states have often been involved in their discovery, on the other hand, plasma-based approaches to this exciting field originally hold promising and enormous potentials for advancing and expanding industrial/biomedical applications of nanocarbons of great diversity. This article provides an extensive overview on plasma-fabricated nanocarbon materials, where the term "fabrication" is defined as synthesis, functionalization, and assembly of devices to cover a wide range of issues associated with the step-by-step plasma processes. Specific attention has been paid to the comparative examination between plasma-based and non-plasma methods for fabricating the nanocarobons with an emphasis on the advantages of plasma processing, such as low-temperature/large-scale fabrication and diversity-carrying structure controllability. The review ends with current challenges and prospects including a ripple effect of the nanocarbon studies on the development of related novel nanomaterials such as transition metal dichalcogenides. It contains not only the latest progress in the field for cutting-edge scientists and engineers, but also the introductory guidance to non-specialists such as lower-class graduate students.

  9. Fabrication of Fe–Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation

    PubMed Central

    Katabira, Kenichi; Yoshida, Yu; Masuda, Atsuji; Watanabe, Akihito; Narita, Fumio

    2018-01-01

    The inverse magnetostrictive effect is an effective property for energy harvesting; the material needs to have large magnetostriction and ease of mass production. Fe–Co alloys being magnetostrictive materials have favorable characteristics which are high strength, ductility, and excellent workability, allowing easy fabrication of Fe–Co alloy fibers. In this study, we fabricated magnetostrictive polymer composites, in which Fe–Co fibers were woven into polyester fabric, and discussed their sensor performance. Compression and bending tests were carried out to measure the magnetic flux density change, and the effects of magnetization, bias magnetic field, and the location of the fibers on the performance were discussed. It was shown that magnetic flux density change due to compression and bending is related to the magnetization of the Fe–Co fiber and the bias magnetic field. The magnetic flux density change of Fe–Co fiber reinforced plastics was larger than that of the plastics with Terfenol-D particles. PMID:29522455

  10. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.

    PubMed

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-03-15

    Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the

  11. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  12. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  13. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    NASA Astrophysics Data System (ADS)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  15. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  16. Multi-length Scale Material Model Development for Armorgrade Composites

    DTIC Science & Technology

    2014-05-02

    various microstructural features and processes , at different length- scales, to the macroscopic-level ballistic-penetration resistance of PPTA-based...fabric or PPTA-fiber-reinforced polymer-matrix composites. Specifically, the role of various material-synthesis-/fiber- processing -induced defects, as...well as defects induced during the weaving process , was investigated. The results obtained clearly revealed that 1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  17. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  18. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  19. Interpenetrating phase ceramic/polymer composite coatings: Fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Craig, Bradley Dene

    The goals of this thesis research were to fabricate interpenetrating phase composite (IPC) ceramic/polymer coatings and to investigate the effect of the interconnected microstructure on the physical and wear properties of the coatings. IPC coatings with an interpenetrating phase microstructure were successfully fabricated by first forming a porous ceramic with an interconnected microstructure using a chemical bonding route (mainly reacting alpha-alumina (0.3 mum) with orthophosphoric acid to form a phosphate bond). Porosity within these ceramic coatings was easily controlled between 20 and 50 vol. % by phosphoric acid addition, and was measured by a new porosity measurement technique (thermogravimetric volatilization of liquids, or TVL) which was developed. The resulting ceramic preforms were infiltrated with a UV and thermally curable cycloaliphatic epoxide resin and cured. This fabrication route resulted in composite coatings with thicknesses ranging from ˜1mum to 100 mum with complete filling of open pore space. The physical properties of the composite coatings, including microhardness, flexural modulus and wear resistance, were evaluated as a function of processing variables, including orthophosphoric acid content and ceramic phase firing temperature, which affected the microstructure and interparticulate bonding between particles in the coatings. For example, microhardness increased from ˜30 on the Vicker's scale to well over 200 as interparticulate bonding was increased in the ceramic phase. Additionally, Taber wear resistance in the best TPC coatings was found to approach that of fully-densified alumina under certain conditions. Several factors were found to influence the wear mechanism in the IPC coating materials. Forming strong connections between ceramic particles led to up to an order of magnitude increase in the wear resistance. Additionally, coating microhardness and ceramic/polymer interfacial strength were studied and found to be important in

  20. Advanced Single-Polymer Nanofiber-Reinforced Composite - Towards Next Generation Ultralight Superstrong/Tough Structural Material

    DTIC Science & Technology

    2015-04-29

    AFRL-OSR-VA-TR-2015-0144 ADVANCED SINGLE-POLYMER NANOFIBER-REINFORCED COMPOSITE YURIS DZENIS UNIVERSITY OF NEBRSKA Final Report 04/29/2015... COMPOSITE - TOWARDS NEXT GENERATION ULTRALIGHT SUPERSTRONG/TOUGH STRUCTURAL MATERIAL 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-11-1-0204 5c. PROGRAM...characterize their mechanical behavior and properties; and (3) fabricate and characterize polyimide nanofiber-reinforced composites . Continuous

  1. Method for preparing dielectric composite materials

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  2. Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration

    PubMed Central

    Li, Meng; Sun, Youhong; Meng, Qingnan; Wu, Haidong; Gao, Ke; Liu, Baochang

    2016-01-01

    A metal-based matrix is usually used for the fabrication of diamond bits in order to achieve favorable properties and easy processing. In the effort to reduce the cost and to attain the desired bit properties, researchers have brought more attention to diamond composites. In this paper, Fe-based impregnated diamond composites for drill bits were fabricated by using a pressureless infiltration sintering method at 970 °C for 5 min. In addition, boron was introduced into Fe-based diamond composites. The influence of boron on the density, hardness, bending strength, grinding ratio, and microstructure was investigated. An Fe-based diamond composite with 1 wt % B has an optimal overall performance, the grinding ratio especially improving by 80%. After comparing with tungsten carbide (WC)-based diamond composites with and without 1 wt % B, results showed that the Fe-based diamond composite with 1 wt % B exhibits higher bending strength and wear resistance, being satisfactory to bit needs. PMID:28774124

  3. Comparison of mechanical properties for polyamide 12 composite-based biomaterials fabricated by fused filament fabrication and injection molding

    NASA Astrophysics Data System (ADS)

    Rahim, Tuan Noraihan Azila Tuan; Abdullah, Abdul Manaf; Akil, Hazizan Md; Mohamad, Dasmawati

    2016-12-01

    The emergence of 3D printing technology known as fused filament fabrication (FFF) has offered the possibility of producing an anatomically accurate, patient specific implant with more affordable prices. The only weakness of this technology is related to incompatibility and lack of properties of current material to be applied in biomedical. Therefore, this study aims to develop a new, polymer composite-based biomaterial that exhibits a high processability using FFF technique, strong enough and shows acceptable biocompatibility, and safe for biomedical use. Polyamide 12 (PA12), which meets all these requirements was incorporated with two bioceramic fillers, zirconia and hydroxyapatite in order to improve the mechanical and bioactivity properties. The obtained mechanical properties were compared with injection-molded specimens and also a commercial biomedical product, HAPEXTM which is composed of hydroxyapatite and polyethylene. The yield strength and modulus of the PA12 composites increased steadily with increasing filler loading. Although the strength of printed PA12 composites were reduced compared with injection molded specimen, but still higher than HAPEXTM material. The higher surface roughness obtained by printed PA12 was expected to enhance the cell adhesion and provide better implant fixation.

  4. [Preparation of sodium alginate-nanohydroxyapatite composite material for bone repair and its biocompatibility].

    PubMed

    Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia

    2014-02-01

    To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.

  5. Analysis of Fracture Mechanism for Al-Mg/SiCp Composite Materials

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Adebisi, A. A.; Izzati, N.

    2017-03-01

    The present study aims to examine the fracture mechnism of silicon carbide particle (SiCp) reinforced aluminium matrix composite (AMC) material with 1 wt% addition of magnesium is fabricated using the stir casting process. The aluminium composite (Al-Mg/SiCp) is investigated for fatigue life and impact strength considering reinforcement weight fraction and influence of temperature on fracture toughness. The fabricated composite was tested using fatigue testing machine and charpy impact tester. Fractographic observations were evaluated with the scanning electron microscopy (SEM) on the fracture surface. It was found that increasing the SiCp weight fraction increased the fatigue life of the composite. Moreover, the 20 wt% SiCp Al-Mg composite attained the highest number of cycle and fatigue life compared to other variations. The mechanism responsible for the phenomena includes load transfer from the Al matrix alloy phase to the high strength and stiffness of the incorporated SiCp. The temperature variation influenced the impact strength of the composite and improved fracture toughness is achieved at 150 °C. It can be concluded from this study that reinforcement weight fraction and temperature affects the fracture behavior of the composites.

  6. Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics

    PubMed Central

    Claramunt, Josep; Ventura, Heura; Fernández-Carrasco, Lucía J; Ardanuy, Mònica

    2017-01-01

    The aim of this study is to develop a process to produce high-performance cement-based composites reinforced with flax nonwoven fabrics, analyzing the influence of the fabric structure—thickness and entanglement—on mechanical behavior under flexural and tensile loadings. For this purpose, composite with flax nonwoven fabrics with different thicknesses were first prepared and their cement infiltration was evaluated with backscattered electron (BSE) images. The nonwoven fabrics with the optimized thickness were then subjected to a water treatment to improve their stability to humid environments and the fiber-matrix adhesion. For a fixed thickness, the effect of the nonwoven entanglement on the mechanical behavior was evaluated under flexural and direct tension tests. The obtained results indicate that the flax nonwoven fabric reinforcement leads to cement composites with substantial enhancement of ductility. PMID:28772573

  7. Fabrication of brittle materials -- current status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scattergood, R.O.

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) havemore » joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.« less

  8. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  9. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials

    PubMed Central

    Orrù, Roberto; Cao, Giacomo

    2013-01-01

    A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229

  10. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays

    NASA Astrophysics Data System (ADS)

    Camargo, C. J.; Campanella, H.; Marshall, J. E.; Torras, N.; Zinoviev, K.; Terentjev, E. M.; Esteve, J.

    2012-07-01

    This paper reports an opto-actuable device fabricated using micro-machined silicon moulds. The actuating component of the device is made from a composite material containing carbon nanotubes (CNTs) embedded in a liquid crystal elastomer (LCE) matrix. We demonstrate the fabrication of a patterned LCE-CNT film by a combination of mechanical stretching and thermal cross-linking. The resulting poly-domain LCE-CNT film contains ‘blister-shaped’ mono-domain regions, which reversibly change their shape under light irradiation and hence can be used as dynamic Braille dots. We demonstrate that blisters with diameters of 1.0 and 1.5 mm, and wall thickness 300 µm, will mechanically contract under irradiation by a laser diode with optical power up to 60 mW. The magnitude of this contraction was up to 40 µm, which is more than 10% of their height in the ‘rest’ state. The stabilization time of the material is less than 6 s for both actuation and recovery. We also carried out preliminary tests on the repeatability of this photo-actuation process, observing no material or performance degradation. This manufacturing approach establishes a starting point for the design and fabrication of wide-area tactile actuators, which are promising candidates for the development of new Braille reading applications for the visually impaired.

  11. Mechanical Behavior of Fabric-Film Laminates

    NASA Technical Reports Server (NTRS)

    Said, Magdi S.

    1999-01-01

    Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.

  12. Hemp reinforced composites: surface treatment, manufacturing method and fabric type effects

    NASA Astrophysics Data System (ADS)

    Cicalạ, G.; Cristaldi, G.; Recca, G.

    2010-06-01

    Hemp mats and weaved fabrics were used as received and after surface treatment as reinforcement for composites. Mercerization and amino silane surface treatments improved fibre/matrix adhesion and, as results, the mechanical properties of the composites were also improved. However, if surface treatment was too severe degradation of the mechanical properties of the single fibre was observed and this resulted in a reinforcing efficiency loss. Weaved fabrics obtained from twisted fibres in unidirectional and 0/90° architecture were used. The use of weaved fabrics lead to high improvements of composite mechanical properties despite the absence of fibre's surface treatment. The specimens manufactured by LRTM (Light Resin Transfer Moulding) showed enhanced mechanical properties compared to specimens made by hand lay up. Mechanical models were also used to predict the mechanical properties of the composites.

  13. Fabrication and Properties of Composite Artificial Muscles Based on Nylon and a Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Yin, Haibin; Zhou, Jia; Li, Junfeng; Joseph, Vincent S.

    2018-05-01

    This paper focuses on the design, fabrication and investigation of the mechanical properties of new artificial muscles formed by twisting and annealing. The artificial muscles designed by twisting nylon have become a popular topic in the field of smart materials due to their high mechanical performance with a large deformation and power density. However, the complexity of the heating and cooling system required to control the nylon muscle is a disadvantage, so we have proposed a composite artificial muscle for providing a direct electricity-driven actuation by integrating nylon and a shape memory alloy (SMA). In this paper, the design and fabrication process of these composite artificial muscles are introduced before their mechanical properties, which include the deformation, stiffness, load and response, are investigated. The results show that these composite artificial muscles that integrate nylon and a SMA provide better mechanical properties and yield up to a 44.1% deformation and 3.43 N driving forces. The good performance and direct electro-thermal actuation make these composite muscles ideal for driving robots in a method similar to human muscles.

  14. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  15. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 December 1994--28 February 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, V.M.; Wright, M.A.

    1995-12-31

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubbermore » sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.« less

  16. Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites

    PubMed Central

    Wang, Jinwu

    2018-01-01

    Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315

  17. Processing and Characterization of Peti Composites Fabricated by High Temperature Vartm (Section)

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G., Jr.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade, but so have the production costs associated with their fabrication. For certain composites, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA Langley Research Center (LaRC). In the current study, three PETI resins have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents of 3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. Fabric permeability characterizations and limited process modeling efforts were carried out to determine infusion times and composite panel size limitations. In addition, new PETI based resins were synthesized specifically for HT-VARTM.

  18. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  19. Feasibility study of applying an advanced composite structure technique to the fabrication of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.

  20. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    PubMed

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  1. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  2. Fabrication of graphite/polyimide composite structures.

    NASA Technical Reports Server (NTRS)

    Varlas, M.

    1972-01-01

    Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.

  3. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  4. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  5. Hemp reinforced composites: surface treatment, manufacturing method and fabric type effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicala, G.; Cristaldi, G.; Recca, G.

    2010-06-02

    Hemp mats and weaved fabrics were used as received and after surface treatment as reinforcement for composites. Mercerization and amino silane surface treatments improved fibre/matrix adhesion and, as results, the mechanical properties of the composites were also improved. However, if surface treatment was too severe degradation of the mechanical properties of the single fibre was observed and this resulted in a reinforcing efficiency loss. Weaved fabrics obtained from twisted fibres in unidirectional and 0/90 deg. architecture were used. The use of weaved fabrics lead to high improvements of composite mechanical properties despite the absence of fibre's surface treatment. The specimensmore » manufactured by LRTM (Light Resin Transfer Moulding) showed enhanced mechanical properties compared to specimens made by hand lay up. Mechanical models were also used to predict the mechanical properties of the composites.« less

  6. Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.

    2005-01-01

    An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.

  7. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang

    2018-05-01

    Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.

  8. Milestone 4: Test plan for Reusable Hydrogen Composite Tank System (RHCTS). Task 3: Composite tank materials

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.

  9. Apparatus and process for freeform fabrication of composite reinforcement preforms

    NASA Technical Reports Server (NTRS)

    Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)

    2001-01-01

    A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.

  10. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.

    PubMed

    Yu, Xiaoqing; Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang

    2017-03-15

    Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties. Therefore, great quantities of sensors with high sensitivity, selectivity, and stability have been created in recent years. In this review, we focus on the recent advances in the fabrication technologies of GCFs and their specific sensing applications. In addition, the relationship between the properties of GCFs and sensing performance is concentrated on. Finally, the personal perspectives and key challenges of GCFs are mentioned in the hope to shed a light on their potential future research directions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide composites.

    PubMed

    Wu, Chin-San

    2016-12-01

    The mechanical properties, cytocompatibility, and fabrication of three-dimensional (3D) printing strips of composite materials containing polylactide (PLA) and chitosan (CS) were evaluated. Maleic anhydride-grafted polylactide (PLA-g-MA) and CS were used to enhance the desired characteristics of these composites. The PLA-g-MA/CS materials exhibited better mechanical properties than the PLA/CS composites; this effect was attributed to a greater compatibility between the grafted polyester and CS. The water resistance of the PLA-g-MA/CS composites was greater than that of the PLA/CS composites; cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. Moreover, CS enhanced the antibacterial activity properties of PLA-g-MA and PLA/CS composites. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  13. Fabrication and properties of SiNO continuous fiber reinforced BN wave-transparent composites

    NASA Astrophysics Data System (ADS)

    Cao, F.; Fang, Z.; Chen, F.; Shen, Q.; Zhang, C.

    2012-06-01

    SiNO continuous fiber reinforced boron nitride (BN) wave-transparent composites (SiNO f /BN) have been fabricated by a precursor infiltration pyrolysis (PIP) method using borazine as the precursor. The densification behavior, microstructures, mechanical properties, and dielectric properties of the composites have been investigated. After four PIP cycles, the density of the composites had increased from 1.1 g·cm-3 to 1.81 g·cm-3. A flexural strength of 128.9 MPa and an elastic modulus of 23.5 GPa were achieved. The obtained composites have relatively high density and the fracture faces show distinct fiber pull-out and interface de-bonding features. The dielectric properties of the SiNO f /BN composites, including the dielectric constant of 3.61 and the dielectric loss angle tangent of 5.7×10-3, are excellent for application as wave-transparent materials.

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  15. Materials research for high-speed civil transport and generic hypersonics: Composites durability

    NASA Technical Reports Server (NTRS)

    Allen-Lilly, Heather; Cregger, Eric; Hoffman, Daniel; Mccool, Jim

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of composites for the High Speed Civil Transport (HSCT) program. Candidate HSCT composites need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate the design, analysis, fabrication, and testing of equipment intended for use in validating the long-term durability of materials for the HSCT. This equipment includes thermally actuated compression and tension fixtures, hydraulic-actuated reversible load fixtures, and thermal chambers. This equipment can be used for the durability evaluation of both composite and adhesive materials. Thermally actuated fixtures are recommended for fatigue cycling when long-term thermomechanical fatigue (TMF) data are required on coupon-sized tension or compression specimens. Long term durability testing plans for polymer matrix composite specimens are included.

  16. Design, evaluation, and fabrication of low-cost composite blades for intermediate-size wind turbines

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1981-01-01

    Low cost approaches for production of 60 ft long glass fiber/resin composite rotor blades for the MOD-OA wind turbine were identified and evaluated. The most cost-effective configuration was selected for detailed design. Subelement and subscale specimens were fabricated for testing to confirm physical and mechanical properties of the composite blade materials, to develop and evaluate blade fabrication techniques and processes, and to confirm the structural adequacy of the root end joint. Full-scale blade tooling was constructed and a partial blade for tool and process tryout was built. Then two full scale blades were fabricated and delivered to NASA-LeRC for installation on a MOD-OA wind turbine at Clayton, New Mexico for operational testing. Each blade was 60 ft. long with 4.5 ft. chord at root end and 2575 lbs weight including metal hub adapter. The selected blade configuration was a three cell design constructed using a resin impregnated glass fiber tape winding process that allows rapid wrapping of primarily axially oriented fibers onto a tapered mandrel, with tapered wall thickness. The ring winder/transverse filament tape process combination was used for the first time on this program to produce entire rotor blade structures. This approach permitted the complete blade to be wound on stationary mandrels, an improvement which alleviated some of the tooling and process problems encountered on previous composite blade programs.

  17. Solar Energy: Materials, Materials Handling, and Fabrication Processes: Student Material. First Edition.

    ERIC Educational Resources Information Center

    Bolin, William Everet; Orsak, Charles G., Jr.

    Designed for student use in "Materials, Materials Handling, and Fabrication Processes," one of 11 courses in a 2-year associate degree program in solar technology, this manual provides readings, exercises, worksheets, bibliographies, and illustrations for 13 course modules. The manual, which corresponds to an instructor guide for the…

  18. Interfacial reactions in titanium/SCS fiber composites during fabrication

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Lin, R. Y.

    1993-01-01

    The objectrive of the study was to determine the effect of titanium concentration and different pyrocarbon fiber coatings on the morphology and the extent of fiber-matrix reactions in Ti/SiC composites fabricated by rapid infrared forming (RIF). It is found that the extent of fiber-matrix reactions in Ti/SiC composites fabricated by the RIF technique is noticeably affected by both an increase in Ti content and by the processing temperature. Uncoated SiC fibers extensively react with the titanium alloy matrix at 1200 C, whereas no reaction occurs when coated SiC fibers are used.

  19. Studies on fabrication of glass fiber reinforced composites using polymer blends

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  20. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    NASA Astrophysics Data System (ADS)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  1. Development of active and sensitive material systems based on composites

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi

    2002-07-01

    This paper describes new concepts proposed by the author to realize active and sensitive structural material systems. Two examples of multifunctional composites were fabricated and evaluated in this study as follows: (1) An active laminate of aluminum plate (works as muscle), epoxy film (as insulator), unidirectional CFRP prepreg (as bone and blood vessel) and copper foil electrode (to apply voltage on CFRP) was made with an embedded optical fiber multiply fractured in the CFRP layer (works as nerve), of which curvature change could be effectively monitored with the fractured optical fiber. (2) A stainless steel fiber/aluminum active composite with embedded Ti oxide/Ti composite fiber was fabricated. The Ti oxide/Ti fiber could work as a sensor for temperature by removing a part of the oxide before embedment to make a metallic contact between the embedded titanium fiber and aluminum matrix to be able to generate thermal electromotive force, and also could work as a sensor for strain and as a heater for actuation. In the both cases, the outputs from their embedded sensors can be used to control their actuations.

  2. Ceramic Matrix Composite (CMC) Materials Development

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  3. Ceramic Matrix Composite (CMC) Materials Characterization

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  4. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  5. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, K. M.; Lucas, J. J.

    1975-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacture of large helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D helicopter was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR-49/epoxy skin and graphite/epoxy frames and stringers. To support the selection of this specific design concept a materials study was conducted to develop and select a cure compatible graphite and KEVLAR-49/epoxy resin system, and a foam system capable of maintaining shape and integrity under the processing conditions established. The materials selected were, Narmco 5209/Thornel T-300 graphite, Narmco 5209/KEVLAR-49 woven fabric, and Stathane 8747 polyurethane foam. Eight specimens were fabricated, representative of the frame, stringer, and splice joint attachments. Evaluation of the results of analysis and test indicate that design predictions are good to excellent except for some conservatism of the complex frame splice.

  6. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  7. Aerogel / Polymer Composite Materials

    NASA Technical Reports Server (NTRS)

    Smith, Trent M. (Inventor); Clayton, LaNetra M. (Inventor); Fesmire, James E. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  8. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  9. Dopant ink composition and method of fabricating a solar cell there from

    DOEpatents

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2017-10-25

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  10. Dopant ink composition and method of fabricating a solar cell there from

    DOEpatents

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  11. Composite nuclear fuel fabrication methodology for gas fast reactors

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  12. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  13. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    NASA Astrophysics Data System (ADS)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  14. The fabrication of graphene/polydopamine/nickel foam composite material with excellent electrochemical performance as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Lu, Shixiang; Xu, Wenguo; He, Ge; Cheng, Yuanyuan; Yu, Tianlong; Zhang, Yan

    2018-02-01

    A three dimensional composite electrode consisted of reduced graphene oxide (rGO), polydopamine (PDA) and nickel foam (NF) (rGO/PDA/NF) was fabricated by immersing NF into PDA aqueous solution and then graphene oxide (GO) suspension solution respectively, and followed by annealing treatment. During the procedure, GO was coated on NF with assistance of cohesive effect of the PDA middle film, and the reduction of GO and nitrogen doping occurred simultaneously while annealing. Through XRD analyzing, the composites GO/PDA and rGO/PDA treated in experiment are amorphous. The resulted rGO/PDA/NF composite electrode was directly applied as a supercapacitor electrode and showed excellent electrochemical performance, with a high specific capacitance of 566.9 F g-1 at 1 A g-1, the maximum energy density of 172.7 W h kg-1 and a power density of 27.2 kW kg-1 in 1 mol L-1 Na2SO4 electrolyte.

  15. Processing and Characterization of PETI Composites Fabricated by High Temperature VARTM

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade. As these advanced structures increase in size and complexity, their production costs have grown significantly. A major contributor to these manufacturing costs is the requirement of elevated processing pressures, during the thermal cure, to create fully consolidated composites. For certain composite parts, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA LaRC. In the current study, two PETI resins, LARC(TradeMark) PETI-330 and LARC(TradeMark) PETI-8 have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents <3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. These included open-hole compressive (OHC) and short beam shear (SBS) properties. Limited process modeling efforts were carried out including infusion times, composite panel size limitations and fabric permeability characterization. Work has also been carried out to develop new PETI based resins specifically geared towards HT-VARTM. The results of this work are presented herein.

  16. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  17. Dielectric composite materials and method for preparing

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2003-07-29

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  18. Experiments Related to the Fabrication of Carbon Fiber/AMB-21 Polyimide Composite Tubes Using the RTM Process

    NASA Technical Reports Server (NTRS)

    Exum, Daniel

    1996-01-01

    AMB-21 is a new polymer developed by Mr. Ray Vannucci, NASA, LeRC as a noncarcinogenic polyimide matrix which may be suitable for fabricating composite parts by the Resin Transfer Modeling (RTM) process. The polyimide for this project was prepared at the Center of Composite Materials Research at N.C. A&T State University because it is not currently an item of commerce. The RTM process is especially suitable for producing geometrically complex composite parts at a low cost. Because of the high melting point and very high viscosity at the time of processing, polyimides have not been extensively used in the RTM process. The process for preparing AMB-21 as well as the process for fabricating composite plates will be described. The basic fabrication process consists of injecting a solvent solution of AMP-21 into a carbon fiber preform, evaporating the solvent, imidizing the polyimide, and vacuum/compression modeling the impregnated preform. All the above molding steps are preformed in a specially designed RTM mold which will be described. The results of this process have been inconsistent. Where as some experiments have resulted in a reasonably sound panels, others have not. Further refinements of the process are required to establish a reliable process.

  19. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  20. Preparation of Self-Assembled Chitin Nanofiber-Natural Rubber Composite Sheets and Porous Materials

    PubMed Central

    Kawano, Akito; Yamamoto, Kazuya

    2017-01-01

    We previously reported the preparation of a self-assembled chitin nanofiber (CNF) film via regeneration from an ion gel with an ionic liquid, followed by sonication and filtration. Based on the finding that CNFs were redispersed in a mixture of the film with ammonia aqueous solution (aq.), in this study, CNF-natural rubber (NR) composite sheets were fabricated by mixing redispersed CNF with NR latex stabilized by ammonia, followed by drying under reduced pressure. Tensile testing of the sheets indicated the reinforcing effect of CNFs. Further, CNF-NR composite porous materials were fabricated by evaporating ammonia from the CNF-NR dispersion, followed by lyophilization. The mechanism for the formation of porous structures was evaluated. PMID:28671578

  1. Rapid fabrication of flight worthy composite parts

    NASA Astrophysics Data System (ADS)

    Jouin, Pierre H.; Heigl, John C.; Youtsey, Timothy L.

    A 3D surfaced-model representation of aircraft composite structural components can be used to generate machining paths in a system which reduces paperwork and errors, and enhances accuracy and speed. Illustrative cases are presented for the use of such a system in the design and production of the Longbow radar housing, the fabrication of the flight test hardware for the 'no tail-rotor' helicopter control system, and the machining of a honeycomb core structure for a composite helicopter rotor blade.

  2. Ultrasonic Characterization of Fatigue Cracks in Composite Materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Watson, Jason; Johnson, Devin; Walker, James; Russell, Sam; Thom, Robert (Technical Monitor)

    2002-01-01

    Microcracking in composite structures due to combined fatigue and cryogenic loading can cause leakage and failure of the structure and can be difficult to detect in-service. In aerospace systems, these leaks may lead to loss of pressure/propellant, increased risk of explosion and possible cryo-pumping. The success of nondestructive evaluation to detect intra-ply microcracking in unlined pressure vessels fabricated from composite materials is critical to the use of composite structures in future space systems. The work presented herein characterizes measurements of intraply fatigue cracking through the thickness of laminated composite material by means of correlation with ultrasonic resonance. Resonant ultrasound spectroscopy provides measurements which are sensitive to both the microscopic and macroscopic properties of the test article. Elastic moduli, acoustic attenuation, and geometry can all be probed. The approach is based on the premise of half-wavelength resonance. The method injects a broadband ultrasonic wave into the test structure using a swept frequency technique. This method provides dramatically increased energy input into the test article, as compared to conventional pulsed ultrasonics. This relative energy increase improves the ability to measure finer details in the materials characterization, such as microcracking and porosity. As the microcrack density increases, more interactions occur with the higher frequency (small wavelength) components of the signal train causing the spectrum to shift toward lower frequencies. Several methods are under investigation to correlate the degree of microcracking from resonance ultrasound measurements on composite test articles including self organizing neural networks, chemometric techniques used in optical spectroscopy and other clustering algorithms.

  3. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications

    PubMed Central

    Boakye, Maame A. D.; Rijal, Nava P.; Adhikari, Udhab; Bhattarai, Narayan

    2015-01-01

    Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM) found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolactone)-(PCL), magnesium oxide-(MgO) and keratin (K)-based composite nanofibers by electrospinning a blend solution of PCL, MgO and/or K. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mechanical tensile testing and inductively-coupled plasma optical emission spectroscopy (ICP-OES). Nanofibers with diameters in the range of 0.2–2.2 µm were produced by using different ratios of PCL/MgO and PCL-K/MgO. These fibers showed a uniform morphology with suitable mechanical properties; ultimate tensile strength up to 3 MPa and Young’s modulus 10 MPa. The structural integrity of nanofiber mats was retained in aqueous and phosphate buffer saline (PBS) medium. This study provides a new composite material with structural and material properties suitable for potential application in tissue engineering. PMID:28793426

  4. Fabrication, characterization, and modeling of piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Lin, Xiujuan; Zhou, Kechao; Button, Tim W.; Zhang, Dou

    2013-07-01

    Piezoelectric fiber composites (PFCs) with interdigitated electrodes have attracted increasing interest in a variety of industrial, commercial, and aerospace markets due to their unique flexibility, adaptability, and improved transverse actuation performance. Viscous plastic processing technique was utilized for the fabrication of PFCs with customized feature sizes. The assembly parameters showed great influence on the performance of PFCs, which was verified by the finite element analysis. The cracks were identified in the fibers underneath the electrode finger after several millions cycles due to the stress and electric field concentration. The electrode finger width was an important structural parameter and showed great influence on the actuation performance and the stress distribution in the PFCs. The finite element analysis revealed that wider electrode finger would be beneficial for reducing the risk of materials failure with slight influence on the actuation performance.

  5. Multi-functional composite materials for catalysis and chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    Coutinho, Cecil A.

    2009-12-01

    Composite materials formed from two or more functionally different materials offer a versatile avenue to create a tailored material with well defined traits. Within this dissertation research, multi-functional composites were synthesized based on organic and inorganic materials. The functionally of these composites was experimentally tested and a semi-empirical model describing the sedimentation behavior of these particles was developed. This first objective involved the fabrication of microcomposites consisting of titanium dioxide (TiO2) nanoparticles confined within porous, microgels of a thermo-responsive polymer for use in the photocatalytic treatment of wastewater. TiO2 has been shown to be an excellent photocatalyst with potential applications in advanced oxidative processes such as wastewater remediation. Upon UV irradiation, short-lived electron-hole pairs are generated, which produce oxidative species that degrade simple organic contaminants. The rapid sedimentation of these microcomposites provided an easy gravimetric separation after remediation. Methyl orange was used as a model organic contaminant to investigate the kinetics of photodegradation under a range of concentrations and pH conditions. Although after prolonged periods of UV irradiation (˜8-13 hrs), the titania-microgels also degrade, regeneration of the microcomposites was straightforward via the addition of polymer microgels with no loss in photocatalytic activity of the reformed microcomposites. The second objective within this dissertation involved the systematic development of abrasive microcomposite particles containing well dispersed nanoparticles of ceria in an organic/inorganic hybrid polymeric particle for use in chemical mechanical polishing/planarization (CMP). A challenge in IC fabrication involves the defect-free planarization of silicon oxide films for successful multi-layer deposition. Planarization studies conducted with the microcomposites prepared in this research, yield

  6. Fabrication, mechanical characterization of pineapple leaf fiber (PALF) reinforced vinylester hybrid composites

    NASA Astrophysics Data System (ADS)

    Yogesh, M.; Rao, A. N. Hari

    2018-04-01

    Natural fibre based composites are under intensive study due to their eco friendly nature and peculiar properties. The advantage of natural fibres is their continuous supply, easy and safe handling, and biodegradable nature. Although natural fibres exhibit admirable physical and mechanical properties, it varies with the plant source, species, geography, and so forth. Pineapple leave fibre (PALF) is one of the abundantly available waste materials in India and has not been studied yet. The work has been carried out to fabrication and study the mechanical characterization of Pineapple Leaf fiber reinforced Vinylester composites filled with different particulate fillers. These results are compared with those of a similar set of glass fiber reinforced Vinylester composites filled with same particulate fillers. It is evident that the density values for Pineapple leaf fiber (PALF) - Vinylester composites increase with the particulate filler content and void fractions in these composites also increase. The test results show that with the presence of particulate fillers, micro hardness of the PALF-Vinylester composites has improved. Among all the composites under this investigation, the maximum hardness value is recorded for PALF-Vinylester composite filled with 20 wt% alumina. In this investigation the maximum value of ILSS has been recorded for the PALF-Vinylester composite with 20 wt% of Flyash.

  7. Design, fabrication, and testing of nanostructured carbons and composites

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong

    cubic, spherical and tetrapod shapes were also synthesized. In addition, new methods were developed to assemble nanocomposites of bifunctional catalyst components. These materials were designed for the potential direct conversion of synthesis gas to clean liquid fuels. Coatings of zeolite and cobalt nanoparticles were fabricated on 3DOM promoted zirconia. The 3DOM zirconia-based nanocomposites were characterized by a wide variety of techniques to illustrate their morphologies, internal structures, chemical compositions, porosity, and crystallographic phases.

  8. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    NASA Astrophysics Data System (ADS)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  9. Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters.

    PubMed

    He, Xin; He, Ruihui; Lan, Qiuming; Wu, Weijie; Duan, Feng; Xiao, Jundong; Zhang, Mei; Zeng, Qingguang; Wu, Jianhao; Liu, Junyan

    2017-02-23

    A transparent and flexible film heater was fabricated; based on a hybrid structure of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowires (Ag NWs) using a screen printing; which is a scalable production technology. The resulting film integrates the advantages of the two conductive materials; easy film-forming and strong adhesion to the substrate of the polymer PEDOT:PSS; and high conductivity of the Ag NWs. The fabricated composite films with different NW densities exhibited the transmittance within the range from 82.3% to 74.1% at 550 nm. By applying 40 V potential on the films; a stable temperature from 49 °C to 99 °C was generated within 30 s to 50 s. However; the surface temperature of the pristine PEDOT:PSS film did not increase compared to the room temperature. The composite film with the transmittance of 74.1% could be heated to the temperatures from 41 °C to 99 °C at the driven voltages from 15 V to 40 V; indicating that the film heater exhibited uniform heating and rapid thermal response. Therefore; the PEDOT:PSS/Ag NW composite film is a promising candidate for the application of the transparent and large-scale film heaters.

  10. Materials, Manufacturing and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Handschuh, Katherine M.; Miller, Sandi G.; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Pereira, J. Michael; Ruggeri, Charles R.

    2014-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite of is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  11. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  12. Fabrication of nanocrystalline surface composite layer on Cu plate under ball collisions.

    PubMed

    Romankov, S; Park, Y C; Yoon, J M

    2014-10-01

    It was demonstrated that the severe plastic deformation of a surface induced by repeated ball collisions can be effectively used for fabrication of the nanocrystalline surface composite layers. The Cu disk was fixed at the top of a vibration chamber and ball treated. Al, Zr, Ni, Co and Fe were introduced into a Cu plate as contaminants from the grinding media one after the other by 15-min ball treatment. The composite structure was formed as a result of mechanical intermixing of the components. The particle size in as-fabricated layer ranged from 2 nm to 20 nm, with average values of about 7 nm. As-fabricated layer contained non-equilibrium multicomponent solid solution based on FCC Cu crystal structure, Zr-based phase, nanosized steel debris and amorphous phase. The hardness of the as-fabricated composite was almost ten times that of the initial Cu plate.

  13. Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.

    PubMed

    Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C

    2018-01-26

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.

  14. Influence of constituent properties and geometric form on behavior of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Wilson, D. W.

    1984-01-01

    Th potential for woven fabric composite forms to increase the interlaminar strength and toughness properties of laminated composite septems is studied. Experimental and analytical studies were performed on a z-axis fabric.

  15. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    PubMed

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  16. Fibre reinforced ceramic matrix composite fabrication by electrophoretic infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooner, S.; Campaniello, J.J.; Pickering, S.

    Electrophoretic infiltration is a novel technique for the fabrication of fibre reinforced composites. The fibres are arranged as one of the electrodes such that deposition of the colloidal ceramic occurs in the fibre preform. This method has been investigated for the composite system of carbon fibre reinforced Si{sub 3}N{sub 4} and has produced green composite microstructures with good infiltration uniformity and fibre distribution and few macro defects.

  17. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  18. Application of the inverse analysis for determining the material properties of the woven fabrics for macroscopic approach

    NASA Astrophysics Data System (ADS)

    Oleksik, Mihaela; Oleksik, Valentin

    2013-05-01

    The current paper intends to realise a fast method for determining the material characteristics in the case of composite materials used in the airbags manufacturing. For determining the material data needed for other complex numerical simulations at macroscopic level there was used the inverse analysis method. In fact, there were carried out tensile tests for the composite material extracted along two directions - the direction of the weft and the direction of the warp and afterwards there were realised numerical simulations (using the Ls-Dyna software). A second stage consisted in the numerical simulation through the finite element method and the experimental testing for the Bias test. The material characteristics of the composite fabric material were then obtained by applying a multicriterial analysis using the Ls-Opt software, for which there was imposed a decrease of the mismatch between the force-displacement curves obtained numerically and experimentally, respectively, for both directions (weft and warp) as well as the decrease of the mismatch between the strain - extension curves for two points at the Bias test.

  19. ICCM/2; Proceedings of the Second International Conference on Composite Materials, Toronto, Canada, April 16-20, 1978

    NASA Technical Reports Server (NTRS)

    Noton, B. R. (Editor); Signorelli, R. A.; Street, K. N.; Phillips, L. N.

    1978-01-01

    Composite materials are discussed with reference to their mechanical and physical properties, fatigue and fracture testing and analysis, nondestructive evaluation, fabrication, and commercial applications. Particular papers are presented on such topics as analysis of mechanical strength data from hybrid laminates of glass and graphite fibers, graphite-aluminum composites, the mechanical behavior of molybdenum-reinforced metal composites, and composite laminate application in magnetic fusion energy superconducting magnet systems.

  20. Novel Fabrication and Simple Hybridization of Exotic Material MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, P.G.; Rajic, S.

    1999-11-13

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continuallymore » vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.« less

  1. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.

    PubMed

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-06

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  2. Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2.

    PubMed

    Fu, Jingru; Das, Saikat; Xing, Guolong; Ben, Teng; Valtchev, Valentin; Qiu, Shilun

    2016-06-22

    The search for new types of membrane materials has been of continuous interest in both academia and industry, given their importance in a plethora of applications, particularly for energy-efficient separation technology. In this contribution, we demonstrate for the first time that a metal-organic framework (MOF) can be grown on the covalent-organic framework (COF) membrane to fabricate COF-MOF composite membranes. The resultant COF-MOF composite membranes demonstrate higher separation selectivity of H2/CO2 gas mixtures than the individual COF and MOF membranes. A sound proof for the synergy between two porous materials is the fact that the COF-MOF composite membranes surpass the Robeson upper bound of polymer membranes for mixture separation of a H2/CO2 gas pair and are among the best gas separation MOF membranes reported thus far.

  3. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  4. Fabrication and characterization of polymer blends and composites derived from biopolymers

    NASA Astrophysics Data System (ADS)

    Sharma, Suraj

    This research focuses on fabricating blends and composites from natural polymers especially from proteins and natural epoxy, and describing the properties of plastics made from them. Specifically, plastic samples from partially denatured feathermeal and bloodmeal proteins, derived from the animal co-products (rendering) industry, were successfully produced through a compression molding process. The modulus (stiffness) of the material obtained was found to be comparable with that of commercial synthetic materials, such as polystyrene, but was found to have lower toughness characteristics, which is a common phenomenon among plastics produced from animal and plant proteins. Therefore, this study explored blending methods for improving the toughness. Plastic forming conditions for undenatured animal proteins such as chicken egg whites albumin and whey, used as a model, were established to prepare plastics from their blends with animal co-product proteins. The resultant plastic samples from these biomacromolecular blends demonstrated improved mechanical properties that were also compared with the established theoretical models known for polymer blends and composites. Moreover, plastics from albumin of chicken egg whites and human serum have demonstrated their potential in medical applications that require antibacterial properties. Another natural polymer vegetable oil-based epoxy, especially epoxidized linseed oil, showed significant potential to replace petroleum-derived resins for use as a matrix for composites in structural applications. Moreover, the research showed the benefits of ultrasonic curing, which can help in preparing the out-of-autoclave composites.

  5. Fabrication of the V-22 composite AFT fuselage using automated fiber placement

    NASA Technical Reports Server (NTRS)

    Pinckney, Robert L.

    1991-01-01

    Boeing Helicopters and its subcontractors are working together under an Air Force Wright Research and Development Center (WRDC)-Manufacturing-Technology Large-Composite Primary Structure Fuselage program to develop and demonstrate new manufacturing techniques for producing composite fuselage skin and frame structures. Three sets of aft fuselage skins and frames have been fabricated and assembled, and substantial reductions in fabrication and assembly costs demonstrated.

  6. Composite Overview and Composite Aerocover Overview

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad

    2014-01-01

    Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC

  7. Fabrication and adsorption properties of hybrid fly ash composites

    NASA Astrophysics Data System (ADS)

    Gao, Mengfan; Ma, Qingliang; Lin, Qingwen; Chang, Jiali; Ma, Hongzhu

    2017-02-01

    In order to realize the utilization of fly ash (FA) as industrial solid waste better, high-efficient inorganic/organic hybrid composite adsorbents derived from (Ca(OH)2/Na2FeO4) modified FA (MF) was fabricated. The hydrophilic cationic polymer (P(DMDAAC-co-AAM) or hydrophobic modifier (KH-570) were used. The prepared composites were characterized by X-ray fluorescence spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, thermogravimetry, and contact angle test. The adsorption of cationic composites MF/P(DMDAAC-co-AAM) towards Orange II in wastewater was investigated. The results show that: adsorption amount of 24.8 mg/g with 2000 mg/L of composites, 50 mg/L Orange II, original pH (6-8), at 40 min and room temperature, was obtained. Meanwhile, oil adsorption ratio Q(g/g) of hydrophobic composites MF/KH-570 was also evaluated. The maximum Q of 17.2 g/g to kerosene was obtained at 40 min. The isotherm and kinetics of these two adsorption processes were also studied. The results showed that the fabricated MF composites modified with hydrophilic or hydrophobic group can be used to adsorb dye in wastewater or oil effectively.

  8. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    NASA Astrophysics Data System (ADS)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  9. A study for development of aerothermodynamic test model materials and fabrication technique

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Connor, L. E.

    1972-01-01

    A literature survey, materials reformulation and tailoring, fabrication problems, and materials selection and evaluation for fabricating models to be used with the phase-change technique for obtaining quantitative aerodynamic heat transfer data are presented. The study resulted in the selection of two best materials, stycast 2762 FT, and an alumina ceramic. Characteristics of these materials and detailed fabrication methods are presented.

  10. Definition and Modeling of Critical Flaws in Graphite Fiber Reinforced Epoxy Resin Matrix Composite Materials.

    DTIC Science & Technology

    1978-01-01

    14. "C" Scans of a Composite Plate after Fabrication, a Plate with End Tabs, and a Machined Specimen tIyj - - . I. NArc-7 6228-30 f 4... COMPOSITE MATERIALS 0I Prepared for: Approved by: Naval Air Development Center Warminster, PA 18974 January 1978 B. Walter Rosen, President ILUE BELL...Imperfections in Composite Structures. . . . . . . . . . . . . 41 2 Static Test Data for [(04/+452/7452/04)sIs AS/3501 Laminates With and Without

  11. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosiati, H., E-mail: hsosiati@gmail.com; Nahyudin, A., E-mail: ahmadnahyudin@yahoo.co.id; Fauzi, I., E-mail: ikhsannurfauzi@gmail.com

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PPmore » composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.« less

  12. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    NASA Astrophysics Data System (ADS)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  13. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  14. Ten-year ground exposure of composite materials used on the Bell Model 206L helicopter flight service program

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1994-01-01

    Residual strength results are presented for four composite material systems that have been exposed for up to 10 years to the environment at five different locations on the North American continent. The exposure locations are near where the Bell Model 206L helicopters, which participated in a flight service program sponsored by NASA Langley Research Center and the U.S. Army, were flying in daily commercial service. The composite material systems are (1) Kevlar-49 fabric/F-185 epoxy; (2) Kevlar-49 fabric/LRF-277 epoxy; (3) Kevlar-49 fabric/CE-306 epoxy; and (4) T-300 graphite/E-788 epoxy. Six replicates of each material were removed and tested after 1, 3, 5, 7, and 10 years of exposure. The average baseline strength was determined from testing six as-fabricated specimens. More than 1700 specimens have been tested. All specimens that were tested to determine their strength were painted with a polyurethane paint. Each set of specimens also included an unpainted panel for observing the weathering effects on the composite materials. A statistically based procedure has been used to determine the strength value above which at least 90 percent of the population is expected to fall with a 95-percent confidence level. The computed compression strengths are 80 to 90 percent of the baseline (no-exposure) strengths. The resulting compression strengths are approximately 8 percent below the population mean strengths. The computed short-beam-shear strengths are 83 to 92 percent of the baseline (no-exposure) strengths. The computed tension strength of all materials is 93 to 97 percent of the baseline (no-exposure) strengths.

  15. Improvements to constitutive material model for fabrics

    NASA Astrophysics Data System (ADS)

    Morea, Mihai I.

    2011-12-01

    The high strength to weight ratio of woven fabric offers a cost effective solution to be used in a containment system for aircraft propulsion engines. Currently, Kevlar is the only Federal Aviation Administration (FAA) approved fabric for usage in systems intended to mitigate fan blade-out events. This research builds on an earlier constitutive model of Kevlar 49 fabric developed at Arizona State University (ASU) with the addition of new and improved modeling details. Latest stress strain experiments provided new and valuable data used to modify the material model post peak behavior. These changes reveal an overall improvement of the Finite Element (FE) model's ability to predict experimental results. First, the steel projectile is modeled using Johnson-Cook material model and provides a more realistic behavior in the FE ballistic models. This is particularly noticeable when comparing FE models with laboratory tests where large deformations in projectiles are observed. Second, follow-up analysis of the results obtained through the new picture frame tests conducted at ASU provides new values for the shear moduli and corresponding strains. The new approach for analysis of data from picture frame tests combines digital image analysis and a two-level factorial optimization formulation. Finally, an additional improvement in the material model for Kevlar involves checking the convergence at variation of mesh density of fabrics. The study performed and described herein shows the converging trend, therefore validating the FE model.

  16. Graphene-poly(vinyl alcohol) composites: Fabrication, adsorption and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Chang, Peter R.; Zheng, Pengwu; Ma, Xiaofei

    2014-09-01

    Porous composites of graphene oxide (GO)-poly(vinyl alcohol) (PVA) were fabricated using a process of aqueous suspension precursor freezing, solvent exchange, and ethanol drying. When frozen, ice crystals formed leaving a porous structure, composed of randomly oriented GO sheets consolidated by PVA. The yellow GO-PVA composite could be reduced with glucose to obtain a black porous RGO (PRGO). XRD revealed that PVA enlarged the GO interlay spacing in the GO-PVA composite, and that RGO sheets were highly disordered in single or several layers in PRGO. GO-PVA and PRGO exhibited ultralight densities of 10.52 and 11.42 mg/cm3, respectively. GO-PVA adsorbed greater quantities of water, ethanol, and soybean oil than PRGO. The methylene blue (MB) adsorption pattern for both materials was also investigated. The kinetic adsorption and isotherm data fit the pseudo second-order and the Langmuir models, respectively. The maximum adsorption capacity according to the Langmuir isotherm model was 571.4 mg/g for GO-PVA. The electrochemical properties of PRGO were estimated using cyclic voltammetry, electrochemical impedance spectrometry, and chronopotentiometry. The PRGO electrode exhibited large capacitance (82.8 F/g) and small internal resistance (0.52 Ω).

  17. Finite element analysis of the stiffness of fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.

  18. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Treesearch

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  19. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  20. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates

    NASA Astrophysics Data System (ADS)

    Li, Yichen; Zhou, Lan; Liu, Guojin; Chai, Liqin; Fan, Qinguo; Shao, Jianzhong

    2018-06-01

    The Silica/Poly(methylmethacrylate-butylacrylate)[SiO2/P(MMA-BA)] photonic crystals(PCs) with brilliant structural colors were fabricated on fabric substrates by co-sedimentation self-assembly, in which the relatively smaller P(MMA-BA) copolymer particles filled in the interstices among the larger SiO2 microspheres. The fabricated composite PCs were mechanically robust and strongly bonded to the substrate because of the cementing effect caused by the soft P(MMA-BA) copolymer particles filling in the interstices of the SiO2 microspheres like cement filling in the gap and tightly holding stones in a sturdy cement wall. The volume fraction and the size ratios of the two components significantly influenced the structural colors of the composite PCs, and the larger volume fraction could improve the structural stability of the composite PCs, while the smaller size ratios could enhance the brightness of the structural colors of the composite PCs. The composite PCs with both high structural stability and brilliant structural colors have great application prospect for structural coloration of textiles.

  1. A methodology for choosing candidate materials for the fabrication of planetary space suit structures

    NASA Technical Reports Server (NTRS)

    Jacobs, Gilda

    1990-01-01

    A study of space suit structures and materials is under way at NASA Ames Research Center, Moffett Field, CA. The study was initiated by the need for a generation of lightweight space suits to be used in future planetary Exploration Missions. This paper provides a brief description of the Lunar and Mars environments and reviews what has been done in the past in the design and development of fabric, metal, and composite suit components in order to establish criteria for comparison of promising candidate materials and space suit structures. Environmental factors and mission scenarios will present challenging material and structural requirements; thus, a program is planned to outline the methodology used to identify materials and processes for producing candidate space suit structures which meet those requirements.

  2. Styrene-terminated polysulfone oligomers as matrix material for graphite reinforced composites: An initial study

    NASA Technical Reports Server (NTRS)

    Garcia, Dana; Bowles, Kenneth J.; Vannucci, Raymond D.

    1987-01-01

    Styrene terminated polysulfone oligomers are part of an oligomeric class of compounds with end groups capable of thermal polymerization. These materials can be used as matrices for graphite reinforced composites. The initial evaluation of styrene terminated polysulfone oligomer based composites are summarized in terms of fabrication methods, and mechanical and environmental properties. In addition, a description and evaluation is provided of the NASA/Industry Fellowship Program for Technology Transfer.

  3. Improved composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1994-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae is introduced. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  4. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 March 1995--31 May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, V.M.; Wright, M.A.

    1995-12-31

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADM unit1-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM unit1-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whosemore » lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}0.5H{sub 2}O) phase. In the second and third quarters the focus of research has been on developing protocols for the formation of advanced brake composites and structural composites. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disks from coal combustion residues. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites.« less

  5. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 3: Fabrication

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.

    1974-01-01

    The manufacturing plan for three C-130 aircraft center wing box test articles, selectively reinforced with boron-epoxy composites, is outlined for the following tasks: (1) tooling; (2) metal parts fabrication: (3) reinforcing laminate fabrication; (4) laminate-to-metal parts bonding; and (5) wing box assembly. The criteria used for reliability and quality assurance are discussed, and several solutions to specific manufacturing problems encountered during fabrication are given. For Vol. 1, see N73-13011; for Vol. 2, see N73-22929.

  6. High Temperature Resin/Carbon Nanotube Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Sun, Keun J.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed.

  7. Studies on photonic crystal composites: Fabrication and applications

    NASA Astrophysics Data System (ADS)

    Ying, Yurong

    There is considerable interest in developing three-dimensional ordered dielectric structures because of their unique optical property, the photonic band gap. A material containing this photonic band gap can be used to control the propagation of electromagnetic waves. This characteristic can be utilized in fabricating a number of diffractive optical devices. A crystalline colloidal array (CCA) is one such three-dimensional ordered dielectric structure, formed through the self-assembly of monodispersed, surface-charged colloidal particles when they are dispersed in a polar liquid medium. Previous work has demonstrated that monodispersed, negatively charged polystyrene spheres can self-assemble into a face-centered cubic (fcc) structure when they are dispersed in a polar medium. This fee lattice can be locked in a hydrogel-based polymeric network and then encapsulated into a water-free elastomer network. These photonic crystal hydrogel films exhibit a solvatochromic effect. A method has been developed for creating patterns in photonic crystal hydrogel films based on this solvatochromic effect via a direct photopolymerization process. The multicolor pattern generation induced by this method resulted in macro- and micropatterns with a large color contrast, i.e. the difference between the patterned area and the background is greater than 150 nm. Unfortunately, CCA systems often exhibit intrinsic and extrinsic defects. To reduce the extrinsic defects incurred during the film fabrication process, a modified lithographic technique was developed to fabricate a high quality, large area, ca. 1 cm2 and a robust, water-free photonic band gap composite film having a thickness of 35 mum. The optical properties of these composite films change in response to their mechanical deformation. These robust films can change shape and recover after stretching or compression without destroying the order of the crystal. These thin films have a high sensitivity to a pressure variation when

  8. Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    High, James W.; Wilkie, W. Keats

    2003-01-01

    The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.

  9. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    NASA Astrophysics Data System (ADS)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  10. Fabrication Capabilities Utilizing In Situ Materials

    NASA Technical Reports Server (NTRS)

    McLemore, Carole A.; Fikes, John C.; Darby, Charles A.; Good, James E.; Gilley, Scott D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has a Space Exploration Policy that lays out a plan that far exceeds the earlier Apollo goals where landing on the moon and taking those first historic steps fulfilled the mission. The policy states that we will set roots on the moon by establishing an outpost. This outpost will be used as a test bed for residing in more distant locales, such as Mars. In order to become self-sufficient, the occupants must have the capability to fabricate component parts in situ. Additionally, in situ materials must be used to minimize valuable mission upmass and to be as efficient as possible. In situ materials can be found from various sources such as raw lunar regolith whereby specific constituents can be extracted from the regolith (such as aluminum, titanium, or iron), and existing hardware already residing on the moon from past Apollo missions. The Electron Beam Melting (EBM) process lends itself well to fabricating parts, tools, and other necessary items using in situ materials and will be discussed further in this paper.

  11. Carbon Fiber Reinforced Carbon–Al–Cu Composite for Friction Material

    PubMed Central

    Luo, Ruiying; Ma, Denghao

    2018-01-01

    A carbon/carbon–Al–Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al–Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C–Al–Cu composites were analyzed. The results showed that the bending property of the C/C–Al–Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C–Al–Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C–Al–Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the “network conduction” structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al4C3. The friction coefficients of the C/C, C/C–Al–Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C–Al–Cu composites reached a minimum value of 2.56 × 10−7 mm3/Nm. The C/C–Al–Cu composite can be appropriately used as railway current collectors for locomotives. PMID:29614723

  12. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    NASA Astrophysics Data System (ADS)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  13. Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.

    PubMed

    Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki

    2017-05-01

    There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.

  14. InP materials/cell fabrication

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.

    1987-01-01

    The main points of discussion, conclusions and recommendations of a workshop on InP materials and cell fabrication are given. The importance of assessing the quality of p-Inp crystals supplied by different vendors, back contacts to solar cells, junction formation, energy conversion efficiency, testing for radiation resistance, and future develpments were among the topics discussed.

  15. Explorations in the application of nanotechnology to improve the mechanical properties of composite materials

    NASA Astrophysics Data System (ADS)

    Yang, Cheng

    2007-12-01

    This thesis presents the research achievements on the design, preparation, characterization, and analysis of a series of composite materials. By studying the interface interaction of the composite materials using nanotechnology, we developed composite materials that achieve satisfactory mechanical properties in two classes of materials. Durable press (DP) natural textiles are important consumer products usually achieved by erosslinking the molecules in the textiles to achieve long-term wrinkle resistance, which, however, also leads to the simultaneous significant drop of mechanical properties. Herein, a series of polymeric nanoparticl es were investigated, the application of as little as ˜0.14 wt% addition of the nanoparticles improved the mechanical property of the DP cotton fabric by 56% in tearing resistance and 100% in abrasion resistance; the loss in recovery angle is negligible. The author also studied the enzyme-triggered DP treatments of silk fabrics, as a green process method. After the treatment of enzymes, excellent DP property was achieved with improved strain property. Injectable calcium phosphate powder containing acrylic bone cements are widely used in orthopedic surgery to fix artificial prostheses. However, the bending strength is still unsatisfactory. The author modified the surface of the strontium (Sr) containing hydroxyapatite (HA) filler powders with acrylolpamidronate in order to improve the overall mechanical performance of the bone cement composites. By adding 0.25 wt% of acrylolpamidronate to the Sr-HA nanopowders, more than 19% of the bending strength and more than 23% compression strength of the Sr-HA bone cement were improved. Biological evaluations revealed that these bone cement composites were biocompatible and bioactive in cell culture. The results obtained in this thesis work show an effective method to significantly enhance the mechanical properties of composite materials. Different from other available methods, by developing a

  16. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    NASA Astrophysics Data System (ADS)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  17. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  18. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  19. Review of thermal properties of graphite composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1987-01-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  20. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions.

    PubMed

    Ube, Toru; Ikeda, Tomiki

    2014-09-22

    Crosslinked liquid-crystalline polymer materials that macroscopically deform when irradiated with light have been extensively studied in the past decade because of their potential in various applications, such as microactuators and microfluidic devices. The basic motions of these materials are contraction-expansion and bending-unbending, which are observed mainly in polysiloxanes and polyacrylates that contain photochromic moieties. Other sophisticated motions such as twisting, oscillation, rotation, and translational motion have also been achieved. In recent years, efforts have been made to improve the photoresponsive and mechanical properties of this novel class of materials through the modification of molecular structures, development of new fabrication methods, and construction of composite structures. Herein, we review structures, functions, and working mechanisms of photomobile materials and recent advances in this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    PubMed

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  3. Size and composition-controlled fabrication of thermochromic metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Clavero, César; Slack, Jonathan L.; Anders, André

    2013-09-01

    Finding new methods for the fabrication of metal oxide nanocrystals with high control on their composition, size and crystallinity is paramount for making large-area and low-cost optical coatings. Here, we demonstrate the fabrication of thermochromic VO2 nanocrystals using a physical vapour deposition-based route, with high control over their composition, size and crystallinity. This technique presents great potential to be scaled up and integrated with in-line coaters, commonly used for large-area deposition. Optimum crystallization of the VO2 nanoparticles is achieved after post-growth annealing at 350 °C, a temperature drastically lower than that required by chemical or implantation fabrication methods. The obtained nanoparticle thin films exhibit superior modulation of the transmittance in the visible and near IR portion of the spectrum as compared to conventional VO2 thin films due to plasmonic effects, opening up a new horizon in applications such as smarts windows.

  4. Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching

    PubMed Central

    2012-01-01

    A template-free fabrication method for silicon nanostructures, such as silicon micropillar (MP)/nanowire (NW) composite structure is presented. Utilizing an improved metal-assisted electroless etching (MAEE) of silicon in KMnO4/AgNO3/HF solution and silicon composite nanostructure of the long MPs erected in the short NWs arrays were generated on the silicon substrate. The morphology evolution of the MP/NW composite nanostructure and the role of self-growing K2SiF6 particles as the templates during the MAEE process were investigated in detail. Meanwhile, a fabrication mechanism based on the etching of silver nanoparticles (catalyzed) and the masking of K2SiF6 particles is proposed, which gives guidance for fabricating different silicon nanostructures, such as NW and MP arrays. This one-step method provides a simple and cost-effective way to fabricate silicon nanostructures. PMID:23043719

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  6. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    NASA Astrophysics Data System (ADS)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  7. Improvement of thermal radiation characteristic of AC servomotor using Al-CNT composite material

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Wakiwaka, H.; Yanagihara, M.

    2018-02-01

    This study deals with a high thermal conductivity material of aluminum-carbon nanotube (CNT) composite with carbon fiber (CF) and the high radiation performance of AC servomotor using a stator made of nanotube composite material. The composite fabrication process was performed by melting a mixture of granular aluminum of less than 200 μm and CNT under conditions of pressed atmosphere at the same time. Two kinds of motors made using aluminum and the composite were evaluated to confirm the effect of thermal conductivity as the motor stator. A test rod of the composite with 14 wt% CF-7 wt% CNT-aluminum indicated the excellent thermal conductivity of 169 W/(mK) in the radial direction and 173 W/(mK) in the lengthwise direction. According to the obtained temperature radiation characteristic of the AC servomotor, the composite stator using CNT decreased the consumption energy to 16% compared to the conventional one. As a result, the highly efficient motor improved the radiation characteristic using the CNT composite stator.

  8. Development of a Continuum Damage Mechanics Material Model of a Graphite-Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.

    2017-01-01

    This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.

  9. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  10. Development of a new generation of high-temperature composite materials

    NASA Technical Reports Server (NTRS)

    Brindley, P. K.

    1990-01-01

    Intermetallic matrix composites proposed to meet advanced aeropropulsion requirements are discussed. The powder metallurgy fabrication process currently being used to produce these intermetallic matrix composites will be presented, as will properties of one such composite, SiC/Ti3Al+Nb. In addition, the direction of future research will be outlined, including plans for enhanced fabrication of intermetallic composites by the arc-spray technique and fiber development by the floating-zone process.

  11. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  12. An infiltration/cure model for manufacture of fabric composites by the resin infusion process

    NASA Technical Reports Server (NTRS)

    Weideman, Mark H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1992-01-01

    A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.

  13. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar (registered trademark)-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2013-03-01

    of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber

  14. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  15. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  16. Composite fabrication and polymer modification using neoteric solvents

    NASA Astrophysics Data System (ADS)

    Eastman, Scott A.

    This thesis is divided into two research initiatives: The fabrication and study of bulk, co-continuous, cellulosic-polymer composites with the aid of supercritical CO2 (SC CO2); and the study of poly(vinyl alcohol) (PVOH) modification and surface activity in ionic liquids. The first part of this thesis utilizes the tunable solubility, gas-like diffusivity, and omniphilic wettability of SC CO2 to incorporate and subsequently polymerize silicone and poly(enemer) prepolymer mixtures throughout various cellulosic substrates. Chapters two and three investigate the mechanical properties of these composites and demonstrate that nearly every resulting composite demonstrates an improved flexural modulus and energy release rate upon splitting. Fire resistance of these composites was also investigated and indicates that the heat release rate, total heat released, and char yield were significantly improved upon for all silicone composites compared to the untreated cellulosic material. Chapter four looks specifically at aspen-silicone composites for thermo-oxidative studies under applied loads in order to study the effect of silicone incorporation on the failure kinetics of aspen. The aspen-silicone composites tested under these conditions demonstrated significantly longer lifetimes under the same loading and heating conditions compared with untreated aspen. The second part of this thesis focuses on studying ionic liquids as potentially useful solvents and reaction media for poly(vinyl alcohol). Two ionic liquids (1-Butyl-3-methylimidizolium chloride and tributylethylphosphonium diethylphosphate) were found to readily dissolve PVOH. More importantly, we have demonstrated that these solvents can be used as inert reaction media for PVOH modification. Both ionic liquids were found to facilitate the quantitative esterification of PVOH, while only the phosphonium ionic liquid supports the quantitative urethanation of the polymer. In an attempt to tune the surface properties of ionic

  17. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  18. Fabrication Process for Cantilever Beam Micromechanical Switches

    DTIC Science & Technology

    1993-08-01

    Beam Design ................................................................... 13 B. Chemistry and Materials Used in Cantilever Beam Process...7 3. Photomask levels and composite...pp 410-413. 5 2. Cantilever Beam Fabrication Process The beam fabrication process incorporates four different photomasking levels with 62 processing

  19. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  20. Fabrication of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    1993-01-01

    This report outlines the procedures that were employed in fabricating prototype graphite-epoxy composite prop fan blades. These blades were used in wind tunnel tests that investigated prop fan propulsion system interactions with a missile airframe in order to study the feasibility of an advanced-technology-propfan-propelled missile. Major phases of the blade fabrication presented include machining of the master blade, mold fabrication, ply cutting and assembly, blade curing, and quality assurance. Specifically, four separate designs were fabricated, 18 blades of each geometry, using the same fabrication technique for each design.

  1. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  2. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE PAGES

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler; ...

    2017-09-21

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  3. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  4. Advanced Microelectronics and Materials Programs

    DTIC Science & Technology

    1991-12-01

    of SiC /Si 3N 4 ceramic upon pyrolysis . This material was used to produce adherent coatings on a variety of substrates, and also infiltration ...the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant accomplishments...projects in the areas of Fiber Fabrication, Coatings and Infiltration , Composite Fabrication, and Physical/Mechanical Properties. Significant

  5. New Materials for Structural Composites and Protective Coatings

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  7. Multifunctional materials and composites

    DOEpatents

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  8. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    DOEpatents

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  9. Esthetics and Biocompatibility of Composite Dental Laminates.

    PubMed

    D'Souza, Dsj; Kumar, M

    2010-07-01

    Advances in modern dental materials provide patients with a choice of natural looking veneers to provide esthetic restorations. These may be directly fabricated composite resin veneers or indirectly fabricated veneers. This study was carried out to evaluate the clinical effect of new generation indirect veneering composites and to compare them with veneers fabricated from direct composite restorations. The present study was carried out in the Prosthodontics department of a medical college. A total of forty patients requiring restoration of the anterior teeth using composite veneers were selected and either of the two materials was used to fabricate the veneers. Clinical evaluation was done for esthetics and periodontal health. Statistical analysis showed that there were no significant changes to the periodontal health during the period of the study. The evidence obtained from this study indicates that both direct as well as indirect composite materials had clinically acceptable outcomes in terms of restoration of esthetics. Biocompatibility with the periodontal tissues of both materials was also evident by the improvement in oral health indices used in the study.

  10. Effects of temperature and humidity cycling on the strengths of textile reinforced carbon/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Furrow, Keith W.

    1993-01-01

    Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.

  11. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    NASA Astrophysics Data System (ADS)

    Xu, Wenjun

    silicon and metal based microsystems. In this thesis, this mature technique was exploited to generate a variety of microelectrode structures to facilitate the micropatterning and manipulation of the CNTs. Selective deposition of electrically charged CNTs onto desired locations was realized in an EPD process through patterning of electric field lines created by the microelectrodes fabricated through MEMS techniques. A variety of 2-D and 3-D micropatterns of CNTs with waferscale areas have been successfully achieved in both rigid and elastic systems. The thickness and morphology of the generated CNT patterns was found to be readily controllable through the parameters of the fabrication process. Studies also showed that for this technique, high surface hydrophobicity of the non-conductive regions in microstructures was critical to accomplish well-defined selective micropatterning of CNTs. Upon clearing the hurdles of the CNT manipulation, a patterned PDMS/CNT nanocomposite was fabricated through the aforementioned approach and was incorporated, investigated and validated in elastic force/strain microsensors. The gauge factor of the sensor exhibited a strong dependence on both the initial resistance of the device and the applied strain. Detailed analysis of the data suggests that the piezoresistive effect of this specially constructed bi-layer composite could be due to three mechanisms, and the sensing mechanism may vary when physical properties of the CNT network embedded in the polymer matrix alter. The feasibility of the PDSM/CNT composite being utilized as an elastic electret was further explored. The nanocomposite composed of these two non-traditional electret materials exhibited electret characteristics with reasonable charge storage stability when charged using a corona discharge. The power generation capacity of the corona-charged composite has been characterized and successfully demonstrated in both a ball drop experiment and cyclic mechanical load experiments

  12. Approximating the stress field within the unit cell of a fabric reinforced composite using replacement elements

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1993-01-01

    This report concerns the prediction of the elastic moduli and the internal stresses within the unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed to be small with respect to the thickness of the composite structure that it models. The finite element analysis of a unit cell is usually complicated by the mesh generation problems and the non-standard, adjacent-cell boundary conditions. This analysis avoids these problems through the use of preprogrammed boundary conditions and replacement materials (or elements). With replacement elements it is not necessary to match all the constitutional material interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the unit cell structure. The analysis predicts the elastic constants and the average stresses within each constituent material of each brick element. The application and results of this analysis are demonstrated through several example problems which include a number of composite microstructures.

  13. Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition.

    PubMed

    Hui, Xu; Qian, Luming; Harris, Gary; Wang, Tongxin; Che, Jianfei

    2016-11-05

    Graphene-based inorganic composites have been attracting more and more attention since the attachment of inorganic nanoparticles instead of conducting polymeric materials to graphene sheets turns out higher capacitances and good capacity retention. Here we report a fast fabrication method to prepare NiO@graphene composite modified electrodes for supercapacitors. By this method, preparation of electrochemical active materials of NiO/graphene and modification of the electrode can be simultaneously performed, which is achieved separately by traditional method. Moreover, the problem of poor adhesion of active materials on the surface of the electrode can be well solved. The NiO particles introduced to the films exhibit pseudocapacitive behavior arising from the reversible Faradaic transitions of Ni(II)/Ni(III) and greatly improve the capacitance of the electrodes. With the increase in NiO content, highly reduced graphene can be obtained during cyclic voltammetry sweeping, leading to the increase in the electrode capacitance. The highest specific capacitance of the constructed electrodes can reach 1258 F/g at a current density of 5 A/g.

  14. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment

  15. Verification and Validation of Residual Stresses in Bi-Material Composite Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy Michelle; Hanson, Alexander Anthony; Briggs, Timothy

    Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time andmore » cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh

  16. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    PubMed

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  17. Fabrication and experimentation of FRP helical spring

    NASA Astrophysics Data System (ADS)

    Ekanthappa, J.; Shiva Shankar, G. S.; Amith, B. M.; Gagan, M.

    2016-09-01

    In present scenario, the automobile industry sector is showing increased interest in reducing the unsprung weight of the automobile & hence increasing the fuel Efficiency. One of the feasible sub systems of a vehicle where weight reduction may be attempted is vehicle- suspension system. Usage of composite material is a proven way to lower the component weight without any compromise in strength. The composite materials are having high specific strength, more elastic strain energy storage capacity in comparison with those of steel. Therefore, helical coil spring made of steel is replaceable by composite cylindrical helical coil spring. This research aims at preparing a re-usable mandrel (mould) of Mild steel, developing a setup for fabrication, fabrication of FRP helical spring using continuous glass fibers and Epoxy Resin (Polymer). Experimentation has been conducted on fabricated FRP helical spring to determine its strength parameters & for failure analysis. It is found that spring stiffness (K) of Glass/Epoxy helical-spring is greater than steel-coil spring with reduced weight.

  18. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  19. Optimal Composite Material for Low Cost Fabrication of Large Composite Aerospace Structures using NASA Resins or POSS Nanoparticle Modifications

    NASA Technical Reports Server (NTRS)

    Lamontia, Mark A.; Gruber, Mark B.; Jensen, Brian J.

    2006-01-01

    Thermoplastic laminates in situ consolidated via tape or tow placement require full mechanical properties. Realizing full properties requires resin crystallinity to be controlled - partial crystallinity leads to unacceptably low laminate compression properties. There are two approaches: utilize an amorphous matrix resin; or place material made from a semi-crystalline resin featuring kinetics faster than the process. In this paper, a matrix resin evaluation and trade study was completed with commercial and NASA amorphous polyimides on the one hand, and with PEKK mixed with POSS nanoparticles for accelerated crystallinity growth on the other. A new thermoplastic impregnated material, 6 mm wide (0.25-in) AS-4 carbon/LaRC(TradeMark)8515 dry polyimide tow, was fabricated. Since LaRC(TradeMark)8515 is fully amorphous, it attains full properties following in situ consolidation, with no post processing required to build crystallinity. The tow in situ processing was demonstrated via in situ thermoplastic filament winding it into rings.

  20. Carbon nanotube-based structural health monitoring for fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liu, Kan; Mardirossian, Aris; Heider, Dirk; Thostenson, Erik

    2017-04-01

    In fiber reinforced composite materials, the modes of damage accumulation, ranging from microlevel to macro-level (matrix cracks development, fiber breakage, fiber-matrix de-bonding, delamination, etc.), are complex and hard to be detected through conventional non-destructive evaluation methods. Therefore, in order to assure the outstanding structural performance and high durability of the composites, there has been an urgent need for the design and fabrication smart composites with self-damage sensing capabilities. In recent years, the macroscopic forms of carbon nanotube materials have been maturely investigated, which provides the opportunity for structural health monitoring based on the carbon nanotubes that are integrated in the inter-laminar areas of advanced fiber composites. Here in this research, advanced fiber composites embedded with laminated carbon nanotube layers are manufactured for damage detection due to the relevant spatial electrical property changes once damage occurs. The mechanical-electrical coupling response is recorded and analyzed during impact test. The design and manufacturing of integrating the carbon nanotubes intensely affect the detecting sensitivity and repeatability of the integrated multifunctional sensors. The ultimate goal of the reported work is to develop a novel structural health monitoring method with the capability of reporting information on the damage state in a real-time way.

  1. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    PubMed

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  2. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  3. Microstructure and properties of aluminium-aluminium oxide graded composite materials

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, F. F.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Iqbal, A. K. M. A.; Azhari, A.

    2018-03-01

    In this research works, four-layered aluminium-aluminium oxide (Al-Al2O3) graded composite materials were fabricated using powder metallurgy (PM) method. In processing, metal-ceramic graded composite materials of 0%, 10%, 20% and 30% weight percentage of ceramic concentration were prepared under 30 ton compaction load using a cylindrical die-punch set made of steel. After that, two-step pressureless sintering was carried out at sintering temperature and time 600°C and 3 hours respectively. It was observed that the sintered cylindrical specimens of 30 mm diameter were prepared successfully. The graded composite specimens were analysed and the properties such as density, microstructure and hardness were measured. It was found that after sintering process, the diameter of the graded cylindrical structure was decreased. Using both Archimedes method and rule of mixture (ROM), he density of structure was measured. The obtained results revealed that the microvickers hardness was increased as the ceramic component increases in the graded layer. Moreover, it was observed that the interface of the graded structure is clearly distinguished within the multilayer stack and the ceramic particles are almost uniformly distributed in the Al matrix.

  4. Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions

    PubMed Central

    Kinet, Damien; Mégret, Patrice; Goossen, Keith W.; Qiu, Liang; Heider, Dirk; Caucheteur, Christophe

    2014-01-01

    Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as they are lightweight, small in size and offer convenient multiplexing capabilities with remote operation. They have thus been extensively associated to composite materials to study their behavior for further SHM purposes. This paper reviews the main challenges arising from the use of FBGs in composite materials. The focus will be made on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings. The main strategies developed in each of these three topics will be summarized and compared, demonstrating the large progress that has been made in this field in the past few years. PMID:24763215

  5. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  6. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    NASA Astrophysics Data System (ADS)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  7. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppola, Anthony; Faruque, Omar; Truskin, James F

    As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared researchmore » project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash

  8. Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chockla, Aaron M.; Harris, Justin T.; Akhavan, Vahid A.

    2011-11-09

    A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid–liquid–solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ionmore » battery. Anode capacities of more than 800 mA h g{sup –1} were achieved without the addition of conductive carbon or binder.« less

  9. Design, fabrication, and test of a composite material wind turbine rotor blade

    NASA Technical Reports Server (NTRS)

    Griffee, D. G., Jr.; Gustafson, R. E.; More, E. R.

    1977-01-01

    The aerodynamic design, structural design, fabrication, and structural testing is described for a 60 foot long filament wound, fiberglass/epoxy resin matrix wind turbine rotor blade for a 125 foot diameter, 100 kW wind energy conversion system. One blade was fabricated which met all aerodynamic shape requirements and was structurally capable of operating under all specified design conditions. The feasibility of filament winding large rotor blades was demonstrated.

  10. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  11. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  12. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  13. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  14. 46 CFR 54.20-2 - Fabrication for hazardous materials (replaces UW-2(a)).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fabrication for hazardous materials (replaces UW-2(a)). 54.20-2 Section 54.20-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Fabrication by Welding § 54.20-2 Fabrication for hazardous materials (replaces UW...

  15. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    NASA Astrophysics Data System (ADS)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  16. Automotive assessment of carbon-silicon composite anodes and methods of fabrication

    NASA Astrophysics Data System (ADS)

    Karulkar, Mohan; Blaser, Rachel; Kudla, Bob

    2015-01-01

    To assess the potential of carbon silicon composite anodes for automotive applications, C-Si anodes were fabricated and certain improvements employed. The use of a PVDF buffer layer is demonstrated for the first time with a C-Si composite material. The buffer layer increases adhesion by 89%, and increases capacity by 50-80%. Also, a limited capacity range is employed to improve cycle life by up to 200%, and enable currents as high as 2 mA cm-1. The combined use of a buffer layer and limited capacity range has not been reported before. A model is also presented for comparing C-Si performance with real-world automotive targets from USABC, including energy density, power density, specific energy, and specific power. The analysis reveals a capacity penalty that arises from pairing C-Si with a traditional cathode (NCA), and which prevents the cell from meeting all targets. Scenarios are presented in which a higher-capacity cathode (250 mAh g-1) allows all targets to be hypothetically met.

  17. [The study on fabrication of dental restoration using PMMA-ZrO2 composites via CAD/CAM].

    PubMed

    Li, Shi-bao; Wang, Zhong-yi; Chen, Zhao-hui; Hu, Hai-feng; Tang, Li-hui; Ma, Chu-fan

    2005-01-01

    To obtain dental restorations by machining PMMA-ZrO2 organic-inorganic composites with the dental CAD/CAM system. Partially sintered Zirconia compacts (PSZC) were prepared via isostatic pressing and partially sintering, with Zirconia nanopowder as raw materials. PMMA-Zirconia organic-inorganic composites were prepared by vacuum infiltrating the prepolymerized MMA into the PSZC, followed by in-situ polymerization. The mechanical properties and machinability of composites were studied. The composites were machined on the dental CAD/CAM system to obtain dental restoration. At 71.44% TD of PSZC, the composite had a 3-point bending strength of (202.56 +/- 3.09) MPa, fracture toughness of (4.30 +/- 0.16) MPa.m(1/2), elasticity modulus of (58.71 +/- 1.98) GPa, and Vickers hardness of (3.82 +/- 0.34) GPa, respectively. A premolar crown was fabricated by CAD/CAM system in 16 mins, and was verisimilitude, without any cracks. The composite at 71.44% TD of PSZC has good mechanical properties and dental restorations can be manufactured by PMMA-Zirconia composites via dental CAD/CAM system.

  18. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application.

  19. A Study of Compaction and Deformation of a Powder Composite Material of the `Aluminum - Rare Earth Elements' System

    NASA Astrophysics Data System (ADS)

    Rudskoy, A. I.; Tsemenko, V. N.; Ganin, S. V.

    2015-01-01

    The possibility of fabrication of preforms of a composite material with special radiation-protective properties on the base of mechanically alloyed powders of the Al - REM system with the use of methods of severe plastic deformation is shown.

  20. Modifications of a Composite-Material Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; McNeal, Shawn R.

    2005-01-01

    Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.

  1. In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Fang; Hu, Zhibiao; Liu, Kaiyu; Zhang, Shuirong; Liu, Hongtao; Sang, Shangbin

    2014-12-01

    This paper introduces a new design route to fabricate nickel aluminum-layered double hydroxide (NiAl-LDH) nanosheets/hollow carbon nanofibers (CNFs) composite through an in situ growth method. The NiAl-LDH thin layers which grow on hollow carbon nanofibers have an average thickness of 13.6 nm. The galvanostatic charge-discharge test of the NiAl-LDH/CNFs composite yields an impressive specific capacitance of 1613 F g-1 at 1 A g-1 in 6 M KOH solution, the composite shows a remarkable specific capacitance of 1110 F g-1 even at a high current density of 10 A g-1. Furthermore, the composite remains a specific capacitance of 1406 F g-1 after 1000 cycles at 2 A g-1, indicating the composite has excellent high-current capacitive behavior and good cycle stability in compared to pristine NiAl-LDH.

  2. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  3. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  4. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  5. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application

    NASA Technical Reports Server (NTRS)

    Kerr, James R.; Haskins, James F.

    1987-01-01

    Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.

  6. Fabrication of a TiO2@porphyrin nanofiber hybrid material: a highly efficient photocatalyst under simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    La, Duong Duc; Rananaware, Anushri; Phuong Nguyen Thi, Hoai; Jones, Lathe; Bhosale, Sheshanath V.

    2017-03-01

    The solar spectrum consists of 8% UV radiation, while 45% of solar energy is from visible light. It is therefore desirable to fabricate a hybrid material which is able to harvest energy from a wide range of photons from the sun for applications such as solar cells, photovoltaics, and photocatalysis. In this study we report on the fabrication of a TiO2@porphyrin hybrid material by surfactant-assisted co-assembly of monomeric porphyrin molecules with TiO2 nanoparticles. The obtained TiO2@porphyrin composite shows excellent integration of TiO2 particles with diameters of 15-30 nm into aggregated porphyrin nanofibers, which have a width of 70-90 nm and are several µm long. SEM, XPS, XRD, FTIR, UV-Vis and fluorescence spectroscopy were employed to characterize the TiO2@TCPP hybrid material. This material exhibits efficient photocatalytic performance under simulated sunlight, due to synergistic photocatalytic activities of the porphyrin aggregates in visible light and TiO2 particles in the UV region. A plausible mechanism for photocatalytic degradation is also proposed and discussed.

  7. Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers

    NASA Technical Reports Server (NTRS)

    Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.

    2017-01-01

    Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.

  8. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    NASA Astrophysics Data System (ADS)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  9. Heavily loaded ferrite-polymer composites to produce high refractive index materials at centimetre wavelengths

    NASA Astrophysics Data System (ADS)

    Parke, L.; Hooper, I. R.; Hicken, R. J.; Dancer, C. E. J.; Grant, P. S.; Youngs, I. J.; Sambles, J. R.; Hibbins, A. P.

    2013-10-01

    A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%-80%). The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10) and permeability (23 ± 2). The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics.

  10. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual

  11. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  12. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  13. Method for fabricating light weight carbon-bonded carbon fiber composites

    DOEpatents

    Wrenn, G.E. Jr.; Abbatiello, L.A.; Lewis, J. Jr.

    1987-06-17

    The invention is directed to the fabrication of ultralight carbon- bonded carbon fiber composites of densities in the range of about 0. 04 to 0.10 grams per cubic centimeter. The composites are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0. 03 to 0.30 liters per minutes per square inch of a mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  14. Development of autoclavable polyimides. [fabrication procedures of high temperature resistant/fiber composite

    NASA Technical Reports Server (NTRS)

    Orell, M. K.; Sheppard, C. H.; Vaughan, R. W.; Jones, R. J.

    1974-01-01

    A poly(Diels-Alder) (PDA) resin approach was investigated as a means to achieve autoclavability of high temperature resistant resin/fiber composites under mild fabrication procedures. Low void content Type A-S graphite reinforced composites were autoclave fabricated from a PDA resin/fiber prepared from an acetone:methanol:dioxane varnish. Autoclave conditions were 477K (400F) and 0.7 MN/sq m (100 psi) for up to two hours duration. After postcure at temperatures up to 589K (600F), the composites demonstrated high initial mechanical properties at temperatures up to 561K (550F). The results from isothermal aging studies in air for 1000 hours indicated potential for long-term ( 1000 hours) use at 533K (500F) and shorter-term (up to 1000 hours) at 561K (550F).

  15. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of

  16. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  17. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.

    PubMed

    Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng

    2017-11-30

    Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.

  18. Metal matrix composite fabrication processes for high performance aerospace structures

    NASA Astrophysics Data System (ADS)

    Ponzi, C.

    A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.

  19. Fabrication in Space - What Materials are Needed?

    NASA Technical Reports Server (NTRS)

    Good, J

    2007-01-01

    In order to sustain life on the moon, and especially on Mars, the inhabitants must be self-sufficient. As on Earth, electronic and mechanical systems will break down and must be repaired. It is not realistic to "send" parts to the moon or Mars in an effort to replace failed ones or have spares for all components. It will be important to have spares on hand and even better would be to have the capability to fabricate parts in situ. The In Situ Fabrication and Repair (ISFR) team is working to develop the Arcam Electron Beam Melting (EBM) machine as the manufacturing process that will have the capability to produce repair parts, as well as new designs, and tooling on the lunar surface and eventually on Mars. What materials will be available for the inhabitants to use? What materials would be most useful? The EBM process is versatile and can handle a multitude of materials. These include titanium, stainless steels, aluminums, inconels, and copper alloys. Research has shown what parts have failed during past space missions and this data has been compiled and assessed. The EBM machine is fully capable of processing these materials of choice. Additionally, the long-term goal is to use the lunar regolith as a viable feedstock. Preliminary work has been performed to assess the feasibility of using raw lunar regolith as a material source or use a binder combined with the regolith to achieve a good melt.

  20. Characterization and modeling of tensile behavior of ceramic woven fabric composites

    NASA Technical Reports Server (NTRS)

    Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei

    1991-01-01

    This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.

  1. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; hide

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  2. Study of the influence of hole quality on composite materials

    NASA Technical Reports Server (NTRS)

    Pengra, J. J.

    1980-01-01

    The influence of hole quality on the structural behavior of composite materials was investigated. From an industry survey it was determined that the most frequent imperfections encountered during hole fabrication are chipout, delamination, and oversize conditions. These hole flaw types were generated in critical areas of static, compression, and fatigue specimens fabricated from T300/5208 graphite/epoxy system. The specimens were tested in static and cyclic pin bearing modes in addition to compression loading. Results of these tests are presented and discussed. The hole chipout defect reduced the static and cyclic endurance characteristics. Oversize holes also lowered the cyclic pin bearing endurance, but had no influence of the static pin bearing characteristics. Delamination had no insignificant influence on the static tension and cyclic pin bearing characteristics. Compression tests demonstrated a deleterious effect for chipout of delamination defects. Hole quality requirements proposed are discussed.

  3. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  4. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  5. Fiber Optic Sensors for Cure/Health Monitoring of Composite Materials

    NASA Technical Reports Server (NTRS)

    Wood, K. H.; Brown, T. L.; Wu, M. C.; Gause, C. B.

    2004-01-01

    The objective of the current program is to develop techniques for using optical fibers to monitor the cure of composite materials in real time during manufacture and to monitor the in-service structural health of composite structures. Single and multimode optical fibers containing Bragg gratings have been used to perform Near Infrared (NIR) spectroscopy on high refractive index resins and show promise as embedded sensors. In order for chemical spectroscopy to be possible, intimate contact must be achieved between the fiber core and the composite resin. This contact is often achieved by stripping the cladding off of a portion of the fiber, thus making it brittle and easily broken in the composite processing environment. To avoid weakening the fiber to this extent, high refractive index fibers have been fabricated that use a low refractive index acrylate coating which serves as the cladding. This is ideal, as the coating is easily solvent stripped and intimate contact with the glass core can be achieved. Real time resin and composite chemical spectra have been obtained, with possible multifunctional capability using Bragg gratings to assess physical properties such as strain, modulus and other parameters of interest.

  6. Fiber optics in composite materials: materials with nerves of glass

    NASA Astrophysics Data System (ADS)

    Measures, Raymond M.

    1990-08-01

    A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.

  7. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties.

    PubMed

    Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan

    2017-02-24

    In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  8. An all-organic composite actuator material with a high dielectric constant.

    PubMed

    Zhang, Q M; Li, Hengfeng; Poh, Martin; Xia, Feng; Cheng, Z-Y; Xu, Haisheng; Huang, Cheng

    2002-09-19

    Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields--referred to here as field-type EAPs--include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers. Field-type EAPs can exhibit fast response speeds, low hysteresis and strain levels far above those of traditional piezoelectric materials, with elastic energy densities even higher than those of piezoceramics. However, these polymers also require a high field (>70 V micro m(-1)) to generate such high elastic energy densities (>0.1 J cm(-3); refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13 V micro m(-1). The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, 'smart skins' for drag reduction, and in microfluidic systems for drug delivery.

  9. Design, fabrication, and characterization of laminated hydroxyapatite-polysulfone composites

    NASA Astrophysics Data System (ADS)

    Wilson, Clifford Adams, II

    There exists a need to develop devices that can be used to replace hard tissues, such as bone, in load-bearing areas of the body. An ideal hard tissue replacement device is one that stimulates growth of natural tissues, and is slowly resorbed by the body. The implant is also required to have elastic modulus, strength, and toughness values similar to the tissues being replaced. Hydroxyapatite (HA) is the primary mineral phase of bone and has the potential for use in biomedical applications because it stimulates cell growth and is resorbable. Unfortunately, HA is a relatively low strength, low toughness material, which limits its application to only low load-bearing regions of the body. In order to apply HA to greater load-bearing areas of the body, strength and toughness must be improved through the formation of a composite structure. The goal of this study to show that a composite structure formed from HA and a biocompatible polymer can be fabricated with strength and toughness values that are within the range necessary for load-bearing biomedical applications. Therefore, Polysulfone-HA composites were developed and tested. Polysulfone (PSu) is a hard, glassy polymer that has been shown to be biocompatible. Composites were fabricated through a combination of tape casting, solvent casting, and lamination. Monolithic HA and laminate specimens were tested in biaxial flexure. A unique laminate theory solution was developed to characterize stress distributions for laminates. Failure loads, failure stress, work of fracture, and apparent toughness were compared for the laminates against monolithic HA specimens. Initial testing results showed that laminates had a failure stress of 60 +/- 10, which is a 170% improvement over the 22 +/- 2 MPa failure stress for monolithic HA. The work of fracture was improved by 5500% from 11 +/- 2 for the monolithic HA to 612 +/- 240 for the laminates. Work of fracture values gave the laminates an apparent fracture toughness of 7.2 MPa•m1

  10. Fabrication of self-organized conical microstructures by excimer laser irradiation of cyanoacrylate-carbon nanotube composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yuming; Liu Liang; Fan Shoushan

    2005-02-07

    Self-organized conical microstructures are fabricated by 308 nm XeCl excimer laser irradiation of cyanoacrylate-carbon nanotube composites in air. The morphology of the surface on the composite films is studied, varying the total number and fluence of the applied laser pulses. A simple mechanism of the fabrication based on the evaporation of cyanoacrylate and the burning of carbon nanotubes is proposed. The conical peak structures of cyanoacrylate-carbon nanotube composite films show good field-emission properties. Similar structures are also observed on carbon nanotube arrays.

  11. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  12. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE PAGES

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua; ...

    2018-04-24

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  13. Testing of qubit materials and fabrication using superconducting resonators

    NASA Astrophysics Data System (ADS)

    Kumar, Shwetank; Steffen, Matthias; Divincenzo, David; Keefe, George; Rothwell, Mary Beth; Farinelli, Matthew; Rozen, Jim; Milliken, Frank; Ketchen, Mark

    2009-03-01

    We will present the results of measurements made on superconducting resonators fabricated using different substrates and superconducting metals. Specifically, the quality factor of these resonators will be shown to be closely related to not only the purity of the substrates and metals used in the process but also to the details of the fabrication. We will demonstrate the change in quality factor of a bare resonator when subjected to the qubit process. Based on our measurements we propose that superconducting resonators may form a test bed for troubleshooting the fabrication process for minimizing the materials related dissipation in the qubits.

  14. Influence of filler charge on gloss of composite materials before and after in vitro toothbrushing.

    PubMed

    Jassé, Fernanda Ferreira; de Campos, Edson Alves; Lefever, Dorien; Di Bella, Enrico; Salomon, Jean Pierre; Krejci, Ivo; Ardu, Stefano

    2013-11-01

    This study evaluated the gloss behaviour of experimental resin composites loaded with different filler percentages, immediately after polishing and after toothbrushing simulation. Sixteen disc-shaped specimens were fabricated for each different-charged composite (40%, 50%, 60%, 70% and 75%) and polished with SiC abrasive papers. Gloss measurements were made prior to simulated toothbrushing. The specimens were subjected to the simulation for 5, 15, 30 and 60 min using an electrical toothbrush with a standardized pressure while being immersed in a toothpaste/artificial saliva slurry. Baseline composite gloss values ranged from 69.7 (40%) to 81.3 (75%) GU (gloss units) and from 18.1 (40%) to 32.3 (75%) GU after 1h of brushing. Highest gloss values were obtained by 75%-charged resin, while the lowest values were obtained by the 40%-charged one. All tested materials showed a gloss decrease. However, the higher filler load a composite resin has, the higher gloss it can achieve. Gloss of resin composite materials is an important factor in determining aesthetic success of anterior restorations, and this property may vary according to the filler charge of the restorative material. Higher filler load of a composite resin results in higher gloss values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  16. Fabrication and Characterization of Plasma-Sprayed Carbon-Fiber-Reinforced Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Xiong, Jiang-tao; Zhang, Hao; Peng, Yu; Li, Jing-long; Zhang, Fu-sheng

    2018-04-01

    Carbon fiber ( C f)/Al specimens were fabricated by plasma-spraying aluminum powder on unidirectional carbon fiber bundles (CFBs) layer by layer, followed by a densification heat treatment process. The microstructure and chemical composition of the C f/Al composites were examined by scanning electron microscopy and energy-dispersive spectrometry. The CFBs were completely enveloped by aluminum matrix, and the peripheral regions of the CFBs were wetted by aluminum. In the wetted region, no significant Al4C3 reaction layer was found at the interface between the carbon fibers and aluminum matrix. The mechanical properties of the C f/Al specimens were evaluated. When the carbon fiber volume fraction (CFVF) was 9.2%, the ultimate tensile strength (UTS) of the C f/Al composites reached 138.3 MPa with elongation of 4.7%, 2.2 times the UTS of the Al matrix (i.e., 63 MPa). This strength ratio (between the UTS of C f/Al and the Al matrix) is higher than for most C f/Al composites fabricated by the commonly used method of liquid-based processing at the same CFVF level.

  17. Application of composite materials to turbofan engine fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Smith, G. T.

    1980-01-01

    A program was conducted by NASA with the JT9D engine manufacturer to develop a lightweight, cost effective, composite material fan exit guide vane design having satisfactory structural durability for commerical engine use. Based on the results of a previous company supported program, eight graphite/epoxy and graphite-glass/epoxy guide vane designs were evaluated and four were selected for fabrication and testing. Two commercial fabricators each fabricated 13 vanes. Fatigue tests were used to qualify the selected design configurations under nominally dry, 38 C (100 F) and fully wet and 60 C (140 F) environmental conditions. Cost estimates for a production rate of 1000 vanes per month ranged from 1.7 to 2.6 times the cost of an all aluminum vane. This cost is 50 to 80 percent less than the initial program target cost ratio which was 3 times the cost of an aluminum vane. Application to the JT9D commercial engine is projected to provide a weight savings of 236 N (53 lb) per engine.

  18. Apparatus for fabricating composite ceramic members

    DOEpatents

    Roy, P.; Simpson, J.L.; Aitken, E.A.

    1975-10-28

    Methods and apparatus for fabrication of composite ceramic members having particular application for measuring oxygen activities in liquid sodium are described. The method involves the simultaneous deposition of ThO$sub 2$: 15 percent Y$sub 2$O$sub 3$ on a sintered stabilized zirconia member by decomposition of gaseous ThCl$sub 4$ and YCl$sub 3$ and by reacting with oxygen gas. Means are provided for establishing an electrical potential gradient across the zirconia member whereby oxygen ions, from a source on one side of the member portion to be coated, are migrated to the opposite side where a reaction and said decomposition and deposition are effected.

  19. Application of Composite Materials to Truck Components: Leaf Springs and Propeller Shafts for 5-Ton Trucks

    DTIC Science & Technology

    1981-11-01

    Fiberglass-Epoxy Resin Matrix Composites 2(L ABSTRACT (Caautlrue am reverse de bf IHI wee•a’y d Identify by block number) The objective of the program was to...Army truck are designed using resin matrix composite materials. Both design studies and prototype fabrication and testing are included in the program...For the leaf springs (both front and rear) a hybrid design using steel DD FOR 143 ED#T1ON OF I NOV65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE

  20. Fabrication of Nanochannels

    PubMed Central

    Zhang, Yuqi; Kong, Xiang-Yu; Gao, Loujun; Tian, Ye; Wen, Liping; Jiang, Lei

    2015-01-01

    Nature has inspired the fabrication of intelligent devices to meet the needs of the advanced community and better understand the imitation of biology. As a biomimetic nanodevice, nanochannels/nanopores aroused increasing interest because of their potential applications in nanofluidic fields. In this review, we have summarized some recent results mainly focused on the design and fabrication of one-dimensional nanochannels, which can be made of many materials, including polymers, inorganics, biotic materials, and composite materials. These nanochannels have some properties similar to biological channels, such as selectivity, voltage-dependent current fluctuations, ionic rectification current and ionic gating, etc. Therefore, they show great potential for the fields of biosensing, filtration, and energy conversions. These advances can not only help people to understand the living processes in nature, but also inspire scientists to develop novel nanodevices with better performance for mankind. PMID:28793564

  1. Composite solid-state scintillators for neutron detection

    DOEpatents

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  2. A supramolecular approach to fabricate highly emissive smart materials

    PubMed Central

    Liu, Kai; Yao, Yuxing; Kang, Yuetong; Liu, Yu; Han, Yuchun; Wang, Yilin; Li, Zhibo; Zhang, Xi

    2013-01-01

    The aromatic chromophores, for example, perylene diimides (PDIs) are well known for their desirable absorption and emission properties. However, their stacking nature hinders the exploitation of these properties and further applications. To fabricate emissive aggregates or solid-state materials, it has been common practice to decrease the degree of stacking of PDIs by incorporating substituents into the parent aromatic ring. However, such practice often involves difficultorganic synthesis with multiple steps. A supramolecular approach is established here to fabricate highly fluorescent and responsive soft materials, which has greatly decreases the number of required synthetic steps and also allows for a system with switchable photophysical properties. The highly fluorescent smart material exhibits great adaptivity and can be used as a supramolecular sensor for the rapid detection of spermine with high sensitivity and selectivity, which is crucial for the early diagnosis of malignant tumors. PMID:23917964

  3. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    PubMed

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  4. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  5. Fabricated Elastin.

    PubMed

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabricated elastin

    PubMed Central

    Yeo, Giselle C.; Weiss, Anthony S.

    2015-01-01

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993

  7. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  8. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  9. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  10. Nanocellulose based polymer composite for acoustical materials

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  11. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    PubMed

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  12. Development and demonstration of manufacturing processes for fabricating graphite/LARC 160 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.

    1981-01-01

    The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.

  13. Impact response of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivasan, K.

    1991-01-01

    Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.

  14. Additive manufacturing of biologically-inspired materials.

    PubMed

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.

  15. Development and fabrication of a graphite polyimide box beam

    NASA Technical Reports Server (NTRS)

    Nadler, M. A.; Darms, F. J.

    1972-01-01

    The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.

  16. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  17. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  18. Fabrication and testing of prestressed composite rotor blade spar specimens

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1974-01-01

    Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.

  19. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    PubMed

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  20. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  1. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    PubMed Central

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined. PMID:28335452

  2. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    PubMed

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  3. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air.

    PubMed

    Jin, Yifei; Liu, Chengcheng; Chai, Wenxuan; Compaan, Ashley; Huang, Yong

    2017-05-24

    Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air. In the proposed printing approach, due to its yield-stress property, Laponite nanoclay can be easily extruded through a nozzle as a liquid and self-supported after extrusion as a solid. Its unique crystal structure with positive and negative charges enables it to be mixed with many chemically and physically cross-linked hydrogels, which makes it an ideal internal scaffold material for the fabrication of various hydrogel structures. By mixing Laponite nanoclay with various hydrogel precursors, the hydrogel composites retain their self-supporting capacity and can be printed into 3D structures directly in air and retain their shapes before cross-linking. Then, the whole structures are solidified in situ by applying suitable cross-linking stimuli. The addition of Laponite nanoclay can effectively improve the mechanical and biological properties of hydrogel composites. Specifically, the addition of Laponite nanoclay results in a significant increase in the Young's modulus of each hydrogel-Laponite composite: 1.9-fold increase for the poly(ethylene glycol) diacrylate (PEGDA)-Laponite composite, 7.4-fold increase for the alginate-Laponite composite, and 3.3-fold increase for the gelatin-Laponite composite.

  4. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    PubMed Central

    Aduba, Donald C.; Yang, Hu

    2017-01-01

    Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development. PMID:28952482

  5. Material, process, and product design of thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Dai, Heming

    Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

  6. Development, fabrication and evaluation of composite thermal engine insulation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Foil enclosure configurations of 10 variations were fabricated and evaluated. A discussion of the thermal protection system panel design includes: (1) description of 3DSX/foil concept, (2) design environment, (3) material selection, (4) fabrication enclosure, (5) structural design, (6) thermal sizing, and (7) weight analysis. The structural design study includes foil evaluation, venting pressure loads, thermomechanical behavior, and enclosure venting (burst) pressure tests. Results of experimental demonstrations of performance and reuse capabilities are given for both thermal and acoustic testing.

  7. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  8. Using template/hotwire cutting to demonstrate moldless composite fabrication

    NASA Technical Reports Server (NTRS)

    Coleman, J. Mario

    1990-01-01

    The objective of this experiment is to provide a simple, inexpensive composite fabrication technique which can be easily performed with a minimum of equipment and facilities. This process eliminates expensive female molds and uses only male molds which are easily formed from foam blocks. Once the mold is shaped, it is covered with fiberglass and becomes a structural component of the product.

  9. Fabrication of Semi-quasi Solid DSSC using Spiro Material as Hole Transport Material

    NASA Astrophysics Data System (ADS)

    Safriani, L.; Primawati, W. P.; Mulyana, C.; Susilawati, T.; Aprilia, A.

    2017-05-01

    Dye Sensitized Solar Cells (DSSC) has been emerging a promising development in recent years. DSSC is a low-cost solar cell belonging to the third generation of solar cells. However, the conversion efficiency of DSSC is still far behind compared to silicon based solar cells. To produce long stability of DSSC, the used of solid state electrolyte is recommended instead of liquid electrolyte, though solid state DSSC also has problem relating to a lack of pore-filling hole transport material into mesoporous TiO2. In this work an attempt to improve performance of DSSC has been done by adding hole transport material into mesoporous TiO2 layer and optimizing fabrication method. In the first part of the work, we used low Tg material spiro-TAD and spiro-TPD as hole transport material with mosalyte and hybrid polymer as gel electrolyte to obtain a semi-quasi solid DSSC. In the second part, we modified fabrication method by annealing process before spin-coated spiro material into dye-coated TiO2 substrate. Current-voltage measurement of semi-quasi solid DSSC was performed using halogen lamp. We found that the used of spiro-TPD as hole transport give the best power conversion efficiency η = 2.03% of semi-quasi solid DSSC.

  10. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid

    2014-01-01

    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  11. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  12. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2

  13. Evaluation of Carbon Composite Overwrap Pressure Vessels Fabricated Using Ionic Liquid Epoxies Project

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2015-01-01

    The intent of the work proposed here is to ascertain the viability of ionic liquid (IL) epoxy based carbon fiber composites for use as storage tanks at cryogenic temperatures. This IL epoxy has been specifically developed to address composite cryogenic tank challenges associated with achieving NASA's in-space propulsion and exploration goals. Our initial work showed that an unadulterated ionic liquid (IL) carbon-fiber composite exhibited improved properties over an optimized commercial product at cryogenic temperatures. Subsequent investigative work has significantly improved the IL epoxy and our first carbon-fiber Composite Overwrap Pressure Vessel (COPV) was successfully fabricated. Here additional COPVs, using a further improved IL epoxy, will be fabricated and pressure tested at cryogenic temperatures with the results rigorously analyzed. Investigation of the IL composite for lower pressure liner-less cryogenic tank applications will also be initiated. It is expected that the current Technology Readiness Level (TRL) will be raised from about TRL 3 to TRL 5 where unambiguous predictions for subsequent development/testing can be made.

  14. Morphology and microstructure of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  15. Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite

    NASA Astrophysics Data System (ADS)

    Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.

    2017-12-01

    The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.

  16. EDITORIAL Smart materials, multifunctional composites, and morphing structures: selected papers from the 20th International Conference on Adaptive Structures and Technologies (ICAST 2009) Smart materials, multifunctional composites, and morphing structures: selected papers from the 20th International Conference on Adaptive Structures and Technologies (ICAST 2009)

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Hsin

    2010-12-01

    The 20th International Conference on Adaptive Structures and Technologies (ICAST) was held on 20-22 October 2009 in Hong Kong. This special section of Smart Materials and Structures is derived from the research papers presented at the conference. Of the 106 papers presented at the conference, 11 papers were reviewed and accepted for this special section, following the regular review procedures of the journal. This special section is focused on smart materials, multifunctional composites, and applications on morphing structures. Smart materials. Smart materials are the foundation of adaptive structures and intelligent systems. The development of new materials will lead to significant improvement in various applications. Three articles are focused on the fabrication of new materials and investigation of their behaviors: Barium strontium zirconate titanate ((Ba1-xSrx)(ZrxTi1-x)O3; BSZT, x = 0.25 and 0.75) ceramics with a highly crystalline structure were fabricated using the combustion technique. The microstructure of BSZT powders exhibited an almost-spherical morphology and had a porous agglomerated form. Polyaniline (PANI)/clay nanoparticles with unique core-shell structure were synthesized via Pickering emulsion polymerization. By dispersing PANI/clay nanoparticles in silicone oil, the ER fluid was made. Magnetic field effects were investigated on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering for superior hardness, excellent wear and oxidation resistance. The surface morphology of chromium nitride films was also examined by a scanning electron microscope (SEM). Multifunctional composites. Composites are made from two or more constituent materials so they can combine the best properties of different materials. Five papers deal with fabrication, testing, and modeling of various multifunctional composites: A new active structural fiber (ASF) was fabricated by coating a single carbon fiber with a concentric

  17. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  18. Three-dimensionally patterned energy absorptive material and method of fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duoss, Eric; Frank, James M.; Kuntz, Joshua

    A three-dimensionally patterned energy absorptive material and fabrication method having multiple layers of patterned filaments extrusion-formed from a curable pre-cursor material and stacked and cured in a three-dimensionally patterned architecture so that the energy absorptive material produced thereby has an engineered bulk property associated with the three-dimensionally patterned architecture.

  19. Tailoring the mechanical properties of SU-8/clay nanocomposites: polymer microcantilever fabrication perspective

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Ojijo, Vincent; Cele, Hastings; Joubert, Trudi; Suprakas, Sinha Ray; Land, Kevin

    2014-06-01

    SU-8/Clay nanocomposite is considered as a candidate material for microcantilever sensor fabrication. Organically modified montmorillonite clay nanoparticles are dispersed in the universally used negative photoresist polymer SU-8, for a low cost material, which is also biocompatible. If varying the clay loading of the composite material yields a variation of the Young's modulus, the tailored material stiffness presents an opportunity for fabrication of microcantilevers with tunable sensor sensitivity. With this microcantilever application perspective, mechanical and thermal properties of the material were investigated. SU-8/Clay nanocomposite samples were prepared with clay loadings from 1wt% - 10wt%. Tensile test results show a general trend of increase in composite modulus with an increase in the clay loading up to 7wt%, followed by a small drop at 10wt%. The composite material indeed yields moderate variation of the Young's modulus. It was also found that the thermal degradation peak of the material occurred at 300°C, which is beyond the operating temperature of typical microcantilever sensor applications. The fabrication of a custom designed microcantilever array chip with the SU-8/Clay nanocomposite material was achieved in a class 100 cleanroom, using spin-coating and photolithography microfabrication techniques. The optimization of the process for fabricating microcantilever with the SU-8/Clay nanocomposite material is discussed in this paper. The results of this research are promising for cheaper mass production of low cost disposable, yet sensitive, microcantilever sensor elements, including biosensor applications.

  20. Composite material application for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Heubner, S. W.

    1982-01-01

    With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.