Sample records for fabricating curvilinear features

  1. Curvilinear ridges and related features in southwest Cydonia Mensae, Mars

    NASA Technical Reports Server (NTRS)

    Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen

    1987-01-01

    Examined is a region on Mars in southwest Cydonia Mensae (32 deg lat., 17 deg long.) just northwest of the lowland/upland boundary escarpment. The dominant morphological features in this region are the clusters of large massifs and plateau outliers (PI), knobby material (K), and smooth lowland plains (Ps). Surrounding the clusters and linking many isolated knobs is a system of curvilinear ridges and arcuate terrain boundaries which tend to separate the massifs and knobs from the smooth plains. Curvilinear ridges are arcuate to nearly linear and smoother in plan than wrinkle ridges and show no apparent correlation with regional structural grain. They are typically 5 to 10 km long but can range from as little as 2 or 3 km to greater than 50 km long. The widths vary from about 100 m to as much as 2 km. Curvilinear ridges are most numerous within 100 km of the lowland/upland boundary escarpment and are associated with massifs and knobby terrain. Arcuate terrain boundaries appear between units of different apparent albedo or arcuate breaks in slope.

  2. Geometric correction of satellite data using curvilinear features and virtual control points

    NASA Technical Reports Server (NTRS)

    Algazi, V. R.; Ford, G. E.; Meyer, D. I.

    1979-01-01

    A simple, yet effective procedure for the geometric correction of partial Landsat scenes is described. The procedure is based on the acquisition of actual and virtual control points from the line printer output of enhanced curvilinear features. The accuracy of this method compares favorably with that of the conventional approach in which an interactive image display system is employed.

  3. Novel device for creating continuous curvilinear capsulorhexis.

    PubMed

    Soylak, Mustafa

    2016-01-01

    The purpose of this paper is to develop a novel capsulorhexis system. Mechatronics Laboratory, University of Erciyes and Kayseri Maya Eye Hospital. A 3D model was created and simulations were conducted to develop a new device which was designed, fabricated and tested for continuous curvilinear capsulorhexis (CCC). The name of this system is the electro-mechanical capsulorhexis system (EMCS). The 3D model was created by using a commercial design software and a 3D printer was used to fabricate the EMCS Finite element analysis and geometrical relation tests of the EMCS for different sized lenses were performed. The results show that the EMCS is a perfect solution for capsulorhexis surgeries, without mechanical or geometrical problems. The EMCS can open the anterior lens capsule more easily and effectively than manual CCC applications and needs less experience.

  4. Innovative design of composite structures: Design, manufacturing, and testing of plates utilizing curvilinear fiber trajectories

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rust, R. J.; Waters, W. A., Jr.

    1994-01-01

    As a means of improving structural design, the concept of fabricating flat plates containing holes by incorporating curvilinear fiber trajectories to transmit loads around the hole is studied. In the present discussion this concept is viewed from a structural level, where access holes, windows, doors, and other openings are of significant size. This is opposed to holes sized for mechanical fasteners. Instead of cutting the important load-bearing fibers at the hole edge, as a conventional straightline design does, the curvilinear design preserves the load-bearing fibers by orienting them in smooth trajectories around the holes, their loading not ending abruptly at the hole edge. Though the concept of curvilinear fiber trajectories has been studied before, attempts to manufacture and test such plates have been limited. This report describes a cooperative effort between Cincinnati Milacron Inc., NASA Langley Research Center, and Virginia Polytechnic Institute and State University to design, manufacture, and test plates using the curvilinear fiber trajectory concept. The paper discusses details of the plate design, details of the manufacturing, and a summary of results from testing the plates with inplane compressive buckling loads and tensile loads. Comparisons between the curvilinear and conventional straightline fiber designs based on measurements and observation are made. Failure modes, failure loads, strains, deflections, and other key responses are compared.

  5. Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology

    NASA Astrophysics Data System (ADS)

    vanKonynenburg, Peter; Marsland, Stephen; McCoy, James

    1987-11-01

    A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.

  6. Methods of fabricating a conductor assembly having a curvilinear arcuate shape

    DOEpatents

    Meinke, Rainer [Melbourne, FL

    2011-08-23

    A method for manufacture of a conductor assembly along a curvilinear axis. The assembly may be of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In one example, the assembly includes a structure having a curved shape extending along the axis. A surface of the structure is positioned for formation of a channel along the curved shape. The structure is rotated about a second axis. While rotating the structure, a channel is formed in the surface that results in a helical shape in the structure. The channel extends both around and along the first axis.

  7. Partial Arc Curvilinear Direct Drive Servomotor

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong (Inventor)

    2014-01-01

    A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.

  8. Improved Fabrication of Lithium Films Having Micron Features

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay

    2006-01-01

    An improved method has been devised for fabricating micron-dimension Li features. This approach is intended for application in the fabrication of lithium-based microelectrochemical devices -- particularly solid-state thin-film lithium microbatteries.

  9. Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes.

    PubMed

    Cannistraci, Carlo Vittorio; Ravasi, Timothy; Montevecchi, Franco Maria; Ideker, Trey; Alessio, Massimo

    2010-09-15

    Nonlinear small datasets, which are characterized by low numbers of samples and very high numbers of measures, occur frequently in computational biology, and pose problems in their investigation. Unsupervised hybrid-two-phase (H2P) procedures-specifically dimension reduction (DR), coupled with clustering-provide valuable assistance, not only for unsupervised data classification, but also for visualization of the patterns hidden in high-dimensional feature space. 'Minimum Curvilinearity' (MC) is a principle that-for small datasets-suggests the approximation of curvilinear sample distances in the feature space by pair-wise distances over their minimum spanning tree (MST), and thus avoids the introduction of any tuning parameter. MC is used to design two novel forms of nonlinear machine learning (NML): Minimum Curvilinear embedding (MCE) for DR, and Minimum Curvilinear affinity propagation (MCAP) for clustering. Compared with several other unsupervised and supervised algorithms, MCE and MCAP, whether individually or combined in H2P, overcome the limits of classical approaches. High performance was attained in the visualization and classification of: (i) pain patients (proteomic measurements) in peripheral neuropathy; (ii) human organ tissues (genomic transcription factor measurements) on the basis of their embryological origin. MC provides a valuable framework to estimate nonlinear distances in small datasets. Its extension to large datasets is prefigured for novel NMLs. Classification of neuropathic pain by proteomic profiles offers new insights for future molecular and systems biology characterization of pain. Improvements in tissue embryological classification refine results obtained in an earlier study, and suggest a possible reinterpretation of skin attribution as mesodermal. https://sites.google.com/site/carlovittoriocannistraci/home.

  10. Curvilinear pigmentary lesions in a rod-cone dystrophy.

    PubMed

    Tamaki, Y; Sawa, M; Yannuzzi, L A

    2005-01-01

    To report a peculiar curvilinear pigmentary lesion in the peripheral fundus in a rod-cone dystrophy. Observational case report. Fundus examination of a 57-year-old woman who was known to have a generalized rod-cone dystrophy since she was 8 years old. The peripheral fundus examination revealed a curvilinear lesion which resembles a well-known finding associated with a presumed ocular histoplasmosis syndrome or multifocal choroiditis. The differential diagnosis of a peculiar curvilinear pigmentary lesion in the peripheral fundus may be expanded to include a generalized rod-cone dystrophy.

  11. A novel curvilinear approach for prostate seed implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podder, Tarun K.; Dicker, Adam P.; Hutapea, Parsaoran

    Purpose: A new technique called ''curvilinear approach'' for prostate seed implantation has been proposed. The purpose of this study is to evaluate the dosimetric benefit of curvilinear distribution of seeds for low-dose-rate (LDR) prostate brachytherapy. Methods: Twenty LDR prostate brachytherapy cases planned intraoperatively with VariSeed planning system and I-125 seeds were randomly selected as reference rectilinear cases. All the cases were replanned by using curved-needle approach keeping the same individual source strength and the volume receiving 100% of prescribed dose 145 Gy (V{sub 100}). Parameters such as number of needles, seeds, and the dose coverage of the prostate (D{sub 90},more » V{sub 150}, V{sub 200}), urethra (D{sub 30}, D{sub 10}) and rectum (D{sub 5}, V{sub 100}) were compared for the rectilinear and the curvilinear methods. Statistical significance was assessed using two-tailed student's t-test. Results: Reduction of the required number of needles and seeds in curvilinear method were 30.5% (p < 0.001) and 11.8% (p < 0.49), respectively. Dose to the urethra was reduced significantly; D{sub 30} reduced by 10.1% (p < 0.01) and D{sub 10} reduced by 9.9% (p < 0.02). Reduction in rectum dose D{sub 5} was 18.5% (p < 0.03) and V{sub 100} was also reduced from 0.93 cc in rectilinear to 0.21 cc in curvilinear (p < 0.001). Also the V{sub 150} and V{sub 200} coverage of prostate reduced by 18.8% (p < 0.01) and 33.9% (p < 0.001), respectively. Conclusions: Significant improvement in the relevant dosimetric parameters was observed in curvilinear needle approach. Prostate dose homogeneity (V{sub 150}, V{sub 200}) improved while urethral dose was reduced, which might potentially result in better treatment outcome. Reduction in rectal dose could potentially reduce rectal toxicity and complications. Reduction in number of needles would minimize edema and thereby could improve postimplant urinary incontinence. This study indicates that the curvilinear

  12. Fabric defect detection based on visual saliency using deep feature and low-rank recovery

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan

    2018-04-01

    Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.

  13. Item response theory scoring and the detection of curvilinear relationships.

    PubMed

    Carter, Nathan T; Dalal, Dev K; Guan, Li; LoPilato, Alexander C; Withrow, Scott A

    2017-03-01

    Psychologists are increasingly positing theories of behavior that suggest psychological constructs are curvilinearly related to outcomes. However, results from empirical tests for such curvilinear relations have been mixed. We propose that correctly identifying the response process underlying responses to measures is important for the accuracy of these tests. Indeed, past research has indicated that item responses to many self-report measures follow an ideal point response process-wherein respondents agree only to items that reflect their own standing on the measured variable-as opposed to a dominance process, wherein stronger agreement, regardless of item content, is always indicative of higher standing on the construct. We test whether item response theory (IRT) scoring appropriate for the underlying response process to self-report measures results in more accurate tests for curvilinearity. In 2 simulation studies, we show that, regardless of the underlying response process used to generate the data, using the traditional sum-score generally results in high Type 1 error rates or low power for detecting curvilinearity, depending on the distribution of item locations. With few exceptions, appropriate power and Type 1 error rates are achieved when dominance-based and ideal point-based IRT scoring are correctly used to score dominance and ideal point response data, respectively. We conclude that (a) researchers should be theory-guided when hypothesizing and testing for curvilinear relations; (b) correctly identifying whether responses follow an ideal point versus dominance process, particularly when items are not extreme is critical; and (c) IRT model-based scoring is crucial for accurate tests of curvilinearity. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Comparison of Curvilinear Stiffeners and Tow Steered Composites for Aeroelastic Tailoring of Transports

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Jutte, Christine V.

    2016-01-01

    A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.

  15. Linear and/or curvilinear rail mount system

    NASA Technical Reports Server (NTRS)

    Thomas, Jackie D. (Inventor); Harris, Lawanna L. (Inventor)

    2012-01-01

    One or more linear and/or curvilinear mounting rails are coupled to a structure. Each mounting rail defines a channel and at least one cartridge assembly is engaged in the channel. Each cartridge assembly includes a housing that slides within the channel. The housing defines a curvilinearly-shaped recess longitudinally aligned with the channel when the housing is in engagement therewith. The cartridge assembly also includes a cleat fitted in the recess for sliding engagement therealong. The cleat can be coupled to a fastener that passes through the mounting rail and the housing when the housing is so-engaged in the channel. The cleat is positioned in the recess by a position of the fastener.

  16. Soft-lithography fabrication of microfluidic features using thiol-ene formulations.

    PubMed

    Ashley, John F; Cramer, Neil B; Davis, Robert H; Bowman, Christopher N

    2011-08-21

    In this work, a novel thiol-ene based photopolymerizable resin formulation was shown to exhibit highly desirable characteristics, such as low cure time and the ability to overcome oxygen inhibition, for the photolithographic fabrication of microfluidic devices. The feature fidelity, as well as various aspects of the feature shape and quality, were assessed as functions of various resin attributes, particularly the exposure conditions, initiator concentration and inhibitor to initiator ratio. An optical technique was utilized to evaluate the feature fidelity as well as the feature shape and quality. These results were used to optimize the thiol-ene resin formulation to produce high fidelity, high aspect ratio features without significant reductions in feature quality. For structures with aspect ratios below 2, little difference (<3%) in feature quality was observed between thiol-ene and acrylate based formulations. However, at higher aspect ratios, the thiol-ene resin exhibited significantly improved feature quality. At an aspect ratio of 8, raised feature quality for the thiol-ene resin was dramatically better than that achieved by using the acrylate resin. The use of the thiol-ene based resin enabled fabrication of a pinched-flow microfluidic device that has complex channel geometry, small (50 μm) channel dimensions, and high aspect ratio (14) features. This journal is © The Royal Society of Chemistry 2011

  17. An issue encountered in solving problems in electricity and magnetism: curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Gülçiçek, Çağlar; Damlı, Volkan

    2016-11-01

    In physics lectures on electromagnetic theory and mathematical methods, physics teacher candidates have some difficulties with curvilinear coordinate systems. According to our experience, based on both in-class interactions and teacher candidates’ answers in test papers, they do not seem to have understood the variables in curvilinear coordinate systems very well. For this reason, the problems that physics teacher candidates have with variables in curvilinear coordinate systems have been selected as a study subject. The aim of this study is to find the physics teacher candidates’ problems with determining the variables of drawn shapes, and problems with drawing shapes based on given variables in curvilinear coordinate systems. Two different assessment tests were used in the study to achieve this aim. The curvilinear coordinates drawing test (CCDrT) was used to discover their problems related to drawing shapes, and the curvilinear coordinates detection test (CCDeT) was used to find out about problems related to determining variables. According to the findings obtained from both tests, most physics teacher candidates have problems with the ϕ variable, while they have limited problems with the r variable. Questions that are mostly answered wrongly have some common properties, such as value. According to inferential statistics, there is no significant difference between the means of the CCDeT and CCDrT scores. The mean of the CCDeT scores is only 4.63 and the mean of the CCDrT is only 4.66. Briefly, we can say that most physics teacher candidates have problems with drawing a shape using the variables of curvilinear coordinate systems or in determining the variables of drawn shapes. Part of this study was presented at the XI. National Science and Mathematics Education Congress (UFBMEK) in 2014.

  18. Curvilinear grids for WENO methods in astrophysical simulations

    NASA Astrophysics Data System (ADS)

    Grimm-Strele, H.; Kupka, F.; Muthsam, H. J.

    2014-03-01

    We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.

  19. Job insecurity and organizational citizenship behavior: exploring curvilinear and moderated relationships.

    PubMed

    Lam, Chak Fu; Liang, Jian; Ashford, Susan J; Lee, Cynthia

    2015-03-01

    This article examined a curvilinear relationship between job insecurity and organizational citizenship behavior (OCB). Drawing from social exchange theory and research on personal control, we developed and tested an explanation for employees' reactions to job insecurity based on their conceptualization of their social exchange relationship with the organization at different levels of job insecurity. Using data from 244 Chinese employees and 102 supervisory ratings of OCB, we found support for a U-shaped relationship between job insecurity and OCB. Moreover, 2 factors--psychological capital and subordinate-supervisor guanxi--moderated the curvilinear relationship, such that the curvilinear relationship is more pronounced among those with lower psychological capital or less positive subordinate-supervisor guanxi. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  20. Tuning of Muscle Synergies During Walking Along Rectilinear and Curvilinear Trajectories in Humans.

    PubMed

    Chia Bejarano, Noelia; Pedrocchi, Alessandra; Nardone, Antonio; Schieppati, Marco; Baccinelli, Walter; Monticone, Marco; Ferrigno, Giancarlo; Ferrante, Simona

    2017-05-01

    The aim of this study was to develop a methodology based on muscle synergies to investigate whether rectilinear and curvilinear walking shared the same neuro-motor organization, and how this organization was fine-tuned by the walking condition. Thirteen healthy subjects walked on rectilinear and curvilinear paths. Electromyographic data from thirteen back and lower-limb muscles were acquired, together with kinematic data using inertial sensors. Four macroscopically invariant muscle synergies, extracted through non-negative matrix factorization, proved a shared modular organization across conditions. The fine-tuning of muscle synergies was studied through non-negative matrix reconstruction, applied by fixing muscle weights or activation profiles to those of the rectilinear condition. The activation profiles tended to be recruited for a longer period and with a larger amplitude during curvilinear walking. The muscles of the posterior side of the lower limb were those mainly influenced by the fine-tuning, with the muscles inside the rotation path being more active than the outer muscles. This study shows that rectilinear and curvilinear walking share a unique motor command. However, a fine-tuning in muscle synergies is introduced during curvilinear conditions, adapting the kinematic strategy to the new biomechanical needs.

  1. Model-based MPC enables curvilinear ILT using either VSB or multi-beam mask writers

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Takatsukasa, Yutetsu; Hara, Daisuke; Pomerantsev, Michael; Su, Bo; Fujimura, Aki

    2017-07-01

    Inverse Lithography Technology (ILT) is becoming the choice for Optical Proximity Correction (OPC) of advanced technology nodes in IC design and production. Multi-beam mask writers promise significant mask writing time reduction for complex ILT style masks. Before multi-beam mask writers become the main stream working tools in mask production, VSB writers will continue to be the tool of choice to write both curvilinear ILT and Manhattanized ILT masks. To enable VSB mask writers for complex ILT style masks, model-based mask process correction (MB-MPC) is required to do the following: 1). Make reasonable corrections for complex edges for those features that exhibit relatively large deviations from both curvilinear ILT and Manhattanized ILT designs. 2). Control and manage both Edge Placement Errors (EPE) and shot count. 3. Assist in easing the migration to future multi-beam mask writer and serve as an effective backup solution during the transition. In this paper, a solution meeting all those requirements, MB-MPC with GPU acceleration, will be presented. One model calibration per process allows accurate correction regardless of the target mask writer.

  2. Fabrication of small-scale structures with non-planar features

    DOEpatents

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  3. On differential transformations between Cartesian and curvilinear (geodetic) coordinates

    NASA Technical Reports Server (NTRS)

    Soler, T.

    1976-01-01

    Differential transformations are developed between Cartesian and curvilinear orthogonal coordinates. Only matrix algebra is used for the presentation of the basic concepts. After defining the reference systems used the rotation (R), metric (H), and Jacobian (J) matrices of the transformations between cartesian and curvilinear coordinate systems are introduced. A value of R as a function of H and J is presented. Likewise an analytical expression for J(-1) as a function of H(-2) and R is obtained. Emphasis is placed on showing that differential equations are equivalent to conventional similarity transformations. Scaling methods are discussed along with ellipsoidal coordinates. Differential transformations between elipsoidal and geodetic coordinates are established.

  4. Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Charette, R. F.

    1987-01-01

    To increase the effectiveness and efficiency of fiber-reinforced materials, the use of fibers in a curvilinear rather than the traditional straightline format is explored. The capacity of a laminated square plate with a central circular hole loaded in tension is investigated. The orientation of the fibers is chosen so that the fibers in a particular layer are aligned with the principle stress directions in that layer. Finite elements and an iteration scheme are used to find the fiber orientation. A noninteracting maximum strain criterion is used to predict load capacity. The load capacities of several plates with different curvilinear fibers format are compared with the capacities of more conventional straightline format designs. It is found that the most practical curvilinear design sandwiches a group of fibers in a curvilinear format between a pair of +/-45 degree layers. This design has a 60% greater load capacity than a conventional quasi-isotropic design with the same number of layers. The +/-45 degree layers are necessary to prevent matrix cracking in the curvilinear layers due to stresses perpendicular to the fibers in those layers. Greater efficiencies are achievable with composite structures than now realized.

  5. BRIEF COMMUNICATION: A note on the Coulomb collision operator in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Goncharov, P. R.

    2010-10-01

    The dynamic friction force, diffusion tensor, flux density in velocity space and Coulomb collision term are expressed in curvilinear coordinates via Trubnikov potential functions corresponding to each species of a background plasma. For comparison, explicit formulae are given for the dynamic friction force, diffusion tensor and collisional flux density in velocity space in curvilinear coordinates via Rosenbluth potential functions summed over all species of the background plasma.

  6. Innovative design of composite structures: Further studies in the use of a curvilinear fiber format to improve structural efficiency

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.; Charette, Robert F.

    1988-01-01

    Further studies to determine the potential for using a curvilinear fiber format in the design of composite laminates are reported. The curvilinear format is in contrast to the current practice of having the fibers aligned parallel to each other and in a straight line. The problem of a plate with a central circular hole is used as a candidate problem for this study. The study concludes that for inplane tensile loading the curvilinear format is superior. The limited results to date on compression buckling loads indicate that the curvilinear designs are poorer in resistant buckling. However, for the curvilinear design of interest, the reduction in buckling load is minimal and so overall there is a gain in considering the curvilinear design.

  7. Fabrication method for small-scale structures with non-planar features

    DOEpatents

    Burckel, David Bruce; Ten Eyck, Gregory A.

    2016-09-20

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  8. Threat Appeals: The Fear-Persuasion Relationship is Linear and Curvilinear.

    PubMed

    Dillard, James Price; Li, Ruobing; Huang, Yan

    2017-11-01

    Drive theory may be seen as the first scientific theory of health and risk communication. However, its prediction of a curvilinear association between fear and persuasion is generally held to be incorrect. A close rereading of Hovland et al. reveals that within- and between-persons processes were conflated. Using a message that advocated obtaining a screening for colonoscopy, this study (N = 259) tested both forms of the inverted-U hypothesis. In the between-persons data, analyses revealed a linear effect that was consistent with earlier investigations. However, the data showed an inverted-U relationship in within-persons data. Hence, the relationship between fear and persuasion is linear or curvilinear depending on the level of analysis.

  9. 60. Adney Gap. View of curvilinear alignment of parkway passing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Adney Gap. View of curvilinear alignment of parkway passing through agricultural lease lands. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  10. Formal Education, Eminence, and Dogmatism: The Curvilinear Relationship.

    ERIC Educational Resources Information Center

    Simonton, Dean Keith

    The relationship between formal education and creativity was investigated in two studies. A reanalysis of Cox's (1926) 301 geniuses indicated that achieved eminence of creators is a curvilinear inverted-U function of formal education. Secondly, a study of 33 American presidents found that dogmatism (i.e., idealistic inflexibility) is a curvilinear…

  11. Errors in finite-difference computations on curvilinear coordinate systems

    NASA Technical Reports Server (NTRS)

    Mastin, C. W.; Thompson, J. F.

    1980-01-01

    Curvilinear coordinate systems were used extensively to solve partial differential equations on arbitrary regions. An analysis of truncation error in the computation of derivatives revealed why numerical results may be erroneous. A more accurate method of computing derivatives is presented.

  12. 58. Adney Gap. View of curvilinear. Alignment of parkway passing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Adney Gap. View of curvilinear. Alignment of parkway passing through agricultural lease lands. Looking south-southwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  13. Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface

    NASA Astrophysics Data System (ADS)

    Lee, Gil Ju; Nam, Won Il; Song, Young Min

    2017-11-01

    Curved image sensors inspired by animal and insect eyes have provided a new development direction in next-generation digital cameras. It is known that natural fish eyes afford an extremely wide field of view (FOV) imaging due to the geometrical properties of the spherical lens and hemispherical retina. However, its inherent drawbacks, such as the low off-axis illumination and the fabrication difficulty of a 'dome-like' hemispherical imager, limit the development of bio-inspired wide FOV cameras. Here, a new type of fisheye imaging system is introduced that has simple lens configurations with a curvilinear image surface, while maintaining high off-axis illumination and a wide FOV. Moreover, through comparisons with commercial conventional fisheye designs, it is determined that the volume and required number of optical elements of the proposed design is practical while capturing the fundamental optical performances. Detailed design guidelines for tailoring the proposed optic system are also discussed.

  14. Orbit covariance propagation via quadratic-order state transition matrix in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Hernando-Ayuso, Javier; Bombardelli, Claudio

    2017-09-01

    In this paper, an analytical second-order state transition matrix (STM) for relative motion in curvilinear coordinates is presented and applied to the problem of orbit uncertainty propagation in nearly circular orbits (eccentricity smaller than 0.1). The matrix is obtained by linearization around a second-order analytical approximation of the relative motion recently proposed by one of the authors and can be seen as a second-order extension of the curvilinear Clohessy-Wiltshire (C-W) solution. The accuracy of the uncertainty propagation is assessed by comparison with numerical results based on Monte Carlo propagation of a high-fidelity model including geopotential and third-body perturbations. Results show that the proposed STM can greatly improve the accuracy of the predicted relative state: the average error is found to be at least one order of magnitude smaller compared to the curvilinear C-W solution. In addition, the effect of environmental perturbations on the uncertainty propagation is shown to be negligible up to several revolutions in the geostationary region and for a few revolutions in low Earth orbit in the worst case.

  15. Comparison of Flux-Surface Aligned Curvilinear Coordinate Systems and Neoclassical Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Collart, T. G.; Stacey, W. M.

    2015-11-01

    Several methods are presented for extending the traditional analytic ``circular'' representation of flux-surface aligned curvilinear coordinate systems to more accurately describe equilibrium plasma geometry and magnetic fields in DIII-D. The formalism originally presented by Miller is extended to include different poloidal variations in the upper and lower hemispheres. A coordinate system based on separate Fourier expansions of major radius and vertical position greatly improves accuracy in edge plasma structure representation. Scale factors and basis vectors for a system formed by expanding the circular model minor radius can be represented using linear combinations of Fourier basis functions. A general method for coordinate system orthogonalization is presented and applied to all curvilinear models. A formalism for the magnetic field structure in these curvilinear models is presented, and the resulting magnetic field predictions are compared against calculations performed in a Cartesian system using an experimentally based EFIT prediction for the Grad-Shafranov equilibrium. Supported by: US DOE under DE-FG02-00ER54538.

  16. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.

    PubMed

    Ko, Heung Cho; Shin, Gunchul; Wang, Shuodao; Stoykovich, Mark P; Lee, Jeong Won; Kim, Dong-Hun; Ha, Jeong Sook; Huang, Yonggang; Hwang, Keh-Chih; Rogers, John A

    2009-12-01

    Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.

  17. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  18. Social networks, personal values, and creativity: evidence for curvilinear and interaction effects.

    PubMed

    Zhou, Jing; Shin, Shung Jae; Brass, Daniel J; Choi, Jaepil; Zhang, Zhi-Xue

    2009-11-01

    Taking an interactional perspective on creativity, the authors examined the influence of social networks and conformity value on employees' creativity. They theorized and found a curvilinear relationship between number of weak ties and creativity such that employees exhibited greater creativity when their number of weak ties was at intermediate levels rather than at lower or higher levels. In addition, employees' conformity value moderated the curvilinear relationship between number of weak ties and creativity such that employees exhibited greater creativity at intermediate levels of number of weak ties when conformity was low than when it was high. A proper match between personal values and network ties is critical for understanding creativity.

  19. Innovative design of composite structures: The use of curvilinear fiber format in structural design of composites

    NASA Technical Reports Server (NTRS)

    Charette, R. F.; Hyer, M. W.

    1990-01-01

    The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.

  20. Relationship between Family Adaptability, Cohesion and Adolescent Problem Behaviors: Curvilinearity of Circumplex Model.

    PubMed

    Joh, Ju Youn; Kim, Sun; Park, Jun Li; Kim, Yeon Pyo

    2013-05-01

    The Family Adaptability and Cohesion Evaluation Scale (FACES) III using the circumplex model has been widely used in investigating family function. However, the criticism of the curvilinear hypothesis of the circumplex model has always been from an empirical point of view. This study examined the relationship between adolescent adaptability, cohesion, and adolescent problem behaviors, and especially testing the consistency of the curvilinear hypotheses with FACES III. We used the data from 398 adolescent participants who were in middle school. A self-reported questionnaire was used to evaluate the FACES III and Youth Self Report. According to the level of family adaptability, significant differences were evident in internalizing problems (P = 0.014). But, in externalizing problems, the results were not significant (P = 0.305). Also, according to the level of family cohesion, significant differences were in internalizing problems (P = 0.002) and externalizing problems (P = 0.004). The relationship between the dimensions of adaptability, cohesion and adolescent problem behaviors was not curvilinear. In other words, adolescents with high adaptability and high cohesion showed low problem behaviors.

  1. Relationship between Family Adaptability, Cohesion and Adolescent Problem Behaviors: Curvilinearity of Circumplex Model

    PubMed Central

    Joh, Ju Youn; Kim, Sun; Park, Jun Li

    2013-01-01

    Background The Family Adaptability and Cohesion Evaluation Scale (FACES) III using the circumplex model has been widely used in investigating family function. However, the criticism of the curvilinear hypothesis of the circumplex model has always been from an empirical point of view. This study examined the relationship between adolescent adaptability, cohesion, and adolescent problem behaviors, and especially testing the consistency of the curvilinear hypotheses with FACES III. Methods We used the data from 398 adolescent participants who were in middle school. A self-reported questionnaire was used to evaluate the FACES III and Youth Self Report. Results According to the level of family adaptability, significant differences were evident in internalizing problems (P = 0.014). But, in externalizing problems, the results were not significant (P = 0.305). Also, according to the level of family cohesion, significant differences were in internalizing problems (P = 0.002) and externalizing problems (P = 0.004). Conclusion The relationship between the dimensions of adaptability, cohesion and adolescent problem behaviors was not curvilinear. In other words, adolescents with high adaptability and high cohesion showed low problem behaviors. PMID:23730484

  2. Curvilinear relationships between resource allocation and life domain-specific interference.

    PubMed

    Waldrop, Jessica S; Erb, Kaitlyn R; Grawitch, Matthew J

    2017-10-01

    This study investigated the inherent complexities of the work-life interface (WLI) by examining the relationship between resource allocation (i.e., time and energy dedicated to a particular domain) and perceived interference of individual life domains. Much of the research on the WLI is based on the assumption that a linear pattern best describes the relationship between resource allocation and the interference caused by various life domains; however, this study examined the possibility that curvilinear relationships may be a more appropriate representation. Results indicated that resource allocation is a meaningful predictor of interference, and for many life domains a curvilinear relationship accounts for more variance than a linear one; a breakdown of the sample also revealed this relationship varies by gender. Overall, findings suggest that the nature of the WLI is more individualized and complex than is currently conceptualized in the field. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration

    NASA Astrophysics Data System (ADS)

    Kovtunenko, V. A.

    2006-10-01

    Based on a level-set description of a crack moving with a given velocity, the problem of shape perturb-ation of the crack is considered. Nonpenetration conditions are imposed between opposite crack surfaces which result in a constrained minimization problem describing equilibrium of a solid with the crack. We suggest a minimax formulation of the state problem thus allowing curvilinear (nonplanar) cracks for the consideration. Utilizing primal-dual methods of shape sensitivity analysis we obtain the general formula for a shape derivative of the potential energy, which describes an energy-release rate for the curvilinear cracks. The conditions sufficient to rewrite it in the form of a path-independent integral (J-integral) are derived.

  4. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows

    PubMed Central

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-01-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331

  5. The effect of culture on the curvilinear relationship between performance and turnover.

    PubMed

    Sturman, Michael C; Shao, Lian; Katz, Jan H

    2012-01-01

    Although researchers have theorized that there exists a curvilinear relationship between job performance and voluntary turnover, their research has been tested in the United States or culturally similar Switzerland. Through a study of the performance-turnover relationship from a multinational service-oriented organization in 24 countries, we demonstrate that the general relationship between performance and turnover is similar across countries but the details of that relationship change across countries. Using 4 cultural dimensions--in-group collectivism, power distance, uncertainty avoidance, and performance orientation--we find that cultural factors alter the overall probability of voluntary turnover and influence the degree of curvilinearity in the performance-turnover relationship. Our findings have implications for research on the performance-turnover relationship, turnover research, and practice.

  6. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  7. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  8. How Orthogonal Are the Big Two of Social Perception? On the Curvilinear Relation Between Agency and Communion.

    PubMed

    Imhoff, Roland; Koch, Alex

    2017-01-01

    Humans make sense of their social environment by forming impressions of others that allow predicting others' actions. In this process of social perception, two types of information carry pivotal importance: other entities' communion (i.e., warmth and trustworthiness) and agency (i.e., status and power). Although commonly thought of as orthogonal dimensions, we propose that these Big Two of social perception are curvilinearly related. Specifically, as we delineate from four different theoretical explanations, impressions of communion should peak at average agency, while entities too high or too low on agency should be perceived as low on communion. We show this pattern for social groups across one novel and five previously published data sets, including a meta-analysis of the most comprehensive data collection in the group perception literature, consisting of 36 samples from more than 20 countries. Addressing the generalizability of this curvilinear relation, we then report recent and unpublished experiments establishing the effect for the perception of individuals and animals. On the basis of the proposed curvilinear relation, we revisit the primacy of processing communion (rather than agency) information. Finally, we discuss the possibility of a more general curvilinear relation between communion and dimensions other than agency.

  9. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.

    2016-07-01

    We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.

  10. Differential parenting and children's behavioral problems: curvilinear associations and mother-father combined effects.

    PubMed

    Meunier, Jean Christophe; Bisceglia, Rossana; Jenkins, Jennifer M

    2012-07-01

    In this study the associations between mothers' and fathers' differential parenting and children's oppositional and emotional problems were examined. A curvilinear relationship between differential parenting and children's outcomes was hypothesized, as well as the combined effect of mothers' and fathers' parenting. Data came from a community sample of 599 two-parent families with multiple children per family and were analyzed using a cross-classified multilevel model. Results showed that both family average parenting and differential parenting explained unique variance in children's outcomes. The curvilinear hypothesis was supported for oppositional behavior but not for emotional problems. The effects of mother and father positivity were found to be additive for both family average parenting and differential parenting, but for negativity there was evidence for multiplicative effects.

  11. Application of the Fourier pseudospectral time-domain method in orthogonal curvilinear coordinates for near-rigid moderately curved surfaces.

    PubMed

    Hornikx, Maarten; Dragna, Didier

    2015-07-01

    The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries. A transform from the physical coordinate system to the curvilinear coordinate system has been applied to solve more arbitrary geometries. For applicability of this method near the boundaries, the acoustic velocity variables are solved for their curvilinear components. The performance of the curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propagation over an impedance strip for various types of shapes. Accuracy is shown to be related to the maximum grid stretching ratio and deformation of the boundary shape and computational efficiency is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilinear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate and efficient results for sound propagation over smoothly varying ground surfaces with high impedances can be obtained.

  12. Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Harper, David

    1989-06-01

    This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.

  13. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less

  14. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    DOE PAGES

    Chacon, L.; Chen, G.

    2016-04-19

    Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. Anmore » asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.« less

  15. Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures.

    PubMed

    Loss, Leandro A; Bebis, George; Parvin, Bahram

    2011-08-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is validated on delineating adherens junctions that are imaged through fluorescence microscopy. However, the method is also applicable for screening other organisms based on characteristics of their cell wall structures. Adherens junctions maintain tissue structural integrity and cell-cell interactions. Visually, they exhibit fibrous patterns that may be diffused, heterogeneous in fluorescence intensity, or punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates.

  16. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, L.; Chen, G.

    Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. Anmore » asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.« less

  17. Accelerating Convolutional Sparse Coding for Curvilinear Structures Segmentation by Refining SCIRD-TS Filter Banks.

    PubMed

    Annunziata, Roberto; Trucco, Emanuele

    2016-11-01

    Deep learning has shown great potential for curvilinear structure (e.g., retinal blood vessels and neurites) segmentation as demonstrated by a recent auto-context regression architecture based on filter banks learned by convolutional sparse coding. However, learning such filter banks is very time-consuming, thus limiting the amount of filters employed and the adaptation to other data sets (i.e., slow re-training). We address this limitation by proposing a novel acceleration strategy to speed-up convolutional sparse coding filter learning for curvilinear structure segmentation. Our approach is based on a novel initialisation strategy (warm start), and therefore it is different from recent methods improving the optimisation itself. Our warm-start strategy is based on carefully designed hand-crafted filters (SCIRD-TS), modelling appearance properties of curvilinear structures which are then refined by convolutional sparse coding. Experiments on four diverse data sets, including retinal blood vessels and neurites, suggest that the proposed method reduces significantly the time taken to learn convolutional filter banks (i.e., up to -82%) compared to conventional initialisation strategies. Remarkably, this speed-up does not worsen performance; in fact, filters learned with the proposed strategy often achieve a much lower reconstruction error and match or exceed the segmentation performance of random and DCT-based initialisation, when used as input to a random forest classifier.

  18. An efficient mode-splitting method for a curvilinear nearshore circulation model

    USGS Publications Warehouse

    Shi, Fengyan; Kirby, James T.; Hanes, Daniel M.

    2007-01-01

    A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified in model application to tidal current simulations in San Francisco Bight.

  19. FIDDLE: A Computer Code for Finite Difference Development of Linear Elasticity in Generalized Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2005-01-01

    A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.

  20. Group Size Effect on Cooperation in One-Shot Social Dilemmas II: Curvilinear Effect.

    PubMed

    Capraro, Valerio; Barcelo, Hélène

    2015-01-01

    In a world in which many pressing global issues require large scale cooperation, understanding the group size effect on cooperative behavior is a topic of central importance. Yet, the nature of this effect remains largely unknown, with lab experiments insisting that it is either positive or negative or null, and field experiments suggesting that it is instead curvilinear. Here we shed light on this apparent contradiction by considering a novel class of public goods games inspired to the realistic scenario in which the natural output limits of the public good imply that the benefit of cooperation increases fast for early contributions and then decelerates. We report on a large lab experiment providing evidence that, in this case, group size has a curvilinear effect on cooperation, according to which intermediate-size groups cooperate more than smaller groups and more than larger groups. In doing so, our findings help fill the gap between lab experiments and field experiments and suggest concrete ways to promote large scale cooperation among people.

  1. Uncovering curvilinear relationships between conscientiousness and job performance: how theoretically appropriate measurement makes an empirical difference.

    PubMed

    Carter, Nathan T; Dalal, Dev K; Boyce, Anthony S; O'Connell, Matthew S; Kung, Mei-Chuan; Delgado, Kristin M

    2014-07-01

    The personality trait of conscientiousness has seen considerable attention from applied psychologists due to its efficacy for predicting job performance across performance dimensions and occupations. However, recent theoretical and empirical developments have questioned the assumption that more conscientiousness always results in better job performance, suggesting a curvilinear link between the 2. Despite these developments, the results of studies directly testing the idea have been mixed. Here, we propose this link has been obscured by another pervasive assumption known as the dominance model of measurement: that higher scores on traditional personality measures always indicate higher levels of conscientiousness. Recent research suggests dominance models show inferior fit to personality test scores as compared to ideal point models that allow for curvilinear relationships between traits and scores. Using data from 2 different samples of job incumbents, we show the rank-order changes that result from using an ideal point model expose a curvilinear link between conscientiousness and job performance 100% of the time, whereas results using dominance models show mixed results, similar to the current state of the literature. Finally, with an independent cross-validation sample, we show that selection based on predicted performance using ideal point scores results in more favorable objective hiring outcomes. Implications for practice and future research are discussed.

  2. The double-edged sword of leader charisma: Understanding the curvilinear relationship between charismatic personality and leader effectiveness.

    PubMed

    Vergauwe, Jasmine; Wille, Bart; Hofmans, Joeri; Kaiser, Robert B; De Fruyt, Filip

    2018-01-01

    This study advanced knowledge on charisma by (a) introducing a new personality-based model to conceptualize and assess charisma and by (b) investigating curvilinear relationships between charismatic personality and leader effectiveness. Moreover, we delved deeper into this curvilinear association by (c) examining moderation by the leader's level of adjustment and by (d) testing a process model through which the effects of charismatic personality on effectiveness are explained with a consideration of specific leader behaviors. Study 1 validated HDS charisma (Hogan Development Survey) as a useful trait-based measure of charisma. In Study 2 a sample of leaders (N = 306) were assessed in the context of a 360-degree development center. In line with the too-much-of-a-good-thing effect, an inverted U-shaped relationship between charismatic personality and observer-rated leader effectiveness was found, indicating that moderate levels are better than low or high levels of charisma. Study 3 (N = 287) replicated this curvilinear relationship and further illustrated the moderating role of leader adjustment, in such a way that the inflection point after which the effects of charisma turn negative occurs at higher levels of charisma when adjustment is high. Nonlinear mediation modeling further confirmed that strategic and operational leader behaviors fully mediate the curvilinear relationship. Leaders low on charisma are less effective because they lack strategic behavior; highly charismatic leaders are less effective because they lack operational behavior. In sum, this work provides insight into the dispositional nature of charisma and uncovers the processes through which and conditions under which leader charisma translates into (in)effectiveness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Substance use disorder counselors' job performance and turnover after 1 year: linear or curvilinear relationship?

    PubMed

    Laschober, Tanja C; de Tormes Eby, Lillian Turner

    2013-07-01

    The main goals of the current study were to investigate whether there are linear or curvilinear relationships between substance use disorder counselors' job performance and actual turnover after 1 year utilizing four indicators of job performance and three turnover statuses (voluntary, involuntary, and no turnover as the reference group). Using longitudinal data from 440 matched counselor-clinical supervisor dyads, results indicate that overall, counselors with lower job performance are more likely to turn over voluntarily and involuntarily than not to turn over. Further, one of the job performance measures shows a significant curvilinear effect. We conclude that the negative consequences often assumed to be "caused" by counselor turnover may be overstated because those who leave both voluntarily and involuntarily demonstrate generally lower performance than those who remain employed at their treatment program.

  4. Steeply dipping heaving bedrock, Colorado: Part 1 - Heave features and physical geological framework

    USGS Publications Warehouse

    Noe, D.C.; Higgins, J.D.; Olsen, H.W.

    2007-01-01

    Differentially heaving bedrock has caused severe damage near the Denver metropolitan area. This paper describes heave-feature morphologies, the underlying bedrock framework, and their inter-relationship. The heave features are linear to curvilinear and may attain heights of 0.7 m (2.4 ft), widths of 58 m (190 ft), and lengths of 1,067 m (3,500 ft). They are nearly symmetrical to highly asymmetrical in cross section, with width-to-height ratios of 45:1 to 400:1, and most are oriented parallel with the mountain front. The bedrock consists of Mesozoic sedimentary formations having dip angles of 30 degrees to vertical to overturned. Mixed claystone-siltstone bedding sequences up to 36-m (118-ft) thick are common in the heave-prone areas, and interbeds of bentonite, limestone, or sandstone may be present. Highly fractured zones of weathered to variably weathered claystone extend to depths of 19.5 to 22.3 m (64 to 73 ft). Fracture spacings are 0.1 to 0.2 m (0.3 to 0.7 ft) in the weathered and variably weathered bedrock and up to 0.75 m (2.5 ft) in the underlying, unweathered bedrock. Curvilinear shear planes in the weathered claystone show thrust or reverse offsets up to 1.2 m (3.9 ft). Three associations between heave-feature morphologies and the geological framework are recognized: (1) Linear, symmetrical to asymmetrical heaves are associated with primary bedding composition changes. (2) Linear, highly asymmetrical heaves are associated with shear planes along bedding. (3) Curvi-linear, highly asymmetrical heaves are associated with bedding-oblique shear planes.

  5. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  6. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  7. Appliance of Inertial Gas-Dynamic Separation of Gas-Dispersion Flows in the Curvilinear Convergent-Divergent Channels for Compressor Equipment Reliability Improvement

    NASA Astrophysics Data System (ADS)

    Liaposhchenko, O. O.; Sklabinskyi, V. I.; Zavialov, V. L.; Pavlenko, I. V.; Nastenko, O. V.; Demianenko, M. M.

    2017-08-01

    The new methods of vibration and inertial gas-dynamic separation of gas-condensate and dusty flows and the corresponding separation devices are proposed in order to avoid emergencies and premature wear of parts and components of the compressor equipment. The formation of the gas flow and disperse particles in the curvilinear convergent-divergent channels are investigated. The optimizing hydrodynamic profiling of a geometrical configuration of curvilinear separation channels with rigid and flexible walls of baffles is carried out.

  8. Substance Use Disorder Counselors’ Job Performance and Turnover after 1 Year: Linear or Curvilinear Relationship?1

    PubMed Central

    Laschober, Tanja C.; de Tormes Eby, Lillian Turner

    2013-01-01

    The main goals of the current study were to investigate whether there are linear or curvilinear relationships between substance use disorder counselors’ job performance and actual turnover after 1 year utilizing four indicators of job performance and three turnover statuses (voluntary, involuntary, and no turnover as the reference group). Using longitudinal data from 440 matched counselor-clinical supervisor dyads, results indicate that overall, counselors with lower job performance are more likely to turn over voluntarily and involuntarily than not to turn over. Further, one of the job performance measures shows a significant curvilinear effect. We conclude that the negative consequences often assumed to be “caused” by counselor turnover may be overstated because those who leave both voluntarily and involuntarily demonstrate generally lower performance than those who remain employed at their treatment program. PMID:22527711

  9. Iterative Tensor Voting for Perceptual Grouping of Ill-Defined Curvilinear Structures: Application to Adherens Junctions

    PubMed Central

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2012-01-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is applied to delineation of adherens junctions imaged through fluorescence microscopy. This class of membrane-bound macromolecules maintains tissue structural integrity and cell-cell interactions. Visually, it exhibits fibrous patterns that may be diffused, punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates. PMID:21421432

  10. Dynamic aspects of voluntary turnover: an integrated approach to curvilinearity in the performance-turnover relationship.

    PubMed

    Becker, William J; Cropanzano, Russell

    2011-03-01

    Previous research pertaining to job performance and voluntary turnover has been guided by 2 distinct theoretical perspectives. First, the push-pull model proposes that there is a quadratic or curvilinear relationship existing between these 2 variables. Second, the unfolding model of turnover posits that turnover is a dynamic process and that a downward performance change may increase the likelihood of organizational separation. Drawing on decision theory, we propose and test an integrative framework. This approach incorporates both of these earlier models. Specifically, we argue that individuals are most likely to voluntarily exit when they are below-average performers who are also experiencing a downward performance change. Furthermore, the interaction between this downward change and performance partially accounts for the curvilinear relationship proposed by the push-pull model. Findings from a longitudinal field study supported this integrative theory. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  11. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  12. Inertia and Couple-Stress Effects in a Curvilinear Thrust Hydrostatic Bearing

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jurczak, P.; Falicki, J.

    2017-08-01

    The flow of a couple-stress lubricant in a clearance of a curvilinear thrust hydrostatic bearing with impermeable walls is considered. The flow in the bearing clearance is considered with inertia forces. The equations of motion are solved by an averaged inertia method. As a result, the formulae for pressure distributions without and with inertia effects were obtained. Radial thrust bearings and spherical bearings are discussed as numerical examples. It is shown that inertia effects influence the bearing performance considerably.

  13. Representational momentum, centripetal force, and curvilinear impetus.

    PubMed

    Hubbard, T L

    1996-07-01

    In 3 experiments, observers witnessed a target moving along a circular orbit and indicated the location at which the target vanished. The judged vanishing point was displaced forward in the direction of implied momentum and inward in the direction of implied centripetal force. In general, increases in either the angular velocity of the target or the radius length of the orbit increased the magnitude of forward displacement. If both angular velocity and radius length were varied, then increases in either angular velocity or radius length also increased the magnitude of inward displacement. The displacement patterns were consistent with hypotheses that analogues of momentum and centripetal force were incorporated into the representational system. A framework is proposed that accounts for (a) the forward and inward displacements and (b) naive-physics data on the spiral tube problem previously interpreted as suggesting a belief in a naive curvilinear-impetus principle.

  14. Mechanism of competitive grain growth in a curvilinear channel of crystal-sorter during the orientational solidification of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Monastyrskiy, V. P.; Pozdnyakov, A. N.; Ershov, M. Yu.; Monastyrskiy, A. V.

    2017-07-01

    Using numerical simulation in the ProCAST program complex, the conditions of the solidification of heat-resistant nickel alloy in curvilinear channels of a ceramic mold have been investigated. It has been shown that, in practically important cases, the vector of the temperature gradient is oriented along the axis of the curvilinear channel. In a spiral crystal selector, a cyclic change in the preferred direction of growth occurs because of the cyclic change in the direction of the vector of the temperature gradient. The fact that the vector of the temperature gradient is almost always directed along the axis of the curvilinear channel makes it possible to govern the orientation of the vector of the temperature gradient in space and, therefore, to obtain a grain with the preferred crystallographic orientation. Based on the results of this investigation, a method of the grain selection with a desired azimuthal orientation is proposed.

  15. Feature-based respiratory motion tracking in native fluoroscopic sequences for dynamic roadmaps during minimally invasive procedures in the thorax and abdomen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin G.; Laeseke, Paul F.; Schubert, Tilman; Slagowski, Jordan M.; Speidel, Michael A.; Mistretta, Charles A.

    2017-03-01

    Fluoroscopic image guidance for minimally invasive procedures in the thorax and abdomen suffers from respiratory and cardiac motion, which can cause severe subtraction artifacts and inaccurate image guidance. This work proposes novel techniques for respiratory motion tracking in native fluoroscopic images as well as a model based estimation of vessel deformation. This would allow compensation for respiratory motion during the procedure and therefore simplify the workflow for minimally invasive procedures such as liver embolization. The method first establishes dynamic motion models for both the contrast-enhanced vasculature and curvilinear background features based on a native (non-contrast) and a contrast-enhanced image sequence acquired prior to device manipulation, under free breathing conditions. The model of vascular motion is generated by applying the diffeomorphic demons algorithm to an automatic segmentation of the subtraction sequence. The model of curvilinear background features is based on feature tracking in the native sequence. The two models establish the relationship between the respiratory state, which is inferred from curvilinear background features, and the vascular morphology during that same respiratory state. During subsequent fluoroscopy, curvilinear feature detection is applied to determine the appropriate vessel mask to display. The result is a dynamic motioncompensated vessel mask superimposed on the fluoroscopic image. Quantitative evaluation of the proposed methods was performed using a digital 4D CT-phantom (XCAT), which provides realistic human anatomy including sophisticated respiratory and cardiac motion models. Four groups of datasets were generated, where different parameters (cycle length, maximum diaphragm motion and maximum chest expansion) were modified within each image sequence. Each group contains 4 datasets consisting of the initial native and contrast enhanced sequences as well as a sequence, where the respiratory motion is

  16. CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies

    NASA Astrophysics Data System (ADS)

    Delzanno, G.; Camporeale, E.; Moulton, J. D.; Borovsky, J. E.; MacDonald, E.; Thomsen, M. F.

    2012-12-01

    We present a recently developed Particle-In-Cell (PIC) code in curvilinear geometry called CPIC (Curvilinear PIC) [1], where the standard PIC algorithm is coupled with a grid generation/adaptation strategy. Through the grid generator, which maps the physical domain to a logical domain where the grid is uniform and Cartesian, the code can simulate domains of arbitrary complexity, including the interaction of complex objects with a plasma. At present the code is electrostatic. Poisson's equation (in logical space) can be solved with either an iterative method based on the Conjugate Gradient (CG) or the Generalized Minimal Residual (GMRES) coupled with a multigrid solver used as a preconditioner, or directly with multigrid. The multigrid strategy is critical for the solver to perform optimally or nearly optimally as the dimension of the problem increases. CPIC also features a hybrid particle mover, where the computational particles are characterized by position in logical space and velocity in physical space. The advantage of a hybrid mover, as opposed to more conventional movers that move particles directly in the physical space, is that the interpolation of the particles in logical space is straightforward and computationally inexpensive, since one does not have to track the position of the particle. We will present our latest progress on the development of the code and document the code performance on standard plasma-physics tests. Then we will present the (preliminary) application of the code to a basic dynamic-charging problem, namely the charging and shielding of a spherical spacecraft in a magnetized plasma for various level of magnetization and including the pulsed emission of an electron beam from the spacecraft. The dynamical evolution of the sheath and the time-dependent current collection will be described. This study is in support of the ConnEx mission concept to use an electron beam from a magnetospheric spacecraft to trace magnetic field lines from the

  17. Active public Facebook use and adolescents' feelings of loneliness: Evidence for a curvilinear relationship.

    PubMed

    Wang, Kexin; Frison, Eline; Eggermont, Steven; Vandenbosch, Laura

    2018-06-09

    Inconsistent results have been reported concerning the relationships between SNS usage and loneliness. The current two-wave panel study with a one year interval examined the possibility of reciprocal and curvilinear relationships between active public Facebook use and adolescents' social/emotional loneliness. Belgian adolescents from fifteen high schools participated (N = 1188, 55% male). The results showed a U-shaped relationship between (1) active Facebook use and social/emotional loneliness and (2) emotional loneliness and active Facebook use. Specifically, active Facebook use predicted decreased social/emotional loneliness among low to moderate users, while among heavy users, increased levels of social/emotional loneliness were predicted by active Facebook use. Emotional loneliness predicted higher active Facebook use among lonely adolescents. At the same time, emotional loneliness predicted decreased active Facebook use among adolescents who did not feel lonely. These findings stress to consider different types of loneliness, and reciprocal and curvilinear relationships in future social media research. Copyright © 2018 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Calculation of trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plates

    NASA Astrophysics Data System (ADS)

    Pokhmurska, H.; Maksymovych, O.; Dzyubyk, A.; Dzyubyk, L.

    2018-06-01

    The methods of calculating the trajectories and the rate of growth of curvilinear fatigue cracks in isotropic and composite plate structure elements during cyclic loading along straight or curvilinear trajectories are developed. For isotropic and anisotropic materials, the methodes are developed on the basis of the force criterion of destruction with the additional application of the fatigue fracture diagrams. To find the change in the shape of the cracks in the loading process, the step-by-step method was used. At each stage, the direction of the growth of all vertices of cracks and the lengths of their arcs was found on the basis of determining the intensity coefficients of stresses by the method of singular integral equations. The results of calculations of the cracks system growth process are presented.

  19. Boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Panaras, Argyris G.

    1987-01-01

    A set of higher-order boundary-layer equations is derived valid for three-dimensional compressible flows. The equations are written in a generalized curvilinear coordinate system, in which the surface coordinates are nonorthogonal; the third axis is restricted to be normal to the surface. Also, higher-order viscous terms which are retained depend on the surface curvature of the body. Thus, the equations are suitable for the calculation of the boundary layer about arbitrary vehicles. As a starting point, the Navier-Stokes equations are derived in a tensorian notation. Then by means of an order-of-magnitude analysis, the boundary-layer equations are developed. To provide an interface between the analytical partial differentiation notation and the compact tensor notation, a brief review of the most essential theorems of the tensor analysis related to the equations of the fluid dynamics is given. Many useful quantities, such as the contravariant and the covariant metrics and the physical velocity components, are written in both notations.

  20. Role of artesian groundwater in forming Martian permafrost features

    NASA Technical Reports Server (NTRS)

    Howard, Alan D.

    1991-01-01

    Various landforms possibly related to formation (growth), movement, or decay of ground ice have been identified on Mars, including fretted terrain (ft) and associated lobate debris aprons (lda), the chaotic terrain, concentric crater fills (ccf), polygonal ground, softened terrain, small domes that are possibly pingos, and curvilinear (fingerprint) features (cuf). Glaciers may also have been present. Some of these may involve ice derived from artesian groundwater. Topical areas of discussion are: Mars groundwater and the location of permafrost features; the ft, lda, ccf, and cuf; role of artesian groundwater in formation of fretted terrain, lobate debris blankets, and concentric crater fills; sources of glacial ice; and pingos and other pseudovolcanic structures.

  1. The curvilinear effect of work engagement on employees' turnover intentions.

    PubMed

    Caesens, Gaëtane; Stinglhamber, Florence; Marmier, Virginie

    2016-04-01

    Numerous studies have shown the positive consequences of work engagement for both organisations and employees experiencing it. For instance, research has demonstrated that work-engaged employees have lower levels of turnover intentions than non-engaged employees. However, in this research, we examined whether there is a dark side of work engagement. More precisely, we investigated whether the relationship between work engagement and employees' turnover intentions might be non-linear. Based on two different samples, our results indicated that the relationship between work engagement and employees' turnover intentions is curvilinear. The theoretical and practical implications of these results are discussed. © 2014 International Union of Psychological Science.

  2. Building Model NASA Satellites: Elementary Students Studying Science Using a NASA-Themed Transmedia Book Featuring Digital Fabrication Activities

    ERIC Educational Resources Information Center

    Tillman, Daniel; An, Song; Boren, Rachel; Slykhuis, David

    2014-01-01

    This study assessed the impact of nine lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students (n = 29) recognized as advanced in mathematics based on their academic record. Data collected included a pretest and posttest of science content questions taken from released Virginia Standards…

  3. Comparison of characteristics of femtosecond laser-assisted anterior capsulotomy versus manual continuous curvilinear capsulorrhexis: A meta-analysis of 5-year results.

    PubMed

    Ali, Muhammad Hassaan; Ullah, Samee; Javaid, Usman; Javaid, Mamoona; Jamal, Samreen; Butt, Nadeem Hafeez

    2017-10-01

    To perform a meta-analysis on the precision and safety of femtosecond laser-assisted anterior capsulotomy versus conventional manual continuous curvilinear capsulorrhexis. This meta-analysis was conducted from February 2010 to November 2014. Literature search on PubMed, Google Scholar, ExcerptaMedica database and Cochrane Library was done to identify randomised controlled trials and case-control studies. SPSS 20 was used for data analysis. Of the 10 articles included, there were 3(30%) randomised controlled trials and 7(70%) non-randomised controlled trials. The meta-analysis was based on a total of 2,882eyes. Of them, 1,498(51.97%) underwent femtosecond laser-assisted capsulotomy and 1,384(48.02%) underwent manual continuous curvilinear capsulorrhexis. The diameter of the capsulotomy and the rates of anterior capsule tear showed no statistical difference between the femtosecond laser group and the manual capsulorrhexis group (p=0.29 and p=0.68). In terms of circularity of capsulotomy, femtosecond laser group had a more significant advantage than the manual capsulorrhexis group (p<0.001). Femtosecond laser performed capsulotomy with more precision and higher reliability than the manual continuous curvilinear capsulorrhexis.

  4. The Influence of Creative Process Engagement on Employee Creative Performance and Overall Job Performance: A Curvilinear Assessment

    ERIC Educational Resources Information Center

    Zhang, Xiaomeng; Bartol, Kathryn M.

    2010-01-01

    Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees…

  5. Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li, E-mail: lil@cust.edu.cn, E-mail: wangz@cust.edu.cn, E-mail: kq-peng@bnu.edu.cn; Zhang, Ziang; Yu, Miao

    2015-09-28

    Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arraysmore » with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ{sub 0} = 1064 nm. The minimal feature size is only several nanometers (sub λ{sub 0}/100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser.« less

  6. Identifying Essential Features of Juvenile Psychopathy in the Prediction of Later Antisocial Behavior: Is There an Additive, Synergistic, or Curvilinear Role for Fearless Dominance?

    PubMed Central

    Vize, Colin E.; Lynam, Donald R.; Lamkin, Joanna; Miller, Joshua D; Pardini, Dustin

    2015-01-01

    Despite years of research, and inclusion of psychopathy DSM-5, there remains debate over the fundamental components of psychopathy. Although there is agreement about traits related to Agreeableness and Conscientiousness, there is less agreement about traits related to Fearless Dominance (FD) or Boldness. The present paper uses proxies of FD and Self-centered Impulsivity (SCI) to examine the contribution of FD-related traits to the predictive utility of psychopathy in a large, longitudinal, sample of boys to test four possibilities: FD 1. assessed earlier is a risk factor, 2. interacts with other risk-related variables to predict later psychopathy, 3. interacts with SCI interact to predict outcomes, and 4. bears curvilinear relations to outcomes. SCI received excellent support as a measure of psychopathy in adolescence; however, FD was unrelated to criteria in all tests. It is suggested that FD be dropped from psychopathy and that future research focus on Agreeableness and Conscientiousness. PMID:27347448

  7. Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata

    PubMed Central

    Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  8. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    PubMed

    Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.

  9. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    NASA Astrophysics Data System (ADS)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  10. Symmetrical Curvilinear Cytotoxic Edema Along the Surface of the Brain Stem: A Probable New Magnetic Resonance Imaging Finding of Leptomeningeal Carcinomatosis.

    PubMed

    Khil, Eun Kyung; Lee, A Leum; Chang, Kee-Hyun; Yun, Tae Jin; Hong, Hyun Sook

    2015-07-01

    Lung cancer is one of the most common neoplasms to appear leptomeningeal metastasis (LM). Contrast-enhanced magnetic resonance imaging (MRI) is better diagnostic choice for LM and usually shows focal nodular or diffuse linear enhancement on the leptomeninges along the sulci and tentorium in the brain. We experienced atypical 2 cases of lung cancer in patients who showed unusual brain MRI finding of symmetrical curvilinear or band-like, nonenhancing cytotoxic edema along the surface of the brain stem. This finding is unique and different from the general findings of leptomeningeal metastasis. This unique imaging finding of symmetric curvilinear nonenhancing cytotoxic edema along the brainstem is extremely rare and represents a new presentation of leptomeningeal carcinomatosis.

  11. Solution of a Nonlinear Heat Conduction Equation for a Curvilinear Region with Dirichlet Conditions by the Fast-Expansion Method

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. D.

    2018-05-01

    The analytical solution of the nonlinear heat conduction problem for a curvilinear region is obtained with the use of the fast-expansion method together with the method of extension of boundaries and pointwise technique of computing Fourier coefficients.

  12. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezzacappa, Anthony; Endeve, Eirik; Hauck, Cory D.

    We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and themore » use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.« less

  13. Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method

    NASA Astrophysics Data System (ADS)

    Guenanou, A.; Houmat, A.

    2018-05-01

    The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.

  14. The Curvilinear Relationship Between Attitude Certainty and Attitudinal Advocacy.

    PubMed

    Cheatham, Lauren B; Tormala, Zakary L

    2017-01-01

    Do people advocate more on behalf of their own attitudes and opinions when they feel certain or uncertain? Although considerable past research suggests that people are more likely to advocate when they feel highly certain, there also is evidence for the opposite effect-that people sometimes advocate more when they experience a loss of certainty. The current research seeks to merge these insights. Specifically, we explore the possibility that the relationship between attitude certainty and attitudinal advocacy is curvilinear. Consistent with this hypothesis, we find evidence for a J-shaped curve: Advocacy intentions (and behavior) peak under high certainty, bottom out under moderate certainty, and show an uptick under low (relative to moderate) certainty. We document this relationship and investigate its potential mechanisms in three studies by examining advocacy intentions and the actual advocacy messages participants write when they feel high, moderate, or low certainty.

  15. Recognition ROCS Are Curvilinear--Or Are They? On Premature Arguments against the Two-High-Threshold Model of Recognition

    ERIC Educational Resources Information Center

    Broder, Arndt; Schutz, Julia

    2009-01-01

    Recent reviews of recognition receiver operating characteristics (ROCs) claim that their curvilinear shape rules out threshold models of recognition. However, the shape of ROCs based on confidence ratings is not diagnostic to refute threshold models, whereas ROCs based on experimental bias manipulations are. Also, fitting predicted frequencies to…

  16. Maternal Encouragement to Approach Novelty: A Curvilinear Relation to Change in Anxiety for Inhibited Toddlers.

    PubMed

    Kiel, Elizabeth J; Premo, Julie E; Buss, Kristin A

    2016-04-01

    Various parenting behaviors (e.g., protection, intrusiveness, sensitivity) have been shown to impact young children's anxiety development, particularly for temperamentally inhibited children. These behaviors have sometimes predicted both increases and decreases in anxiety in inhibited children, suggesting that linear relations may not adequately model their influence. In the current study, we proposed the dimension of encouragement to approach novelty to characterize parenting behavior ranging from very little encouragement (i.e., protective behavior) to very strong encouragement (i.e., intrusiveness), with gentle encouragement residing in the middle. In a sample of 110 toddlers (48 female, 62 male) and their mothers, the linear and curvilinear effects of this parenting dimension were investigated in relation to change in child separation anxiety and shyness from age 2 to age 3. Inhibited temperament was also investigated as a moderator. Encouragement to approach novelty displayed the hypothesized curvilinear relation to change in separation anxiety, but not shyness, at extreme levels of inhibited temperament. Toddlers increased in separation anxiety when mothers' encouragement resided at either extreme end of the continuum, with lower child anxiety occurring when mothers displayed behavior closer to the middle of the continuum. Implications for the study of parenting outcomes for inhibited toddlers are discussed.

  17. Maternal Encouragement to Approach Novelty: A Curvilinear Relation to Change in Anxiety for Inhibited Toddlers

    PubMed Central

    Kiel, Elizabeth J.; Premo, Julie E.; Buss, Kristin A.

    2015-01-01

    Various parenting behaviors (e.g., protection, intrusiveness, sensitivity) have been shown to impact young children’s anxiety development, particularly for temperamentally inhibited children. These behaviors have sometimes predicted both increases and decreases in anxiety in inhibited children, suggesting that linear relations may not adequately model their influence. In the current study, we proposed the dimension of encouragement to approach novelty to characterize parenting behavior ranging from very little encouragement (i.e., protective behavior) to very strong encouragement (i.e., intrusiveness), with gentle encouragement residing in the middle. In a sample of 110 toddlers (48 female, 62 male) and their mothers, the linear and curvilinear effects of this parenting dimension were investigated in relation to change in child separation anxiety and shyness from age 2 to age 3. Inhibited temperament was also investigated as a moderator. Encouragement to approach novelty displayed the hypothesized curvilinear relation to change in separation anxiety, but not shyness, at extreme levels of inhibited temperament. Toddlers increased in separation anxiety when mothers’ encouragement resided at either extreme end of the continuum, with lower child anxiety occurring when mothers displayed behavior closer to the middle of the continuum. Implications for the study of parenting outcomes for inhibited toddlers are discussed. PMID:26050798

  18. Can super smart leaders suffer from too much of a good thing? The curvilinear effect of intelligence on perceived leadership behavior.

    PubMed

    Antonakis, John; House, Robert J; Simonton, Dean Keith

    2017-07-01

    Although researchers predominately test for linear relationships between variables, at times there may be theoretical and even empirical reasons for expecting nonlinear functions. We examined if the relation between intelligence (IQ) and perceived leadership might be more accurately described by a curvilinear single-peaked function. Following Simonton's (1985) theory, we tested a specific model, indicating that the optimal IQ for perceived leadership will appear at about 1.2 standard deviations above the mean IQ of the group membership. The sample consisted of midlevel leaders from multinational private-sector companies. We used the leaders' scores on the Wonderlic Personnel Test (WPT)-a measure of IQ-to predict how they would be perceived on prototypically effective leadership (i.e., transformational and instrumental leadership). Accounting for the effects of leader personality, gender, age, as well as company, country, and time fixed effects, analyses indicated that perceptions of leadership followed a curvilinear inverted-U function of intelligence. The peak of this function was at an IQ score of about 120, which did not depart significantly from the value predicted by the theory. As the first direct empirical test of a precise curvilinear model of the intelligence-leadership relation, the results have important implications for future research on how leaders are perceived in the workplace. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features

    PubMed Central

    Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang

    2018-01-01

    Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408

  20. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features.

    PubMed

    Liu, Yan; Wang, Hai; Zhao, Wei; Zhang, Min; Qin, Hongbo; Xie, Yongqiang

    2018-02-22

    Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.

  1. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding

    PubMed Central

    Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy

    2013-01-01

    Motivation: Most functions within the cell emerge thanks to protein–protein interactions (PPIs), yet experimental determination of PPIs is both expensive and time-consuming. PPI networks present significant levels of noise and incompleteness. Predicting interactions using only PPI-network topology (topological prediction) is difficult but essential when prior biological knowledge is absent or unreliable. Methods: Network embedding emphasizes the relations between network proteins embedded in a low-dimensional space, in which protein pairs that are closer to each other represent good candidate interactions. To achieve network denoising, which boosts prediction performance, we first applied minimum curvilinear embedding (MCE), and then adopted shortest path (SP) in the reduced space to assign likelihood scores to candidate interactions. Furthermore, we introduce (i) a new valid variation of MCE, named non-centred MCE (ncMCE); (ii) two automatic strategies for selecting the appropriate embedding dimension; and (iii) two new randomized procedures for evaluating predictions. Results: We compared our method against several unsupervised and supervisedly tuned embedding approaches and node neighbourhood techniques. Despite its computational simplicity, ncMCE-SP was the overall leader, outperforming the current methods in topological link prediction. Conclusion: Minimum curvilinearity is a valuable non-linear framework that we successfully applied to the embedding of protein networks for the unsupervised prediction of novel PPIs. The rationale for our approach is that biological and evolutionary information is imprinted in the non-linear patterns hidden behind the protein network topology, and can be exploited for predicting new protein links. The predicted PPIs represent good candidates for testing in high-throughput experiments or for exploitation in systems biology tools such as those used for network-based inference and prediction of disease-related functional modules

  2. Influence of Total Inertia Effects in a Thrust Curvilinear Bearing Lubricated with Newtonian Lubricants

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Jurczak, P.

    2017-12-01

    In the paper, the flow of a Newtonian type of lubricant in the clearance of a curvilinear bearing is considered. It is assumed that the bearing walls are modelled as smooth and impermeable. In analytical considerations, full inertia of the longitudinal flow and partial inertia of the circumferential flow are taken into account. The equation of motion of the lubricant is solved by the modified method of averaged inertia. A thrust bearing and spherical bearing are considered, for which dimensionless pressure distributions and the bearing capacity are given.

  3. Inverted U-Shaped Curvilinear Relationship between Challenge and One's Intrinsic Motivation: Evidence from Event-Related Potentials.

    PubMed

    Ma, Qingguo; Pei, Guanxiong; Meng, Liang

    2017-01-01

    The balance between task demand and one's competence is critical for the maintenance of intrinsic motivation. According to Flow theory and Self-determination theory, optimal challenge gives rise to the maximum intrinsic motivation, and an inverted U-shaped curvilinear relationship between perceived challenge and one's intrinsic motivation is suggested. In order to provide direct experimental evidences for predictions of these theories, in this study, we employed the two-player StopWatch game that we previously designed, which made references to the game format of a badminton tournament. According to our manipulation, a male participant was defeated by the same-sex player paired with him (played by a well-trained confederate of the experimenter) in two matches, one with a wide margin (the complete defeat condition) and another with a narrow one (the near miss condition). Participants performed better and reported to enjoy the near miss match to a greater extent. Besides, an enlarged Stimulus-preceding negativity was elicited when participants were actively anticipating outcomes in the near miss condition, suggesting greater anticipatory attention toward the outcome and an enhanced intrinsic motivation to win. Thus, converging electrophysiological evidences from this study and our former study confirmed the inverted U-shaped curvilinear relationship between perceived challenge and one's intrinsic motivation.

  4. Curvilinear Squeeze Film Bearing with Porous Wall Lubricated by a Rabinowitsch Fluid

    NASA Astrophysics Data System (ADS)

    Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.

    2017-05-01

    The present theoretical analysis is to investigate the effect of non-Newtonian lubricant modelled by a Rabinowitsch fluid on the performance of a curvilinear squeeze film bearing with one porous wall. The equations of motion of a Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation the modified Reynolds equation is obtained. The analytical solution of this equation for the case of a squeeze film bearing is presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing and spherical bearing with a squeeze film are considered as numerical examples.

  5. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  6. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  7. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  8. Iterative refinement of implicit boundary models for improved geological feature reproduction

    NASA Astrophysics Data System (ADS)

    Martin, Ryan; Boisvert, Jeff B.

    2017-12-01

    Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.

  9. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.

    PubMed

    Demartines, P; Herault, J

    1997-01-01

    We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.

  10. Psychological detachment from work during non-work time: linear or curvilinear relations with mental health and work engagement?

    PubMed

    Shimazu, Akihito; Matsudaira, Ko; Jonge, Jan DE; Tosaka, Naoya; Watanabe, Kazuhiro; Takahashi, Masaya

    2016-06-10

    This study examined whether a higher level of psychological detachment during non-work time is associated with better employee mental health (Hypothesis 1), and examined whether psychological detachment has a curvilinear relation (inverted U-shaped pattern) with work engagement (Hypothesis 2). A large cross-sectional Internet survey was conducted among registered monitors of an Internet survey company in Japan. The questionnaire included scales for psychological detachment, employee mental health, and work engagement as well as for job characteristics and demographic variables as potential confounders. The hypothesized model was tested with moderated structural equation modeling techniques among 2,234 respondents working in the tertiary industries with regular employment. Results showed that psychological detachment had curvilinear relations with mental health as well as with work engagement. Mental health improved when psychological detachment increased from a low to higher levels but did not benefit any further from extremely high levels of psychological detachment. Work engagement showed the highest level at an intermediate level of detachment (inverted U-shaped pattern). Although high psychological detachment may enhance employee mental health, moderate levels of psychological detachment are most beneficial for his or her work engagement.

  11. Psychological detachment from work during non-work time: linear or curvilinear relations with mental health and work engagement?

    PubMed Central

    SHIMAZU, Akihito; MATSUDAIRA, Ko; DE JONGE, Jan; TOSAKA, Naoya; WATANABE, Kazuhiro; TAKAHASHI, Masaya

    2016-01-01

    This study examined whether a higher level of psychological detachment during non-work time is associated with better employee mental health (Hypothesis 1), and examined whether psychological detachment has a curvilinear relation (inverted U-shaped pattern) with work engagement (Hypothesis 2). A large cross-sectional Internet survey was conducted among registered monitors of an Internet survey company in Japan. The questionnaire included scales for psychological detachment, employee mental health, and work engagement as well as for job characteristics and demographic variables as potential confounders. The hypothesized model was tested with moderated structural equation modeling techniques among 2,234 respondents working in the tertiary industries with regular employment. Results showed that psychological detachment had curvilinear relations with mental health as well as with work engagement. Mental health improved when psychological detachment increased from a low to higher levels but did not benefit any further from extremely high levels of psychological detachment. Work engagement showed the highest level at an intermediate level of detachment (inverted U-shaped pattern). Although high psychological detachment may enhance employee mental health, moderate levels of psychological detachment are most beneficial for his or her work engagement. PMID:26829972

  12. Is the Relationship Between Pornography Consumption Frequency and Lower Sexual Satisfaction Curvilinear? Results From England and Germany.

    PubMed

    Wright, Paul J; Steffen, Nicola J; Sun, Chyng

    2017-07-28

    Several studies using different methods have found that pornography consumption is associated with lower sexual satisfaction. The language used by media-effects scholars in discussions of this association implies an expectation that lowered satisfaction is primarily due to frequent-but not infrequent-consumption. Actual analyses, however, have assumed linearity. Linear analyses presuppose that for each increase in the frequency of pornography consumption there is a correspondingly equivalent decrease in sexual satisfaction. The present brief report explored the possibility that the association is curvilinear. Survey data from two studies of heterosexual adults, one conducted in England and the other in Germany, were employed. Results were parallel in each country and were not moderated by gender. Quadratic analysis indicated a curvilinear relationship, in the form of a predominantly negative, concave downward curve. Simple slope analyses suggested that when the frequency of consumption reaches once a month, sexual satisfaction begins to decrease, and that the magnitude of the decrease becomes larger with each increase in the frequency of consumption. The observational nature of the data employed precludes any causal inferences. However, if an effects perspective was adopted, these results would suggest that low rates of pornography consumption have no impact on sexual satisfaction and that adverse effects initiate only after consumption reaches a certain frequency.

  13. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  14. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  15. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  16. SURGICAL REMOVAL OF DENSE POSTERIOR CAPSULE OPACIFICATION AND VITREOUS FLOATERS IN ADULTS BY POSTERIOR CONTINUOUS CURVILINEAR CAPSULORHEXIS THROUGH THE PARS PLANA AND 23-GAUGE VITRECTOMY.

    PubMed

    Lin, Jijian; Su, Zhitao; Huang, Xiaodan; Ji, Xian; Yao, Ke

    2016-11-01

    To evaluate the safety and efficacy of posterior continuous curvilinear capsulorhexis through the pars plana and 23-gauge vitrectomy in surgical management of dense posterior capsule opacification and vitreous floaters. Fifteen pseudophakic eyes of 15 patients with dense posterior capsule opacification and vitreous floaters between September 2012 and June 2014 were included; after vitrectomy, posterior continuous curvilinear capsulorhexis through the pars plana was performed. Data were collected, including baseline preoperative characteristics, postoperative outcomes, complications, and a modified quality-of-life survey that patients completed. No intraoperative or postoperative complications were encountered in any of the 15 cases. Mean Snellen best-corrected visual acuity was 20/250 preoperatively and improved to 20/32 postoperatively (P < 0.001). All patients showed normal intraocular pressure 7 days after the procedure. The mean overall corneal endothelial cell loss at postoperative Month 3 was 1.2%. Approximately 80% of the patients had no complaint of vitreous floaters after the procedure. Except for 1 patient (7%) diagnosed with age-related macular degeneration, the rest of the patients (93%) were satisfied with the procedure and would recommend it to friends with dense posterior capsule opacification and vitreous floaters. Posterior continuous curvilinear capsulorhexis through the pars plana combined with 23-gauge vitrectomy may be used to remove dense posterior capsule opacification and vitreous floaters in pseudophakic eyes.

  17. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    NASA Astrophysics Data System (ADS)

    Ibragimov, Alexander; Danilov, Alexander

    2018-03-01

    The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  18. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction.

    PubMed

    Grandfield, Kathryn; Palmquist, Anders; Gonçalves, Stéphane; Taylor, Andy; Taylor, Mark; Emanuelsson, Lena; Thomsen, Peter; Engqvist, Håkan

    2011-04-01

    The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions.

  19. What breaks a leader: the curvilinear relation between assertiveness and leadership.

    PubMed

    Ames, Daniel R; Flynn, Francis J

    2007-02-01

    The authors propose that individual differences in assertiveness play a critical role in perceptions about leaders. In contrast to prior work that focused on linear effects, the authors argue that individuals seen either as markedly low in assertiveness or as high in assertiveness are generally appraised as less effective leaders. Moreover, the authors claim that observers' perceptions of leaders as having too much or too little assertiveness are widespread. The authors linked the curvilinear effects of assertiveness to underlying tradeoffs between social outcomes (a high level of assertiveness worsens relationships) and instrumental outcomes (a low level of assertiveness limits goal achievement). In 3 studies, the authors used qualitative and quantitative approaches and found support for their account. The results suggest that assertiveness (and other constructs with nonlinear effects) might have been overlooked in research that has been focused on identifying what makes a leader rather than on identifying what breaks a leader. ((c) 2007 APA, all rights reserved).

  20. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  1. Attachment priming and avoidant personality features as predictors of social-evaluation biases.

    PubMed

    Bowles, David P; Meyer, Björn

    2008-02-01

    Personality research has shown that negativity in social situations (e.g., negative evaluations of others) can be reduced by the activation of participants' sense of attachment security. Individuals with avoidant personality disorder (APD), however, are theoretically less responsive to context or situational cues because of the inflexible nature of their personality disposition. This idea of individual differences in context-responsiveness was tested in a sample of 169 undergraduates who were assessed for APD features and assigned to positive, negative, or neutral attachment priming conditions. More pronounced APD features were associated with more negative responses to vignettes describing potentially distressing social situations. A significant interaction showed that participants with more avoidant features consistently appraised the vignettes relatively more negatively, regardless of priming condition. Those without APD features, by contrast, did not exhibit negative appraisals/evaluations unless negatively primed (curvilinear effect). This effect could not be explained by depression, current mood, or attachment insecurity, all of which related to negative evaluative biases, but none of which related to situation inflexibility. These findings provide empirical support for the notion that negative information-processing is unusually inflexible and context-unresponsive among individuals with more pronounced features of APD.

  2. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  3. Orthogonal Invariant Sets of the Diffusion Tensor and the Development of a Curvilinear Set Suitable for Low-Anisotropy Tissues

    PubMed Central

    Damion, Robin A.; Radjenovic, Aleksandra; Ingham, Eileen; Jin, Zhongmin; Ries, Michael E.

    2013-01-01

    We develop a curvilinear invariant set of the diffusion tensor which may be applied to Diffusion Tensor Imaging measurements on tissues and porous media. This new set is an alternative to the more common invariants such as fractional anisotropy and the diffusion mode. The alternative invariant set possesses a different structure to the other known invariant sets; the second and third members of the curvilinear set measure the degree of orthotropy and oblateness/prolateness, respectively. The proposed advantage of these invariants is that they may work well in situations of low diffusion anisotropy and isotropy, as is often observed in tissues such as cartilage. We also explore the other orthogonal invariant sets in terms of their geometry in relation to eigenvalue space; a cylindrical set, a spherical set (including fractional anisotropy and the mode), and a log-Euclidean set. These three sets have a common structure. The first invariant measures the magnitude of the diffusion, the second and third invariants capture aspects of the anisotropy; the magnitude of the anisotropy and the shape of the diffusion ellipsoid (the manner in which the anisotropy is realised). We also show a simple method to prove the orthogonality of the invariants within a set. PMID:24244366

  4. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  5. Fovea sparing internal limiting membrane peeling using multiple parafoveal curvilinear peels for myopic foveoschisis: technique and outcome.

    PubMed

    Jin, Haiying; Zhang, Qi; Zhao, Peiquan

    2016-10-18

    To introduce a modified surgical technique, the "parafoveal multiple curvelinear internal limiting membrane (ILM) peeling", to preserve epi-foveal ILM in myopic foveoschisis surgery. Consecutive patients with myopic foveoschisis were enrolled in the present prospective interventional case series. The surgeries were performed using transconjunctival 23-gauge system. The macular area was divided into quadrants. ILM was peeled off in a curvilinear manner centered around the site that was away from the central fovea in each quadrant. Shearing forces were used to control the direction to keep the peeling away from central fovea. ILM at central fovea of about 500 to 1000 μm was preserved by this technique. This technique was performed in 20 eyes of 20 consecutive patients. Epi-foveal ILM was successfully preserved in all cases using the technique. Patients were followed up for more than 12 months. The mean postoperative logMAR visual acuity improved from 1.67 ± 0.65 preoperatively to 1.15 ± 0.49 (P = 0.015; paired t-test). Postoperative OCT examinations showed that full-thickness macular holes (MHs) did not developed in any case. Central fovea thickness decreased from 910 ± 261 μm preoperatively to 125 ± 85 postoperatively (P = 0.001; paired t-test). Fovea sparing ILM peeling using multiple parafoveal curvilinear peels prevents the development of postoperative full-thickness MHs in eyes with myopic foveoschisis.

  6. Potassium-argon (argon-argon), structural fabrics

    USGS Publications Warehouse

    Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  7. The influence of time management skill on the curvilinear relationship between organizational citizenship behavior and task performance.

    PubMed

    Rapp, Adam A; Bachrach, Daniel G; Rapp, Tammy L

    2013-07-01

    In this research we integrate resource allocation and social exchange perspectives to build and test theory focusing on the moderating role of time management skill in the nonmonotonic relationship between organizational citizenship behavior (OCB) and task performance. Results from matching survey data collected from 212 employees and 41 supervisors and from task performance metrics collected several months later indicate that the curvilinear association between OCB and task performance is significantly moderated by employees' time management skill. Implications for theory and practice are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  8. Fabrication of submicron proteinaceous structures by direct laser writing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serien, Daniela; Takeuchi, Shoji, E-mail: takeuchi@iis.u-tokyo.ac.jp; ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo

    In this paper, we provide a characterization of truly free-standing proteinaceous structures with submicron feature sizes depending on the fabrication conditions by model-based analysis. Protein cross-linking of bovine serum albumin is performed by direct laser writing and two-photon excitation of flavin adenine dinucleotide. We analyze the obtainable fabrication resolution and required threshold energy for polymerization. The applied polymerization model allows prediction of fabrication conditions and resulting fabrication size, alleviating the application of proteinaceous structure fabrication.

  9. Feedback-controlled laser fabrication of micromirror substrates.

    PubMed

    Petrak, Benjamin; Konthasinghe, Kumarasiri; Perez, Sonia; Muller, Andreas

    2011-12-01

    Short (40-200 μs) single focused CO(2) laser pulses of energy ≳100 μJ were used to fabricate high quality concave micromirror templates on silica and fluoride glass. The ablated features have diameters of ≈20-100 μm and average root-mean-square (RMS) surface microroughness near their center of less than 0.2 nm. Temporally monitoring the fabrication process revealed that it proceeds on a time scale shorter than the laser pulse duration. We implement a fast feedback control loop (≈20 kHz bandwidth) based on the light emitted by the sample that ensures an RMS size dispersion of less than 5% in arrays on chips or in individually fabricated features on an optical fiber tip, a significant improvement over previous approaches using longer pulses and open loop operation.

  10. The Curvilinear Relationship between State Neuroticism and Momentary Task Performance

    PubMed Central

    Debusscher, Jonas; Hofmans, Joeri; De Fruyt, Filip

    2014-01-01

    A daily diary and two experience sampling studies were carried out to investigate curvilinearity of the within-person relationship between state neuroticism and task performance, as well as the moderating effects of within-person variation in momentary job demands (i.e., work pressure and task complexity). In one, results showed that under high work pressure, the state neuroticism–task performance relationship was best described by an exponentially decreasing curve, whereas an inverted U-shaped curve was found for tasks low in work pressure, while in another study, a similar trend was visible for task complexity. In the final study, the state neuroticism–momentary task performance relationship was a linear one, and this relationship was moderated by momentary task complexity. Together, results from all three studies showed that it is important to take into account the moderating effects of momentary job demands because within-person variation in job demands affects the way in which state neuroticism relates to momentary levels of task performance. Specifically, we found that experiencing low levels of state neuroticism may be most beneficial in high demanding tasks, whereas more moderate levels of state neuroticism are optimal under low momentary job demands. PMID:25238547

  11. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  12. Geomorphic domains and linear features on Landsat images, Circle Quadrangle, Alaska

    USGS Publications Warehouse

    Simpson, S.L.

    1984-01-01

    A remote sensing study using Landsat images was undertaken as part of the Alaska Mineral Resource Assessment Program (AMRAP). Geomorphic domains A and B, identified on enhanced Landsat images, divide Circle quadrangle south of Tintina fault zone into two regional areas having major differences in surface characteristics. Domain A is a roughly rectangular, northeast-trending area of relatively low relief and simple, widely spaced drainages, except where igneous rocks are exposed. In contrast, domain B, which bounds two sides of domain A, is more intricately dissected showing abrupt changes in slope and relatively high relief. The northwestern part of geomorphic domain A includes a previously mapped tectonostratigraphic terrane. The southeastern boundary of domain A occurs entirely within the adjoining tectonostratigraphic terrane. The sharp geomorphic contrast along the southeastern boundary of domain A and the existence of known faults along this boundary suggest that the southeastern part of domain A may be a subdivision of the adjoining terrane. Detailed field studies would be necessary to determine the characteristics of the subdivision. Domain B appears to be divisible into large areas of different geomorphic terrains by east-northeast-trending curvilinear lines drawn on Landsat images. Segments of two of these lines correlate with parts of boundaries of mapped tectonostratigraphic terranes. On Landsat images prominent north-trending lineaments together with the curvilinear lines form a large-scale regional pattern that is transected by mapped north-northeast-trending high-angle faults. The lineaments indicate possible lithlogic variations and/or structural boundaries. A statistical strike-frequency analysis of the linear features data for Circle quadrangle shows that northeast-trending linear features predominate throughout, and that most northwest-trending linear features are found south of Tintina fault zone. A major trend interval of N.64-72E. in the linear

  13. Ab Initio Effective Rovibrational Hamiltonians for Non-Rigid Molecules via Curvilinear VMP2

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Baraban, Joshua H.

    2017-06-01

    Accurate predictions of spectroscopic constants for non-rigid molecules are particularly challenging for ab initio theory. For all but the smallest systems, ``brute force'' diagonalization of the full rovibrational Hamiltonian is computationally prohibitive, leaving us at the mercy of perturbative approaches. However, standard perturbative techniques, such as second order vibrational perturbation theory (VPT2), are based on the approximation that a molecule makes small amplitude vibrations about a well defined equilibrium structure. Such assumptions are physically inappropriate for non-rigid systems. In this talk, we will describe extensions to curvilinear vibrational Møller-Plesset perturbation theory (VMP2) that account for rotational and rovibrational effects in the molecular Hamiltonian. Through several examples, we will show that this approach provides predictions to nearly microwave accuracy of molecular constants including rotational and centrifugal distortion parameters, Coriolis coupling constants, and anharmonic vibrational and tunneling frequencies.

  14. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  15. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    NASA Astrophysics Data System (ADS)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-04-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  16. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    NASA Astrophysics Data System (ADS)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-03-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  17. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  18. Building Interfaces: Mechanisms, fabrication, and applications at the biotic/abiotic interface for silk fibroin based bioelectronic and biooptical devices

    NASA Astrophysics Data System (ADS)

    Brenckle, Mark

    Recent efforts in bioelectronics and biooptics have led to a shift in the materials and form factors used to make medical devices, including high performance, implantable, and wearable sensors. In this context, biopolymer-based devices must be processed to interface the soft, curvilinear biological world with the rigid, inorganic world of traditional electronics and optics. This poses new material-specific fabrication challenges in designing such devices, which in turn requires further understanding of the fundamental physical behaviors of the materials in question. As a biopolymer, silk fibroin protein has remarkable promise in this space, due to its bioresorbability, mechanical strength, optical clarity, ability to be reshaped on the micro- and nano-scale, and ability to stabilize labile compounds. Application of this material to devices at the biotic/abiotic interface will require the development of fabrication techniques for nano-patterning, lithography, multilayer adhesion, and transfer printing in silk materials. In this work, we address this need through fundamental study of the thermal and diffusional properties of silk protein as it relates to these fabrication strategies. We then leverage these properties to fabricate devices well suited to the biotic/abiotic interface in three areas: shelf-ready sensing, implantable transient electronics, and wearable biosensing. These example devices will illustrate the advantages of silk in this class of bioelectronic and biooptical devices, from fundamentals through application, and contribute to a silk platform for the development of future devices that combine biology with high technology.

  19. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  20. Atomically Traceable Nanostructure Fabrication

    PubMed Central

    Ballard, Josh B.; Dick, Don D.; McDonnell, Stephen J.; Bischof, Maia; Fu, Joseph; Owen, James H. G.; Owen, William R.; Alexander, Justin D.; Jaeger, David L.; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J.; Wallace, Robert M.; Reidy, Richard; Silver, Richard M.; Randall, John N.; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  1. Development of intuitive theories of motion - Curvilinear motion in the absence of external forces

    NASA Technical Reports Server (NTRS)

    Kaiser, M. K.; Mccloskey, M.; Proffitt, D. R.

    1986-01-01

    College students and children between the ages of 4 and 12 were asked to draw the path a ball would take upon exiting a curved tube. As in previous studies, many subjects erroneously predicted curvilinear paths. However, a clear U-shaped curve was evident in the data: Preschoolers and kindergartners performed as well as college students, whereas school-aged children were more likely to make erroneous predictions. A second study suggested that the youngest children's correct responses could not be attributed to response biases or drawing abilities. This developmental trend is interpreted to mean that the school-aged children are developing intuitive theories of motion that include erroneous principles. The results are related to the 'growth errors' found in other cognitive domains and to the historical development of formal theories of motion.

  2. Transfer printing techniques for materials assembly and micro/nanodevice fabrication.

    PubMed

    Carlson, Andrew; Bowen, Audrey M; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A

    2012-10-09

    Transfer printing represents a set of techniques for deterministic assembly of micro-and nanomaterials into spatially organized, functional arrangements with two and three-dimensional layouts. Such processes provide versatile routes not only to test structures and vehicles for scientific studies but also to high-performance, heterogeneously integrated functional systems, including those in flexible electronics, three-dimensional and/or curvilinear optoelectronics, and bio-integrated sensing and therapeutic devices. This article summarizes recent advances in a variety of transfer printing techniques, ranging from the mechanics and materials aspects that govern their operation to engineering features of their use in systems with varying levels of complexity. A concluding section presents perspectives on opportunities for basic and applied research, and on emerging use of these methods in high throughput, industrial-scale manufacturing. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  4. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    PubMed

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  5. Diagenetic Features in Yellowknife Bay, Gale Crater, Mars: Implications for Substrate Rheology and Potential Gas Release

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Stack, K; Siebach, K.; Grotzinger, J.; Summer, D.; Farien, A.; Oehler, D.; Schieber, J.; Leville, R.; Edgar, L; hide

    2014-01-01

    Multiple diagenetic features have been observed in clay­-bearing mudstone exposed within Yellowknife Bay, Gale Crater, Mars. These features occurred during at least two separate episodes: an early generation of spheroidal concretions that co-­occur with a dense networks of mineralized fractures, and a later generation of mineralized veins. Concretions consist of mm-sized spheroids (0.4 to 8.0 mm, mean diameter of 1.2 mm) that are distinctly more resistant than the encompassing mudstone. Dissected spheroids suggest an origin via compaction and incipient lithification of the substrate at the perimeter of syndepositional void space. Concretions are generally patchy in their distribution within clay--bearing mudstone, but in places can be the dominant fabric element. Locally dense networks of mineralized fractures occur in regions of low concretion abundance. These consist of short (< 50 cm), curvilinear to planar mineralized voids that occur across a range of orientations from vertical to subhorizontal. Fractures are filled by multi-phase cement consisting of two isopachous, erosionally resistant outer bands, and a central less resistant fill. Physical relationships suggests that original fractures may have formed as both interconnected voids and as discrete cross--cutting features. Co--occurrence of early diagenetic concretions and fracture networks suggests a common origin via gas release within a subaqueous, shallow substrate. We suggest that gas release within weakly cohesive subsurface sediments resulted in substrate dewatering and an increase in the cohesive strength of the substrate. Local differences in substrate strength and rate of gas production would have result in formation of either discrete voids or fracture networks. A second generation of mineralized veins is characterized by a regionally low spatial density, predominantly vertical or horizontal orientations, and a single phase of Ca--sulfate mineral fill. These veins cross-cut the early diagenetic

  6. Yarn-dyed fabric defect classification based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Dong, Amei; Li, Pengfei

    2017-07-01

    Considering that the manual inspection of the yarn-dyed fabric can be time consuming and less efficient, a convolutional neural network (CNN) solution based on the modified AlexNet structure for the classification of the yarn-dyed fabric defect is proposed. CNN has powerful ability of feature extraction and feature fusion which can simulate the learning mechanism of the human brain. In order to enhance computational efficiency and detection accuracy, the local response normalization (LRN) layers in AlexNet are replaced by the batch normalization (BN) layers. In the process of the network training, through several convolution operations, the characteristics of the image are extracted step by step, and the essential features of the image can be obtained from the edge features. And the max pooling layers, the dropout layers, the fully connected layers are also employed in the classification model to reduce the computation cost and acquire more precise features of fabric defect. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show the capability of defect classification via the modified Alexnet model and indicate its robustness.

  7. The influence of creative process engagement on employee creative performance and overall job performance: a curvilinear assessment.

    PubMed

    Zhang, Xiaomeng; Bartol, Kathryn M

    2010-09-01

    Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees generally exhibiting higher levels of overall job performance at low to moderate levels of creative process engagement and high-experience employees demonstrating higher overall performance at moderate to high levels of creative process engagement. Creative performance partially mediated the relationship between creative process engagement and job performance. These relationships were tested within a moderated mediation framework. Copyright 2010 APA, all rights reserved

  8. Tipping points? Curvilinear associations between activity level and mental development in toddlers.

    PubMed

    Flom, Megan; Cohen, Madeleine; Saudino, Kimberly J

    2017-05-01

    The Theory of Optimal Stimulation (Zentall & Zentall, Psychological Bulletin, 94, 1983, 446) posits that the relation between activity level (AL) and cognitive performance follows an inverted U shape where midrange AL predicts better cognitive performance than AL at the extremes. We explored this by fitting linear and quadratic models predicting mental development from AL assessed via multiple methods (parent ratings, observations, and actigraphs) and across multiple situations (laboratory play, laboratory test, home) in over 600 twins (2- and 3-year olds). Only observed AL in the laboratory was curvilinearly related to mental development scores. Results replicated across situations, age, and twin samples, providing strong support for the optimal stimulation model for this measure of AL in early childhood. Different measures of AL provide different information. Observations of AL which include both qualitative and quantitative aspects of AL within structured situations are able to capture beneficial aspects of normative AL as well as detriments of both low and high AL. © 2016 Association for Child and Adolescent Mental Health.

  9. Targeted Victimization: Exploring Linear and Curvilinear Associations Between Social Network Prestige and Victimization.

    PubMed

    Andrews, Naomi C Z; Hanish, Laura D; Updegraff, Kimberly A; Martin, Carol Lynn; Santos, Carlos E

    2016-09-01

    Are early adolescent victims of peer-directed aggression youth who hold prominent positions in the social hierarchy or those who are socially marginalized? The present study tackles this question by testing for linear and curvilinear relationships between social network prestige and physical and relational forms of peer victimization for boys and girls. Participants were 952 middle schoolers (age range = 10-14 years; 49.9 % girls; 44 % Latino). Participants nominated victims and friends; friendship nominations were used to calculate social network prestige. Both hypotheses received support, with variation by gender. Girls high in social network prestige were highly victimized. For boys, those both high and low in social network prestige were highly victimized, whereas those at mid-levels of social network prestige were low in victimization. The findings are discussed in relation to a social dominance model of peer-directed aggression, and the practical implications are discussed in relation to protecting youth who are frequent targets of peer victimization.

  10. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  11. Yarn-dyed fabric defect classification based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Jing, Junfeng; Dong, Amei; Li, Pengfei; Zhang, Kaibing

    2017-09-01

    Considering that manual inspection of the yarn-dyed fabric can be time consuming and inefficient, we propose a yarn-dyed fabric defect classification method by using a convolutional neural network (CNN) based on a modified AlexNet. CNN shows powerful ability in performing feature extraction and fusion by simulating the learning mechanism of human brain. The local response normalization layers in AlexNet are replaced by the batch normalization layers, which can enhance both the computational efficiency and classification accuracy. In the training process of the network, the characteristics of the defect are extracted step by step and the essential features of the image can be obtained from the fusion of the edge details with several convolution operations. Then the max-pooling layers, the dropout layers, and the fully connected layers are employed in the classification model to reduce the computation cost and extract more precise features of the defective fabric. Finally, the results of the defect classification are predicted by the softmax function. The experimental results show promising performance with an acceptable average classification rate and strong robustness on yarn-dyed fabric defect classification.

  12. Curvilinear bodies are associated with adverse effects on muscle function but not with hydroxychloroquine dosing.

    PubMed

    Khoo, Thomas; Otto, Sophia; Smith, Caroline; Koszyca, Barbara; Lester, Sue; Blumbergs, Peter; Limaye, Vidya

    2017-03-01

    The clinical significance of curvilinear bodies (CB) seen in association with hydroxychloroquine (HCQ) therapy is uncertain. Patients with CB on muscle biopsy performed between 2006 and the present were identified, and their clinical features including body mass index and cumulative HCQ dose were recorded. A control group of 16 patients with idiopathic inflammatory myositis (IIM) on HCQ at time of biopsy but without evidence of CB was identified. Nineteen patients with CB were identified; details were available for 18. Among patients with CB, 7/18 also had IIM. Seven out of ten patients with CB who did not have IIM or MHCI/II expression had proximal weakness; 7/11 had raised serum creatinine kinase (CK) levels. There was no difference in body weight (p = 0.47), body mass index (p = 0.93), cumulative HCQ dose (p = 0.52) or cumulative dose adjusted for body weight (p = 0.39) or body mass index (p = 0.32) between patients with CB and controls. Patients with CB had lower median CK levels than controls (p = 0.034). Weakness was present in 12/17 patients and 12/16 controls (p = 1.0). Concurrent proton-pump inhibitors were co-prescribed in 12/18 (67 %) patients with CB and in 6/16 (38 %) controls (p = 0.17). Development of CB does not appear to be related to cumulative HCQ dose or body weight. Patients with CB frequently have muscle weakness in the absence of MHC1 expression suggesting a role for non-immune mechanisms of muscle injury. A high proportion of patients with CB are co-prescribed proton-pump inhibitors raising the possibility that co-prescription of both agents may disrupt lysosomal function and adversely affect muscle function.

  13. An enhanced structure tensor method for sea ice ridge detection from GF-3 SAR imagery

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Li, F.; Zhang, Y.; Zhang, S.; Spreen, G.; Dierking, W.; Heygster, G.

    2017-12-01

    In SAR imagery, ridges or leads are shown as the curvilinear features. The proposed ridge detection method is facilitated by their curvilinear shapes. The bright curvilinear features are recognized as the ridges while the dark curvilinear features are classified as the leads. In dual-polarization HH or HV channel of C-band SAR imagery, the bright curvilinear feature may be false alarm because the frost flowers of young leads may show as bright pixels associated with changes in the surface salinity under calm surface conditions. Wind roughened leads also trigger the backscatter increasing that can be misclassified as ridges [1]. Thus the width limitation is considered in this proposed structure tensor method [2], since only shape feature based method is not enough for detecting ridges. The ridge detection algorithm is based on the hypothesis that the bright pixels are ridges with curvilinear shapes and the ridge width is less 30 meters. Benefited from GF-3 with high spatial resolution of 3 meters, we provide an enhanced structure tensor method for detecting the significant ridge. The preprocessing procedures including the calibration and incidence angle normalization are also investigated. The bright pixels will have strong response to the bandpass filtering. The ridge training samples are delineated from the SAR imagery in the Log-Gabor filters to construct structure tensor. From the tensor, the dominant orientation of the pixel representing the ridge is determined by the dominant eigenvector. For the post-processing of structure tensor, the elongated kernel is desired to enhance the ridge curvilinear shape. Since ridge presents along a certain direction, the ratio of the dominant eigenvector will be used to measure the intensity of local anisotropy. The convolution filter has been utilized in the constructed structure tensor is used to model spatial contextual information. Ridge detection results from GF-3 show the proposed method performs better compared to the

  14. Diffractive optics fabricated by direct write methods with an electron beam

    NASA Technical Reports Server (NTRS)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  15. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design

  16. Turbine component, turbine blade, and turbine component fabrication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof.more » The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.« less

  17. Three-dimensional curvilinear device reconstruction from two fluoroscopic views

    NASA Astrophysics Data System (ADS)

    Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge

    2015-03-01

    In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.

  18. The curvilinear relationship between work pressure and momentary task performance: the role of state and trait core self-evaluations.

    PubMed

    Hofmans, Joeri; Debusscher, Jonas; Dóci, Edina; Spanouli, Andromachi; De Fruyt, Filip

    2015-01-01

    Whereas several studies have demonstrated that core self-evaluations (CSE)-or one's appraisals about one's own self-worth, capabilities, and competences-relate to job outcomes, less is known about the mechanisms underlying these relationships. In the present study, we address this issue by examining the role of within- and between-person variation in CSE in the relationship between work pressure and task performance. We hypothesized that (a) work pressure relates to task performance in a curvilinear way, (b) state CSE mediates the curvilinear relationship between work pressure and task performance, and (c) the relationship between work pressure and state CSE is moderated by trait CSE. Our hypotheses were tested via a 10-day daily diary study with 55 employees in which trait CSE was measured at baseline, while work pressure, task performance, and state CSE were assessed on a daily basis. Bayesian multilevel path analysis showed that work pressure affects task performance via state CSE, with state CSE increasing as long as the employee feels that (s)he is able to handle the work pressure, while it decreases when the level of work pressure exceeds the employees' coping abilities. Moreover, we found that for people low on trait CSE, the depleting effect of work pressure via state CSE happens for low levels of work pressure, while for people high in trait CSE the depleting effect is located at high levels of work pressure. Together, our findings suggest that the impact of work pressure on task performance is driven by a complex interplay of between- and within-person differences in CSE.

  19. Fabrication and optical characterization of imaging fiber-based nanoarrays.

    PubMed

    Tam, Jenny M; Song, Linan; Walt, David R

    2005-09-15

    In this paper, we present a technique for fabricating arrays containing a density at least 90 times higher than previously published. Specifically, we discuss the fabrication of two imaging fiber-based nanoarrays, one with 700nm features, another with 300nm features. With arrays containing up to 4.5x10(6) array elements/mm(2), these nanoarrays have an ultra-high packing density. A straightforward etching protocol is used to create nanowells into which beads can be deposited. These beads comprise the sensing elements of the nanoarray. Deposition of the nanobeads into the nanowells using two techniques is described. The surface characteristics of the etched arrays are examined with atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was used to observe the arrays. The 300nm array features and the 500nm center-to-center distance approach the minimum feature sizes viewable using conventional light microscopy.

  20. The Curvilinear Relationship between Age and Emotional Aperture: The Moderating Role of Agreeableness

    PubMed Central

    Faber, Anna; Walter, Frank

    2017-01-01

    The capability to correctly recognize collective emotion expressions [i.e., emotional aperture (EA)] is crucial for effective social and work-related interactions. Yet, little remains known about the antecedents of this ability. The present study therefore aims to shed new light onto key aspects that may promote or diminish an individual’s EA. We examine the role of age for this ability in an online sample of 181 participants (with an age range of 18–72 years, located in Germany), and we investigate agreeableness as a key contingency factor. Among individuals with lower agreeableness, on the one hand, our results indicate a curvilinear relationship between age and EA, such that EA remains at a relatively high level until these individuals’ middle adulthood (with a slight increase until their late 30s) and declines afterward. Individuals with higher agreeableness, on the other hand, exhibit relatively high EA irrespective of their age. Together, these findings offer new insights for the emerging literature on EA, illustrating that specific demographic and personality characteristics may jointly shape such collective emotion recognition. PMID:28769843

  1. Fabrication of elastomeric silk fibers.

    PubMed

    Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L

    2017-09-01

    Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.

  2. Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda

    2005-01-01

    Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.

  3. DEM study of fabric features governing undrained post-liquefaction shear deformation of sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min

    In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less

  4. DEM study of fabric features governing undrained post-liquefaction shear deformation of sand

    DOE PAGES

    Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min; ...

    2016-10-05

    In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less

  5. SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.

    2018-03-01

    We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.

  6. The curvilinear relationship between work pressure and momentary task performance: the role of state and trait core self-evaluations

    PubMed Central

    Hofmans, Joeri; Debusscher, Jonas; Dóci, Edina; Spanouli, Andromachi; De Fruyt, Filip

    2015-01-01

    Whereas several studies have demonstrated that core self-evaluations (CSE)–or one’s appraisals about one’s own self-worth, capabilities, and competences–relate to job outcomes, less is known about the mechanisms underlying these relationships. In the present study, we address this issue by examining the role of within- and between-person variation in CSE in the relationship between work pressure and task performance. We hypothesized that (a) work pressure relates to task performance in a curvilinear way, (b) state CSE mediates the curvilinear relationship between work pressure and task performance, and (c) the relationship between work pressure and state CSE is moderated by trait CSE. Our hypotheses were tested via a 10-day daily diary study with 55 employees in which trait CSE was measured at baseline, while work pressure, task performance, and state CSE were assessed on a daily basis. Bayesian multilevel path analysis showed that work pressure affects task performance via state CSE, with state CSE increasing as long as the employee feels that (s)he is able to handle the work pressure, while it decreases when the level of work pressure exceeds the employees’ coping abilities. Moreover, we found that for people low on trait CSE, the depleting effect of work pressure via state CSE happens for low levels of work pressure, while for people high in trait CSE the depleting effect is located at high levels of work pressure. Together, our findings suggest that the impact of work pressure on task performance is driven by a complex interplay of between- and within-person differences in CSE. PMID:26579053

  7. Evidence for a curvilinear relationship between sympathetic nervous system activation and women's physiological sexual arousal.

    PubMed

    Lorenz, Tierney Ahrold; Harte, Christopher B; Hamilton, Lisa Dawn; Meston, Cindy M

    2012-01-01

    There is increasing evidence that women's physiological sexual arousal is facilitated by moderate sympathetic nervous system (SNS) activation. Literature also suggests that the level of SNS activation may play a role in the degree to which SNS activity affects sexual arousal. We provide the first empirical examination of a possible curvilinear relationship between SNS activity and women's genital arousal using a direct measure of SNS activation in 52 sexually functional women. The relationship between heart rate variability (HRV), a specific and sensitive marker of SNS activation, and vaginal pulse amplitude (VPA), a measure of genital arousal, was analyzed. Moderate increases in SNS activity were associated with higher genital arousal, while very low or very high SNS activation was associated with lower genital arousal. These findings imply that there is an optimal level of SNS activation for women's physiological sexual arousal. Copyright © 2011 Society for Psychophysiological Research.

  8. Combined orthognathic distraction procedure: Le Fort I maxillary osteotomy and mandibular curvilinear distraction osteogenesis. A new technique for craniofacial management.

    PubMed

    Schendel, Stephen A; Hazan-Molina, Hagai; Aizenbud, Dror

    2014-04-01

    Dentofacial deformities are traditionally treated by maxillary and mandibular osteotomies conducted separately or simultaneously. Recently, distraction osteogenesis has become an irreplaceable part of the surgical armamentarium, for its ability to induce new bone formation between the surfaces of bone segments that are gradually separated by incremental traction, along with a simultaneous expansion of the surrounding soft-tissue envelope. The aim of this article is to describe a combined surgical technique consisting of simultaneous maxillary Le Fort I advancement and mandibular surgical repositioning by means of bilateral sagittal split osteotomy with a curvilinear distractor based on a preliminary computerized presurgical prediction.

  9. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  10. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    PubMed

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil

    2010-05-01

    New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an

  12. Line drawing extraction from gray level images by feature integration

    NASA Astrophysics Data System (ADS)

    Yoo, Hoi J.; Crevier, Daniel; Lepage, Richard; Myler, Harley R.

    1994-10-01

    We describe procedures that extract line drawings from digitized gray level images, without use of domain knowledge, by modeling preattentive and perceptual organization functions of the human visual system. First, edge points are identified by standard low-level processing, based on the Canny edge operator. Edge points are then linked into single-pixel thick straight- line segments and circular arcs: this operation serves to both filter out isolated and highly irregular segments, and to lump the remaining points into a smaller number of structures for manipulation by later stages of processing. The next stages consist in linking the segments into a set of closed boundaries, which is the system's definition of a line drawing. According to the principles of Gestalt psychology, closure allows us to organize the world by filling in the gaps in a visual stimulation so as to perceive whole objects instead of disjoint parts. To achieve such closure, the system selects particular features or combinations of features by methods akin to those of preattentive processing in humans: features include gaps, pairs of straight or curved parallel lines, L- and T-junctions, pairs of symmetrical lines, and the orientation and length of single lines. These preattentive features are grouped into higher-level structures according to the principles of proximity, similarity, closure, symmetry, and feature conjunction. Achieving closure may require supplying missing segments linking contour concavities. Choices are made between competing structures on the basis of their overall compliance with the principles of closure and symmetry. Results include clean line drawings of curvilinear manufactured objects. The procedures described are part of a system called VITREO (viewpoint-independent 3-D recognition and extraction of objects).

  13. A High-yield Two-step Transfer Printing Method for Large-scale Fabrication of Organic Single-crystal Devices on Arbitrary Substrates

    PubMed Central

    Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2014-01-01

    Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458

  14. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  15. Computer Aided Process Planning (CAPP): The User Interface for the Fabrication Module of the Rapid Design System

    DTIC Science & Technology

    1991-01-01

    plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based Design Environment (FBDE) of the RDS. It...llll By using the user Interface, the final process plan can be modified in many different ways. The translation of a design feature to a more...for the review and modification of a process plan. The Fabrication Planning Module automatically creates a plan using information from the Feature Based

  16. Introducing natural thermoplastic shellac to microfluidics: A green fabrication method for point-of-care devices

    PubMed Central

    Lausecker, R.; Badilita, V.; Wallrabe, U.

    2016-01-01

    We present a sustainable fabrication method for cheap point-of-care microfluidic systems, employing hot embossing of natural shellac as a key feature of an energy-efficient fabrication method that exclusively uses renewable materials as consumables. Shellac is a low-cost renewable biomaterial that features medium hydrophilicity (e.g., a water contact angle of ca. 73°) and a high chemical stability with respect to common solvents such as cyclohexane or toluene, rendering it an interesting candidate for low-cost microfluidics and a competitor to well-known systems such as paper-based or polydimethylsiloxane-based microfluidics. Moreover, its high replication accuracy for small features down to 30 μm lateral feature size and its ability to form smooth surfaces (surface roughness Ra = 29 nm) at low embossing temperatures (glass transition temperature Tg = 42.2 °C) enable energy-efficient hot embossing of microfluidic structures. Proof-of-concept for the implementation of shellac hot embossing as a green fabrication method for microfluidic systems is demonstrated through the successful fabrication of a microfluidic test setup and the assessment of its resource consumption. PMID:27478525

  17. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting.

    PubMed

    Ye, Jongpil

    2015-05-08

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.

  18. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting

    PubMed Central

    Ye, Jongpil

    2015-01-01

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes. PMID:25951816

  19. A flexible curvilinear electromagnetic filter for direct current cathodic arc source.

    PubMed

    Dai, Hua; Shen, Yao; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2007-09-01

    Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.

  20. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    NASA Astrophysics Data System (ADS)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability

  1. Methods and devices for fabricating three-dimensional nanoscale structures

    DOEpatents

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  2. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  3. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  4. Fabricated Elastin.

    PubMed

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabricated elastin

    PubMed Central

    Yeo, Giselle C.; Weiss, Anthony S.

    2015-01-01

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993

  6. Numerical study of elastic turbulence in a 3D curvilinear micro-channel

    NASA Astrophysics Data System (ADS)

    Zhang, Hongna; Kunugi, Tomoaki; Li, Fengchen

    2012-11-01

    Elastic turbulence is an intriguing phenomenon of viscoelastic fluid flow, and dominated by the strong nonlinear elasticity due to the existence of flexible microstructures. It implies the possibility to generate a turbulent state (so-called an elastic turbulence) in the micro-scale devices by introducing the viscoelastic fluids, which could significantly enhance the mixing efficiency therein. Several experiments have been carried out to study its characteristics and underlying physics. However, the difficulty in measuring the flow information and behaviors of the microstructures, especially in the cross section normal to the mean flow direction, limits our current understanding and controlling. In the present study, the nondimensionalization method in which the characteristic velocity is defined as the ratio of the solution viscosity to the width of the channel was adopted to simulate the elastic turbulence in the micro-scale devices. And the elastic turbulent flow was obtained numerically in the 3D curvilinear micro-channel. Therein, the characteristics of the velocity field and polymer's behavior are discussed. Moreover, the energy transfer between the kinetic energy and the polymer's elastic energy is also investigated to understand its physical mechanism. Supported by the Japan Society for the Promotion of Science research fellowship and the Ministry of Education, Culture, Sports, Science and Technology via `Energy Science in the Age of Global Warming' of Global Center of Excellence (G-COE) program (J-051).

  7. A space-time tensor formulation for continuum mechanics in general curvilinear, moving, and deforming coordinate systems

    NASA Technical Reports Server (NTRS)

    Avis, L. M.

    1976-01-01

    Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.

  8. Map showing the association of linear features with metallic mines and prospects in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Rowan, L.C.; Trautwein, C.M.; Purdy, T.L.

    1990-01-01

    This study was undertaken as part of the Conterminous U.S. Mineral Assessment Program (CUSMAP). The purpose of the study was to map linear features on Landsat Multispectral Scanner (MSS) images and a proprietary side-looking airborne radar (SLAR) image mosaic and to determine the spatial relationship between these linear features and the locations of metallic mineral occurrE-nces. The results show a close spatial association of linear features with metallic mineral occurrences in parts of the quadrangle, but in other areas the association is less well defined. Linear features are defined as distinct linear and slightly curvilinear elements mappable on MSS and SLAR images. The features generally represent linear segments of streams, ridges, and terminations of topographic features; however, they may also represent tonal patterns that are related to variations in lithology and vegetation. Most linear features in the Butte quadrangle probably represent underlying structural elements, such as fractures (with and without displacement), dikes, and alignment of fold axes. However, in areas underlain by sedimentary rocks, some of the linear features may reflect bedding traces. This report describes the geologic setting of the Butte quadrangle, the procedures used in mapping and analyzing the linear features, and the results of the study. Relationship of these features to placer and non-metal deposits were not analyzed in this study and are not discussed in this report.

  9. Solid Freeform Fabrication Proceedings -1999

    DTIC Science & Technology

    1999-08-11

    geometry of the stylus. Some geometries cannot be used to acquire data if the part geometry interferes 48 with a feature on the part. Thus, the data...fabrication processing systems such as surface micro- machining and lithography . 63 Conclusion The LCVD system (figure 6) has the versatility and...part, creating STL (STereo Lithography ) or VRML (Virtual Reality Modeling Language) files, slicing them, converting into laser path files, and

  10. Low cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Cecka, A. M.; Schofield, W. C.

    1972-01-01

    A material and process study was performed using subscale panels in an attempt to reduce the cost of fabricating ablative heat shield panels. Although no improvements were made in the material formulation, a significant improvement was obtained in the processing methods compared to those employed in the previous work. The principal feature of the new method is the press filling and curing of the ablation material in a single step with the bonding and curing of the face sheet. This method was chosen to replace the hand troweling and autoclave curing procedure used previously. Double-curvature panels of the same size as the flat panels were fabricated to investigate fabrication problems. It was determined that the same materials and processes used for flat panels can be used to produce the curved panels. A design with severe curvatures consisting of radii of 24 x 48 inches was employed for evaluation. Ten low-density and ten high-density panels were fabricated. With the exception of difficulties related to short run non-optimum tooling, excellent panel filling and density uniformity were obtained.

  11. An Energy- and Charge-conserving, Implicit, Electrostatic Particle-in-Cell Algorithm in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2012-03-01

    A recent proof-of-principle study proposes an energy- and charge-conserving, fully implicit particle-in-cell algorithm in one dimension [1], which is able to use timesteps comparable to the dynamical timescale of interest. Here, we generalize the method to employ non-uniform meshes via a curvilinear map. The key enabling technology is a hybrid particle pusher [2], with particle positions updated in logical space and particle velocities updated in physical space. The self-adaptive, charge-conserving particle mover of Ref. [1] is extended to the non-uniform mesh case. The fully implicit implementation, using a Jacobian-free Newton-Krylov iterative solver, remains exactly charge- and energy-conserving. The extension of the formulation to multiple dimensions will be discussed. We present numerical experiments of 1D electrostatic, long-timescale ion-acoustic wave and ion-acoustic shock wave simulations, demonstrating that charge and energy are conserved to round-off for arbitrary mesh non-uniformity, and that the total momentum remains well conserved.[4pt] [1] Chen, Chac'on, Barnes, J. Comput. Phys. 230 (2011). [0pt] [2] Camporeale and Delzanno, Bull. Am. Phys. Soc. 56(6) (2011); Wang, et al., J. Plasma Physics, 61 (1999).

  12. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects

    NASA Astrophysics Data System (ADS)

    Ye, Zhou; Nain, Amrinder S.; Behkam, Bahareh

    2016-06-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for

  13. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Zhang, Hanzhi; Yan, Casey; Zheng, Zijian; Yu, You

    2017-07-01

    The templated-rGO fabric, featuring high conductivity (<1.0 Ω □-1) and low density (160 mg cm-2), is prepared by a simple dip-coating technique with sequentially coating nickel via polymer-assisted metal deposition (PAMD) and reduced-graphene oxide (rGO) on textile fabric templates at very mild conditions and is used in the fabrication of energy storage devices. As a proof of concept, both the layered and planar supercapacitors (SCs) are successfully fabricated using the rGO fabrics as templates, and both exhibit excellent electrochemical performance, ultrahigh stability with 2000 charge-discharge cycles and mechanical flexibility at bending (r  =  3 mm) and even folding states. It is found that the material of textile fabric used has a profound effect on the electrochemical property of SCs. The comparison result reveals that loose natural cotton fabrics are more suitable than tight man-made nylon fabrics for preparing high-performance SCs. In addition, such supercapacitor can be sewed into commercial textiles and powers a LED light, indicating promising applications in wearable electronics.

  14. Spatial curvilinear path following control of underactuated AUV with multiple uncertainties.

    PubMed

    Miao, Jianming; Wang, Shaoping; Zhao, Zhiping; Li, Yuan; Tomovic, Mileta M

    2017-03-01

    This paper investigates the problem of spatial curvilinear path following control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties. Firstly, in order to design the appropriate controller, path following error dynamics model is constructed in a moving Serret-Frenet frame, and the five degrees of freedom (DOFs) dynamic model with multiple uncertainties is established. Secondly, the proposed control law is separated into kinematic controller and dynamic controller via back-stepping technique. In the case of kinematic controller, to overcome the drawback of dependence on the accurate vehicle model that are present in a number of path following control strategies described in the literature, the unknown side-slip angular velocity and attack angular velocity are treated as uncertainties. Whereas in the case of dynamic controller, the model parameters perturbations, unknown external environmental disturbances and the nonlinear hydrodynamic damping terms are treated as lumped uncertainties. Both kinematic and dynamic uncertainties are estimated and compensated by designed reduced-order linear extended state observes (LESOs). Thirdly, feedback linearization (FL) based control law is implemented for the control model using the estimates generated by reduced-order LESOs. For handling the problem of computational complexity inherent in the conventional back-stepping method, nonlinear tracking differentiators (NTDs) are applied to construct derivatives of the virtual control commands. Finally, the closed loop stability for the overall system is established. Simulation and comparative analysis demonstrate that the proposed controller exhibits enhanced performance in the presence of internal parameter variations, external unknown disturbances, unmodeled nonlinear damping terms, and measurement noises. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Nanoscale fabrication using single-ion impacts

    NASA Astrophysics Data System (ADS)

    Millar, Victoria; Pakes, Chris I.; Cimmino, Alberto; Brett, David; Jamieson, David N.; Prawer, Steven D.; Yang, Changyi; Rout, Bidhudutta; McKinnon, Rita P.; Dzurak, Andrew S.; Clark, Robert G.

    2001-11-01

    We describe a novel technique for the fabrication of nanoscale structures, based on the development of localized chemical modification caused in a PMMA resist by the implantation of single ions. The implantation of 2 MeV He ions through a thin layer of PMMA into an underlying silicon substrate causes latent damage in the resist. On development of the resist we demonstrate the formation within the PMMA layer of clearly defined etched holes, of typical diameter 30 nm, observed using an atomic force microscope employing a carbon nanotube SPM probe in intermittent-contact mode. This technique has significant potential applications. Used purely to register the passage of an ion, it may be a useful verification of the impact sites in an ion-beam modification process operating at the single-ion level. Furthermore, making use of the hole in the PMMA layer to perform subsequent fabrication steps, it may be applied to the fabrication of self-aligned structures in which surface features are fabricated directly above regions of an underlying substrate that are locally doped by the implanted ion. Our primary interest in single-ion resists relates to the development of a solid-state quantum computer based on an array of 31P atoms (which act as qubits) embedded with nanoscale precision in a silicon matrix. One proposal for the fabrication of such an array is by phosphorous-ion implantation. A single-ion resist would permit an accurate verification of 31P implantation sites. Subsequent metalisation of the latent damage may allow the fabrication of self-aligned metal gates above buried phosphorous atoms.

  16. Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures

    DOE PAGES

    Jeon, Seokwoo; Shir, Daniel J.; Nam, Yun Suk; ...

    2007-05-08

    This paper introduces approaches that combine micro/nanomolding, or nanoimprinting, techniques with proximity optical phase mask lithographic methods to form three dimensional (3D) nanostructures in thick, transparent layers of photopolymers. The results demonstrate three strategies of this type, where molded relief structures in these photopolymers represent (i) fine (<1 μm) features that serve as the phase masks for their own exposure, (ii) coarse features (>1 μm) that are used with phase masks to provide access to large structure dimensions, and (iii) fine structures that are used together phase masks to achieve large, multilevel phase modulations. Several examples are provided, together withmore » optical modeling of the fabrication process and the transmission properties of certain of the fabricated structures. Lastly, these approaches provide capabilities in 3D fabrication that complement those of other techniques, with potential applications in photonics, microfluidics, drug delivery and other areas.« less

  17. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    NASA Astrophysics Data System (ADS)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  18. Fabrication and testing of silver-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Debicarri, D. J.; Charkey, A.

    1978-01-01

    Silver electrodes containing various additives were fabricated and tested in single electrode cells in order to improve the electrochemical utilization of sintered silver cathodes in Ag-H2 aerospace batteries. A standard stack arrangement was used which featured a NASA-developed organic-inorganic separator. All cells were cycled in a regime designed to remove 75% of the cells nominal capacity based on 3.3 gms/AHr Ag utilization. In cases where performance degradation was observed, the main feature mode appeared to be corrosion of either the expanded silver current collector or the connection between the silver electrode and the electrode tab. Promising silver electrodes from single electrode studies were used in the construction of 35 AHr Ag-H2 cells. Two such cells were constructed and installed in heavy walled pressure vessels for testing. Based on the data obtained from all cells tested during the program, four lightweight 35 AHr cells were fabricated. During acceptance testing these cells yielded an average gravimetric energy density of 30 WHr/1b.

  19. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  20. Method to control artifacts of microstructural fabrication

    DOEpatents

    Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.

    2006-09-12

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.

  1. Review article: Fabrication of nanofluidic devices

    PubMed Central

    Duan, Chuanhua; Wang, Wei; Xie, Quan

    2013-01-01

    Thanks to its unique features at the nanoscale, nanofluidics, the study and application of fluid flow in nanochannels/nanopores with at least one characteristic size smaller than 100 nm, has enabled the occurrence of many interesting transport phenomena and has shown great potential in both bio- and energy-related fields. The unprecedented growth of this research field is apparently attributed to the rapid development of micro/nanofabrication techniques. In this review, we summarize recent activities and achievements of nanofabrication for nanofluidic devices, especially those reported in the past four years. Three major nanofabrication strategies, including nanolithography, microelectromechanical system based techniques, and methods using various nanomaterials, are introduced with specific fabrication approaches. Other unconventional fabrication attempts which utilize special polymer properties, various microfabrication failure mechanisms, and macro/microscale machining techniques are also presented. Based on these fabrication techniques, an inclusive guideline for materials and processes selection in the preparation of nanofluidic devices is provided. Finally, technical challenges along with possible opportunities in the present nanofabrication for nanofluidic study are discussed. PMID:23573176

  2. Automatic measurement for dimensional changes of woven fabrics based on texture

    NASA Astrophysics Data System (ADS)

    Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei

    2014-01-01

    Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.

  3. Fabric and texture at Siple Dome, Antarctica

    USGS Publications Warehouse

    Diprinzio, C.L.; Wilen, Lawrence A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.

    2005-01-01

    Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.

  4. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  5. The curvilinear effects of sexual orientation on young adult substance use.

    PubMed

    Parnes, Jamie E; Rahm-Knigge, Ryan L; Conner, Bradley T

    2017-03-01

    Alcohol, tobacco, and marijuana are commonly used by adolescents and linked with harmful health-related outcomes (e.g. injury, dependence). Moreover, heavy episodic (binge) drinking predicts more severe consequences. When examined by sexual orientation, highest rates of substance use have been found among bisexual individuals, with lower use at either end of the spectrum. When examined also by sex, this curvilinear trend is maintained among women but not men. These substance use patterns were identified using group differences (i.e. heterosexual vs. bisexual vs. homosexual). However, evidence suggests that sexual orientation is a continuous, not categorical, variable. This study examined the hypotheses that sexual orientation and commonly used substances (heavy episodic drinking, tobacco, marijuana) would have a quadratic relation among women, but not among men. Six negative binomial regressions tested study hypotheses using data from 7372 participants. Results indicated that sexual orientation had a quadratic relation with heavy episodic drinking, tobacco use, and marijuana use among women, as hypothesized. Additionally, a quadratic relation was found between marijuana use and sexual orientation among men. These findings indicate that women identifying as having mixed sexual orientation are at higher risk than women at either end of the sexual orientation continuum for substance use and related negative outcomes. For men, this is only true for marijuana use and resultant negative consequences. This observed increased use may relate to coping with increased stressors, which has been linked to more problematic use. By better understanding LBG identities and behaviors, clinicians and researchers will be more adept at identifying risk factors and better understanding the nuances across the sexual orientation spectrum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  7. Comparison of Maximum Stretch Forces between Femtosecond Laser-Assisted Capsulotomy and Continuous Curvilinear Capsulorhexis

    PubMed Central

    Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo

    2017-01-01

    The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces. PMID:28210504

  8. Comparison of Maximum Stretch Forces between Femtosecond Laser-Assisted Capsulotomy and Continuous Curvilinear Capsulorhexis.

    PubMed

    Takagi, Mari; Kojima, Takashi; Ichikawa, Kei; Tanaka, Yoshiki; Kato, Yukihito; Horai, Rie; Tamaoki, Akeno; Ichikawa, Kazuo

    2017-01-01

    The current study reports comparing the postoperative mechanical properties of the anterior capsule between femtosecond laser capsulotomy (FLC) and continuous curvilinear capsulorhexis (CCC) of variable size and shape in porcine eyes. All CCCs were created using capsule forceps. Irregular or eccentric CCCs were also created to simulate real cataract surgery. For FLC, capsulotomies 5.3 mm in diameter were created using the LenSx® (Alcon) platform. Fresh porcine eyes were used in all experiments. The edges of the capsule openings were pulled at a constant speed using two L-shaped jigs. Stretch force and distance were recorded over time, and the maximum values in this regard were defined as those that were recorded when the capsule broke. There was no difference in maximum stretch force between CCC and FLC. There were no differences in circularity between FLC and same-sized CCC. However, same-sized CCC did show significantly higher maximum stretch forces than FLC. Teardrop-shaped CCC showed lower maximum stretch forces than same-sized CCC and FLC. Heart-shaped CCC showed lower maximum stretch forces than same-sized CCC. Conclusively, while capsule edge strength after CCC varied depending on size or irregularities, FLC had the advantage of stable maximum stretch forces.

  9. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  10. Evaluating the effect of spinning systems on thermal comfort properties of modal fabrics

    NASA Astrophysics Data System (ADS)

    Seçil Aydın, İ.; Kertmen, M.; Marmarali, A.

    2017-10-01

    In recent years the importance of clothing comfort became one of the most important feature of the fabrics. The aim of this study is to characterize thermal comfort properties of single jersey fabrics were knitted using 100% modal yarns which were spun in various types of yarn spinning methods such as ring spinning, compact spinning, rotor spinning and airjet spinning. Thermal comfort properties like air permeability, thermal resistance, thermal absorptivity and water vapour permeability of fabrics were tested. The results indicate that compact spinning technology will be appropriate for the summer climate casual wear.

  11. Double sided grating fabrication for high energy X-ray phase contrast imaging

    DOE PAGES

    Hollowell, Andrew E.; Arrington, Christian L.; Finnegan, Patrick; ...

    2018-04-19

    State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. Furthermore, we have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be appliedmore » to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.« less

  12. Double sided grating fabrication for high energy X-ray phase contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollowell, Andrew E.; Arrington, Christian L.; Finnegan, Patrick

    State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. Furthermore, we have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be appliedmore » to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.« less

  13. The urban features of informal settlements in Jakarta, Indonesia.

    PubMed

    Alzamil, Waleed

    2017-12-01

    This data article contains the urban features of three informal settlements in Jakarta: A. Kampung Bandan; B. Kampung Luar Batang; And C. Kampung Muara Baru. The data describes the urban features of physical structures, infrastructures, and public services. These data include maps showing locations of these settlements, photography of urban status, and examples of urban fabric. The data are obtained from the statistical records and field surveys of three settlements cases.

  14. Graphene Transistor fabricated by Helium Ion Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Kaiwen; Zhao, Xiangming; Xu, Xiangfan; Vignesh, Viswanathan; Li, Baowen; Pickard, Daniel; Özyilmaz, Barbaros; Department of Physics, National University of Singapore Team; Department of Electrical; Computer Engineering, National University of Singapore Team; eNanoCore, National University of Singapore Team

    2011-03-01

    We report the direct patterning of graphene for various nano-device applications. The Helium Ion Microscope (HIM), able to resolve nano-scale features on solid samples with an edge resolution of a mere 0.25 nm, has a number of attributes which make it attractive for the imaging of graphene structures. Even more compelling is the ability to directly modify graphene, through surface sputtering, enabling direct pattern transfer for the fabrication of graphene devices. The integration of the HIM with a vector pattern generator (Nano Pattern Generation System, NPGS), provides the capability to directly pattern graphene into nano-ribbons. We have successfully fabricated sub-100nm graphene nano-ribbon devices on Si/SiO2 substrate. Resistance measurement has been made as a function of temperature.

  15. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.

    PubMed

    Faustino, Vera; Catarino, Susana O; Lima, Rui; Minas, Graça

    2016-07-26

    One of the most popular methods to fabricate biomedical microfluidic devices is by using a soft-lithography technique. However, the fabrication of the moulds to produce microfluidic devices, such as SU-8 moulds, usually requires a cleanroom environment that can be quite costly. Therefore, many efforts have been made to develop low-cost alternatives for the fabrication of microstructures, avoiding the use of cleanroom facilities. Recently, low-cost techniques without cleanroom facilities that feature aspect ratios more than 20, for fabricating those SU-8 moulds have been gaining popularity among biomedical research community. In those techniques, Ultraviolet (UV) exposure equipment, commonly used in the Printed Circuit Board (PCB) industry, replaces the more expensive and less available Mask Aligner that has been used in the last 15 years for SU-8 patterning. Alternatively, non-lithographic low-cost techniques, due to their ability for large-scale production, have increased the interest of the industrial and research community to develop simple, rapid and low-cost microfluidic structures. These alternative techniques include Print and Peel methods (PAP), laserjet, solid ink, cutting plotters or micromilling, that use equipment available in almost all laboratories and offices. An example is the xurography technique that uses a cutting plotter machine and adhesive vinyl films to generate the master moulds to fabricate microfluidic channels. In this review, we present a selection of the most recent lithographic and non-lithographic low-cost techniques to fabricate microfluidic structures, focused on the features and limitations of each technique. Only microfabrication methods that do not require the use of cleanrooms are considered. Additionally, potential applications of these microfluidic devices in biomedical engineering are presented with some illustrative examples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips.

    PubMed

    Chen, Yun; Zhang, Luyan; Chen, Gang

    2008-05-01

    Poly(methyl methacrylate) (PMMA) is particularly useful for microfluidic chips with the features of low price, excellent optic transparency, attractive mechanical and chemical properties, ease of fabrication and modification, biocompatibility, etc. During the past decade, significant progress in the PMMA microfluidic chips has occurred. This review, which contains 120 references, summarizes the recent advances and the key strategies in the fabrication, modification, and application of PMMA microfluidic chips. It is expected that PMMA microchips should find a wide range of applications and will lead to the creation of truly disposable microfluidic devices.

  17. Polymer micromold and fabrication process

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ahre, Paul E.; Dupuy, Peter C.

    1997-01-01

    A mold assembly with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10's of micros (.mu.m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 .mu.m in length up to 150 .mu.m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly.

  18. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  19. Fabrication and Characterization of Miniaturized Thermocouples

    NASA Astrophysics Data System (ADS)

    Munzel, Marco; Peinke, Joachim; Kittel, Achim

    2002-11-01

    The measurement of thermal fluctuations is important for discovering transport features of a passive scalar in fluids. We present a thermal sensor based on a miniaturized thermocouple. Its coaxial setup results from the fabrication as a micropipette normally used in neurobiology. The glass micropipettes contain a core of gold, antimony, or resistance wire and are coated with platinum. The core material is inserted as molten metal or wire and thinned during the fabrication process. The achieved tip diameters are 1μm and less which enhance the spatial and temporal resolution significantly. Because of its chemically inert coating, these sensors are applicative for detecting temperature fluctuations in large variety of liquids and gases. In addition, such thermocouples are intrinsically suitable for applications in scanning probe microscopy. The characterization of these sensors and first results from turbulent free-jet measurements are presented.

  20. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  1. Electrochemical fabrication and optical properties of porous tin oxide films with structural colors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hua; Shu, Shiwei; Lee, Chris

    2014-10-21

    Photonic crystals with porous features not only provide the capability to control light but also enable structural colors that are environmentally sensitive. Here, we report a novel kind of tin oxide-based photonic crystal featuring periodically arranged air pores fabricated by the periodic anodization of tin foil. The existence of a photonic band gap in the fabricated structure is verified by its vivid color, and its reflective spectra which are responsive to environmental stimuli. Furthermore, the sample colors (i.e., the photonic band gap positions) can be easily adjusted by manipulating the anodization parameters. The theoretical modeling results of these tin oxidemore » photonic crystals agree well with the reported experimental ones.« less

  2. Experimental analysis for fabrication of high-aspect-ratio piezoelectric ceramic structure by micro-powder injection molding process

    NASA Astrophysics Data System (ADS)

    Han, Jun Sae; Gal, Chang Woo; Park, Jae Man; Kim, Jong Hyun; Park, Seong Jin

    2018-04-01

    Aspect ratio effects in the micro-powder injection molding process were experimentally analyzed for fabrication of high-aspect-ratio piezoelectric ceramic structure. The mechanisms of critical defects have been studied according to individual manufacturing steps. In the molding process, incomplete filling phenomenon determines the critical aspect ratios of a micro pattern. According to mold temperature, an incomplete filling phenomenon has been analyzed with respect to different pattern sizes and aspect ratio. In demolding and drying process, the capillary behavior of sacrificial polymeric mold insert determines the critical aspect ratio of a micro pattern. With respect to pattern dimensions, slumping behavior has been analyzed. Based on our current systems, micro PZT feature has stability when it has lower aspect ratio than 5. Under optimized processing conditions, 20 μm and 40 μm ceramic rod array feature which has 5 of aspect ratio were successfully fabricated by the developed process. Further modification points to fabricate the smaller and higher feature were specifically addressed.

  3. Method of fabricating reflection-mode EUV diffraction elements

    DOEpatents

    Naulleau, Patrick P.

    2002-01-01

    Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.

  4. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin

    2018-05-01

    Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.

  5. Direct fabrication of bio-inspired gecko-like geometries with vat polymerization additive manufacturing method

    NASA Astrophysics Data System (ADS)

    Davoudinejad, A.; Ribo, M. M.; Pedersen, D. B.; Islam, A.; Tosello, G.

    2018-08-01

    Functional surfaces have proven their potential to solve many engineering problems, attracting great interest among the scientific community. Bio-inspired multi-hierarchical micro-structures grant the surfaces with new properties, such as hydrophobicity, adhesion, unique optical properties and so on. The geometry and fabrication of these surfaces are still under research. In this study, the feasibility of using direct fabrication of microscale features by additive manufacturing (AM) processes was investigated. The investigation was carried out using a specifically designed vat photopolymerization AM machine-tool suitable for precision manufacturing at the micro dimensional scale which has previously been developed, built and validated at the Technical University of Denmark. It was shown that it was possible to replicate a simplified surface inspired by the Tokay gecko, the geometry was previously designed and replicated by a complex multi-step micromanufacturing method extracted from the literature and used as benchmark. Ultimately, the smallest printed features were analyzed by conducting a sensitivity analysis to obtain the righteous parameters in terms of layer thickness and exposure time. Moreover, two more intricate designs were fabricated with the same parameters to assess the surfaces functionality by its wettability. The surface with increased density and decreased feature size showed a water contact angle (CA) of 124°  ±  0.10°, agreeing with the Cassie–Baxter model. These results indicate the possibility of using precision AM for a rapid, easy and reliable fabrication method for functional surfaces.

  6. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.

    PubMed

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-06

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  7. Fabrication of multi-functional silicon surface by direct laser writing

    NASA Astrophysics Data System (ADS)

    Verma, Ashwani Kumar; Soni, R. K.

    2018-05-01

    We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.

  8. Curvilinear locus coeruleus functional connectivity trajectories over the adult lifespan: a 7T MRI study.

    PubMed

    Jacobs, Heidi I L; Müller-Ehrenberg, Lisa; Priovoulos, Nikos; Roebroeck, Alard

    2018-05-24

    The locus coeruleus (LC) plays a crucial role in modulating several higher order cognitive functions via its widespread projections to the entire brain. We set out to investigate the hypothesis that LC functional connectivity (FC) may fluctuate nonlinearly with age and explored its relation to memory function. To that end, 49 cognitively healthy individuals (19-74 years) underwent ultra high-resolution 7T resting-state functional magnetic resonance imaging and cognitive testing. FC patterns from the LC to regions of the isodendritic core network and cortical regions were examined using region of interest-to-region of interest analyses. Curvilinear patterns with age were observed for FC between the left LC and cortical regions and the nucleus basalis of Meynert. A linear negative association was observed between age and LC-FC and ventral tegmental area. Higher levels of FC between the LC and nucleus basalis of Meynert or ventral tegmental area were associated with lower memory performance from age of 40 years onward. Thus, different LC-FC patterns early in life can signal subtle memory deficits. Furthermore, these results highlight the importance of intact interactions between neurotransmitter systems for optimal cognitive aging. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Parametric classification of handvein patterns based on texture features

    NASA Astrophysics Data System (ADS)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  10. High-Thermal-Conductivity Fabrics

    NASA Technical Reports Server (NTRS)

    Chibante, L. P. Felipe

    2012-01-01

    processed.The novel feature is that fabrics do not inherently possess good thermal conductivity. In fact, fabrics are used for thermal insulation, not heat removal. The technology represents the first material that is a wearable fabric, based on company textiles and materials that will significantly conduct heat.

  11. Computer Aided Design of Computer Generated Holograms for electron beam fabrication

    NASA Technical Reports Server (NTRS)

    Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid

    1989-01-01

    Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.

  12. Feature based Weld-Deposition for Additive Manufacturing of Complex Shapes

    NASA Astrophysics Data System (ADS)

    Panchagnula, Jayaprakash Sharma; Simhambhatla, Suryakumar

    2018-06-01

    Fabricating functional metal parts using Additive Manufacturing (AM) is a leading trend. However, realizing overhanging features has been a challenge due to the lack of support mechanism for metals. Powder-bed fusion techniques like, Selective Laser Sintering (SLS) employ easily-breakable-scaffolds made of the same material to realize the overhangs. However, the same approach is not extendible to deposition processes like laser or arc based direct energy deposition processes. Although it is possible to realize small overhangs by exploiting the inherent overhanging capability of the process or by blinding some small features like holes, the same cannot be extended for more complex geometries. The current work presents a novel approach for realizing complex overhanging features without the need of support structures. This is possible by using higher order kinematics and suitably aligning the overhang with the deposition direction. Feature based non-uniform slicing and non-uniform area-filling are some vital concepts required in realizing the same and are briefly discussed here. This method can be used to fabricate and/or repair fully dense and functional components for various engineering applications. Although this approach has been implemented for weld-deposition based system, the same can be extended to any other direct energy deposition processes also.

  13. High-efficiency solar cells fabricated by vacuum MO-CVD

    NASA Technical Reports Server (NTRS)

    Fraas, L. M.; Cape, J. A.; Partain, L. D.; Mcleod, P. S.

    1984-01-01

    High-efficiency, monolithic, two-color, three-terminal solar cells were fabricated by a novel growth technique, vacuum metal-organic chemical vapor deposition. The technique uses the expensive metal alkyls efficiently and toxic gases sparingly. The fact that the outer chamber is constructed of nonbreakable stainless steel is an attractive safety feature associated with this deposition system.

  14. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    PubMed Central

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-01-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds. PMID:26758780

  15. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.

    PubMed

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-12

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  16. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  17. A programmable nanoreplica molding for the fabrication of nanophotonic devices.

    PubMed

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  18. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    PubMed Central

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-01-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828

  19. Polymer micromold and fabrication process

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ahre, P.E.; Dupuy, P.C.

    1997-08-19

    A mold assembly is disclosed with micro-sized features in which the hollow portion thereof is fabricated from a sacrificial mandrel which is surface treated and then coated to form an outer shell. The sacrificial mandrel is then selectively etched away leaving the outer shell as the final product. The sacrificial mandrel is fabricated by a precision lathe, for example, so that when removed by etching the inner or hollow area has diameters as small as 10`s of micros ({micro}m). Varying the inside diameter contours of the mold can be accomplished with specified ramping slopes formed on the outer surface of the sacrificial mandrel, with the inside or hollow section being, for example, 275 {micro}m in length up to 150 {micro}m in diameter within a 6 mm outside diameter (o.d.) mold assembly. The mold assembly itself can serve as a micronozzle or microneedle, and plastic parts, such as microballoons for angioplasty, polymer microparts, and microactuators, etc., may be formed within the mold assembly. 6 figs.

  20. Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate.

    PubMed

    Potyrailo, Radislav A; Burns, Andrew; Surman, Cheryl; Lee, D J; McGinniss, Edward

    2012-06-21

    We demonstrate roll-to-roll (R2R) fabrication of highly selective, battery-free radio frequency identification (RFID) sensors on a flexible polyethylene terephthalate (PET) polymeric substrate. Selectivity of our developed RFID sensors is provided by measurements of their resonance impedance spectra, followed by the multivariate analysis of spectral features, and correlation of these spectral features to the concentrations of vapors of interest. The multivariate analysis of spectral features also provides the ability for the rejection of ambient interferences. As a demonstration of our R2R fabrication process, we employed polyetherurethane (PEUT) as a "classic" sensing material, extruded this sensing material as 25, 75, and 125-μm thick films, and thermally laminated the films onto RFID inlays, rapidly producing approximately 5000 vapor sensors. We further tested these RFID vapor sensors for their response selectivity toward several model vapors such as toluene, acetone, and ethanol as well as water vapor as an abundant interferent. Our RFID sensing concept features 16-bit resolution provided by the sensor reader, granting a highly desired independence from costly proprietary RFID memory chips with a low-resolution analog input. Future steps are being planned for field-testing of these sensors in numerous conditions.

  1. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  2. Optical frequency selective surface design using a GPU accelerated finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Ashbach, Jason A.

    Periodic metallodielectric frequency selective surface (FSS) designs have historically seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted for use in optical applications as well. While early optical designs have been limited to wellunderstood geometries or optimized pixelated screens, nano-fabrication, lithographic and interconnect technology has progressed to a point where it is possible to fabricate metallic screens of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are only tens of nanometers wide. In order to design an FSS featuring such characteristics, it is important to have a robust numerical solver that features triangular elements in purely two-dimensional geometries and prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic finite element method code has been developed which features prismatic elements whose top and bottom boundaries are truncated by numerical integration of the boundary integral as opposed to an approximate representation found in a perfectly matched layer. However, since no exact solution exists for the calculation of triangular elements in a boundary integral, this process can be time consuming. To address this, these calculations were optimized for parallelization such that they may be done on a graphics processor, which provides a large increase in computational speed. Additionally, a simple geometrical representation using a Bezier surface is presented which provides generality with few variables. With a fast numerical solver coupled with a lowvariable geometric representation, a heuristic optimization algorithm has been used to develop several optical designs such as an absorber, a circular polarization filter, a transparent conductive surface and an enhanced, optical modulator.

  3. Fabrication and Characterization of Superconducting Resonators

    PubMed Central

    Cataldo, Giuseppe; Barrentine, Emily M.; Brown, Ari D.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward J.

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  4. Documentation of program COORDC to generate and coordinate system for 3D corners with or without fillet using body fitted curvilinear coordinates, part 2

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program COORDC generates a body fitted curvilinear coordinate system for corner geometry with or without corner fillets. It is assumed that at any given xi, x remains constant; consequently the only variation is in y and z. It is also assumed that for all xi's in the physical plane the coordinate system in y-z plane is similar. This enables solution of coordinate system for one particular xi = 1 (x for xi = 1 is arbitrarily chosen to be 0.0) and the solution for all other xi plane can be easily specified once the coordinates in the physical plane on the line 1 or = to xi or = to IMAX, eta = 1, zeta = 1 are specified.

  5. Generation of Rising-tone Chorus in a Two-dimensional Mirror Field by Using the General Curvilinear PIC Code

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.

    2017-12-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.

  6. Generation of rising-tone chorus in a two-dimensional mirror field by using the general curvilinear PIC code

    NASA Astrophysics Data System (ADS)

    Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui

    2017-08-01

    Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.

  7. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    PubMed Central

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  8. Method to fabricate multi-level silicon-based microstructures via use of an etching delay layer

    DOEpatents

    Manginell, Ronald P.; Schubert, W. Kent; Shul, Randy J.

    2005-08-16

    New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.

  9. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.

    PubMed

    Son, JoonGon; Kim, GeunHyung

    2009-01-01

    Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.

  10. A comparative analysis of image features between weave embroidered Thangka and piles embroidered Thangka

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Wang, Weilan

    2018-04-01

    Thangka is a treasure of Tibetan culture. In its digital protection, most of the current research focuses on the content of Thangka images, not the fabrication process. For silk embroidered Thangka of "Guo Tang", there are two craft methods, namely, weave embroidered and piles embroidered. The local texture of weave embroidered Thangka is rough, and that of piles embroidered Thangka is more smooth. In order to distinguish these two kinds of fabrication processes from images, a effectively segmentation algorithm of color blocks is designed firstly, and the obtained color blocks contain the local texture patterns of Thangka image; Secondly, the local texture features of the color block are extracted and screened; Finally, the selected features are analyzed experimentally. The experimental analysis shows that the proposed features can well reflect the difference between methods of weave embroidered and piles embroidered.

  11. Curvilinear trajectory estimation of a supersonic bullet using ballistic shock wave arrivals at asynchronous acoustic sensor nodes.

    PubMed

    Lo, Kam W

    2017-06-01

    The trajectory of a supersonic bullet, which is subjected to drag and gravity, is curvilinear and the supersonic flight of the bullet generates a ballistic shock wave (SW). A model for the differential time of arrival (DTOA) of the SW at a pair of acoustic sensors is derived for a given bullet trajectory, which is fully described by seven parameters including the drag coefficient exponent and ballistic constant of the bullet. Assuming that the drag coefficient exponent is 0.5, the DTOA model is used to develop a nonlinear least-squares (NLS) method to estimate the other six trajectory parameters using DTOA of SW measurements from each node (which comprises a small acoustic sensor array) of an asynchronous sensor network. The position of the shooter and the muzzle speed of the bullet are then determined by tracing the estimated bullet trajectory back to topographic or man-made obstructions on a digital map. The effectiveness of the NLS method is verified using simulated data for different types of real bullets, and the error standard deviations in the parameter estimates are close to the Cramer-Rao lower bounds.

  12. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  13. Improved Design of Optical MEMS Using the SUMMiT Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.

  14. Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir

    2010-05-01

    The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the

  15. Twenty-nine-gauge dual-chandelier retroillumination for the non-open-sky continuous curvilinear capsulorhexis in the penetrating keratoplasty triple procedure.

    PubMed

    Yokokura, Shunji; Hariya, Takehiro; Kobayashi, Wataru; Meguro, Yasuhiko; Nishida, Kohji; Nakazawa, Toru

    2017-03-01

    We describe a technique for the penetrating keratoplasty (PKP) triple procedure that uses 29-gauge dual-chandelier illumination during creation of a non-open-sky continuous curvilinear capsulorhexis (CCC). The chandeliers are inserted through the pars plana into the vitreous cavity through the bulbar conjunctiva at the 3 o'clock and 9 o'clock positions. We compared this approach with that of a core vitrectomy, in which a single 25-gauge port is inserted into the vitreous cavity transconjunctivally through the upper temporal pars plana. The area of halation around the corneal opacity was significantly smaller in the 29-gauge group than in the 25-gauge group. The reduction in halation improved visibility of the anterior capsule and enabled the surgeon to perform CCC with greater safety. The 29-gauge chandelier system was more suitable than the 25-gauge chandelier system for the non-open-sky CCC component of the PKP triple procedure. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Engineering shadows to fabricate optical metasurfaces.

    PubMed

    Nemiroski, Alex; Gonidec, Mathieu; Fox, Jerome M; Jean-Remy, Philip; Turnage, Evan; Whitesides, George M

    2014-11-25

    Optical metasurfaces-patterned arrays of plasmonic nanoantennas that enable the precise manipulation of light-matter interactions-are emerging as critical components in many nanophotonic materials, including planar metamaterials, chemical and biological sensors, and photovoltaics. The development of these materials has been slowed by the difficulty of efficiently fabricating patterns with the required combinations of intricate nanoscale structure, high areal density, and/or heterogeneous composition. One convenient strategy that enables parallel fabrication of periodic nanopatterns uses self-assembled colloidal monolayers as shadow masks; this method has, however, not been extended beyond a small set of simple patterns and, thus, has remained incompatible with the broad design requirements of metasurfaces. This paper demonstrates a technique-shadow-sphere lithography (SSL)-that uses sequential deposition from multiple angles through plasma-etched microspheres to expand the variety and complexity of structures accessible by colloidal masks. SSL harnesses the entire, relatively unexplored, space of shadow-derived shapes and-with custom software to guide multiangled deposition-contains sufficient degrees of freedom to (i) design and fabricate a wide variety of metasurfaces that incorporate complex structures with small feature sizes and multiple materials and (ii) generate, in parallel, thousands of variations of structures for high-throughput screening of new patterns that may yield unexpected optical spectra. This generalized approach to engineering shadows of spheres provides a new strategy for efficient prototyping and discovery of periodic metasurfaces.

  17. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  18. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  19. Fabrication of comb-drive actuators for straining nanostructured suspended graphene.

    PubMed

    Goldsche, Matthias; Verbiest, G J; Khodkov, Tymofiy; Sonntag, Jens; von den Driesch, Nils; Buca, Dan; Stampfer, Christoph

    2018-06-20

    We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a chromium mask. Crucially, we implement a gold layer to reduce the device resistance from ≈51.6 kΩ to ≈236 Ω at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30~nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values. © 2018 IOP Publishing Ltd.

  20. Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuinness, C.; Colby, E.; England, R.J.

    2010-08-26

    An eight and nine layer three dimensional photonic crystal with a defect designed specifically for accelerator applications has been fabricated. The structures were fabricated using a combination of nanofabrication techniques, including low pressure chemical vapor deposition, optical lithography, and chemical mechanical polishing. Limits imposed by the optical lithography set the minimum feature size to 400 nm, corresponding to a structure with a bandgap centered at 4.26 {micro}m. Reflection spectroscopy reveal a peak in reflectivity about the predicted region, and good agreement with simulation is shown. The eight and nine layer structures will be aligned and bonded together to form themore » complete seventeen layer woodpile accelerator structure.« less

  1. Fabrication of simulated DUPIC fuel

    NASA Astrophysics Data System (ADS)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  2. Venus - Ovda Regio

    NASA Image and Video Library

    1996-08-13

    This image covers much of Ovda Regio, which forms the western part of Aphrodite Terra. It covers an area about 2,250 kilometers (1,386 miles) wide by 1,300 kilometers (800 miles) north to south, and ranges in latitude from 8 degrees north to 12 degrees south and in longitude from 62 degrees east to 90 degrees east. Ovda Regio is a highland region that rises over 4 kilometers (2.5 miles) above the surrounding plain. Magellan images show a complex surface, with several generations of structures. A pervasive fabric of irregular broad domes and ridges and associated curvilinear valleys was flooded by lava, then fractured. The circular feature surrounded by dark lava flows in the western part of the image is a caldera, or large volcanic collapse pit. Late-stage extension created long graben, or fault-bounded valleys, is best seen near the center of the image. The northern boundary of Ovda Regio is a steep, curvilinear mountain belt made up of long, narrow, rounded ridges. These ridges are similar in appearance to folded mountain belts on Earth. Several impact craters, such as the circular features on the western margin of the image, are scattered across the area. The bright area in the southeast part of the image indicates the presence of a radar-reflective mineral such as pyrite. Most of the highland areas on Venus display a similar bright signal. Each pixel of this image covers an area on the surface 675 meters (2,215 feet) across, representing a 9- times reduction in resolution compared to full-scale resolution data. http://photojournal.jpl.nasa.gov/catalog/PIA00146

  3. Microstructure and inclusion of Ti-6Al-4V fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Huang, Qianli; Hu, Ningmin; Yang, Xing; Zhang, Ranran; Feng, Qingling

    2016-12-01

    Selective laser melting (SLM) was used in fabricating the dense part from pre-alloyed Ti-6Al-4V powder. The microstructural evolution and inclusion formation of as-fabricated part were characterized in depth. The microstructure was characterized by features of columnar prior β grains and acicular martensite α'. High density defects such as dislocations and twins can be produced in SLM process. Investigations on the inclusions find out that hard alpha inclusion, amorphous CaO and microcrystalline Al2O3 are three main inclusions formed in SLM. The inclusions formed at some specific sites on melt pool surface. The microstructural evolution and inclusion formation of as-fabricated material are closely related to the SLM process.

  4. Fabrication of flexible grating sensing waveguide based on nano-imprint lithography and micro-replication process

    NASA Astrophysics Data System (ADS)

    Liu, Yueming; Tian, Weijian; Zhang, Shaojun

    2009-05-01

    Soft and flexible grating sensing waveguides is urgently demanded in application of micro-bending sensing and surface distortion sensing in medical catheter and smart skin sensing unit etc. Based on Nano-imprint Lithography and micro-replication process, polymer grating waveguides with core size 4μm×20μm and pitch 0.75μm are fabricated successfully in this paper. This novel grating waveguides is soft and flexible enough for related application and with the bio-medical safe feature when used in human body catheter. Fabricated processes are presented including the fabrication of micro mould and UV-replication process, and relative skills are discussed also in this paper.

  5. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications

  6. Significance of northeast-trending features in Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Hutchinson, Deborah; Jackson, H.R.; Houseknecht, David W.; Li, Q.; Shimeld, J.W.; Mosher, D.C.; Chian, D.; Saltus, Richard; Oakey, G.N.

    2017-01-01

    Synthesis of seismic velocity, potential field, and geological data from Canada Basin and its surrounding continental margins suggests that a northeast-trending structural fabric has influenced the origin, evolution, and current tectonics of the basin. This structural fabric has a crustal origin, based on the persistence of these trends in upward continuation of total magnetic intensity data and vertical derivative analysis of free-air gravity data. Three subparallel northeast-trending features are described. Northwind Escarpment, bounding the east side of the Chukchi Borderland, extends ∼600 km and separates continental crust of Northwind Ridge from high-velocity transitional crust in Canada Basin. A second, shorter northeast-trending zone extends ∼300 km in northern Canada Basin and separates inferred continental crust of Sever Spur from magmatically intruded crust of the High Arctic Large Igneous Province. A third northeast-trending feature, here called the Alaska-Prince Patrick magnetic lineament (APPL) is inferred from magnetic data and its larger regional geologic setting. Analysis of these three features suggests strike slip or transtensional deformation played a role in the opening of Canada Basin. These features can be explained by initial Jurassic-Early Cretaceous strike slip deformation (phase 1) followed in the Early Cretaceous (∼134 to ∼124 Ma) by rotation of Arctic Alaska with seafloor spreading orthogonal to the fossil spreading axis preserved in the central Canada Basin (phase 2). In this model, the Chukchi Borderland is part of Arctic Alaska.

  7. Significance of Northeast-Trending Features in Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Jackson, H. R.; Houseknecht, D. W.; Li, Q.; Shimeld, J. W.; Mosher, D. C.; Chian, D.; Saltus, R. W.; Oakey, G. N.

    2017-11-01

    Synthesis of seismic velocity, potential field, and geological data from Canada Basin and its surrounding continental margins suggests that a northeast-trending structural fabric has influenced the origin, evolution, and current tectonics of the basin. This structural fabric has a crustal origin, based on the persistence of these trends in upward continuation of total magnetic intensity data and vertical derivative analysis of free-air gravity data. Three subparallel northeast-trending features are described. Northwind Escarpment, bounding the east side of the Chukchi Borderland, extends ˜600 km and separates continental crust of Northwind Ridge from high-velocity transitional crust in Canada Basin. A second, shorter northeast-trending zone extends ˜300 km in northern Canada Basin and separates inferred continental crust of Sever Spur from magmatically intruded crust of the High Arctic Large Igneous Province. A third northeast-trending feature, here called the Alaska-Prince Patrick magnetic lineament (APPL) is inferred from magnetic data and its larger regional geologic setting. Analysis of these three features suggests strike slip or transtensional deformation played a role in the opening of Canada Basin. These features can be explained by initial Jurassic-Early Cretaceous strike slip deformation (phase 1) followed in the Early Cretaceous (˜134 to ˜124 Ma) by rotation of Arctic Alaska with seafloor spreading orthogonal to the fossil spreading axis preserved in the central Canada Basin (phase 2). In this model, the Chukchi Borderland is part of Arctic Alaska.

  8. Nanopatterned polymer brushes: conformation, fabrication and applications.

    PubMed

    Yu, Qian; Ista, Linnea K; Gu, Renpeng; Zauscher, Stefan; López, Gabriel P

    2016-01-14

    Surfaces with end-grafted, nanopatterned polymer brushes that exhibit well-defined feature dimensions and controlled chemical and physical properties provide versatile platforms not only for investigation of nanoscale phenomena at biointerfaces, but also for the development of advanced devices relevant to biotechnology and electronics applications. In this review, we first give a brief introduction of scaling behavior of nanopatterned polymer brushes and then summarize recent progress in fabrication and application of nanopatterned polymer brushes. Specifically, we highlight applications of nanopatterned stimuli-responsive polymer brushes in the areas of biomedicine and biotechnology.

  9. Nanopatterned polymer brushes: conformation, fabrication and applications

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Ista, Linnea K.; Gu, Renpeng; Zauscher, Stefan; López, Gabriel P.

    2015-12-01

    Surfaces with end-grafted, nanopatterned polymer brushes that exhibit well-defined feature dimensions and controlled chemical and physical properties provide versatile platforms not only for investigation of nanoscale phenomena at biointerfaces, but also for the development of advanced devices relevant to biotechnology and electronics applications. In this review, we first give a brief introduction of scaling behavior of nanopatterned polymer brushes and then summarize recent progress in fabrication and application of nanopatterned polymer brushes. Specifically, we highlight applications of nanopatterned stimuli-responsive polymer brushes in the areas of biomedicine and biotechnology.

  10. Single cell electroporation using proton beam fabricated biochips

    NASA Astrophysics Data System (ADS)

    Homhuan, S.; Zhang, B.; Sheu, F.-S.; Bettiol, A. A.; Watt, F.

    2010-05-01

    We report the design and fabrication of a novel single cell electroporation biochip fabricated by the Proton Beam Writing technique (PBW), a new technique capable of direct-writing high-aspect-ratio nano and microstructures. The biochip features nickel micro-electrodes with straight-side walls between which individual cells are positioned. By applying electrical impulses across the electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells. When the stain binds with DNA inside the cell nucleus, green fluorescence is observed upon excitation from a halogen lamp. Three parameters; electric field strength, pulse duration, and the number of pulses have been considered and optimized for the single cell electroporation. The results show that our biochip gives successfully electroporated cells . This single cell electroporation system represents a promising method for investigating the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.

  11. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  12. Sensor for Monitoring Nanodevice-Fabrication Plasmas

    NASA Technical Reports Server (NTRS)

    Bolshakov, Alexander

    2004-01-01

    The term plasma process diagnostics (PPD) refers to a spectroscopic technique and sensing hardware that have been proposed for monitoring plasma processes used to fabricate electronic devices that feature sizes as small as several nanometers. Nanometer dimensions are characteristic of the quantum level of miniaturization, where single impurity atoms or molecules can drastically change the local properties of the nanostructures. Such changes may be purposely used in nanoscale design but may also be extremely damaging or cause improper operation of the fabricated devices. Determination of temperature and densities of reactants near the developing features is important, since the structural synthesis is affected by characteristics of the local microenvironment. Consequently, sensors capable of nonintrusive monitoring with high sensitivity and high resolution are essential for real-time atomistic control of reaction kinetics and minimizing trace contamination in plasma processes used to fabricate electronic nanodevices. Such process-monitoring sensors are required to be compact, multiparametric, and immune to the harsh environments of processing plasmas. PPD is intended to satisfy these requirements. The specific technique used to implement plasma diagnostics with a PPD sensor would be an advanced version of continuous-wave cavity-ringdown spectroscopy (CW-CRDS) capable of profiling spectral line broadenings in order to derive both Doppler and Stark components. CRDS is based on measurements of the rate of absorption of laser light in an optical resonator. The ultimate sensitivity results from a very long absorption path length within the cavity and immunity to variations in incident laser intensity. The proposed version of this technique would involve the use of multiplexing tunable laser diodes and an actively modulated high-reflectivity optical resonator, thus offering a synergistic combination of simplicity, compactness, high sensitivity, and high resolution. The

  13. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications.

    PubMed

    Castles, F; Day, F V; Morris, S M; Ko, D-H; Gardiner, D J; Qasim, M M; Nosheen, S; Hands, P J W; Choi, S S; Friend, R H; Coles, H J

    2012-05-13

    A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

  14. The tectonic fabric of the ocean basins

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Müller, R. Dietmar; Wessel, Paul; Whittaker, Joanne M.

    2011-12-01

    We present a global community data set of fracture zones (FZs), discordant zones, propagating ridges, V-shaped structures and extinct ridges, digitized from vertical gravity gradient (VGG) maps. We use a new semi-automatic FZ tracking program to test the precision of our hand-digitized traces and find a Mean Absolute Deviation of less than 3.4 km from the raw VGG minima that most clearly delineate each feature, and less than 5.4 km from the FZ location predicted by fitting model profiles to the VGG data that represent the morphology of the individual FZs. These offsets are small considering gravity data only provide an approximation for the underlying basement morphology. We further investigate the origin of non-FZ seafloor fabric by combining published abyssal hill heights computed from gravity anomalies with global half-spreading rates. A residual abyssal hill height grid, with spreading rate effects removed, combined with our interpreted tectonic fabric reveals several types of seafloor fabric distinct from typical abyssal hills. Where discordant zones do not overprint abyssal hill signals, residual abyssal hill height anomalies correspond to seafloor that accreted near mantle thermal anomalies or zones of melt-depletion. Our analysis reveals several areas where residual abyssal hill height anomalies reflect pseudo-faults and extinct ridges associated with ridge propagation and/or microplate formation in the southern Pacific Ocean.

  15. Documentation of program AFTBDY to generate coordinate system for 3D after body using body fitted curvilinear coordinates, part 1

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.

  16. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.

    2010-03-11

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised.more » For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.« less

  17. Fabrication and characterization of ordered arrays of nanostructures

    NASA Astrophysics Data System (ADS)

    Larson, Preston

    2005-11-01

    Nanostructures are currently of great interest because of their unique properties and potential applications in a wide range of areas such as opto-electronic and biomedical devices. Current research in nanotechnology involves fabrication and characterization of these structures, as well as theoretical and experimental studies to explore their unique and novel properties. Not only do nanostructures have the potential to be both evolutionary (state-of-the-art ICs have more and more features on the nanoscale) but revolutionary (quantum computing) as well. In this thesis, a combination of bottom-up and top-down approaches is explored to fabricate ordered arrays of nanostrucutures. The bottom-up approach involves the growth of self-organized porous anodic aluminum oxide (AAO) films. AAO films consist of a well ordered hexagonal array of close-packed pores with diameters and spacings ranging from around 5 to 500 nm. Via a top-down approach, these AAO films are then used as masks or templates to fabricate ordered arrays of nanostructures (i.e. dots, holes, meshes, pillars, rings, etc.) of various materials using conventional deposition and/or etching techniques. Using AAO films as masks allows a simple and economical method to fabricate arrays of structures with nano-scale dimensions. Furthermore, they allow the fabrication of large areas (many millimeters on a side) of highly uniform and well-ordered arrays of nanostructures, a crucial requirement for most characterization techniques and applications. Characterization of these nanostructures using various techniques (electron microscopy, atomic force microscopy, UV-Vis absorption spectroscopy, photoluminescence, capacitance-voltage measurements, magnetization hysteresis curves, etc.) will be presented. Finally, these structures provide a unique opportunity to determine the single and collective properties of nanostructure arrays and will have various future applications including but not limited to: data storage, light

  18. Digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education

    NASA Astrophysics Data System (ADS)

    Tillman, Daniel

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital

  19. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray

    PubMed Central

    Ramirez, Lisa S.; Wang, Jun

    2016-01-01

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370

  20. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.

    PubMed

    Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao

    2017-11-28

    Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

  1. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    PubMed

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications.

  2. Fabrication methods for mesoscopic flying vehicle

    NASA Astrophysics Data System (ADS)

    Cheng, Yih-Lin

    2001-10-01

    Small-scale flying vehicles are attractive tools for atmospheric science research. A centimeter-size mesoscopic electric helicopter, the mesicopter, has been developed at Stanford University for these applications. The mesoscopic scale implies a design with critical features between tens of microns and several millimeters. Three major parts in the mesicopter are challenging to manufacture. Rotors require smooth 3D surfaces and a blade thickness of less than 100 mum. Components in the DC micro-motor must be made of engineering materials, which is difficult on the mesoscopic scale. Airframe fabrication has to integrate complex 3D geometry into one single structure at this scale. In this research, material selection and manufacturing approaches have been investigated and implemented. In rotor fabrication, high-strength polymers manufactured by the Shape Deposition Manufacturing (SDM) technique were the top choice. Aluminum alloys were only considered as the second choice because the fabrication process is more involved. Lift tests showed that the 4-blade polymer and aluminum rotors could deliver about 90% of the expected lift (4g). To explain the rotor performance, structural analyses of spinning rotors were performed and the fabricated geometry was investigated. The bending deflections and the torsional twists were found to be too small to degrade aerodynamic performance. The rotor geometry was verified by laser scanning and by cross-section observations. Commercially available motors are used in the prototypes but a smaller DC micro-motor was designed for future use. Components of the DC micro-motors were fabricated by the Mesoscopic Additive/Subtractive Material Processing technique, which is capable of shaping engineering materials on the mesoscopic scale. The approaches are described in this thesis. The airframe was manufactured using the SDM process, which is capable of building complex parts without assembly. Castable polymers were chosen and mixed with glass

  3. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

    DOE PAGES

    Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran

    2015-08-14

    Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 μm, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devicesmore » were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.« less

  4. Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications

    PubMed Central

    Estrada, David; Bashir, Rashid; King, William P.

    2015-01-01

    Graphene nanoribbons (GNRs) have promising applications in future nanoelectronics, chemical sensing and electrical interconnects. Although there are quite a few GNR nanofabrication methods reported, a rapid and low-cost fabrication method that is capable of fabricating arbitrary shapes of GNRs with good-quality is still in demand for using GNRs for device applications. In this paper, we present a tip-based nanofabrication method capable of fabricating arbitrary shapes of GNRs. A heated atomic force microscope (AFM) tip deposits polymer nanowires atop a CVD-grown graphene surface. The polymer nanowires serve as an etch mask to define GNRs through one step of oxygen plasma etching similar to a photoresist in conventional photolithography. Various shapes of GNRs with either linear or curvilinear features are demonstrated. The width of the GNR is around 270 nm and is determined by the width of the depositing polymer nanowire, which we estimate can be scaled down 15 nms. We characterize our TBN-fabricated GNRs using Raman spectroscopy and I-V measurements. The measured sheet resistances of our GNRs fall within the range of 1.65 kΩ/□−1 – 2.64 kΩ/□−1, in agreement with previously reported values. Furthermore, we determined the high-field breakdown current density of GNRs to be approximately 2.94×108 A/cm2. This TBN process is seamlessly compatible with existing nanofabrication processes, and is particularly suitable for fabricating GNR based electronic devices including next generation DNA sequencing technologies and beyond silicon field effect transistors. PMID:26257891

  5. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  6. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  7. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    NASA Astrophysics Data System (ADS)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  8. Antisocial features and "faking bad": A critical note.

    PubMed

    Niesten, Isabella J M; Nentjes, Lieke; Merckelbach, Harald; Bernstein, David P

    2015-01-01

    We critically review the literature on antisocial personality features and symptom fabrication (i.e., faking bad; e.g., malingering). A widespread assumption is that these constructs are intimately related. Some studies have, indeed, found that antisocial individuals score higher on instruments detecting faking bad, but others have been unable to replicate this pattern. In addition, studies exploring whether antisocial individuals are especially talented in faking bad have generally come up with null results. The notion of an intrinsic link between antisocial features and faking bad is difficult to test and research in this domain is sensitive to selection bias. We argue that research on faking bad would profit from further theoretical articulation. One topic that deserves scrutiny is how antisocial features affect the cognitive dissonance typically induced by faking bad. We illustrate our points with preliminary data and discuss their implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mutual coupling, channel model, and BER for curvilinear antenna arrays

    NASA Astrophysics Data System (ADS)

    Huang, Zhiyong

    interferers, Doppler spread and convergence are investigated. The tracking mode is introduced to the adaptive array system, and it further improves the BER. The benefit of using faster data rate (wider bandwidth) is discussed. In order to have better performance in a 3D space, the geometries of uniform spherical array (USAs) are presented and different configurations of USAs are discussed. The LMS algorithm based on temporal a priori information is applied to UCAs and USAs to beamform the patterns. Their performances are compared based on simulation results. Based on the analytical and simulation results, it can be concluded that mutual coupling slightly influences the performance of the adaptive array in communication systems. In addition, arrays with curvilinear geometries perform well in AWGN and fading channels.

  10. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  11. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  12. Appearance of low signal intensity lines in MRI of silicone breast implants.

    PubMed

    Stroman, P W; Rolland, C; Dufour, M; Grondin, P; Guidoin, R G

    1996-05-01

    Magnetic resonance (MR) images of five explanted mammary prostheses were obtained with a 1.5 T GE Signa system using a conventional spin-echo pulse sequence, in order to investigate the low-intensity curvilinear lines which may be observed in MR images of silicone gel-filled breast implants under pressure from fibrous capsules. MR images showed ellipsoid prostheses, often containing multiple low-intensity curvilinear lines which in some cases presented an appearance very similar to that of the linguine sign. Upon opening the fibrous capsules, however, all of the prostheses were found to be completely intact demonstrating that the appearance of multiple low signal intensity curvilinear lines in MR images of silicone gel-filled prostheses is not necessarily a sign of prosthesis rupture. The MR image features which are specific to the linguine sign must be more precisely defined.

  13. Ultrafast third-harmonic spectroscopy of single nanoantennas fabricated using helium-ion beam lithography

    NASA Astrophysics Data System (ADS)

    Kollmann, H.; Esmann, M.; Becker, S. F.; Piao, X.; Huynh, C.; Kautschor, L.-O.; Bösker, G.; Vieker, H.; Beyer, A.; Gölzhäuser, A.; Park, N.; Silies, M.; Lienau, C.

    2016-03-01

    Metallic nanoantennas are able to spatially localize far-field electromagnetic waves on a few nanometer length scale in the form of surface plasmon excitations 1-3. Standard tools for fabricating bowtie and rod antennas with sub-20 nm feature sizes are Electron Beam Lithography or Ga-based Focused Ion Beam (FIB) Milling. These structures, however, often suffer from surface roughness and hence show only a limited optical polarization contrast and therefore a limited electric field localization. Here, we combine Ga- and He-ion based milling (HIM) for the fabrication of gold bowtie and rod antennas with gap sizes of less than 6 nm combined with a high aspect ratio. Using polarization-sensitive Third-Harmonic (TH) spectroscopy, we compare the nonlinear optical properties of single HIM-antennas with sub-6-nm gaps with those produced by standard Ga-based FIB. We find a pronounced enhancement of the total TH intensity of more than three in comparison to Ga-FIB antennas and a highly improved polarization contrast of the TH intensity of 250:1 for Heion produced antennas 4. These findings combined with Finite-Element Method calculations demonstrate a field enhancement of up to one hundred in the few-nanometer gap of the antenna. This makes He-ion beam milling a highly attractive and promising new tool for the fabrication of plasmonic nanoantennas with few-nanometer feature sizes.

  14. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung Ryu, Yu; Garcia, Ricardo, E-mail: r.garcia@csic.es; Aitor Postigo, Pablo

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained withmore » a top-down lithography method.« less

  15. Fabrication of highly efficient ZnO nanoscintillators

    NASA Astrophysics Data System (ADS)

    Procházková, Lenka; Gbur, Tomáš; Čuba, Václav; Jarý, Vítězslav; Nikl, Martin

    2015-09-01

    Photo-induced synthesis of high-efficiency ultrafast nanoparticle scintillators of ZnO was demonstrated. Controlled doping with Ga(III) and La(III) ions together with the optimized method of ZnO synthesis and subsequent two-step annealing in air and under reducing atmosphere allow to achieve very high intensity of UV exciton luminescence, up to 750% of BGO intensity magnitude. Fabricated nanoparticles feature extremely short sub-nanosecond photoluminescence decay times. Temperature dependence of the photoluminescence spectrum within 8-340 K range was investigated and shows the absence of visible defect-related emission within all temperature intervals.

  16. Effect of Surface Treatments on Electron Beam Freeform Fabricated Aluminum Structures

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Hafley, Robert A.; Fahringer, David T.; Martin, Richard E.

    2004-01-01

    Electron beam freeform fabrication (EBF3) parts exhibit a ridged surface finish typical of many layer-additive processes. This, post-processing is required to produce a net shape with a smooth surface finish. High speed milling wire electrical discharge machining (EDM), electron beam glazing, and glass bead blasting were performed on EBF3-build 2219 aluminum alloy parts to reduce or eliminate the ridged surface features. Surface roughness, surface residual stress state, and microstructural characteristics were examined for each of the different surface treatment to assess the quality and effect of the surface treatments on the underlying material. The analysis evaluated the effectivenes of the different surface finishing techniques for achieving a smooth surface finish on an electron beam freeform fabricated part.

  17. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  18. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  19. Method for the fabrication of three-dimensional microstructures by deep X-ray lithography

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-04-05

    A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.

  20. Effect of processing on structural features of anodic aluminum oxides

    NASA Astrophysics Data System (ADS)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  1. Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Huang, Ying; Wu, Can; Mao, Leidong; Wang, Yue; Xie, Zhicheng; Liu, Caixia; Zhang, Yugang

    2017-10-01

    We demonstrated a flexible and reversibly deformable radio-frequency antenna based on SWCNTs/PANI/Lycra conductive fabric and semipermeable film for wireless wearable communications applications. The conductive fabric fabricated by using the ‘dip and dry’ process exhibits good flexibility, electrical stability, stretchability and mechanical properties, and a high electrical conductivity (with low sheet resistance of ˜35 Ω/sq) was obtained based on the SWCNTs/PANI synergistic conductive network. The morphology of the semipermeable film was investigated to further illustrate the waterproof breathable features. Meanwhile, the modeling, fabrication procedure and radiating properties of the radio-frequency textile antenna worked at 2.45 GHz were systematically illustrated. The measured reflection coefficient, VSWR and the -10 dB bandwidth is ˜-18.6 dB, 1.58 and ˜270 MHz respectively, which agreed well with the simulation results. Furthermore, the results indicate that the design methodology for the radio-frequency textile antenna could have promising applications in flexible and reversibly deformable antennas for wearable wireless communications systems.

  2. Characterization, modeling and simulation of fused deposition modeling fabricated part surfaces

    NASA Astrophysics Data System (ADS)

    Taufik, Mohammad; Jain, Prashant K.

    2017-12-01

    Surface roughness is generally used for characterization, modeling and simulation of fused deposition modeling (FDM) fabricated part surfaces. But the average surface roughness is not able to provide the insight of surface characteristics with sharp peaks and deep valleys. It deals in the average sense for all types of surfaces, including FDM fabricated surfaces with distinct surface profile features. The present research work shows that kurtosis and skewness can be used for characterization, modeling and simulation of FDM surfaces because these roughness parameters have the ability to characterize a surface with sharp peaks and deep valleys. It can be critical in certain application areas in tribology and biomedicine, where the surface profile plays an important role. Thus, in this study along with surface roughness, skewness and kurtosis are considered to show a novel strategy to provide new transferable knowledge about FDM fabricated part surfaces. The results suggest that the surface roughness, skewness and kurtosis are significantly different at 0° and in the range (0°, 30°], [30°, 90°] of build orientation.

  3. Fabrication of artificial gemstones from glasses: From waste to jewelry

    NASA Astrophysics Data System (ADS)

    Srisittipokakun, N.; Ruangtaweep, Y.; Horprathum, M.; Kaewkhao, J.

    2014-09-01

    In this review, several aspects of artificial gemstones from glasses have been addressed from the advantages, the fabrication process, the coloration, their properties and finally the use of RHA as the glass former for the simulant gemstones. The silica sources for preparation of glasses were locally obtained from sand and biomass ashes in Thailand. The refractive index, density and hardness values of the glass gemstones reported in these researches had been meet the standard of EU-regulation for crystal. The glass gemstones were fabricated in a variety of colors with some special features such as color changing when exposed under different light sources. Barium was used instead of lead to increase the density and refractive index of the glasses. The developments of high refractive index lead-free glasses are also leave non-toxically impact to our environment.

  4. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  5. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  6. Fabrication of nanostructured electrodes and interfaces using combustion CVD

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La 0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Ocm2 at 700°C) and high power densities (i.e. 481 mW/cm2 at 800°C) were generated at operating temperature range of 600°C--850°C. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200--500°C and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well

  7. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  8. Nuclear Fabrication Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectivelymore » engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication

  9. Fabrication of MEMS components using ultrafine-grained aluminium alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Xiao Guang; Gao, Nong; Moktadir, Zakaria; Kraft, Michael; Starink, Marco J.

    2010-04-01

    A novel process for the fabrication of a microelectromechanical systems (MEMS) metallic component with features smaller than 10 µm and high thermal conductivity was investigated. This may be applied to new or improved microscale components, such as (micro-) heat exchangers. In the first stage of processing, equal channel angular pressing (ECAP) was employed to refine the grain size of commercial purity aluminium (Al-1050) to the ultrafine-grained (UFG) material. Embossing was conducted using a micro silicon mould fabricated by deep reactive ion etching (DRIE). Both cold embossing and hot embossing were performed on the coarse-grained and UFG Al-1050. Cold embossing on UFG Al-1050 led to a partially transferred pattern from the micro silicon mould and high failure rate of the mould. Hot embossing on UFG Al-1050 provided a smooth embossed surface with a fully transferred pattern and a low failure rate of the mould, while hot embossing on the coarse-grained Al-1050 resulted in a rougher surface with shear bands.

  10. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  11. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  12. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution

    NASA Astrophysics Data System (ADS)

    Derby, Brian

    2010-08-01

    Inkjet printing is viewed as a versatile manufacturing tool for applications in materials fabrication in addition to its traditional role in graphics output and marking. The unifying feature in all these applications is the dispensing and precise positioning of very small volumes of fluid (1-100 picoliters) on a substrate before transformation to a solid. The application of inkjet printing to the fabrication of structures for structural or functional materials applications requires an understanding as to how the physical processes that operate during inkjet printing interact with the properties of the fluid precursors used. Here we review the current state of understanding of the mechanisms of drop formation and how this defines the fluid properties that are required for a given liquid to be printable. The interactions between individual drops and the substrate as well as between adjacent drops are important in defining the resolution and accuracy of printed objects. Pattern resolution is limited by the extent to which a liquid drop spreads on a substrate and how spreading changes with the overlap of adjacent drops to form continuous features. There are clearly defined upper and lower bounds to the width of a printed continuous line, which can be defined in terms of materials and process variables. Finer-resolution features can be achieved through appropriate patterning and structuring of the substrate prior to printing, which is essential if polymeric semiconducting devices are to be fabricated. Low advancing and receding contact angles promote printed line stability but are also more prone to solute segregation or “coffee staining” on drying.

  13. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  14. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    NASA Astrophysics Data System (ADS)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  15. Self-Regulation of Visual Attention and Facial Expression of Emotions in ADHD Children

    ERIC Educational Resources Information Center

    Kuhle, Hans J.; Kinkelbur, Jorg; Andes, Kerstin; Heidorn, Fridjof M.; Zeyer, Solveigh; Rautzenberg, Petra; Jansen, Fritz

    2007-01-01

    Objective: To test if visual focusing and mimic display as features of self-regulation in ADHD children show a curvilinear relation to rising methylphenidate (MPH) doses. To test if small dose steps of 2.5mg MPH cause significant changes in behavior. And to test the relation of these features to intellectual performance, parents' ratings, and…

  16. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  17. A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor

    2017-01-01

    We report on a top-down method for the controlled fabrication of three-dimensional (3D), closed, thin-shelled, hollow nanostructures (nanocages) on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU). The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.

  18. Evolution and Control of 2219 Aluminum Microstructural Features Through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  19. High Tensile Strength Amalgams for In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.

  20. Fabrication technology

    NASA Astrophysics Data System (ADS)

    1988-05-01

    Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.

  1. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  2. Arrays of ferromagnetic nanorings with variable thickness fabricated by capillary force lithography.

    PubMed

    Lee, Su Yeon; Jeong, Jong-Ryul; Kim, Shin-Hyun; Kim, Sarah; Yang, Seung-Man

    2009-11-03

    A new promising strategy is reported for the fabrication of ferromagnetic nanoring arrays with novel geometrical features through the use of capillary force lithography and subsequent reactive ion etching. In particular, we fabricated two different types of elliptic rings with variable width and height: one with pinching zones near the major axes and the other with pinching zones near the minor axes. We used PDMS stamps with either elliptic hole or antihole arrays for creating these elliptic rings with variable thickness by virtue of the uneven capillary rise, which was induced by the distributed Laplace pressure around the walls of elliptic holes or antiholes with nonuniform local curvatures. We transferred the polymer ring patterns to array of elliptical NiFe rings by Ar ion milling and characterized magnetic properties in terms of nonuniform ring width using magnetic force microscopy measurements. Our results demonstrated that the magnetic domain wall can be positioned in a controlled manner by using these novel elliptical ferromagnetic rings with local pinching zones and that the proposed CFL method can be utilized as a simple and effective fabrication tool.

  3. Wavelength-Tunable IR Detector based on Suspended Bilayer Graphene Micro Ribbons

    DTIC Science & Technology

    2013-11-05

    Substrates: Reduced Etching via Suppressed Catalytic Hydrogenation Using C2H4,” Chemistry of Materials , DOI : 10.1021/cm402052z (2013) 3. K. Kumar...studied the lesser known photophysics in CVD material . To this end we designed, fabricated, and characterized in Year One a device with suspended...optimization, we have discovered a new growth mode of two-lobed symmetrical curvilinear graphene domains. After optimization the CVD material quality was

  4. Bifacial Perovskite Solar Cells Featuring Semitransparent Electrodes.

    PubMed

    Hanmandlu, Chintam; Chen, Chien-Yu; Boopathi, Karunakara Moorthy; Lin, Hao-Wu; Lai, Chao-Sung; Chu, Chih-Wei

    2017-09-27

    Inorganic-organic hybrid perovskite solar cells (PSCs) are promising devices for providing future clean energy because of their low cost, ease of fabrication, and high efficiencies, similar to those of silicon solar cells. These materials have been investigated for their potential use in bifacial PSCs, which can absorb light from both sides of the electrodes. Here, we fabricated bifacial PSCs featuring transparent BCP/Ag/MoO 3 rear electrodes, which we formed through low-temperature processing using thermal evaporation methods. We employed a comprehensive optical distribution program to calculate the distributions of the optical field intensities with constant thicknesses of the absorbing layer in the top electrode configuration. The best PSC having a transparent BCP/Ag/MoO 3 electrode achieved PCEs of 13.49% and 9.61% when illuminated from the sides of the indium tin oxide and BCP/Ag/MoO 3 electrodes, respectively. We observed significant power enhancement when operating this PSC using mirror reflectors and bifacial light illumination from both sides of the electrodes.

  5. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  6. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics.

  7. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  8. CMUT Fabrication Based On A Thick Buried Oxide Layer.

    PubMed

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O; Khuri-Yakub, Butrus T

    2010-10-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.

  9. CMUT Fabrication Based On A Thick Buried Oxide Layer

    PubMed Central

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O.; Khuri-Yakub, Butrus T.

    2010-01-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required – in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate. PMID:22685377

  10. Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Bruckner, Robert; DellaCorte, Christopher; Edmonds, Brian; Prahl, Joseph

    2008-01-01

    A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-top cycles are performed on the bearing at a temperature of 425 C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.

  11. Improvements in Cold-Plate Fabrication

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia

    2012-01-01

    Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.

  12. Engineering fabrics in transportation construction

    NASA Astrophysics Data System (ADS)

    Herman, S. C.

    1983-11-01

    The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.

  13. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    PubMed

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  14. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    PubMed Central

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-01-01

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining. PMID:28788558

  15. Fabrication of microgrooves with excimer laser ablation techniques for plastic optical fiber array alignment purposes

    NASA Astrophysics Data System (ADS)

    Naessens, Kris; Van Hove, An; Coosemans, Thierry; Verstuyft, Steven; Ottevaere, Heidi; Vanwassenhove, Luc; Van Daele, Peter; Baets, Roel G.

    2000-06-01

    Laser ablation is extremely well suited for rapid prototyping and proves to be a versatile technique delivering high accuracy dimensioning and repeatability of features in a wide diversity of materials. In this paper, we present laser ablation as a fabrication method for micro machining in of arrays consisting of precisely dimensioned U-grooves in dedicated polycarbonate and polymethylmetacrylate plates. The dependency of the performance on various parameters is discussed. The fabricated plates are used to hold optical fibers by means of a UV-curable adhesive. Stacking and gluing of the plates allows the assembly of a 2D connector of plastic optical fibers for short distance optical interconnects.

  16. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    PubMed

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  17. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    NASA Astrophysics Data System (ADS)

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

  18. Rapid and inexpensive fabrication of polymeric microfluidic devices via toner transfer masking

    PubMed Central

    Easley, Christopher J.; Benninger, Richard K. P.; Shaver, Jesse H.; Head, W. Steven; Piston, David W.

    2009-01-01

    Summary An alternative fabrication method is presented for production of masters for single- or multilayer polymeric microfluidic devices in a standard laboratory environment, precluding the need for a cleanroom. This toner transfer masking (TTM) method utilizes an office laser printer to generate a toner pattern which is thermally transferred to a metal master to serve as a mask for etching. With master fabrication times as little as one hour (depending on channel depth) using commercially-available equipment and supplies, this approach should make microfluidic technology more widely accessible to the non-expert—even the non-scientist. The cost of fabrication consumables was estimated to be < $1 per master, over an order of magnitude decrease in consumable costs compared to standard photolithography. In addition, the use of chemical etching allows accurate control over the height of raised features (i.e., channel depths), allowing the flexibility to fabricate multiple depths on a single master with little added time. Resultant devices are shown capable of pneumatic valving, three-dimensional channel formation (using layer-connecting vias), droplet fluidics, and cell imaging and staining. The multiple-depth capabilities of the method are proven useful for cellular analysis by fabrication of handheld, disposable devices used for trapping and imaging of live murine pancreatic islets. The precise fluidic control provided by the microfluidic platform allows subsequent fixing and staining of these cells without significant movement, thus spatial correlation of imaging and staining is attainable—even with rare alpha cells that constitute only ∼10% of the islet cells. PMID:19350094

  19. High Efficient THz Emission From Unbiased and Biased Semiconductor Nanowires Fabricated Using Electron Beam Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balci, Soner; Czaplewski, David A.; Jung, Il Woong

    Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As amore » result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.« less

  20. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  1. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    PubMed

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  2. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  3. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  4. A novel method for the fabrication of microfluidic devices by photopolymerization of polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Forstater, Jacob; Augustine, Brian; Hughes, Chris

    2006-11-01

    We have developed a new technique for the rapid fabrication of structures useful for microfluidic devices called micromolding by photopolymerization in capillaries (μ-PIC). The technique involves the replication of features from a silicon master in which features on the order of tens to hundreds of microns have been formed by crystallographic etching. The negative of the features is then transferred to a sheet of polymethylmethacrylate (PMMA) by placing the PMMA sheet over the silicon master and injecting a solution of methylmethacrylate monomer with a benzoin methyl ether photoinitiator. This solution is drawn between the PMMA and the silicon by capillary action forming a liquid layer that is no more than a few hundred microns thick. This liquid is then polymerized by exposure to ultraviolet light for less than a half hour. The features transferred in this manner have nearly identical surface structure and roughness. Analysis of these surfaces and structures by atomic force microscopy and scanning electron microscopy will be presented.

  5. Structure and yarn sensor for fabric

    DOEpatents

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  6. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.

    2003-12-01

    We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresistmore » top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.« less

  7. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering.

    PubMed

    Mondrinos, Mark J; Dembzynski, Robert; Lu, Lin; Byrapogu, Venkata K C; Wootton, David M; Lelkes, Peter I; Zhou, Jack

    2006-09-01

    Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer and fabricated with a commercially available DDP machine. Scaffolds composed of either pure polycaprolactone (PCL) or homogeneous composites of PCL and calcium phosphate (CaP, 10% or 20% w/w) were subsequently fabricated by injection molding of molten polymer-ceramic composites, followed by porogen dissolution with ethanol. Scaffold pore sizes, as small as 200 microm, were attainable using the indirect (porogen-based) method. Scaffold structure and porosity were analyzed by scanning electron microscopy (SEM) and microcomputed tomography, respectively. We characterized the compressive strength of 90:10 and 80:20 PCL-CaP composite materials (19.5+/-1.4 and 24.8+/-1.3 Mpa, respectively) according to ASTM standards, as well as pure PCL scaffolds (2.77+/-0.26 MPa) fabricated using our process. Human embryonic palatal mesenchymal (HEPM) cells attached and proliferated on all scaffolds, as evidenced by fluorescent nuclear staining with Hoechst 33258 and the Alamar Blue assay, with increased proliferation observed on 80:20 PCL-CaP scaffolds. SEM revealed multilayer assembly of HEPM cells on 80:20 PCL-CaP composite, but not pure PCL, scaffolds. In summary, we have developed an SFF-based injection molding process for the fabrication of PCL and PCL-CaP scaffolds that display in vitro cytocompatibility and suitable mechanical properties for hard tissue repair.

  8. Design and fabrication of GaAs OMIST photodetector

    NASA Astrophysics Data System (ADS)

    Kang, Xuejun; Lin, ShiMing; Liao, Qiwei; Gao, Junhua; Liu, Shi'an; Cheng, Peng; Wang, Hongjie; Zhang, Chunhui; Wang, Qiming

    1998-08-01

    We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of AlAs layer that is grown by MBE forms the Ultra- Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage Vs, sufficient incident light can switch OMIST from high impedance low current 'off' state to low impedance high current 'on' state. The absorbing material of OMIST is GaAS, so if the wavelength of incident light within 600 to approximately 850 nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

  9. PZT Films Fabricated by Metal Organic Decomposition Method

    NASA Astrophysics Data System (ADS)

    Sobolev, Vladimir; Ishchuk, Valeriy

    2014-03-01

    High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.

  10. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  11. Soft lithography using perfluorinated polyether molds and PRINT technology for fabrication of 3-D arrays on glass substrates

    NASA Astrophysics Data System (ADS)

    Wiles, Kenton B.; Wiles, Natasha S.; Herlihy, Kevin P.; Maynor, Benjamin W.; Rolland, Jason P.; DeSimone, Joseph M.

    2006-03-01

    The fabrication of nanometer size structures and complex devices for microelectronics is of increasing importance so as to meet the challenges of large-scale commercial applications. Soft lithography typically employs elastomeric polydimethylsiloxane (PDMS) molds to replicate micro- and nanoscale features. However, the difficulties of PDMS for nanoscale fabrication include inherent incompatibility with organic liquids and the production of a residual scum or flash layer that link features where the nano-structures meet the substrate. An emerging technologically advanced technique known as Pattern Replication in Non-wetting Templates (PRINT) avoids both of these dilemmas by utilizing photocurable perfluorinated polyether (PFPE) rather than PDMS as the elastomeric molding material. PFPE is a liquid at room temperature that exhibits low modulus and high gas permeability when cured. The highly fluorinated PFPE material allows for resistance to swelling by organic liquids and very low surface energies, thereby preventing flash layer formation and ease of separation of PFPE molds from the substrates. These enhanced characteristics enable easy removal of the stamp from the molded material, thereby minimizing damage to the nanoscale features. Herein we describe that PRINT can be operated in two different modes depending on whether the objects to be molded are to be removed and harvested (i.e. to make shape specific organic particles) or whether scum free objects are desired which are adhered onto the substrate (i.e. for scum free pattern generation using imprint lithography). The former can be achieved using a non-reactive, low surface energy substrate (PRINT: Particle Replication in Non-wetting Templates) and the latter can be achieved using a reactive, low surface energy substrate (PRINT: Pattern Replication in Non-wetting Templates). We show that the PRINT technology can been used to fabricate nano-particle arrays covalently bound to a glass substrate with no scum layer

  12. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.

    2016-01-01

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  13. Structure and yarn sensor for fabric

    DOEpatents

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  14. Backscattered electron simulations to evaluate sensitivity against electron dosage of buried semiconductor features

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Thiel, Bradley

    2018-03-01

    In fabrication, overlay measurements of semiconductor device patterns have conventionally been performed using optical methods. Beginning with image-based techniques using box-in-box to the more recent diffraction-based overlay (DBO). Alternatively, use of SEM overlay is under consideration for in-device overlay. Two main application spaces are measurement features from multiple mask levels on the same surface and buried features. Modern CD-SEMs are adept at measuring overlay for cases where all features are on the surface. In order to measure overlay of buried features, HV-SEM is needed. Gate-to-fin and BEOL overlay are important use cases for this technique. A JMONSEL simulation exercise was performed for these two cases using 10 nm line/space gratings of graduated increase in depth of burial. Backscattered energy loss results of these simulations were used to calculate the sensitivity measurements of buried features versus electron dosage for an array of electron beam voltages.

  15. 1.5 nm fabrication of test patterns for characterization of metrological systems

    DOE PAGES

    Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; ...

    2015-11-06

    Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less

  16. 3D printing scanning electron microscopy sample holders: A quick and cost effective alternative for custom holder fabrication.

    PubMed

    Meloni, Gabriel N; Bertotti, Mauro

    2017-01-01

    A simple and cost effective alternative for fabricating custom Scanning Electron Microscope (SEM) sample holders using 3D printers and conductive polylactic acid filament is presented. The flexibility of the 3D printing process allowed for the fabrication of sample holders with specific features that enable the high-resolution imaging of nanoelectrodes and nanopipettes. The precise value of the inner semi cone angle of the nanopipettes taper was extracted from the acquired images and used for calculating their radius using electrochemical methods. Because of the low electrical resistivity presented by the 3D printed holder, the imaging of non-conductive nanomaterials, such as alumina powder, was found to be possible. The fabrication time for each sample holder was under 30 minutes and the average cost was less than $0.50 per piece. Despite being quick and economical to fabricate, the sample holders were found to be sufficiently resistant, allowing for multiple uses of the same holder.

  17. 3D printing scanning electron microscopy sample holders: A quick and cost effective alternative for custom holder fabrication

    PubMed Central

    Bertotti, Mauro

    2017-01-01

    A simple and cost effective alternative for fabricating custom Scanning Electron Microscope (SEM) sample holders using 3D printers and conductive polylactic acid filament is presented. The flexibility of the 3D printing process allowed for the fabrication of sample holders with specific features that enable the high-resolution imaging of nanoelectrodes and nanopipettes. The precise value of the inner semi cone angle of the nanopipettes taper was extracted from the acquired images and used for calculating their radius using electrochemical methods. Because of the low electrical resistivity presented by the 3D printed holder, the imaging of non-conductive nanomaterials, such as alumina powder, was found to be possible. The fabrication time for each sample holder was under 30 minutes and the average cost was less than $0.50 per piece. Despite being quick and economical to fabricate, the sample holders were found to be sufficiently resistant, allowing for multiple uses of the same holder. PMID:28753638

  18. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  19. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  20. Enhanced Line Integral Convolution with Flow Feature Detection

    NASA Technical Reports Server (NTRS)

    Lane, David; Okada, Arthur

    1996-01-01

    The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.

  1. Design and fabrication of absorber coupled TES microbolometers on continuous silicon-nitride windows.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C. L.; Carlstrom, J. E.; Datesman, A.

    2008-04-01

    The implementation of TES based microbolometer arrays will achieve unprecedented sensitivities for mm and sub-mm astronomy through fabrication of large format arrays and improved linearity and stability arising from strong electro-thermal feedback. We report on progress in developing TES microbolometers using Mo/Au thin films and Au absorbing structures. We present measurements of suppressing the thermal conductance through the etching of features on a continuous Silicon-Nitride window.

  2. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  3. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  4. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  5. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  6. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  7. Fabrication of planarised conductively patterned diamond for bio-applications.

    PubMed

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Linking magnetic fabric and cumulate texture in layered mafic-ultramafic intrusions (Invited)

    NASA Astrophysics Data System (ADS)

    O Driscoll, B.; Stevenson, C.; Magee, C.

    2013-12-01

    Research on the magnetic fabrics of igneous rocks, pioneered by Balsley and Buddington[1] and Khan[2], has greatly contributed to our understanding of magma dynamics in lava flows, sheet intrusions and plutons over the past five decades. However, considerably few magnetic fabric studies have focused on layered mafic-ultramafic intrusions, particularly ';lopolithic' intrusions, despite the fact that such rocks may preserve a large range of small-scale kinematic structures potentially related to important magma chamber processes. This may be partly due to the fact that mafic-ultramafic cumulates commonly exhibit visible planar fabrics (mineral lamination), as well as compositional layering, in contrast to the frequent absence of such features in granite bodies or fine-grained mafic lava flows. Indeed, debates in the 1970s and 1980s on the development of layering and mineral fabrics in mafic-ultramafic intrusions, focused around the crystal settling versus in situ crystallisation paradigms, are classic in the subject of igneous petrology. Central to these debates is the notion that a wide range of magma chamber processes occur in layered mafic-ultramafic intrusions that are not frequently considered to occur in their relatively viscous granitic counterparts; in essence, the latter have historically been viewed as much more likely to ';freeze-in' a primary magma flow fabric whilst mafic-ultramafic intrusions are subjected to a more protracted solidification history. This wide array of potential initial sources for layering and mineral fabrics in layered mafic-ultramafic intrusions, together with the possible modification of textures at the postcumulus stage, demands a cautious application of any fabric analysis and presents a problem well-suited to interrogation by the AMS technique. The purpose of this contribution is to provide specific context on the application of AMS to elucidating the formation of cumulates in layered mafic-ultramafic intrusions. Examples of AMS

  9. Properties of honeycomb polyester knitted fabrics

    NASA Astrophysics Data System (ADS)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  10. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  11. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  12. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  13. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  14. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  15. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  16. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  17. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  18. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  19. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  20. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  1. Fabrication of functional devices using soft lithography and unconventional micropatterning

    NASA Astrophysics Data System (ADS)

    Deng, Tao

    identify for forming patterns with features useful in functional microstructures. Chapter 5 and 6 describe the use of photographic films (microfiche and slide film) and transparencies printed using different printers as photomasks in the fabrication of PDMS stamps/molds for soft lithography. In chapter 6, we also compare different methods of generating microstructures using facilities readily and inexpensively available to chemistry and biology laboratories. Among the films and transparencies investigated, microfiche carries the highest resolution. It can generate structures as small as ˜10 mum in lateral dimensions. Chapter 7 shows a new rapid prototyping process for the fabrication of metallic microstructures using silver halide-based photographic film. The whole process, which involves photographic development and electrochemical deposition, only takes ˜2 hours, starting from a computer design file. It can generate electrically continuous structures with the smallest dimension of ˜30 mum in the plane of the film. The resulting structures---either supported on the film backing, or freed from it---are appropriate for use as passive, structural materials such as wire frames or meshes, and can also be used in microfluidic, microanalytical, and microelectromechanical systems (MEMS).

  2. e-Biologics: Fabrication of Sustainable Electronics with “Green” Biological Materials

    PubMed Central

    2017-01-01

    ABSTRACT The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new “green age” of sustainable electronic materials and devices. PMID:28655820

  3. Electrothermal actuators fabricated in four-level planarized surface-miromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, A.; Barron, C.C.

    1997-11-01

    This paper presents the results of tests performed on a variety of electrochemical microactuators and arrays of these actuators fabricated in the SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and they apply to similar actuators made in other polysilicon MEMS processes such as the MUMPS process. Measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different applications` force requirements. Also, different methods of arraying these actuators together are compared. It ismore » found that a method using rotary joints, enabled by the advanced features of the SUMMiT fabrication process, is the most efficient array design. The design and operation of a thermally actuated stepper motor is explained to illustrate a useful application of these arrays.« less

  4. Fabrication of robust tooling for mass production of polymeric microfluidic devices

    NASA Astrophysics Data System (ADS)

    Fu, G.; Tor, S. B.; Loh, N. H.; Hardt, D. E.

    2010-08-01

    Polymer microfluidic devices are gaining popularity for bio-applications. In both commonly used methods for the fabrication of polymer microfluidic devices, i.e. injection molding and hot-embossing, the quality of a mold insert is of high importance. Micro powder injection molding (μPIM) provides a suitable option for metal mold insert fabrication. In this paper, two mold inserts with micro-features of different patterns and sizes were produced using 316L stainless steel powder and an in-house binder system. The mold inserts were successfully used to produce cyclic olefin copolymer (COC, trade name TOPAS) micromixer plates with micro-channels of widths 100 µm and 50 µm. Compared with CNC-machined hot work steel mold inserts, the quality of the micro-channels is better as far as geometrical quality and dimensional tolerance are concerned. However, surface finish and flatness of the μPIM mold inserts are inferior to those of CNC-machined mold inserts.

  5. Fabrication of phonon-based metamaterial structures using focused ion beam patterning

    NASA Astrophysics Data System (ADS)

    Bassim, Nabil D.; Giles, Alexander J.; Ocola, Leonidas E.; Caldwell, Joshua D.

    2018-02-01

    The focused ion beam (FIB) is a powerful tool for rapid prototyping and machining of functional nanodevices. It is employed regularly to fabricate test metamaterial structures but, to date, has been unsuccessful in fabricating metamaterial structures with features at the nanoscale that rely on surface phonons as opposed to surface plasmons because of the crystalline damage that occurs with the collision cascade associated with ion sputtering. In this study, we employ a simple technique of protecting the crystalline substrate in single-crystal 4H-SiC to design surface phonon polariton-based optical resonance structures. By coating the material surface with a thin film of chromium, we have placed a material of high sputter resistance on the surface, which essentially absorbs the energy in the beam tails. When the beam ultimately punches through the Cr film, the hard walls in the film have the effect of channeling the beam to create smooth sidewalls. This demonstration opens the possibility of further rapid-prototyping of metamaterials using FIB.

  6. Unidirectional Fabric Drape Testing Method

    PubMed Central

    Mei, Zaihuan; Yang, Jingzhi; Zhou, Ting; Zhou, Hua

    2015-01-01

    In most cases, fabrics such as curtains, skirts, suit pants and so on are draped under their own gravity parallel to fabric plane while the gravity is perpendicular to fabric plane in traditional drape testing method. As a result, it does not conform to actual situation and the test data is not convincing enough. To overcome this problem, this paper presents a novel method which simulates the real mechanical conditions and ensures the gravity is parallel to the fabric plane. This method applied a low-cost Kinect Sensor device to capture the 3-dimensional (3D) drape profile, thus we obtained the drape degree parameters and aesthetic parameters by 3D reconstruction and image processing and analysis techniques. The experiment was conducted on our self-devised drape-testing instrument by choosing different kinds of weave structure fabrics as our testing samples and the results were compared with those of traditional method and subjective evaluation. Through regression and correlation analysis we found that this novel testing method was significantly correlated with the traditional and subjective evaluation method. We achieved a new, non-contact 3D measurement method for drape testing, namely unidirectional fabric drape testing method. This method is more suitable for evaluating drape behavior because it is more in line with actual mechanical conditions of draped fabrics and has a well consistency with the requirements of visual and aesthetic style of fabrics. PMID:26600387

  7. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  8. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  9. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  10. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  11. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  12. An Alternate Vista in Rehabilitation of Cranial Defects: Combining Digital and Manual Techniques to Fabricate a Hybrid Cranioplast.

    PubMed

    Kaur, Harsimran; Nanda, Aditi; Koli, Dheeraj; Verma, Mahesh; Singh, Hukum; Bishnoi, Ishu; Pathak, Pooja; Gupta, Ankur

    2015-06-01

    The desired features of a cranioplast include providing an acceptable contour, continuity with the remaining skull (marginal adaptation), improvising the aesthetic outcome, providing a strengthened prosthesis to avoid fracture in case of repeat trauma, and protecting the remaining neurological structures. Combining digital and manual techniques to fabricate a hybrid polymethylmethacrylate cranioplast during the rehabilitation of a pediatric patient with cranial defect has been described. Utilization of digital techniques (rapid prototyping to obtain skull analog) and manual (hand) sculpting of the prosthesis strengthened with glass fiber enabled the authors to fabricate a hybrid cranioplast. Satisfactory outcome was achieved.

  13. Cylindrical fabric-confined soil structures

    NASA Astrophysics Data System (ADS)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  14. Ignition characteristics of some aircraft interior fabrics

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brandt, D. L.

    1978-01-01

    Six samples of aircraft interior fabrics were evaluated with regard to resistance to ignition by radiant heat. Five samples were aircraft seat upholstery fabrics and one sample was an aircraft curtain fabric. The aircraft seat fabrics were 100% wool (2 samples), 83% wool/17% nylon, 49% wool/51% polyvinyl chloride, and 100% rayon. The aircraft curtain fabric was 92% modacrylic/8% polyester. The five samples of aircraft seat upholstery fabrics were also evaluated with regard to resistance to ignition by a smoldering cigarette. The four samples of wool-containing aircraft seat fabrics appeared to be superior to the sample of rayon seat fabric in resistance to ignition, both by radiant heat and by a smoldering cigarette.

  15. EIT-Based Fabric Pressure Sensing

    PubMed Central

    Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538

  16. EIT-based fabric pressure sensing.

    PubMed

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  17. Fabrication of a Flexible Amperometric Glucose Sensor Using Additive Processes

    PubMed Central

    Du, Xiaosong; Durgan, Christopher J.; Matthews, David J.; Motley, Joshua R.; Tan, Xuebin; Pholsena, Kovit; Árnadóttir, Líney; Castle, Jessica R.; Jacobs, Peter G.; Cargill, Robert S.; Ward, W. Kenneth; Conley, John F.; Herman, Gregory S.

    2015-01-01

    This study details the use of printing and other additive processes to fabricate a novel amperometric glucose sensor. The sensor was fabricated using a Au coated 12.7 μm thick polyimide substrate as a starting material, where micro-contact printing, electrochemical plating, chloridization, electrohydrodynamic jet (e-jet) printing, and spin coating were used to pattern, deposit, chloridize, print, and coat functional materials, respectively. We have found that e-jet printing was effective for the deposition and patterning of glucose oxidase inks with lateral feature sizes between ~5 to 1000 μm in width, and that the glucose oxidase was still active after printing. The thickness of the permselective layer was optimized to obtain a linear response for glucose concentrations up to 32 mM and no response to acetaminophen, a common interfering compound, was observed. The use of such thin polyimide substrates allow wrapping of the sensors around catheters with high radius of curvature ~250 μm, where additive and microfabrication methods may allow significant cost reductions. PMID:26634186

  18. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  19. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  20. A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-10-01

    In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1-10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.

  1. Fabric Organic Electrochemical Transistors for Biosensors.

    PubMed

    Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng

    2018-06-01

    Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  3. Autofocus algorithm for curvilinear SAR imaging

    NASA Astrophysics Data System (ADS)

    Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.

    2012-05-01

    We describe an approach to autofocusing for large apertures on curved SAR trajectories. It is a phase-gradient type method in which phase corrections compensating trajectory perturbations are estimated not directly from the image itself, but rather on the basis of partial" SAR data { functions of the slow and fast times { recon- structed (by an appropriate forward-projection procedure) from windowed scene patches, of sizes comparable to distances between distinct targets or localized features of the scene. The resulting partial data" can be shown to contain the same information on the phase perturbations as that in the original data, provided the frequencies of the perturbations do not exceed a quantity proportional to the patch size. The algorithm uses as input a sequence of conventional scene images based on moderate-size subapertures constituting the full aperture for which the phase corrections are to be determined. The subaperture images are formed with pixel sizes comparable to the range resolution which, for the optimal subaperture size, should be also approximately equal the cross-range resolution. The method does not restrict the size or shape of the synthetic aperture and can be incorporated in the data collection process in persistent sensing scenarios. The algorithm has been tested on the publicly available set of GOTCHA data, intentionally corrupted by random-walk-type trajectory uctuations (a possible model of errors caused by imprecise inertial navigation system readings) of maximum frequencies compatible with the selected patch size. It was able to eciently remove image corruption for apertures of sizes up to 360 degrees.

  4. Sensory interaction and descriptions of fabric hand.

    PubMed

    Burns, L D; Chandler, J; Brown, D M; Cameron, B; Dallas, M J

    1995-08-01

    82 subjects who viewed and felt fabrics (sensory interaction group) used different categories of terms to describe fabric hand than did 38 subjects who only felt the fabrics. Therefore, the methods used to measure fabric hand that isolate the senses may not accurately assess the way in which subjects describe fabric hand in nonlaboratory settings.

  5. Fabrication of microchannels in polycrystalline diamond using pre-fabricated Si substrates

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Elfimchev, Sergey; Michaelson, Shaul; Akhvlediani, Rozalia; Ternyak, Orna; Hoffman, Alon

    2017-10-01

    In this paper, we report on a simple, feasible method to fabricate microchannels in diamond. Polycrystalline diamond microchannels were produced by fabricating trenches in a Si wafer and subsequently depositing a thin layer of diamond onto this substrate using the hot filament vapor deposition technique. Fabrication of trenches in the Si substrate at different depths was carried out by standard photolithography, and the subsequent deposition of the diamond layer was performed by the hot filament chemical vapor deposition technique. The growth mechanism of diamond that leads to the formation of closed diamond microchannels is discussed in detail based on the Knudsen number and growth chemistry of diamond. Variations in the crystallite size, crystalline quality, and thickness of the diamond layer along the trench depths were systematically analyzed using cross-sectional scanning electron microscopy and Raman spectroscopy. Defect density and formation of non-diamond forms of carbon in the diamond layer were found to increase with the trench depth, which sets a limit of 5-45 μm trench depth (or an aspect ratio of 1-9) for the fabrication of diamond microchannels using this method under the present conditions.

  6. Superhydrophobic Superoleophobic Woven Fabrics (Preprint)

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TP-2011-0050 SUPERHYDROPHOBIC SUPEROLEOPHOBIC WOVEN FABRICS (PREPRINT) Hoonjoo Lee Department of Textile and Apparel...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) JUN 2011 Book Chapter 20-JUN-2008 -- 30-APR-2011 Superhydrophobic Superoleophobic Woven Fabrics...roll-off angles are analyzed, and finally superhydrophobic , superoleophobic, woven fabric is designed and developed using chemical and geometrical

  7. Design and fabrication of thin microvascularised polymer matrices inspired from secondary lamellae of fish gills

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2016-04-01

    Gills are one of the most primitive gas, solute exchange organs available in fishes. They facilitate exchange of gases, solutes and ions with a surrounding water medium through their functional unit called secondary lamella. These lamellae through their extraordinary morphometric features and peculiar arrangement in gills, achieve remarkable mass transport properties. Therefore, in the current study, modeling and simulation of convection-diffusion transport through a two dimensional model of secondary lamella and theoretical analysis of morphometric features of fish gills were carried out. Such study suggested an evolutionary conservation of parametric ratios across fishes of different weights. Further, we have also fabricated a thin microvascularised PDMS matrices mimicking secondary lamella by use of micro-technologies like electrospinning. In addition, we have also demonstrated the fluid flow by capillary action through these thin microvascularised PDMS matrices. Eventually, we also illustrated the application of these thin microvascularied PDMS matrices in solute exchange process under capillary flow conditions. Thus, our study suggested that fish gills have optimized parameteric ratios, at multiple length scale, throughout an evolution to achieve an organ with enhanced mass transport capabilities. Thus, these defined parametric ratios could be exploited to design and develop efficient, scaled-up gas/solute exchange microdevices. We also proposed an inexpensive and scalable method of fabrication of thin microvascularised polymer matrices and demonstrated its solute exchange capabilities under capillary flow conditions. Thus, mimicking the microstructures of secondary lamella will enable fabrication of microvascularised thin polymer systems through micro manufacturing technologies for potential applications in filtration, self-healing/cooling materials and bioengineering.

  8. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  9. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of

  10. Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards.

    PubMed

    Li, Qiao; Tao, Xiao Ming

    2014-11-08

    This paper reports fabric circuit boards (FCBs), a new type of circuit boards, that are three-dimensionally deformable, highly stretchable, durable and washable ideally for wearable electronic applications. Fabricated by using computerized knitting technologies at ambient dry conditions, the resultant knitted FCBs exhibit outstanding electrical stability with less than 1% relative resistance change up to 300% strain in unidirectional tensile test or 150% membrane strain in three-dimensional ball punch test, extraordinary fatigue life of more than 1 000 000 loading cycles at 20% maximum strain, and satisfactory washing capability up to 30 times. To the best of our knowledge, the performance of new FCBs has far exceeded those of previously reported metal-coated elastomeric films or other organic materials in terms of changes in electrical resistance, stretchability, fatigue life and washing capability as well as permeability. Theoretical analysis and numerical simulation illustrate that the structural conversion of knitted fabrics is attributed to the effective mitigation of strain in the conductive metal fibres, hence the outstanding mechanical and electrical properties. Those distinctive features make the FCBs particularly suitable for next-to-skin electronic devices. This paper has further demonstrated the application potential of the knitted FCBs in smart protective apparel for in situ measurement during ballistic impact.

  11. Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards

    PubMed Central

    Li, Qiao; Tao, Xiao Ming

    2014-01-01

    This paper reports fabric circuit boards (FCBs), a new type of circuit boards, that are three-dimensionally deformable, highly stretchable, durable and washable ideally for wearable electronic applications. Fabricated by using computerized knitting technologies at ambient dry conditions, the resultant knitted FCBs exhibit outstanding electrical stability with less than 1% relative resistance change up to 300% strain in unidirectional tensile test or 150% membrane strain in three-dimensional ball punch test, extraordinary fatigue life of more than 1 000 000 loading cycles at 20% maximum strain, and satisfactory washing capability up to 30 times. To the best of our knowledge, the performance of new FCBs has far exceeded those of previously reported metal-coated elastomeric films or other organic materials in terms of changes in electrical resistance, stretchability, fatigue life and washing capability as well as permeability. Theoretical analysis and numerical simulation illustrate that the structural conversion of knitted fabrics is attributed to the effective mitigation of strain in the conductive metal fibres, hence the outstanding mechanical and electrical properties. Those distinctive features make the FCBs particularly suitable for next-to-skin electronic devices. This paper has further demonstrated the application potential of the knitted FCBs in smart protective apparel for in situ measurement during ballistic impact. PMID:25383032

  12. Fabrication for Nanotechnology

    DTIC Science & Technology

    2007-03-01

    could be divided into four groups as pictured in the following figure. Figure 1 : Nanotechnology fabrication methods Top-down nanofabrication...cooled) substrate on which a layer is formed. RTO-EN-AVT-129bis 2 - 1 van Heeren, H. (2007) Fabrication for Nanotechnology. In Nanotechnology...Aerospace Applications – 2006 (pp. 2- 1 – 2-4). Educational Notes RTO-EN-AVT-129bis, Paper 2. Neuilly-sur-Seine, France: RTO. Available from: http

  13. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    NASA Astrophysics Data System (ADS)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  14. Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers

    PubMed Central

    Auguste, Jean-Louis; Humbert, Georges; Leparmentier, Stéphanie; Kudinova, Maryna; Martin, Pierre-Olivier; Delaizir, Gaëlle; Schuster, Kay; Litzkendorf, Doris

    2014-01-01

    The objective of this paper is to demonstrate the interest of a consolidation process associated with the powder-in-tube technique in order to fabricate a long length of specialty optical fibers. This so-called Modified Powder-in-Tube (MPIT) process is very flexible and paves the way to multimaterial optical fiber fabrications with different core and cladding glassy materials. Another feature of this technique lies in the sintering of the preform under reducing or oxidizing atmosphere. The fabrication of such optical fibers implies different constraints that we have to deal with, namely chemical species diffusion or mechanical stress due to the mismatches between thermal expansion coefficients and working temperatures of the fiber materials. This paper focuses on preliminary results obtained with a lanthano-aluminosilicate glass used as the core material for the fabrication of all-glass fibers or specialty Photonic Crystal Fibers (PCFs). To complete the panel of original microstructures now available by the MPIT technique, we also present several optical fibers in which metallic particles or microwires are included into a silica-based matrix. PMID:28788176

  15. Cloning SU8 silicon masters using epoxy resins to increase feature replicability and production for cell culture devices.

    PubMed

    Kamande, J W; Wang, Y; Taylor, A M

    2015-05-01

    In recent years, there has been a dramatic increase in the use of poly(dimethylsiloxane) (PDMS) devices for cell-based studies. Commonly, the negative tone photoresist, SU8, is used to pattern features onto silicon wafers to create masters (SU8-Si) for PDMS replica molding. However, the complexity in the fabrication process, low feature reproducibility (master-to-master variability), silane toxicity, and short life span of these masters have been deterrents for using SU8-Si masters for the production of cell culture based PDMS microfluidic devices. While other techniques have demonstrated the ability to generate multiple devices from a single master, they often do not match the high feature resolution (∼0.1 μm) and low surface roughness that soft lithography masters offer. In this work, we developed a method to fabricate epoxy-based masters that allows for the replication of features with high fidelity directly from SU8-Si masters via their PDMS replicas. By this method, we show that we could obtain many epoxy based masters with equivalent features to a single SU8-Si master with a low feature variance of 1.54%. Favorable feature transfer resolutions were also obtained by using an appropriate Tg epoxy based system to ensure minimal shrinkage of features ranging in size from ∼100 μm to <10 μm in height. We further show that surface coating epoxy masters with Cr/Au lead to effective demolding and yield PDMS chambers that are suitable for long-term culturing of sensitive primary hippocampal neurons. Finally, we incorporated pillars within the Au-epoxy masters to eliminate the process of punching media reservoirs and thereby reducing substantial artefacts and wastage.

  16. Cloning SU8 silicon masters using epoxy resins to increase feature replicability and production for cell culture devices

    PubMed Central

    Kamande, J. W.; Wang, Y.; Taylor, A. M.

    2015-01-01

    In recent years, there has been a dramatic increase in the use of poly(dimethylsiloxane) (PDMS) devices for cell-based studies. Commonly, the negative tone photoresist, SU8, is used to pattern features onto silicon wafers to create masters (SU8-Si) for PDMS replica molding. However, the complexity in the fabrication process, low feature reproducibility (master-to-master variability), silane toxicity, and short life span of these masters have been deterrents for using SU8-Si masters for the production of cell culture based PDMS microfluidic devices. While other techniques have demonstrated the ability to generate multiple devices from a single master, they often do not match the high feature resolution (∼0.1 μm) and low surface roughness that soft lithography masters offer. In this work, we developed a method to fabricate epoxy-based masters that allows for the replication of features with high fidelity directly from SU8-Si masters via their PDMS replicas. By this method, we show that we could obtain many epoxy based masters with equivalent features to a single SU8-Si master with a low feature variance of 1.54%. Favorable feature transfer resolutions were also obtained by using an appropriate Tg epoxy based system to ensure minimal shrinkage of features ranging in size from ∼100 μm to <10 μm in height. We further show that surface coating epoxy masters with Cr/Au lead to effective demolding and yield PDMS chambers that are suitable for long-term culturing of sensitive primary hippocampal neurons. Finally, we incorporated pillars within the Au-epoxy masters to eliminate the process of punching media reservoirs and thereby reducing substantial artefacts and wastage. PMID:26180572

  17. Engineering Non-Wetting Antimicrobial Fabrics

    NASA Astrophysics Data System (ADS)

    van den Berg, Desmond

    This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.

  18. DRAPING SIMULATION OF WOVEN FABRICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Jin, Xiaoshi; Zhu, Jiang

    2016-09-07

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process, where the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the yarns may change significantly compared to the initial orientations. Accurate prediction of the yarn orientations after molding is important for evaluating the structural performance of the final part. This paper presents a systematic investigation of the angle changes during the preform operation for carbon fiber twill andmore » satin weave fabrics. Preforming experiments were conducted using a truncated pyramid mold geometry designed and fabricated at the General Motors Research Laboratories. Predicted results for the yarn orientations were compared with experimental results and good agreement was observed« less

  19. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation.

    PubMed

    Miao, Shida; Cui, Haitao; Nowicki, Margaret; Lee, Se-Jun; Almeida, José; Zhou, Xuan; Zhu, Wei; Yao, Xiaoliang; Masood, Fahed; Plesniak, Michael W; Mohiuddin, Muhammad; Zhang, Lijie Grace

    2018-05-02

    4D printing is a highly innovative additive manufacturing process for fabricating smart structures with the ability to transform over time. Significantly different from regular 4D printing techniques, this study focuses on creating novel 4D hierarchical micropatterns using a unique photolithographic-stereolithographic-tandem strategy (PSTS) with smart soybean oil epoxidized acrylate (SOEA) inks for effectively regulating human bone marrow mesenchymal stem cell (hMSC) cardiomyogenic behaviors. The 4D effect refers to autonomous conversion of the surficial-patterned scaffold into a predesigned construct through an external stimulus delivered immediately after printing. Our results show that hMSCs actively grew and were highly aligned along the micropatterns, forming an uninterrupted cellular sheet. The generation of complex patterns was evident by triangular and circular outlines appearing in the scaffolds. This simple, yet efficient, technique was validated by rapid printing of scaffolds with well-defined and consistent micro-surface features. A 4D dynamic shape change transforming a 2-D design into flower-like structures was observed. The printed scaffolds possessed a shape memory effect beyond the 4D features. The advanced 4D dynamic feature may provide seamless integration with damaged tissues or organs, and a proof of concept 4D patch for cardiac regeneration was demonstrated for the first time. The 4D-fabricated cardiac patch showed significant cardiomyogenesis confirmed by immunofluorescence staining and qRT-PCR analysis, indicating its promising potential in future tissue and organ regeneration applications.

  20. Nanoimprint methods for the fabrication of macroscopic plasmonically active metal nanostructures

    NASA Astrophysics Data System (ADS)

    Nagel, Robin D.; Filser, Simon; Zhang, Tianyue; Manzi, Aurora; Schönleber, Konrad; Lindsly, James; Zimmermann, Josef; Maier, Thomas L.; Scarpa, Giuseppe; Krischer, Katharina; Lugli, Paolo

    2017-02-01

    In this article, we present a refined nanostructuring method, lift-off nanoimprint lithography (LO-NIL), which allows the deposition of high-quality metal nanostructures due to a bilayer resist process and compare it to nano-transfer printing (nTP), a purely additive metal printing technique. LO-NIL and nTP are used as accurate methods for the fabrication of ordered plasmonic metal nanostructure arrays on semiconducting substrates over large areas using the example of gold nanodisks on silicon. The possibility of feature size adjustment in LO-NIL during the fabrication process is especially useful for tuning plasmonic resonance peaks between the visible and the mid-infrared range as well as fine-tuning of these resonances. In UV-VIS-NIR spectroscopic measurements, a significant blueshift in the plasmonic resonance was found for nTP samples compared to the ones fabricated with the lift-off technique. It was concluded that this shift originates from a metal/substrate interface roughness resulting in a change in the dielectric properties of this layer. This finding was verified with finite difference time-domain simulations where a similar trend was found for a model with an assumed thin air gap in this interface. In cyclic voltammetry measurements under illumination, a reduced overpotential by almost 400 mV for CO2 reduction and hydrogen evolution was found for LO-NIL samples.

  1. The Testing of Airplane Fabrics

    NASA Technical Reports Server (NTRS)

    Schraivogel, Karl

    1932-01-01

    This report considers the determining factors in the choice of airplane fabrics, describes the customary methods of testing and reports some of the experimental results. To sum up briefly the results obtained with the different fabrics, it may be said that increasing the strength of covering fabrics by using coarser yarns ordinarily offers no difficulty, because the weight increment from doping is relatively smaller.

  2. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.

    PubMed

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E

    2017-01-03

    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  3. Fabrication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less

  4. Fabrication technology

    NASA Astrophysics Data System (ADS)

    Blaedel, K. L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  5. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.

  6. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design.

    PubMed

    Boyd, Darryl A; Shields, Adam R; Howell, Peter B; Ligler, Frances S

    2013-08-07

    Microfluidic systems have advantages that are just starting to be realized for materials fabrication. In addition to the more common use for fabrication of particles, hydrodynamic focusing has been used to fabricate continuous polymer fibers. We have previously described such a microfluidics system which has the ability to generate fibers with controlled cross-sectional shapes locked in place by in situ photopolymerization. The previous fiber fabrication studies produced relatively simple round or ribbon shapes, demonstrated the use of a variety of polymers, and described the interaction between sheath-core flow-rate ratios used to control the fiber diameter and the impact on possible shapes. These papers documented the fact that no matter what the intended shape, higher flow-rate ratios produced rounder fibers, even in the absence of interfacial tension between the core and sheath fluids. This work describes how to fabricate the next generation of fibers predesigned to have a much more complex geometry, as exemplified by the "double anchor" shape. Critical to production of the pre-specified fibers with complex features was independent control over both the shape and the size of the fabricated microfibers using a two-stage hydrodynamic focusing system. Design and optimization of the channels was performed using finite element simulations and confocal imaging to characterize each of the two stages theoretically and experimentally. The resulting device design was then used to generate thiol-ene fibers with a unique double anchor shape. Finally, proof-of-principle functional experiments demonstrated the ability of the fibers to transport fluids and to interlock laterally.

  7. ELECTROSTATIC EFFECTS IN FABRIC FILTRATION: VOLUME I. FIELDS, FABRICS, AND PARTICLES. (ANNOTATED DATA)

    EPA Science Inventory

    The report examines the effect of particle charge and electric fields on the filtration of dust by fabrics. Both frictional charging and charging by corona are studied. Charged particles and an electric field driving particles toward the fabric can greatly reduce the initial pres...

  8. Fabricating a hybrid imaging device

    NASA Technical Reports Server (NTRS)

    Wadsworth, Mark (Inventor); Atlas, Gene (Inventor)

    2003-01-01

    A hybrid detector or imager includes two substrates fabricated under incompatible processes. An array of detectors, such as charged-coupled devices, are formed on the first substrate using a CCD fabrication process, such as a buried channel or peristaltic process. One or more charge-converting amplifiers are formed on a second substrate using a CMOS fabrication process. The two substrates are then bonded together to form a hybrid detector.

  9. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  10. Electrochemical Fabrication of Metallic Quantum Wires

    ERIC Educational Resources Information Center

    Tao, Nongjian

    2005-01-01

    The fabrication of metallic quantum wires using simple electrochemical techniques is described. The conductance of the system can be readily measured that allows one to constantly monitor the conductance during fabrication and use conductance quantization as a signature to guide the fabrication.

  11. Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Saedi, Soheil

    Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications. The SLM process parameters such as laser power, scanning speed, spacing, and strategy used during the fabrication are determinant factors in composition, microstructural features and functional properties of the SLM NiTi alloy. Therefore, a comprehensive and systematic study has been conducted over Ni 50.8 Ti49.2 (at%) alloy to understand the influence of each parameter individually. It was found that a sharp [001] texture is formed as a result of SLM fabrication which leads to improvements in the superelastic response of the alloy. It was perceived that transformation temperatures, microstructure, hardness, the intensity of formed texture and the correlated thermo-mechanical response are changed substantially with alteration of each parameter. The provided knowledge will allow choosing optimized parameters for tailoring the functional features of SLM fabricated NiTi alloys. Without going through any heat treatments, 5.77% superelasticity with more than 95% recovery ratio was obtained in as-fabricated condition only with the selection of right process parameters. Additionally, thermal treatments can be utilized to form precipitates in Ni-rich SLM NiTi alloys fabricated by low energy density. Precipitation could significantly alter the matrix composition, transformation temperatures and strain, critical stress for transformation, and shape memory

  12. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.

    PubMed

    Yap, Yiing C; Guijt, Rosanne M; Dickson, Tracey C; King, Anna E; Breadmore, Michael C

    2013-11-05

    With the introduction of hobby laser engravers/cutters, the use of CO2 laser micromachining on poly(methyl methacrylate) (PMMA) has the potential for flexible, low cost, rapid prototyping of microfluidic devices. Unfortunately, the feature size created by most entry-level CO2 laser micromachining systems is too large to become a functional tool in analytical microfluidics. In this paper, we report a novel method to reduce the feature size of microchannels and the bulges formed at the rim of the channel during CO2 laser micromachining by passing the laser beam through a stainless steel pinhole. Without the pinhole, the channel width was typically 300 μm wide. However, when 50 or 35 μm diameter pinholes were used, channel widths of 60 and 25 μm, respectively, could be obtained. The height of the bulge deposited directly next to the channel was reduced to less than 0.8 μm with the pinhole during ablation. Separations of fluorescent dyes on devices ablated with and without the pinhole were compared. On devices fabricated with the pinhole, the number of theoretical plates/m was 2.2-fold higher compared to devices fabricated without the pinhole, and efficiencies comparable to embossed PMMA and laser ablated glass chips were obtained. A mass-produced commercial hobby laser (retailing at ∼$2500), when equipped with a $500 pinhole, represents a rapid and low-cost approach to the rapid fabrication of rigid plastic microchips including the narrow microchannels required for microchip electrophoresis.

  13. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.

    PubMed

    Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Cai, Zong Wei; Uchiyama, Katsumi

    2005-05-01

    A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.

  14. Design and fabrication of conductive polyaniline transducers via computer controlled direct ink writing

    NASA Astrophysics Data System (ADS)

    Holness, F. Benjamin; Price, Aaron D.

    2017-04-01

    The intractable nature of the conjugated polymer (CP) polyaniline (PANI) has largely limited PANI-based transducers to monolithic geometries derived from thin-film deposition techniques. To address this limitation, we have previously reported additive manufacturing processes for the direct ink writing of three-dimensional electroactive PANI structures. This technology incorporates a modified delta robot having an integrated polymer paste extrusion system in conjunction with a counter-ion induced thermal doping process to achieve these 3D structures. In this study, we employ an improved embodiment of this methodology for the fabrication of functional PANI devices with increasingly complex geometries and enhanced electroactive functionality. Advances in manufacturing capabilities achieved through the integration of a precision pneumatic fluid dispenser and redesigned high-pressure end-effector enable extrusion of viscous polymer formulations, improving the realizable resolutions of features and deposition layers. The integration of a multi-material dual-extrusion end-effector has further aided the fabrication of these devices, enabling the concurrent assembly of passive and active structures, which reduces the limitations on device geometry. Subsequent characterization of these devices elucidates the relationships between polymer formulation, process parameters, and device design such that electromechanical properties can be tuned according to application requirements. This methodology ultimately leads to the improved manufacturing of electroactive polymer-enabled devices with high-resolution 3D features and enhanced electroactive performance.

  15. A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers

    NASA Astrophysics Data System (ADS)

    Deck, Sébastien; Weiss, Pierre-Elie; Renard, Nicolas

    2018-06-01

    A turbulent inflow for a rapid and low noise switch from RANS to Wall-Modelled LES on curvilinear grids with compressible flow solvers is presented. It can be embedded within the computational domain in practical applications with WMLES grids around three-dimensional geometries in a flexible zonal hybrid RANS/LES modelling context. It relies on a physics-motivated combination of Zonal Detached Eddy Simulation (ZDES) as the WMLES technique together with a Dynamic Forcing method processing the fluctuations caused by a Zonal Immersed Boundary Condition describing roughness elements. The performance in generating a physically-sound turbulent flow field with the proper mean skin friction and turbulent profiles after a short relaxation length is equivalent to more common inflow methods thanks to the generation of large-scale streamwise vorticity by the roughness elements. Comparisons in a low Mach-number zero-pressure-gradient flat-plate turbulent boundary layer up to Reθ = 6 100 reveal that the pressure field is dominated by the spurious noise caused by the synthetic turbulence methods (Synthetic Eddy Method and White Noise injection), contrary to the new low-noise approach which may be used to obtain the low-frequency component of wall pressure and reproduce its intermittent nature. The robustness of the method is tested in the flow around a three-element airfoil with WMLES in the upper boundary layer near the trailing edge of the main element. In spite of the very short relaxation distance allowed, self-sustainable resolved turbulence is generated in the outer layer with significantly less spurious noise than with the approach involving White Noise. The ZDES grid count for this latter test case is more than two orders of magnitude lower than the Wall-Resolved LES requirement and a unique mesh is involved, which is much simpler than some multiple-mesh strategies devised for WMLES or turbulent inflow.

  16. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.

  17. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.

  18. Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics

    NASA Astrophysics Data System (ADS)

    Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve

    2017-05-01

    Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.

  19. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  20. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  1. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  2. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  3. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  4. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  5. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  6. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  7. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  8. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  9. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  10. Fabrication of coronagraph masks and laboratory scale star-shade masks: characteristics, defects, and performance

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Kunjithapatham; Riggs, A. J. Eldorado; Cady, Eric; White, Victor; Yee, Karl; Wilson, Daniel; Echternach, Pierre; Muller, Richard; Mejia Prada, Camilo; Seo, Byoung-Joon; Shi, Fang; Ryan, Daniel; Fregoso, Santos; Metzman, Jacob; Wilson, Robert Casey

    2017-09-01

    NASA WFIRST mission has planned to include a coronagraph instrument to find and characterize exoplanets. Masks are needed to suppress the host star light to better than 10-8 - 10-9 level contrast over a broad bandwidth to enable the coronagraph mission objectives. Such masks for high contrast coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultra-low reflectivity regions, uniformity, wave front quality, etc. We present the technologies employed at JPL to produce these pupil plane and image plane coronagraph masks, and lab-scale external occulter masks, highlighting accomplishments from the high contrast imaging testbed (HCIT) at JPL and from the high contrast imaging lab (HCIL) at Princeton University. Inherent systematic and random errors in fabrication and their impact on coronagraph performance are discussed with model predictions and measurements.

  11. Wafer level fabrication of single cell dispenser chips with integrated electrodes for particle detection

    NASA Astrophysics Data System (ADS)

    Schoendube, Jonas; Yusof, Azmi; Kalkandjiev, Kiril; Zengerle, Roland; Koltay, Peter

    2015-02-01

    This work presents the microfabrication and experimental evaluation of a dispenser chip, designed for isolation and printing of single cells by combining impedance sensing and drop-on-demand dispensing. The dispenser chip features 50  ×  55 µm (width × height) microchannels, a droplet generator and microelectrodes for impedance measurements. The chip is fabricated by sandwiching a dry film photopolymer (TMMF) between a silicon and a Pyrex wafer. TMMF has been used to define microfluidic channels, to serve as low temperature (75 °C) bonding adhesive and as etch mask during 300 µm deep HF etching of the Pyrex wafer. Due to the novel fabrication technology involving the dry film resist, it became possible to fabricate facing electrodes at the top and bottom of the channel and to apply electrical impedance sensing for particle detection with improved performance. The presented microchip is capable of dispensing liquid and detecting microparticles via impedance measurement. Single polystyrene particles of 10 µm size could be detected with a mean signal amplitude of 0.39  ±  0.13 V (n=439 ) at particle velocities of up to 9.6 mm s-1 inside the chip.

  12. The ANTARES Code: New Developments

    NASA Astrophysics Data System (ADS)

    Blies, P. M.; Kupka, F.; Muthsam, H. J.

    2015-10-01

    We give an update on the ANTARES code. It was presented by Muthsam et al. (2010) and has since experienced various improvements and has also been extended by new features which we will mention in this paper. Two new features will be presented in a bit more detail: the parallel multigrid solver for the 2D non-linear, generalized Helmholtz equation by Happenhofer (2014) and the capability to use curvilinear grids by Grimm-Strele (2014).

  13. Micromechanical Structures Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, S

    2001-05-08

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continuallymore » vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon micro-devices and the second impediment is communicating with these novel devices. We have implemented an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We also implemented a mechanical, electrical, and optical self-aligning hybridization technique for these alternate-material MEMS substrates.« less

  14. Fabrication of thermo-responsive cotton fabrics using poly(vinyl caprolactam-co-hydroxyethyl acrylamide) copolymer.

    PubMed

    Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret

    2017-10-15

    A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  16. Biological implications of lab-on-a-chip devices fabricated using multi-jet modelling and stereolithography processes

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Macdonald, Niall; Skommer, Joanna; Wlodkowic, Donald

    2015-06-01

    Current microfabrication methods are often restricted to two-dimensional (2D) or two and a half dimensional (2.5D) structures. Those fabrication issues can be potentially addressed by emerging additive manufacturing technologies. Despite rapid growth of additive manufacturing technologies in tissue engineering, microfluidics has seen relatively little developments with regards to adopting 3D printing for rapid fabrication of complex chip-based devices. This has been due to two major factors: lack of sufficient resolution of current rapid-prototyping methods (usually >100 μm ) and optical transparency of polymers to allow in vitro imaging of specimens. We postulate that adopting innovative fabrication processes can provide effective solutions for prototyping and manufacturing of chip-based devices with high-aspect ratios (i.e. above ration of 20:1). This work provides a comprehensive investigation of commercially available additive manufacturing technologies as an alternative for rapid prototyping of complex monolithic Lab-on-a-Chip devices for biological applications. We explored both multi-jet modelling (MJM) and several stereolithography (SLA) processes with five different 3D printing resins. Compared with other rapid prototyping technologies such as PDMS soft lithography and infrared laser micromachining, we demonstrated that selected SLA technologies had superior resolution and feature quality. We also for the first time optimised the post-processing protocols and demonstrated polymer features under scanning electronic microscope (SEM). Finally we demonstrate that selected SLA polymers have optical properties enabling high-resolution biological imaging. A caution should be, however, exercised as more work is needed to develop fully bio-compatible and non-toxic polymer chemistries.

  17. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    PubMed Central

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-01-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates. PMID:27713545

  18. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    NASA Astrophysics Data System (ADS)

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-10-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

  19. Small feature sizes and high aperture ratio organic light-emitting diodes by using laser-patterned polyimide shadow masks

    NASA Astrophysics Data System (ADS)

    Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany

    2014-02-01

    A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.

  20. Development of Self-Cleaning Denim Fabrics

    NASA Astrophysics Data System (ADS)

    Uğur, Ş. S.; Sarıışık, A. M.; Çavuşlar, E.; Ertek, M.

    2017-10-01

    Denim fabrics coated with TiO2 nanolayers for self-cleaning properties by using a continuous layer-by-layer method. Nanolayer coated denim fabrics washed with an enzyme process for aging affect. Fabrics were analyzed with SEM-EDX and XPS measurements. Self-cleaning properties of the nanolayer deposited denim fabrics were tested according to red wine stain against to Suntest visible light irradiation after 72 h. And also, some physical (air permeability, tensile strength) and color (color difference and rubbing fastness) properties were evaluated.

  1. 25 CFR 307.4 - Standards for fabrics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Standards for fabrics. 307.4 Section 307.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO ALL-WOOL WOVEN FABRICS; USE OF GOVERNMENT CERTIFICATE OF GENUINENESS § 307.4 Standards for fabrics. No fabric may carry the Government certificate of...

  2. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  3. High-Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Cost-Effective Solution Process.

    PubMed

    Khan, Arshad; Lee, Sangeon; Jang, Taehee; Xiong, Ze; Zhang, Cuiping; Tang, Jinyao; Guo, L Jay; Li, Wen-Di

    2016-06-01

    A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  5. Robust Polypropylene Fabrics Super-Repelling Various Liquids: A Simple, Rapid and Scalable Fabrication Method by Solvent Swelling.

    PubMed

    Zhu, Tang; Cai, Chao; Duan, Chunting; Zhai, Shuai; Liang, Songmiao; Jin, Yan; Zhao, Ning; Xu, Jian

    2015-07-01

    A simple, rapid (10 s) and scalable method to fabricate superhydrophobic polypropylene (PP) fabrics is developed by swelling the fabrics in cyclohexane/heptane mixture at 80 °C. The recrystallization of the swollen macromolecules on the fiber surface contributes to the formation of submicron protuberances, which increase the surface roughness dramatically and result in superhydrophobic behavior. The superhydrophobic PP fabrics possess excellent repellency to blood, urine, milk, coffee, and other common liquids, and show good durability and robustness, such as remarkable resistances to water penetration, abrasion, acidic/alkaline solution, and boiling water. The excellent comprehensive performance of the superhydrophobic PP fabrics indicates their potential applications as oil/water separation materials, protective garments, diaper pads, or other medical and health supplies. This simple, fast and low cost method operating at a relatively low temperature is superior to other reported techniques for fabricating superhydrophobic PP materials as far as large scale manufacturing is considered. Moreover, the proposed method is applicable for preparing superhydrophobic PP films and sheets as well.

  6. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    PubMed

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  7. The fabrication and test of a dual spin gas bearing reaction wheel

    NASA Technical Reports Server (NTRS)

    Opper, R. L.; Owen, W. J.

    1973-01-01

    The design and fabrication of a dual spin gas bearing reaction wheel are discussed. Numerical analyses, data, and conclusions from performance tests are reported. The unique feature of the reaction wheel is the dual gas bearing concept in which two sets of self-acting hydrodynamic bearing are used to obtain stictionless operation and low noise around zero speed and to accommodate the momentum range from plus 6.8 N-m-s to minus 6.8 N-m-s with the potential for long life inherent in gas bearings.

  8. Online feature selection with streaming features.

    PubMed

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  9. Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors.

    PubMed

    Sladkova, Martina; Palmer, Michael; Öhman, Caroline; Alhaddad, Rawan Jaragh; Esmael, Asmaa; Engqvist, Håkan; de Peppo, Giuseppe Maria

    2016-12-01

    Calcium phosphate cements (CPCs) have been extensively used in reconstructive dentistry and orthopedics, but it is only recently that CPCs have been combined with stem cells to engineer biological substitutes with enhanced healing potential. In the present study, macroporous CPC scaffolds with defined composition were fabricated using an easily reproduced synthesis method, with minimal fabrication and processing steps. Scaffold pore size and porosity, essential for cell infiltration and tissue ingrowth, were tuned by varying the content and size of polyethylene glycol (PEG) particles, resulting in 9 groups with different architectural features. The scaffolds were characterized for chemical composition, porosity and mechanical properties, then tested in vitro with human mesenchymal progenitors derived from induced pluripotent stem cells (iPSC-MPs). Biomimetic decellularized bone scaffolds were used as reference material in this study. Our manufacturing process resulted in the formation of macroporous monetite scaffolds with no residual traces of PEG. The size and content of PEG particles was found to affect scaffold porosity, and thus mechanical properties. Irrespective of pore size and porosity, the CPC scaffolds fabricated in this study supported adhesion and viability of human iPSC-MPs similarly to decellularized bone scaffolds. However, the architectural features of the scaffolds were found to affect the expression of bone specific genes, suggesting that specific scaffold groups could be more suitable to direct human iPSC-MPs in vitro toward an osteoblastic phenotype. Our simplistic fabrication method allows rapid, inexpensive and reproducible construction of macroporous CPC scaffolds with tunable architecture for potential use in dental and orthopedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Facile Fabrication of Multifunctional Aramid Nanofiber Films by Spin Coating

    NASA Astrophysics Data System (ADS)

    Lyu, Jing; Liu, Lehao; Zhao, Xing; Shang, Yudong; Zhao, Tingkai; Li, Tiehu

    2016-11-01

    Polymer matrices with excellent mechanical properties, thermal stability and other features are highly demanded for the effective utilization within nanocomposites. Here, we fabricate free-standing aramid nanofiber films via spin coating of an aramid nanofiber/dimethyl sulfoxide solution. Compared with traditional film fabrication methods, this process is time-saving and also able to easily tune the thickness of the films. The resultant films show greatly improved stretchability than that of Kevlar threads and relatively high mechanical strength. Typically, these films with a thickness of 5.5 µm show an ultimate strength of 182 MPa with an ultimate tensile strain of 10.5%. We also apply a finite element modeling to simulate the strain and strength distributions of the films under uniaxial tension, and the results of the simulation are in accordance with the experimental data. Furthermore, the aramid nanofiber films exhibit outstanding thermostability (decomposition at 550 °C under N2 atmosphere and 500 °C in air) and chemical inertness, which would endure acid and alkali. The simple method demonstrated here provides an important way to prepare high-performance aramid nanofiber films for designing new composite systems.

  11. Fast and cheap fabrication of molding tools for polymer replication

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Kirschner, Nadine; Worgull, Matthias; Rapp, Bastian E.

    2017-02-01

    Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap ( 50 €) and fast ( 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.

  12. Thin film fabrication and system integration test run for a microactuator for a tuneable lens

    NASA Astrophysics Data System (ADS)

    Hoheisel, Dominik; Rissing, Lutz

    2014-03-01

    An electromagnetic microactuator, for controlling of a tuneable lens, with an integrated electrostatic element is fabricated by thin film technology. The actuator consists of two parts: the first part with microcoil and flux guide and the second part with a ring shaped back iron on a polyimide membrane. The back iron is additionally useable as electrode for electrostatic measurement of the air gap and for electrostatic actuation. By attracting the back iron an optical liquid is displaced and forms a liquid lens inside the back iron ring covered by the membrane. For testing the thin film fabrication sequence, up-scaled systems are generated in a test run. To fabricate the flux guide in an easy and quick way, a Ni-Fe foil with a thickness of 50 μm is laminated on the Si-wafer. This foil is also utilized in the following fabrication sequence as seed layer for electroplating. Compared to Ni-Fe structures deposited by electroplating, the foil is featuring better soft magnetic properties. The foil is structured by wet chemical etching and the backside of the wafer is structured by deep reactive ion etching (DRIE). For post fabrication thinning, the polyimide membrane is treated by oxygen plasma etching. To align the back iron to the microcoil and the flux guide, a flip-chip-bonder is used during test run of system integration. To adjust a constant air gap, a water solvable polymer is tested. A two component epoxy and a polyimide based glue are compared for their bonding properties of the actuator parts.

  13. Fabrication and characterization of active nanostructures

    NASA Astrophysics Data System (ADS)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  14. Graphene oxide nanostructures modified multifunctional cotton fabrics

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Navaneethaiyer, Umasuthan; Mohan, Rajneesh; Lee, Jehee; Kim, Sang-Jae

    2012-06-01

    Surface modification of cotton fabrics using graphene oxide (GO) nanostructures was reported. Scanning electron microscopic (SEM) investigations revealed that the GO nanostructure was coated onto the cotton fabric. The molecular level interaction between the graphene oxide and the cotton fabric is studied in detail using the Fourier transform infra-red (FTIR) spectra. Thermogravimetric analysis (TGA) showed that GO loaded cotton fabrics have enhanced thermal stability compared to the bare cotton fabrics. The photocatalytic activity of the GO-coated cotton fabrics was investigated by measuring the photoreduction of resazurin (RZ) into resorufin (RF) under UV light irradiation. The antibacterial activity was evaluated against both Gram-negative and Gram-positive bacteria and the results indicated that the GO-coated cotton fabrics are more toxic towards the Gram-positive ones. Our results provide a way to develop graphene oxide-based devices for the biomedical applications for improving health care.

  15. Shock fabrics in fine-grained micrometeorites

    NASA Astrophysics Data System (ADS)

    Suttle, M. D.; Genge, M. J.; Russell, S. S.

    2017-10-01

    The orientations of dehydration cracks and fracture networks in fine-grained, unmelted micrometeorites were analyzed using rose diagrams and entropy calculations. As cracks exploit pre-existing anisotropies, analysis of their orientation provides a mechanism with which to study the subtle petrofabrics preserved within fine-grained and amorphous materials. Both uniaxial and biaxial fabrics are discovered, often with a relatively wide spread in orientations (40°-60°). Brittle deformation cataclasis and rotated olivine grains are reported from a single micrometeorite. This paper provides the first evidence for impact-induced shock deformation in fine-grained micrometeorites. The presence of pervasive, low-grade shock features in CM chondrites and CM-like dust, anomalously low-density measurements for C-type asteroids, and impact experiments which suggest CM chondrites are highly prone to disruption all imply that CM parent bodies are unlikely to have remained intact and instead exist as a collection of loosely aggregated rubble-pile asteroids, composed of primitive shocked clasts.

  16. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  17. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.

    PubMed

    Font Tellado, Sònia; Bonani, Walter; Balmayor, Elizabeth R; Foehr, Peter; Motta, Antonella; Migliaresi, Claudio; van Griensven, Martijn

    2017-08-01

    Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.

  18. Fabrication of PDMS architecture

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    The study report novel, yet simple and flexible fabrication method for micro channel patterning PDMS thin mold on glass surfaces, the method allows microstructures with critical dimensions to be formed using PDMS. Micro channel production is a two-step process. First, soft photolithography methods are implemented to fabricate a reusable mold. The mold is then used to create the micro channel, which consists of SU8, PDMS and glass. The micro channel design was performed using AutoCAD and the fabrication begins by creating a replicable mold. The mold is created on a glass slide. by spin-coating speed between 500 to 1250rpm with an acceleration of 100 rpm/s for 100 and 15 second ramp up and down speed respectively. Channel flow rate based on concentration were measured by analyzing the recorded flow profiles which was collected from the high powered microscope at. 80µ, 70µm, 50µm for inlet channel 1, 2, 3 respectively the channel flow were compared for flow efficiency at different concentrations and Re. Thus, the simplicity of device structure and fabrication makes it feasible to miniaturize it for the development of point-of-care kits, facilitating its use in both clinical and non-clinical environments. With its simple geometric structure and potential for mass commercial fabrication, the device can be developed to become a portable photo detection sensor that can be use for both environmental and diagnostic application.

  19. Characterization of surface modified polyester fabric.

    PubMed

    Joseph, Roy; Shelma, R; Rajeev, A; Muraleedharan, C V

    2009-12-01

    Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.

  20. Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles.

    PubMed

    Chen, Qiu Lan; Liu, Zhou; Shum, Ho Cheung

    2014-11-01

    In this work, we demonstrate the use of stereolithographic 3D printing to fabricate millifluidic devices, which are used to engineer particles with multiple compartments. As the 3D design is directly transferred to the actual prototype, this method accommodates 3D millimeter-scaled features that are difficult to achieve by either lithographic-based microfabrication or traditional macrofabrication techniques. We exploit this approach to produce millifluidic networks to deliver multiple fluidic components. By taking advantage of the laminar flow, the fluidic components can form liquid jets with distinct patterns, and each pattern has clear boundaries between the liquid phases. Afterwards, droplets with controlled size are fabricated by spraying the liquid jet in an electric field, and subsequently converted to particles after a solidification step. As a demonstration, we fabricate calcium alginate particles with structures of (1) slice-by-slice multiple lamellae, (2) concentric core-shells, and (3) petals surrounding the particle centers. Furthermore, distinct hybrid particles combining two or more of the above structures are also obtained. These compartmentalized particles impart spatially dependent functionalities and properties. To show their applicability, various ingredients, including fruit juices, drugs, and magnetic nanoparticles are encapsulated in the different compartments as proof-of-concepts for applications, including food, drug delivery, and bioassays. Our 3D printed electro-millifluidic approach represents a convenient and robust method to extend the range of structures of functional particles.

  1. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    PubMed

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Direct write fabrication of waveguides and interconnects for optical printed wiring boards

    NASA Astrophysics Data System (ADS)

    Dingeldein, Joseph C.

    produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.

  3. The mechanical response of woven Kevlar fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, W.E.

    1991-01-01

    Woven Kevlar fabrics exhibit a number of beneficial mechanical properties which include strength, flexibility, and relatively low density. The desire to engineer or design Kevlar fabrics for specific applications has stimulated interest in the development of theoretical models which relate their effective mechanical properties to specific aspects of the fabric morphology and microstructure. In this work the author provides a theoretical investigation of the large deformation elastic response of a plane woven Kevlar fabric and compares these theoretical results with experimental data obtained from uniaxially loaded Kevlar fabrics. The theoretical analysis assumes the woven fabric to be a regular networkmore » of orthogonal interlaced yarns and the individual yarns are modeled as extensible elastica, thus coupling stretching and bending effects at the outset. This comparison of experiment with theory indicates that the deformation of woven fabric can be quite accurately predicted by modeling the individual yarns as extensible elastica. 2 refs., 1 fig.« less

  4. Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection.

    PubMed

    Fathollahzadeh, M; Hosseini, M; Haghighi, B; Kolahdouz, M; Fathipour, M

    2016-06-14

    This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  6. Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal.

    PubMed

    Subramania, Ganapathi; Lee, Yun-Ju; Brener, Igal; Luk, Ting-Shan; Clem, Paul G

    2007-10-01

    Photonic crystals (PC) have emerged as important types of structures for light manipulation. Ultimate control of light is possible by creating PCs with a complete three dimensional (3D) gap [1, 2]. This has proven to be a considerable challenge in the visible and ultraviolet frequencies mainly due to complications in integrating transparent, high refractive index (n) materials with fabrication techniques to create ~ 100nm features with long range translational order. In this letter, we demonstrate a nano-lithography approach based on a multilevel electron beam direct write and physical vapor deposition, to fabricate four-layer titania woodpile PCs that potentially exhibit complete 3D gap at visible wavelengths. We achieved a short wavelength bandedge of 525nm with a 300nm lattice constant PC. Due to the nanoscale precision and capability for defect control, the nanolithography approach represents an important step toward novel visible photonic devices for lighting, lasers, sensing and biophotonics.

  7. High sensitivity knitted fabric strain sensors

    NASA Astrophysics Data System (ADS)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  8. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1985-01-01

    There are two kinds of fabric structures - tension, supported by cables and pylons, and those supported by air pressure within an enclosed fabric envelope. They are becoming increasingly popular with architects, engineers, etc., because of their aesthetic appeal, low cost and maintenance, energy efficiency and good space utilization. The Structo-Fab roof weighs only 1/30 as much as a conventional roof of that size. Giant fans are used to blow air into the envelope between the roof's outer membrane and its inner liner automatically maintaining the pressure differential necessary for roof rigidity.

  9. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture

    PubMed Central

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-01-01

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness—the valence dimension of the affect circumplex—accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain. PMID:23754408

  10. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  11. Design and fabrication of a stringer stiffened discrete-tube actively cooled panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Halenbrook, R. G.

    1981-01-01

    A 0.61 x 1.22 m (2 x 4 ft) test panel was fabricated and delivered to the Langley Research Center for assessment of the thermal and structural features of the optimized panel design. The panel concept incorporated an aluminum alloy surface panel actively cooled by a network of discrete, parallel, redundant, counterflow passage interconnected with appropriate manifolding, and assembled by adhesive bonding. The cooled skin was stiffened with a mechanically fastened conventional substructure of stringers and frames. A 40 water/60 glycol solution was the coolant. Low pressure leak testing, radiography, holography and infrared scanning were applied at various stages of fabrication to assess integrity and uniformity. By nondestructively inspecting selected specimens which were subsequently tested to destruction, it was possible to refine inspection standards as applied to this cooled panel design.

  12. Air-Inflated Fabric Structures

    DTIC Science & Technology

    2006-11-05

    environmental exposure to ultraviolet rays, moisture, fire, chemicals, etc. Coating such as urethane, PVC (polyvinyl chloride), neoprene, EPDM (ethylene...tests on rubber -coated, plain-woven fabrics and established that the initial shear response was dominated by the coating and with increased shearing...Farboodmanesh, S., Chen, J., Mead, J. L., White, K., "Effect of Construction on Mechanical Behavior of Fabric Reinforced Rubber ," Rubber Division

  13. Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process

    NASA Astrophysics Data System (ADS)

    He, Li; Song, Xuan

    2018-03-01

    In recent years, ceramic fabrication using stereolithography (SLA) has gained in popularity because of its high accuracy and density that can be achieved in the final part of production. One of the key challenges in ceramic SLA is that support structures are required for building overhanging features, whereas removing these support structures without damaging the components is difficult. In this research, a suspension-enclosing projection-stereolithography process is developed to overcome this challenge. This process uses a high-yield-stress ceramic slurry as the feedstock material and exploits the elastic force of the material to support overhanging features without the need for building additional support structures. Ceramic slurries with different solid loadings are studied to identify the rheological properties most suitable for supporting overhanging features. An analytical model of a double doctor-blade module is established to obtain uniform and thin recoating layers from a high-yield-stress slurry. Several test cases highlight the feasibility of using a high-yield-stress slurry to support overhanging features in SLA.

  14. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics.

    PubMed

    Rehan, Mohamed; Barhoum, Ahmed; Van Assche, Guy; Dufresne, Alain; Gätjen, Linda; Wilken, Ralph

    2017-05-01

    Herein, the highly multifunctional cotton fabric surfaces were designed with excellent coloration, UV-protection function, and antimicrobial activity. These multifunctional functions were developed by in-situ synthesis of silver nanoparticles (Ag NPs) into the cotton fabric surface using a simple green one-pot "UV-reduction" method. Cotton fabrics were pretreated with non-anionic detergent, immersed into alcoholic silver nitrate solution (concentration ranging from 100 to 500ppm), squeezed to remove excess solution and then exposed to UV-irradiation (range 320-400nm) for 1h. The influence UV-irradiation on the thermal, chemical, optical and biological properties of the cotton fabric surface was discussed in details. The UV-irradiation promotes reducing of Ag + ions and the cotton fabrics act as seed medium for Ag NPs formation by "heterogeneous nucleation". Increasing Ag + concentration (from 100 to 500ppm) results in Ag NPs of particle size (distribution) of 50-100nm. Interestingly, the Ag NPs exhibited different localized surface Plasmon resonance properties causing a coloration of the cotton fabrics with different color shades ranging from bright to dark brown with excellent color fastness properties. The treated cotton fabrics also show high protecting functions against UV-transmission (reduction of 65%) and Escherichia coli growth (99%). The side-effects of the UV-reduction process are further investigated. Published by Elsevier B.V.

  15. The other fiber, the other fabric, the other way

    NASA Astrophysics Data System (ADS)

    Stephens, Gary R.

    1993-02-01

    Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.

  16. Design, Fabrication, and Calibration of an Embedded Piezoceramic Actuator for Active Control Applications

    NASA Technical Reports Server (NTRS)

    Koopmann, Gary H.; Lesieutre, George A.; Yoshikawa, Shoko; Chen, Weicheng; Fahnline, John B.; Pai, Suresh; Dershem, Brian

    1996-01-01

    In this presentation, the authors describe the design and fabrication processes for a PZT strain actuator that evolved during the initial stages of a research effort to synthesize and process intelligent, cost effective structures (SPICES). The actuator performance requirements were similar to those of conventional actuators, e.g., it had to be robust, highly efficient with adequate force and stroke, as lightweight as possible, and most importantly, affordable. Further, since the actuator was to be integrated within a composite structure, it had to be compatible with the host material and easily embeddable during the fabrication process. In control applications employing strain devices as actuators, a good bond between this actuator and host material is critical to their successful operation. This criterion is often difficult to achieve when attempting to join ceramics with metals or polymers with dissimilar properties such as Young's moduli, thermal expansion coefficients, etc. One unique feature of the actuator design that evolved in this project is that the need for direct bonding between the PZT ceramic and polymers was circumvented, i.e. the strain transfer to the host material was achieved via a frame surrounding the ceramic. Consequently, the frame material could be selected (or coated) for compatibility with the host material. A second feature is that the frame enclosed a co-fired, multilayered, PZT stack that was used to minimize the voltage requirements while maximizing the output strain.

  17. Fabrication of photonic crystal microprisms based on artificial opals

    NASA Astrophysics Data System (ADS)

    Fenollosa, Roberto; Ibisate, Marta; Rubio, Silvia; Lopez, Ceferino; Meseguer, Francisco; Sanchez-Dehesa, Jose

    2002-04-01

    This paper reports a new method for faceting artificial opals based on micromanipulation techniques. By this means it was possible to fabricate an opal prism in a single domain with different faces: (111), (110) and (100), which were characterized by Scanning Electron Microscopy and Optical Reflectance Spectroscopy. Their spectra exhibit different characteristics depending on the orientation of the facet. While (111)-oriented face gives rise to a high Bragg reflection peak at about a/(lambda) equals 0.66 (where a is the lattice parameter), (110) and (100) faces show much less intense peaks corresponding to features in the band structure at a/(lambda) equals 1.12 and a/(lambda) equals 1.07 respectively. Peaks at higher energies have less obvious explanation.

  18. Nanoscale porosity in polymer films: fabrication and therapeutic applications

    PubMed Central

    Bernards, Daniel A.; Desai, Tejal A.

    2011-01-01

    This review focuses on current developments in the field of nanostructured bulk polymers and their application in bioengineering and therapeutic sciences. In contrast to well-established nanoscale materials, such as nanoparticles and nanofibers, bulk nanostructured polymers combine nanoscale structure in a macroscopic construct, which enables unique application of these materials. Contemporary fabrication and processing techniques capable of producing nanoporous polymer films are reviewed. Focus is placed on techniques capable of sub-100 nm features since this range approaches the size scale of biological components, such as proteins and viruses. The attributes of these techniques are compared, with an emphasis on the characteristic advantages and limitations of each method. Finally, application of these materials to biofiltration, immunoisolation, and drug delivery are reviewed. PMID:22140398

  19. Fabrication and Design of Optical Nanomaterials

    NASA Astrophysics Data System (ADS)

    Huntington, Mark D.

    Over the past several decades, advances in nanometer scale fabrication has sparked interes in applications that take advantage of materials that are structured at these small length scales. Specifically, metallic optical nanomaterials have emerged as a new way to control light at length scales that are smaller than the wavelength of light and have optical properties that are distinctly different from their macroscale counterparts. Although there have been may advances in nanofabrication, the performance and widespread use of optical nanomaterials is still limited by fabrication and design challenges. This dissertation describes advances in the fabrication, characterization, and design of optical nanomaterials. First we demonstrate how a portable and compact photolithography system can be made using a light source composed of UV LEDs. Our solid-state photolithography (SSP) system brings the capabilities of one of the most important yet workhorse tools of micro- and nanotechnology--the mask aligner--to the benchtop. The two main highlights of chapter 2 include: (i) portable, low-cost photolithography and (ii) high quality patterning. We replace the mask aligner with a system composed of UV LEDs and a diffuser that can be built for as little as $30. The design of the SSP system alleviates the need for dedicated power supplies, vacuum lines and cooling systems, which makes it a true benchtop photolithography system. We further show that sub-wavelength features can be fabricated across 4-in wafers and that these patterns are of high quality such that they can be easily transferred into functional materials. Chapter 3 describes a parallel method to create nanometer scale textures over large areas with unprecedented control over wrinkle wavelength. The main points of this chapter include: (i) a new material system for nanowrinkles, (ii) wrinkles with tunable wavelengths, and (iii) a method for measuring the skin thickness. First, we show that RIE treatment of PS with

  20. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Xing, Hongguang; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-07-01

    Highly-compact devices capable of beam splitting are intriguing for a broad range of photonic applications. In this work, we report on the fabrication of optical waveguide splitters with rectangular cladding geometry in a Ti:Sapphire crystal by femtosecond laser inscription. Y-splitters are fabricated with 30 μm × 15 μm and 50 μm × 25 μm input ends, corresponding to two 15 μm × 15 μm and 25 μm × 25 μm output ends, respectively. The full branching angle θ between the two output arms are changing from 0.5° to 2°. The performances of the splitters are characterized at 632.8 nm and 1064 nm, showing very good properties including symmetrical output ends, single-mode guidance, equalized splitting ratios, all-angle-polarization light transmission and intact luminescence features in the waveguide cores. The realization of these waveguide splitters with good performances demonstrates the potential of such promising devices in complex monolithic photonic circuits and active optical devices such as miniature tunable lasers.