Science.gov

Sample records for fabric reinforced composites

  1. Elastic properties of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Ramnath, V.

    1985-01-01

    An analytical model for the realistic representation of a woven fabric reinforced composite is presented in this paper. The approach uses a variable cross-section geometric model in order to achieve geometric compatibility at the yarn cross-over regions. Admissible displacement and stress fields are used to determine bounds on the fabric elastic properties. The approach adopted enables the determination of the complete three-dimensional woven fabric composite properties. The in-plane fabric properties obtained through this approach have been compared with results obtained from other approaches existing in the literature. Also, comparisons made with available experimental data indicate good agreement.

  2. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  3. Finite element analysis of the stiffness of fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.

  4. Strength of fabric reinforced Blackglas composites

    SciTech Connect

    Lei, C.; Ko, F.K.

    1996-12-31

    In brittle matrix composites the role of matrix porosity; interface; and matrix/fiber properties degradation due to processing are especially critical for the strength of the composite. In this paper, the Fabric Geometry Model (FGM) is modified to predict the strength of fabric composites. An incremental strain approach in conjunction with strain energy criterion is presented in order to account for the potentially nonlinear behavior of the materials, as seen in the experimental stress-strain curves of Nextel/Blackglas, composites. The failure of the composite is determined by use of a modified maximum strain energy criterion, which is based on the relative magnitudes of the various energy terms in corresponding direction. The effects of porosity, microcracks, fiber and matrix degradation, and fiber/matrix interface are also considered in the modified model.

  5. Processes for fabricating composite reinforced material

    SciTech Connect

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  6. Analysis of woven fabrics for reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Dow, Norris F.; Ramnath, V.; Rosen, B. Walter

    1987-01-01

    The use of woven fabrics as reinforcements for composites is considered. Methods of analysis of properties are reviewed and extended, with particular attention paid to three-dimensional constructions having through-the-thickness reinforcements. Methodology developed is used parametrically to evaluate the performance potential of a wide variety of reinforcement constructions including hybrids. Comparisons are made of predicted and measured properties of representative composites having biaxial and triaxial woven, and laminated tape lay-up reinforcements. Overall results are incorporated in advanced weave designs.

  7. Composition and method for making polyimide resin-reinforced fabric

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1981-01-01

    A composition for making polyimide resin reinforced fibers or fabric is discussed. The composition includes a polyfunctional ester, a polyfunctional amine, and an end capping agent. The composition is impregnated into fibers or fabric and heated to form prepreg material. The tack retention characteristics of this prepreg material are improved by incorporating into the composition a liquid olefinic material compatible with the other ingredients of the composition. The prepreg material is heated at a higher temperature to effect formation of the polyimide resin and the monomeric additive is incorporated in the polyimide polymer structure.

  8. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  9. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  10. A theory of viscoplasticity for fabric-reinforced composites

    NASA Astrophysics Data System (ADS)

    Spencer, A. J. M.

    2001-11-01

    Some composite structures are constructed by impregnating sheets of fabric with a matrix material, and forming into a desired shape at a temperature at which the matrix flows easily. Here constitutive equations are formulated for flow of fabric-reinforced composite materials that exhibit viscoplastic response at the forming temperature. The theory is the analogue, for materials with material symmetries appropriate for fabric-reinforced materials, of the theory of Bingham solids for isotropic materials. The theory is formulated for general three-dimensional deformations, but simplifies greatly when specialised to the case of plane stress. In this case, the rheological behaviour is described by a single plasticity parameter and a single viscosity; these are functions of the current angle between the two families of fibres that form the fabric. The analysis is applied to the analysis of the 'picture-frame' experiment, and it is shown that this experiment provides a method of measuring the response functions. The effect of symmetry of the fabric architecture is considered, and it is found that for some practical fabric architectures the theory allows the possibility of different responses to in-plane shearing in different shearing directions, as has been observed in picture-frame experiments.

  11. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  12. Determining micro- and macro- geometry of fabric and fabric reinforced composites

    NASA Astrophysics Data System (ADS)

    Huang, Lejian

    Textile composites are made from textile fabric and resin. Depending on the weaving pattern, composite reinforcements can be characterized into two groups: uniform fabric and near-net shape fabric. Uniform fabric can be treated as an assembly of its smallest repeating pattern also called a unit cell; the latter is a single component with complex structure. Due to advantages of cost savings and inherent toughness, near-net shape fabric has gained great success in composite industries, for application such as turbine blades. Mechanical properties of textile composites are mainly determined by the geometry of the composite reinforcements. The study of a composite needs a computational tool to link fabric micro- and macro-geometry with the textile weaving process and composite manufacturing process. A textile fabric consists of a number of yarns or tows, and each yarn is a bundle of fibers. In this research, a fiber-level approach known as the digital element approach (DEA) is adopted to model the micro- and macro-geometry of fabric and fabric reinforced composites. This approach determines fabric geometry based on textile weaving mechanics. A solver with a dynamic explicit algorithm is employed in the DEA. In modeling a uniform fabric, the topology of the fabric unit cell is first established based on the weaving pattern, followed by yarn discretization. An explicit algorithm with a periodic boundary condition is then employed during the simulation. After its detailed geometry is obtained, the unit cell is then assembled to yield a fabric micro-geometry. Fabric micro-geometry can be expressed at both fiber- and yarn-levels. In modeling a near-net shape fabric component, all theories used in simulating the uniform fabric are kept except the periodic boundary condition. Since simulating the entire component at the fiber-level requires a large amount of time and memory, parallel program is used during the simulation. In modeling a net-shape composite, a dynamic molding

  13. Apparatus and process for freeform fabrication of composite reinforcement preforms

    NASA Technical Reports Server (NTRS)

    Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)

    2001-01-01

    A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.

  14. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  15. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  16. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; McLaughlin, J.C.; Probst, K.J.; Anderson, T.J.; Starr, T.L.

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  17. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Matlin, W.M.; Liaw, P.K.

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  18. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  19. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    NASA Astrophysics Data System (ADS)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  20. Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites

    NASA Astrophysics Data System (ADS)

    Haydaruzzaman; Khan, Ruhul A.; Khan, Mubarak A.; Khan, A. H.; Hossain, M. A.

    2009-11-01

    Jute fabrics-reinforced polypropylene (PP) composites (50% fiber) were prepared by compression molding. Composites were fabricated with non-irradiated jute fabrics/non-irradiated PP (C-0), non-irradiated jute fabrics/irradiated PP (C-1), irradiated jute fabrics/non-irradiated PP (C-2) and irradiated jute fabrics/irradiated PP (C-3). It was found that C-3 composite performed the best mechanical properties over other composites. Total radiation dose varied from 250-1000 krad and composites made of using 500 krad showed the best results. The optimized values (C-3 composites) for tensile strength (TS), bending strength (BS) and impact strength (IS) were found to be 63 MPa, 73 MPa and 2.93 kJ/m 2, respectively.

  1. Hemp reinforced composites: surface treatment, manufacturing method and fabric type effects

    SciTech Connect

    Cicala, G.; Cristaldi, G.; Recca, G.

    2010-06-02

    Hemp mats and weaved fabrics were used as received and after surface treatment as reinforcement for composites. Mercerization and amino silane surface treatments improved fibre/matrix adhesion and, as results, the mechanical properties of the composites were also improved. However, if surface treatment was too severe degradation of the mechanical properties of the single fibre was observed and this resulted in a reinforcing efficiency loss. Weaved fabrics obtained from twisted fibres in unidirectional and 0/90 deg. architecture were used. The use of weaved fabrics lead to high improvements of composite mechanical properties despite the absence of fibre's surface treatment. The specimens manufactured by LRTM (Light Resin Transfer Moulding) showed enhanced mechanical properties compared to specimens made by hand lay up. Mechanical models were also used to predict the mechanical properties of the composites.

  2. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-05-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory (CLT), combined with Finite Element Methods (FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  3. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  4. Mechanical Properties of Sisal/Coir Fiber Reinforced Hybrid Composites Fabricated by Cold Pressing Method

    NASA Astrophysics Data System (ADS)

    Akash; Sreenivasa Rao, K. V.; Venkatesha Gupta, N. S.; kumar, D. S. Arun

    2016-09-01

    Bio-composites have less density and are environmental friendly materials that require less energy during production and subsequent machining. This paper reports the mechanical and water absorption properties of sodium hydroxide (NaOH) treated sisal and coir fiber reinforced epoxy resin thermo set hybrid composites. The hybrid composites were prepared by traditional cold pressing method at room temperature with applied pressure of 410.4 kg/cm2 for 3 hours pressurization time. The mechanical properties were characterized according to ASTM standards. Hybrid composites with 40wt% of sisal and coir fiber were found to possess higher tensile strength of 48.2MPa and flexural strength of 76.68 MPa among the fabricated hybrid composite specimens. Absorption of water increases with increasing fiber volume. The experimental result also show that the sisal and coir fibers are promising reinforcement for use in low cost bio-composites which have high strength to weight ratio.

  5. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  6. Analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.

  7. Failure analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  8. Failure analysis of woven and braided fabric reinforced composites

    SciTech Connect

    Naik, R.A.

    1994-09-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  9. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  10. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  11. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  12. Fabrication of fibre reinforced nickel aluminide matrix composites by reactive processing

    SciTech Connect

    Downing, M.; Horsfall, I.

    1994-12-31

    This paper describes the fabrication by reactive processing of short, and continuous, alumina fibre reinforced nickel aluminide matrix composites. The fibre is introduced into the aluminide system to increase toughness and high temperature strength. The short fibre reinforced nickel aluminide is formed by squeeze casting a porous preform containing nickel powder and SAFFIL fibre with an aluminium or aluminium alloy melt. The continuous fibre reinforced nickel aluminide is formed by squeeze casting a jig containing nickel coated ALMAX fibre. The short fibre reinforced composite (containing 10% and 20% volume fibre) reacted during infiltration with an aluminium melt to form a single phase intermetallic. Using an aluminium-copper melt the intermetallic formation was inhibited and a multi-phase composite was obtained. A preliminary study into reactive processing of this system by utilising a hot isostatic pressing (HIP) cycle is presented. HIP was required to prevent the formation of porosity due to an imbalance in the diffusive mobility of the various components. It was found that HIP was only effective on canned samples, the preferred encapsulation material being glass. The continuous fibre reinforced composite did not react to an intermetallic phase when infiltrated with an aluminum melt. Use of an aluminum-copper melt resulted in partial nickel-melt reaction producing various nickel-aluminum (-copper) phases. HIP was then used to form a two phase intermetallic matrix with no evidence of fibre damage.

  13. Alternative fabrication method for chairside fiber-reinforced composite resin provisional fixed partial dentures.

    PubMed

    Ballo, Ahmed; Vallittu, Pekka

    2011-01-01

    A high level of clinical skill is required for fabricating a provisional fixed partial denture with fiber-reinforced composite resin (FRC) using either the direct or chairside technique. The freehand approach to restoring missing teeth represents a challenge to the clinician, particularly when shaping and finishing a hygienic pontic. This technical report describes a simplified method for chairside fabrication of a fixed dental prosthesis with FRC. It is based on using a translucent template to guide the buildup procedure and to ensure optimal anatomy and function. PMID:21909486

  14. Fabrication and Characterization of Carbon Nanofiber Reinforced Shape Memory Epoxy (CNFR-SME) Composites

    NASA Astrophysics Data System (ADS)

    Wang, Jiuyang

    Shape memory polymers have a wide range of applications due to their ability to mechanically change shapes upon external stimulus, while their achievable composite counterparts prove even more versatile. An overview of literature on shape memory materials, fillers and composites was provided to pave a foundation for the materials used in the current study and their inherent benefits. This study details carbon nanofiber and composite fabrication and contrasts their material properties. In the first section, the morphology and surface chemistry of electrospun-poly(acrylonitrile)-based carbon nanofiber webs were tailored through various fabrication methods and impregnated with a shape memory epoxy. The morphologies, chemical compositions, thermal stabilities and electrical resistivities of the carbon nanofibers and composites were then characterized. In the second section, an overview of thermal, mechanical and shape memory characterization techniques for shape memory polymers and their composites was provided. Thermal and mechanical properties in addition to the kinetic and dynamic shape memory performances of neat epoxy and carbon nanofiber/epoxy composites were characterized. The various carbon nanofiber web modifications proved to have notable influence on their respective composite performances. The results from these two sections lead to an enhanced understanding of these carbon nanofiber reinforced shape memory epoxy composites and provided insight for future studies to tune these composites at will.

  15. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    NASA Astrophysics Data System (ADS)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  16. Damage and fracture in fabric-reinforced composites under quasi-static and dynamic bending

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2013-07-01

    Fabric-reinforced polymer composites used in sports products can be exposed to different in-service conditions such as large deformations caused by quasi-static and dynamic loading. Composite materials subjected to such bending loads can demonstrate various damage modes - matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in composites affects both their in-service properties and performance that can deteriorate with time. Such behaviour needs adequate means of analysis and investigation, the main approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in carbon fabric-reinforced polymer (CFRP) laminates caused by quasi-static and dynamic bending. Experimental tests were carried out to characterise the behaviour of a CFRP material under large-deflection bending, first in quasi-static and then in dynamic conditions. Izod-type impact bending tests were performed on un-notched specimens of CFRP using a Resil impactor to assess the transient response and energy absorbing capability of the material. X-ray micro computed tomography (micro-CT) was used to analyse various damage modes in the tested specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply and intra-ply delamination such as tow debonding, and fabric fracture were the prominent damage modes both in quasi-static and dynamic test specimens. However, the inter-ply damage was localised at impact location in dynamically tested specimens, whereas in the quasi-static specimens, it spread almost over the entire interface.

  17. Solid Free-Form Fabrication of Continuous Fiber Reinforced Composites for Propulsion Application

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Walish, J.; Fox, M.; Rigali, M.; Sutaria, M.; Gillespie, John W., Jr.; Yarlagadda, Shridhar; Effinger, Mike; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    For propulsion related applications, materials must be able to demonstrate excellent ablation and oxidation resistance at temperature approaching 3500 C, adequate load bearing capabilities, non-catastrophic failure modes, and ability to withstand transient thermal shock. A potential list of propulsion-material property requirements includes, low density, high elastic modulus, low thermal-expansion coefficient, high thermal conductivity, excellent erosion and oxidation/corrosion resistance, and flaw-insensitivity. In many cases, they will also need to be able to be joined, survive thermal cycling and multi-axial stress states, and for reusable applications, the materials must maintain the above attributes after prolonged exposure to extremely harsh chemical environments. The final and possibly most important attribute for these materials are the need to be lower cost and readily available in large quantities. Recently, Advanced Ceramics Research, Inc. (ACR) has developed low cost, flexible-manufacturing processes for Zr & Hf-based carbon fiber reinforced composites, materials with good oxidation and ablation resistance up to 3500 C. This process, called Continuous Composite Co-extrusion (C(sup 3)), incorporates carbon fibers to fabricate 'in-situ' carbide and boride-matrix/carbon fiber composites. M is a variation of ACR's manufacturing process for low-cost structural ceramic materials called Fibrous Monoliths with carbon fiber reinforcements. Fibrous Monolithic materials have a distinct fibrous texture, consist of intertwined cells of a primary phase, separated by cell boundaries of a tailored secondary phase and show very high fracture energies, damage tolerance, and graceful failure. Since they are monolithic powder based composites; they can be manufactured by conventional powder processing techniques using inexpensive raw materials. This combination of high performance and low cost is a breakthrough that could enable wider application of ceramics in high

  18. Solid Freeform Fabrication of Continuous Fiber Reinforced Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Walish, J.; Fox, M.; Rigali, M.; Sutaria, M.; Gillespie, John W., Jr.; Yarlagadda, Shridhar; Effinger, Mike

    2000-01-01

    For propulsion related applications, materials must be able to demonstrate excellent ablation and oxidation resistance at temperature approaching 3500'C, adequate load bearing capabilities, non-catastrophic failure modes, and ability to withstand transient thermal shock. A potential list of propulsion-material property requirements includes, low density, high elastic modulus, low thermal-expansion coefficient, high thermal conductivity, excellent erosion and oxidation/corrosion resistance, and flaw-insensitivity. In many cases, they will also need to be able to be joined, survive thermal cycling and multi-axial stress states, and for reusable applications, the materials must maintain the above attributes after prolonged exposure to extremely harsh chemical environments. The final and possibly most important attribute for these materials are the need to be lower cost and readily available in large quantities. Recently, Advanced Ceramics Research, Inc. (ACR) has developed low cost, flexible- manufacturing processes for Zr & Hf-based carbon fiber reinforced composites, materials with good oxidation and ablation resistance up to 3500 C. This process, called Continuous Composite Co-extrusion (C(sup 3)), incorporates carbon fibers to fabricate 'in-situ' carbide and boride-matrix/carbon fiber composites. This is a variation of ACR's manufacturing process for low-cost structural ceramic materials called Fibrous Monoliths With carbon fiber reinforcements. Fibrous Monolithic materials have a distinct fibrous texture, consist of intertwined cells of a primary phase, separated by cell boundaries of a tailored secondary phase and show very high fracture energies, damage tolerance, and graceful failure. Since they are monolithic powder based composites-, they can be manufactured by conventional powder processing techniques using inexpensive raw materials. This combination of high performance and low cost is a breakthrough that could enable wider application of ceramics in high

  19. Fabrication and fracture behavior of metallic fiber reinforced NiAl matrix composites

    SciTech Connect

    Chang, S.Y.; Lin, S.J.

    1997-07-01

    NiAl intermetallic is recently of considerable interest as the high temperature structure material because of its high melting point, high specific stiffness, better oxidation and creep resistance. However, the low-temperature brittleness of the NiAl intermetallic remained a main reason for its unpopularity for industrial applications. Composite ductile phase toughening approaches have been utilized by many researchers to improve the fracture toughness of intermetallics. In liquid metallurgy, pressure casting or infiltration of molten nickel aluminide into a preform is the usual method for the fabrication of nickel aluminide intermetallic composites. But generally, it is not useful for metallic reinforcements because of the drastic reactions between the molten nickel aluminide and the metallic preform, and the difficulty in sustaining the performance of the metallic preform at a high temperature. In solid metallurgy, this process is based on reactive powder metallurgy and hot pressing, hot extrusion and hot isostatic pressing (HIP). High processing temperature and pressure, generally at a temperature of at least 1,200 C, are necessary conditions for hot pressing, hot extrusion and HIP. Hence the processes require sophisticated manufacturing equipment and considerable energy and render the application of nickel aluminide intermetallic composites unpopular. Work on reactive hot pressing(RHP) at a low temperature near the melting point of aluminum is reconsidered again. Efforts indicated that by combining the spontaneous reaction of the electrically coated nickel film and the aluminum foils, and hot pressing at a temperature about 500 C lower than previously accomplished by HIP, would overcome the fabrication problem of NiAl intermetallic composites reinforced with the uniformly distributed metallic fibers.

  20. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  1. Influence of constituent properties and geometric form on behavior of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Wilson, D. W.

    1984-01-01

    Th potential for woven fabric composite forms to increase the interlaminar strength and toughness properties of laminated composite septems is studied. Experimental and analytical studies were performed on a z-axis fabric.

  2. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  3. Approximating the stress field within the unit cell of a fabric reinforced composite using replacement elements

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1993-01-01

    This report concerns the prediction of the elastic moduli and the internal stresses within the unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed to be small with respect to the thickness of the composite structure that it models. The finite element analysis of a unit cell is usually complicated by the mesh generation problems and the non-standard, adjacent-cell boundary conditions. This analysis avoids these problems through the use of preprogrammed boundary conditions and replacement materials (or elements). With replacement elements it is not necessary to match all the constitutional material interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the unit cell structure. The analysis predicts the elastic constants and the average stresses within each constituent material of each brick element. The application and results of this analysis are demonstrated through several example problems which include a number of composite microstructures.

  4. Influence of laminate sequence and fabric type on the inherent acoustic nonlinearity in carbon fiber reinforced composites.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel J; Dayal, Vinay

    2016-05-01

    This paper presents the study of influence of laminate sequence and fabric type on the baseline acoustic nonlinearity of fiber-reinforced composites. Nonlinear elastic wave techniques are increasingly becoming popular in detecting damage in composite materials. It was earlier observed by the authors that the non-classical nonlinear response of fiber-reinforced composite is influenced by the fiber orientation [Chakrapani, Barnard, and Dayal, J. Acoust. Soc. Am. 137(2), 617-624 (2015)]. The current study expands this effort to investigate the effect of laminate sequence and fabric type on the non-classical nonlinear response. Two hypotheses were developed using the previous results, and the theory of interlaminar stresses to investigate the influence of laminate sequence and fabric type. Each hypothesis was tested by capturing the nonlinear response by performing nonlinear resonance spectroscopy and measuring frequency shifts, loss factors, and higher harmonics. It was observed that the laminate sequence can either increase or decrease the nonlinear response based on the stacking sequence. Similarly, tests were performed to compare unidirectional fabric and woven fabric and it was observed that woven fabric exhibited a lower nonlinear response compared to the unidirectional fabric. Conjectures based on the matrix properties and interlaminar stresses were used in an attempt to explain the observed nonlinear responses for different configurations.

  5. Mechanical properties and fabrication of small boat using woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite

    NASA Astrophysics Data System (ADS)

    Misri, S.; Leman, Z.; Sapuan, S. M.; Ishak, M. R.

    2010-05-01

    In recent years, sugar palm fibre has been found to have great potential to be used as fibre reinforcement in polymer matrix composites. This research investigates the mechanical properties of woven glass/sugar palm fibres reinforced unsaturated polyester hybrid composite. The composite specimens made of different layer of fibres such as strand mat, natural and hand woven of sugar palm fibres. The composites were fabricated using a compression moulding technique. The tensile and impact test was carried out in accordance to ASTM 5083 and ASTM D256 standard. The fibre glass boat is a familiar material used in boat industry. A lot of research on fabrication process such as lay-up, vacuum infusion mould and resin transfer mould has been conducted. Hybrid material of sugar palm fibre and fibre glass was used in fabricating the boat. This research investigates the method selection for fabrication of small boat application of natural fibre composites. The composite specimens made of different layer of fibres; woven glass fibre, strand mat, natural and hand woven of woven sugar palm fibres were prepared. The small boat were fabricated using a compression moulding and lay up technique. The results of the experiment showed that the tensile strength, tensile modulus, elongation at break value and impact strength were higher than the natural woven sugar palm fibre. The best method for fabricating the small boat was compression moulding technique. As a general conclusion, the usage of glass fibre had improved the tensile properties sugar palm fibre composites and compression moulding technique is suitable to be used in making a small boat application of natural fibre composites.

  6. Comparison between viscous elastic plastic behaviour of the composites reinforced with plain glass fabric and chopped strand mat

    NASA Astrophysics Data System (ADS)

    Stanciu, M. D.; Harapu, A.; Teodorescu Drăghicescu, H.; Curtu, I.; Savin, A.

    2016-08-01

    Composite structures are used mainly two types of reinforcement materials: woven glass fabric and the chopped strand mat, each contributing either to increase the resistance of the composite whole or in isotropic distribution of stresses. This paper presents a comparison of the visco-elastic characteristics of composites reinforced with glass fabric and the chopped strand mat and the breaking mode of the two types of the composite. The first type of samples contain three layers of chopped strand mat known as MAT with density of 450g/m2 and 225g/m2) and the second type is composed of four layers of woven glass fabric type RT500 (density of 500g/m2). Both specimens were cut in accordance with EN ISO 527-2 SR. Characteristic curve of the two types of specimens highlights visco-elastic-plastic behavior which largely depends on the type of reinforcement used as the matrix resin is the same in both cases (orthophthalic polyester resin). Breaking mode of those types of specimens were observed and analyzed by electronic microscope.

  7. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Choudhary, Veena; Saini, Parveen; Mathur, R. B.

    2012-06-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from -29.4 dB for CF/epoxy-composite to -51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  8. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: fabrication and mechanical characterization.

    PubMed

    Charles, Lyndon F; Kramer, Erica R; Shaw, Montgomery T; Olson, James R; Wei, Mei

    2013-01-01

    Self-reinforced composites (SRCs) are materials where both the matrix and fiber-reinforcing phase are made up of the same polymer. Improved bonding can be achieved with self-reinforced composites compared to traditional dual-polymer, fiber-reinforced composites owing to the identical chemistry of the components in SRCs. Bonding between the fiber and matrix phase is an important factor in applications where mechanical stability is required, such as in the field of bone repair. In this study, we prepared bioabsorbable poly(L-lactic acid)/hydroxyapatite (PLLA/HA) self-reinforced composites via a three-step process that includes surface etching of the fiber, the deposition of the HA coating onto the PLLA fibers through immersion in simulated body fluid (SBF), and hot compaction molding. Although coated with a layer of HA, self-reinforced composites were successfully generated by hot compaction. The effects of compaction time (15 and 30 min), compaction temperature (140, 150, 155, 160, 165, and 170 °C), and HA wt% (0, 5, 10, and 15 wt%) on flexural mechanical properties were studied. Mechanical test results indicated that in unfilled (no HA) PLLA SRCs, compaction time and temperature increased the flexural modulus of the composites tested. Based on the results obtained for unfilled composites, a single compaction time and temperature condition of 15 min and 170 °C were selected to study the effect of HA loading on the composite mechanical properties. HA was successfully loaded onto the fibers at 0, 5, 10, and 15 wt% before hot compaction and was found to significantly increase flexural modulus (P=0.0001). Modulus values ranged from 8.3 GPa±0.5 (0 wt% HA) to 9.7 GPa±0.6 (15 wt% HA). Microscopy results suggest that the HA in these composites forms a nodular-like structure along the fibers, which allows polymer-polymer contact yet prevents longitudinal shear. The procedure used successfully generated composites with flexural moduli near the lower range of bone that may

  9. A study of woven fabric-reinforced composite materials using an invariant-based orthotropic plasticity formulation

    SciTech Connect

    Blackketter, D.M.

    1989-01-01

    This dissertation presents an investigation of the mechanical behavior of woven fabric-reinforced composite materials. Linear and nonlinear material behavior of a woven fabric-reinforced composite was modeled using a three-dimensional finite element computer program. Tension and shear load case were investigated using a minimechanics unit cell and results from the finite element analysis were compared to experimental data. The three-dimensional finite element computer program was developed based on an existing computer program known as WYO3D initially developed by the Composite Materials Research Group at the University of Wyoming. This computer program was modified in order to conduct a nonlinear finite element analysis for either material nonlinearities and/or nonlinear behavior due to material damage. To perform the analysis a constitutive relation was needed which accurately predicted the nonlinear behavior for a wide range of orthotropic composite materials. Work presented here develops an invariant-based flow rule which was able to predict plastic behavior of orthotropic materials without the use of an effective stress-effective strain relation. This orthotropic plasticity formulation represents a major contribution to the analysis of composite materials over previously used theories. The finite element formulation for the invariant-based flow rule has also been presented. A finite element formulation was developed and implemented which was able to predict material damage occurring within the composite material.

  10. Investigation and modeling of the elastic-plastic fracture behavior of continuous woven fabric-reinforced ceramic composites

    SciTech Connect

    Kahl, W.K.

    1997-03-01

    The paper describes a study which attempted to extrapolate meaningful elastic-plastic fracture toughness data from flexure tests of a chemical vapor-infiltrated SiC/Nicalon fiber-reinforced ceramic matrix composite. Fibers in the fabricated composites were pre-coated with pyrolytic carbon to varying thicknesses. In the tests, crack length was not measured and the study employed an estimate procedure, previously used successfully for ductile metals, to derive J-R curve information. Results are presented in normalized load vs. normalized displacements and comparative J{sub Ic} behavior as a function of fiber precoating thickness.

  11. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  12. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  13. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice

    NASA Astrophysics Data System (ADS)

    Chen, Mingji; Pei, Yongmao; Fang, Daining

    2012-07-01

    Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5 g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below -10 dB over the frequency range of 4-18 GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.

  14. Influence of fabrication technique on the fiber pushout behavior in a sapphire-reinforced NiAl matrix composite

    NASA Astrophysics Data System (ADS)

    Asthana, R.; Tewari, S. N.; Bowman, R. R.

    1995-01-01

    Directional solidification (DS) of “powder-cloth” (PC) processed sapphire-NiAl composites was carried out to examine the influence of fabrication technique on the fiber-matrix interfacial shear strength, measured using a fiber-pushout technique. The DS process replaced the fine, equiaxed NiAl grain structure of the PC composites with an oriented grain structure comprised of large columnar NiAl grains aligned parallel to the fiber axis, with fibers either completely engulfed within the NiAl grains or anchored at one to three grain boundaries. The load-displacement behavior during the pushout test exhibited an initial “pseudoelastic” response, followed by an “inelastic” response, and finally a “frictional” sliding response. The fiber-matrix interfacial shear strength and the fracture behavior during fiber pushout were investigated using an interrupted pushout test and fractography, as functions of specimen thickness (240 to 730 μm) and fabrication technique. The composites fabricated using the PC and the DS techniques had different matrix and interface structures and appreciably different interfacial shear strengths. In the DS composites, where the fiber-matrix interfaces were identical for all the fibers, the interfacial debond shear stresses were larger for the fibers embedded completely within the NiAl grains and smaller for the fibers anchored at a few grain boundaries. The matrix grain boundaries coincident on sapphire fibers were observed to be the preferred sites for crack formation and propagation. While the frictional sliding stress appeared to be independent of the fabrication technique, the interfacial debond shear stresses were larger for the DS composites compared to the PC composites. The study highlights the potential of the DS technique to grow single-crystal NiAl matrix composites reinforced with sapphire fibers, with fiber-matrix interfacial shear strength appreciably greater than that attainable by the current solid

  15. Optimized process parameters for fabricating metal particles reinforced 5083 Al composite by friction stir processing

    PubMed Central

    Bauri, Ranjit; Yadav, Devinder; Shyam Kumar, C.N.; Janaki Ram, G.D.

    2015-01-01

    Metal matrix composites (MMCs) exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007) [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP) that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 μm) and ball-milled finer particles (10 μm) were incorporated in the Al matrix using the optimized parameters. PMID:26566541

  16. Penetration of carbon-fabric-reinforced composites by edge cracks during thermal aging

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Kamvouris, John E.

    1994-01-01

    Thermo-oxidative stability (TOS) test results are significantly influenced by the formation and growth or presence of interlaminar and interlaminar cracks in the cut edges of all carbon-fiber-crosslinked high-temperature polymer matrix composites(exp 1-5) (i.e., unidirectional, crossplied, angle-plied, and fabric composites). The thermo-oxidative degradation of these composites is heavily dependent on the surface area that is exposed to the harmful environment and on the surface-to-volume ratio of the structure under study. Since the growth of cracks and voids on the composite surfaces significantly increases the exposed surface areas, it is imperative that the interaction between the aging process and the formation of new surface area as the aging time progresses be understood.

  17. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    PubMed

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  18. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  19. On processing development for fabrication of fiber reinforced composite, part 2

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Hou, Gene J. W.; Sheen, Jeen S.

    1989-01-01

    Fiber-reinforced composite laminates are used in many aerospace and automobile applications. The magnitudes and durations of the cure temperature and the cure pressure applied during the curing process have significant consequences for the performance of the finished product. The objective of this study is to exploit the potential of applying the optimization technique to the cure cycle design. Using the compression molding of a filled polyester sheet molding compound (SMC) as an example, a unified Computer Aided Design (CAD) methodology, consisting of three uncoupled modules, (i.e., optimization, analysis and sensitivity calculations), is developed to systematically generate optimal cure cycle designs. Various optimization formulations for the cure cycle design are investigated. The uniformities in the distributions of the temperature and the degree with those resulting from conventional isothermal processing conditions with pre-warmed platens. Recommendations with regards to further research in the computerization of the cure cycle design are also addressed.

  20. Fabrication of in-situ grown graphene reinforced Cu matrix composites

    PubMed Central

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244 MPa and tensile strength of 274 MPa were achieved in the composite with 0.95 wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening. PMID:26763313

  1. The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers

    PubMed Central

    Liao, Cheng Zhu; Wong, Hoi Man; Yeung, Kelvin Wai Kwok; Tjong, Sie Chin

    2014-01-01

    This study focuses on the design, fabrication, microstructural and property characterization, and biocompatibility evaluation of polypropylene (PP) reinforced with carbon nanofiber (CNF) and hydroxyapatite nanorod (HANR) fillers. The purpose is to develop advanced PP/CNF–HANR hybrids with good mechanical behavior, thermal stability, and excellent biocompatibility for use as craniofacial implants in orthopedics. Several material-examination techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile tests, and impact measurement are used to characterize the microstructural, mechanical, and thermal properties of the hybrids. Furthermore, osteoblastic cell cultivation and colorimetric assay are also employed for assessing their viability on the composites. The CNF and HANR filler hybridization yields an improvement in Young’s modulus, impact strength, thermal stability, and biocompatibility of PP. The PP/2% CNF–20% HANR hybrid composite is found to exhibit the highest elastic modulus, tensile strength, thermal stability, and biocompatibility. PMID:24648729

  2. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  3. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  4. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  5. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  6. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  7. Fabrication and properties of alumina matrix composites containing nickel aluminide reinforcements

    SciTech Connect

    Alexander, K.B.; Lin, H.T.; Schneibel, J.H.; Becher, P.F.

    1994-09-01

    Ductile nickel-aluminide intermetallic alloys have been successfully used to toughen ceramic materials intended for use at a wide range of temperatures. Traditional ceramic processing procedures have been used to produce a variety of microstructures. The fracture toughness increases with increasing particle aspect ratio, however, the flexural strength decreases with increasing particle size. Fracture toughnesses up to 7.6 MPa m{sup 1/2} and flexural strengths up to 550 MPa were observed in an alumina composite containing 10 vol.% nickel aluminide.

  8. Using In situ Dynamic Cultures to Rapidly Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for Antibacterial Wound Dressings

    PubMed Central

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Hong, Feng F.

    2016-01-01

    Bacterial nano-cellulose (BNC) is considered to possess incredible potential in biomedical applications due to its innate unrivaled nano-fibrillar structure and versatile properties. However, its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS)/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25–0.75% (w/v) during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 to 5 days as compared to the conventional static cultures. Although, its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients. PMID:26973634

  9. Using In situ Dynamic Cultures to Rapidly Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for Antibacterial Wound Dressings.

    PubMed

    Zhang, Peng; Chen, Lin; Zhang, Qingsong; Hong, Feng F

    2016-01-01

    Bacterial nano-cellulose (BNC) is considered to possess incredible potential in biomedical applications due to its innate unrivaled nano-fibrillar structure and versatile properties. However, its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS)/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25-0.75% (w/v) during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 to 5 days as compared to the conventional static cultures. Although, its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients. PMID:26973634

  10. Microstructural characterization of fiber-reinforced composites

    SciTech Connect

    Summerscales, J.

    1998-12-31

    In the past 50 years, great progress has been made in developing artificial fiber-reinforced composite materials, generally using filaments with microscopic diameters. An array of reinforcement forms can be used in commercial applications--with the microstructure being a critical factor in realizing the required properties in a material. This book comprehensively examines the application of advanced microstructural characterization techniques to fiber-reinforced composites. Its contents include: (1) flexible textile composite microstructure; (2) 3-D confocal microscopy of glass fiber-reinforced composites; (3) geometric modeling of yarn and fiber assemblies; (4) characterization of yarn shape in woven fabric composites; (5) quantitative microstructural analysis for continuous fiber composites; (6) electron microscopy of polymer composites; (7) micromechanics of reinforcement using laser raman spectroscopy; and (8) acoustic microscopy of ceramic fiber composites.

  11. Post-failure Analysis and Fractography of In-plane Tension-Tested Tufted Carbon Fabric-Reinforced Epoxy Composite Laminates

    NASA Astrophysics Data System (ADS)

    Masa, Suresh Kumar; Mallya, Ambresha Basappa; Dhanapal, Karuppanan; Ramachandra, Ranganath Vemulapad; Kishore

    2015-04-01

    Tufted and plain unidirectional carbon fabric-reinforced epoxy composite laminates were fabricated by vacuum-enhanced resin infusion technology and subjected to in-plane tensile tests with a view to study the changes in mechanical properties and failure responses. Owing to the presence of tufts in the laminates, both the tensile strength and modulus decrease by ~38 and ~20%, respectively, vis- à- vis the values recorded for plain composites. The fracture features point to the fact that though both the composites fail in brittle manner, they, however, exhibit differing fiber pull out lengths. Further, it was noticed that for the tufted ones, crack originates in the vicinity of tuft thread, spreads through the composite in a brittle manner, and results in a display of shorter fiber pull out lengths. These observations and other results are discussed in this paper.

  12. Kevlar reinforced neoprene composites

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).

  13. Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda

    1998-01-01

    Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.

  14. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  15. Kevlar reinforced neoprene composites

    SciTech Connect

    Penn, B.G.; Daniels, J.G.; White, W.T.; Thompson, L.M.; Clemons, L.M.

    1985-04-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi). 1 reference, 2 tables.

  16. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  17. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  18. Long-term Isothermal Aging Effects on Weight Loss, Compression Properties, and Dimensions of T650-35 Fabric-reinforced PMR-15 Composites-data

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Tsuji, Luis; Kamvouris, John; Roberts, Gary D.

    2003-01-01

    A cooperative program was conducted with the General Electric Aircraft Engines plant in Evendale, Ohio, to study the effects of long-term isothermal aging at elevated temperatures on compression and thermal durability properties of T650 35 fabric-reinforced PMR 15 composites. This degradation study was conducted over an approximate time period of 3 1/2 yr. The aging temperatures were 204, 260, 288, 316, and 343 C. Specimens of different dimensions were evaluated. Specimens with ratios of the cut edge to total surface area of 0.03 to 0.89 were fabricated and aged. The aged and unaged specimens were tested in compression as specified in Test Method for Compressive Properties of Rigid Plastics (ASTM D695M). Thickness changes, degraded surface layer growth, weight loss, and failure modes were monitored and recorded. All property changes were thickness dependent.

  19. A comparison of the processing conditions for the fabrication of SiC/SiO{sub 2} and Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3} woven fibre reinforced composites

    SciTech Connect

    Trusty, P.A.; Illston, T.J.; Butler, E.G.

    1995-12-31

    The fabrication routes for a woven SiC fibre reinforced SiO{sub 2} matrix composite and a woven alumina fibre reinforced alumina matrix composite have been investigated. The woven fibre preforms were infiltrated with the appropriate precursor sol systems using a novel electrophoretic deposition technique. The formation of green body compacts from these infiltrated woven fibre mats and the subsequent high temperature consolidation treatments will be described for the two systems. Microstructural examination, density measurements and mechanical testing will highlight the importance of the green body infiltration stages in the processing of woven fibre reinforced ceramic matrix composites.

  20. Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery.

    PubMed

    Alemdar, Neslihan

    2016-10-20

    In this study, a novel pH-sensitive composite film with enhanced thermal and mechanical properties was prepared by the incorporation of bone ash at varying concentrations from 0 to 10v.% into gelatin/sodium alginate/hyaluronic acid (Gel/SA/HyA) polymeric structure for colon-specific drug delivery system. Films were characterized by FT-IR, SEM, and XRD analyses. Thermal and mechanical performances of films were determined by DSC, TGA and universal mechanical tester, respectively. Results proved that thermal stability and mechanical properties of bone ash-reinforced composite films improved significantly with respect to that of neat Gel/SA/HyA film. Cytotoxicity assay for composite films was carried out by using L929 cells. Water uptake capacity of films was determined by swelling test. Herein, release experiments of 5-Fluorouracil (5-FU) were performed in two different solutions (pH 2.1 and 7.4). The results assured that Gel/SA/HyA film containing BA could be considered as a potential biomaterial for controlled drug delivery systems. PMID:27474650

  1. The fabrication and tribological behavior of epoxy composites modified by the three-dimensional polyurethane sponge reinforced with dopamine functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Huaiyuan; Sun, Liyuan; Wang, Enqun; Zhu, Yixing; Zhu, Yanji

    2016-01-01

    Three-dimensional (3D) interpenetrating network structure epoxy composites were fabricated based on the modified carbon nanotube (CNT) reinforced flexible polyurethane (PU) sponge. CNTs were first functionalized with polydopamine (PDA) as revealed by TEM imaging, which is formed via the oxidative self-polymerization of dopamine. Then the functionalized CNTs (CNT-PDA) were successfully anchored on the skeleton surfaces of sponge, forming a continuous 3D carbon network. The interfacial interaction between modified PU sponge and epoxy (EP) matrix was significantly enhanced due to the covalent linkage of PDA. Improvement in the thermal stability of CNT-PDA/PU3D/EP composites was observed by TG analysis and related to the CNTs anchored on the skeleton of sponge. The tribological properties of pure EP, PU3D/EP and CNT-PDA/PU3D/EP composites were comparatively investigated in terms of different loads and velocities. Results demonstrated that CNT-PDA/PU3D/EP composites exhibited the best tribological performance owing to the strong interfacial interaction and the 3D carbon network structure. In particular, the wear resistance of CNT-PDA/PU3D/EP composites was 6.2 times and 3 times higher than those of pure EP and PU3D/EP composites under the applied load of 1.6 MPa, respectively.

  2. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

    PubMed

    Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K

    2016-08-20

    The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites.

  3. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

    PubMed

    Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K

    2016-08-20

    The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites. PMID:27178934

  4. Develop and demonstrate manufacturing processes for fabricating graphite filament reinforced polymide (Gr/PI) composite structural elements

    NASA Technical Reports Server (NTRS)

    Chase, V. A.; Harrison, E. S.

    1985-01-01

    A study was conducted to assess the merits of using graphite/polyimide, NR-150B2 resin, for structural applications on advanced space launch vehicles. The program was divided into two phases: (1) Fabrication Process Development; and (2) Demonstration Components. The first phase of the program involved the selection of a graphite fiber, quality assurance of the NR-150B2 polyimide resin, and the quality assurance of the graphite/polyimide prepreg. In the second phase of the program, a limited number of components were fabricated before the NR-150B2 resin system was removed from the market by the supplier, Du Pont. The advancement of the NR-150B2 polyimide resin binder was found to vary significantly based on previous time and temperature history during the prepregging operation. Strength retention at 316C (600F) was found to be 50% that of room temperature strength. However, the composite would retain its initial strength after 200 hours exposure at 316C (600F). Basic chemistry studies are required for determining NR-150B2 resin binder quality assurance parameters. Graphite fibers are available that can withstand high temperature cure and postcure cycles.

  5. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  6. Fabrication of Nano-SiC Particulate Reinforced Mg-8Al-1Sn Composites by Powder Metallurgy Combined with Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Peng; Wang, Zhi-Guo; Wang, Hui-Yuan; Zhu, Xian; Wu, Min; Jiang, Qi-Chuan

    2016-09-01

    Nano-SiC particulates (n-SiCp) reinforced Mg-8Al-1Sn (AT81) composites with different volume fractions (0, 0.25, 0.5 and 1.0 vol.%) were fabricated by powder metallurgy process (P/M) combined with hot extrusion. The mechanical properties of the composite increased as the n-SiCp content increased until the n-SiCp content exceeded 0.5 vol.%, at which point they began to decrease. For this reason, the 0.5 vol.% n-SiCp/AT81 composite was considered optimal. The 0.2% offset yield strength (YS), ultimate tensile strength (UTS) and elongation (ɛ) of 0.5 vol.% n-SiCp/AT81 composites increased from 175, 318 MPa and 4.5% to 239, 381 MPa and 8.3%, respectively, compared to AT81. Both, the strength and plasticity of the 0.5 vol.% n-SiCp/AT81 composites were improved as well. The improvement in mechanical properties can be attributed to the progressively refined matrix grain size, relatively uniform distribution of n-SiCP and the well-bonded interfaces between n-SiCp and the matrix.

  7. Analysis of Graphite-Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    2002-01-01

    Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.

  8. Interlocked fabric and laminated fabric Kevlar 49/epoxy composites

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.

    1988-01-01

    The mechanical behavior of a novel interlocked fabric reinforced Kevlar 49/epoxy composite has been measured and compared to those of a laminated Kevlar 49 fabric composite (which served as a reference material). Both composites were 5.0 mm thick, contained the same 50% in-plane fiber volume fraction and were fabricated in a similar manner using the same Dow DER 332 epoxy, Jeffamine T403-hardened resin system. The reference material (Material 1) was reinforced with seven plies of Dupont style 1033 Kevlar 49 fabric. A photomicrograph of a section polished parallel to one of the fiber directions is shown. The interlocked fabric was designed and woven for Sandia National Laboratories by Albany International Research Co., Dedham, MA. The main design criterion was to duplicate a sewn through-the-thickness fabric used in preliminary studies. The interlocked fabric composite (Material 2) contains roughly 4% by volume of through-the-thickness fiber reinforcement for the purpose of improving interlaminar strength. A photomicrograph of a section showing the warp-aligned binder yarns interlocking the six fabric plies together is shown. 2 refs., 8 figs.

  9. Composite laminate free edge reinforcement concepts

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, T., Jr.; Jones, R. M.

    1985-01-01

    The presence of a free edge in a laminated composite structure can result in delamination of the composite under certain loading conditions. Linear finite element analysis predicts large or even singular interlaminar stresses near the free edge. Edge reinforcements which will reduce these interlaminar stresses, prevent or delay the onset of delaminations, and thereby increase the strength and life of the structure were studied. Finite element models are used to analyze reinforced laminates which were subsequently fabricated and loaded to failure in order to verify the analysis results.

  10. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  11. Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute.

    PubMed

    Suwanprateeb, Jintamai; Luangwattanawilai, Ticomporn; Theeranattapong, Thunyanun; Suvannapruk, Waraporn; Chumnanvej, Sorayouth; Hemstapat, Warinkarn

    2016-07-01

    A novel bilayer knitted fabric-reinforced composite for potentially being used as a dural substitute was developed by solution infiltration of oxidized regenerated cellulose knitted fabric (ORC) with poly ε-caprolactone (PCL) solution at various concentrations ranging 10-40 g/100 mL. It was found that the density of all formulations did not differ significantly and was lower than that of the human dura. Microstructure of the samples typically comprised a bilayer structure having a nonporous PCL layer on one side and the ORC/PCL composite layer on another side. Tensile modulus and strength of the samples initially decreased with increasing PCL solution concentration for up to 20 g/100 mL and re-increased again with further increasing PCL solution concentration. Strain at break of all formulations were not significantly different. Watertight test revealed that all composites could prevent leakage at the pressure within the normal range of intracranial pressure. In vitro degradation study revealed that the weight loss percentage and change in tensile properties of all samples displayed biphasic profile comprising an initially rapid decrease and followed by a gradual decrease with incubation times afterward. Micro and macro porous channels were observed to be in situ generated in the composite layer by ORC dissolution and PCL resorption during degradation while nonporous layer remained relatively unchanged. The degradation rate was found to decrease with increasing PCL solution concentration. In vitro biocompatibility using alamar blue assay on selected samples showed that fibroblasts could attach and proliferate well at all incubation periods. PMID:27278580

  12. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  13. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  14. Acoustic emission from composite-reinforced metals

    NASA Technical Reports Server (NTRS)

    Henneke, E. G., II; Herakovich, C. T.; Jones, G. L.; Renieri, M. P.

    1975-01-01

    Acoustic-emission (AE) count rates are presented for tensile loading of unidirectional boron-epoxy and for aluminum sheets reinforced with unidirectional boron-epoxy. It is shown that different prepreg materials have different characteristic AE patterns. Results from composite-reinforced metal specimens show that early failures are accompanied by a sharp increase in AE count rate at the knee of the bilinear stress-strain diagram. It is further shown that the count rates are a function of specimen fabrication and that higher total counts do not necessarily correspond to early failures.

  15. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  16. Selection of polymer binders and fabrication of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.

    1993-01-01

    The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.

  17. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  18. Weaving multi-layer fabrics for reinforcement of engineering components

    NASA Technical Reports Server (NTRS)

    Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.

    1993-01-01

    The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.

  19. Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, B. V.; Kale, Nikita; Kothavale, B. S.; Kale, S. N.

    2016-06-01

    Radar X-band electromagnetic interference shielding (EMS) is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT) has been homogeneously integrated (0 - 9 wt%) with polymer, poly (vinylidene fluoride, PVDF) to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE) of 17.7 dB/(g/cm3) (99.6% EMS), with maintained hardness and improved conductivity. With multilayer stacking (900 microns) of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3) (99.93% EMS). Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.

  20. Mechanical response of composite materials with through-the-thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Dickinson, Larry C.

    1992-01-01

    An experimental investigation was conducted to identify the key geometrical parameters and quantify their influence on the mechanical response of through-the-thickness (TTT) reinforced composite materials. Composite laminates with TTT reinforcement fibers were fabricated using different TTT reinforcement materials and reinforcement methods and laminates were also fabricated of similar construction but without TTT reinforcement fibers. Coupon specimens were machined from these laminates and were destructively tested. TTT reinforcement yarns enhance damage tolerance and improve interlaminar strength. Thick-layer composites with TTT reinforcement yarns have equal or superior mechanical properties to thin-layer composites without TTT reinforcement yarns. A significant potential exists for fabrication cost reduction by using thick-layer composites with TTT reinforcement yarns. Removal of the surface loop of the TTT reinforcement improves compression strength. Stitching provides somewhat higher mechanical properties than integral weaving.

  1. Fabrication of aluminum-carbon composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1973-01-01

    A screening, optimization, and evaluation program is reported of unidirectional carbon-aluminum composites. During the screening phase both large diameter monofilament and small diameter multifilament reinforcements were utilized to determine optimum precursor tape making and consolidation techniques. Difficulty was encountered in impregnating and consolidating the multifiber reinforcements. Large diameter monofilament reinforcement was found easier to fabricate into composites and was selected to carry into the optimization phase in which the hot pressing parameters were refined and the size of the fabricated panels was scaled up. After process optimization the mechanical properties of the carbon-aluminum composites were characterized in tension, stress-rupture and creep, mechanical fatigue, thermal fatigue, thermal aging, thermal expansion, and impact.

  2. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  3. Fabrication and Evaluation of Graphite Fiber-Reinforced Polyimide Composite Tube Forms Using Modified Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob

    1997-01-01

    The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.

  4. SiC Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2003-01-01

    Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.

  5. Continuous fiber-reinforced titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  6. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  7. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  8. Preliminary evaluation of fiber composite reinforcement of truck frame rails

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1977-01-01

    The use of graphite fiber/resin matrix composite to effectively reinforce a standard steel truck frame rail is studied. A preliminary design was made and it was determined that the reinforcement weight could be reduced by a factor of 10 when compared to a steel reinforcement. A section of a 1/3 scale reinforced rail was fabricated to demonstrate low cost manufacturing techniques. The scale rail section was then tested and increased stiffness was confirmed. No evidence of composite fatigue was found after 500,000 cycles to a fiber stress of 34,000 psi. The test specimen failed in bending in a static test at a load 50 percent greater than that predicted for a non-reinforced rail.

  9. Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor

    NASA Astrophysics Data System (ADS)

    Monteiro, Sergio Neves; Louro, Luis Henrique Leme; Trindade, Willian; Elias, Carlos Nelson; Ferreira, Carlos Luiz; de Sousa Lima, Eduardo; Weber, Ricardo Pondé; Miguez Suarez, João Carlos; da Silva Figueiredo, André Ben-Hur; Pinheiro, Wagner Anacleto; da Silva, Luis Carlos; Lima, Édio Pereira

    2015-10-01

    The performance of a novel multilayered armor in which the commonly used plies of aramid fabric layer were replaced by an equal thickness layer of distinct curaua fiber-reinforced composites with epoxy or polyester matrices was assessed. The investigated armor, in addition to its polymeric layer (aramid fabric or curaua composite), was also composed of a front Al2O3 ceramic tile and backed by an aluminum alloy sheet. Ballistic impact tests were performed with actual 7.62 caliber ammunitions. Indentation in a clay witness, simulating human body behind the back layer, attested the efficacy of the curaua-reinforced composite as an armor component. The conventional aramid fabric display a similar indentation as the curaua/polyester composite but was less efficient (deeper indentation) than the curaua/epoxy composite. This advantage is shown to be significant, especially in favor of the lighter and cheaper epoxy composite reinforced with 30 vol pct of curaua fiber, as possible substitute for aramid fabric in multilayered ballistic armor for individual protection. Scanning electron microscopy revealed the mechanism associated with the curaua composite ballistic performance.

  10. Designing with figer-reinforced plastics (planar random composites)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1982-01-01

    The use of composite mechanics to predict the hygrothermomechanical behavior of planar random composites (PRC) is reviewed and described. These composites are usually made from chopped fiber reinforced resins (thermoplastics or thermosets). The hygrothermomechanical behavior includes mechanical properties, physical properties, thermal properties, fracture toughness, creep and creep rupture. Properties are presented in graphical form with sample calculations to illustrate their use. Concepts such as directional reinforcement and strip hybrids are described. Typical data that can be used for preliminary design for various PRCs are included. Several resins and molding compounds used to make PRCs are described briefly. Pertinent references are cited that cover analysis and design methods, materials, data, fabrication procedures and applications.

  11. Fiber-reinforced composites in fixed partial dentures

    PubMed Central

    Vallittu, Pekka

    2006-01-01

    Fiber-reinforced composite resin (FRC) prostheses offer the advantages of good aesthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairsidemade composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed. PMID:21526023

  12. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  13. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  14. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced

  15. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  16. Reinforced rubber composition containing ground coal

    SciTech Connect

    Sperley, R.J.

    1984-10-16

    A reinforced rubber composition is provided comprising a mixture of (a) a sulfur vulcanizable rubber and (b) ground coal having an average mesh size of 25 or more and which produces an aqueous slurry with a pH of less than 7.0, and wherein a metallic reinforcing member is embedded in the rubber mixture of (a) and (b).

  17. Influence of fabrication on mechanical properties of SiC-whisker-reinforced alumina

    SciTech Connect

    DeArellano-Lopez, A.R.; Dominguez-Rodriguez, A. . Dept. Materia Condensada); Goretta, K.C.; Routbort, J.L. )

    1991-10-01

    Samples of SiC-whisker-reinforced Al{sub 2}O{sub 3} composites obtained from three different sources have been crept in compression at 1400{degrees}C using both constant load (CL) and constant strain rate (CSR). Macroscopic results indicate some difference in behavior due to fabrication. TEM is used to support this hypothesis. 10 refs., 3 figs.

  18. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  19. Studies on natural fiber reinforced polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kapatel, P. M.; Machchhar, A. D.; Kapatel, Y. A.

    2016-05-01

    Natural fiber reinforced composites show increasing importance in day to days applications because of their low cost, lightweight, easy availability, non-toxicity, biodegradability and environment friendly nature. But these fibers are hydrophilic in nature. Thus they have very low reactivity and poor compatibility with polymers. To overcome these limitations chemical modifications of the fibers have been carried out. Therefore, in the present work jute fibers have chemically modified by treating with sodium hydroxide (NaOH) solutions. These treated jute fibers have been used to fabricate jute fiber reinforced epoxy composites. Mechanical properties like tensile strength, flexural strength and impact strength have been found out. Alkali treated composites show better properties compare to untreated composites.

  20. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 2: summary report: Shear web component fabrication

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Smith, D. D.; Zimmerman, D. K.

    1973-01-01

    The fabrication of two shear web test elements and three large scale shear web test components are reported. In addition, the fabrication of test fixtures for the elements and components is described. The center-loaded beam test fixtures were configured to have a test side and a dummy or permanent side. The test fixtures were fabricated from standard extruded aluminum sections and plates and were designed to be reuseable.

  1. Bioinspired Composites with Spatial and Orientational Control of Reinforcement

    NASA Astrophysics Data System (ADS)

    Demiroers, Ahmet; Studart, Andre; Complex Materials Team

    Living organisms combine soft and hard components to fabricate composite materials with out-standing mechanical properties. The optimum design and assembly of the anisotropic components reinforce the material in specific directions against multidirectional external loads. Although nature does it quite readily, it is still a challenge for material scientists to control the orientation and position of the colloidal components in a matrix. Here, we use external electric and magnetic fields to achieve positional and orientational control over colloid-polymer composites to fabricate mechanically robust materials to capture some of the essential features of natural systems. We first investigated the assembly of spherical micron-sized colloids using dielectrophoresis, as these particles provided an easily accessible and instructive length scale for performing initial experiments. We used dielectrophoresis for spatial control of reinforcing anisotropic components and magnetic fields to provide control over the orientation of these reinforcing constituents. The obtained composites with different orientational and spatial reinforcement showed enhanced mechanical properties, such as wear resistance, which exhibits similarities to tooth enamel. SNSF Ambizione Grant PZ00P2_148040.

  2. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  3. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  4. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1981-01-01

    A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.

  5. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  6. Carbon Nanomaterials as Reinforcements for Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  7. Simulation of the Manufacturing of Non-Crimp Fabric-Reinforced Composite Wind Turbine Blades to Predict the Formation of Wave Defects

    NASA Astrophysics Data System (ADS)

    Fetfatsidis, K. A.; Sherwood, J. A.

    2011-05-01

    NCFs (Non-Crimp Fabrics) are commonly used in the design of wind turbine blades and other complex systems due to their ability to conform to complex shapes without the wrinkling that is typically experienced with woven fabrics or prepreg tapes. In the current research, a form of vacuum assisted resin transfer molding known as SCRIMP® is used to manufacture wind turbine blades. Often, during the compacting of the fabric layers by the vacuum pressure, several plies may bunch together out-of-plane and form wave defects. When the resin is infused, the areas beneath the waves become resin rich and can compromise the structural integrity of the blade. A reliable simulation tool is valuable to help predict where waves and other defects may appear as a result of the manufacturing process. Forming simulations often focus on the in-plane shearing and tensile behavior of fabrics and do not necessarily consider the bending stiffness of the fabrics, which is important to predict the formation of wrinkles and/or waves. This study incorporates experimentally determined in-plane shearing, tensile, and bending stiffness information of NCFs into a finite element model (ABAQUS/Explicit) of a 9-meter wind turbine blade to investigate the mechanical behaviors that can lead to the formation of waves as a result of the manufacturing process.

  8. Simulation of the Manufacturing of Non-Crimp Fabric-Reinforced Composite Wind Turbine Blades to Predict the Formation of Wave Defects

    SciTech Connect

    Fetfatsidis, K. A.; Sherwood, J. A.

    2011-05-04

    NCFs (Non-Crimp Fabrics) are commonly used in the design of wind turbine blades and other complex systems due to their ability to conform to complex shapes without the wrinkling that is typically experienced with woven fabrics or prepreg tapes. In the current research, a form of vacuum assisted resin transfer molding known as SCRIMP registered is used to manufacture wind turbine blades. Often, during the compacting of the fabric layers by the vacuum pressure, several plies may bunch together out-of-plane and form wave defects. When the resin is infused, the areas beneath the waves become resin rich and can compromise the structural integrity of the blade. A reliable simulation tool is valuable to help predict where waves and other defects may appear as a result of the manufacturing process. Forming simulations often focus on the in-plane shearing and tensile behavior of fabrics and do not necessarily consider the bending stiffness of the fabrics, which is important to predict the formation of wrinkles and/or waves. This study incorporates experimentally determined in-plane shearing, tensile, and bending stiffness information of NCFs into a finite element model (ABAQUS/Explicit) of a 9-meter wind turbine blade to investigate the mechanical behaviors that can lead to the formation of waves as a result of the manufacturing process.

  9. Buckling of Fiber Reinforced Composite Plates with Nanofiber Reinforced Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2010-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. The buckling results showed that the NFRM plates buckled at about twice those with conventional matrix.

  10. Method of fabricating composite structures

    NASA Technical Reports Server (NTRS)

    Sigur, W. A. (Inventor)

    1990-01-01

    A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.

  11. Examining graphite reinforcement in composites

    NASA Technical Reports Server (NTRS)

    Sanders, R. E.; Yates, C. I.

    1980-01-01

    Structure of graphite layers in composite parts can be checked by pyrolizing epoxy portion of composite samples. After 2-3 hours in nitrogen atmosphere at 540 C, only graphite fibers remain. These can be separated and checked for proper number, thickness, and orientation.

  12. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  13. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  14. Smart pultruded composite reinforcements incorporating fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.; Georgiades, Anastasis V.

    1998-03-01

    The issues of processing, evaluation, experimental testing, and modeling of smart fiber reinforced polymer (FRP) composite materials are discussed. The specific application in view is the use of smart composite reinforcements for a monitoring of innovative bridges and structures. The pultrusion technology for the fabrication of fiber reinforced polymer composites with embedded fiber optic senors (Fabry Perot and Bragg Grating) is developed. The optical sensor/composite material interaction is studied. The tensile and shear properties of the pultruded carbon/vinylester and glass/vinylester rods with and without optical fibers are determined. The microstructural analysis of the smart pultruded FRP is carried out. The interfaces between the resin matrix and the acrylate and polyimide coated optical fibers are examined and interpreted in terms of the coatings's ability to resist high temperature and its compatibility with resin matrix. The strain monitoring during the pultrusion of composite parts using the embedded fiber optic sensors was performed. The strain readings from the sensors and the extensometer were compared in mechanical tensile tests.

  15. Vibrations of carbon nanotube-reinforced composites

    NASA Astrophysics Data System (ADS)

    Formica, Giovanni; Lacarbonara, Walter; Alessi, Roberto

    2010-05-01

    This work deals with a study of the vibrational properties of carbon nanotube-reinforced composites by employing an equivalent continuum model based on the Eshelby-Mori-Tanaka approach. The theory allows the calculation of the effective constitutive law of the elastic isotropic medium (matrix) with dispersed elastic inhomogeneities (carbon nanotubes). The devised computational approach is shown to yield predictions in good agreement with the experimentally obtained elastic moduli of composites reinforced with uniformly aligned single-walled carbon nanotubes (CNTs). The primary contribution of the present work deals with the global elastic modal properties of nano-structured composite plates. The investigated composite plates are made of a purely isotropic elastic hosting matrix of three different types (epoxy, rubber, and concrete) with embedded single-walled CNTs. The computations are carried out via a finite element (FE) discretization of the composite plates. The effects of the CNT alignment and volume fraction are studied in depth to assess how the modal properties are influenced both globally and locally. As a major outcome, the lowest natural frequencies of CNT-reinforced rubber composites are shown to increase up to 500 percent.

  16. Processing and characterization of smart composite reinforcement

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.; Georgiades, Anastasis V.

    1998-07-01

    The issues of processing and characterization of pultruded smart composite reinforcements with the embedded fiber optic sensors are discussed. These fiber reinforced polymer reinforcements incorporate the optical fiber sensors to provide a strain monitoring of structures. The required modification of the pultrusion processing technology to allow for the incorporation of fiber optic sensors is developed. Fabry Perot and Bragg Grating optical strain sensors were chosen due to their small size and excellent sensitivity. The small diameter of the sensor and optical fiber allow them to be embedded without adversely affecting the strength of the composite. Two types of reinforcement with vinylester resin were used to produce the experimental 9.5 mm diameter rods. The reinforcements were carbon and E-glass fibers. In order to fully characterize the pultrusion process, it was decided to subject the strain sensors separately to each of the variables pertinent to the pultrusion process. Thus, sensors were used to monitor strain caused by compaction pressure in the die, compaction pressure plus standard temperature profile, and finally compaction pressure plus temperature plus resin cure (complete pultrusion process). A strain profile was recorded for each experiment as the sensor travelled through the pultrusion die, and for the cool-down period after the sensor had exited the die.

  17. Fabrication and properties of kilometer level, Nb reinforced, 6 filamentary MgB2 wires

    NASA Astrophysics Data System (ADS)

    Li, C. S.; Yan, G.; Wang, Q. Y.; Jiao, G. F.; Sulpice, A.; Yang, F.; Xiong, X. M.; Liu, G. Q.; Feng, J. Q.; Feng, Y.; Zhang, P. X.

    2013-11-01

    Kilometer level 6 + 1 filamentary MgB2 wires sheathed with Nb/Cu composite tube was fabricated by in situ powder-in-tube (PIT) method, nonferromagnetic Nb was employed as the centre reinforced materials. There is no any annealing in the whole fabrication process due to the excellent ductility of Nb/Cu based tube. The (Mg, B)/Nb/Cu composite wire was fabricated to the target size of 1.4 mm in diameter and heat treated at 680 °C for 2 h in a vacuum furnace. Microstructure, superconductivity, mechanical properties and homogeneity of critical current were measured respectively. The transport engineering critical current density (Jce) reaches 2.5 × 104 A/cm2 at 20 K, 1 T. The results show a good potential to fabricate high performance MgB2 wires at ambient pressure for practical application.

  18. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  19. Novel Dental Composites Reinforced with Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei; Zhang, Jian-Feng; Hagan, Joseph; Xu, Xiaoming

    2011-01-01

    Objective To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Methods Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing glass particle filler) were prepared by blending 29 wt% dental resin monomers, 70 wt% filler, and 1.0 wt% initiator, and polymerized by either heat or dental curing light. Flexural strength (FS), flexural modulus (FM), energy at break (EAB), and fracture toughness (FT) were tested after the specimens were stored in 37 °C deionized water for 24 h, 3 months, or 6 months. Degree of conversion (DC) of monomers in composites was measured using Fourier transformed near-infrared (FT-NIR) spectroscopy. Fractured surfaces were observed by field-emission scanning electron microscope (FE-SEM). The data were analyzed using ANOVA with Tukey’s Honestly Significant Differences test used for post hoc analysis. Results Reinforcement of dental composites with ZS or ZYS nanofibers (2.5% or 5.0%) can significantly increase the FS, FM and EAB of dental composites over the control. Further increase the content of ZS nanofiber (7.5%), however, decreases these properties (although they are still higher than those of the control). Addition of nanofibers did not decrease the long-term mechanical properties of these composites. All ZS reinforced composites (containing 2.5%, 5.0% and 7.5% ZS nanofibers) exhibit significantly higher fracture toughness than the control. The DC of the composites decreases with ZS nanofiber content. Significance Incorporation of ceramic nanofibers in dental composites can significantly improve their mechanical properties and fracture toughness and thus may extend their service life. PMID:22153326

  20. Analysis of Graphite Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, Robert E.; Gilbert, John A.; Spanyer, Karen (Technical Monitor)

    2001-01-01

    This paper describes analytical methods that can be used to determine the deflections and stresses in highly compliant graphite-reinforced cementitious composites. It is demonstrated that the standard transform section fails to provide accurate results when the elastic modulus ratio exceeds 20. So an alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach; and, when the effective material properties are used to characterize the deflections of composite beams subject to pure bending, an excellent agreement is obtained. Laminated composite plate theory is also investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed by incorporating material properties established from tensile tests. Finite element modeling is used to verity the results and, considering the complexity of the samples, a very good agreement is obtained.

  1. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  2. Damage-Tolerant Composites Made By Stitching Carbon Fabrics

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Smith, Donald L.

    1992-01-01

    Work conducted at NASA Langley Research Center to investigate stitching combined with resin transfer molding to make composites more tolerant of damage and potentially cost competitive with metals. Composite materials tailored for damage tolerance by stitching layers of dry carbon fabric with closely spaced threads to provide reinforcement through thickness. Epoxy resin then infused into stitched preforms, and epoxy was cured. Various stitching patterns and thread materials evaluated by use of flat plate specimens. Also, blade-stiffened structural elements fabricated and tested. Stitched flat laminates showed outstanding damage tolerance, excellent compression strength in notched specimens, and acceptable fatigue behavior. Development of particular interest to aircraft and automotive industries.

  3. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    NASA Astrophysics Data System (ADS)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  4. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  5. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  6. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  7. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins.

    PubMed

    Kim, GeunHyung; Min, Taijin; Park, Su A; Kim, Wan Doo; Koh, Young Ho

    2007-12-01

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly(epsilon-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes. PMID:18458482

  8. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins

    NASA Astrophysics Data System (ADS)

    Kim, Geun Hyung; Min, Taijin; Park, Su A.; Doo Kim, Wan; Koh, Young Ho

    2007-12-01

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly(ɛ-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes.

  9. Fabrication of TiC-Reinforced Composites by Vacuum Arc Melting: TiC Mode of Reprecipitation in Different Molten Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Arni, Z.; Tsirka, K.; Evangelou, A.; Lekatou, A.; Dracopoulos, V.

    2016-08-01

    TiC crystals were developed and grown through a melt dissolution and reprecipitation mechanism, in different alloy matrices (pure Fe, 316L, Fe-22 at.%Al, Ni-25at.%Al, and pure Co) through the use of Vacuum Arc Melting (VAM) process. The TiC surfaces exhibit a characteristic faceted mode of growth which is explained in terms of classic nucleation and crystal growth theories and is related with the well-known Jackson factor of crystal growth. Different morphologies of the finally solidified TiC grains are observed (dendritic, radially grown, isolated blocky crystals, particle clusters), the establishment of which may be most likely related with solidification progress, cooling rate, and melt compositional considerations. An initial, rough and qualitative phase identification shows a variety of compounds, and the attempts to define specific phase crystallographic-orientational relationships led to rather random results.

  10. Tensile properties of nanoclay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ku, H.; Trada, Mohan

    2013-08-01

    Kinetic epoxy resin was filled with nanoclay to increase tensile properties of the composite for civil and structural. This project manufactured samples with different percentages by weight of nanoclay in the composites in steps of 1 wt %, which were then post-cured in an oven. The samples were then subjected to tensile tests. The results showed that the composite with 3 wt % of nanoclay produced the highest yield and tensile strengths. However, the Young's modulus increased with increasing nanoparticulate loading. It is hoped that the discussion and results in this work would not only contribute towards the further development of nanoclay reinforced epoxy composites with enhanced material properties, but also provide useful information for the studies of fracture toughness, tensile properties and flexural properties of other composites.

  11. Interfacial stresses in shape memory alloy-reinforced composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Prajapati, Maulik; Rakesh, S.; Roy Mahapatra, D.

    2014-03-01

    Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

  12. Fiber Reinforced Composite Materials Used for Tankage

    NASA Technical Reports Server (NTRS)

    Cunningham, Christy

    2005-01-01

    The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

  13. Titanium reinforced boron-polyimide composite

    NASA Technical Reports Server (NTRS)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  14. Design and fabrication of a boron reinforced intertank skirt

    NASA Technical Reports Server (NTRS)

    Henshaw, J.; Roy, P. A.; Pylypetz, P.

    1974-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.

  15. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    PubMed

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity. PMID:17326671

  16. Carbide-reinforced metal matrix composite by direct metal deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  17. Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites

    NASA Astrophysics Data System (ADS)

    Dolata, Anna J.

    2016-01-01

    Alumina-Aluminum composites with interpenetrating networks structure belong to advanced materials with potentially better properties when compared with composites reinforced by particles or fibers. The paper presents the experimental results of fabrication and structure characterization of Al matrix composites locally reinforced via Al2O3 ceramic foam. The composites were obtained using centrifugal infiltration of porous ceramics by liquid aluminum alloy. Both scanning electron microscopy (SEM + EDS) and x-ray tomography were used to determine the structure of foams and composites especially in reinforced areas. The quality of castings, degree of pore filling in ceramic foams by Al alloy, and microstructure in area of interface were assessed.

  18. Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites

    NASA Astrophysics Data System (ADS)

    Dolata, Anna J.

    2016-08-01

    Alumina-Aluminum composites with interpenetrating networks structure belong to advanced materials with potentially better properties when compared with composites reinforced by particles or fibers. The paper presents the experimental results of fabrication and structure characterization of Al matrix composites locally reinforced via Al2O3 ceramic foam. The composites were obtained using centrifugal infiltration of porous ceramics by liquid aluminum alloy. Both scanning electron microscopy (SEM + EDS) and x-ray tomography were used to determine the structure of foams and composites especially in reinforced areas. The quality of castings, degree of pore filling in ceramic foams by Al alloy, and microstructure in area of interface were assessed.

  19. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  20. Nextel{trademark}/SiC composites fabricated using forced chemical vapor infiltration

    SciTech Connect

    Weaver, B.L.; Lowden, R.A.; McLaughlin, J.C.; Stinton, D.P.; Besmann, T.M.; Schwarz, O.J.

    1993-06-01

    Oxide fiber-reinforced silicon carbide matrix composites were fabricated employing the forced-flow, thermal gradient chemical vapor infiltration (FCVI) process. Composites using Nextel{sup TM} fibers of varying composition were prepared to investigate the effectiveness of each Nextel{sup TM} fiber as a reinforcement for the given matrix. A carbon interface coating was used for the baseline materials, however, alternate interlayers with improved oxidation resistance were also explored Room-temperature flexure strengths of as-fabricated composites and specimens heated in air at 1273 K were measured and compared to results for other SiC-matrix composites.

  1. As-Fabricated Reinforced Carbon/Carbon Characterized

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Calomino, Anthony M.; Webster, Neal

    2004-01-01

    Reinforced carbon/carbon (RCC) is a critical material for the space shuttle orbiter. It is used on the wing leading edge and the nose cap, where maximum temperatures are reached on reentry. The existing leading-edge system is a single-plate RCC composite construction with a wall thickness of approximately 1/4 in., making it a prime reliant protection scheme for vehicle operation.

  2. Placement protocol for an anterior fiber-reinforced composite restoration.

    PubMed

    Hornbrook, D S

    1997-01-01

    The new classification of metal-free restorative materials provides the clinician with a durable, flexible, and aesthetic laboratory-fabricated alternative to conventional porcelain-fused-to-metal (PFM) full-coverage crowns, inlay and onlay restorations, and single pontic bridges. With exceptional physical and optical characteristics, restorations fabricated utilizing the new ceramic optimized polymer (Ceromer) (Targis, Ivoclar Williams, Amherst, NY) and fiber-reinforced composite (FRC) framework (Vectris, Ivoclar Williams, Amherst, NY) materials can also be utilized predictably in the anterior segment. The success of metal-free restorations can be achieved by following conventional prosthodontic principles for preparation, cementation, and finishing. This article demonstrates the appropriate treatment protocol in order to achieve aesthetically acceptable and durable anterior results utilizing a metal-free restorative system for "Maryland-like" bridge restorations.

  3. Modified glass fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Cao, Yumei

    A high ratio of strength to density and relatively low-cost are some of the significant features of glass fibre reinforced polymer composites (GFRPCs) that made them one of the most rapidly developed materials in recent years. They are widely used as the material of construction in the areas of aerospace, marine and everyday life, such as airplane, helicopter, boat, canoe, fishing rod, racket, etc. Traditionally, researchers tried to raise the mechanical properties and keep a high strength/weight ratio using all or some of the following methods: increasing the volume fraction of the fibre; using different polymeric matrix material; or changing the curing conditions. In recent years, some new techniques and processing methods were developed to further improve the mechanical properties of glass fibre (GF) reinforced polymer composite. For example, by modifying the surface condition of the GF, both the interface strength between the GF and the polymer matrix and the shear strength of the final composite can be significantly increased. Also, by prestressing the fibre during the curing process of the composite, the tensile, flexural and the impact properties of the composite can be greatly improved. In this research project, a new method of preparing GFRPCs, which combined several traditional and modern techniques together, was developed. This new method includes modification of the surface of the GF with silica particles, application of different levels of prestressing on the GF during the curing process, and the change of the fibre volume fraction and curing conditions in different sets of experiments. The results of the new processing were tested by the three-point bend test, the short beam shear test and the impact test to determine the new set of properties so formed in the composite material. Scanning electronic microscopy (SEM) was used to study the fracture surface of the new materials after the mechanical tests were performed. By taking advantages of the

  4. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  5. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  6. Space fabrication demonstration system composite beam cap fabricator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A detailed design for a prototype, composite beam cap fabricator was established. Inputs to this design included functional tests and system operating requirements. All required materials were procured, detail parts were fabricated, and one composite beam cap forming machine was assembled. The machine was demonstrated as a stand-alone system. Two 12-foot-long beam cap members were fabricated from laminates graphite/polysulfane or an equivalent material. One of these members, which as structurally tested in axial compression, failed at 490 pounds.

  7. Use of a prefabricated fiber-reinforced composite resin framework to provide a provisional fixed partial denture over an integrating implant: a clinical report.

    PubMed

    Meiers, Jonathan C; Freilich, Martin A

    2006-01-01

    The development of fiber-reinforced composites offers new possibilities in minimally invasive tooth replacement approaches. This article describes the use of a prefabricated fiber-reinforced composite resin framework for the chairside fabrication of a provisional fixed partial denture over an integrating implant. The framework fabrication, theory, and a clinical scenario are illustrated. PMID:16399269

  8. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  9. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  10. Starch composites reinforced by bamboo cellulosic crystals.

    PubMed

    Liu, Dagang; Zhong, Tuhua; Chang, Peter R; Li, Kaifu; Wu, Qinglin

    2010-04-01

    Using a method of combined HNO(3)-KClO(3) treatment and sulfuric acid hydrolysis, bamboo cellulose crystals (BCCs) were prepared and used to reinforce glycerol plasticized starch. The structure and morphology of BCCs were investigated using X-ray diffraction, electron microscopy, and solid-state (13)C NMR. Results showed that BCCs were of typical cellulose I structure, and the morphology was dependent on its concentration in the suspension. BCC of 50-100 nm were assembled into leaf nervations at low concentration (i.e. 0.1 wt.% of solids), but congregated into a micro-sized "flower" geometry at high concentration (i.e. 10.0 wt.% of solids). Tensile strength and Young's modulus of the starch/BCC composite films (SBC) were enhanced by the incorporation of the crystals due to reinforcement of BCCs and reduction of water uptake. BCCs at the optimal 8% loading level exhibited a higher reinforcing efficiency for plasticized starch plastic than any other loading level.

  11. Short fiber-reinforced cementitious composites manufactured by extrusion technology

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    The use of short fibers in the cement-based composites is more preferable due to the simplicity and economic nature in fabrication. The short fiber-reinforced cementitious composite (SFRCC) manufactured by the extrusion method show a great improvement in both strength and toughness as compared to the fiber-reinforced composites made by traditional casting methods. This improvement can be attributed to the achievement of low porosity and good interfacial bond in SFRCC under high shear and compressive stress during the extrusion process. In the present study, products of cylinders, sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been manufactured by the extrusion technology. Two kinds of short fibers, ductile polyvinyl alcohol (PVA) fibers and stronger but less ductile glass fibers, were used as the reinforcement in the products. After the specimens were extruded, tension, bending and impact tests were performed to study the mechanical properties of these products. The rheology test was performed for each mix to determine its viscoelastic properties. In addition, X-ray diffraction (XRD) and scanning electronic microscopy (SEM) technology were employed to get an insight view of the mechanism. A freezing and thawing experiment (ASTM C666) was also carried to investigate the durability of the specimens. Based on these experimental results, the reinforcing behaviors of these two short fibers were investigated. The enhancing effects of silica fume and metakaolin on the extrudates were compared and discussed. Finally, the optimum amount of silica fume and slag was proposed. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of extrudate, a nonlinear viscoelastic model was applied to investigate the rheological behavior of a movable fresh cementitious composite in an extruder channel. The velocity profile of the

  12. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  13. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  14. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  15. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  16. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with

  17. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  18. Interface characteristics of nanorope reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Ahmed, Khondaker S.; Keng, Ang K.

    2013-09-01

    A shear-lag model is proposed to obtain interface characteristics of nanorope reinforced polymer composites using representative volume element (RVE) concept. In the axisymmetric RVE, the nanorope is modelled as a closed-packed cylindrical lattice consisting seven single-walled carbon nanotubes. In the model, rope is considered to be perfectly bonded with the polymer resin where the nanotubes are assumed to be chemically non-bonded with each other in the rope system. Since, nanotubes are considered to be non-bonded in the nanorope there must exist a van der Waals interaction in terms of Lennard-Jones potential. A separate model is also proposed to determine the cohesive stress caused by this interaction. Closed form analytical solutions are derived for stress components of rope, resin and individual carbon nanotubes in the rope system. Parametric study has also been conducted to investigate the influences of key composite factors involved at both perfectly bonded and non-bonded interfaces.

  19. Dynamic Mechanical Behavior of Nickel-Aluminum Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Martin, Morgana; Hanagud, Sathyanaraya; Thadhani, Naresh

    2005-07-01

    Epoxy-based composites reinforced with a mixture of micron-sized Ni and micron or nano-sized Al powders were fabricated as bulk materials by cast/curing. The structural/mechanical behavior of these materials was evaluated using elastic and plastic property measurements via static and dynamic compression tests performed on rod shaped samples. Reverse Taylor anvil-on-rod impact tests combined with velocity interferometry gave qualitative and quantitative information about the transient deformation and failure response of the composites. The material containing 20wt% epoxy and nano-sized Al powder showed the most superior mechanical properties in terms of elastic modulus, and static and dynamic compressive strength, and strain before fracture, as compared to the other reinforced cast materials. The results illustrate that nano-sized Al particles provide significant enhancement to strength of epoxy composites by dispersing in the epoxy and generating a nano-Al containing epoxy matrix with embedded Ni particles. Funding for this research was provided by AFOSR/MURI Grant No. F49620-02-1-0382.

  20. Fibre reinforced composites in aircraft construction

    NASA Astrophysics Data System (ADS)

    Soutis, C.

    2005-02-01

    Fibrous composites have found applications in aircraft from the first flight of the Wright Brothers’ Flyer 1, in North Carolina on December 17, 1903, to the plethora of uses now enjoyed by them on both military and civil aircrafts, in addition to more exotic applications on unmanned aerial vehicles (UAVs), space launchers and satellites. Their growing use has risen from their high specific strength and stiffness, when compared to the more conventional materials, and the ability to shape and tailor their structure to produce more aerodynamically efficient structural configurations. In this paper, a review of recent advances using composites in modern aircraft construction is presented and it is argued that fibre reinforced polymers, especially carbon fibre reinforced plastics (CFRP) can and will in the future contribute more than 50% of the structural mass of an aircraft. However, affordability is the key to survival in aerospace manufacturing, whether civil or military, and therefore effort should be devoted to analysis and computational simulation of the manufacturing and assembly process as well as the simulation of the performance of the structure, since they are intimately connected.

  1. Processing and evaluation of smart composite reinforcement

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.

    1997-11-01

    The issues of processing and evaluation of pultruded smart composite reinforcements with embedded fiber optic sensors are discussed. The required modification of the pultrusion processing technology to allow for the incorporation of fiber optic sensors is developed. In order to fully evaluate the loads imposed on the Fabry Perot fiber optic sensors during the pultrusion process, the strain sensors were subjected to the separate variables of the total process. The following data was obtained for the carbon fiber rods. Compaction pressure alone caused negligible residual strain. The temperature profile caused a similar strain profile over the length of the pultrusion die. For the total pultrusion process, the residual strain after cooling appeared to present somewhat of a problem. For several experiments, the residual strain after exiting the pultrusion die was in the range of plus 200 to 400 microstrain, after which the sensors ceased to function. Calculations indicated that the radial shrinkage of the carbon fiber rods may have been sufficient to cause failure of the Fabry Perot sensors. A special procedure of reinforcing sensors prior to embedding them into the composite was successful in allowing the sensors to survive with only a slightly negative residual strain.

  2. Woven glass fabric reinforced laminates based on polyolefin wastes: Thermal, mechanical and dynamic-mechanical properties

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Acierno, Domenico; Simeoli, Giorgio; Lopresto, Valentina

    2014-05-01

    Potentialities of polyolefin wastes in place of virgin polypropylene to produce composite laminates have been investigated. Plaques reinforced with a woven glass fabric were prepared by film-stacking technique and systematically analyzed in terms of thermal, mechanical and dynamic-mechanical properties. In case of PP matrices, the use of a typical compatibilizer to improve the adhesion at the interface has been considered. Thermal properties emphasized the chemical nature of plastic wastes. About mechanical properties, static tests showed an increase of flexural parameters for compatibilized systems due to the coupling effect between grafted maleic anhydride and silane groups on the surface of the glass fabric. These effects, maximized for composites based on car bumper wastes, is perfectly reflected in terms of storage modulus and damping ability of products as determined by single-cantilever bending dynamic tests.

  3. Trans-Laminar-Reinforced (TLR) Composites

    NASA Technical Reports Server (NTRS)

    Hinders, Mark; Dickinson, Larry

    1997-01-01

    A Trans-Laminar-Reinforced (TLR) composite is defined as composite laminate with up to five percent volume of fibrous reinforcement oriented in a 'trans-laminar' fashion in the through-thickness direction. The TLR can be continuous threads as in 'stitched laminates', or it can be discontinuous rods or pins as in 'Z-Fiber(TM) materials. It has been repeatedly documented in the literature that adding TLR to an otherwise two dimensional laminate results in the following advantages: substantially improved compression-after-impact response; considerably increased fracture toughness in mode 1 (double cantilever beam) and mode 2 (end notch flexure); and severely restricted size and growth of impact damage and edge delamination. TLR has also been used to eliminate catastrophic stiffener disbonding in stiffened structures. TLR directly supports the 'Achilles heel' of laminated composites, that is delamination. As little as one percent volume of TLR significantly alters the mechanical response of laminates. The objective of this work was to characterize the effects of TLR on the in-plane and inter-laminar mechanical response of undamaged composite laminates. Detailed finite element models of 'unit cells', or representative volumes, were used to study the effects of adding TLR on the elastic constants; the in-plane strength; and the initiation of delamination. Parameters investigated included TLR material, TLR volume fraction, TLR diameter, TLR through-thickness angle, ply stacking sequence, and the microstructural features of pure resin regions and curved in-plane fibers. The work was limited to the linear response of undamaged material with at least one ply interface. An inter-laminar dominated problem of practical interest, a flanged skin in bending, was also modeled.

  4. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  5. Shock Interaction Studies on Glass Fibre Reinforced Epoxy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, K. P. J.; Jagadeesh, G.; Jayaram, V.; Reddy, B. Harinath; Madhu, V.; Reddy, C. Jaya Rami

    Glass fibre reinforced polymer matrix composites are being extensively used for structural applications both in civil and defense sectors, owing to their high specific strength, stiffness and good energy absorbing capability. Understanding the dynamic response of these composites on shock loading is very essential for effective design of structures resistant to blast loads. In the present study, E- glass/epoxy composite laminate has been fabricated and evaluated for their mechanical properties such as tensile strength, flexural strength and inter laminar shear strength (ILSS). Further, dynamic response of E-glass laminates is presently studied by shock loading. When E-glass composite subjected to peak shock reflected pressure of 7.2 MPa and estimated temperature of about 14000 K for short duration, it underwent surface discolorations and charring of epoxy matrix. Post test analysis of the composite sample was carried out to study the damage analysis using Scanning Electron Microscope (SEM), changes in thermal properties of composites using Dynamic Mechanical Analyzer (DMA) and Thermo-Gravimetric Analyzer (TGA). The results of these investigations are discussed in this paper.

  6. Hot extruded carbon nanotube reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Leparoux, Marc

    2012-10-19

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics. PMID:23011263

  7. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  8. Applications of magnetically active fibre reinforced composites

    NASA Astrophysics Data System (ADS)

    Etches, Julie; Bond, Ian; Mellor, Philip

    2005-05-01

    As the application of fibre reinforced polymer composites (FRP) becomes more widespread there is a desire to add functionality beyond that of simple mechanical properties in order to facilitate the development of 'smart' materials. For example, the functionality being discussed in this paper is the imparting of significant magnetic properties to a FRP. This can take the form of soft magnetic performance for use in electrical machines or hard magnetic performance for novel forms of sensing or power generation. It has been demonstrated that by using hollow glass fibres as a reinforcement, magnetic material can be introduced into these fibres without significant effects on the structural behaviour of the FRP. The current studies have included the assessment of such a magnetic FRP in a variety of applications. The addition of hard magnetic materials, e.g. magnetite and barium ferrite, has been achieved through the use of nanopowders and the resulting FRP has been assessed for morphing structures applications. The magnitude of magnetic performance that can be currently achieved is controlled by the availability of suitable magnetic materials in fine powder form and the volume of magnetic material which can be incorporated within the fibres.

  9. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  10. Creep behavior of abaca fibre reinforced composite material

    SciTech Connect

    Tobias, B.C.; Lieng, V.T.

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  11. Feasibility and Manufacturing Considerations of Hemp Textile Fabric Utilized in Pre-Impregnated Composites

    NASA Astrophysics Data System (ADS)

    Osusky, Gregory

    This study investigates the fabrication and mechanical properties of semicontinuous, hemp fiber reinforced thermoset composites. This research determines if off-the-shelf refined woven hemp fabric is suitable as composite reinforcement using resin pre-impregnated method. Industrial hemp was chosen for its low cost, low resource input as a crop, supply chain from raw product to refined textile and biodegradability potential. Detail is placed on specimen fabrication considerations. Lab testing of tension and compression is conducted and optimization considerations are examined. The resulting composite is limited in mechanical properties as tested. This research shows it is possible to use woven hemp reinforcement in pre-impregnated processed composites, but optimization in mechanical properties is required to make the process commercially practical outside niche markets.

  12. Dual-nanoparticulate-reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al(4)C(3)) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al(4)C(3). Along with the CNT and the nano-SiC, Al(4)C(3) also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. PMID:22571898

  13. Thermal cycling of tungsten-fibre-reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Wetherhold, Robert C.; Westfall, Leonard J.

    1988-01-01

    The thermal cycling of a tungsten-fiber-reinforced superalloy (TFRS) composite is typical of its application in high-temperature engine environments. The mismatch in thermal expansion coefficients between fiber and matrix causes substantial longitudinal (0 deg) stresses in the composite, which can produce inelastic damage-producing matrix strains. The case of thermal fatigue is explored as a "worst case" of the possible matrix damage, in comparison with specimens which are also mechanically loaded in tension. The thermally generated cyclic stresses and the attendant matrix plasticity may be estimated using a nonlinear finite-element program, by proposing a physical analog to the micromechanics equations. A damage metric for the matrix is proposed using the Coffin-Manson criterion, which metric can facilitate comparisons of damage among different candidate materials, and also comparisons for a given material subjected to different temperature cycles. An experimental program was carried out for thermal cycling of a 37 vol pct TFRS composite to different maximum temperatures. The results confirm the prediction that thermal cycling produces matrix degradation and composite strength reduction, which become more pronounced with increasing maximum cyclic temperature. The strength of the fiber is shown to be identical for the as-fabricated and thermally cycled specimens, suggesting that the reduction in composite strength is due to the loss of matrix contribution and also to notching effects of the matrix voids on the fiber.

  14. Explosive Indentation Study of B4C-TiAlx Composites Fabricated by the Dipping Exothermic Reaction Process

    NASA Astrophysics Data System (ADS)

    Kim, Jong Ho; Ansari, Haris Masood; Kim, Haneul; Kim, Do Kyung; Chang, Soon Nam

    The aim of this study is to fabricate a high volume fraction B4C-reinforced intermetallic matrix composite by the dipping exothermic reaction process and investigate the shock impact damage response of composites by explosive indentation experiment. It has been shown that the final microstructure of the dipping exothermic reaction process-fabricated composite can be tailored by treatment of the constituent powders and post heat treatment. The hardness and impact damage resistance of the fabricated composites were evaluated.

  15. [Fiber-reinforced composite in fixed prosthodontics].

    PubMed

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable. PMID:21485555

  16. [Fiber-reinforced composite in fixed prosthodontics].

    PubMed

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable.

  17. Development of highly reinforced amorphous matrix composites. Final report, 17 November 1997--16 May 1998

    SciTech Connect

    Tenhover, M.; Peker, A.

    1998-06-15

    Amorphous matrix composites (AMC) were developed and fabricated using Tungsten and carbon reinforcements. Emphasis was placed on achieving high loading fractions of the reinforcing materials. A process to commercially manufacture AMC`s was studied and mapped. The feasibility of the process was also determined. Rods of AMC were fabricated using this process. The samples were fully dense and the amorphous nature of the binding matrix was confirmed. The results from this study will provide valuable process data for the future development of AMC products.

  18. Fabrication and evaluation of low fiber content alumina fiber/aluminum composites

    NASA Technical Reports Server (NTRS)

    Hack, J. E.; Strempek, G. C.

    1980-01-01

    The mechanical fabrication of low volume percent fiber, polycrystalline alumina fiber reinforced aluminum composites was accomplished. Wire preform material was prepared by liquid-metal infiltration of alumina fiber bundles. The wires were subsequently encapsulated with aluminum foil and fabricated into bulk composite material by hot-drawing. Extensive mechanical, thermal and chemical testing was conducted on preform and bulk material to develop a process and material data base. In addition, a preliminary investigation of mechanical forming of bulk alumina fiber reinforced aluminum composite material was conducted.

  19. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  20. Method to fabricate layered material compositions

    SciTech Connect

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  1. Processing and characterization of natural fiber reinforced thermoplastic composites using micro-braiding technique

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Ogihara, Shinji

    In the present study, we investigate fatigue properties of green composites. A hemp fiber yarn reinforced poly(lactic acid) composite was selected as a green composite. Unidirectional (UD) and textile (Textile) composites were fabricated using micro-braiding technique. Fatigue tests results indicated that fatigue damages in UD composites was splitting which occurred just before the final fracture, while matrix crack and debonding between matrix and fiber yarn occurred and accumulated stably in Textile composites. These results were consistent with modulus reduction and acoustic emission measurement during fatigue tests.

  2. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  3. Composite fabrication via resin transfer molding technology

    SciTech Connect

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  4. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  5. Hardness and wear resistance of carbon nanotube reinforced aluminum-copper matrix composites.

    PubMed

    Nam, Dong Hoon; Kim, Jae Hwang; Cha, Seung Il; Jung, Seung Il; Lee, Jong Kook; Park, Hoon Mo; Park, Hyun Dal; Hong, Hyung

    2014-12-01

    Recently, carbon nanotubes (CNTs) have been attracted to reinforcement of composite materials due to their extraordinary mechanical, thermal and electrical properties. Many researchers have attempted to develop CNT reinforced metal composites with various fabrication methods and have shown possibilities for structural and functional applications. Among them, CNT reinforced Al matrix composites have become very attractive due to their huge structural application in industry. In this study, CNT reinforced Al-Cu matrix composites with a microstructure of homogeneous dispersion of CNTs in the Al-Cu matrix are investigated. The CNT/Al-Cu composites are fabricated by mixing of CNT/Cu composite powders and Al powders by high energy ball mill process followed by hot extrusion process. The hardness and wear resistance of the CNT/Al-Cu composites are enhanced by 1.4 and 3 times, respectively, compared to those values for the Al-Cu matrix. This remarkable enhancement mainly originates from the homogeneous dispersion of CNTs in Al-Cu matrix and self-lubricant effect of CNTs. PMID:25971024

  6. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  7. Free form fabrication of thermoplastic composites

    SciTech Connect

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.R.

    1998-02-01

    This report describes the results of composites fabrication research sponsored by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. They have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  8. Nondestructive characterization of woven fabric ceramic composites

    SciTech Connect

    Hsu, D.K.; Saini, V.; Liaw, P.K.; Yu, N.; Miriyala, N.; McHargue, C.J.; Snead, L.L.; Lowden, R.A.

    1995-10-01

    Woven fabric ceramic composites fabricated by the chemical vapor infiltration method are susceptible to high void content and inhomogeneity. The condition of such materials may be characterized nondestructively with ultrasonic methods. In this work, longitudinal and shear waves were used in the quantitative determination of elastic constants of Nicalon{trademark}/SiC composites as a function of volume percent of porosity. Elastic stiffness constants were obtained for both the in-plane and out-of-plane directions with respect to fiber fabric. The effect of porosity on the modulus of woven fabric composites was also modeled and compared to the measured results. Scan images based on the amplitude and time-of-flight of radio frequency (RF) ultrasonic pulses were used for evaluating the material homogeneity for the purpose of optimizing the manufacturing process and for correlation with the mechanical testing results.

  9. Vibration Analysis of Composite Rectangular Plates Reinforced along Curved Lines

    NASA Astrophysics Data System (ADS)

    Honda, Shinya; Oonishi, Yoshimasa; Narita, Yoshihiro; Sasaki, Katsuhiko

    In the past few decades, composite materials composed of straight fibers and polymer matrix have gained their status as the most promising material for light-weight structures. Technical merit of the composites as tailored material also provided practical advantages in the optimum design process. Recently, it is reported that the fabrication machine has been developed to make curved fibers embedded in the matrix material. Based on such technical advancement, this paper proposes an analytical method to study vibration of composite rectangular plates reinforced along curved lines. The approach is based on the Ritz method where variable fiber direction can be accommodated. For this purpose, the fibers continuously changing their direction are formulated as the variable bending stiffness in the total potential energy. A frequency equation is derived by the Ritz minimizing process, and frequency parameters are calculated as the eigenvlaues in the eigenvalue problem. In numerical results, the accuracy of the method is presented by comparing present results with FEM results. The advantages of present plate are confirmed by comparing natural frequencies and mode shapes with those of conventional composite and isotropic plates, and the effectiveness of the new solution to the most recent problem is demonstrated.

  10. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  11. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  12. A Study of Strength Transfer from tow to Textile Composite Using Different Reinforcement Architectures

    NASA Astrophysics Data System (ADS)

    Cristian, Irina; Nauman, Saad; Boussu, Francois; Koncar, Vladan

    2012-06-01

    The paper proposes an experimental and analytical approach of designing composites with the predetermined ultimate strength, reinforced with warp interlock fabrics. In order to better understand the phenomena of transfer of tensile properties from a tow to the composite, intermediate phases of composite manufacturing have also been taken into account and tensile properties of tows taken from the loom and the woven reinforcements have also been tested. Process of transfer of mechanical properties of raw materials to the final product (composite) depends on various structural factors. Here the influence of weave structure, which ultimately influences crimp has been studied. A strength transfer coefficient has been proposed which helps in estimating the influence of architectural parameters on 3D woven composites. 3 woven interlock reinforcements were woven to form composites. The coefficients of strength transfer were calculated for these three variants. The structural parameters were kept the same for these three reinforcements except for the weave structure. In was found that the phenomenon of strength transfer from tow to composite is negatively influenced by the crimp. In general the strength transfer coefficients have higher values for dry reinforcements and afterwards due to resin impregnation the values drop.

  13. Development and fabrication of bismaleimide-graphite composites

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H.; Herzog, M.; Roemer, W.; Scheiblich, R.

    1979-01-01

    The successful fabrication of high temperature resistant composites depends mainly on the processability of the resin binder matrix. For two new bismaleimide type resins the processing of graphite fabric prepregs to composites is described. One resin coded M 751 has to be processed from N-Methylpyrrolidone, the other resin evaluated is a so-called hot melt solvent-less system. Commercial T300/3000 Graphite fabrics were used as reinforcement. The M 751 - Resin is a press grade material and laminates are therefore moulded in high pressure conditions (400 N/sq cm). The solvent-less resin system H 795 is an autoclave grade material and can be cured at 40 N/sq cm. The cure cycles for both the press grade and the autoclave grade material (Fiberite W 143 fabric prepregs) are provided and the mechanical properties of laminates at low (23 C) and high (232 C) temperatures were measured. For comparison, the neat resin flexural properties are also presented. The water absorption for the neat resins and the graphite fabric laminates after a 1000 hour period was evaluated.

  14. Styrene-terminated polysulfone oligomers as matrix material for graphite reinforced composites: An initial study

    NASA Technical Reports Server (NTRS)

    Garcia, Dana; Bowles, Kenneth J.; Vannucci, Raymond D.

    1987-01-01

    Styrene terminated polysulfone oligomers are part of an oligomeric class of compounds with end groups capable of thermal polymerization. These materials can be used as matrices for graphite reinforced composites. The initial evaluation of styrene terminated polysulfone oligomer based composites are summarized in terms of fabrication methods, and mechanical and environmental properties. In addition, a description and evaluation is provided of the NASA/Industry Fellowship Program for Technology Transfer.

  15. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.

  16. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.

  17. Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1984-01-01

    Mechanical properties and stress-strain behavior for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol % discontinuous SiC whisker, nodule, or particulate reinforcement were evaluated. It was found that the elastic modulus of the composites was isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Ductility decreased with increasing reinforcement content, however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain is attributed to cleaner matrix powder and increased mechanical working during fabrication. Conventional aluminum and titanium structural alloys were compared and have shown that the properties of these low cost, lightweight composites have good potential for application to aerospace structures.

  18. Liquid composite molding-processing and characterization of fiber-reinforced composites modified with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zeiler, R.; Khalid, U.; Kuttner, C.; Kothmann, M.; Dijkstra, D. J.; Fery, A.; Altstädt, V.

    2014-05-01

    The increasing demand in fiber-reinforced plastics (FRPs) necessitates economic processing of high quality, like the vacuum-assisted resin transfer molding (VARTM) process. FRPs exhibit excellent in-plane properties but weaknesses in off-plane direction. The addition of nanofillers into the resinous matrix phase embodies a promising approach due to benefits of the nano-scaled size of the filler, especially its high surface and interface areas. Carbon nanotubes (CNTs) are preferable candidates for resin modification in regard of their excellent mechanical properties and high aspect ratios. However, especially the high aspect ratios give rise to withholding or filtering by fibrous fabrics during the impregnation process, i.e. length dependent withholding of tubes (short tubes pass through the fabric, while long tubes are restrained) and a decrease in the local CNT content in the laminate along the flow path can occur. In this study, hybrid composites containing endless glass fiber reinforcement and surface functionalized CNTs dispersed in the matrix phase were produced by VARTM. New methodologies for the quantification of the filtering of CNTs were developed and applied to test laminates. As a first step, a method to analyze the CNT length distribution before and after injection was established for thermosetting composites to characterize length dependent withholding of nanotubes. The used glass fiber fabric showed no perceptible length dependent retaining of CNTs. Afterward, the resulting test laminates were examined by Raman spectroscopy and compared to reference samples of known CNT content. This Raman based technique was developed further to assess the quality of the impregnation process and to quantitatively follow the local CNT content along the injection flow in cured composites. A local decline in CNT content of approx. 20% was observed. These methodologies allow for the quality control of the filler content and size-distribution in CNT based hybrid

  19. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  20. Superelastic SMA-FRP composite reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-02-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA-FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA-FRP composites are studied experimentally and analytically. Tests of SMA-FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA-FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA-FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA-FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement.

  1. Fabrication and Characterization of SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  2. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    NASA Astrophysics Data System (ADS)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-10-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  3. Fabrication of Composite Material Using Gettou Fiber by Injection Molding

    NASA Astrophysics Data System (ADS)

    Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki

    This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.

  4. Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites

    SciTech Connect

    Shin, S.E.; Bae, D.H.

    2013-09-15

    Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 °C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can be evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: • Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. • Chopped CNTs have influenced the strength and microstructures of the composites. • Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. • Strength can be evaluated by the rule of the mixture and a particle spacing effect.

  5. Fabrication of angleply carbon-aluminum composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1974-01-01

    A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.

  6. Innovative Composites Through Reinforcement Morphology Design - a Bone-Shaped-Short-Fiber Composite

    SciTech Connect

    Zhu, Y.T.; Valdez, J.A.; Beyerlain, I.J.; Stout, M.G.; Zhou, S.; Shi, N.; Lowe, T.C.

    1999-06-29

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project is to improve the strength and toughness of conventional short-fiber composites by using innovative bone-shaped-short (BSS) fibers as reinforcement. We fabricated a model polyethylene BSS fiber-reinforced polyester-matrix composite to prove that fiber morphology, instead of interfacial strength, solves the problem. Experimental tensile and fracture toughness test results show that BSS fibers can bridge matrix cracks more effectively, and consume many times more energy when pulled out, than conventional-straight-short (CSS) fibers. This leads to both higher strength and fracture toughness for the BSS-fiber composites. A computational model was developed to simulate crack propagation in both BSS- and CSS-fiber composites, accounting for stress concentrations, interface debonding, and fiber pullout. Model predictions were validated by experimental results and will be useful in optimizing BSS-fiber morphology and other material system parameters.

  7. Development of Ceramic Fibers for Reinforcement in Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  8. Custom fabrication of reinforced lithium disilicate ceramic ingot

    PubMed Central

    Chander, Gopi Naveen; Sasikala, C.; Mutukumar, B.; Dhanasekar, N.

    2016-01-01

    A method of formulating a reinforcement lithium disilicate ceramic ingot was proposed. The ceramic ingot was broken manually with a mallet to finer particles. The sectioned ingot is ball milled along with 10% of nano zirconia by weight to obtain the desired powder. The reinforced powder is condensed in a 5 ml disposable syringe by powder slurry technique. The compacted ceramic were sintered at 900°C to obtain ceramic ingots. The reinforced ceramic ingots were used in pressable ceramic machines to obtain the desired advantages of zirconia reinforcement and pressable ceramic system. PMID:27134457

  9. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    Reinforcing critical areas in carbon polymer matrix composites (PMCs), also known as fiber reinforced composites (FRCs), is advantageous for structural durability. Since carbon nanotubes (CNTs) have extremely high tensile strength, they can be used as a functional additive to enhance the mechanical properties of FRCs. However, CNTs are not readily dispersible in the polymer matrix, which leads to lower than theoretically predicted improvement in mechanical, thermal, and electrical properties of CNT composites. The inability to align CNTs in a polymer matrix is also a known issue. The feasibility of incorporating aligned CNTs into an FRC was demonstrated using a novel, yet commercially viable nanofiber approach, termed NRMs (nanofiber-reinforcing mats). The NRM concept of reinforcement allows for a convenient and safe means of incorporating CNTs into FRC structural components specifically where they are needed during the fabrication process. NRMs, fabricated through a novel and scalable process, were incorporated into FRC test panels using layup and vacuum bagging techniques, where alternating layers of the NRM and carbon prepreg were used to form the reinforced FRC structure. Control FRC test panel coupons were also fabricated in the same manner, but comprised of only carbon prepreg. The FRC coupons were machined to size and tested for flexural, tensile, and compression properties. This effort demonstrated that FRC structures can be fabricated using the NRM concept, with an increased average load at break during flexural testing versus that of the control. The NASA applications for the developed technologies are for lightweight structures for in-space and launch vehicles. In addition, the developed technologies would find use in NASA aerospace applications such as rockets, aircraft, aircraft/spacecraft propulsion systems, and supporting facilities. The reinforcing aspect of the technology will allow for more efficient joining of fiber composite parts, thus offering

  10. Fracture and fatigue of discontinuously reinforced copper/tungsten composites

    NASA Technical Reports Server (NTRS)

    Harris, B.; Ramani, S. V.

    1975-01-01

    The strength, toughness and resistance to cyclic crack propagation of composites consisting of copper reinforced with short tungsten wires of various lengths have been studied and the results compared with the behavior of continuously reinforced composites manufactured by the same method, i.e., by vacuum hot-pressing. It has been found that whereas the resistance to fatigue crack growth of continuously reinforced composites is very similar to that of continuous Al/stainless steel composites reported elsewhere, the addition of short fibers completely changes the mode of fracture, and no direct comparisons are possible. In effect, short fibers inhibit single crack growth by causing plastic flow to be distributed rather than localized, and although these composites are much less strong than continuous fiber composites, they nevertheless have much greater fatigue resistance.

  11. 3D FEA simulation of segmented reinforcement variable stiffness composites

    NASA Astrophysics Data System (ADS)

    Henry, C. P.; McKnight, G. P.; Enke, A.; Bortolin, R.; Joshi, S.

    2008-03-01

    Reconfigurable and morphing structures may provide significant improvement in overall platform performance through optimization over broad operating conditions. The realization of this concept requires structures, which can accommodate the large deformations necessary with modest weight and strength penalties. Other studies suggest morphing structures need new materials to realize the benefits that morphing may provide. To help meet this need, we have developed novel composite materials based on specially designed segmented reinforcement and shape memory polymer matrices that provide unique combinations of deformation and stiffness properties. To tailor and optimize the design and fabrication of these materials for particular structural applications, one must understand the envelope of morphing material properties as a function of microstructural architecture and constituent properties. Here we extend our previous simulations of these materials by using 3D models to predict stiffness and deformation properties in variable stiffness segmented composite materials. To understand the effect of various geometry tradeoffs and constituent properties on the elastic stiffness in both the high and low stiffness states, we have performed a trade study using a commercial FEA analysis package. The modulus tensor is constructed and deformation properties are computed from representative volume elements (RVE) in which all (6) basic loading conditions are applied. Our test matrix consisted of four composite RVE geometries modeled using combinations of 5 SMP and 3 reinforcement elastic moduli. Effective composite stiffness and deformation results confirm earlier evidence of the essential performance tradeoffs of reduced stiffness for increasing reversible strain accommodation with especially heavy dependencies on matrix modulus and microstructural architecture. Furthermore, our results show these laminar materials are generally orthotropic and indicate that previous calculations of

  12. A mechanism responsible for reducing compression strength of through-the-thickness reinforced composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    A study was conducted to identify one of the mechanisms that contributes to the reduced compression strength of composite materials with through-the-thickness (TTT) reinforcements. In this study a series of thick (0/90) laminates with stitched and integrally woven TTT reinforcements were fabricated and statically tested. In both the stitching and weaving process a surface loop of TTT reinforcement yarn is created between successive TTT penetrations. It was shown that the surface loop of the TTT reinforcement 'kinked' the in-plane fibers in such a manner that they were made ineffective in carrying compressive load. The improvement in strength by removal of the surface loop and 'kinked' in-plane fibers was between 7 and 35 percent.

  13. Compressive strength of the mineral reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Arora, Rama; Sharma, Anju; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    This paper presents the results of quasi-static compressive strength of aluminium alloy reinforced with different concentration of rutile mineral particles. The reinforced material shows increase in compressive strength with 5wt% rutile concentration as compared to the base alloy. This increase in compressive strength of composite is attributed to direct strengthening due to transfer of load from lower stiffness matrix (LM13 alloy) to higher stiffness reinforcement (rutile particles). Indirect strengthening mechanisms like increase in dislocation density at the matrix-reinforcement interface, grain size refinement of the matrix and dispersion strengthening are also the contributing factors. The decrease in compressive strength of composite with the increased concentration of rutile concentration beyond 5 wt.% can be attributed to the increase in dislocation density due to the void formation at the matrix-reinforcement interface.

  14. Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid

    NASA Astrophysics Data System (ADS)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.

  15. The elevated temperature behavior of particle reinforced Al matrix composites

    SciTech Connect

    Lloyd, D.J.

    1994-12-31

    The elevated temperature modulus, strength and creep of SiC particle reinforced composites produced by the DURALCAN{trademark} are discussed. It is shown that the reinforcing particles provide an increased modulus over the complete temperature range studied, and the temperature dependence of the composite modulus is controlled by the temperature dependence of the matrix modulus. The composite strength decreases with increasing temperature, reflecting softening of the matrix due to over aging, and as a result, is dependent on the thermal stability of the matrix. The particles provide increased creep resistance, and there are differences between the creep of melt processed composites and those produced by powder metallurgy.

  16. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  17. Fabrication of commercial-scale fiber-reinforced hot-gas filters by chemical vapor deposition

    SciTech Connect

    White, L.R.

    1992-11-01

    Goal was to fabricate a filter for removing particulates from hot gases; principal applications would be in advanced utility processes such as pressurized fluidized bed combustion or coal gasification combined cycle systems. Filters were made in two steps: make a ceramic fiber preform and coat it with SiC by chemical vapor infiltration (CVD). The most promising construction was felt/filament wound. Light, tough ceramic composite filters can be made; reinforcement by continuous fibers is needed to avoid brittleness. Direct metal to filter contact does not damage the top which simplifies installation. However, much of the filter surface of felt/filament wound structures is closed over by the CVD coating, and the surface is rough and subject to delamination. Recommendations are given for improving the filters.

  18. Recent progress in NASA Langley Research Center textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

  19. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  20. Design and fabrication of ultrafine piezoelectric composites.

    PubMed

    Yin, J; Lukacs, M; Harasiewicz, K A; Foster, F S

    2005-01-01

    Making fine scale (< 20 microm) piezoelectric composites for high frequency (> 50 MHz) ultrasound transducers remains challenging. Interdigital phase bonding (IPhB), described in this paper, presents a new technique developed to make piezoelectric composites at the ultrafine scale using a conventional dicing saw. Using the IPhB technique, a composite structure with a pitch that is less than the dicing saw blade thickness can be created. The approach is flexible enough to make composites of different combination of pitch and volume ratio. Using a conventional dicing saw with a 50 microm thick blade, composite with a 25 microm pitch and a volume ratio of 61 percent are fabricated. Such a composite is suitable for fabrication of ultrasonic transducers and arrays with central frequencies of up to 85 MHz. Single element transducers working at central frequencies of 50-60 MHz were made of these composites as a mean to characterize the acoustic performance. Measurement results of the transducers show that the longitudinal electromechanical coupling coefficient is greater than 0.6 and that there are no noticeable lateral resonances in the frequency range of 55-150 MHz. Design criteria for fine scale elements are also discussed based on theoretical results from finite element analysis (FEA). PMID:16003926

  1. Low Temperature Thermal Conductivity of Woven Fabric Glass Fibre Composites

    SciTech Connect

    Kanagaraj, S.; Pattanayak, S.

    2004-06-28

    Fibre reinforced composites are replacing conventional materials due to its compatible and superior properties at low temperatures. Transverse thermal conductivity of plain fabric E-glass/Epoxy composites with the fibre concentrations of 32.5%, 35.2%, 39.2% and 48.9% has been studied in a GM-refrigerator based experimental setup using guarded hotplate technique. Experiments are carried out with the sets of stability criteria. This paper presents the investigation of the influence of the fibre concentration and temperature on the thermal conductivity of fabric composites from 30 K to 300K. It is observed from the experimental results that thermal conductivity increases with the increase of temperature and also with fibre concentration with different rate in different temperature range. The series model has been used to predict the thermal conductivity and compared with the experimental results. It is observed that below the crossover temperature of the composites, which varies from 150-225K depending upon their fibre concentration, the experimental results are within 10% with that of predicted values. The possible causes of variation are analyzed. The physical phenomenon behind the temperature dependence of thermal conductivity is discussed in detail.

  2. Fabrication and EM shielding properties of electrospining PANi/MWCNT/PEO fibrous membrane and its composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Jiang, Xueyong; Liu, Yanju; Leng, Jinsong

    2012-04-01

    In this paper, Polyaniline-based fibrous membranes were fabricated with multi-walled carbon nanotubes and polyethylene oxide (PEO) by the electrospinning method. And then PANi/PEO/MWCNT fibrous membranes reinforced epoxy based nanocomposite was then fabricated. The morphology and electrical properties of PANi /MWCNT /PEO fibrous membrane was characterized by scanning electron microscope (SEM). The morphologies of the membranes indicate that the electrospining method can fabricate well nano structures fibrous membrane. The EM properties of the composite reinforced with the electrospining fibrous membrane were measured by vector network analyzer. The results show that the permittivity real, image parts and permeability real part of the composite increase by filling with PANI/PEO and PANI/CNT/PEO membrane. The EM shielding and absorb performance is base on the dielectric dissipation. And different membranes made of different materials show different EM parameter, and different EM shielding performance, which can be used to the EM shielding and stealth material design and fabrication.

  3. Microstructure of AI2O3 fiber-reinforced superalloy (INCONEL 718) composites

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, S.; Sahin, O.; Rhee, W. H.; Margolin, H.

    1996-02-01

    Composites of INCONEL 718 alloy reinforced with either single-crystal (SAPHIKON) or polycrys-talline (Du Pont's FP) A12O3 fiber were fabricated by pressure casting. Optical and transmission electron microscopy were used to characterize the microstructure of the composites and to determine the nature of the fiber/matrix reaction. The widely dispersed fibers in the SAPHIKON-fiber-reinforced composite had no influence on the solidification of the matrix. Six phases, γ-Ni3Al, γ'-Ni3Nb, δ-Ni3Nb, TiC, NbC, and Laves, were present in the matrix of the composite. The last three phases were formed during solidification and the others precipitated during subsequent cooling. The high density of fibers in the FP-fiber-reinforced composite led to a more uniform microstructure within the matrix. Only three phases, γ″-Ni3Nb, NbC, and Laves, were identified. Diffusion of Ti into the A12O3 fiber resulted in preferential grain growth in the FP fiber in areas adjacent to the fiber/matrix interface. The fiber/matrix bond strength in shear in the SAPHIKON-fiber-reinforced composite was in excess of 150 MPa.

  4. Investigation of Mechanical Damping Characteristic in Short Fiberglass Reinforced Polycarbonate Composites

    NASA Astrophysics Data System (ADS)

    Cho, Myoung-Rae; Kim, Hyung-Ick; Jang, Jae-Soon; Suhr, Jonghwan; Prate, Devin R.; Chun, David

    2013-06-01

    The focus of this study is to experimentally investigate the effect of debonding stress, the interface between the fibers and the polymer matrix, on the damping properties of the short fiberglass reinforced polymer composites. In this study, short fiberglass reinforced polycarbonate composite materials were fabricated and characterized for their tensile properties by varying the fiberglass loading fraction. The debonding stress was evaluated by coupling the acoustic emission technique with the tensile testing. After the determination of the debonding stress was completed, dynamic cyclic testing was performed in order to investigate the effect of debonding on the damping properties of the polymer composites. It was experimentally observed in this study that the debonding can facilitate the stick-slip friction under cyclic loadings, which then gives rise to better damping performance in the fiberglass composites.

  5. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  6. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2011-11-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  7. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2012-04-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  8. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    NASA Astrophysics Data System (ADS)

    Treutenaere, S.; Lauro, F.; Bennani, B.; Matsumoto, T.; Mottola, E.

    2015-09-01

    The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  9. Fabrication of latex rubber reinforced with micellar nanoparticle as an interface modifier

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforced latex rubbers were fabricated by incorporating small amount of nanoparticles as interface modifier. The rubbers were fabricated in a compression mold at 130°C. The incorporated nanoparticles were prepared from wheat protein (gliadin) and ethyl cyanoacrylate (ECA). These nanoparticles were...

  10. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding

    NASA Astrophysics Data System (ADS)

    Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.

    2011-05-01

    The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.

  11. Mechanical properties of woven glass fiber-reinforced composites.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2006-06-01

    The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p < 0.01). Likewise, compressive strength of reinforced specimens was significantly greater than those without woven glass fiber (p < 0.01), except for specimens reinforced with woven glass fiber oriented at a tilt direction in the texture (p > 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.

  12. An Assessment of Self-Healing Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.

    2012-01-01

    Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites

  13. Composite reinforced propellant tanks. [space shuttles

    NASA Technical Reports Server (NTRS)

    Brown, L. D.; Martin, M. J.; Aleck, B. J.; Landes, R.

    1975-01-01

    Design studies involving weight and cost were carried out for several structural concepts applicable to space shuttle disposable tankage. An effective design, a honeycomb stabilized pressure vessel, was chosen. A test model was designed and fabricated.

  14. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  15. Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Bayraktar, Emin; Ayari, Fayza; Tan, Ming Jen; Tosun-Bayraktar, Ayse; Katundi, Dhurata

    2014-04-01

    The purpose of this paper is to demonstrate the low-cost manufacturing of aluminum matrix composites reinforced with nano iron oxide as light and efficient materials for engineering applications. It is very desirable to use reinforced aluminum matrix composites in structural applications (automotive, aeronautical, etc.) because of their outstanding stiffness-to-weight and strength-to-weight ratios. In modern industry, it is increasingly important to develop new composites as alternative materials to fabricate multifunctional pieces. Detailed information is presented on the manufacturing process of this composite, and a preliminary study was performed on the cryogenic-cycling behavior to evaluate the interface between the matrix and the reinforcement. Microindentation tests were carried out to evaluate the micromechanical properties of these materials; a simple and practical finite element model is proposed to predict certain parameters related to the composition of the composite.

  16. Analysis of stress-strain, fracture, and ductility behavior of aluminum maxtrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1985-01-01

    Mechanical properties and stress-strain behavior were evaluated for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol pct discontinuous SiC whisker, nodule, or particulate reinforcement. The elastic modulus of the composites was found to be isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Type and orientation of reinforcement had some effect on the strengths of composites, but only for those in which the whisker reinforcement was highly oriented. Ductility decreased with increasing reinforcement content; however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain was probably attributable to cleaner matrix powder, better mixing, and increased mechanical working during fabrication. Comparison of properties with conventional aluminum and titanium structural alloys showed that the properties of the low-cost, lightweight composites demonstrated very good potential for application to aerospace structures.

  17. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  18. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 1: Concept development and feasibility

    NASA Technical Reports Server (NTRS)

    Oken, S.; June, R. R.

    1971-01-01

    The analytical and experimental investigations are described in the first phase of a program to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites. The interactions resulting from combining the two types of materials into single assemblies as well as their ability to function structurally were studied. The combinations studied were boron-epoxy reinforced aluminum, boron-epoxy reinforced titanium, and boron-polyimide reinforced titanium. The concepts used unidirectional composites as reinforcement in the primary loading direction and metal for carrying the transverse loads as well as its portion of the primary load. The program established that several realistic concepts could be fabricated, that these concepts could perform to a level that would result in significant weight savings, and that there are means for predicting their capability within a reasonable degree of accuracy. This program also encountered problems related to the application of polyimide systems that resulted in their relatively poor and variable performance.

  19. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    SciTech Connect

    Taylor, P.A.

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  20. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  1. Fabrication of flexible piezoelectric PZT/fabric composite.

    PubMed

    Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying

    2013-01-01

    Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C.

  2. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  3. Fiber-reinforced Composite for Chairside Replacement of Anterior Teeth: A Case Report.

    PubMed

    Garoushi, S; Vallittu, Pk; Lassila, Lvj

    2008-01-01

    A variety of therapeutic modalities, from implant to conventional Maryland prosthesis, can be used for the replacement of a missing anterior tooth. Whenever a minimal tooth reduction is preferred, a fiber reinforced composite (FRC) prosthesis could be a good alternative to conventional prosthetic techniques, chiefly as temporary restoration before making a final decision on the treatment. The purpose of this case report is to describe the clinical procedure of fabricating anterior chairside FRC prosthesis with pre-impregnated unidirectional E-glass fibers and veneered particulate filler composite. Fiber-reinforced composite in combination with adhesive technology appears to be a promising treatment option for replacing missing teeth. However, further and long-term clinical investigation will be required to provide additional information on the survival of directly-bonded anterior fixed prosthesis made with FRC systems. PMID:21499473

  4. Fiber-reinforced composite fixed partial denture to restore missing posterior teeth: a case report.

    PubMed

    Rappelli, Giorgio; Coccia, Erminia

    2005-11-15

    In patients refusing implant surgery for psychological reasons, when minimal tooth reduction is desired, a fiber-reinforced composite inlay fixed partial denture (IFPD) can be used to replace missing teeth. In comparison to other restorative systems this conservative approach carries a lower risk of pulp exposure and/or periodontal inflammation, maintaining the health of supporting tissues. The purpose of this case report is to describe the clinical procedure for fabricating an IFPD with a pre-impregnated glass fiber system and a hybrid composite. Fiber-reinforced composite, in combination with adhesive techniques, appears promising for an IFPD. Further clinical investigation will be required to provide additional information on this technique. PMID:16299619

  5. Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Patterson, Brendan A.; Hwang, Hyun-Sik; Sodano, Henry A.

    2016-04-01

    Piezoelectric nanowires, in particular zinc oxide (ZnO) nanowires, have been vastly used in the fabrication of electromechanical devices to convert wasted mechanical energy into useful electrical energy. Over recent years, the growth of vertically aligned ZnO nanowires on various structural fibers has led to the development of fiber-based nanostructured energy harvesting devices. However, the development of more realistic energy harvesters that are capable of continuous power generation requires a sufficient mechanical strength to withstand typical structural loading conditions. Yet, a durable, multifunctional material system has not been developed thoroughly enough to generate electrical power without deteriorating the mechanical performance. Here, a hybrid composite energy harvester is fabricated in a hierarchical design that provides both efficient power generating capabilities while enhancing the structural properties of the fiber reinforced polymer composite. Through a simple and low-cost process, a modified aramid fabric with vertically aligned ZnO nanowires grown on the fiber surface is embedded between woven carbon fabrics, which serve as the structural reinforcement as well as the top and the bottom electrodes of the nanowire arrays. The performance of the developed multifunctional composite is characterized through direct vibration excitation and tensile strength examination.

  6. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  7. Method of fabricating composite superconducting wire

    DOEpatents

    Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.

    1977-01-01

    An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

  8. SiC reinforced aluminide composites

    NASA Technical Reports Server (NTRS)

    Brindley, Pamela K.

    1987-01-01

    The tensile properties of SiC fiber, Ti3Al+Nb and SiC/Ti3Al+Nb composite have been determined from 300 to 1365 K. The composite results compared favorably to rule-of-mixtures (ROM) predictions in the intermediate temperature regime of 475 to 700 K. Deviations from ROM are discussed. Composite tensile results were compared on a strength/density basis to wrought superalloys and found to be superior. Fiber-matrix compatibility was characterized for the composite at 1250 and 1365 K for 1 to 100 hours.

  9. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  10. Creating esthetic composite restorations: Part II, Crown fabrication.

    PubMed

    Grin, D

    2000-01-01

    The purpose of the article is to describe a fabrication technique to assist dental technicians to create an esthetic, indirect, high strength composite crown with fiber reinforcement. After the teeth have been prepared and the models completed the technician can begin the fabrication process. A fiber coping is fabricated on a separate transfer die. Translucent dentin is selected to reduce opacity and enhance the blend with the remaining dentition. High chroma dentin modifiers can then be place into the fossa, cervical, and interproximal areas to replicate dentin seen in natural dentition. Different incisal materials can then be layered into the build-up to regulate the value of the restoration. Special effects such as hypocalcification are placed internally to mimic naturally occurring esthetics. Realistic anatomy is created using a small tipped instrument directly into the final layer of uncured translucent blue enamel material. Fissure characterization is placed in the restoration to match existing dentition. Fit and margins are verified on separate dies to minimize discrepancies. Path of insertion and proximal contacts are established on a solid model to minimize chairside adjustments.

  11. Fabrication of a reinforced polymer microstructure using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, M.; Venkatakrishnan, K.; Tan, B.

    2010-05-01

    This paper presents a new method for the formation of microfeatures with reinforced polymer using femtosecond laser material processing. The femtosecond laser was used for the generation of a three-dimensional interweaved nanofiber and the construction of microfeatures, such as microchannels and voxels, through two-photon polymerization of a nanofiber-dispersed polymer resin. This new method has the potential of direct fabrication of reinforced micro/nanostructures.

  12. Effect of reinforcement type and porosity on strength of metal matrix composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. G.; Lal, Achchhe; Menghani, J. V.

    2016-05-01

    In the present work, experimental investigation and the numerical analysis are carried out for strength analysis of A356 alloy matrix composites reinforced with alumina, fly ash and hybrid particle composites. The combined strengthening effect of load bearing, Hall-Petch, Orowan, coefficient of thermal expansion mismatch and elastic modulus mismatch is studied for predicting accurate uniaxial stress-strain behavior of A356 based alloy matrix composite. The unit cell micromechanical approach and nine noded isoparametric finite element analysis (FEA) is used to investigate the yield failure load by considering material defect of porosity as fabrication errors in particulate composite. The Ramberg-Osgood approach is considered for the linear and nonlinear relationship between stress and strain of A356 based metal matrix composites containing different amounts of fly ash and alumina reinforcing particles. A numerical analysis of material porosity on the stress strain behavior of the composite is performed. The literature and experimental results exhibit the validity of this model and confirm the importance of the fly ash as the cheapest and low density reinforcement obtained as a waste by product in thermal power plants.

  13. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite

    SciTech Connect

    Sharma, Manjula Sharma, Vimal; Pal, Hemant

    2014-04-24

    Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.

  14. Use of an alternative pontic foundation technique for a fiber-reinforced composite fixed partial denture: a clinical report.

    PubMed

    Ayna, Emrah; Celenk, Sema

    2005-05-01

    This article describes the treatment of a patient for whom a fiber-composite laminate dowel and core and polyethylene fiber were used as a conservative alternative to provide a dowel-and-core and fixed partial denture foundation. The treatment plan included removing the existing restoration on the maxillary right first molar, placing a fiber-reinforced resin dowel and core for retention and reinforcement of the maxillary first premolar, and fabricating a definitive restoration using polyethylene fiber to reinforce the fixed partial denture.

  15. Natural Fiber or Glass Reinforced Polypropylene Composites?

    NASA Astrophysics Data System (ADS)

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-01

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  16. NATURAL FIBER OR GLASS REINFORCED POLYPROPYLENE COMPOSITES?

    SciTech Connect

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-28

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  17. Railgun Application for High Energy Impact Testing of Nano-Reinforced Kevlar-Based Composite Materials

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Vricella, A.; Pastore, R.; Morles, R. B.; Marchetti, M.

    2013-08-01

    An advanced electromagnetic accelerator, called railgun, has been assembled and tuned in order to perform high energy impact test on layered structures. Different types of layered composite materials have been manufactured and characterized in terms of energy absorbing capability upon impact of metallic bullets fired at high velocity. The composite materials under testing are manufactured by integrating several layers of Kevlar fabric and carbon fiber ply within a polymeric matrix reinforced by carbon nanotubes at 1% of weight percentage. The experimental results show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range, and that carbon nanotubes may enhance, when suitably coupled to the composite's matrix, the excellent antiballistic properties of the Kevlar fabrics.

  18. Simple stressed-skin composites using paper reinforcement

    SciTech Connect

    Bunnell, L.R.

    1990-11-01

    The objective of this study was to demonstrate the composite reinforcement concept in a hands-on manner, using readily available materials; to demonstrate the consequences of certain defects in these structures; and to quantify the gains made by engineering composite construction, using a simple measurement of Young's modulus of electricity. The materials used were foam rubber beams, beams reinforced on one side by bonding with heavy paper, a beam reinforced on both sides by bonding with heavy paper, and a beam with a defect caused by using a piece of waxed paper midway to prevent bonding of the paper. The experiment is designed to teach students at the high school level or above the concept of Young's modulus, a measure of a material's stiffness. 2 figs. (BM)

  19. Nanostructure Titania Reinforced Conducting Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kondawar, S. B.; Thakare, S. R.; Khati, V.; Bompilwar, S.

    Composites of polyaniline with synthesized nanostructured titania (TiO2) and polyaniline with commercial TiO2 have been in situ synthesized by oxidative chemical polymerization method. Sulfuric acid was used as dopant during the polymerization process. Sol-gel precipitates of nanostructured titania were synthesized by hydrolyzing the mixture of titanium chloride (TiCl3) and colloidal transparent solution of starch. Composite materials were subjected for comparison to spectroscopic and X-ray diffraction analysis. Strong coupling/interaction of titania with the imine nitrogen in polyaniline confirmed by FTIR spectral analysis. XRD shows the composite of synthesized titania with polyaniline have broaden peak as compared to that of commercial titania with polyaniline indicating particle size in the range of nanometer scale which is supported by 40 nm particle size of the synthesized titania from TEM picture. Increase in conductivity with increasing temperature was observed in both the composite materials.

  20. Fiber Reinforced Composites for Insulation and Structures

    NASA Technical Reports Server (NTRS)

    Broughton, Roy M., Jr.

    2005-01-01

    The work involves two areas: Composites, optimum fiber placement with initial construction of a pressure vessel, and the general subject of insulation, a continual concern in harsh thermal environments. Insulation

  1. Plastic matrix composites with continuous fiber reinforcement

    SciTech Connect

    1991-09-19

    Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.

  2. Mesoscale simulations of particle reinforced epoxy-based composites

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Springer, Harry Keo; Jordan, Jennifer L.; Spowart, Jonathan E.; Thadhani, Naresh

    2012-03-01

    Polymer matrix composites reinforced with metal powders have complex microstructures that vary greatly from differences in particle size, morphology, loading fractions, etc. The effects of the underlying microstructure on the mechanical and wave propagation behavior of these composites during dynamic loading conditions are not well understood. To better understand these effects, epoxy (Epon826/DEA) reinforced with different particle sizes of Al and loading fractions of Al and Ni were prepared by casting. Microstructures from the composites were then used in 2D plane strain mesoscale simulations. The effect of varying velocity loading conditions on the wave velocity was then examined to determine the Us-Up and particle deformation response as a function of composite configuration.

  3. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  4. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  5. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnarparkhi, P.

    1988-01-01

    The effect of sample configuration on the details of initial crack propagation in discontinuously whisker reinforced aluminum metal matrix composites was investigated. Care was taken to allow direct comparison of fracture toughness values utilizing differing sample configurations and orientations, holding all materials variables constant, e.g., extrusion ration, heat treatment, and chemistry.

  6. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnaparkhi, P.

    1988-01-01

    Summarized is the progress achieved during the period September 16, 1987 to August 15, l988 on NASA Grant NAG1-724, Fracture Criteria for Discontinuously Reinforced Metal Matrix Composites. Appended are copies of three manuscripts prepared under NASA funding during the performance period.

  7. Elastic/viscoplastic constitutive model for fiber reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gates, T. S.; Sun, C. T.

    1991-01-01

    A constitutive model to describe the elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites under plane stress conditions is presented. Formulations are given for quasi-static plasticity and time-dependent viscoplasticity. Experimental procedures required to generate the necessary material constants are explained, and the experimental data is compared to the predicted behavior.

  8. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  9. Fiber reinforced composites in prosthodontics – A systematic review

    PubMed Central

    Nayar, Sanjna; Ganesh, R.; Santhosh, S.

    2015-01-01

    Fiber-reinforced composite (FRC), prostheses offer the potential advantages of optimized esthetics, low wear of the opposing dentition and the ability to bond the prosthesis to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: Fiber-composites to build the substructure and hybrid or micro fill particulate composites to create the external veneer surface. This article reviews the various types of FRCs and its mechanical properties. PMID:26015717

  10. Thermo-dynamic characteristics of NITINOL-reinforced composite beams

    NASA Astrophysics Data System (ADS)

    Baz, A.; Ro, J.

    The fundamental principles governing the operation of NITINOL-reinforced composite beams are investigated by determining the individual contributions of the composite matrix, the NITINOL fibers, and the shape memory effect to the overall dynamic performance of the beams. The effect of the temperature distribution inside the composite, which results from the activation of a small subset of the NITINOL fibers, on the overall performance of the entire beam was investigated theoretically and experimentally. Particular attention was given to the effects of intentional electrical heating of a selected subset of NITINOL fibers, and the associated thermal energy propagating through the composite, on the unintentional thermal activation of additional subsets of the fibers.

  11. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2

  12. Doubly curved nanofiber-reinforced optically transparent composites

    PubMed Central

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-01-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts. PMID:26552990

  13. Doubly curved nanofiber-reinforced optically transparent composites

    NASA Astrophysics Data System (ADS)

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-11-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts.

  14. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  15. Composite material fabrication techniques. CRADA final report

    SciTech Connect

    Frame, B J; Paulauskas, F L; Miller, J; Parzych, W

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  16. Tannin-based flax fibre reinforced composites for structural applications in vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Abhyankar, H.; Nassiopoulos, E.; Njuguna, J.

    2012-09-01

    Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°]4 and [0, +45°, 90°, -45°]2) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.

  17. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  18. The assessment of metal fiber reinforced polymeric composites

    NASA Technical Reports Server (NTRS)

    Chung, Wenchiang R.

    1990-01-01

    Because of their low cost, excellent electrical conductivity, high specific strength (strength/density), and high specific modulus (modulus/density) short metal fiber reinforced composites have enjoyed a widespread use in many critical applications such as automotive industry, aircraft manufacturing, national defense, and space technology. However, little data has been found in the study of short metal fibrous composites. Optimum fiber concentration in a resin matrix and fiber aspect ratio (length-to-diameter ratio) are often not available to a user. Stress concentration at short fiber ends is the other concern when the composite is applied to a load-bearing application. Fracture in such composites where the damage will be initiated or accumulated is usually difficult to be determined. An experimental investigation is therefore carefully designed and undertaken to systematically evaluate the mechanical properties as well as electrical properties. Inconel 601 (nickel based) metal fiber with a diameter of eight microns is used to reinforce commercially available thermoset polyester resin. Mechanical testing such as tensile, impact, and flexure tests along with electrical conductivity measurements is conducted to study the feasibility of using such composites. The advantages and limitations of applying chopped metal fiber reinforced polymeric composites are also discussed.

  19. Ageing characteristics of aluminium alloy aluminosilicate discontinuous fiber reinforced composites

    SciTech Connect

    Nath, D.; Singh, V.

    1999-03-05

    Development of continuous fiber reinforced metal matrix composites is aimed at providing high specific strength and stiffness needed for aerospace and some critical high temperature structural applications. Considerable efforts have been made, during the last decade, to improve the strength of age-hardening aluminium alloy matrix composites by suitable heat treatment. It has also been well established that age-hardenable aluminium alloy composites show accelerated ageing behavior because of enhanced dislocation density at the fiber/matrix interface resulting from thermal expansion mismatch between ceramic fiber and the metal matrix. The accelerated ageing of aluminium alloy composites either from dislocation density or the residual stress, as a result of thermal expansion mismatch is dependent on the size of whisker and particulate. Investigations have also been made on the effect of volume fraction of particulate on the ageing behavior of aluminium alloys. The present investigation is concerned with characterization of age-hardening behavior of an Al-Si-Cu-Mg(AA 336) alloy alumino-silicate discontinuous fiber-reinforced composites (referred to as aluminium MMCs in the present text) being developed for automotive pistons. An effort is made to study the effect of volume fraction of the reinforcement on age-hardening behavior of this composite.

  20. On Healable Polymers and Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  1. Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton.

    PubMed

    Ni, Ya; Chen, Lei; Teng, Kunyue; Shi, Jie; Qian, Xiaoming; Xu, Zhiwei; Tian, Xu; Hu, Chuansheng; Ma, Meijun

    2015-06-01

    Epoxy-based composites reinforced by three-dimensional graphene skeleton (3DGS) were fabricated in resin transfer molding method with respect to the difficulty in good dispersion and arrangement of graphene sheets in composites by directly mixing graphene and epoxy. 3DGS was synthesized in the process of self-assembly and reduction with poly(amidoamine) dendrimers. In the formation of 3DGS, graphene sheets were in good dispersion and ordered state, which resulted in exceptional mechanical properties and thermal stability for epoxy composites. For 3DGS/epoxy composites, the tensile and compressive strengths significantly increased by 120.9% and 148.3%, respectively, as well as the glass transition temperature, which increased by a notable 19 °C, unlike the thermal exfoliation graphene/epoxy composites via direct-mixing route, which increased by only 0.20 wt % content of fillers. Relative to the graphene/epoxy composites in direct-mixing method mentioned in literature, the increase in tensile and compressive strengths of 3DGS/epoxy composites was at least twofold and sevenfold, respectively. It can be expected that 3DGS, which comes from preforming graphene sheets orderly and dispersedly, would replace graphene nanosheets in polymer nanocomposite reinforcement and endow composites with unique structure and some unexpected performance.

  2. In Vitro Study of Transverse Strength of Fiber Reinforced Composites

    PubMed Central

    Mosharraf, R.; Hashemi, Z.; Torkan, S.

    2011-01-01

    Objective Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitro study was to compare the transverse strength of composite resin bars reinforced with pre-impregnated and non-impregnated fibers. Materials and Methods Thirty six bar type composite resin specimens (3×2×25 mm) were constructed in three groups. The first group was the control group (C) without any fiber reinforcement. The specimens in the second group (P) were reinforced with pre-impregnated fibers and the third group (N) with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength. Data were statistically analyzed with one way ANOVA and Tukey’s tests. Results There was a significant difference among the mean primary transverse strength in the three groups (P<0.001). The post-hoc (Tukey) test showed that there was a significant difference between the pre-impregnated and control groups in their primary transverse strength (P<0.001). Regarding deflection, there was also a significant difference among the three groups (P=0.001). There were significant differences among the mean deflection of the control group and two other groups (PC&N<.001 and PC&P=.004), but there was no significant difference between the non-and pre-impregnated groups (PN&P=.813). Conclusion Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnation of the fiber used implemented no significant difference in the transverse strength of composite resin samples. PMID:22457836

  3. Fabrication of high-density In3Sb1Te2 phase change nanoarray on glass-fabric reinforced flexible substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jong Moon; Shin, Dong Ok; Yin, You; Seo, Hyeon Kook; Kim, Daewoon; In Kim, Yong; Jin, Jung Ho; Kim, Yong Tae; Bae, Byeong-Soo; Ouk Kim, Sang; Lee, Jeong Yong

    2012-06-01

    Mushroom-shaped phase change memory (PCM) consisting of a Cr/In3Sb1Te2 (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl2. The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in2.

  4. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  5. Laser processed TiN reinforced Ti6Al4V composite coatings.

    PubMed

    Balla, Vamsi Krishna; Bhat, Abhimanyu; Bose, Susmita; Bandyopadhyay, Amit

    2012-02-01

    The purpose of this first generation investigation is to evaluate fabrication, in vitro cytotoxicity, cell-material interactions and tribological performance of TiN particle reinforced Ti6Al4V composite coatings for potential wear resistant load bearing implant applications. The microstructural analysis of the composites was performed using scanning electron microscope and phase analysis was done with X-ray diffraction. In vitro cell-material interactions, using human fetal osteoblast cell line, have been assessed on these composite coatings and compared with Ti6Al4V alloy control samples. The tribological performance of the coatings were evaluated, in simulated body fluids, up to 1000 m sliding distance under 10 N normal load. The results show that the composite coatings contain distinct TiN particles embedded in α+β phase matrix. The average top surface hardness of Ti6Al4V alloy increased from 394±8 HV to 1138±61 HV with 40 wt% TiN reinforcement. Among the composite coatings, the coatings reinforced with 40 wt% TiN exhibited the highest wear resistance of 3.74×10(-6) mm(3)/Nm, which is lower than the wear rate, 1.04×10(-5) mm(3)/Nm, of laser processed CoCrMo alloy tested under identical experimental conditions. In vitro biocompatibility study showed that these composite coatings were non-toxic and provides superior cell-material interactions compared to Ti6Al4V control, as a result of their high surface energy. In summary, excellent in vitro wear resistance and biocompatibility of present laser processed TiN reinforced Ti6Al4V alloy composite coatings clearly show their potential as wear resistant contact surfaces for load bearing implant applications.

  6. Laser Processed TiN Reinforced Ti6Al4V Composite Coatings

    PubMed Central

    Balla, Vamsi Krishna; Bhat, Abhimanyu; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    The purpose of this first generation investigation is to evaluate fabrication, in vitro cytotoxicity, cell-materials interactions and tribological performance of TiN particle reinforced Ti6Al4V composite coatings for potential wear resistant load bearing implant applications. The microstructural analysis of the composites was performed using scanning electron microscope and phase analysis was done with X-ray diffraction. In vitro cell-materials interactions, using human fetal osteoblast cell line, have been assessed on these composite coatings and compared with Ti6Al4V alloy control samples. The tribological performance of the coatings were evaluated, in simulated body fluids, up to 1000 m sliding distance under 10N normal load. The results show that the composite coatings contain distinct TiN particles embedded in α + β phase matrix. The average top surface hardness of Ti6Al4V alloy increased from 394 ± 8 HV to 1138 ± 61 HV with 40 wt.% TiN reinforcement. Among the composite coatings, the coatings reinforced with 40 wt. % TiN exhibited the highest wear resistance of 3.74 × 10-6 mm3/Nm, which is lower than the wear rate, 1.04 × 10-5 mm3/Nm, of laser processed CoCrMo alloy tested under identical experimental conditions. In vitro biocompatibility study showed that these composite coatings were non-toxic and provides superior cell-material interactions compared to Ti6Al4V control, as a result of their high surface energy. In summary, excellent in vitro wear resistance and biocompatibility of present laser processed TiN reinforced Ti6Al4V alloy composite coatings clearly show their potential as wear resistant contact surfaces for load bearing implant applications. PMID:22301169

  7. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  8. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR).

    PubMed

    Ellakwa, A; Shortall, A; Shehata, M; Marquis, P

    2001-01-01

    This study investigated the influence of fiber reinforcement on the flexural properties of four commercial (Artglass, Belleglass HP, Herculite XRV and Solidex) veneering composites (Series A) and two experimental composites (Series B&C). This study investigated how the composition of the veneering composites influenced the enhancement of strength and modulus produced by fiber reinforcement. The formulation of the experimental composites were varied by changing the filler load (Series B) or the resin matrix chemistry (Series C) to assess the effect these changes would have on the degree of reinforcement. In Series A, the commercial veneering composites were reinforced by an Ultra-High-Molecular-Weight Polyethylene fiber (UHMW-PE/Connect) to evaluate flexural properties after 24 hours and six months. In Series B, experimental composites with the same organic matrix but with different filler loads (40% to 80% by weight) were also reinforced by Connect fiber to evaluate flexural properties. In Series C, experimental composites (Systems 1-4) with the same filler load (76.5% by weight) but with different organic matrix compositions were reinforced by Connect fiber to evaluate flexural properties. For Series B and C, flexural properties were evaluated after 24 hours water storage. All the samples were prepared in a mold 2 mm x 2 mm x 25 mm and stored in distilled water at 37 degrees C until they were ready for flexural testing in an Instron Universal Testing Machine using a crosshead speed of 1 mm/minute. The results showed no significant differences in the flexural strength (FS) between any of the commercial reinforced composites in Series A. The flexural modulus (FM) of the fiber-reinforced Belleglass HP group was significantly higher than for Artglass and Solidex. Water storage for six months had no significant (p>0.05) effect on the flexural strength of three of the four reinforced veneering composites. The flexural strength for Artglass was significantly reduced (p<0

  9. Wear Behaviour of Carbon Nanotubes Reinforced Nanocrystalline AA 4032 Composites

    NASA Astrophysics Data System (ADS)

    Senthil Saravanari, M. S.; Kumaresh Babu, S. P.; Sivaprasad, K.

    2016-09-01

    The present paper emphasizes the friction and wear properties of Carbon Nanotubes reinforced AA 4032 nanocomposites prepared by powder metallurgy technique. CNTs are multi-wall in nature and prepared by electric arc discharge method. Multi-walled CNTs are blended with AA 4032 elemental powders and compaction followed by sintering to get bulk nanocomposites. The strength of the composites has been evaluated by microhardness and the surface contact between the nanocomposites and EN 32 steel has been evaluated by Pin on disk tester. The results are proven that reinforcement of CNTs play a major role in the enhancement of hardness and wear.

  10. Aligned Carbon Nanotube Reinforced Silicon Carbide Composites by Chemical Vapor Infiltration

    SciTech Connect

    Gu, Zhan Jun; Yang, Ying Chao; Li, Kai Yuan; Tao, Xin Yong; Eres, Gyula; Howe, Jane Y; Zhang, Li Tong; Li, Xiao Dong; Pan, Zhengwei

    2011-01-01

    Owing to their exceptional stiffness and strength1 4, carbon nanotubes (CNTs) have long been considered to be an ideal reinforcement for light-weight, high-strength, and high-temperature-resistant ceramic matrix composites (CMCs)5 10. However, the research and development in CNT-reinforced CMCs have been greatly hindered due to the challenges related to manufacturing including poor dispersion, damages during dispersion, surface modification, densification and sintering, weak tube/matrix interfaces, and agglomeration of tubes at the matrix grain boundaries5,11. Here we report the fabrication of high-quality aligned CNT/SiC composites by chemical vapor infiltration (CVI), a technique that is being widely used to fabricate commercial continuous-filament CMCs12 15. Using the CVI technique most of the challenges previously encountered in the fabrication of CNT composites were readily overcome. Nanotube pullouts, an important toughening mechanism for CMCs, were consistently observed on all fractured CNT/SiC samples. Indeed, three-point bending tests conducted on individual CNT/SiC nanowires (diameters: 50 200 nm) using an atomic force microscope show that the CNT-reinforced SiC nanowires are about an order of magnitude tougher than the bulk SiC. The tube/matrix interface is so intimate and the SiC matrix is so dense that a ~50-nm-thick SiC coating can effectively protect the inside nanotubes from being oxidized at 1600 C in air. The CVI method may be extended to produce nanotube composites from a variety of matrix

  11. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues.

    PubMed

    Han, F; Liu, S; Liu, X; Pei, Y; Bai, S; Zhao, H; Lu, Q; Ma, F; Kaplan, D L; Zhu, H

    2014-02-01

    Although three-dimensional (3-D) porous regenerated silk scaffolds with outstanding biocompatibility, biodegradability and low inflammatory reactions have promising application in different tissue regeneration, the mechanical properties of regenerated scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This study presents woven silk fabric-reinforced silk nanofibrous scaffolds aimed at dermal tissue engineering. To improve the mechanical properties, silk scaffolds prepared by lyophilization were reinforced with degummed woven silk fabrics. The ultimate tensile strength, elongation at break and suture retention strength of the scaffolds were significantly improved, providing suitable mechanical properties strong enough for clinical applications. The stiffness and degradation behaviors were then further regulated by different after-treatment processes, making the scaffolds more suitable for dermal tissue regeneration. The in vitro cell culture results indicated that these scaffolds maintained their excellent biocompatibility after being reinforced with woven silk fabrics. Without sacrifice of porous structure and biocompatibility, the fabric-reinforced scaffolds with better mechanical properties could facilitate future clinical applications of silk as matrices in skin repair. PMID:24090985

  12. AN EMPIRICAL MODEL TO PREDICT STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTICS FABRICATION PROCESSES

    EPA Science Inventory

    Styrene is a designated hazardous air pollutant, per the 1990 Clean Air Act Amendments. It is also a tropospheric ozone precursor. Fiber-reinforced plastics (FRP) fabrication is the primary source of anthropogenic styrene emissions in the United States. This paper describes an em...

  13. Effect of thermal shock on fiber-reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Yuen, J. L.; Schnittgrund, G. D.; Petrasek, D. W.

    1990-01-01

    An evaluation is presented of the thermal shock behavior of tungsten fiber-reinforced superalloy (FRS) composites with respect to the turbine blade requirements of rocket engine turbopumps. Each composite was reinforced unidirectionally with 40-volume-pct continuous tungsten fibers. The start-up conditions of the first-stage turbine blades of the high-pressure fuel turbopump in the Space Shuttle Main Engine (SSME) were used to investigate the thermal shock behavior of these materials. The FRS composites showed excellent thermal shock resistance, two to nine times better than the turbine blade material used in the SSME. Thermal shock cycling produced microcracks on the surfaces of the irradiated area that were less than 0.13 mm long and 0.005 mm deep. Neither fiber/matrix debonding nor microvoiding was observed.

  14. On the homogenized behaviour of reinforced and other Bingham composites.

    PubMed

    Castañeda, P Ponte

    2003-05-15

    A recently developed (Ponte Castañeda 2002 J. Mech. Phys. Solids 50, 737-757) 'second-order' nonlinear homogenization method is used to estimate the constitutive response of reinforced and other Bingham composites. For the special case of rigidly reinforced Bingham composites with overall isotropy (in two dimensions), the results show that the homogenized response of such materials is not strictly Bingham. Thus, instead of a purely linear incremental response beyond the relevant threshold (yield) stress, the response is strongly nonlinear just after yield and asymptotes to a purely linear incremental response only at sufficiently large stress or strain-rate levels. This phenomenon is linked to the presence of strong fluctuations of the strain-rate field in the composite at the onset of yield.

  15. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  16. Development of Cu Reinforced SiC Particulate Composites

    NASA Astrophysics Data System (ADS)

    Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed

    2015-02-01

    This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.

  17. Influence of weave structures on the tribological properties of hybrid Kevlar/PTFE fabric composites

    NASA Astrophysics Data System (ADS)

    Gu, Dapeng; Yang, Yulin; Qi, Xiaowen; Deng, Wei; Shi, Lei

    2012-09-01

    The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism

  18. Microgravity processing of particulate reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.

    1989-01-01

    The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.

  19. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  20. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  1. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  2. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  3. Esthetic rehabilitation of single anterior edentulous space using fiber-reinforced composite

    PubMed Central

    Kim, Hyeon; Song, Min-Ju; Shin, Su-Jung; Lee, Yoon

    2014-01-01

    A fiber-reinforced composite (FRC) fixed prosthesis is an innovative alternative to a traditional metal restoration, as it is a conservative treatment method. This case report demonstrates a detailed procedure for restoring a missing anterior tooth with an FRC. A 44-year-old woman visited our department with an avulsed tooth that had fallen out on the previous day and was completely dry. This tooth was replanted, but it failed after one year. A semi-direct technique was used to fabricate a FRC fixed partial prosthesis for its replacement. The FRC framework and the pontic were fabricated using a duplicated cast model and nanofilled composite resin. Later on, interproximal contact, tooth shape, and shade were adjusted at chairside. This technique not only enables the clinician to replace a missing tooth immediately after extraction for minimizing esthetic problems, but it also decreases both tooth reduction and cost. PMID:25110647

  4. Effect of fabric orientation on the monotonic and fatigue behavior of a Nicalon{trademark}/alumina composite

    SciTech Connect

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1996-12-31

    Monotonic and cyclic fatigue tests were performed on a Nicalon{trademark} fiber reinforced alumina composite fabricated by the direct metal oxidation (DIMOX{trademark}) process, using four-point bend specimens at ambient temperature. It was observed that both monotonic flexural strength and fatigue threshold of the composite were higher when the load was applied parallel to the fabric plane, compared to loading normal to the fabric plane. The modulus reduction during the fatigue tests was also monitored. Fracture surfaces were examined to gain an insight into the composite failure modes.

  5. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  6. Method of Fabricating a Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor)

    2007-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises making a piezoelectric fiber sheet by providing a plurality of wafers of piezoelectric material, bonding the wafers together with an adhesive material to from a stack of alternating layers of piezoelectric material and adhesive material, and cutting through the stack in a direction substantially parallel to the thickness of the stack and across the alternating layers of piezoelectric material and adhesive material to provide at least one piezoelectric fiber sheet having two sides comprising a plurality of piezoelectric fibers in juxtaposition to the adhesive material. The method further comprises bonding two electrically conductive films to the two sides of the piezoelectric fiber sheet. At least one conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric fiber sheet.

  7. Method of Fabricating a Piezoelectric Composite Apparatus

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats (Inventor); Bryant, Robert (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor); Little, Bruce D. (Inventor); Mirick, Paul H. (Inventor)

    2003-01-01

    A method for fabricating a piezoelectric macro-fiber composite actuator comprises providing a piezoelectric material that has two sides and attaching one side upon an adhesive backing sheet. The method further comprises slicing the piezoelectric material to provide a plurality of piezoelectric fibers in juxtaposition. A conductive film is then adhesively bonded to the other side of the piezoelectric material, and the adhesive backing sheet is removed. The conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric material. The first and second conductive patterns of the conductive film each have a plurality of electrodes to form a pattern of interdigitated electrodes. A second film is then bonded to the other side of the piezoelectric material. The second film may have a pair of conductive patterns similar to the conductive patterns of the first film.

  8. Apparatus for fabricating composite ceramic members

    DOEpatents

    Roy, P.; Simpson, J.L.; Aitken, E.A.

    1975-10-28

    Methods and apparatus for fabrication of composite ceramic members having particular application for measuring oxygen activities in liquid sodium are described. The method involves the simultaneous deposition of ThO$sub 2$: 15 percent Y$sub 2$O$sub 3$ on a sintered stabilized zirconia member by decomposition of gaseous ThCl$sub 4$ and YCl$sub 3$ and by reacting with oxygen gas. Means are provided for establishing an electrical potential gradient across the zirconia member whereby oxygen ions, from a source on one side of the member portion to be coated, are migrated to the opposite side where a reaction and said decomposition and deposition are effected.

  9. Dynamic mechanical analysis of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Reed, K. E.

    1979-01-01

    Dynamic mechanical and thermal properties were determined for unidirectional epoxy/glass composites at various fiber orientation angles. Resonant frequency and relative logarithmic decrement were measured as functions of temperature. In low angle and longitudinal specimens a transition was observed above the resin glass transition temperature which was manifested mechanically as an additional damping peak and thermally as a change in the coefficient of thermal expansion. The new transition was attributed to a heterogeneous resin matrix induced by the fiber. The temperature span of the glass-rubber relaxation was found to broaden with decreasing orientation angle, reflecting the growth of fiber contribution and exhibiting behavior similar to that of Young's modulus. The change in resonant frequency through the glass transition was greatest for samples of intermediate fiber angle, demonstrating behavior similar to that of the longitudinal shear modulus.

  10. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    SciTech Connect

    Sharma, Manjula Pal, Hemant; Sharma, Vimal

    2015-05-15

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  11. Method for reinforcing threads in multilayer composite tubes and cylindrical structures

    SciTech Connect

    Romanoski, G.R.; Burchell, T.D.

    1996-04-01

    Multilayer techniques such as: tape wrapping, braiding, and filament winding represent versatile and economical routes for fabricating composite tubes and cylindrical structures. However, multilayer architectures lack the radial reinforcement required to retain threads when the desired means of connection or closure is a threaded joint. This issue was addressed in the development of a filament wound, carbon-carbon composite impact shell for the NASA radioisotope thermoelectric generator. The problem of poor thread shear strength was solved by incorporating a number of radial elements of triangular geometry around the circumference of the thread for the full length of thread engagement. The radial elements significantly increased the shear strength of the threaded joint by transmitting the applied force to the balance of composite structure. This approach is also applicable to ceramic composites.

  12. Investigation of failure modes in fiber-reinforced ceramic-matrix composites. Master's thesis

    SciTech Connect

    Moschler, J.W.

    1988-12-01

    This experimental study was conducted to investigate the damage progression in fiber-reinforced ceramic-matrix composites under tensile loading. As part of this study, the effect of the residual stresses at the fiber-matrix interface on damage progression was evaluated. Composite samples were fabricated from silicon carbide fibers and borosilicate glass matrices. Each glass had a different coefficient of thermal expansion than the fiber and through the variation of this mismatch, the residual stresses at the fiber-matrix interface were varied resulting in different bonding conditions at the fiber-matrix interface. The mechanical properties of the composites were measured using a servo-hydraulic mechanical testing machine. During these tests, transverse strain reversal was observed that is believed to be caused by axial matrix cracks and fiber-matrix debonding. Tensile tests were conducted on the composites using a constant-load straining device in which damage progression was observed using an optical microscope.

  13. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Pal, Hemant; Sharma, Vimal

    2015-05-01

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  14. Some Physicochemical Phenomena Observed During Fabrication of Mg-C Cast Composites

    NASA Astrophysics Data System (ADS)

    Olszówka-Myalska, Anita

    2016-08-01

    Some effects acquired in composites processed under industrial conditions were presented. Glassy carbon particles (GCp) and short carbon fibers were applied in magnesium matrix composites fabricated by suspension casting. As the matrix magnesium alloys with Al and without Al but with Zn, Zr and rare earth elements (RE) were used. The main interest was focused on the behavior of the reinforcing components, depending on the magnesium alloying elements. The observation of the stirred suspensions during their industrial processing detected an effect of carbon components' migration to the top of the crucible, suggesting segregation processes. Experiments with unmixed suspensions performed by way of remelting the composites with uniformly distributed reinforcement showed that the segregation effect depends on the magnesium matrix composition. In the case of the alloy with Al, two zones with (top) and without reinforcement can be formed. For the alloys with Zn, Zr, and RE, an additional zone of segregated carbon reinforcement can appear directly at the bottom of the crucible. The SEM/EDS examination also showed some differences in the influence of the magnesium matrix on the carbon reinforcement dependent on the applied alloying elements. The most destructive effect was detected for the Al-containing alloy and minor defects in GCp were formed when Gd with Nd were applied.

  15. Micromechanical aspects of failure in unidirectional fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Oguni, Kenji

    Micromechanical aspects of failure in unidirectional fiber reinforced composites are investigated using combined experimental and analytical methods. Results from an experimental investigation on mechanical behavior of a unidirectional fiber reinforced polymer composite (E-glass/vinylester) with 50% fiber volume fraction under quasi-static uniaxial and proportional multiaxial compression are presented. Detailed examination of the specimen during and after the test reveals the failure mode transition from axial splitting to kink band formation as the loading condition changes from uniaxial to multiaxial compression. Motivated by the experimental observations, an energy-based model is developed to provide an analytical estimate of the critical stress for axial splitting observed in unidirectional fiber reinforced composites under uniaxial compression in the fiber direction (also with weak lateral confinement). The analytic estimate for the compressive strength is used to illustrate its dependence on material properties, surface energy, fiber volume fraction, fiber diameter and lateral confining pressure. To understand the effect of flaws on the strength of unidirectional fiber reinforced composites, a fracture mechanics based model for failure is developed. Based on this model, failure envelope, dominant initial flaw orientation and failure mode for the composites under a wide range of stress states are predicted. Parametric study provides quantitative evaluation of the effect of various mechanical and physical properties on failure behavior and identifies their influence on strength. Finally, results from an experimental investigation on the dynamic mechanical behavior of unidirectional E-glass/vinylester composites with 30%, 50% fiber volume fraction under uniaxial compression are presented. Limited experimental results are also presented for the 50% fiber volume fraction composite under dynamic proportional lateral confinement. Specimens are loaded in the fiber

  16. Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites.

    PubMed

    Liu, Ruirui; Dong, Aixue; Fan, Xuerong; Yu, Yuanyuan; Yuan, Jiugang; Wang, Ping; Wang, Qiang; Cavaco-Paulo, Artur

    2016-04-01

    Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.

  17. Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites.

    PubMed

    Liu, Ruirui; Dong, Aixue; Fan, Xuerong; Yu, Yuanyuan; Yuan, Jiugang; Wang, Ping; Wang, Qiang; Cavaco-Paulo, Artur

    2016-04-01

    Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers. PMID:26754422

  18. Interface Characterization in Fiber-Reinforced Polymer-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Naya, F.; Molina-Aldareguía, J. M.; Lopes, C. S.; González, C.; LLorca, J.

    2016-10-01

    A novel methodology is presented and applied to measure the shear interface strength of fiber-reinforced polymers. The strategy is based in fiber push-in tests carried out on the central fiber of highly-packed fiber clusters with hexagonal symmetry, and it is supported by a detailed finite element analysis of the push-in test to account for the influence of hygrothermal residual stresses, fiber constraint and fiber anisotropy on the interface strength. Examples of application are presented to determine the shear interface strength in carbon and glass fiber composites reinforced with either thermoset or thermoplastic matrices. In addition, the influence of the environment (either dry or wet conditions) on the interface strength in C/epoxy composites is demonstrated.

  19. Indirect aesthetic adhesive restoration with fibre-reinforced composite resin.

    PubMed

    Corona, S A M; Garcia, P P N S; Palma-Dibb, R G; Chimello, D T

    2004-10-01

    This paper describes the restoration of an endodontically treated upper first molar with a fibre-reinforced onlay indirect composite resin restoration. The clinical and radiographic examination confirmed that the tooth had suffered considerable loss of structure. Therefore, an indirect restoration was indicated. First, a core was built with resin-modified glass ionomer cement, followed by onlay preparation, mechanical/chemical gingival retraction and impression with addition-cured silicone. After the laboratory phase, the onlay was tried in, followed by adhesive bonding and occlusal adjustment. It can be concluded that fibre-reinforced aesthetic indirect composite resin restoration represented, in the present clinical case, an aesthetic and conservative treatment option. However, the use of fibres should be more extensively studied to verify the real improvement in physical and mechanical properties.

  20. Optically transparent composites reinforced with plant fiber-based nanofibers

    NASA Astrophysics Data System (ADS)

    Iwamoto, S.; Nakagaito, A. N.; Yano, H.; Nogi, M.

    2005-11-01

    The fibrillation of pulp fiber was attempted by two methods, a high-pressure homogenizer treatment and a grinder treatment. The grinder treatment resulted in the successful fibrillation of wood pulp fibers into nanofibers. The nanofibers demonstrate promising characteristics as reinforcement material for optically transparent composites. Due to the size effect, the nanofiber-reinforced composite retains the transparency of the matrix resin even at high fiber content such as 70 wt %. Since the nanofiber is an aggregate of semi-crystalline extended cellulose chains, its addition also contributes to a significant improvement in the thermal expansion properties of plastics while maintaining its ease of bending. Cellulose nanofibers have tremendous potential as a future resource since they are produced in a sustainable manner by plants, one of the most abundant organic resources on earth.

  1. Mechanical Performance of Rotomoulded Wollastonite-Reinforced Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaowen; Easteal, Allan J.; Bhattacharyya, Debes

    This paper describes the development of a new processing technology for rotational moulding of wollastonite microfibre (WE) reinforced polyethylene (PE). Manufacturing wollastonite-polyethylene composites involved blending, compounding by extrusion, and granulating prior to rotational moulding. The properties of the resulting composites were characterised by tensile and impact strength measurements. The results show that tensile strength increases monotonically with the addition of wollastonite fibres, but impact strength is decreased. In addition, the processability is also decreased after adding more than 12 vol% WE because of increased viscosity. The effects of a coupling agent, maleated polyethylene (MAPE), on the mechanical performance and processability were also investigated. SEM analysis reveals good adhesion between the fibre reinforcements and polyethylene matrix at the fracture surface with the addition of MAPE. It is proposed that fillers with small particles with high aspect ratio (such as wollastonite) provide a large interfacial area between the filler and the polymer matrix, and may influence the mobility of the molecular chains.

  2. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  3. Homogenization of long fiber reinforced composites including fiber bending effects

    NASA Astrophysics Data System (ADS)

    Poulios, Konstantinos; Niordson, Christian F.

    2016-09-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.

  4. Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.

    2005-01-01

    An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.

  5. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  6. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  7. Thermal conductivity of boron nitride reinforced polyethylene composites

    SciTech Connect

    Zhou Wenying Qi Shuhua; An Qunli; Zhao Hongzhen; Liu Nailiang

    2007-10-02

    The thermal conductivity of boron nitride (BN) particulates reinforced high density polyethylene (HDPE) composites was investigated under a special dispersion state of BN particles in HDPE, i.e., BN particles surrounding HDPE particles. The effects of BN content, particle size of HDPE and temperature on the thermal conductivity of the composites were discussed. The results indicate that the special dispersion of BN in matrix provides the composites with high thermal conductivity; moreover, the thermal conductivity of composites is higher for the larger size HDPE than for the smaller size one. The thermal conductivity increases with increasing filler content, and significantly deviates the predictions from the theoretic models. It is found also that the combined use of BN particles and alumina short fiber obtains higher thermal conductivity of composites compared to the BN particles used alone.

  8. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  9. Carbon fiber-reinforced cyanate ester/nano-ZrW2O8 composites with tailored thermal expansion.

    PubMed

    Badrinarayanan, Prashanth; Rogalski, Mark K; Kessler, Michael R

    2012-02-01

    Fiber-reinforced composites are widely used in the design and fabrication of a variety of high performance aerospace components. The mismatch in coefficient of thermal expansion (CTE) between the high CTE polymer matrix and low CTE fiber reinforcements in such composite systems can lead to dimensional instability and deterioration of material lifetimes due to development of residual thermal stresses. The magnitude of thermally induced residual stresses in fiber-reinforced composite systems can be minimized by replacement of conventional polymer matrices with a low CTE, polymer nanocomposite matrix. Zirconium tungstate (ZrW(2)O(8)) is a unique ceramic material that exhibits isotropic negative thermal expansion and has excellent potential as a filler for development of low CTE polymer nanocomposites. In this paper, we report the fabrication and thermal characterization of novel, multiscale, macro-nano hybrid composite laminates comprising bisphenol E cyanate ester (BECy)/ZrW(2)O(8) nanocomposite matrices reinforced with unidirectional carbon fibers. The results reveal that incorporation of nanoparticles facilitates a reduction in CTE of the composite systems, which in turn results in a reduction in panel warpage and curvature after the cure because of mitigation of thermally induced residual stresses.

  10. Dynamic tensile strength of glass fiber reinforced pultruded composites

    SciTech Connect

    Dutta, P.K.; Kumar, M.M.; Hui, D.

    1994-12-31

    This paper discusses the stress-strain behavior, fracture strength, influence of low temperature, and energy absorption in the diametral tensile splitting fracturing of a Glass Fiber Reinforced Polymer Composite. Experiments were conducted at low-temperature in a thermal chamber installed on a servo-hydraulic universal testing machine. The tensile strength was determined by diametral compression of disc samples at 24, {minus}5 and {minus}40 C.

  11. Elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Wang, C.; Sun, C. T.; Gates, T. S.

    1990-01-01

    An elastic/viscoplastic constitutive model was used to characterize the nonlinear and rate dependent behavior of a continuous fiber-reinforced thermoplastic composite. This model was incorporated into a finite element program for the analysis of laminated plates and shells. Details on the finite element formulation with the proposed constitutive model were presented. The numerical results were compared with experimental data for uniaxial tension and three-point bending tests of (+ or - 45 deg)3s APC-2 laminates.

  12. Fracture Resistance of Composite Fixed Partial Dentures Reinforced with Pre-impregnated and Non-impregnated Fibers

    PubMed Central

    Mosharraf, Ramin; Torkan, Sepideh

    2012-01-01

    Background and aims The mechanical properties of fiber-reinforced composite fixed partial dentures (FPDs) are af-fected by fiber impregnation. The aim of this in vitro study was to compare the fracture resistance of composite fixed partialdentures reinforced with pre-impregnated and non-impregnated fibers. Materials and methods Groups (n=5) of three-unit fiber-reinforced composite FPDs (23 mm in length) from maxillary second premolar to maxillary second molar were fabricated on two abutments with pontic width of 12 mm. One group was fabricated as the control group with composite (Gradia) and the other two groups were fabricated with composite (Gradia) reinforced with pre-impregnated fiber (Fibrex ribbon) and non-impregnated fiber (Fiber braid), respectively. The specimens were stored in distilled water for one week at 37°C and then tested in a universal testing machine by means of a three-point bending test. Statistical analysis consisted of one-way ANOVA and a post hoc Scheffé’s test for the test groups (α=0.05). Results Fracture resistance (N) differed significantly between the control group and the other two groups (P<0.001), but there were no statistically significant differences between the pre-impregnated and non-impregnated groups (P=0.565). The degree of deflection measured (mm) did not differ significantly between the three groups (P=0.397), yet the mean deflection measured in pre-impregnated group was twice as that in the other two groups. Conclusion Reinforcement of composite with fiber might considerably increase the fracture resistance of FPDs; how-ever, the type of the fiber used resulted in no significant difference in fracture resistance of FPD specimens. PMID:22991628

  13. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    NASA Astrophysics Data System (ADS)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  14. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process. PMID:25904176

  15. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  16. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  17. Affordable Fiber-Reinforced Ceramic Composites Win 1995 R and D 100 Award

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Affordable fiber-reinforced ceramic matrix composites (AFReCC) with high strength and toughness, good thermal conductivity, thermal shock resistance, and oxidation resistance are needed for high-temperature structural applications. AFReCC materials will have various applications in advanced high-efficiency and high-performance engines: that is, the High Speed Civil Transport (HSCT), space propulsion components, and land-based systems. For example, silicon-carbide-fiber-reinforced silicon carbide matrix composites show promise for meeting the criteria of high strength, thermal conductivity, and toughness required for the HSCT combustor liner. AFReCC received R&D Magazine's prestigious R&D 100 Award in 1995. The fabrication process for these composites has three steps. In the first step, fiber preforms are made and chemical vapor infiltration is used to apply the desired interface coating on the fibers. This step also rigidizes the preform. The second step consists of resin infiltration, which after pyrolysis, yields an interconnected network of porous carbon as the matrix. In the final step of the process, the carbon-containing preform is infiltrated with molten silicon or silicon alloys in a furnace. This converts the carbon to silicon carbide leaving as little as 5 percent residual free silicon or refractory disilicide phase. This process is suitable for any type of small-diameter fiber (e.g., carbon, alumina, or silicon carbide) woven into a two- or three-dimensional architecture. This processing approach leads to dense composites where matrix microstructure and composition can be tailored for optimum properties. It has much lower processing cost (less than 50 percent) in comparison to other approaches to fabricating silicon-carbide-based composites. The photograph shows the various AFReCC components. Thermomechanical and thermochemical characterization of these composites under the hostile environments that will be encountered in engine applications is underway.

  18. Reinforcement Learning Based Web Service Compositions for Mobile Business

    NASA Astrophysics Data System (ADS)

    Zhou, Juan; Chen, Shouming

    In this paper, we propose a new solution to Reactive Web Service Composition, via molding with Reinforcement Learning, and introducing modified (alterable) QoS variables into the model as elements in the Markov Decision Process tuple. Moreover, we give an example of Reactive-WSC-based mobile banking, to demonstrate the intrinsic capability of the solution in question of obtaining the optimized service composition, characterized by (alterable) target QoS variable sets with optimized values. Consequently, we come to the conclusion that the solution has decent potentials in boosting customer experiences and qualities of services in Web Services, and those in applications in the whole electronic commerce and business sector.

  19. High strain-rate model for fiber-reinforced composites

    SciTech Connect

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  20. Solid Freeform Fabrication of Composite-Material Objects

    NASA Technical Reports Server (NTRS)

    Wang, C. Jeff; Yang, Jason; Jang, Bor Z.

    2005-01-01

    Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on

  1. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  2. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    SciTech Connect

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-11

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  3. Buckling and Vibration of Fiber Reinforced Composite Plates With Nanofiber Reinforced Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2011-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated for buckling: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. For vibration the same conditions were used with the applied cods about a small fraction of the buckling loads. The buckling and vibration results showed that the NFRM plates buckled at about twice those with conventional matrix.

  4. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  5. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    PubMed

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  6. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  7. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.

    PubMed

    Hou, Ye; Tang, Jie; Zhang, Hongbo; Qian, Cheng; Feng, Yiyu; Liu, Jie

    2009-05-26

    Compared to single-walled carbon nanotubes (SWNTs) and more defective multiwalled carbon nanotubes (MWNTs), the thin few-walled carbon nanotubes (FWNTs) are believed to have extraordinary mechanical properties. However, the enhancement of mechanical properties in FWNTs-polymer composites has remained elusive. In this study, free-standing carbon nanotubes (CNTs)/polymer composite films were fabricated with three types (SWNTs, FWNTs, MWNTs) of functionalized CNTs. The mechanical properties of composite films have been investigated. It is observed that the Young's modulus of composite films with only 0.2 wt % functionalized FWNTs shows a remarkable reinforcement value of dY/dV(f) = 1658 GPa, which is approximately 400 GPa higher than the highest value (dY/dV(f) = 1244 GPa) that was previously reported. In addition, the Young's modulus increased steadily with the increased concentration of FWNTs. The results indicated that FWNTs are practically the optimum reinforcing filler for the next generation of carbon nanotube-based composite materials.

  8. Macroscopic Mechanical Characterization of SMAs Fiber-Reinforced Hybrid Composite Under Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Lei, Hongshuai; Wang, Zhenqing; Tong, Liyong; Tang, Xiaojun

    2013-10-01

    This paper presents an experimental and theoretical investigation on the macroscopic mechanical behavior of shape memory alloys (SMAs) fiber-reinforced glass/resin composite subject to uniaxial loading at ambient temperature. A series of unidirectional SMAs reinforced composite laminates is fabricated through vacuum-assisted resin injection. Scanning electron microscopy is conducted to evaluate the interfacial cohesive quality between SMAs fiber and matrix. A theoretical model is proposed based on the SMAs phase transformation model and rule of mixture. Uniaxial tensile tests are performed to study the effects of weak interface and SMAs fiber volume fraction on the effective modulus of composite. Failure morphology of composite is discussed based on the observation using digital HF microscope. Due to the effects of phase transformation and weak interface, the overall stiffness of SMAs composite at the second stage is on average 10% lower than theoretical results. The rupture elongation of experimental result is approximately 13% higher than theoretical result. The local interfacial debonding between SMAs fiber and glass/resin matrix is the main failure mode.

  9. Electron processing of fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  10. Development of explosively bonded TZM wire reinforced Columbian sheet composites

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Carpenter, S. H.

    1972-01-01

    Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.

  11. Objective Surface Evaluation of Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Palmer, Stuart; Hall, Wayne

    2013-08-01

    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

  12. Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.

  13. Bone formation: The rules for fabricating a composite ceramic

    SciTech Connect

    Caplan, A.I. )

    1990-01-01

    Bone, teeth and shells are complex composite ceramics which are fabricated at low temperature by living organisms. The detailed understanding of this fabrication process is required if we are to attempt to mimic this low temperature assembly process. The guiding principles and major components are outlined with the intent of establishing non-vital fabrication schemes to form a complex composite ceramic consisting of an organix matrix inorganic crystalline phase. 19 refs.

  14. Fabrication and testing of fire resistant graphite composite panels

    NASA Technical Reports Server (NTRS)

    Roper, W. D.

    1986-01-01

    Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022m, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. Described are the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.

  15. Rigid spine reinforced polymer microelectrode array probe and method of fabrication

    DOEpatents

    Tabada, Phillipe; Pannu, Satinderpall S

    2014-05-27

    A rigid spine-reinforced microelectrode array probe and fabrication method. The probe includes a flexible elongated probe body with conductive lines enclosed within a polymeric material. The conductive lines connect microelectrodes found near an insertion end of the probe to respective leads at a connector end of the probe. The probe also includes a rigid spine, such as made from titanium, fixedly attached to the probe body to structurally reinforce the probe body and enable the typically flexible probe body to penetrate and be inserted into tissue, such as neural tissue. By attaching or otherwise fabricating the rigid spine to connect to only an insertion section of the probe body, an integrally connected cable section of the probe body may remain flexible.

  16. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    PubMed Central

    Rinke, Sven; Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088

  17. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow.

    PubMed

    Rinke, Sven; Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088

  18. Discontinuous Fiber-reinforced Composites above Critical Length

    PubMed Central

    Petersen, R.C.

    2014-01-01

    Micromechanical physics of critical fiber length, describing a minimum filament distance for resin impregnation and stress transfer, has not yet been applied in dental science. As a test of the hypothesis that 9-micron-diameter, 3-mm-long quartz fibers would increase mechanical strength over particulate-filled composites, photocure-resin-pre-impregnated discontinuous reinforcement was incorporated at 35 wt% into 3M Corporation Z100, Kerr Corporation HerculiteXRV, and an experimental photocure paste with increased radiopaque particulate. Fully articulated four-point bend testing per ASTM C 1161-94 for advanced ceramics and Izod impact testing according to a modified unnotched ASTM D 256-00 specification were then performed. All photocure-fiber-reinforced composites demonstrated significant improvements over particulate-filled compounds (p < 0.001) for flexural strength, modulus, work of fracture, strain at maximum load, and Izod toughness, with one exception for the moduli of Z100 and the experimental reinforced paste. The results indicate that inclusion of pre-impregnated fibers above the critical aspect ratio yields major advancements regarding the mechanical properties tested. PMID:15790745

  19. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  20. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  1. Dynamic fracture behaviour in fibre-reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Yu, Rena C.; Cifuentes, Héctor; Rivero, Ignacio; Ruiz, Gonzalo; Zhang, Xiaoxin

    2016-08-01

    The object of this work is to simulate the dynamic fracture propagation in fibre-reinforced cementitious composites, in particular, in steel fibre reinforced concrete (SFRC). Beams loaded in a three-point bend configuration through a drop-weight impact device are considered. A single cohesive crack is assumed to propagate at the middle section; the opening of this crack is governed by a rate-dependent cohesive law; the fibres around the fracture plane are explicitly represented through truss elements. The fibre pull-out behaviour is depicted by an equivalent constitutive law, which is obtained from an analytical load-slip curve. The obtained load-displacement curves and crack propagation velocities are compared with their experimental counterparts. The good agreement with experimental data testifies to the feasibility of the proposed methodology and paves the way to its application in a multi-scale framework.

  2. Esthetic considerations when splinting with fiber-reinforced composites.

    PubMed

    Strassler, Howard E; Serio, Cheryl L

    2007-04-01

    The primary reasons for splinting and stabilizing teeth are to connect them for the purpose of replacing missing teeth or as an adjunct to periodontal therapy. Although the restorations must be planned to withstand the functional requirements of occlusion and mastication, esthetic considerations must also be taken into account. The challenge in creating an esthetic result with fiber-reinforced composite splints is that there is limited space in the connector region to create the three-dimensional effect required to give teeth the appearance of individuality. Careful planning in the diagnosis and treatment of the fiber splint is essential to allow for adequate tooth preparation to give the illusion of nonsplinted teeth. When missing teeth are replaced with a fiber-reinforced, direct, fixed partial denture, the pontic must be created to achieve an esthetically pleasing result. PMID:17532925

  3. Material development aspects of an oxidation protection system for a reinforced carbon-carbon composite. [for Space Shuttle leading edges

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Scott, R. O.; Shuford, D. M.

    1976-01-01

    The paper describes the procedures which led to selection of a diffusion-coated siliconized oxidation-resistant reinforced carbon-carbon composite as a candidate for use in the leading edge structure of the Space Shuttle for the purpose of providing thermal protection. Materials were evaluated on the basis of oxidation-inhibitor performance, strength properties, and fabricability. Compounds of titanium, tantalum, zirconium, silicon, hafnium, aluminum, and boron were compounded with the reinforced carbon-carbon material in two different processing techniques to discover an oxidation-inhibited system which provided multicycle protection at temperatures up to 4000 F. Details of the manufacture and testing of the reinforced carbon-carbon composites are provided.

  4. Fabrication and characterization of gold nanoparticle reinforced Chitosan nanocomposites for biomedical applications

    NASA Astrophysics Data System (ADS)

    Patel, Nimitt G.

    Chitosan is a naturally derived polymer, which represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Polymeric materials can be regarded as promising candidates for next generation devices due to their low energy payback time. These devices can be fabricated by high-throughput processing methodologies, such as spin coating, inkjet printing, gravure and flexographic printing onto flexible substrates. However, the extensive applications of polymeric films are still limited because of disadvantages such as poor electromechanical properties, high brittleness with a low strain at break, and sensitivity to water. For certain critical applications the need for modification of physical, mechanical and electrical properties of the polymer is essential. When blends of polymer films with other materials are used, as is commonly the case, device performance directly depends on the nanoscale morphology and phase separation of the blend components. To prepare nanocomposite thin films with the desired functional properties, both the film composition and microstructure have to be thoroughly characterized and controlled. Chitosan reinforced bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through a solution casting method. Gold nanoparticles (˜ 32 nm diameter) were synthesized via a citrate reduction method from chloroauric acid and incorporated in the prepared Chitosan solution. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed by SEM images. Synthesis outcomes and prepared nanocomposites were characterized using TEM, SAED, SEM, EDX, XRD, UV-Vis, particle size analysis, zeta potential and FT-IR for their physical, morphological and structural properties. Nanoscale mechanical properties of the nanocomposite films were characterized at room temperature, human body temperatures and higher

  5. Bioactive ceramic-reinforced composites for bone augmentation

    PubMed Central

    Tanner, K. E.

    2010-01-01

    Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed. PMID:20591846

  6. Fracture behavior of glass fiber reinforced polymer composite

    SciTech Connect

    Avci, A.; Arikan, H.; Akdemir, A

    2004-03-01

    Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such as initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.

  7. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  8. Biaxial flexing of a fiber reinforced aluminum composite

    SciTech Connect

    Tsangarakis, N.; Pepi, M.S. )

    1990-07-01

    A disk specimen of silicon carbide continuous fiber reinforced aluminum is used to study the response of the composite to biaxial tensile flexure. The maximum surface principal tensile strain is constant within a radius of 6.1 mm from the center of the disk. The strain is found to be sensitive to the damage introduced in the composite during flexing. Fiber breakage under monotonic loading is initiated within a fiber tensile strain 0.0038-0.0083. Under cyclic loading and for principal surface strain ranges exceeding 0.0035 the dominant damage mechanism leading to failure is fiber breakage. At smaller surface strain ranges, slip bands and cracks formed in the matrix. The limiting value of the cyclic fiber strain range for a life of one million cycles is 0.00132. This strain is 15 percent of the composite failure strain under uniaxial monotonic loading and 50 percent of the maximum strain in uniaxial tensile fatigue. 27 refs.

  9. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    SciTech Connect

    Sathiskumar, R.; Murugan, N.; Dinaharan, I.; Vijay, S.J.

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  10. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.

  11. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  12. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  13. Adjusting Measured Weight Loss of Aged Graphite Fabric/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1998-01-01

    The purposes of this study were to evaluate the growth of the surface damage layer in polymer matrix composites (PMC's) fabricated with graphite fabric reinforcement and to determine the effects of the cut-surface degradation on the overall thermo-oxidative (TOS) stability of these materials. Four important conclusions were made about the TOS behavior of T650-35/PNIR- 15 fabric-reinforced composites: (1) Three stages of composite weight loss were seen on the plot of weight loss versus aging time; (2) the depth of the cut-edge damage is related to the composite thickness; (3) the actual weight loss realized by a mechanical test specimen that has had all the aging-induced cut-edge damage removed during the preparation process is significantly less than the weight loss measured using specimens with a high percentage of cut edges exposed to the damaging environment; and (4) an extrapolation of a section of the weight loss curve can be used to obtain a more correct estimate of the actual weight loss after extended periods of aging at elevated temperatures.

  14. EB treatment of carbon nanotube-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Szebényi, G.; Romhány, G.; Vajna, B.; Czvikovszky, T.

    2012-09-01

    A small amount — less than 0.5% — carbon nanotube reinforcement may improve the mechanical properties of epoxy based composite materials significantly. The basic technical problem on one side is the dispersion of the nanotubes into the viscous matrix resin, namely, the fine powder-like — less than 100 nanometer diameter — nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, which is determining the success of the reinforcement, requires some efficient adhesion promoting treatment. The goal of our research was to give one such treatment capable of industrial size application. A two step curing epoxy/vinylester resin process technology has been developed where the epoxy component has been cured conventionally, while the vinylester has been cured by electron treatment afterwards. The sufficient irradiation dose has been selected according to Raman spectroscopy characterization. Using the developed hybrid resin system hybrid composites containing carbon fibers and multiwalled carbon nanotubes have been prepared. The effect of the electron beam induced curing of the vinylester resin on the mechanical properties of the composites has been characterized by three point bending and interlaminar shear tests, which showed clearly the superiority of the developed resin system. The results of the mechanical tests have been supported by AFM studies of the samples, which showed that the difference in the viscoelastic properties of the matrix constituents decreased significantly by the electron beam treatment.

  15. Development of autoclavable polyimides. [fabrication procedures of high temperature resistant/fiber composite

    NASA Technical Reports Server (NTRS)

    Orell, M. K.; Sheppard, C. H.; Vaughan, R. W.; Jones, R. J.

    1974-01-01

    A poly(Diels-Alder) (PDA) resin approach was investigated as a means to achieve autoclavability of high temperature resistant resin/fiber composites under mild fabrication procedures. Low void content Type A-S graphite reinforced composites were autoclave fabricated from a PDA resin/fiber prepared from an acetone:methanol:dioxane varnish. Autoclave conditions were 477K (400F) and 0.7 MN/sq m (100 psi) for up to two hours duration. After postcure at temperatures up to 589K (600F), the composites demonstrated high initial mechanical properties at temperatures up to 561K (550F). The results from isothermal aging studies in air for 1000 hours indicated potential for long-term ( 1000 hours) use at 533K (500F) and shorter-term (up to 1000 hours) at 561K (550F).

  16. Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting

    NASA Astrophysics Data System (ADS)

    Dong, Aixue; Yu, Yuanyuan; Yuan, Jiugang; Wang, Qiang; Fan, Xuerong

    2014-05-01

    Jute fiber is a lignocellulosic material which could be utilized for reinforcement of composites. To improve the compatibility of hydrophilic jute fiber with hydrophobic resin, surface hydrophobization of the fiber is often needed. In this study, the feasibility of laccase-mediated grafting dodecyl gallate (DG) on the jute fiber was investigated. First, the grafting products were characterized by FT-IR, XPS, SEM and AFM. And then the grafting percentage (Gp) and the DG content of the modified jute were determined in terms of weighting and saponification, respectively. The parameters of the enzymatic grafting process were optimized to the target application. Lastly, the hydrophobicity of the jute fabrics was estimated by means of contact angle and wetting time. The mechanical properties and the fracture section of the jute fabric/polypropylene (PP) composites were studied. The results revealed covalently coupling of DG to the jute substrates mediated by laccase. The enzymatic process reached the maximum grafting rate of 4.16% when the jute fabric was incubated in the 80/20 (v/v, %) pH 3 0.2 M acetate buffer/ethanol medium with 1.0 U/mL laccase and 5 mM DG at 50 °C for 4 h. The jute fabric modified with laccase and DG showed increased contact angle of 111.49° and wetting time of at least 30 min, indicating that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification with hydrophobic DG. The breaking strength of the modified jute fiber/PP composite was also increased and the fracture section became neat and regular due to the laccase-assisted grafting with DG.

  17. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  18. Fabrication of toroidal composite pressure vessels. Final report

    SciTech Connect

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  19. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  20. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  1. A new SiC-whisker-reinforced lithium aluminosilicate composite

    SciTech Connect

    Xue, L.A.; Chen, Iwei . Dept. of Materials Science and Engineering)

    1993-11-01

    The glass-ceramic matrix of the well-known lithium aluminosilicate (LAS)/SiC composite is usually formulated near the spodumene composition. The authors report a new composition which is rich in alumina and lean in silica and lithia. This formulation offers a new option of converting the glass-ceramic matrix to a mullite/alumina matrix upon annealing above 1,400 C, and hence better creep resistance and other high-temperature mechanical properties. Using a transient-phase processing method that they developed previously for the superplastic forming of mullite, the authors are able to hot-press a composite containing 30 vol% SiC whiskers at [approximately]1,350 C to achieve full density. Flexural strength measurements up to 1,400 C have confirmed the improved high-temperature strength and creep resistance over conventional LAS. The fracture toughness is also higher than that of LAS. The results suggest that the new composition may be chosen as a better candidate matrix for SiC-fiber-reinforced composites.

  2. Crash-Energy Absorbing Composite Structure and Method of Fabrication

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)

    1998-01-01

    A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The geometric configuration of cells is integrated by means of continuous fibers wrapped thereabout in order to maintain the cells in the geometric configuration. The cured part results in a net shape, stable structure that can function on its own with no additional reinforcement and can withstand combined loading while crushing in a desired direction.

  3. Determination of local debonding stress and investigation of its effect on mechanical properties of glass short fiber reinforced polycarbonate composites

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Kim, Hyung-ick; Suhr, Jonghwan

    2012-04-01

    Thermoplastic polymers are often reinforced by adding short fibers to improve mechanical properties including Young's modulus and tensile strength of the polymers. In many engineering applications, energy absorbing characteristics in such particulate polymers is known to be a very important property to be considered in composite designs, and meanwhile debonding at the interface between fiber and matrix in the composites may affect the energy absorption properties. Here, the focus of this study is to employ a semi-empirical approach to determine the debonding stress and investigate the effect of the debonding stress on energy absorbing properties of short glass fiber reinforced polycarbonate composites. Glass short fiber reinforced polycarbonate composites are fabricated via a solution mixing technique. Tensile testing and acoustic emission measurement are simultaneously performed for the polycarbonate composites. The test results including toughness are compared for the composites over neat polycarbonate. Also the local debonding stress in the vicinity of each glass fiber in composites is estimated by combining modeling and experiments. A finite element model is developed to determine local debonding stress at the interface between the fiber and matrix. The local debonding stress appears to considerably affect the toughness of the composites.

  4. Effects of Porosity on Ultrasonic Characteristic Parameters and Mechanical Properties of Glass Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Liu, Fushun

    Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.

  5. Rehabilitation of periodontally compromised teeth with fiber-reinforced composite resin: a case report.

    PubMed

    Hoeppner, Márcio Grama; Fonseca, Rodrigo Borges; Pfau, Eduardo Augusto; Justo, Flávio Roberto Machado; Fávero, Alexandre; Bremm, Laerte Luiz

    2011-02-01

    The rehabilitation of prosthetic spaces resulting from severe periodontitis represents a challenge in terms of functional and esthetic aspects. Generally, tooth extraction is followed by alveolar ridge volume reduction, which increases the esthetic problem. The aim of this article is to report the integration of esthetics and functional parameters in the oral rehabilitation of extracted periodontally compromised mandibular central incisors through the construction of a direct glass fiber-reinforced composite fixed partial denture (DFPD). After periodontal therapy, the patient received a periodontal subepithelial graft, enabling an increase in the thickness and height of the alveolar ridge. The DFPD was fabricated with the use of extracted teeth. Mandibular canines and lateral incisors received cavities 2 mm deep and wide. After fiber insertion, tooth adaptation, and composite resin coverage, the teeth were finished and polished. Results showed an excellent esthetic result with stabilization and function of the remaining periodontally affected teeth. PMID:21359245

  6. Mechanical behavior of a composite reinforced overhead conductor

    NASA Astrophysics Data System (ADS)

    Alawar, Ahmad

    A new type of overhead conductor with a polymer composite core is evaluated in terms of the mechanical properties and operating characteristics. The conductor is composed of trapezoidal O'-tempered aluminum wires helically wound around a hybrid glass/carbon composite core produced by pultrusion. The conductor is intended for electrical power transmission, and is designated ACCC/TW, for aluminum conductor composite core/trapezoidal wire. Measurements of core properties and conductor sag at high temperatures were compared to conventional ACSR (aluminum conductor, steel-reinforced) of the same diameter. The mechanical properties of ACCC/TW, such as the tensile strength, CTE and SAG performance, showed superiority to conventional ACSR. The ACCC/TW conductor also exhibited greater ampacity than ACSR conductor at all operating temperatures. A modification to a Numerical Sag Method for predicting conductor sag is presented that accurately predicts the observed bilinear sag behavior of composite conductors. The modified method is called the Hybrid Sag Method (HSM). It is used to predict the sag of conductors with conventional designs. The HSM predictions are compared with those obtained using a conventional graphical sag method. The HSM shows virtually the same accuracy as the graphical method for predicting sag for composite conductors operated under specific conditions. The HSM predictions of sag are validated by comparisons with experimental measurements. Tensile strength and storage modulus were measured to determine the temperature dependence of the composite core from 20°-200°C. The storage modulus was measured by dynamic mechanical analysis (DMA) and showed temperature dependence nearly identical to the tensile strength for both composites. The correlation between storage modulus and tensile strength was analyzed in terms of the temperature-dependent matrix shear strength, and the storage modulus behavior is presented as a basis for projecting the strength

  7. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  8. Ceramic composites reinforced with modified silicon carbide whiskers and method for modifying the whiskers

    DOEpatents

    Tiegs, T.N.; Lindemer, T.B.

    1991-02-19

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  9. Carbon fiber-reinforced composites: Applications in alternative energy & transportation systems

    SciTech Connect

    Dry, A.; Betts, J.; Strandburg, D.

    1996-12-31

    Historically, carbon fiber-reinforced composites (CFRCs) were limited to aerospace applications, primarily due to the high cost of the staple carbon fiber strands and labor-intensive composite manufacturing. By the early 1990s, new cost-effective fabrication methods reduced the price of carbon fiber tenfold from the initial level of over $100.00/lb. to around $12.00/lb. As a result, entirely new markets for CFRCs emerged to take advantage of the unbeatable strength/weight properties, primarily in the sporting goods industry. Today`s market is much more varied, with applications appearing in infrastructure, industrial and mechanical components, and alternative energy and transportation systems. In fact, carbon fiber-reinforced composites are enabling the technologies for the myriad of new alternative energy and transportation systems in development. Compressed natural gas (CNG) and liquid natural gas (LNG) tanks are filament wound from carbon fiber, which provides the lightweight/high strength construction necessary for efficient energy storage. Similarly, carbon fiber flywheels allow higher rotor speeds for greater energy storage capability. Lightweight carbon fiber-reinforced windmill blades, are in development with longer chord lengths for greater energy capture. In summary, CFRCs are being evaluated for structural components in practically all alternative fuel and transportation sectors, including automotive, due to the increased energy efficiency allowed by the overall weight reduction. As new programs to further develop these high volume applications emerge, the carbon fiber industry will be challenged to reduce the cost of carbon fiber and composite manufacturing methods to ensure continued market expansion.

  10. Fatigue strength of woven kenaf fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Aziz, M. A. Che Abdul

    2015-12-01

    Nowadays, green composites provide alternative to synthetic fibers for non-bearing and load-bearing applications. According to literature review, lack of information is available on the fatigue performances especially when the woven fiber is used instead of randomly oriented fibers. In order to overcome this problem, this paper investigates the fatigue strength of different fiber orientations and number of layers of woven kenaf fiber reinforced composites. Four types of fiber orientations are used namely 0°, 15°, 30° and 45°. Additionally, two numbers of layers are also considered. It is revealed that the fatigue life has no strong relationship with the fiber orientations. For identical fiber orientations, the fatigue life can be predicted considerably using the normalized stress. However as expected, the fatigue life enhancement occur when the number of layer is increased.

  11. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  12. Radiation processing of carbon fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit

    2001-12-01

    Carbon fibre-reinforced advanced composites are being used for a variety of structural applications, because of their useful mechanical properties, including high strength-to-weight ratio and corrosion resistance. Thermal curing of composite products results in internal stresses, due to the mismatch of the coefficients of expansion of the tools and the composite products. Because radiation curing can be done at ambient temperatures, the possibility that the residual stresses might be absent, or much lower in the radiation-cured products, originally led to the start of work on radiation curing of advanced composites at AECL's Whiteshell Laboratories in Pinawa, Canada, in 1985. Research work during the last two decades has shown that advanced composites can be radiation-cured with electron beams or γ radiation. Many of the advantages of radiation curing, as compared to thermal curing, which include curing at ambient temperature, reduced curing time, improved resin stability and reduced volatile emissions, have now been demonstrated. The initial work focussed on electron curing of acrylated epoxy matrices. Since then, procedures have been developed to radiation cure conventional aerospace epoxies, as well. Electron beam cured advanced composites are now being developed for use in the aircraft and aerospace industry. Repair of advanced composite structures is also possible using radiation curing technology. Radiation curing work is continuing at Pinawa and has also been done by Aerospatiale, who have facilities for electron curing composite rocket motor casings and by Chappas and co-workers who have electron cured part of a boat hull. In this paper, the work done on this emerging new technology by the various groups is briefly reviewed.

  13. Cellulose fiber reinforced nylon 6 or nylon 66 composites

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolin

    Cellulose fiber was used to reinforce higher melting temperature engineering thermoplastics, such as nylon 6 and nylon 66. The continuous extrusion - direct compression molding processing and extrusion-injection molding were chosen to make cellulose fiber/nylon 6 or 66 composites. Tensile, flexural and Izod impact tests were used to demonstrate the mechanical properties of the composites. The continuous extrusion-compression molding processing can decrease the thermal degradation of cellulose fiber, but fiber doesn't disperse well with this procedure. Injection molding gave samples with better fiber dispersion and less void content, and thus gave better mechanical properties than compression molding. Low temperature compounding was used to extrude cellulose fiber/nylon composites. Plasticizer and a ceramic powder were used to decrease the processing temperature. Low temperature extrusion gave better mechanical properties than high temperature extrusion. The tensile modulus of nylon 6 composite with 30% fiber can reach 5GPa; with a tensile strength of 68MPa; a flexural modulus of 4GPa, and a flexural strength of 100MPa. The tensile modulus of nylon 66 composites with 30% fiber can reach 5GPa; with a flexural modulus of 5GPa; a tensile strength of 70MPa; and a flexural strength of 147MPa. The effect of thermal degradation on fiber properties was estimated. The Halpin-Tsai model and the Cox model were used to estimate the composite modulus. The Kelly-Tyson model was used to estimate the composite strength. The result indicates that the change of fiber properties determines the final properties of composites. Fiber length has a minor affect on both modulus and strength as long as the fiber length is above the critical length.

  14. Method of producing particulate-reinforced composites and composites produced thereby

    SciTech Connect

    Han, Qingyou; Liu, Zhiwei

    2015-12-29

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  15. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  16. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  17. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C. PMID:26688872

  18. Integrity assessment of preforms and thick textile reinforced composites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Saboktakin Rizi, Abbasali

    Three-dimensional (3D) textile composites containing in-plane fibers and fibers oriented in the thickness direction offer some advantages over two-dimensional (2D) textile composites. These advantages include high delamination resistance and improved damage tolerance. Textile composites containing 3D textile preforms have mostly been developed by the aerospace industry for structural applications such as wing panels, landing gear, rocket nozzles, and the Orion capsule, and so forth. This thesis is devoted to structural integrity assessment of textile composites including 2D and 3D tufted composites by combining destructive and non-destructive techniques. In the first part of the thesis, non-destructive techniques including X-ray computed tomography (CT) and ultrasound-based techniques (UT) were used to detect two significant processinduced defects called fiber breakage and fabric misalignment. The second part focuses on studying of the influence of manufacturing defects introduced during the tufting process on the mechanical properties. Experimental results proved that X-ray CT facilitates the characterization of those two manufacturing defects as well as the architecture of the textile fabrics. Furthermore, mesoscale modeling of a 2D woven composite was successfully performed for the analysis of the fiber breakage defect influence and fiber architecture on wave propagation. Experimental results prove that tufting the preform assists in locking and restricting the yarn's movement in the preform. The threads used for tufting have a major influence on tensile strength, as stronger threads may give higher resistance. Tufting increases the compaction force due locking of fiber bundles, therefore, a higher compaction force is needed to obtain a fiber volume of up to 50 percent in comparison to an untufted preform. The drape behaviour of a tufted preform is influenced by tufting so that high drapability is observed for a tufted preform along with local variation of fiber

  19. Characterization of reinforcement distribution in cast Al-alloy/SiC{sub p} composites

    SciTech Connect

    Karnezis, P.A.; Durrant, G.; Cantor, B.

    1998-02-01

    The distribution of reinforcement in 10% SiC and 20% SiC{sub p} reinforced A356 alloy processed by gravity casting, squeeze casting, and roll casting is studied by using the mean free path, nearest neighbor distance, radial distribution function, and quadrat methods. The study is performed by using computer image analysis methods in an automated procedure to prevent operator errors, improve sample size, and minimize analysis time. From the methods used to characterize the SiC{sub p} distributions, the quadrat method and radial distribution function are found to be more effective in detecting pronounced changes in the metal-matrix composite (MMC) microstructure through appropriate parameters, whereas the mean free path is characteristic of the particular MMC system rather than process specific. Furthermore, the nearest neighbor distance is of little use in studying cast MMCs, because it is affected by local clusters of a few SiC particles commonly found in cast MMCs, thus failing to characterize the macroscopic arrangement of reinforcement. Quantitative methods present themselves as a useful tool for quality control in MMC fabrication and can be used to correlate particle distribution and properties of MMC systems.

  20. Effect of Matrix Modification on Interlaminar Shear Strength of Glass Fibre Reinforced Epoxy Composites at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Li, Jingwen; Huang, Chuanjun; Li, Laifeng

    In order to investigate the effect of the matrix variability on the interlaminar shear strength (ILSS) of glass fiber reinforced composites at 77K, three kinds of modifiers were employed to diethyl toluene diamine (DETD) cured diglycidyl ether of bisphenol F (DGEBF) epoxy resin system. The woven glass fiber reinforced composites were fabricated by vacuum pressure impregnation (VPI). The ILSS at 77 K was studied and the results indicated that introduction of modifiers used in this study can enhance the ILSS of composite at 77 K. A maximum of 14.87% increase was obtained by addition of 10 wt% IPBE into the epoxy matrix. Furthermore, scanning electron microscopy (SEM) was used to investigate the fracture mechanism and strengthening effect.

  1. Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications.

    PubMed

    Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2015-06-14

    A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated. PMID:25981704

  2. Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite

    NASA Astrophysics Data System (ADS)

    Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2015-11-01

    Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with 60Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0-1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite.

  3. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  4. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  5. Silicon carbide whisker reinforced composites and method for making same

    DOEpatents

    Wei, G.C.

    1984-02-09

    The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties, especially increased fracture toughness. In the formation of these ceramic composites, the single-crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al/sub 2/O/sub 3/, mullite, or B/sub 4/C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600 to 1950/sup 0/C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m/sup 1/2/ which represents as much as a two-fold increase over that of the matrix material.

  6. Design and use of a prefabricated fiber-reinforced composite substructure for the chairside replacement of missing premolars.

    PubMed

    Meiers, Jonathan C; Freilich, Martin A

    2006-06-01

    Fiber-reinforced resin composites (FRCs) have been used to make frameworks to support particulate resin composite veneers in the replacement of missing teeth. Both prosthetic laboratory-fabricated and chairside-fabricated approaches have been used with varying degrees of success. The chairside FRC fixed partial denture has been mainly used for anterior tooth replacement where the emphasis is on esthetics rather than withstanding occlusal load. This article focuses on the use of this technology in the chairside replacement of premolars. The concept of using a prefabricated framework is described in detail. This approach allows for the efficient delivery of a consistently made chairside prosthesis. This is in contrast with the time-consuming and less consistent result of FRC framework fabrication directly in the mouth. The goal for this concept is to use a premade framework finalized by the provider at chairside to provide medium- to long-term posterior tooth replacement, with minimal abutment tooth reduction. PMID:16752701

  7. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  8. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  9. Novel fabrication techniques for low-mass composite structures in silicon particle detectors

    NASA Astrophysics Data System (ADS)

    Hartman, Neal; Silber, Joseph; Anderssen, Eric; Garcia-Sciveres, Maurice; Gilchriese, Murdock; Johnson, Thomas; Cepeda, Mario

    2013-12-01

    The structural design of silicon-based particle detectors is governed by competing demands of reducing mass while maximizing stability and accuracy. These demands can only be met by fiber reinforced composite laminates (CFRP). As detecting sensors and electronics become lower mass, the motivation to reduce structure as a proportion of overall mass pushes modern detector structures to the lower limits of composite ply thickness, while demanding maximum stiffness. However, classical approaches to composite laminate design require symmetric laminates and flat structures, in order to minimize warping during fabrication. This constraint of symmetry in laminate design, and a “flat plate” approach to fabrication, results in more massive structures. This study presents an approach to fabricating stable and accurate, geometrically complex composite structures by bonding warped, asymmetric, but ultra-thin component laminates together in an accurate tool, achieving final overall precision normally associated with planar structures. This technique has been used to fabricate a prototype “I-beam” that supports two layers of detecting elements, while being up to 20 times stiffer and up to 30% lower mass than comparable, independent planar structures (typically known as “staves”).

  10. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2001-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  11. Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.

    2004-01-01

    In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.

  12. Numerical simulation of multi-layered textile composite reinforcement forming

    SciTech Connect

    Wang, P.; Hamila, N.; Boisse, P.

    2011-05-04

    One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.

  13. Numerical simulation of multi-layered textile composite reinforcement forming

    NASA Astrophysics Data System (ADS)

    Wang, P.; Hamila, N.; Boisse, P.

    2011-05-01

    One important perspective in aeronautics is to produce large, thick or/and complex structural composite parts. The forming stage presents an important role during the whole manufacturing process, especially for LCM processes (Liquid Composites Moulding) or CFRTP (Continuous Fibre Reinforcements and Thermoplastic resin). Numerical simulations corresponding to multi-layered composite forming allow the prediction for a successful process to produce the thick parts, and importantly, the positions of the fibres after forming to be known. This paper details a set of simulation examples carried out by using a semi-discrete shell finite element made up of unit woven cells. The internal virtual work is applied on all woven cells of the element taking into account tensions, in-plane shear and bending effects. As one key problem, the contact behaviours of tool/ply and ply/ply are described in the numerical model. The simulation results not only improve our understanding of the multi-layered composite forming process but also point out the importance of the fibre orientation and inter-ply friction during formability.

  14. Oxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    Valentin, Victor M.

    1995-01-01

    Carbon fiber reinforced Silicon Carbide (C-SiC) composites offer high strength at high temperatures and good oxidation resistance. However, these composites present some matrix microcracks which allow the path of oxygen to the fiber. The aim of this research was to study the effectiveness of a new Silicon Carbide (SiC) coating developed by DUPONT-LANXIDE to enhance the oxidation resistance of C-SiC composites. A thermogravimetric analysis was used to determine the oxidation rate of the samples at different temperatures and pressures. The Dupont coat proved to be a good protection for the SiC matrix at temperatures lower than 1240 C at low and high pressures. On the other hand, at temperatures above 1340 C the Dupont coat did not seem to give good protection to the composite fiber and matrix. Even though some results of the tests have been discussed, because of time restraints, only a small portion of the desired tests could be completed. Therefore, no major conclusions or results about the effectiveness of the coat are available at this time.

  15. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Hüther, Jonas; Brøndsted, Povl

    2016-07-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes directions so is not significantly influenced of these stresses. This is related to the observations that the damage mechanisms in the off axes directions are mainly related to shear failure in the matrix and in the interface between fiber and matrix and different from the damage mechanisms in the fiber direction, where the damage initiates in the transverse backing fibers and is directly related to fiber fractures in the load-carrying axial fiber bundles.

  16. Fiber-reinforced composites as a fixed space maintainer in case of primary tooth loss.

    PubMed

    Acharya, Sonu; Tandon, Shobha

    2011-01-01

    Restorative dentistry is continually changing, with ground-breaking treatments developing based on new materials, techniques, and technologies. Composite materials are a leading example, and the introduction of fiber reinforcement has further increased the possible uses of composites in restorative dentistry. Maintaining arch length during primary, mixed, and early permanent dentition is essential for the development of occlusion. In an effort to prevent future problems, appliances may be placed to retain space resulting from early loss of teeth. In case of primary teeth loss, fixed space maintainers are being used, but these are time consuming to fabricate, and incorporated wires may lead to soft tissue trauma. This clinical case uses fiber-reinforced composite as a space maintainer, thus reducing the time required to complete treatment. In spite of best efforts of practicing dentists, there still remains a large percentage of the population who do not present for treatment, except with pain or other condition. Unfortunately some of those individuals are children, who are not in a position to make the difficult decision to visit the dentist independently. Often by the time they are examined, there is no chance of saving the involved tooth, necessitating extraction and space maintenance. To prevent closure of space and arch length deficiency, appliances may be placed to retain space. Different appliances may be used for space maintenance, such as the removable and fixed space maintainers, but they are difficult and time consuming to construct. Also, the attention span of a child patient is insufficient for this treatment protocol. Considering these difficulties, the clinician could choose the option of a space maintainer, which is less time consuming to fabricate, and for which patient acceptance is optimal.

  17. Matrix free fiber reinforced polymeric composites via high-temperature high-pressure sintering

    NASA Astrophysics Data System (ADS)

    Xu, Tao

    2004-11-01

    A novel manufacturing process called high-temperature high-pressure sintering was studied and explored. Solid fiber reinforced composites are produced by consolidating and compacting layers of polymeric fabrics near their melting temperature under high pressure. There is no need to use an additional matrix as a bonding material. Partial melting and recrystallization of the fibers effectively fuse the material together. The product is called a "matrix free" fiber reinforced composite and essentially a one-polymer composite in which the fiber and the matrix have the same chemical composition. Since the matrix is eliminated in the process, it is possible to achieve a high fiber volume fraction and light weight composite. Interfacial adhesion between fibers and matrix is very good due to the molecular continuity throughout the system and the material is thermally shapeable. Plain woven Spectra RTM cloth made of SpectraRTM fiber was used to comprehensively study the process. The intrinsic properties of the material demonstrate that matrix free SpectraRTM fiber reinforced composites have the potential to make ballistic shields such as body armor and helmets. The properties and structure of the original fiber and the cloth were carefully examined. Optimization of the processing conditions started with the probing of sintering temperatures by Differential Scanning Calorimetry. Coupled with the information from structural, morphological and mechanical investigations on the samples sintered at different processing conditions, the optimal processing windows were determined to ensure that the outstanding original properties of the fibers translate into high ballistic performance of the composites. Matrix free SpectraRTM composites exhibit excellent ballistic resistance in the V50 tests conducted by the US Army. In the research, process-structure-property relationship is established and correlations between various properties and structures are understood. Thorough knowledge is

  18. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Matlin, W.M.; Stinton, D.P.; Besmann, T.M.

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  19. Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H. M.

    1999-01-01

    The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.

  20. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  1. Dry sliding wear behavior of epoxy composite reinforced with short palmyra fibers

    NASA Astrophysics Data System (ADS)

    Biswal, Somen; Satapathy, Alok

    2016-02-01

    The present work explores the possibility of using palmyra fiber as a replacement for synthetic fiber in conventional polymer composites for application against wear. An attempt has been made in this work to improve the sliding wear resistance of neat epoxy by reinforcing it with short palmyra fibers (SPF). Epoxy composites with different proportions (0, 4, 8 and 12 wt. %) of SPF are fabricated by conventional hand lay-up technique. Dry sliding wear tests are performed on the composite samples using a pin-on-disc test rig as per ASTM G 99-05 standards under various operating parameters. Design of experiment approach based on Taguchi's L16 Orthogonal Arrays is used for the analysis of the wear. This parametric analysis reveals that the SPF content is the most significant factor affecting the wear process followed by the sliding velocity. The sliding wear behavior of these composites under an extensive range of test conditions is predicted by a model based on the artificial neural network (ANN). A well trained ANN has been used to predict the sliding wear response of epoxy based composites over a wide range.

  2. Simulation of Forming and Wrinkling of Textile Composite Reinforcements

    SciTech Connect

    Hamila, N.; Wang, P.; Vidal-Salle, E.; Boisse, P.

    2011-05-04

    Because of the very weak textile bending stiffness, wrinkles are frequent during composite reinforcement forming. The simulation of the shape of these wrinkles during the forming process permits to verify there is no wrinkle in the useful part of the preform. In this paper the role of tensions, in-plane shear and bending rigidities in wrinkling development are analyzed. In-plane shear plays a main role for onset of wrinkles in double-curved shape forming but wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and a membrane approach it is not sufficient to simulate wrinkles.

  3. Parametric Study of End Milling Glass Fibre Reinforced Composites

    SciTech Connect

    Azmi, Azwan I.; Lin, Richard J. T.; Bhattacharyya, Debes

    2011-01-17

    This paper discusses the application of Taguchi 'Design of Experiment' method to investigate the effects of end milling parameters on machinability characteristics of unidirectional E-glass fibre reinforced polymer (GFRP) composites. A series of milling experiments were conducted using tungsten carbide end milling cutters at various spindle speeds, feed rates and depths of cut. Taguchi analysis was carried out and the signal to noise (S/N) ratio with analysis of variance (ANOVA) was employed to analyse the effects of those parameters on GFRP machinability. Overall, the results of the current investigations present some desirable combinations of the machining parameters that can further enhance the end milling machinability characteristics to suit the final requirements of the finished GFRP products.

  4. The dynamic inelastic behavior in fiber reinforced composite materials

    SciTech Connect

    Haberman, K.S.; Bennett, J.G.; Liu, Cheng

    1997-03-01

    Accurately simulating the complete dynamic behavior, elastic and inelastic, of engineering structures composed of fiber reinforced composite materials can be accomplished by integrating three components: (1) a physically based micromechanical material model that accounts for the experimentally observed mechanisms producing the inelastic behavior; (2) a dynamic three-dimensional continuum simulation capability in which the physically based micromechanical material model is incorporated; and (3) a complete set of robust dynamic experiments. These experiments are used (1) to establish the microstructural mechanisms that produce inelastic behavior and (2) to validate the dynamic simulation capability. This paper focuses on the implementation of a physically based micromechanical material model into an explicit 3D finite element code and shows the experimental comparison.

  5. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  6. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.

  7. Modeling and simulation of continuous fiber-reinforced ceramic composites

    NASA Astrophysics Data System (ADS)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  8. A study of damping in fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Chandra, Rakesh; Singh, S. P.; Gupta, K.

    2003-05-01

    Damping contributions from the viscoelastic matrix, interphase and the dissipation resulting from damage sites are considered to evaluate composite material damping coefficients in various loading modes. The paper presents the results of the FEM/Strain energy investigations carried out to predict anisotropic-damping matrix comprising of loss factors η11, η22, η12 and η23 considering the dissipation of energy due to fiber and matrix (two phase) and correlate the same with various micromechanical theories. Damping in three phase (i.e., fiber-interphase-matrix) composite is also calculated as an attempt to understand the effect of interphase. The contribution of energy dissipation due to sliding at the fiber-matrix interface is incorporated to evaluate its effect on η11, η22, η12 and η23 in fiber-reinforced composite having damage in the form of hairline debonding. Comparative studies of the various micromechanical theories/models with FEM/Strain energy method for the prediction of damping coefficients have shown consistency when both the effect of variable nature of stress and the fiber interaction is considered. Parametric damping studies for three phase composite have shown that the change in properties of fiber, matrix and interphase leads to a change in the magnitude of effectiveness of interphase, but the manner in which the interphase would affect the various loss factors depends predominately upon whether the hard or soft interphase is chosen. Analysis of the effect of damage on composite damping indicates that it is sensitive to its orientation and type of loading.

  9. Fabrication of metal matrix composite by semi-solid powder processing

    SciTech Connect

    Wu, Yufeng

    2011-01-01

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  10. Thermal nondestructive testing (TNDT) of adhesively bonded composite reinforcements applied to concrete civil structures

    NASA Astrophysics Data System (ADS)

    Burleigh, Douglas D.; Bohner, Richard

    1999-02-01

    Thermographic nondestructive testing was performed on composite reinforcements applied to two concrete civil structures. Information on the types of defects which occur in these structures and their locations has led to process improvements in the application of adhesively bonded laminated composites to steel reinforce concrete structures.

  11. Epoxy/carbon composite resins in dentistry: mechanical properties related to fiber reinforcements.

    PubMed

    Viguie, G; Malquarti, G; Vincent, B; Bourgeois, D

    1994-09-01

    Composite carbon/epoxy resin techniques for restorative dentistry have improved with the development of various composite resins classified according to fiber reinforcement, such as short fibers, woven materials, or long unidirectional fibers. This study of the mechanical properties with three-point flexion enabled comparison of the flexural strengths. The modulus of elasticity of different composite resin materials was determined so that the appropriate reinforced composite resin could be selected for specific clinical conditions.

  12. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites

    NASA Astrophysics Data System (ADS)

    Li, Zan; Fan, Genlian; Tan, Zhanqiu; Guo, Qiang; Xiong, Dingbang; Su, Yishi; Li, Zhiqiang; Zhang, Di

    2014-08-01

    The excellent properties of graphene promote it as an ideal reinforcement in composites. However, dispersing graphene homogenously into metals is a key challenge that limits the development of high-performance graphene-reinforced metal matrix composites. Here, via simple electrostatic interaction between graphene oxide (GO) and Al flakes, uniform distribution of reduced graphene oxide (RGO) in an Al matrix is achieved. The adsorption process of GO on Al flakes is efficient, as it can be completed in minutes and proceeds spontaneously without any chemical agents. GO can be partially reduced by the electron interchange during the adsorption process and could be thoroughly reduced after subsequent thermal annealing. A densified RGO/Al composite can be obtained by hot pressing the RGO/Al composite powders. By employing the preceding fabrication process, a composite reinforced with only 0.3 wt.% of RGO shows an 18 and 17% increase in elastic modulus and hardness, respectively, over unreinforced Al, demonstrating RGO is a better reinforcement than most other reinforcements.

  13. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites

    PubMed Central

    Pradelle, Nelly; Villat, Cyril; Attik, Nina; Colon, Pierre; Grosgogeat, Brigitte

    2015-01-01

    Objectives The aim of this study was to evaluate the mechanical and physical properties of a newly developed fiber reinforced dental composite. Materials and Methods Fiber reinforced composite EverX Posterior (EXP, GC EUROPE), and other commercially available bulk fill composites, including Filtek Bulk Fill (FB, 3M ESPE), SonicFill (SF, Kerr Corp.), SureFil (SDR, Dentsply), Venus Bulk Fill (VB, HerausKultzer), Tetric evoceram bulk fill (TECB, Ivoclar Vivadent), and Xtra Base (XB, Voco) were characterized. Composite samples light-cured with a LED device were evaluated in terms of flexural strength, flexural modulus (ISO 4049, n = 6), fracture toughness (n = 6), and Vickers hardness (0, 2, and 4 mm in depth at 24 hr, n = 5). The EXP samples and the fracture surface were observed under a scanning electron microscopy. Data were statistically analyzed using one-way ANOVA and unpaired t-test. Results EXP, FB, and VB had significantly higher fracture toughness value compared to all the other bulk composite types. SF, EXP, and XB were not statistically different, and had significantly higher flexural strength values compared to other tested composite materials. EXP had the highest flexural modulus, VB had the lowest values. Vickers hardness values revealed SF, EXP, TECB, and XB were not statistically different, and had significantly higher values compared to other tested composite materials. SEM observations show well dispersed fibers working as a reinforcing phase. Conclusions The addition of fibers to methacrylate-based matrix results in composites with either comparable or superior mechanical properties compared to the other bulk fill materials tested. PMID:26587411

  14. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a net-shape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electron-beam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  15. Method for Fabricating Composite Structures Using Pultrusion Processing

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    2000-01-01

    A method for fabricating composite structures at a low-cost, moderate-to-high production rate. A first embodiment of the method includes employing a continuous press forming fabrication process. A second embodiment of the method includes employing a pultrusion process for obtaining composite structures. The methods include coating yarns with matrix material, weaving the yarn into fabric to produce a continuous fabric supply and feeding multiple layers of net-shaped fabrics having optimally oriented fibers into a debulking tool to form an undebulked preform. The continuous press forming fabrication process includes partially debulking the preform, cutting the partially debulked preform and debulking the partially debulked preform to form a netshape. An electron-beam or similar technique then cures the structure. The pultrusion fabric process includes feeding the undebulked preform into a heated die and gradually debulking the undebulked preform. The undebulked preform in the heated die changes dimension until a desired cross-sectional dimension is achieved. This process further includes obtaining a net-shaped infiltrated uncured preform, cutting the uncured preform to a desired length and electronbeam curing (or similar technique) the uncured preform. These fabrication methods produce superior structures formed at higher production rates, resulting in lower cost and high structural performance.

  16. Bond strength of Gradia veneering composite to fibre-reinforced composite.

    PubMed

    Keski-Nikkola, M S; Alander, P M; Lassila, L V J; Vallittu, P K

    2004-12-01

    This study investigated the shear bond strength of light-curing veneering composite resin to glass fibre-reinforced composite (FRC). Polymer pre-impregnated FRC reinforcement was further impregnated with dimethacrylate monomer resin. The light polymerized FRC substrate was ground and dimethacrylate intermediate resin was applied on the surface before the light-curing veneering composite. Adhesional behaviour of veneering composite to the initially light polymerized FRC substrate was compared with well-polymerized FRC substrate. The treatment time of FRC substrate by the intermediate resin for 5 s and 5 min were also compared. Shear bond strength of veneering composite to FRC was determined for dry and thermocycled specimens (n = 6). The analysis of variance (anova) revealed significant differences (P = 0.042) between the shear bond strengths when 5 s and 5 min intermediate resin treatment times were compared. The highest shear bond strength (21.0 MPa) for FRC substrates was achieved when the well-polymerized FRC substrate was treated for 5 min with the intermediate resin and stored dry before tests. Thermocycling reduced the shear bond strengths. The results of this study suggest that applying the intermediate resin increased the shear bond strength values of veneering composite to FRC with multiphase polymer matrix. It was also concluded, that the use of multiphase polymer matrix FRC can be polymerized to high degree of conversion without deferiorating the shear bond strength of veneering composite to the FRC. PMID:15544653

  17. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 3: Fabrication

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.

    1974-01-01

    The manufacturing plan for three C-130 aircraft center wing box test articles, selectively reinforced with boron-epoxy composites, is outlined for the following tasks: (1) tooling; (2) metal parts fabrication: (3) reinforcing laminate fabrication; (4) laminate-to-metal parts bonding; and (5) wing box assembly. The criteria used for reliability and quality assurance are discussed, and several solutions to specific manufacturing problems encountered during fabrication are given. For Vol. 1, see N73-13011; for Vol. 2, see N73-22929.

  18. The role of TiB2 in strengthening TiB2 reinforced aluminium casting composites

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Kang, H.; Zhao, Y.; Zheng, Y.; Wang, T.

    2016-03-01

    With an aim of developing high quality in situ TiB2 reinforced aluminium foundry alloy based composites, the conventional direct synthesis method was modified into a two-step route. In step one we optimized the halide salt route to fabricate in situ TiB2 particulate reinforced aluminium matrix composites and in step two we investigated the effects of the Al-5wt.% TiB2 composite, as a “master composite”, on strengthening the practical foundry alloys. The in situ formed TiB2 particles play two roles while strengthening the composites: (1) The grain refinement effect that improves the quality of the alloy matrix; and (2) The interactions between the hard particulates and the matrix add extra increment to the material strength. In different alloy systems, TiB2 may play distinct roles in these two aspects (figure 1). Further analysis of the strengthening mechanisms shows that particle agglomeration behaviour during solidification is responsible for the latter one. The present work details the role of TiB2 in strengthening TiB2 reinforced aluminium casting composites.

  19. Interfacial microstructure in a B{sub 4}C/Al composite fabricated by pressureless infiltration.

    SciTech Connect

    Luo, Z.; Song, Y.; Zhang, S.; Miller, D. J.

    2012-01-01

    In this work, B{sub 4}C particulate-reinforced Al composite was fabricated by a pressureless infiltration technique, and its interfacial microstructure was studied in detail by X-ray diffraction as well as by scanning and transmission electron microscopy. The B{sub 4}C phase was unstable in Al melt during the infiltration process, forming AlB{sub 10}-type AlB{sub 24}C{sub 4} or Al{sub 2.1}B{sub 51}C{sub 8} as a major reactant phase. The Al matrix was large grains (over 10 {micro}m), which had no definite orientation relationships (ORs) with the randomly orientated B{sub 4}C or its reactant particles, except for possible nucleation sites with {l_brace}011{r_brace}{sub B{sub 4}C} almost parallel to {l_brace}111{r_brace}{sub Al} at a deviation angle of 1.5 deg. Both B{sub 4}C-Al and reactant-Al interfaces are semicoherent and free of other phases. A comparison was made with the SiC/Al composite fabricated similarly by the pressureless infiltration. It was suggested that the lack of ORs between the Al matrix and reinforced particles, except for possible nucleation sites, is the common feature of the composites prepared by the infiltration method.

  20. Impact resistance of composite fan blades. [fiber reinforced graphite and boron epoxy blades for STOL operating conditions

    NASA Technical Reports Server (NTRS)

    Premont, E. J.; Stubenrauch, K. R.

    1973-01-01

    The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.

  1. Organic-inorganic composites for THz device fabrication

    NASA Astrophysics Data System (ADS)

    Cai, B.; Ye, T. M.; Bo, G.; Wang, X. C.; Li, Y. Z.; Zhu, Y. M.; Sugihara, O.

    2016-02-01

    In this paper, several organic-inorganic composites were prepared for Terahertz (THz) devices fabrication. First, a two-layer structure was designed for femtosecond (fs) laser/THz radiation separation. The top layer was made by sintered 20-40 nm hollow quartz particles which can diffuse the incident fs laser thus decrease the power intensity. The bottom layer comprised of silicon 100 nm particles and cycle-olefine polymer (COP), by which the fs laser light can be greatly scattered and absorbed but THz radiation can propagate insusceptibly. With this two-layer structure a high efficient fs-laser/THz filter was fabricated successfully. Second, titania-polymer composites with a very high refractiveindex tunability and high transparency in the THz region were prepared. By controlling the blending ratio of the titania particle, a broad refractive-index tuning range from 1.5 to 3.1 was realized. Then, the composites were used to fabricate antireflective (AR) layers on a high-resistivity silicon (HR-Si) substrate. By utilizing the thermoplasticity of the titania- polymer composite, a graded-index structure was fabricated via a hot-embossing method. Because of the good refractive-index matching between the composite and the HR-Si substrate, a broadband AR layer was fabricated.

  2. Spherically shaped micron-size particle-reinforced PMMA and PC composites for improving energy absorption capability

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-ick; Kang, Eung-Chun; Jang, Jae-Soon; Suhr, Jonghwan

    2011-04-01

    The focus of this study was to experimentally investigate spherically shaped micron-size particles reinforced polymethyl methacrylate (PMMA) and polycarbonate (PC) polymer composites for improving energy absorbing capabilities such as toughness and low-velocity impact resistance. In this study, a solution mixing method was developed to fabricate both PMMA and PC polymer composites with spherically shaped micron-size polyamide- nylon 6 (PA6) particles inclusions. The morphology of the fracture surfaces of polymer composites was examined by using optical microscopy and scanning electron microscopy. Strain-rate dependent response of both PMMA and PC polymer composites was investigated by characterizing tensile and flexural properties. Low-velocity penetration testing was performed for both polymer composites and the key results observed for energy absorption capabilities are discussed in this study.

  3. Development of Carbon Fiber Reinforced Stellite Alloy Based Composites for Tribocorrosion Applications

    NASA Astrophysics Data System (ADS)

    Khoddamzadeh, Alireza

    This thesis reports the design and development of two classes of new composite materials, which are low-carbon Stellite alloy matrices, reinforced with either chopped plain carbon fiber or chopped nickel-coated carbon fiber. The focus of this research is on obviating the problems related to the presence of carbides in Stellite alloys by substituting carbides as the main strengthening agent in Stellite alloys with the aforementioned carbon fibers. Stellite 25 was selected as the matrix because of its very low carbon content (0.1 wt%) and thereby relatively carbide free microstructure. The nickel coating was intended to eliminate any chance of carbide formation due to the possible reaction between carbon fibers and the matrix alloying additions. The composite specimens were fabricated using the designed hot isostatic pressing and sintering cycles. The fabricated specimens were microstructurally analyzed in order to identify the main phases present in the specimens and also to determine the possible carbide formation from the carbon fibers. The material characterization of the specimens was achieved through density, hardness, microhardness, corrosion, wear, friction, and thermal conductivity tests. These novel materials exhibit superior properties compared to existing Stellite alloys and are expected to spawn a new generation of materials used for high temperature, severe corrosion, and wear resistant applications in various industries.

  4. Multilayered carbon nanotube/polymer composite based thermoelectric fabrics.

    PubMed

    Hewitt, Corey A; Kaiser, Alan B; Roth, Siegmar; Craps, Matt; Czerw, Richard; Carroll, David L

    2012-03-14

    Thermoelectrics are materials capable of the solid-state conversion between thermal and electrical energy. Carbon nanotube/polymer composite thin films are known to exhibit thermoelectric effects, however, have a low figure of merit (ZT) of 0.02. In this work, we demonstrate individual composite films of multiwalled carbon nanotubes (MWNT)/polyvinylidene fluoride (PVDF) that are layered into multiple element modules that resemble a felt fabric. The thermoelectric voltage generated by these fabrics is the sum of contributions from each layer, resulting in increased power output. Since these fabrics have the potential to be cheaper, lighter, and more easily processed than the commonly used thermoelectric bismuth telluride, the overall performance of the fabric shows promise as a realistic alternative in a number of applications such as portable lightweight electronics.

  5. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  6. Superelement Analysis of Tile-Reinforced Composite Armor

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    1998-01-01

    Super-elements can greatly improve the computational efficiency of analyses of tile-reinforced structures such as the hull of the Composite Armored Vehicle. By taking advantage of the periodicity in this type of construction, super-elements can be used to simplify the task of modeling, to virtually eliminate the time required to assemble the stiffness matrices, and to reduce significantly the analysis solution time. Furthermore, super-elements are fully transferable between analyses and analysts, so that they provide a consistent method to share information and reduce duplication. This paper describes a methodology that was developed to model and analyze large upper hull components of the Composite Armored Vehicle. The analyses are based on two types of superelement models. The first type is based on element-layering, which consists of modeling a laminate by using several layers of shell elements constrained together with compatibility equations. Element layering is used to ensure the proper transverse shear deformation in the laminate rubber layer. The second type of model uses three-dimensional elements. Since no graphical pre-processor currently supports super-elements, a special technique based on master-elements was developed. Master-elements are representations of super-elements that are used in conjunction with a custom translator to write the superelement connectivities as input decks for ABAQUS.

  7. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  8. Neutron diffraction measurements of residual strains in tungsten fiber-reinforced Kanthal composites

    SciTech Connect

    Saigal, A.; Leisk, G.G.; Misture, S.T.; Hubbard, C.R.

    1996-04-15

    FeAl and FeCrAl alloys containing small quantities of Y, such as Kanthal, have been shown to exhibit outstanding high-temperature oxidation/corrosion resistance and therefore have great potential for use as corrosion-resistant cladding in a variety of high-temperature structural applications. Recently, several such FeAl alloys have been developed with improved mechanical behavior and weldability. In order to further enhance strength, tungsten fiber-reinforced Kanthal metal matrix composites have been developed for possible applications in space structures. However, thermal residual stresses are developed as a result of the mismatch of the coefficients of thermal expansion between those of the tungsten fibers and the Kanthal matrix during post-fabrication cooldown. These stresses can lead to matrix cracking, thereby deteriorating the aggregate mechanical properties of the composites. To develop composites with reliable and enhanced properties, it is necessary to understand the nature and the magnitude of these residual stresses. High-resolution neutron powder diffraction was used in this study to investigate the residual strains and stresses at room temperature in W/Kanthal composites containing different volume fractions of tungsten fibers.

  9. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair

    PubMed Central

    Yodmuang, Supansa; McNamara, Stephanie L.; Nover, Adam B.; Mandal, Biman B.; Agarwal, Monica; Kelly, Terri-Ann N.; Chao, Pen-hsiu Grace; Hung, Clark; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2014-01-01

    Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissue–scaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiber–hydrogel composites (SF–silk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiber–hydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SF–silk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard. PMID:25281788

  10. Fracture resistance of microhybrid composite, nano composite and fibre-reinforced composite used for incisal edge restoration.

    PubMed

    Badakar, Chandrashekhar M; Shashibhushan, Kukkalli Kamalaksharappa; Naik, N Sathyajith; Reddy, Vulavala Venkata Subba

    2011-06-01

    Traumatized anterior teeth need quick, aesthetic and functional repair. Along with aesthetics, the physical properties of restorative material should also be considered for long-lasting restoration. Fibre reinforcement has been tried as a newer technique to improve the physical properties of composite materials. Hence, this study was carried out to evaluate the fracture resistance of microhybrid composite, nano composite and fibre-reinforced composite used for restoration of incisal edge of fractured maxillary central incisors. Extracted permanent maxillary central incisors were randomly divided into four groups of 10 samples each: control group with intact teeth (Group A), microhybrid composite (Esthet X; Dentsply/Caulk, Milford, DE, USA) (group B), nano composite (Ceram X; Dentsply/Caulk) (group C) and microhybrid composite reinforced with polyethylene fibre - flowable composite unit [(Ribbond THM; Ribbond Inc., Seattle, WA, USA; Esthet X flow; Dentsply/Caulk)] (group D). The fracture resistance was measured under universal testing machine at a speed of 1mmmin(-1) with the loading tip of 2mm diameter. The samples were further evaluated for mode of fracture under stereomicroscope at 3.5× magnification. The data were analysed using one-way anova and Tukey's test for fracture resistance. Group A and group D exhibited significantly higher fracture resistance than group B and group C. No significant difference was found between group B and group C as well as between group A and group D. Fisher's exact test for the mode of fracture revealed no statistical significance. It was concluded that fibre reinforcement of composite could be an alternative technique for restoration of fractured anterior teeth for better aesthetics and longevity of the restoration.

  11. Influence of reinforcement type on the mechanical behavior and fire response of hybrid composites and sandwich structures

    NASA Astrophysics Data System (ADS)

    Giancaspro, James William

    Lightweight composites and structural sandwich panels are commonly used in marine and aerospace applications. Using carbon, glass, and a host of other high strength fiber types, a broad range of laminate composites and sandwich panels can be developed. Hybrid composites can be constructed by laminating multiple layers of varying fiber types while sandwich panels are manufactured by laminating rigid fiber facings onto a lightweight core. However, the lack of fire resistance of the polymers used for the fabrication remains a very important problem. The research presented in this dissertation deals with an inorganic matrix (Geopolymer) that can be used to manufacture laminate composites and sandwich panels that are resistant up to 1000°C. This dissertation deals with the influence of fiber type on the mechanical behavior and the fire response of hybrid composites and sandwich structures manufactured using this resin. The results are categorized into the following distinct studies. (i) High strength carbon fibers were combined with low cost E-glass fibers to obtain hybrid laminate composites that are both economical and strong. The E-glass fabrics were used as a core while the carbon fibers were placed on the tension face and on both tension and compression faces. (ii) Structural sandwich beams were developed by laminating various types of reinforcement onto the tension and compression faces of balsa wood cores. The flexural behavior of the beams was then analyzed and compared to beams reinforced with organic composite. The effect of core density was evaluated using oak beams reinforced with inorganic composite. (iii) To measure the fire response, balsa wood sandwich panels were manufactured using a thin layer of a fire-resistant paste to serve for fire protection. Seventeen sandwich panels were fabricated and tested to measure the heat release rates and smoke-generating characteristics. The results indicate that Geopolymer can be effectively used to fabricate both

  12. Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

    NASA Astrophysics Data System (ADS)

    Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min

    2016-04-01

    This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.

  13. Effect of fiber fabric orientation on the monotonic and fatigue behavior of a continuous fiber ceramic composite

    SciTech Connect

    Chawla, N.; Liaw, P.K.; Lara-Curzio, E.; Lowden, R.A.; Ferber, M.K.

    1994-09-01

    The monotonic fast fracture and fatigue behavior of a Nextel{trademark} 312 reinforced SiC matrix composite was investigated. Effect of fabric orientation with respect to the loading axis on the monotonic and fatigue behavior of the composite was examined. Two geometries were investigated: transverse, where fiber fabric is perpendicular to loading direction; and edge-on where the fabric is parallel to the loading axis. The edge-on geometry showed higher flexure strengths than the transverse orientation. The different deformation mechanisms between the edge-on and transverse orientations were due to strong in-plane shearing of the fiber fabric and weak interlaminar shear of the plies, respectively. In cyclic fatigue, stress versus cycles (S-N) curves showed high fatigue endurance limits in both orientations, although the transverse orientation survived more cycles than the edge-on orientation at stresses slightly above the endurance limit.

  14. Effect of fiber fabric orientation on the monotonic and fatigue behavior of a continuous fiber ceramic composite

    SciTech Connect

    Chawla, N.; Liaw, P.K.; Lara-Curzio, E.; Lowden, R.A.; Ferber, M.K.

    1994-12-31

    The monotonic fast fracture and fatigue behavior of a Nextel{trademark} 312 reinforced SiC matrix composite was investigated. In particular, the effect of fabric orientation with respect to the loading axis on the monotonic and fatigue behavior of the composite was examined in bending. Two geometries were investigated: transverse, where the fiber fabric was perpendicular to the loading direction; and edge-on where the fabric was parallel to the loading axis. The edge-on geometry showed higher flexure strengths than the transverse orientation. The different deformation mechanisms between the edge-on and transverse orientations were due to strong in-plane shearing of the fiber fabric and weak interlaminar shear of the plies, respectively. In cyclic fatigue, stress versus cycles (S-N) curves showed high fatigue endurance limits in both orientations, although the transverse orientation survived more cycles than the edge-on orientation at stresses slightly above the endurance limit.

  15. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  16. Aluminium-aluminium nitride composites fabricated by melt infiltration under pressure

    PubMed

    Chedru; Vicens; Chermant; Mordike

    1999-11-01

    Aluminium-matrix composites containing approximately 55 vol.% AlN particles were fabricated by melt infiltration of aluminium into an AlN preform under a pressure of up to 130 MPa. Two different AlN powders (H.C. Starck, Goslar, Germany, and ESK, Elektroschmelzwerk, Kempten, Germany) and four types of aluminium alloy (2024, 1070, 6060 and 5754) were used. The initial AlN powders were characterized by scanning electron microscopy. The composites were studied by light microscopy, scanning and transmission electron microscopies and energy-dispersive X-ray spectroscopy. Particle-matrix interfaces were observed using high-resolution electron microscopy. As a result of the melt infiltration process, the composites are very dense and the microstructure shows a homogeneous distribution of the reinforcement. The interfaces are clean with very little porosity. Some Al2Cu precipitates were observed in the 2024 matrix.

  17. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  18. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  19. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  20. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  1. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    PubMed

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  2. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    NASA Astrophysics Data System (ADS)

    Zafar, Adeel; Andrawes, Bassem

    2012-02-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.

  3. Method for fabricating composite carbon foam

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  4. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  5. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers

    NASA Astrophysics Data System (ADS)

    Kimmig, S.; Allen, I.; You, J. H.

    2013-09-01

    A SiC long fiber-reinforced copper composite offers a beneficial combination of high strength and high thermal conductivity at elevated temperatures. Both properties make the composite a promising material for the heat sink of high-heat-flux components. In this work, we developed a novel Cu/SiCf composite using the Sigma fiber. Based on HIP technique, a metallurgical process was established for fabricating high quality specimens using a TiC interface coating. Extensive tensile tests were conducted on the unidirectionally reinforced composite at 20 °C and 300 °C for a wide range of fiber volume fraction (Vf). In this paper, a large amount of test data is presented. The transversal thermal conductivity varies from 260 to 130 W/mK at 500 °C as Vf is increased from 13% to 37%. The tensile strength reached up to 1246 MPa at 20 °C for Vf = 37.6%, where the fracture strain was limited to 0.8%. The data of both elastic modulus and ultimate strength exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. The strength of the composite with the Sigma fibers turned out to be superior to those of the SCS6 fibers at 300 °C, although the SCS6 fiber actually has a higher strength than the Sigma fiber. The fractographic pictures of tension test and fiber push-out test manifested a sufficient interfacial bonding. Unidirectional copper composite reinforced by long SiC fibers was fabricated using the Sigma SM1140+ fiber for a wide range of fiber volume fraction from 14% to 40%. Extensive tensile tests were carried out at RT and 300 °C. The data of ultimate strength as well as elastic modulus exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. In terms of the tensile strength, the Cu/Sigma composite turned out to be superior to the previous Cu/SCS6 composite at 300 °C, while comparable at RT, although the SCS6 fiber has a higher strength than the Sigma fiber. Such a

  6. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric.

    PubMed

    Qian, Hui; Kucernak, Anthony R; Greenhalgh, Emile S; Bismarck, Alexander; Shaffer, Milo S P

    2013-07-10

    A novel multifunctional material has been designed to provide excellent mechanical properties while possessing a high electrochemical surface area suitable for electrochemical energy storage: structural carbon fiber fabrics are embedded in a continuous network of carbon aerogel (CAG) to form a coherent but porous monolith. The CAG-modification process was found to be scalable and to be compatible with a range of carbon fiber fabrics with different surface properties. The incorporation of CAG significantly increased the surface area of carbon fiber fabrics, and hence the electrochemical performance, by around 100-fold, resulting in a CAG-normalized specific electrode capacitance of around 62 F g(-1), determined by cyclic voltammetry in an aqueous electrolyte. Using an ionic liquid (IL) electrolyte, the estimated energy density increased from 0.003 to 1 Wh kg(-1), after introducing the CAG into the carbon fiber fabric. 'Proof-of-concept' multifunctional structural supercapacitor devices were fabricated using an IL-modified solid-state polymer electrolyte as a multifunctional matrix to provide both ionic transport and physical support for the primary fibers. Two CAG-impregnated carbon fabrics were sandwiched around an insulating separator to form a functioning structural electrochemical double layer capacitor composite. The CAG-modification not only improved the electrochemical surface area, but also reinforced the polymer matrix surrounding the primary fibers, leading to dramatic improvements in the matrix-dominated composite properties. Increases in in-plane shear strength and modulus, of up to 4.5-fold, were observed, demonstrating that CAG-modified structural carbon fiber fabrics have promise in both pure structural and multifunctional energy storage applications.

  7. Durability of Cement Composites Reinforced with Sisal Fiber

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  8. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines

    NASA Technical Reports Server (NTRS)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.

    1990-01-01

    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  9. Using Plasma-Activated High Performance Fibers with Nanocrystalline Structure in Producing New Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Kudinov, V.; Korneeva, N.

    2008-08-01

    A wet-pull-out method for investigation of interaction between the high performance polyethylene (HPPE) fiber and polymer matrix is discussed. The paper concerns a cold plasma technique for improving the bond of the HPPE fibers to the matrices and the fibers impregnation with the matrix. Controlled parameters are pull-out force and the height of the matrix capillary lifting along the fiber both in air and in vacuum, in combination with plasma activation of the fibers. The method allows one to estimate the wetting and impregnation of multi-filament fiber with the matrix and simultaneously measure the joint strength. Coupled action of plasma treatment and vacuum impregnation of the fibers improves the joint strength by a factor of 3. Plasma activated HPPE fibers impregnated in air show the value of shear strength τ of 4 Kg/mm2. To understand the effect of treatment initial and plasma-activated fibers were used to fabricate composite materials (CM). The properties and failure modes were compared to those of CM reinforced with untreated fibers. The failure mode of CM reinforced with plasma-activated fibers points to a high strength of the bond between the fibers and the matrix.

  10. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    NASA Astrophysics Data System (ADS)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  11. Fabrication of Carbon Nanotube - Chromium Carbide Composite Through Laser Sintering

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Gao, Yibo; Liang, Fei; Wu, Benxin; Gou, Jihua; Detrois, Martin; Tin, Sammy; Yin, Ming; Nash, Philip; Tang, Xiaoduan; Wang, Xinwei

    2016-03-01

    Ceramics often have high hardness and strength, and good wear and corrosion resistance, and hence have many important applications, which, however, are often limited by their poor fracture toughness. Carbon nanotubes (CNTs) may enhance ceramic fracture toughness, but hot pressing (which is one typical approach of fabricating CNT-ceramic composites) is difficult to apply for applications that require localized heat input, such as fabricating composites as surface coatings. Laser beam may realize localized material sintering with little thermal effect on the surrounding regions. However, for the typical ceramics for hard coating applications (as listed in Ref.[1]), previous work on laser sintering of CNT-ceramic composites with mechanical property characterizations has been very limited. In this paper, research work has been reported on the fabrication and characterization of CNT-ceramic composites through laser sintering of mixtures of CNTs and chromium carbide powders. Under the studied conditions, it has been found that laser-sintered composites have a much higher hardness than that for plasma-sprayed composites reported in the literature. It has also been found that the composites obtained by laser sintering of CNTs and chromium carbide powder mixtures have a fracture toughness that is ~23 % higher than the material obtained by laser sintering of chromium carbide powders without CNTs.

  12. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  13. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  14. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of...

  15. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of...

  16. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of...

  17. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of...

  18. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of...

  19. Creep rupture testing of carbon fiber-reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Burton, Kathryn Anne

    Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.

  20. Sialon ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, Michael H.; Park, Blair H.

    1994-01-01

    A method of fabricating a SiAlON ceramic body includes: a) combining quantities of Si.sub.3 N.sub.4, Al.sub.2 O.sub.3 and CeO.sub.2 to produce a mixture; b) forming the mixture into a desired body shape; c) heating the body to a densification temperature of from about 1550.degree. C. to about 1850.degree. C.; c) maintaining the body at the densification temperature for a period of time effective to densify the body; d) cooling the densified body to a devitrification temperature of from about 1200.degree. C. to about 1400.degree. C.; and e) maintaining the densified body at the devitrification temperature for a period of time effective to produce a .beta.'-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the .beta.'-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: a) an amorphous phase; and b) a crystalline phase, the crystalline phase comprising .beta.'-SiAlON having lattice substituted elemental or compound form Ce.