Sample records for fabricating solar arrays

  1. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  2. Advanced photovoltaic solar array development

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul

    1989-01-01

    Phase 2 of the Advanced Photovoltaic Solar Array (APSA) program, started in mid-1987, is currently in progress to fabricate prototype wing hardware that will lead to wing integration and testing in 1989. The design configuration and key details are reviewed. A status of prototype hardware fabricated to date is provided. Results from key component-level tests are discussed. Revised estimates of array-level performance as a function of solar cell device technology for geosynchronous missions are given.

  3. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  4. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by

  5. APSA - A new generation of photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Kurland, R. M.

    1989-01-01

    This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.

  6. NASA Solar Array Demonstrates Commercial Potential

    NASA Technical Reports Server (NTRS)

    Creech, Gray

    2006-01-01

    A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes

  7. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1992-01-01

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  8. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Astrophysics Data System (ADS)

    Stella, Paul M.; Kurland, Richard M.

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  9. Fabrication of nanostructured CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Wang, Fang; Parry, James; Perera, Samanthe; Zeng, Hao

    2012-02-01

    We present the work on Cu(In,Ga)(Se,S)2 based nanostructured solar cells based on nanowire arrays. CIGS as the light absorber for thin-film solar cells has been widely studied recently, due to its high absorption coefficient, long-term stability, and low-cost of fabrication. Recently, solution phase processed CIGS thin film solar cells attracted great attention due to their extremely low fabrication cost. However, the performance is lower than vacuum based thin films possibly due to higher density of defects and lower carrier mobility. On the other hand, one dimensional ordered nanostructures such as nanowires and nanorods can be used to make redial junction solar cells, where the orthogonality between light absorption and charge carrier separation can lead to enhanced PV performance. Since the charge carriers only need to traverse a short distance in the radial direction before they are separated at the heterojunction interface, the radial junction scheme can be more defect tolerant than their planar junction scheme. In this work, a wide band gap nanowire or nanotube array such as TiO2 is used as a scaffold where CIGS is conformally coated using solution phase to obtain a radial heterojunction solar cell. Their performance is compared that of the planar thin film solar cells fabricated with the same materials.

  10. Spraylon fluorocarbon encapsulation for silicon solar cell arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.

  11. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    NASA Astrophysics Data System (ADS)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  12. Method of fabricating a solar cell array

    DOEpatents

    Lazzery, Angelo G.; Crouthamel, Marvin S.; Coyle, Peter J.

    1982-01-01

    A first set of pre-tabbed solar cells are assembled in a predetermined array with at least part of each tab facing upward, each tab being fixed to a bonding pad on one cell and abutting a bonding pad on an adjacent cell. The cells are held in place with a first vacuum support. The array is then inverted onto a second vacuum support which holds the tabs firmly against the cell pads they abut. The cells are exposed to radiation to melt and reflow the solder pads for bonding the tab portions not already fixed to bonding pads to these pads.

  13. The 7.5 kW solar array simulator

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1975-01-01

    A high power solar array simulator capable of providing the input power to simultaneously operate two 30 cm diameter ion thruster power processors was designed, fabricated, and tested. The maximum power point is set to between 150 and 7500 watts representing an open circuit voltage from 50 to 300 volts and a short circuit current from 4 to 36 amps. Illuminated solar cells are used as the control element to provide a true solar cell characteristic and permit the option of simulating changes in this characteristic due to variations in solar intensity and/or temperature of the solar array. This is accomplished by changing the illumination and/or temperature of the control cells. The response of the output to a step change in load closely approximates that of an actual solar array.

  14. A solar module fabrication process for HALE solar electric UAV's

    NASA Astrophysics Data System (ADS)

    Carey, P. G.; Aceves, R. C.; Colella, N. J.; Williams, K. A.; Sinton, R. A.; Glenn, G. S.

    1994-12-01

    We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAV's). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150 micron-thick monofacial and 110 micron-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150 micron) and 14.7% (110 micron) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25 C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 sq m of these modules is described.

  15. Interconnnect and bonding technologies for large flexible solar arrays

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Thermocompression bonding and conductive adhesive bonding are developed and evaluated as alternate methods of joining solar cells to their interconnect assemblies. Bonding materials and process controls applicable to fabrication of large, flexible substrate solar cell arrays are studied. The primary potential use of the techniques developed is on the solar array developed by NASA/MSFC and LMSC for solar electric propulsion (SEP) and shuttle payload applications. This array is made up of flexible panels approximately 0.7 by 3.4 meters. It is required to operate in space between 0.3 and 6 AU for 5 years with limited degradation. Materials selected must be capable of enduring this space environment, including outgassing and radiation.

  16. Demonstration of transparent solar array module design

    NASA Technical Reports Server (NTRS)

    Pack, G. J.

    1984-01-01

    This report discusses the design, development, fabrication and testing of IR transparent solar array modules. Three modules, consisting of a baseline design using back surface reflector cells, and two modules using gridded back contact, IR transparent cells, were subjected to vacuum thermal balance testing to verify analytical predictions of lower operating emperature and increased efficiency. As a result of this test program, LMSC has verified that a significant degree of IR transparency can be designed into a flexible solar array. Test data correlates with both steady state and transient thermal analysis.

  17. Core-shell solar cell fabrication using heterostructure of ZnO-nanowires arrays decorated with sputtered CdTe-nanoparticles

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Elaheh; Dehghan Nayeri, Fatemeh; Ghoranneviss, Mahmood

    2018-03-01

    Core-shell heterostructures of ZnO-NWs/CdTe-NPs were fabricated through covering ZnO-NWs arrays using CdTe-NPs and the room temperature RF magnetron sputtering method. The influence of different CdTe-NPs deposition time (5, 20, 40 and 60 min) on the physical properties of core-shell heterostructures were investigated. In order to achieve the highest coverage level and a wide range of optical absorption at a visible range for a ZnO-NWs/CdTe-NPs (60 min) array, FTO/ZnO-NWs/CdTe-NPs (60 min)/Ni/Au core-shell solar cells were used. Solar cell fabrication was performed by soaking the samples in a saturated CdCl2 solution in methanol and a post-annealing treatment at 400 °C for 1 h in air which led to grain growth, the passivation of deep level defects, and the decrease of stacking faults. Short-circuit current and power conversion efficiency of the fabricated cell under illumination with visible light AM1.5 (100 mW cm-2) were 13.3 mA cm-2 and 3.41%, respectively. It was found that introducing a thin interfacial layer of CdSe to the configuration (FTO/ZnO-NWs/CdSe (10 nm)/CdTe-NPs (60 min)/Ni/Au) led to a 5.58% enhancement of photovoltaic performance of the solar cell (20.9 mA cm-2), which is 63.6% more than that of the same configuration without CdSe.

  18. Advanced Photovoltaic Solar Array program status

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1989-01-01

    The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.

  19. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  20. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    NASA Astrophysics Data System (ADS)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  1. Development of an Electrostatically Clean Solar Array Panel

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  2. Thermal cycle testing of Space Station Freedom solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Schieman, David A.

    1991-01-01

    Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.

  3. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  4. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  5. On-Orbit Reconfigurable Solar Array

    NASA Technical Reports Server (NTRS)

    Levy, Robert K. (Inventor)

    2017-01-01

    In one or more embodiments, the present disclosure teaches a method for reconfiguring a solar array. The method involves providing, for the solar array, at least one string of solar cells. The method further involves deactivating at least a portion of at least one of the strings of solar cells of the solar array when power produced by the solar array reaches a maximum power allowance threshold. In addition, the method involves activating at least a portion of at least one of the strings of the solar cells in the solar array when the power produced by the solar array reaches a minimum power allowance threshold.

  6. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  7. Thermal/Dynamic Characterization Test of the Solar Array Panel for Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jenkins, Kathleen; Hershfeld, Donald J.

    1999-01-01

    The Hubble Space Telescope has experienced a problem maintaining pointing accuracy during emergence of the spacecraft from the Earth's shadow. The problem has been attributed to the rapid thermal gradient that develops when the heat from the Sun strikes the cold solar arrays. The thermal gradient causes the solar arrays to deflect or bend and this motion is sufficient to disturb the pointing control system. In order to alleviate this problem, a new design for the solar arrays has been fabricated. These new solar arrays will replace the current solar arrays during a future Hubble servicing mission. The new solar arrays have been designed so that the effective net motion of the center of mass of each panel is essentially zero. Although the solar array thermal deflection problem has been studied extensively over a period of years, a full scale test of the actual flight panels was required in order to establish confidence in the analyses. This test was conducted in the JPL Solar Simulation Facility in April, 1999. This presentation will discuss the objectives and methods of the test and present some typical test data.

  8. Development testing of the advanced photovoltaic solar array

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Kurland, R. M.

    1991-01-01

    The latest design, fabrication and testing details of a prototype wing are discussed. Estimates of array-level performance are presented as a function of power level and solar cell technology for geosynchronous orbit (GEO) missions and solar electric propulsion missions through the Van Allen radiation belts. Design concepts are discussed that would allow the wing to be self-retractable and restowable. To date all testing has verified the feasibility and mechanical/electrical integrity of the baseline design. The beginning-of-life (BOL) specific power estimate for a nominal 10-kW (BOL) array is about 138 W/kg, with corresponding end-of-life (EOL) performance of about 93 W/kg for a 10-year GEO mission.

  9. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  10. Latest developments in the Advanced Photovoltaic Solar Array Program

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1990-01-01

    In 1985, the Advanced Photovoltaic Solar Array (APSA) Program was established to demonstrate a producible array system with a specific power greater than 130 W/kg at a 10-kW (BOL) power level. The latest program phase completed fabrication and initial functional testing of a prototype wing representative of a full-scale 5-kW (BOL) wing (except truncated in length to about 1 kW), with weight characteristics that could meet the 130-W/kg (BOL) specific power goal using thin silicon solar cell modules and weight-efficient structural components. The wing configuration and key design details are reviewed, along with results from key component-level and wing-level tests. Projections for future enhancements that may be expected through the use of advanced solar cells and structural components are shown. Performance estimates are given for solar electric propulsion orbital transfer missions through the Van Allen radiation belts. The latest APSA program plans are presented.

  11. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    ) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.

  12. Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays.

    PubMed

    Li, Xin; Dai, Si-Min; Zhu, Pei; Deng, Lin-Long; Xie, Su-Yuan; Cui, Qian; Chen, Hong; Wang, Ning; Lin, Hong

    2016-08-24

    Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.

  13. Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.

  14. Study of Automated Module Fabrication for Lightweight Solar Blanket Utilization

    NASA Technical Reports Server (NTRS)

    Gibson, C. E.

    1979-01-01

    Cost-effective automated techniques for accomplishing the titled purpose; based on existing in-house capability are described. As a measure of the considered automation, the production of a 50 kilowatt solar array blanket, exclusive of support and deployment structure, within an eight-month fabrication period was used. Solar cells considered for this blanket were 2 x 4 x .02 cm wrap-around cells, 2 x 2 x .005 cm and 3 x 3 x .005 cm standard bar contact thin cells, all welded contacts. Existing fabrication processes are described, the rationale for each process is discussed, and the capability for further automation is discussed.

  15. ISS Solar Array Management

    NASA Technical Reports Server (NTRS)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  16. Design and fabrication of microstrip antenna arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.

  17. Developing an Inflatable Solar Array

    NASA Technical Reports Server (NTRS)

    Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.

    1992-01-01

    Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.

  18. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  19. The Solar Array Photovoltaic Assembly for the INSAT 4CR Spacecraft Design, Development and In-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.

    2008-09-01

    The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.

  20. Micro solar concentrators: Design and fabrication for microcells arrays

    NASA Astrophysics Data System (ADS)

    Jutteau, Sébastien; Paire, Myriam; Proise, Florian; Lombez, Laurent; Guillemoles, Jean-François

    2015-09-01

    In this work we look at a micro-concentrating system adapted to a new type of concentrator photovoltaic material, well known for flate-plate applications, Cu(In,Ga)Se2. Cu(In,Ga)Se2 solar cells are polycrystalline thin film devices that can be deposited by a variety of techniques. We proposed to use a microcell architecture [1], [2], with lateral dimensions varying from a few μm to hundreds of μm, to adapt the film cell to concentration conditions. A 5% absolute efficiency increase on Cu(In,Ga)Se2 microcells at 475 suns has been observed for a final efficiency of 21.3%[3]. We study micro-concentrating systems adapted to the low and middle concentration range, where thin film concentrator cells will lean to substrate fabrication simplification and cost savings. Our study includes optical design, fabrication and experimental tests of prototypes.

  1. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  2. Advanced photovoltaic solar array design assessment

    NASA Technical Reports Server (NTRS)

    Stella, Paul; Scott-Monck, John

    1987-01-01

    The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.

  3. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  4. A lightweight solar array study

    NASA Technical Reports Server (NTRS)

    Josephs, R. H.

    1977-01-01

    A sample module was assembled to model a portion of a flexible extendable solar array, a type that promises to become the next generation of solar array design. The resulting study of this module is intended to provide technical support to the array designer for lightweight component selection, specifications, and tests. Selected from available lightweight components were 127-micron-thick wrap-around contacted solar cells, 34- micron-thick sputtered glass covers, and as a substrate a 13-micron-thick polyimide film clad with a copper printed circuit. Each component displayed weaknesses. The thin solar cells had excessive breakage losses. Sputtered glass cover adhesion was poor, and the covered cell was weaker than the cell uncovered. Thermal stresses caused some cell delamination from the model solar array substrate.

  5. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  6. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  7. Periodically Aligned Si Nanopillar Arrays as Efficient Antireflection Layers for Solar Cell Applications

    PubMed Central

    2010-01-01

    Periodically aligned Si nanopillar (PASiNP) arrays were fabricated on Si substrate via a silver-catalyzed chemical etching process using the diameter-reduced polystyrene spheres as mask. The typical sub-wavelength structure of PASiNP arrays had excellent antireflection property with a low reflection loss of 2.84% for incident light within the wavelength range of 200–1,000 nm. The solar cell incorporated with the PASiNP arrays exhibited a power conversion efficiency (PCE) of ~9.24% with a short circuit current density (JSC) of ~29.5 mA/cm2 without using any extra surface passivation technique. The high PCE of PASiNP array-based solar cell was attributed to the excellent antireflection property of the special periodical Si nanostructure. PMID:21124636

  8. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  9. Solar electric propulsion thruster interactions with solar arrays

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1977-01-01

    The effect of interactions of spacecraft-generated and naturally occurring plasmas with high voltage solar array components on an advanced solar electric propulsion system proposed for the Halley's Comet rendezvous mission was investigated. The spacecraft-generated plasma consists of mercury ions and neutralizing electrons resulting from the operation of ion thrusters (the charge-exchange plasma) and associated hollow cathode neutralizers. Quantitative results are given for the parasitic currents and power coupled into solar arrays with voltage fixed as a function of position on the array.

  10. Evaluation of solar cells and arrays for potential solar power satellite applications

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  11. Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.

  12. High density pixel array and laser micro-milling method for fabricating array

    NASA Technical Reports Server (NTRS)

    McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)

    2003-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  13. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    PubMed

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  14. Commerical (terrestrial) and modified solar array design studies for low cost, low power space applications

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Riley, T. J.

    1980-01-01

    The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.

  15. Solar collector array

    DOEpatents

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  16. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating

    PubMed Central

    2012-01-01

    An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578

  17. Operational considerations to reduce solar array loads

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, W.

    1992-01-01

    The key parameters associated with solar array plume loads are examined, and operational considerations aimed at minimizing the effect of the Shuttle plumes on the Space Station solar arrays are discussed. These include solar array pointing to reduce loads and restrictions on Shuttle piloting. Particular attention is given to the method used to obtain the forcing functions (thruster time firing histories) for solar array plume calculation.

  18. Lightweight Integrated Solar Array and Transceiver. [Improving Electrical Power and Communication Capabilities in Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Carr, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.

  19. Electrostatically clean solar array

    NASA Technical Reports Server (NTRS)

    Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)

    2004-01-01

    Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.

  20. Solar XUV Imaging and Non-dispersive Spectroscopy for Solar-C Enabled by Scientific CMOS APS Arrays

    NASA Astrophysics Data System (ADS)

    Stern, Robert A.; Lemen, J. R.; Shing, L.; Janesick, J.; Tower, J.

    2009-05-01

    Monolithic CMOS Advanced Pixel Sensor (APS) arrays are showing great promise as eventual replacements for the current workhorse of solar physics focal planes, the scientific CCD. CMOS APS devices have individually addressable pixels, increased radiation tolerance compared to CCDs, and require lower clock voltages, and thus lower power. However, commercially available CMOS chips, while suitable for use with intensifiers or fluorescent coatings, are generally not optimized for direct detection of EUV and X-ray photons. A high performance scientific CMOS array designed for these wavelengths will have significant new capabilities compared to CCDs, including the ability to read out small regions of the solar disk at high (sub sec) cadence, count single X-ray photons with Fano-limited energy resolution, and even operate at room temperature with good noise performance. Such capabilities will be crucial for future solar X-ray and EUV missions such as Solar-C. Sarnoff Corporation has developed scientific grade, monolithic CMOS arrays for X-ray imaging and photon counting. One prototype device, the "minimal" array, has 8 um pixels, is 15 to 25 um thick, is fabricated on high-resistivity ( 10 to 20 kohm-cm) Si wafers, and can be back-illuminated. These characteristics yield high quantum efficiency and high spatial resolution with minimal charge sharing among pixels, making it ideal for the detection of keV X-rays. When used with digital correlated double sampling, the array has demonstrated noise performance as low as 2 e, allowing single photon counting of X-rays over a range of temperatures. We report test results for this device in X-rays, and discuss the implications for future solar space missions.

  1. Torsional Buckling Tests of a Simulated Solar Array

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1996-01-01

    Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.

  2. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  3. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  4. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  5. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Jin, Zhixin; Wang, Yinglin; Wang, Meiqi; Chen, Shixin; Zhang, Yang; Wang, Lingling; Zhang, Xintong; Liu, Yichun

    2017-04-01

    Morphology of electron transport layers (ETLs) has an important influence on the device architecture and electronic processes of mesostructured solar cells. In this work, we thoroughly investigated the effect of the interspace of TiO2 nanorod (NR) arrays on the photovoltaic performance of the perovskite solar cells (PSCs). Along with the interspace in TiO2-NR arrays increasing, the thickness as well as the crystal size of perovskite capping layer are reduced accordingly, and the filling of perovskite in the channel becomes incomplete. Electrochemical impedance spectroscopy measurements reveal that this variation of perovskite absorber layer, induced by interspace of TiO2 NR arrays, causes the change of charge recombination process at the TiO2/perovskite interface, suggesting that a balance between capping layer and the perovskite filling is critical to obtain high charge collection efficiency of PSCs. A power conversion efficiency of 10.3% could be achieved through careful optimization of interspace in TiO2-NR arrays. Our research will shed light on the morphology control of ETLs with 1D structure for heterojunction solar cells fabricated by solution-deposited method.

  6. The revised solar array synthesis computer program

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Revised Solar Array Synthesis Computer Program is described. It is a general-purpose program which computes solar array output characteristics while accounting for the effects of temperature, incidence angle, charged-particle irradiation, and other degradation effects on various solar array configurations in either circular or elliptical orbits. Array configurations may consist of up to 75 solar cell panels arranged in any series-parallel combination not exceeding three series-connected panels in a parallel string and no more than 25 parallel strings in an array. Up to 100 separate solar array current-voltage characteristics, corresponding to 100 equal-time increments during the sunlight illuminated portion of an orbit or any 100 user-specified combinations of incidence angle and temperature, can be computed and printed out during one complete computer execution. Individual panel incidence angles may be computed and printed out at the user's option.

  7. Multi-kW solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.

  8. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    adhesive. In practice, these cover glasses and adhesive do not cover the cell edges. Finally, in the SLA, the entire cell and cell edges are fully encapsulated by a cover glass that overhangs the cell perimeter and the silicone adhesive covers the cell edges providing a sealed environment. These three types of blanket technology have been tested at GRC and Auburn. The results of these tests will be described. For example, 15 modules composed of four state-of-the-art 2x4 cm GaAs solar cells with 150 pm cover glasses connected in two-cell series strings were tested at high voltage, in plasma under hypervelocity impact. A picture of one of the modules is shown in figure 1. These were prepared by standard industry practice from a major supplier and had efficiencies above 18%. The test results and other fabrication factors that influenced the tests will be presented. In addition, results for SLA segments tested under the same conditions will be presented. Testing of thin film blankets at GRC will also be presented. Figure 1 : Typical GaAs Solar Cell Module These results will show significant differences in resistance to arcing that are directly related to array design and manufacturing procedures. Finally, the approaches for mitigating the problems uncovered by these tests will be described. These will lay the foundation for future higher voltage array operation, even including voltages above 300-600 V for direct drive SEP applications.

  9. Flat-plate solar array project. Volume 5: Process development

    NASA Technical Reports Server (NTRS)

    Gallagher, B.; Alexander, P.; Burger, D.

    1986-01-01

    The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.

  10. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures.

    PubMed

    Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C

    2016-09-27

    Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices.

  11. Inverted Silicon Nanopencil Array Solar Cells with Enhanced Contact Structures

    PubMed Central

    Liang, Xiaoguang; Shu, Lei; Lin, Hao; Fang, Ming; Zhang, Heng; Dong, Guofa; Yip, SenPo; Xiu, Fei; Ho, Johnny C.

    2016-01-01

    Although three-dimensional nanostructured solar cells have attracted extensive research attention due to their superior broadband and omnidirectional light-harvesting properties, majority of them are still suffered from complicated fabrication processes as well as disappointed photovoltaic performances. Here, we employed our newly-developed, low-cost and simple wet anisotropic etching to fabricate hierarchical silicon nanostructured arrays with different solar cell contact design, followed by systematic investigations of their photovoltaic characteristics. Specifically, nano-arrays with the tapered tips (e.g. inverted nanopencils) are found to enable the more conformal top electrode deposition directly onto the nanostructures for better series and shunt conductance, but its insufficient film coverage at the basal plane would still restrict the charge carrier collection. In contrast, the low-platform contact design facilitates a substantial photovoltaic device performance enhancement of ~24%, as compared to the one of conventional top electrode design, due to the shortened current path and improved lateral conductance for the minimized carrier recombination and series resistance. This enhanced contact structure can not only maintain excellent photon-trapping behaviors of nanostructures, but also help to eliminate adverse impacts of these tapered nano-morphological features on the contact resistance, providing further insight into design consideration in optimizing the contact geometry for high-performance nanostructured photovoltaic devices. PMID:27671709

  12. Space Station Freedom Solar Array design development

    NASA Astrophysics Data System (ADS)

    Winslow, Cindy

    The SSF program's Electrical Power System supports a high-power bus with six solar-array wings in LEO; each solar array generates 30.8 kW at 161.1 V dc, with a deployed natural frequency of 0.1 Hz. Design challenges to the solar array, which must survive exposure for 15 years of operating life, include atomic oxygen, the thermal environment, and spacecraft propulsion plume-impingement loads. Tests thus far completed address cell UV-exposure effects, thermal cycling, and solar-cell deflection.

  13. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  14. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  15. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    PubMed

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  16. Method to fabricate hollow microneedle arrays

    DOEpatents

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  17. Solar array study for solar electric propulsion spacecraft for the Encke rendezvous mission

    NASA Technical Reports Server (NTRS)

    Sequeira, E. A.; Patterson, R. E.

    1974-01-01

    The work is described which was performed on the design, analysis and performance of a 20 kW rollup solar array capable of meeting the design requirements of a solar electric spacecraft for the 1980 Encke rendezvous mission. To meet the high power requirements of the proposed electric propulsion mission, solar arrays on the order of 186.6 sq m were defined. Because of the large weights involved with arrays of this size, consideration of array configurations is limited to lightweight, large area concepts with maximum power-to-weight ratios. Items covered include solar array requirements and constraints, array concept selection and rationale, structural and electrical design considerations, and reliability considerations.

  18. Solar array construction

    NASA Technical Reports Server (NTRS)

    Crouthamel, Marvin S. (Inventor); Coyle, Peter J. (Inventor)

    1982-01-01

    An interconnect tab on each cell of a first set of circular solar cells connects that cell in series with an adjacent cell in the set. This set of cells is arranged in alternate columns and rows of an array and a second set of similar cells is arranged in the remaining alternate columns and rows of the array. Three interconnect tabs on each solar cell of the said second set are employed to connect the cells of the second set to one another, in series and to connect the cells of the second set to those of the first set in parallel. Some tabs (making parallel connections) connect the same surface regions of adjacent cells to one another and others (making series connections) connect a surface region of one cell to the opposite surface region of an adjacent cell; however, the tabs are so positioned that the array may be easily assembled by depositing the cells in a certain sequence and in proper orientation.

  19. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  20. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    The solar arrays on NASA's InSight Mars lander were deployed as part of testing conducted Jan. 23, 2018, at Lockheed Martin Space in Littleton, Colorado. Engineers and technicians evaluated the solar arrays and performed an illumination test to confirm that the solar cells were collecting power. The launch window for InSight opens May 5, 2018. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22205

  1. Solar array stepping to minimize array excitation

    NASA Technical Reports Server (NTRS)

    Bhat, Mahabaleshwar K. P. (Inventor); Liu, Tung Y. (Inventor); Plescia, Carl T. (Inventor)

    1989-01-01

    Mechanical oscillations of a mechanism containing a stepper motor, such as a solar-array powered spacecraft, are reduced and minimized by the execution of step movements in pairs of steps, the period between steps being equal to one-half of the period of torsional oscillation of the mechanism. Each pair of steps is repeated at needed intervals to maintain desired continuous movement of the portion of elements to be moved, such as the solar array of a spacecraft. In order to account for uncertainty as well as slow change in the period of torsional oscillation, a command unit may be provided for varying the interval between steps in a pair.

  2. Space solar array reliability: A study and recommendations

    NASA Astrophysics Data System (ADS)

    Brandhorst, Henry W., Jr.; Rodiek, Julie A.

    2008-12-01

    Providing reliable power over the anticipated mission life is critical to all satellites; therefore solar arrays are one of the most vital links to satellite mission success. Furthermore, solar arrays are exposed to the harshest environment of virtually any satellite component. In the past 10 years 117 satellite solar array anomalies have been recorded with 12 resulting in total satellite failure. Through an in-depth analysis of satellite anomalies listed in the Airclaim's Ascend SpaceTrak database, it is clear that solar array reliability is a serious, industry-wide issue. Solar array reliability directly affects the cost of future satellites through increased insurance premiums and a lack of confidence by investors. Recommendations for improving reliability through careful ground testing, standardization of testing procedures such as the emerging AIAA standards, and data sharing across the industry will be discussed. The benefits of creating a certified module and array testing facility that would certify in-space reliability will also be briefly examined. Solar array reliability is an issue that must be addressed to both reduce costs and ensure continued viability of the commercial and government assets on orbit.

  3. Chemical Fabrication Used to Produce Thin-Film Materials for High Power-to- Weight-Ratio Space Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Rybicki, George C.; Raffaelle, Ryne P.; Harris, Jerry D.; Hehemann, David G.; Junek, William; Gorse, Joseph; Thompson, Tracy L.; Hollingsworth, Jennifer A.; Buhro, William E.

    2000-01-01

    The key to achieving high specific power (watts per kilogram) space solar arrays is the development of a high-efficiency, thin-film solar cell that can be fabricated directly on a flexible, lightweight, space-qualified durable substrate such as Kapton (DuPont) or other polyimide or suitable polymer film. Cell efficiencies approaching 20 percent at AM0 (air mass zero) are required. Current thin-film cell fabrication approaches are limited by either (1) the ultimate efficiency that can be achieved with the device material and structure or (2) the requirement for high-temperature deposition processes that are incompatible with all presently known flexible polyimide or other polymer substrate materials. Cell fabrication processes must be developed that will produce high-efficiency cells at temperatures below 400 degrees Celsius, and preferably below 300 degress Celsius to minimize the problems associated with the difference between the coefficients of thermal expansion of the substrate and thin-film solar cell and/or the decomposition of the substrate.

  4. Solar Cell Fabrication Studies Pertinent to Developing Countries.

    NASA Astrophysics Data System (ADS)

    Prah, Joseph Henry

    That there is a need in the world today, and in the Third World in particular, for developing renewable energy sources is a proposition without question. Toward that end, the harnessing of solar energy has attracted much attention recently. In this thesis, we have addressed the question of Photovoltaics among the many approaches to the problem as being of poignant relevance in the Third World. Based on our studies, which involved the physics of solar cells, various solar cell configurations, the materials for their fabrication and their fabrication sequences, we arrived at the conclusion that silicon homojunction solar cells are best suited to the present needs and environment of, and suitable for development in the Third World, though Cadmium Sulphide-Cuprous Sulphide solar cell could be considered as a viable future candidate. Attendant with the adoption of photovoltaics as electric energy supply, is the problem of technology transfer and development. Towards that goal, we carried out in the laboratory, the fabrication of solar cells using very simple fabrication sequences and materials to demonstrate that tolerable efficiencies are achievable by their use. The view is also presented that for a thriving and viable solar cell industry in the Third World, the sine qua non is an integrated national policies involving all facets of solar cell manufacture and application, namely, material processing and fabrication, basic research, and development and socio -economic acceptance of solar cell appliances. To demonstrate how basic research could benefit solar cell fabrication, we undertook a number of experiments, such as varying our fabrication sequences and materials, finding their radiation tolerance, and carrying out Deep Level Transient Spectroscopy (DLTS) studies, in an attempt to understand some of the fabrication and environmental factors which limit solar cell performance. We thus found that subjecting wafers to preheat treatments does not improve solar cell

  5. MILSTAR's flexible substrate solar array: Lessons learned, addendum

    NASA Technical Reports Server (NTRS)

    Gibb, John

    1990-01-01

    MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.

  6. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1984-01-01

    The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.

  7. The impact of solar cell technology on planar solar array performance

    NASA Technical Reports Server (NTRS)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  8. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  9. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  10. Retrieval of Mir Solar Array

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  11. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  12. Summary of flat-plate solar array project documentation. Abstracts of published documents, 1975 to June 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed.

  13. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    DTIC Science & Technology

    2010-09-01

    adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research

  14. Space Station Freedom Solar Array design development

    NASA Technical Reports Server (NTRS)

    Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo R.

    1989-01-01

    The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.

  15. Mariner 9 Solar Array Design, Manufacture, and Performance

    NASA Technical Reports Server (NTRS)

    Sequeira, E. A.

    1973-01-01

    The mission of Mariner 9, the first spacecraft to orbit another planet, was to make scientific observations of the surface of Mars. Throughout this unique mission, the Mariner 9 solar array successfully supported the power requirements of the spacecraft without experiencing anomalies. Basically, the design of the solar array was similar to those of Mariners 6 and 7; however, Mariner 9 had the additional flight operational requirement to perform in a Mars orbit environment mode. The array special tests provided information on the current-voltage characteristics and array space degradation. Tests indicated that total solar array current degradation was 3.5 percent, which could probably be attributed to the gradual degradation of the cover glass and/or the RTV 602 adhesive employed to cement the cover glass to the solar cell.

  16. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  17. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  18. Anti-static coat for solar arrays

    NASA Astrophysics Data System (ADS)

    Fellas, C. N.

    1982-06-01

    A Kapton based composite material, suitable as a substrate for flexible solar arrays, was designed, constructed and tested under electron energies ranging from 5 to 30 keV. The rear of the array under adverse eclipse conditions (-197 C) produced voltages well below the discharge threshold. An antistatic coat suitable as a front cover for solar arrays is also described. The thermal and optical transmission characteristics were tested and are satisfactory, but the UV and particle degradation of the Tedlar material needs to be evaluated.

  19. The interactions of solar arrays with electric thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Isaacson, G. C.; Domitz, S.

    1976-01-01

    The generation of a charge-exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma can be described accurately from thruster geometry and operating conditions. The transport of the charge-exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster-array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.

  20. Alphabus Solar Array- Versatile and Powerful Solar Arrays for Tomorrow's Commercial Telecom Satellites

    NASA Astrophysics Data System (ADS)

    Pfefferkorn, T.; Oxynos, C.; Greff, P.; Gerlach, L.

    2008-09-01

    After the successful series of Eurostar 3000 and Spacebus 4000 satellites and due to the demand of satellite operators for even larger and more powerful satellites, ESA decided to co-fund the development of a new satellite platform which covers the market segment beyond the upper limits of both satellite families.The new satellite bus family Alphabus is developed in the frame of ARTES 8 project by a joint project team of ASTRIUM and TAS, whereas the solar array is developed by ASTRIUM GmbH.The main approaches in this design phase for the Alphabus solar array were to find a standardized and scaleable design to production and to use qualification heritage from former projects, especially Eurostar 3000, as far as possible. The main challenges for the solar array design and test philosophy were the usage of lateral deployment and related sequential deployment and the bus voltage of 102,5V and related ESD precautions.This paper provides an overview of the different configurations, their main design features and performance parameters. In addition it summarizes the development and verification approach and shows the actual qualification status.

  1. Evaluation of space station solar array technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.

  2. Concentrator enhanced solar arrays design study

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1978-01-01

    The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.

  3. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  4. Space Plasma Shown to Make Satellite Solar Arrays Fail

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1999-01-01

    In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.

  5. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  6. Fabrication of solar beam steering electrowetting devices—present status and future prospects

    NASA Astrophysics Data System (ADS)

    Khan, I.; Castelletto, S.; Rosengarten, G.

    2017-10-01

    Many different technologies are used to track the movement of the sun to both enable concentration of its energy and maximize the yearly energy capture. Their present main limitations are the cost, size, visual impact and wind loading, particularly for applications involving mounting to a building. A parabolic concentrator, for example, along with its steering equipment is heavy and bulky, and is not suitable for rooftop applications. Instead, thin and flat solar concentration devices are required for hassle-free rooftop applications. The use of electrowetting-controlled liquid lenses has emerged as a novel approach for solar tracking and concentration. By steering sunlight using thin electrowetting cell arrays, bulky mechanical equipment is not required. The basic concept of this technology is to change the shape of a liquid interface that is formed by two immiscible fluids of different refractive indices, by simply applying an electric field. An important challenge in electrowetting beam steering devices is the optimization of the design and fabrication process for each of their main constituent components, to maximize optical efficiency. In this paper, we report on the state-of-the-art fabrication methods for electrowetting devices for solar beam steering. We have reviewed the present status of different components types and related fabrication methods, and how they affect the efficiency and performance of such devices. The work identifies future prospects in using electrowetting beam steering devices for solar energy applications. This paper will help researchers and developers in the field to determine the components and fabrication process that affect the development of efficient beam steering electrowetting devices.

  7. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22200

  8. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22203

  9. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22202

  10. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22201

  11. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22204

  12. Analyzing CMOS/SOS fabrication for LSI arrays

    NASA Technical Reports Server (NTRS)

    Ipri, A. C.

    1978-01-01

    Report discusses set of design rules that have been developed as result of work with test arrays. Set of optimum dimensions is given that would maximize process output and would correspondingly minimize costs in fabrication of large-scale integration (LSI) arrays.

  13. Fabrication and characterization of ordered arrays of nanostructures

    NASA Astrophysics Data System (ADS)

    Larson, Preston

    2005-11-01

    Nanostructures are currently of great interest because of their unique properties and potential applications in a wide range of areas such as opto-electronic and biomedical devices. Current research in nanotechnology involves fabrication and characterization of these structures, as well as theoretical and experimental studies to explore their unique and novel properties. Not only do nanostructures have the potential to be both evolutionary (state-of-the-art ICs have more and more features on the nanoscale) but revolutionary (quantum computing) as well. In this thesis, a combination of bottom-up and top-down approaches is explored to fabricate ordered arrays of nanostrucutures. The bottom-up approach involves the growth of self-organized porous anodic aluminum oxide (AAO) films. AAO films consist of a well ordered hexagonal array of close-packed pores with diameters and spacings ranging from around 5 to 500 nm. Via a top-down approach, these AAO films are then used as masks or templates to fabricate ordered arrays of nanostructures (i.e. dots, holes, meshes, pillars, rings, etc.) of various materials using conventional deposition and/or etching techniques. Using AAO films as masks allows a simple and economical method to fabricate arrays of structures with nano-scale dimensions. Furthermore, they allow the fabrication of large areas (many millimeters on a side) of highly uniform and well-ordered arrays of nanostructures, a crucial requirement for most characterization techniques and applications. Characterization of these nanostructures using various techniques (electron microscopy, atomic force microscopy, UV-Vis absorption spectroscopy, photoluminescence, capacitance-voltage measurements, magnetization hysteresis curves, etc.) will be presented. Finally, these structures provide a unique opportunity to determine the single and collective properties of nanostructure arrays and will have various future applications including but not limited to: data storage, light

  14. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  15. Goddard Space Flight Center solar array missions, requirements and directions

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward; Day, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.

  16. Summary of flat-plate solar array project documentation: Abstracts of published documents, 1975-1986, revision 1

    NASA Technical Reports Server (NTRS)

    Phillips, M. J.

    1986-01-01

    Abstracts of final reports, or the latest quarterly or annual, of the Flat-Plate Solar Array (FSA) Project Contractor of Jet Propulsion Laboratory (JPL) in-house activities are presented. Also presented is a list of proceedings and publications, by author, of work connected with the project. The aim of the program has been to stimulate the development of technology that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and Government applications at a cost per watt that is competitive with utility generated power. FSA Project activities have included the sponsoring of research and development efforts in silicon refinement processes, advanced silicon sheet growth techniques, higher efficiency solar cells, solar cell/module fabrication processes, encapsulation, module/array engineering and reliability, and economic analyses.

  17. Light-trapping surface coating with concave arrays for efficiency enhancement in amorphous silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang

    2018-08-01

    Light trapping is particularly important because of the desire to produce low-cost solar cells with the thinnest possible photoactive layers. Herein, along the research line of "optimization →fabrication →characterization →application", concave arrays were incorporated into amorphous silicon thin-film solar cell for lifting its photoelectric conversion efficiency. In advance, based on rigorous coupled wave analysis method, optics simulations were performed to obtain the optimal period of 10 μm for concave arrays. Microfabrication processes were used to etch concave arrays on glass, and nanoimprint was devoted to transfer the pattern onto polymer coatings with a high fidelity. Spectral characterizations prove that the concave-arrays coating enjoys excellent the light-trapping behaviors, by reducing the reflectance to 7.4% from 8.6% of bare glass and simultaneously allowing a high haze ratio of ∼ 70% in 350-800 nm. Compared with bare cell, the concave-arrays coating based amorphous silicon thin-film solar cell possesses the improving photovoltaic performances. Relative enhancements are 3.46% and 3.57% in short circuit current and photoelectric conversion efficiency, respectively. By the way, this light-trapping coating is facile, low-cost and large-scale, and can be straightforward introduced in other ready-made solar devices.

  18. Automated Array Assembly, Phase 2. Low-cost Solar Array Project, Task 4

    NASA Technical Reports Server (NTRS)

    Lopez, M.

    1978-01-01

    Work was done to verify the technological readiness of a select process sequence with respect to satisfying the Low Cost Solar Array Project objectives of meeting the designated goals of $.50 per peak watt in 1986 (1975 dollars). The sequence examined consisted of: (1) 3 inches diameter as-sawn Czochralski grown 1:0:0 silicon, (2) texture etching, (3) ion implanting, (4) laser annealing, (5) screen printing of ohmic contacts and (6) sprayed anti-reflective coatings. High volume production projections were made on the selected process sequence. Automated processing and movement of hardware at high rates were conceptualized to satisfy the PROJECT's 500 MW/yr capability. A production plan was formulated with flow diagrams integrating the various processes in the cell fabrication sequence.

  19. Large solar arrays

    NASA Technical Reports Server (NTRS)

    Crabtree, W. L.

    1980-01-01

    A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.

  20. Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays.

    PubMed

    Kinder, Erich; Moroz, Pavel; Diederich, Geoffrey; Johnson, Alexa; Kirsanova, Maria; Nemchinov, Alexander; O'Connor, Timothy; Roth, Dan; Zamkov, Mikhail

    2011-12-21

    A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells. © 2011 American Chemical Society

  1. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.

  2. DTO 1118 - Damaged Spektr solar array

    NASA Image and Video Library

    1998-03-04

    S89-E-5190 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows the Russian Mir Space Station's damaged solar array panel. The solar array panel was damaged as a result of an impact with an unmanned Progress re-supply ship which collided with the Mir on June 25, 1997, causing the Spektr Module to depressurize. This ESC view was taken on January 25, 1998 at 16:56:30 GMT.

  3. Planar waveguide solar concentrator with couplers fabricated by laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Zhang, Nikai

    Solar radiation can be converted directly into electricity by using the photovoltaic effect, which represents the principle of operation of solar cells. Currently, most solar cells are made of crystalline silicon and have a conversion efficiency of about 20% or less. Multi-junction solar cells, made of III-V compound semiconductors, can have efficiencies in excess of 40%. The main factor that prohibits such high-efficiency technologies from wider acceptance is the cost. An alternative approach to using large-area expensive solar cells is to employ lower cost optics and concentrate the solar radiation to smaller cell area, which is the basic principle of solar concentrators. In this thesis, we consider a solar concentrator module that consists of a combination of a lens array and a slab waveguide with etched conical holes on one side of the waveguide, which are aligned with the lenslets. Sunlight coming through each of these lenslets is focused on the backside of the waveguide, where a coupling structure (an etched cone) is fabricated. This coupler changes the propagation direction of the incident light in such a way that light is guided through total internal reflection (TIR) within the glass slab and eventually reaches a solar cell, which is properly mounted on the side of the slab. The concept of this concentrated photovoltaic (CPV) system is based on a planar light guide solar concentrator module, proposed earlier by another group. This project builds on the original idea by including the following substantial modifications. The lens array is to be made of solid glass by a mold technology and provided to us by our industrial partner, Libbey, Inc., as opposed to silicone on glass technology, in which the lenses are made out of silicone and sit on a glass substrate. The coupling structures are cone-shaped holes etched directly into the solid glass waveguide, as opposed to coupling structures that are formed by addition of polymeric layer and consequent patterning

  4. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  5. Theoretical models of Kapton heating in solar array geometries

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  6. Preliminary space station solar array structural design study

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1984-01-01

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  7. Preliminary space station solar array structural design study

    NASA Astrophysics Data System (ADS)

    Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.

    Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.

  8. Fabrication of PbS quantum dots and their applications in solar cells based on ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-05-01

    An efficient, inexpensive and large area scalable approach based on sol-gel technique is presented to fabricate quantum dots (QDs) of PbS. Size of the QDs is tuned by the varying the bath concentrations in the range of 50-200 mM. Transmission electron microscopy (TEM) studies confirm the growth of spherically shaped ˜5.6 nm QDs at 50 mM bath concentration. The optical bandgap of the QDs is found to be ˜0.9 eV and corresponds to the size obtained from TEM studies. ZnO/PbS solar cells are fabricated by sensitizing the ZnO nanorods with PbS QDs. The fabricated solar cells demonstrate the highest open circuit voltage ˜200 mV and short circuit current density ˜0.81 µA/cm2.

  9. A simplified solar cell array modelling program

    NASA Technical Reports Server (NTRS)

    Hughes, R. D.

    1982-01-01

    As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.

  10. Novel fabrication method of microlens arrays with High OLED outcoupling efficiency

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Moon, Seong Il; Hwang, Dong Eui; Jeong, Ki Won; Kim, Chang Kyo; Moon, Dae-Gyu; Hong, Chinsoo

    2016-03-01

    We presented a novel fabrication method of pyramidal and hemispherical polymethylmethacrylate (PMMA) microlens arrays to improve the outcoupling efficiency. Pyramidal microlens arrays were fabricated by replica molding processes using concave-pyramidal silicon molds prepared by the wet etching method. Concave-hemispherical PMMA thin film was used as a template for fabrication of the hemispherical microlens array. The concave-hemispherical PMMA template was prepared by blowing a N2 gas stream onto the thin PMMA film suspended on a silicon pedestal. A PMMA microlens arrays with hemispherical structure were fabricated by a replica molding process. The outcoupling efficiency of the hemispherical microlens array was greater than that of the pyramidal microlens array. The outcoupling efficiency of hemispherical microlens arrays with a higher contact angle was larger than that of those with lower contact angle. This indicates that, for the hemispherical microlens with larger contact angle, more light can be extracted from the OLEDs due to the decrease in the incident angle of the light at the interface between an air and a hemispherical microlens arrays. After attaching a hemispherical microlens array with contact angle of 50.4° onto the OLEDs, the luminance was enhanced by approximately 117%.

  11. Thin-Film Solar Array Earth Orbit Mission Applicability Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    This is a preliminary assessment of the applicability and spacecraft-level impact of using very lightweight thin-film solar arrays with relatively large deployed areas for representative Earth orbiting missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A simple calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a proper spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. NASA Glenn's low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is also briefly discussed to provide a perspective on one approach to achieving this enabling technology. The paper concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may become the best array option for a subset of Earth orbiting missions.

  12. Space Station Freedom solar array containment box mechanisms

    NASA Technical Reports Server (NTRS)

    Johnson, Mark E.; Haugen, Bert; Anderson, Grant

    1994-01-01

    Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.

  13. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics

    PubMed Central

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-01-01

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry. PMID:24603964

  14. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics.

    PubMed

    Leung, Siu-Fung; Gu, Leilei; Zhang, Qianpeng; Tsui, Kwong-Hoi; Shieh, Jia-Min; Shen, Chang-Hong; Hsiao, Tzu-Hsuan; Hsu, Chin-Hung; Lu, Linfeng; Li, Dongdong; Lin, Qingfeng; Fan, Zhiyong

    2014-03-07

    Three-dimensional (3-D) nanostructures have demonstrated enticing potency to boost performance of photovoltaic devices primarily owning to the improved photon capturing capability. Nevertheless, cost-effective and scalable fabrication of regular 3-D nanostructures with decent robustness and flexibility still remains as a challenging task. Meanwhile, establishing rational design guidelines for 3-D nanostructured solar cells with the balanced electrical and optical performance are of paramount importance and in urgent need. Herein, regular arrays of 3-D nanospikes (NSPs) were fabricated on flexible aluminum foil with a roll-to-roll compatible process. The NSPs have precisely controlled geometry and periodicity which allow systematic investigation on geometry dependent optical and electrical performance of the devices with experiments and modeling. Intriguingly, it has been discovered that the efficiency of an amorphous-Si (a-Si) photovoltaic device fabricated on NSPs can be improved by 43%, as compared to its planar counterpart, in an optimal case. Furthermore, large scale flexible NSP solar cell devices have been fabricated and demonstrated. These results not only have shed light on the design rules of high performance nanostructured solar cells, but also demonstrated a highly practical process to fabricate efficient solar panels with 3-D nanostructures, thus may have immediate impact on thin film photovoltaic industry.

  15. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  16. Rapid thermal cycling of solar array blanket coupons for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.

    1991-01-01

    The NASA Lewis Research Center has been conducting rapid thermal cycling on blanket coupons for Space Station Freedom. This testing includes two designs (8 coupons total) of the solar array. Four coupons were fabricated as part of the Photovoltaic Array Environmental Protection Program (PAEP), NAS3-25079, at Lockheed Missiles and Space Company. These coupons began cycling in early 1989 and have completed 172,000 thermal cycles. Four other coupons were fabricated a year later and included several design changes; cycling of these began in early 1990 and has reached 90,000 cycles. The objective of this testing is to demonstrate the durability or operational lifetime (15 yrs.) of the welded interconnects within a low earth orbit (LEO) thermal cycling environment. The blanket coupons, design changes, test description, status to date including performance and observed anomalies, and any insights related to the testing of these coupons are described. The description of a third design is included.

  17. Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C.

    1977-01-01

    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.

  18. Development of Electrostatically Clean Solar Array Panels

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  19. EVA 2 - old solar array installed in payload bay

    NASA Image and Video Library

    2002-03-05

    STS109-326-008 (5 March 2002) --- Astronaut Michael J. Massimino, mission specialist, works at the stowage area for the Hubble Space Telescope's port side solar array. Astronauts Massimino and James H. Newman removed the old port solar array and stowed it in Columbia’s payload bay for a return to Earth. They then went on to install a third-generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day.

  20. Silicon solar cell process. Development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1978-01-01

    Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.

  1. Si Wire-Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  2. P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)

    NASA Image and Video Library

    2000-12-07

    STS097-376-006 (7 Dec 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earth?s horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the station?s electrical power system, converting sunlight to electricity.

  3. Mass properties survey of solar array technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  4. P6 Truss, Photovoltaic (PV) Solar Array Wing (SAW)

    NASA Image and Video Library

    2000-12-07

    STS097-376-019 (7 December 2000) --- A close-up view of the P6 solar array on the International Space Station (ISS), backdropped against the blackness of space and the Earth’s horizon. The P6 solar array is the first of eight sets of solar arrays that at the completion of the space station construction in 2006, will comprise the station’s electrical power system, converting sunlight to electricity.

  5. Space Station Freedom solar array design development

    NASA Technical Reports Server (NTRS)

    Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo

    1989-01-01

    The Space Station Freedom solar array program is required to provide a 75-kW power module that uses eight solar array (SA) wings over a four-year period in low earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-yr design point. The design of flexible-substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years is discussed. The tradeoff study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.

  6. Multi-100 kW: Planar low cost solar array development

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The applicability of selected low cost options to solar array blanket design was studied by fabricating representative modules and submitting them to thermal cycle environment. Large area (5.9 x 5.9 cm) solar cells of 3 varieties were purchased: (1) Standard wraparound, (2) Copper contacts substituted for the conventional Titanium-Palladium-Silver, and (3) Standard wraparound except with gridded back contact instead of continuous metallization. The baseline cell was purchased to compare fabrication cost and to serve as a control cell during test evaluation of the other two cells. All cells were assembled into either substrate modules where the cell is individually filtered and welded to an integrated Kapton-copper circuit or into a superstrate configuration with 4 cells jointly adhered to a single sheet of microsheet and then welded to the integrated Kapton-copper circuit. Cell quality, particularly in the metallization of contacts, was less than desired. Problems were encountered with copper metallization in laying down a barrier metal which would ohmically bond to the silicon. The cells received were shunted (sintered) or with low contact pull strength (non-sintered), thus leading to the decision to solder rather than weld the copper cells to the Kapton substrate.

  7. SEP solar array Shuttle flight experiment

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.; Young, L. E.; Hill, H. C.

    1981-01-01

    An experiment to verify the operational performance of a full-scale Solar Electric Propulsion (SEP) solar array is described. Scheduled to fly on the Shuttle in 1983, the array will be deployed from the bay for ten orbits, with dynamic excitation to test the structural integrity being furnished by the Orbiter verniers; thermal, electrical, and sun orientation characteristics will be monitored, in addition to safety, reliability, and cost effective performance. The blanket, with aluminum and glass as solar cell mass simulators, is 4 by 32 m, with panels (each 0.38 by 4 m) hinged together; two live Si cell panels will be included. The panels are bonded to stiffened graphite-epoxy ribs and are storable in a box in the bay. The wing support structure is detailed, noting the option of releasing the wing into space by use of the Remote Manipulator System if the wing cannot be refolded. Procedures and equipment for monitoring the array behavior are outlined, and comprise both analog data and TV recording for later playback and analysis. The array wing experiment will also aid in developing measurement techniques for large structure dynamics in space.

  8. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  9. Low concentration ratio solar array for low Earth orbit multi-100kW application. Volume 2: Drawings

    NASA Technical Reports Server (NTRS)

    Nalbandian, S. J.; French, E. P.

    1982-01-01

    A preliminary design effort directed toward a low concentration ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 100 kW range) in low Earth orbit. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. Drawings for the preliminary design configuration and for the test hardware that was fabricated for design evaluation and test are provided.

  10. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  11. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  12. Operating manual: Fast response solar array simulator

    NASA Technical Reports Server (NTRS)

    Vonhatten, R.; Weimer, A.; Zerbel, D. W.

    1971-01-01

    The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.

  13. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100

  14. Fabrication of cell container arrays with overlaid surface topographies.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  15. Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Duc

    Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research

  16. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  17. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.

    PubMed

    Shankar, Karthik; Mor, Gopal K; Prakasam, Haripriya E; Varghese, Oomman K; Grimes, Craig A

    2007-11-20

    Films comprised of 4 microm long titanium dioxide nanotube arrays were fabricated by anodizing Ti foils in an ethylene glycol based electrolyte. A carboxylated polythiophene derivative was self-assembled onto the TiO2 nanotube arrays by immersing them in a solution of the polymer. The binding sites of the carboxylate moiety along the polymer chain provide multiple anchoring sites to the substrate, making for a stable rugged film. Backside illuminated liquid junction solar cells based on TiO2 nanotube films sensitized by the self-assembled polymeric layer showed a short-circuit current density of 5.5 mA cm-2, a 0.7 V open circuit potential, and a 0.55 fill factor yielding power conversion efficiencies of 2.1% under AM 1.5 sun. A backside illuminated single heterojunction solid state solar cell using the same self-assembled polymer was demonstrated and yielded a photocurrent density as high as 2.0 mA cm-2. When a double heterojunction was formed by infiltrating a blend of poly(3-hexylthiophene) (P3HT) and C60-methanofullerene into the self-assembled polymer coated nanotube arrays, a photocurrent as high as 6.5 mA cm-2 was obtained under AM 1.5 sun with a corresponding efficiency of 1%. The photocurrent action spectra showed a maximum incident photon-to-electron conversion efficiency (IPCE) of 53% for the liquid junction cells and 25% for the single heterojunction solid state solar cells.

  18. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.

    PubMed

    Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo

    2011-11-18

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  19. Fabrication of plasmonic cavity arrays for SERS analysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-01

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  20. Fabrication of plasmonic cavity arrays for SERS analysis.

    PubMed

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-05

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  1. Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms

    PubMed Central

    Collyer, Stuart D.; Davis, Frank; Higson, Séamus P.J.

    2010-01-01

    The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm−2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes). PMID:22399926

  2. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  3. Solar array stepping problems in satellites and solutions

    NASA Astrophysics Data System (ADS)

    Maharana, P. K.; Goel, P. S.

    1992-01-01

    The dynamics problems arising due to stepping motion of the solar arrays of spacecraft are studied. To overcome these problems, design improvements in the drive logic based on the phase plane analysis are suggested. The improved designs are applied to the Solar Array Drive Assembly (SADA) of IRS-1B and INSAT-2A satellites. In addition, an alternate torquing strategy for very successful slewing of the arrays, and with minimum excitation of flexible modes, is proposed.

  4. ISS Solar Array Wing

    NASA Image and Video Library

    2010-06-29

    ISS024-E-007103 (29 June 2010) --- Backdropped by a blue and white part of Earth and the blackness of space, International Space Station solar array panels are featured in this image photographed by an Expedition 24 crew member aboard the station.

  5. An introduction to the Astro Edge solar array

    NASA Technical Reports Server (NTRS)

    Spence, B. R.; Marks, G. W.

    1994-01-01

    The Astro Edge solar array is a new and innovative low concentrator power generating system which has been developed for applications requiring high specific power, high stiffness, low risk, light modular construction which utilizes conventional materials and technology, and standard photovoltaic solar cells and laydown processes. Mechanisms, restraint/release devices, wiring harnesses, substrates, and support structures are designed to be simple, functional, lightweight, and modular. A brief overview of the Astro Edge solar array is discussed.

  6. Quantum Dot Solar Cell Fabrication Protocols

    DOE PAGES

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.; ...

    2016-09-26

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. Here we include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solarmore » cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.« less

  7. Quantum Dot Solar Cell Fabrication Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. Here we include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solarmore » cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.« less

  8. Review of biased solar array - Plasma interaction studies

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1981-01-01

    Possible high voltage surface interactions on the Solar Electric Propulsion System (SEPS) are examined, with particular regard for potential effects on SEPS performance. The SEPS is intended for use for geosynchronous and planetary missions, and derives power from deployed solar cell arrays which are susceptible to collecting ions and electrons from the charged and thermal particle environment of space. The charge exchange plasma which provides the thrust force can also enhance the natural charged particle environment and increase interactions between the thrust system and the biased solar array surface. Tests of small arrays have shown that snapover, where current collection becomes proportional to the panel area, can be avoided by larger cell sizes. Arcing is predicted to diminish with larger array sizes, while the problems of efflux environments are noted to be as yet undefined and require further study.

  9. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    NASA Astrophysics Data System (ADS)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  10. A Practical Guide To Solar Array Simulation And PCDU Test

    NASA Astrophysics Data System (ADS)

    Schmitz, Noah; Carroll, Greg; Clegg, Russell

    2011-10-01

    Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.

  11. Plasma chamber testing of advanced photovoltaic solar array coupons

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1994-01-01

    The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.

  12. Advanced photovoltaic solar array - Design and performance

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Stella, Paul

    1992-01-01

    This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.

  13. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off

  14. The Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) yo-yo despin and solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Kellogg, James W.

    1993-01-01

    The SAMPEX spacecraft, successfully launched in July 1992, carried a yo-yo despin system and deployable solar arrays. The despin and solar array mechanisms formed an integral system as the yo-yo cables held the solar array release mechanism in place. The SAMPEX design philosophy was to minimize size and weight through the use of a predominantly single string system. The design challenge was to build a system in a limited space, which was reliable with minimal redundancy. This paper covers the design and development of the SAMPEX yo-yo despin and solar array deployment mechanisms. The problems encountered during development and testing will also be discussed.

  15. Solar Array Structures for 300 kW-Class Spacecraft

    NASA Technical Reports Server (NTRS)

    Pappa, Richard; Rose, Geoff; Mann, Troy O.; Warren, Jerry E.; Mikulas, Martin M., Jr.; Kerslake, Tom; Kraft, Tom; Banik, Jeremy

    2013-01-01

    State-of-the-art solar arrays for spacecraft provide on the order of 20 kW of electrical power, and they usually consist of 3J solar cells bonded to hinged rigid panels about 1 inch in thickness. This structural construction allows specific mass and packaging volumes of up to approximately 70 W/kg and 15 kW/m3 to be achieved. Significant advances in solar array structures are required for future very-high-power spacecraft (300+ kW), such as those proposed for pre-positioning heavy cargo on or near the Moon, Mars, or asteroids using solar electric propulsion. These applications will require considerable increases in both W/kg and kW/m3, and will undoubtedly require the use of flexible-substrate designs. This presentation summarizes work sponsored by NASA's Game Changing Development Program since Oct. 2011 to address the challenge of developing 300+ kW solar arrays. The work is primarily being done at NASA Langley, NASA Glenn, and two contractor teams (ATK and DSS), with technical collaboration from AFRL/Kirtland. The near-tem objective of the project is design, analysis, and testing of 30-50 kW solar array designs that are extensible to the far-term objective of 300+ kW. The work is currently focused on three designs: the MegaFlex concept by ATK, the Mega-ROSA concept by DSS, and an in-house 300-kW Government Reference Array concept. Each of these designs will be described in the presentation. Results obtained to date by the team, as well as future work plans, for the design, analysis, and testing of these large solar array structures will be summarized.

  16. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  17. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  18. Novel fabrication technique of hybrid structure lens array for 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  19. Mir Cooperative Solar Array

    NASA Technical Reports Server (NTRS)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  20. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  1. Evaluation of materials for high performance solar arrays

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Smith, C. F., Jr.; Peacock, C. L., Jr.; Little, S. A.

    1978-01-01

    A program has been underway to evaluate materials for advanced solar arrays which are required to provide power to weight ratios up to 100 W/kg. Severe mission environments together with the lack of knowledge of space environmental materials degradation rates require the generation of irradiation and outgassing engineering data for use in the initial design phase of the flight solar arrays. Therefore, approximately 25 candidate array materials were subjected to selected mission environments of vacuum, UV, and particle irradiation, and their mechanical and/or optical properties were determined where appropriate.

  2. Accelerated/abbreviated test methods for predicting life of solar cell encapsulants to Jet Propulsion Laboratory California Institute of Technology for the encapsulation task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.

    1978-01-01

    An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.

  3. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  4. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  5. Fabrication of titanium dioxide nanotube arrays using organic electrolytes

    NASA Astrophysics Data System (ADS)

    Yoriya, Sorachon

    to ~2 microm. In comparison to DMSO electrolyte, the electrochemical anodization rates are relatively slower in DEG electrolyte; as a result, the nanotube length is typically less than 10 microm. Pore size of nanotubes grown in DEG has been extended from 150 nm up to approximately 400 nm. The approach to pore widening could be achieved by using a specific condition of low HF concentration and prolonged anodization time. The study of evolution of nanotubes grown in DEG electrolytes showed that a fibrous layer was formed in the early growth stages and then was chemically and gradually removed after a long duration, leaving behind the nanotubes with large pore size. In DEG electrolyte, the closer spacing between Ti and Pt electrodes resulted in the larger nanotube morphological parameters due to the enhanced electrode kinetics facilitating the electrode reactions. Furthermore, this dissertation showed possibilities to crystallize the titania nanotube array films at room temperature via anodization in either DMSO or DEG electrolytes. The partially crystallized films could be achieved specifically in the optimum slow growth process conditions. Due to partial crystallization of the as-anodized samples, the high temperature annealing study revealed that the temperatures of phase transformation are 260 ºC and 430°C for respectively amorphous to anatase and anatase to rutile, which are accounted as the lowest phase transformation temperatures reported to date (2010). Finally, the photoelectrochemical properties of the DMSO fabricated nanotubes were investigated. The maximum photocurrent density of ~ 11 mA cm--2 was achieved by using the 46-microm long nanotube array sample with completely open pores, and photoconversion efficiencies of 5.425 % (+/- 0.087) (under UV light) and 0.197 % (+/- 0.001) (under solar spectrum AM 1.5) have been demonstrated. Biomedical applications of the DEG fabricated nanotube arrays films such as blood clotting, hemocompatibility, and drug

  6. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.

    PubMed

    Kim, Jiseok; Lew, Brian; Kim, Woo Soo

    2011-12-06

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.

  7. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method

    PubMed Central

    2011-01-01

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures. PACS: 05.70.Np, 68.55.am, 68.55.jm PMID:22145673

  8. The Expanded Owens Valley Solar Array

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Hurford, G. J.; Nita, G. M.; White, S. M.; Tun, S. D.; Fleishman, G. D.; McTiernan, J. M.

    2011-05-01

    The Expanded Owens Valley Solar Array (EOVSA) is now under construction near Big Pine, CA as a solar-dedicated microwave imaging array operating in the frequency range 1-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), on the sudden release of energy and subsequent particle acceleration, transport and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelengths. The New Jersey Institute of Technology (NJIT) is expanding OVSA from its previous complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We provide an update on current status and our preparations for exploiting the data through modeling and data analysis tools. This research is supported by NSF grants AST-0908344, and AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.

  9. Epitaxial regrowth of silicon for the fabrication of radial junction nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Kendrick, Chito E.; Eichfeld, Sarah M.; Ke, Yue; Weng, Xiaojun; Wang, Xin; Mayer, Theresa S.; Redwing, Joan M.

    2010-08-01

    Radial p-n silicon nanowire (SiNW) solar cells are of interest as a potential pathway to increase the efficiency of crystalline silicon photovoltaics by reducing the junction length and surface reflectivity. Our studies have focused on the use of vapor-liquid-solid (VLS) growth in combination with chemical vapor deposition (CVD) processing for the fabrication of radial p-n junction SiNW array solar cells. High aspect ratio p-type SiNW arrays were initially grown on gold-coated (111) Si substrates by CVD using SiCl4 as the source gas and B2H6 as the p-type dopant source. The epitaxial re-growth of n-type Si shell layers on the Si nanowires was then investigated using SiH4 as the source gas and PH3 as the dopant. Highly conformal coatings were achieved on nanowires up to 25 μm in length. The microstructure of the Si shell layer changed from polycrystalline to single crystal as the deposition temperature was raised from 650oC to 950oC. Electrical test structures were fabricated by aligning released SiNWs onto pre-patterned substrates via fieldassisted assembly followed by selective removal of the n-type shell layer and contact deposition. Current-voltage measurements of the radial p-n SiNWs diodes fabricated with re-grown Si shell layers at 950°C demonstrate rectifying behavior with an ideality factor of 1.93. Under illumination from an AM1.5g spectrum and efficiency for this single SiNW radial p-n junction was determined to be 1.8%, total wire diameter was 985 nm.

  10. Optical Design of Segmented Hexagon Array Solar Mirror

    NASA Technical Reports Server (NTRS)

    Huegele, Vince

    2000-01-01

    A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.

  11. High performance a-Si solar cells and new fabrication methods for a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Nakano, S.; Kuwano, Y.; Ohnishi, M.

    1986-12-01

    The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method. As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained. For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.

  12. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  13. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  14. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  15. Large-Area Subwavelength Aperture Arrays Fabricated Using Nanoimprint Lithography

    DOE PAGES

    Skinner, J. L.; Hunter, L. L.; Talin, A. A.; ...

    2008-07-29

    In this paper, we report on the fabrication and characterization of large-area 2-D square arrays of subwavelength holes in Ag and Al films. Fabrication is based on thermal nanoimprint lithography and metal evaporation, without the need for etching, and is compatible with low-cost, large-scale production. Reflectance spectra for these arrays display an intensity minimum whose amplitude, center wavelength, and line width depend on the geometry of the array and the reflectivity of the metal film. By placing various fluids in contact with the subwavelength aperture arrays, we observe that the center wavelength of the reflectance minimum varies linearly with themore » refractive index of the fluid with a sensitivity of over 500 nm per refractive index unit. Lastly, the surface plasmon theory is used to predict sensitivities to refractive index change with accuracies better than 0.5%.« less

  16. Large-scale fabrication of single crystalline tin nanowire arrays

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Yang, Dachi; Liang, Minghui; Zhi, Linjie

    2010-09-01

    Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode.Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode. Electronic supplementary information (ESI) available: Experimental details and the information for single crystalline copper nanorods. See DOI: 10.1039/c0nr00206b

  17. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.

    2015-12-01

    The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.

  18. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  19. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  20. Flexible, FEP-Teflon covered solar cell module development

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.; Cannady, M. D.

    1976-01-01

    Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.

  1. Low-cost solar array structure development

    NASA Astrophysics Data System (ADS)

    Wilson, A. H.

    1981-06-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  2. Low-cost solar array structure development

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1981-01-01

    Early studies of flat-plate arrays have projected costs on the order of $50/square meter for installed array support structures. This report describes an optimized low-cost frame-truss structure that is estimated to cost below $25/square meter, including all markups, shipping an installation. The structure utilizes a planar frame made of members formed from light-gauge galvanized steel sheet and is supposed in the field by treated-wood trusses that are partially buried in trenches. The buried trusses use the overburden soil to carry uplift wind loads and thus to obviate reinforced-concrete foundations. Details of the concept, including design rationale, fabrication and assembly experience, structural testing and fabrication drawings are included.

  3. Methods for utilizing maximum power from a solar array

    NASA Technical Reports Server (NTRS)

    Decker, D. K.

    1972-01-01

    A preliminary study of maximum power utilization methods was performed for an outer planet spacecraft using an ion thruster propulsion system and a solar array as the primary energy source. The problems which arise from operating the array at or near the maximum power point of its 1-V characteristic are discussed. Two closed loop system configurations which use extremum regulators to track the array's maximum power point are presented. Three open loop systems are presented that either: (1) measure the maximum power of each array section and compute the total array power, (2) utilize a reference array to predict the characteristics of the solar array, or (3) utilize impedance measurements to predict the maximum power utilization. The advantages and disadvantages of each system are discussed and recommendations for further development are made.

  4. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  5. A Parametric Assessment of the Mission Applicability of Thin-film Solar Arrays

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2002-01-01

    Results are presented from a parametric assessment of the applicability and spacecraft-level impacts of very lightweight thin-film solar arrays with relatively large deployed areas for representative space missions. The most and least attractive features of thin-film solar arrays are briefly discussed. A calculation is then presented illustrating that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a spacecraft-level systems assessment must take into account the additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to benefit from using thin-film arrays. The presentation concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that with their unique characteristics, very lightweight arrays using efficient, thin film cells on flexible substrates may become the best array option for a subset of Earth orbiting and deep space missions.

  6. A Unique test for Hubble's new Solar Arrays

    NASA Astrophysics Data System (ADS)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  7. Space Station Freedom Solar Array tension mechanism development

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Haugen, Bert

    1994-01-01

    A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.

  8. Computer Modelling and Simulation of Solar PV Array Characteristics

    NASA Astrophysics Data System (ADS)

    Gautam, Nalin Kumar

    2003-02-01

    The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to

  9. Solar array experiments on the Sphinx satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.

    1973-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations; the edge illuminated-multijunction cells, the Teflon encased cells and the violet cells.

  10. Integrated Solar-Panel Antenna Array for CubeSats

    NASA Technical Reports Server (NTRS)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  11. Early commercial demonstration of space solar power using ultra-lightweight arrays

    NASA Astrophysics Data System (ADS)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  12. Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.

    Within recent years, the field of plasmonics has exploded as researchers have demonstrated exciting applications related to chemical and optical sensing in combination with new nanofabrication techniques. A plasmon is a quantum of charge density oscillation that lends nanoscale metals such as gold and silver unique optical properties. In particular, gold and silver nanoparticles exhibit localized surface plasmon resonances—collective charge density oscillations on the surface of the nanoparticle—in the visible spectrum. Here, we focus on the fabrication of periodic arrays of anisotropic plasmonic nanostructures. These half-shell (or nanocup) structures can exhibit additional unique light-bending and polarization dependent optical properties thatmore » simple isotropic nanostructures cannot. Researchers are interested in the fabrication of periodic arrays of nanocups for a wide variety of applications such as low-cost optical devices, surface-enhanced Raman scattering, and tamper indication. We present a scalable technique based on colloidal lithography in which it is possible to easily fabricate large periodic arrays of nanocups using spin-coating and self-assembled commercially available polymeric nanospheres. Electron microscopy and optical spectroscopy from the visible to near-IR was performed to confirm successful nanocup fabrication. We conclude with a demonstration of the transfer of nanocups to a flexible, conformal adhesive film.« less

  13. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    PubMed

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  14. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    NASA Astrophysics Data System (ADS)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  15. Study program for encapsulation materials interface for low-cost solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.

    1981-01-01

    The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.

  16. Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon

    NASA Technical Reports Server (NTRS)

    Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.

    1996-01-01

    An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.

  17. Experimental Study of Arcing on High-voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  18. Experimental Study of Arcing on High-Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2003-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism suggests that such modifications can be done in the following directions: 1) To insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); 2) To change a coverglass geometry (overhang); 3) To increase a coverglass thickness; 4) To outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in a large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that stimulates the LEO operational temperature. The experimental setup is described below.

  19. A 928 sq m (10000 sq ft) solar array

    NASA Technical Reports Server (NTRS)

    Lindberg, D. E.

    1972-01-01

    As the power requirements for space vehicles increases, the area of solar arrays that convert solar energy to usable electrical power increases. The requirements for a 928 sq m (10,000 sq ft) array, its design, and a full-scale demonstration of one quadrant (232 sq m (2500 sq ft)) deployed in a one-g field are described.

  20. Design study for a liquid metal slip ring solar array orientation mechanism

    NASA Technical Reports Server (NTRS)

    Clark, R. B.

    1972-01-01

    The design of a single axis orientation mechanism for solar arrays on high power synchronous satellites is studied primarily with respect to providing 116 liquid metal slip rings for reduced friction and improved electrical characteristics. Designs and tradeoff studies for the slip rings and other components are presented. An assembly containing 33 slip rings of three design approaches was designed, fabricated, and vacuum tested to 30 amperes and 30,000 volts. Containment of the liquid metal gallium in large diameter slip rings was difficult. A design approach is presented which is expected to provide improved retention of the liquid metal.

  1. The development, design and test of a 66 W/kg (30-W/lb) roll-up solar array

    NASA Technical Reports Server (NTRS)

    Hasbach, W. A.; Ross, R. G., Jr.

    1972-01-01

    A program to develop a 250 square foot roll-up solar array with a power-to-weight ratio exceeding 30 watts per pound is described. The system design and fabrication of a full scale engineering development model are discussed. The system and development test program results are presented. Special test equipment and test procedures are included, together with comparisons of experimental and analytical results.

  2. Space Station Freedom solar array panels plasma interaction test facility

    NASA Technical Reports Server (NTRS)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  3. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  4. Design of a 7kW power transfer solar array drive mechanism

    NASA Technical Reports Server (NTRS)

    Sheppard, J. G.

    1982-01-01

    With the availability of the Shuttle and the European launcher, Ariane, there will be a continuing trend towards large payload satellite missions requiring high-power, high-inertia, flexible solar arrays. The need arises for a solar array drive with a large power transfer capability which can rotate these solar arrays without disturbing the satellite body pointing. The modular design of such a Solar Array Drive Mechanism (SADM) which is capable of transferring 7kW of power or more is described. Total design flexibility has been achieved, enabling different spacecraft power requirements to be accommodated within the SADM design.

  5. Fabrication and installation of the Solar Two central receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, R.Z.; Rogers, R.D.

    The heart of the Solar Two power plant is the molten salt central receiver that has been designed, fabricated, and installed over an 18 month schedule. During this time, the receiver system from Solar One was also completely disassembled and removed. The receiver tower structure, for the most part, was left intact because Solar Two was designed to fit this structure such that construction time and costs could be minimized. In order to meet this aggressive schedule, receiver panel fabrication required the parallel production of many components. The sequence for assembly of the four major receiver panel components (i.e., tubes,more » header assembly, strongback, and header oven covers) and key fabrication activities such as welding are described. Once the receiver panels were complete, their installation at the site was begun, and the order in which receiver system components were installed in the tower is described. The completion of the Solar Two receiver proved the fabricability of this important system. However, successful operation of the system at Solar Two is needed to demonstrate the technical feasibility of the molten salt central receiver concept.« less

  6. Solar Array and Earth Observation

    NASA Image and Video Library

    2013-09-07

    ISS036-E-047951 (7 Sept. 2013) --- Backdropped by a blue and white part of Earth and the blackness of space, International Space Station solar array panels are featured in this image photographed by an Expedition 36 crew member aboard the station.

  7. Method for fabricating pixelated silicon device cells

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  8. Compact, semi-passive beam steering prism array for solar concentrators.

    PubMed

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  9. Reliability analysis of the solar array based on Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Jianing, Wu; Shaoze, Yan

    2011-07-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  10. Method for forming a solar array strip

    NASA Technical Reports Server (NTRS)

    Mueller, R. I.; Yasui, R. K. (Inventor)

    1979-01-01

    A flexible solar array strip is formed by a method which lends itself to automatic production techniques. Solder pads are deposited on printed circuitry deposited on a flexible structure. The resultant substrate is stored on a drum from which it is withdrawn and incrementally advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads which are then heated in order to attach the cells to the circuitry. Excess flux is cleaned from the cells which are encapsulated in a protective coating. The resultant array is then spirally wound on a drum.

  11. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  12. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  13. The advanced photovoltaic solar array program

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, Paul M.

    1989-01-01

    The background and development status of an ultralightweight flexible-blanket flatpack, fold-out solar array is presented. It is scheduled for prototype demonstration in late 1989. The Advanced Photovoltaic Solar Array (APSA) design represents a critical intermediate milestone of the goal of 300 W/kg at beginning-of-life (BOL) with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at end-of-life (EOL) for a 10-year geosynchronous geostationary earth orbit 10-kW (BOL) space power system. The APSA wing design is scalable over a power range of 2 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to geostationary earth orbit and interplanetary flight.

  14. Silicon-fiber blanket solar-cell array concept

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.

    1973-01-01

    Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.

  15. Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.

    PubMed

    Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio

    2016-01-13

    We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.

  16. NREL Adds Solar Array Field to Help Inform Consumers | NREL

    Science.gov Websites

    PV modules at NREL's new solar array field. Workers install PV modules just north of the NREL parking be Added Each Year Once completed, the new solar array field will house four rows of PV modules. The the lifetime of a PV system, and that increases the per-kilowatt-hour cost of generating solar

  17. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  18. Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  19. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 V) or to operate at higher voltages with encapsulated of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between coverglass and conductive spacecraft body in a kilovolt range. In such a case, weakly conductive layer over coverglass (ITO) is one of possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of -150 C +110 C. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to Sun. Conductive layer over coverglass causes sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating material (RTV), radiative heating of coupon in vacuum chamber becomes practically impossible above 150 C, conductivities of glass and adhesive go up with temperature that decrease array efficiency, and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 200 C. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over ITO

  20. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1977-01-01

    Electrostatic bonding has been used to join silicon solar cells to borosilicate glass without the aid of any organic binders or adhesives. The results of this investigation have been to demonstrate, without question, the feasibility of this process as an encapsulation technique. The potential of ESB for terrestrial solar arrays was clearly shown. The process is fast, reproducible, and produces a permanent bond between glass and silicon that is stronger than the silicon itself. Since this process is a glass sealing technique requiring no organics it makes moisture tight sealing of solar cells possible.

  1. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells

    PubMed Central

    2013-01-01

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551

  2. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  3. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large Photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis, and test data to date. A description of the LMSC performance model, future test plans, and predicted performance ranges are also given.

  4. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.

  5. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  6. Science with the Expanded Owens Valley Solar Array

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Gary, Dale E.; Fleishman, Gregory D.; Chen, Bin; White, Stephen M.; Hurford, Gordon J.; McTiernan, James; Hickish, Jack; Yu, Sijie; Nelin, Kjell B.

    2017-08-01

    The Expanded Owens Valley Solar Array (EOVSA) is a solar-dedicated radio array that makes images and spectra of the full Sun on a daily basis. Our main science goals are to understand the basic physics of solar activity, such as how the Sun releases stored magnetic energy on timescales of seconds, and how that solar activity, in the form of solar flares and coronal mass ejections, influences the Earth and near-Earth space environment, through disruptions of communication and navigation systems, and effects on satellites and systems on the ground. The array, which is composed out of thirteen 2.1 m dishes and two 27 m dishes (used only for calibration), has a footprint of 1.1 km EW x 1.2 km NS and it is capable of producing, every second, microwave images at two polarizations and 500 science channels spanning the 1-18 GHz frequency range. Such ability to make multi-frequency images of the Sun in this broad range of frequencies, with a frequency dependent resolution ranging from ˜53” at 1 GHz to ˜3”at 18 GHz, is unique in the world. Here we present an overview of the EOVSA instrument and a first set of science-quality active region and solar flare images produced from data taken during April 2017.This research is supported by NSF grant AST-1615807 and NASA grant NNX14AK66G to New Jersey Institute of Technology.

  7. Simple and Fast Method for Fabrication of Endoscopic Implantable Sensor Arrays

    PubMed Central

    Tahirbegi, I. Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-01-01

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope. PMID:24971473

  8. Simple and fast method for fabrication of endoscopic implantable sensor arrays.

    PubMed

    Tahirbegi, I Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-06-26

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.

  9. Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Lindena, S.

    1976-01-01

    A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.

  10. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    PubMed

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  11. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    PubMed

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  12. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    A solar array illumination test is performed on NASA's Ionospheric Connection Explorer (ICON) in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    A solar array illumination test is performed on NASA's Ionospheric Connection Explorer (ICON) in a clean room on May 4, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  14. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    NASA's Ionospheric Connection Explorer (ICON) is prepared for a solar array illumination test in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  15. Pegasus ICON Solar Array Illumination Test

    NASA Image and Video Library

    2018-05-04

    Technicians prepare NASA's Ionospheric Connection Explorer (ICON) for a solar array illumination test in a clean room inside Building 1555 at Vandenberg Air Force Base in California on May 4, 2018. The test checks for any imperfections and confirms that the solar arrays are functioning properly. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  16. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redwing, Joan; Mallouk, Tom; Mayer, Theresa

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion

  17. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  18. Combinatorial fabrication and screening of organic light-emitting device arrays

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun

    2007-11-01

    The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.

  19. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  20. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    PubMed

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  1. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  2. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  3. Solar array deployment from a spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Carlin, A. H.; Gardner, J. B.; Lassen, H. A.

    1974-01-01

    Cylindrical drum, wrapped with flexible solar array of solar cells mounted on Mylar sheet, is held by two end-fittings with cable (under tension) passing through axel of drum. Drum is held to end-fittings by axial cable through drum axel; drum is released for deployment when cable is cut at each end and end-fittings spring outward.

  4. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  5. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, RIGHT, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, TALKS WITH GREG LAUE, DIRECTOR OF AEROSPACE PRODUCTS FOR NEXOLVE, MANUFACTURER OF THE THIN-FILM TECHNOLOGY AND A PARTNER IN THE PROJECT.

  6. A review of the solar array manufacturing industry costing standards

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.

  7. 3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.

    2018-04-01

    In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.

  8. Automated Array Assembly, Phase 2

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array Project is a process development task. The contract provides for the fabrication of modules from large area tandem junction cells (TJC). During this quarter, effort was focused on the design of a large area, approximately 36 sq cm, TJC and process verification runs. The large area TJC design was optimized for minimum I squared R power losses. In the TJM activity, the cell-module interfaces were defined, module substrates were formed and heat treated and clad metal interconnect strips were fabricated.

  9. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  10. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  11. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  12. Small- Geo Solar Array: New Generation Of Solar Arrays For Commercial Telecom Satellites For Power Ranges Between 2,5 KW And 7,5 KW

    NASA Astrophysics Data System (ADS)

    Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf

    2011-10-01

    In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.

  13. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.

  14. Spacecraft level impacts of integrating concentrator solar arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Piszczor, M.F. Jr.

    1994-12-31

    The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less

  15. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.

    PubMed

    Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng

    2012-07-02

    The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

  16. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  17. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  18. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  19. Plasma Interaction with International Space Station High Voltage Solar Arrays

    NASA Technical Reports Server (NTRS)

    Heard, John W.

    2002-01-01

    The International Space Station (ISS) is presently being assembled in low-earth orbit (LEO) operating high voltage solar arrays (-160 V max, -140 V typical with respect to the ambient atmosphere). At the station's present altitude, there exists substantial ambient plasma that can interact with the solar arrays. The biasing of an object to an electric potential immersed in plasma creates a plasma "sheath" or non-equilibrium plasma around the object to mask out the electric fields. A positively biased object can collect electrons from the plasma sheath and the sheath will draw a current from the surrounding plasma. This parasitic current can enter the solar cells and effectively "short out" the potential across the cells, reducing the power that can be generated by the panels. Predictions of collected current based on previous high voltage experiments (SAMPIE (Solar Array Module Plasma Interactions Experiment), PASP+ (Photovoltaic Array Space Power) were on the order of amperes of current. However, present measurements of parasitic current are on the order of several milliamperes, and the current collection mainly occurs during an "eclipse exit" event, i.e., when the space station comes out of darkness. This collection also has a time scale, t approx. 1000 s, that is much slower than any known plasma interaction time scales. The reason for the discrepancy between predictions and present electron collection is not understood and is under investigation by the PCU (Plasma Contactor Unit) "Tiger" team. This paper will examine the potential structure within and around the solar arrays, and the possible causes and reasons for the electron collection of the array.

  20. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid

  1. Design and fabrication of solar cell modules

    NASA Technical Reports Server (NTRS)

    Shaughnessy, T. P.

    1978-01-01

    A program conducted for design, fabrication and evaluation of twelve silicon solar cell modules is described. The purpose of the program was to develop a module design consistent with the requirements and objectives of JPL specification and to also incorporate elements of new technologies under development to meet LSSA Project goals. Module development emphasized preparation of a technically and economically competitive design based upon utilization of ion implanted solar cells and a glass encapsulation system. The modules fabricated, tested and delivered were of nominal 2 X 2 foot dimensions and 20 watt minimum rating. Basic design, design rationale, performance and results of environmental testing are described.

  2. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees

  3. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.

  4. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  5. Design and development of a solar array drive. [a direct drive solar array pointing mechanism

    NASA Technical Reports Server (NTRS)

    Rees, T.; Standing, J. M.

    1977-01-01

    The design and development of a dry lubricated direct drive solar array pointing mechanism is discussed for use on the Orbital Test Satellite (OTS), MAROTS, European Communication Satellite (ECS), and others. Results of life testing the original prototype and the OTS mechanism are presented together with an appraisal of expected future development.

  6. Electrical performance comparison BSFR-/bifacial solar cell array

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Reissmann, F.

    1986-11-01

    Conventional and bifacial solar arrays were compared on subsystem level using the Space Telescope-solar array mission as reference. Calculations show that the bifacial solar cell has a performance advantage of 18 to 21 percent. This is due to a 5 C average lower temperature of the bifacial cell at the same orbit conditions; the rearside albedo irradiation of 86 to 170 W/sqm (average of 180 deg and 0 deg orbit orientation respectively); and the fact that the temperature difference between the hot case (satellite between Earth and Sun) and the cold case (before eclipse) is lower for the bifacial cell than for the BSFR cell. This lower difference has the advantage that the operation point for the bifacial cells is closer to maximum voltage point over the orbit. Resistivity of the bifacial solar cells against particle radiation, and absorptivity of front and rearside of the bifacial cell for infrared radiation must be verified. Statistical deviations of the albedo intensity and spectrum are not known.

  7. Feasibility study of a 110 watt per kilogram lightweight solar array system

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.; Stahle, C. V.; Schneider, A.; Hanson, K. L.

    1972-01-01

    An investigation of the feasibility of a solar array panel subsystem which will produce 10,000 watts of electrical output at 1 A.U. with an overall beginning-of-life power-to-weight ratio of at least 110 watt/kg is reported. A description of the current baseline configuration which meets these requirements is presented. A parametric analysis of the single boom, two blanket planar solar array system was performed to arrive at the optimum system aspect ratio. A novel concept for the stiffening of a lightweight solar array by canting the solar cell blankets at a small angle to take advantage of the inherent in-plane stiffness to increase the symmetric out-of-plane frequency is introduced along with a preliminary analysis of the stiffening effect. A comparison of welded and soldered solar cell interconnections leads to the conclusion that welding is required on this ultralightweight solar array. The use of a boron/aluminum composite material in a BI-STEM type deployable boom is investigated as a possible advancement in the state-of-the-art.

  8. The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.

    2016-12-01

    Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.

  9. Integrally regulated solar array demonstration using an Intel 8080 microprocessor

    NASA Technical Reports Server (NTRS)

    Petrik, E. J.

    1977-01-01

    A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.

  10. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    PubMed

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Planetary and Deep Space Requirements for Photovoltaic Solar Arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, more deep space missions now being planned have baselined photovoltaic solar arrays due to the low power requirements (usually significantly less than 100 W) needed for engineering and science payloads. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. This paper will discuss representative requirements for a range of planetary and deep space science missions now in the planning stages. We have divided the requirements into three categories: Inner planets and the sun; outer planets (greater than 3 AU); and Mars, cometary, and asteroid landers and probes. Requirements for Mercury and Ganymede landers will be covered in the Inner and Outer Planets sections with their respective orbiters. We will also discuss special requirements associated with solar electric propulsion (SEP). New technology developments will be needed to meet the demanding environments presented by these future applications as many of the technologies envisioned have not yet been demonstrated. In addition, new technologies that will be needed reside not only in the photovoltaic solar array, but also in other spacecraft systems that are key to operating the spacecraft reliably with the photovoltaics.

  12. Advances in Radiation-Tolerant Solar Arrays for SEP Missions

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Eskenazi, Michael I.; Ferguson, Dale C.

    2007-01-01

    As the power levels of commercial communications satellites reach the 20 kWe and higher, new options begin to emerge for transferring the satellite from LEO to GEO. In the past electric propulsion has been demonstrated successfully for this mission - albeit under unfortunate circumstances when the kick motor failed. The unexpected use of propellant for the electric propulsion (EP) system compromised the life of that vehicle, but did demonstrate the viability of such an approach. Replacing the kick motor on a satellite and replacing that mass by additional propellant for the EP system as well as mass for additional revenue-producing transponders should lead to major benefits for the provider. Of course this approach requires that the loss in solar array power during transit of the Van Allen radiation belts is not excessive and still enables the 15 to 20 year mission life. In addition, SEP missions to Jupiter, with its exceptional radiation belts, would mandate a radiation-resistant solar array to compete with a radioisotope alternative. Several critical issues emerge as potential barriers to this approach: reducing solar array radiation damage, operating the array at high voltage (>300 V) for extended times for Hall or ion thrusters, designing an array that will be resistant to micrometeoroid impacts and the differing environmental conditions as the vehicle travels from LEO to GEO (or at Jupiter), producing an array that is light weight to preserve payload mass fraction - and to do this at a cost that is lower than today's arrays. This paper will describe progress made to date on achieving an array that meets all these requirements and is also useful for deep space electric propulsion missions.

  13. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  14. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  15. Feasibility study of a 110 watt per kilogram lightweight solar array system

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.

    1973-01-01

    The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.

  16. The Damper Spring Unit of the Sentinel 1 Solar Array

    NASA Technical Reports Server (NTRS)

    Doejaaren, Frans; Ellenbroek, Marcel

    2012-01-01

    The Damper Spring Unit (DSU, see Figure 1) has been designed to provide the damping required to control the deployment speed of the spring driven solar array deployment in an ARA Mk3 or FRED based Solar Array in situations where the standard application of a damper at the root-hinge is not feasible. The unit consists of four major parts: a main bracket, an eddy current damper, a spring unit, an actuation pulley which is coupled via Kevlar cables to a synchro-pulley of a hinge. The damper slows down the deployment speed and prevents deployment shocks at deployment completion. The spring unit includes 4 springs which overcome the resistances of the damper and the specific DSU control cable loop. This means it can be added to any spring driven deployment system without major modifications of that system. Engineering models of the Sentinel 1 solar array wing have been built to identify the deployment behavior, and to help to determine the optimal pulley ratios of the solar array and to finalize the DSU design. During the functional tests, the behavior proved to be very sensitive for the alignment of the DSU. This was therefore monitored carefully during the qualification program, especially prior to the TV cold testing. During TV "Cold" testing the measured retarding torque exceeded the max. required value: 284 N-mm versus the required 247 N-mm. Although this requirement was not met, the torque balance analysis shows that the 284 N-mm can be accepted, because the spring unit can provide 1.5 times more torque than required. Some functional tests of the DSU have been performed without the eddy current damper attached. It provided input data for the ADAMS solar array wing model. Simulation of the Sentinel-1 deployment (including DSU) in ADAMS allowed the actual wing deployment tests to be limited in both complexity and number of tests. The DSU for the Sentinel-1 solar array was successfully qualified and the flight models are in production.

  17. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  18. ACTS Battery and Solar Array Assembly On-Orbit Measured Performance

    NASA Technical Reports Server (NTRS)

    Hilderman, Don R.

    2005-01-01

    The Advanced Communications Technology Satellite (ACTS) is a NASA experimental communications satellite system designed to demonstrate on-orbit Ka-band communications and switching technologies that will be used by NASA and the commercial sector in the 21st century. The ACTS was launched on September 12, 1993, and has performed over 10 years of successful experimental operations. The purpose of this report is to describe the ACTS power subsystem and the ACTS solar array and battery assemblies located within the power subsystem and then to document on-orbit measured performance from launch to mission end on April 28, 2004. Solar array and battery performance data is presented, and respective conclusions are drawn. The total solar array power available to the spacecraft was measured each year at the same time, and battery voltage performance was measured twice per year at the same times during peak solar eclipse. At the highest spacecraft power demand, the ACTS uses approximately 1113 W of electrical power during the low-burstrate experiment to operate all six satellite subsystems. After 10 years of on-orbit operation, solar array available output power normal to the Sun measured 1508 W, which represents 395 W of excess margin. The ACTS batteries have successfully supported the ACTS experiment program for over 10 years and operated in excess of 900 charge and discharge cycles through 21 eclipse seasons.

  19. Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing

    2017-09-01

    We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.

  20. Expanded Owens Valley Solar Array (EOVSA) Testbed and Prototype

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Nita, G. M.; Sane, N.

    2012-05-01

    NJIT is engaged in constructing a new solar-dedicated radio array, the Expanded Owens Valley Solar Array (EOVSA), which is slated for completion in late 2013. An initial 3-antenna array, the EOVSA Subsystem Testbed (EST), is now in operation from 1-9 GHz based on three of the old OVSA antennas, to test certain design elements of the new array. We describe this instrument and show some results from recent solar flares observed with it. We also describe plans for an upcoming prototype of EOVSA, which will use three antennas of the new design over the full 1-18 GHz signal chain of the entirely new system. The EOVSA prototype will be in operation by late 2012. Highlights of the new design are ability to cover the entire 1-18 GHz in less than 1 s, simultaneous dual polarization, and improved sensitivity and stability. We discuss what can be expected from the prototype, and how it will compare with the full 13-antenna EOVSA. This work was supported by NSF grants AGS-0961867 and AST-0908344, and NASA grant NNX11AB49G to New Jersey Institute of Technology.

  1. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Technical Reports Server (NTRS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-01-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  2. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Astrophysics Data System (ADS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-09-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  3. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  4. Solar Array and Auroral Charging Studies of DMSP Spacecraft

    NASA Technical Reports Server (NTRS)

    Matias, Kelwin

    2013-01-01

    The SSJ electrostatic analyzers and the SSIES plasma instruments on the DMSP spacecraft in low Earth polar orbit can be used to conduct case studies of auroral and solar array charging. We will use a program written in the Interactive Data Language (IDL) to evaluate questionable charging events in the SSJ records by comparing charging signatures in SSJ and SSIES data. In addition, we will assemble a number of case studies of solar array charging showing the signatures from the SSJ data and compare to the SSIES charging signatures. In addition we will use Satellite Tool Kit (STK) to propagate orbits, obtain solar intensity, and use to verify onset of charging with sunrise.

  5. Impact of Solar Array Position on ISS Vehicle Charging

    NASA Technical Reports Server (NTRS)

    Alred, John; Mikatarian, Ronald; Koontz, Steve

    2006-01-01

    The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA

  6. Optimal Configuration of PV System with Different Solar Cell Arrays

    NASA Astrophysics Data System (ADS)

    Machida, Sadayuki; Tani, Tatsuo

    Photovoltaic (PV) power generation is spreading steadily, and the dispersed PV array system is increasing from the architectural restrictions. In the case of dispersed array system, if the arrays are installed in a different azimuth or if the module that constitutes array is different, mismatching loss will be generated when a single inverter is used to convert the output of arrays, because of the difference of optimal operating voltage. The loss is related to the array configuration. However the relation between array configuration and power generation output is not clear. In order to avoid generation of mismatching loss, introducing a distributed inverter system such as string inverter system or AC modules system is considered. However it is not clear which is more advantageous between a distributed system and a concentrated system. In this paper, we verified the output characteristics of two different solar cell arrays with various strings, azimuths and tilt angles, and clarified the relation between array configuration and power generation output by the computer simulations. We also compared the distributed inverter system with the concentrated inverter system, and clarified the optimal configuration of PV system with different solar cell arrays.

  7. Impacts of Solar PV Arrays on Physicochemical Properties of Soil

    NASA Astrophysics Data System (ADS)

    Cagle, A.; Choi, C. S.; Macknick, J.; Ravi, S.; Bickhart, R.

    2017-12-01

    The deployment of renewable energy technologies, such as solar photovoltaics (PV), is rapidly escalating. While PV can provide clean, renewable energy, there is uncertainty regarding its potential positive and/or negative impacts on the local environment. Specifically, its effects on the physicochemical properties of the underlying soil have not been systematically quantified. This study facilitates the discussion on the effects of PV installations related to the following questions: i. How do soil moisture, infiltration rates, total organic carbon, and nitrogen contents vary spatially under a PV array? ii. How do these physicochemical properties compare to undisturbed and adjacent land covered in native vegetation? iii. Are these variations statistically significant to provide insight on whether PV installations have beneficial or detrimental impacts on soil? We address these questions through field measurements of soil moisture, infiltration, grain particle size distribution, total organic carbon, and nitrogen content at a 1-MW solar PV array located at the National Renewable Energy Laboratory in Golden, Colorado. We collect data via multiple transects underneath the PV array as as well as in an adjacent plot of undisturbed native vegetation. Measurements are taken at four positions under the solar panels; the east-facing edge, center area under the panel, west-facing edge, and interspace between panel rows to capture differences in sun exposure as well as precipitation runoff of panels. Measurements are collected before and after a precipitation event to capture differences in soil moisture and infiltration rates. Results of this work can provide insights for research fields associated with the co-location of agriculture and PV installations as well as the long term ecological impacts of solar energy development. Trends in physicochemical properties under and between solar panels can affect the viability of co-location of commercial crops in PV arrays, the

  8. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  9. Solar array strip and a method for forming the same

    NASA Technical Reports Server (NTRS)

    Mueller, R. L.; Yasui, R. K. (Inventor)

    1979-01-01

    A flexible solar array strip is formed by providing printed circuitry between flexible layers of a nonconductive material, depositing solder pads on the printed circuitry, and storing the resulting substrate on a drum from which it is then withdrawn and advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads and are infrared radiation to melt the solder and attach the cells to the circuitry. Excess flux is cleaned from the solar cells which are then encapsulated in a protective coating. The resulting array is then wound on a drum.

  10. Large-scale fabrication of single crystalline tin nanowire arrays.

    PubMed

    Luo, Bin; Yang, Dachi; Liang, Minghui; Zhi, Linjie

    2010-09-01

    Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode.

  11. Development of the solar array deployment and drive system for the XTE spacecraft

    NASA Technical Reports Server (NTRS)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  12. Fundamental Study on One-Dimensional-Array Medical Ultrasound Probe with Piezoelectric Polycrystalline Film by Hydrothermal Method: Experimental Fabrication of One-Dimensional-Array Ultrasound Probe

    NASA Astrophysics Data System (ADS)

    Endo, Akito; Kawashima, Norimichi; Takeuchi, Shinichi; Ishikawa, Mutsuo; Kurosawa, Minoru Kuribayashi

    2007-07-01

    We deposited a lead zirconate titanete (PZT) polycrystalline film on a titanium substrate by the hydrothermal method and fabricated a transducer using the PZT film for use as an ultrasound probe. A 10 MHz miniature one-dimensional-array medical ultrasound probe containing the PZT film was developed. After sputtering titanium on the surface of a hydroxyapatite substrate, the titanium film on the substrate was etched by the photolithography to form a one-dimensional titanium film electrode array. We could thus fabricate a miniature one-dimensional-array ultrasound probe by the hydrothermal method. Transmitted ultrasound pulses from a 10 MHz commercial ultrasound probe were received by the newly fabricated one-dimensional-array ultrasound probe. The fabrication process of the probe and the results of experiments on receiving waveforms were reported in this paper.

  13. Phase 2 of the array automated assembly task for the low cost solar array project

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Davis, J. R.; Ostroski, J. W.; Rai-Choudhury, P.; Rohatgi, A.; Seman, E. J.; Stapleton, R. E.

    1979-01-01

    The process sequence for the fabrication of dendritic web silicon into solar panels was modified to include aluminum back surface field formation. Plasma etching was found to be a feasible technique for pre-diffusion cleaning of the web. Several contacting systems were studied. The total plated Pd-Ni system was not compatible with the process sequence; however, the evaporated TiPd-electroplated Cu system was shown stable under life testing. Ultrasonic bonding parameters were determined for various interconnect and contact metals but the yield of the process was not sufficiently high to use for module fabrication at this time. Over 400 solar cells were fabricated according to the modified sequence. No sub-process incompatibility was seen. These cells were used to fabricate four demonstration modules. A cost analysis of the modified process sequence resulted in a selling price of $0.75/peak watt.

  14. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Sugri Nbelayim, Pascal; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC-AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  15. Deployment dynamics and control of large-scale flexible solar array system with deployable mast

    NASA Astrophysics Data System (ADS)

    Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping

    2016-10-01

    In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.

  16. Fabrication & characterization of thin film Perovskite solar cells under ambient conditions

    NASA Astrophysics Data System (ADS)

    Shah, Vivek T.

    High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.

  17. Fabrication of a stretchable solid-state micro-supercapacitor array.

    PubMed

    Kim, Daeil; Shin, Gunchul; Kang, Yu Jin; Kim, Woong; Ha, Jeong Sook

    2013-09-24

    We fabricated a stretchable micro-supercapacitor array with planar SWCNT electrodes and an ionic liquid-based triblock copolymer electrolyte. The mechanical stability of the entire supercapacitor array upon stretching was obtained by adopting strategic design concepts. First, the narrow and long serpentine metallic interconnections were encapsulated with polyimide thin film to ensure that they were within the mechanical neutral plane. Second, an array of two-dimensional planar micro-supercapacitor with SWCNT electrodes and an ion-gel-type electrolyte was made to achieve all-solid-state energy storage devices. The formed micro-supercapacitor array showed excellent performances which were stable over stretching up to 30% without any noticeable degradation. This work shows the strong potential of a stretchable micro-supercapacitor array in applications such as wearable computers, power dressing, electronic newspapers, paper-like mobile phones, and other easily collapsible gadgets.

  18. The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  19. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    NASA Technical Reports Server (NTRS)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  20. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are increasingly planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeorite impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. The Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeorite impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at NASA MSFC's Microlight Gas Gun Facility. The SSL-provided coupons consist of three strings, each string with two solar cells in series. Five impacts will be induced at various locations on a powered test coupon under different string voltage (0 volts - 150 volts) and string current (1.1 amperes - 1.65 amperes) conditions. The maximum specified test voltage and current represent margins of 1.5 times for both voltage and current. The test parameters are chosen to demonstrate new array design robustness to any ESD event caused by plasma plumes resulting from a simulated micrometeorite impact. A second unpowered coupon will undergo two impacts: one impact on the front side and one impact on the back side. Following the impact testing, the second coupon will be exposed to a thermal cycle test to determine possible damage propagation and further electrical degradation due to thermally-induced stress. The setup, checkout, and results from the impact testing are discussed. The challenges for impact testing include precise coupon alignment to control impact location; pressure management during the impact process; and measurement of the true transient electrical response during impact on the powered coupon. Results from pre- and post-test visual and electrical functional testing are also discussed.

  1. The Stretched Lens Array (SLA): A Low-Risk, Cost-Effective Array Offering Wing-Level Performance of 180 W/KG and 300 W/M2 at 300 VDC

    NASA Technical Reports Server (NTRS)

    ONeill, Mark; Piszczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    At IECEC 2001, our team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in the SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing.

  2. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  3. Heat Lamps Solder Solar Array Quickly

    NASA Technical Reports Server (NTRS)

    Coyle, P. J.; Crouthamel, M. S.

    1982-01-01

    Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

  4. Scalable fabric tactile sensor arrays for soft bodies

    NASA Astrophysics Data System (ADS)

    Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.

    2018-06-01

    Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.

  5. Solar Array Hysteresis and its Interaction with the MPPT System

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; Baur, C.; Gomez-Carpintero, F.

    2014-08-01

    It is well known that solar cells have a capacitance in parallel which value changes with the voltage. Depending on the section arrangement on the Solar Array, the power conversion unit connected to it will see a smaller or larger capacitance value and will have to cope with its adverse effects. In the case of converters with an MPPT, this capacitance gives place to an hysteresis effect that might shift the tracking point, reducing the power extracted from the Solar Array. This paper explores the different sides of this issue, from capacitance modelling to the effects on the MPPT. Additionally, this paper analyses a similar interaction between MPPTs and commercial SAS.

  6. Solar observations with the prototype of the Brazilian Decimetric Array

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  7. Improving solar-pumped laser efficiency by a ring-array concentrator

    NASA Astrophysics Data System (ADS)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  8. Study of multi-kilowatt solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1983-01-01

    A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.

  9. Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.

    1981-01-01

    Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.

  10. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  11. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-01

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  12. Understanding charge transfer dynamics in QDs-TiO2 nanorod array photoanodes for solar fuel generation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtian; McClure, Joshua P.; Fu, Richard; Jiang, Rongzhong; Chu, Deryn

    2018-01-01

    Harvesting light to drive water splitting for hydrogen generation is an attractive approach to satisfy the urgent energy demands. The design and fabrication of photoelectrode materials that are able to harvest sunlight is an important scientific undertaking. In this study, a two-quantum-dot (QD) layer is developed to decorate one-dimensional TiO2 nanorod arrays, which are subsequently utilized as photoanodes to harvest the wide-spectrum sunlight for water splitting. The QD-coated TiO2 nanorod arrays extend the light absorption range from the UV into the visible region yielding increased solar-to-hydrogen efficiencies. Transient photocurrent decay measurements demonstrate that the multi-layer CdSe-CdS QDs deposited onto the TiO2 nanorod arrays result in a stepwise band alignment that not only improves the hole extraction but also facilitates electron injection from the QDs to TiO2 rods. Moreover, the multi-heterojunction photoanode introduces interfacial states that act as recombination centers to trap the photogenerated electrons.

  13. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  14. Convective Array Cooling for a Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Dolce, James (Technical Monitor)

    2003-01-01

    A general characteristic of photovoltaics is that they increase in efficiency as their operating temperature decreases. Based on this principal, the ability to increase a solar aircraft's performance by cooling the solar cells was examined. The solar cells were cooled by channeling some air underneath the cells and providing a convective cooling path to the back side of the array. A full energy balance and flow analysis of the air within the cooling passage was performed. The analysis was first performed on a preliminary level to estimate the benefits of the cooling passage. This analysis established a clear benefit to the cooling passage. Based on these results a more detailed analysis was performed. From this cell temperatures were calculated and array output power throughout a day period were determined with and without the cooling passage. The results showed that if the flow through the cooling passage remained laminar then the benefit in increased output power more than offset the drag induced by the cooling passage.

  15. Template method for fabricating interdigitate p-n heterojunction for organic solar cell

    PubMed Central

    2012-01-01

    Anodic aluminum oxide (AAO) templates are used to fabricate arrays of poly(3-hexylthiophene) (P3HT) pillars. This technique makes it possible to control the dimensions of the pillars, namely their diameters, intervals, and heights, on a tens-of-nanometer scale. These features are essential for enhancing carrier processes such as carrier generation, exciton diffusion, and carrier dissociation and transport. An interdigitated p-n junction between P3HT pillars and fullerene (C60) exhibits a photovoltaic effect. Although the device properties are still preliminary, the experimental results indicate that an AAO template is an effective tool with which to develop organic solar cells because highly regulated nanostructures can be produced on large areas exceeding 100 mm2. PMID:22908897

  16. SKYLAB 1 SOLAR CELL ARRAY INSTALLATION IN VAB

    NASA Technical Reports Server (NTRS)

    1972-01-01

    One of Skylab 1's solar cell arrays installed on the orbital space station in High Bay 2 of the Vehicle Assembly Building today. Skylab 2 in High Bay 1 in visible in the background. Each of the two solar cell arrays on the space station that will be deployed in orbit, is designed to provide 10,500 watts of power at 55 degrees centigrade while in the sunlight portion of each orbit. All power needed to operate the station and the Apollo Telescope mount will be taken from the arrays. The remainder of the power generated will be diverted to battery chargers which will keep the batteries at full charge and ready for use while the orbiting spacecraft cluster is in the Earth's shadow. Each array will have almost 1,177 square feet of surface area to turn sunlight into electrical power. Skylab 1 is schedule for launch April 30, 1973 and Skylab 2, carrying the astronauts Conrad, Kerwin and Weitz to dock with the space station and enter it to live and work for 28 days, will be launched a day later.

  17. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The power extension package (PEP) is a solar array system that will be used on the space transportation system to augment the power of the Orbiter vehicle and to extend the time the vehicle may stay in orbit. The baseline configuration of the PEP is reviewed. The programmatic aspects of the design covering the development plan, the manufacturing facility plan and the estimated costs and risks are presented.

  18. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power-producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  19. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power -producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  20. Thruster array design approaches for a solar electric propulsion Encke Flyby mission

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1973-01-01

    Design approaches are described and evaluated for a mercury electron-bombardment ion thruster array. Such an array might be used on a solar electric interplanetary spacecraft that obtains electrical energy from large solar panels. Thruster array designs are described and evaluated as they would apply to an Encke Flyby mission. Besides several well known approaches, a new concept utilizing individual two-axis gimbal actuators on each thruster is described and shown to have many structural and thermal advantages.

  1. EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei

    2017-06-01

    We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.

  2. Development of a Solar Array Drive Assembly for CubeSat

    NASA Technical Reports Server (NTRS)

    Passaretti, Mike; Hayes, Ron

    2010-01-01

    Small satellites and in particular CubeSats, have increasingly become more viable as platforms for payloads typically requiring much larger bus structures. As advances in technology make payloads and instruments for space missions smaller, lighter and more power efficient, a niche market is emerging from the university community to perform rapidly developed, low-cost missions on very small spacecraft - micro, nano, and picosatellites. In just the last few years, imaging, biological and new technology demonstration missions have been either proposed or have flown using variations of the CubeSat structure as a basis. As these missions have become more complex, and the CubeSat standard has increased in both size (number of cubes) and mass, available power has become an issue. Body-mounted solar cells provide a minimal amount of power; deployable arrays improve on that baseline but are still limited. To truly achieve maximum power, deployed tracked arrays are necessary. To this end, Honeybee Robotics Spacecraft Mechanisms Corporation, along with MMA of Nederland Colorado, has developed a solar array drive assembly (SADA) and deployable solar arrays specifically for CubeSat missions. In this paper, we discuss the development of the SADA.

  3. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOEpatents

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  4. Fabrication and Testing of Binary-Phase Fourier Gratings for Nonuniform Array Generation

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.; Nelson, Tom R., Jr.; Parker, Jack H.; Beecher, Elizabeth A.

    2004-01-01

    This effort describes the fabrication and testing of binary-phase Fourier gratings designed to generate an incoherent array of output source points with nonuniform user-defined intensities, symmetric about the zeroth order. Like Dammann fanout gratings, these binary-phase Fourier gratings employ only two phase levels to generate a defined output array. Unlike Dammann fanout gratings, these gratings generate an array of nonuniform, user-defined intensities when projected into the far-field regime. The paper describes the process of design, fabrication, and testing for two different version of the binary-phase grating; one designed for a 12 micron wavelength, referred to as the Long-Wavelength Infrared (LWIR) grating, and one designed for a 5 micron wavelength, referred to as the Mid-Wavelength Infrared Grating (MWIR).

  5. Solar Array Power Conditioning for a Spinning Satellite

    NASA Astrophysics Data System (ADS)

    De Luca, Antonio; Chirulli, Giovanni

    2008-09-01

    The conditioning of the output power from a solar array can mainly be achieved by the adoption of DET or MPPT based architecture. There are several factors that can orientate the choice of the system designer towards one solution or the other; some of them maybe inherent to the mission derived requirements (Illumination levels, EMC cleanliness, etc.), others come directly from a careful assessment of performances and losses of both power conditioner and solar array.Definition of the criteria on which basis the final choice is justified is important as they have to guarantee a clear determination of the available versus the required power in all those mission conditions identifiable as design drivers for the overall satellite system both in terms of mass and costs.Such criteria cannot just be simple theoretical enunciations of principles; nor the meticulous definition of them on a case by case basis for different types of missions as neither option gives a guarantee of being conclusive.The aim of this paper is then to suggest assessment steps and guidelines that can be considered generically valid for any mission case, starting from the exposition of the trade off activity performed in order to choose the power conditioning solution for a spinning satellite having unregulated power bus architecture. Calculations and numerical simulations have been made in order to establish the needed solar array surface in case of adoption of a DET or MPPT solution, taking into account temperature and illumination levels on the solar cells, as well as power losses and inefficiencies from the solar generator to the main power bus, in different mission phases. Particular attention has been taken in order to correctly evaluate the thermal effects on the rest of the spacecraft as function of the adopted power system regulation.

  6. Simultaneous fabrication of a microcavity absorber-emitter on a Ni-W alloy film

    NASA Astrophysics Data System (ADS)

    Nashun; Kagimoto, Masahiro; Iwami, Kentaro; Umeda, Norihiro

    2017-10-01

    A process for the simultaneous fabrication of microcavity structures on both sides of a film was proposed and demonstrated to develop a free-standing-type integrated absorber-emitter for use in solar thermophotovoltaic power generation systems. The absorber-emitter-integrated film comprised a heat-resistant Ni-W alloy deposited by electroplating. A two-step silicon mould was fabricated using deep reactive-ion etching and electron beam lithography. Cavity arrays with different unit sizes were successfully fabricated on both sides of the film; these arrays are suitable for use as a solar spectrum absorber and an infrared-selective emitter. Their emissivity spectra were characterised through UV-vis-NIR and Fourier transform infrared spectroscopy.

  7. Astronauts Akers and Thornton remove one of HST solar arrays during EVA

    NASA Image and Video Library

    1993-12-06

    STS061-95-075 (6 Dec 1993) --- Astronauts Kathryn C. Thornton and Thomas D. Akers work to remove one of the solar arrays on the Hubble Space Telescope (HST) on the second of five extravehicular activity?s (EVA). The two space walkers later replaced both solar array panels. Part of Australia is in the background.

  8. Glass light pipes for solar concentration

    NASA Astrophysics Data System (ADS)

    Madsen, C. K.; Dogan, Y.; Morrison, M.; Hu, C.; Atkins, R.

    2018-02-01

    Glass waveguides are fabricated using laser processing techniques that have low optical loss with >90% optical throughput. Advanced light pipes are demonstrated, including angled facets for turning mirrors used for lens-to-light pipe coupling, tapers that increase the concentration, and couplers for combining the outputs from multiple lens array elements. Because they are fabricated from glass, these light pipes can support large optical concentrations and propagate broadband solar over long distances with minimal loss and degradation compared to polymer waveguides. Applications include waveguiding solar concentrators using multi-junction PV cells, solar thermal applications and remoting solar energy, such as for daylighting. Ray trace simulations are used to estimate the surface smoothness required to achieve low loss. Optical measurements for fabricated light pipes are reported for use in waveguiding solar concentrator architectures.

  9. Design and Fabrication Highlights Enabling a 2 mm, 128 Element Bolometer Array for GISMO

    NASA Technical Reports Server (NTRS)

    Allen, Christine; Benford, Dominic; Miller, Timothy; Staguhn, Johannes; Wollack, Edward; Moseley, Harvey

    2007-01-01

    The Backshort-Under-Grid (BUG) superconducting bolometer array architecture is intended to be highly versatile, operating in a large range of wavelengths and background conditions. We have undertaken a three-year program to develop key technologies and processes required to build kilopixel arrays. To validate the basic array design and to demonstrate its applicability for future kilopixel arrays, we have chosen to demonstrate a 128 element bolometer array optimized for 2 mm wavelength using a newly built Goddard instrument, GISMO (Goddard /RAM Superconducting 2-millimeter Observer). The arrays are fabricated using batch wafer processing developed and optimized for high pixel yield, low noise, and high uniformity. The molybdenum-gold superconducting transition edge sensors are fabricated using batch sputter deposition and are patterned using dry etch techniques developed at Goddard. With a detector pitch of 2 mm 8x16 array for GISMO occupies nearly one half of the processing area of a 100 mm silicon-on-insulator starting wafer. Two such arrays are produced from a single wafer along with witness samples for process characterization. To provide thermal isolation for the detector elements, at the end of the process over 90% of the silicon must be removed using deep reactive ion etching techniques. The electrical connections for each bolometer element are patterned on the top edge of the square grid supporting the array. The design considerations unique to GISMO, key fabrication challenges, and laboratory experimental results will be presented.

  10. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.

  11. Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kolosov, Vladimir

    1999-01-01

    The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.

  12. Low-cost solar array progress and plans

    NASA Astrophysics Data System (ADS)

    Callaghan, W. T.

    It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.

  13. Feasibility study of a 200 watt per kilogram lightweight solar array system. [for interplanetary spacecraft

    NASA Technical Reports Server (NTRS)

    Stanhouse, R.; Cokonis, J.; Rayl, G.

    1976-01-01

    Progress in an investigation of the feasibility of designing a lightweight solar array with a power-to-weight ratio of 200 watts per kilogram is described. This solar array will produce 10,000 watts of electrical power at 1 A.U. at its beginning of life (BOL), and degrade less than 20% over a three year period in interplanetary flight. A review of existing lightweight solar array system concepts is presented along with discussion pertaining to their applicable technology as it relates to a 200 watt/kilogram array. Also presented is a discussion of the candidate development solar cells being considered, and various deployable boom concepts under investigation.

  14. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cui, B.; Clime, L.; Li, K.; Veres, T.

    2008-04-01

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

  15. Constellations Solar Array Design, Industrialization And In-Flight Results

    NASA Astrophysics Data System (ADS)

    Combet, Yannick; Clapper, Paul

    2011-10-01

    Constellations has become a recurring opportunities in Thales Alenia Space since 3 majors programs had been awarded: Globalstar was the pathfinder with 48 flight sets followed by O3b with 8 an the latest is Iridium Next with 81 models. For these 3 programs, the Solar Array is fully developed, validated and produced by Thales Alenia Space with major subcontractors. This new segment of the activity leads to new development, design and industrialization approaches. This paper describes the Solar Array design and the alternative to current approach build and applied with the following drivers: - the low recurring cost and mass of the flight hardware, with particular attention on the Solar Array, - high robustness for system integration and in-orbit operations, - a long mission duration (typically 15 years in LEO) leading to take into account high number of thermal cycles (60 to 72.000 cycles), - new production concept with strict schedule management, - design segmented in subassemblies to reduce the integration time as well as a improved trouble shooting management, - delivery rate up to 1 wing per week and after learning curve effect, a integration duration divided by 3 compared to current production, - a delivery of a qualified PFM solar array in 22 months including the design to producibility constrains, This demanding requirement for delivery scheme and cost target did not jeopardize the requirements and standards for space application. After a brief description of the way the main drivers have been considered, the paper presents the main features and performances of the subsystem and shows the main validation test results. The first launch was successful in October 2010 and the first in-orbit results are presented.

  16. Demonstration of the feasibility of automated silicon solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Taylor, W. E.; Schwartz, F. M.

    1975-01-01

    A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.

  17. Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor.

    PubMed

    Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing

    2018-05-09

    Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.

  18. Observations of Transient ISS Floating Potential Variations During High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda N.; Pour, Maria Z. A.; Swenson, Charles; Nishikawa, Ken-ichi; Krause, Linda Habash

    2016-01-01

    The International Space Station (ISS) continues to be a world-class space research laboratory after over 15 years of operations, and it has proven to be a fantastic resource for observing spacecraft floating potential variations related to high voltage solar array operations in Low Earth Orbit (LEO). Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS floating potential are obtained from the Floating Potential Measurement Unit (FPMU). In particular, rapid variations in ISS floating potential during solar array operations on time scales of tens of milliseconds can be recorded due to the 128 Hz sample rate of the Floating Potential Probe (FPP) pro- viding interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting transient floating potential variations with mission operations. These complex variations are not reproduced by current models and require further study to understand the underlying physical processes. In this paper we present some of the floating potential transients observed over the past few years along with the relevant space environment parameters and solar array operations data.

  19. Arrays of ferromagnetic nanorings with variable thickness fabricated by capillary force lithography.

    PubMed

    Lee, Su Yeon; Jeong, Jong-Ryul; Kim, Shin-Hyun; Kim, Sarah; Yang, Seung-Man

    2009-11-03

    A new promising strategy is reported for the fabrication of ferromagnetic nanoring arrays with novel geometrical features through the use of capillary force lithography and subsequent reactive ion etching. In particular, we fabricated two different types of elliptic rings with variable width and height: one with pinching zones near the major axes and the other with pinching zones near the minor axes. We used PDMS stamps with either elliptic hole or antihole arrays for creating these elliptic rings with variable thickness by virtue of the uneven capillary rise, which was induced by the distributed Laplace pressure around the walls of elliptic holes or antiholes with nonuniform local curvatures. We transferred the polymer ring patterns to array of elliptical NiFe rings by Ar ion milling and characterized magnetic properties in terms of nonuniform ring width using magnetic force microscopy measurements. Our results demonstrated that the magnetic domain wall can be positioned in a controlled manner by using these novel elliptical ferromagnetic rings with local pinching zones and that the proposed CFL method can be utilized as a simple and effective fabrication tool.

  20. TESS Solar Array Deploy

    NASA Image and Video Library

    2018-02-21

    Inside the Payload Hazardous Servicing Facility at the NASA's Kennedy Space Center in Florida, technicians test the solar array deploy panels on the agency's Transiting Exoplanet Survey Satellite (TESS). The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  1. A high specific power solar array for low to mid-power spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, P. Alan; White, Stephen F.; Harvey, T. Jeffery; Smith, Brian S.

    1993-01-01

    UltraFlex is the generic term for a solar array system which delivers on-orbit power in the 400 to 6,000 watt per wing sizes with end-of-life specific power performance ranging to 150 watts-per-kilogram. Such performance is accomplished with off-the-shelf solar cells and state-of the-art materials and processes. Much of the recent work in photovoltaics is centered on advanced solar cell development. Successful as such work has been, no integrated solar array system has emerged which meets NASA's stated goals of 'increasing the end-of-life performance of space solar cells and arrays while minimizing their mass and cost.' This issue is addressed; namely, is there an array design that satisfies the usual requirements for space-rated hardware and that is inherently reliable, inexpensive, easily manufactured and simple, which can be used with both advanced cells currently in development and with inexpensive silicon cells? The answer is yes. The UltraFlex array described incorporates use of a blanket substrate which is thermally compatible with silicon and other materials typical of advanced multi-junction devices. The blanket materials are intrinsically insensitive to atomic oxygen degradation, are space rated, and are compatible with standard cell bonding processes. The deployment mechanism is simple and reliable and the structure is inherently stiff (high natural frequency). Mechanical vibration modes are also readily damped. The basic design is presented as well as supporting analysis and development tests.

  2. A high specific power solar array for low to mid-power spacecraft

    NASA Astrophysics Data System (ADS)

    Jones, P. Alan; White, Stephen F.; Harvey, T. Jeffery; Smith, Brian S.

    1993-05-01

    UltraFlex is the generic term for a solar array system which delivers on-orbit power in the 400 to 6,000 watt per wing sizes with end-of-life specific power performance ranging to 150 watts-per-kilogram. Such performance is accomplished with off-the-shelf solar cells and state-of the-art materials and processes. Much of the recent work in photovoltaics is centered on advanced solar cell development. Successful as such work has been, no integrated solar array system has emerged which meets NASA's stated goals of 'increasing the end-of-life performance of space solar cells and arrays while minimizing their mass and cost.' This issue is addressed; namely, is there an array design that satisfies the usual requirements for space-rated hardware and that is inherently reliable, inexpensive, easily manufactured and simple, which can be used with both advanced cells currently in development and with inexpensive silicon cells? The answer is yes. The UltraFlex array described incorporates use of a blanket substrate which is thermally compatible with silicon and other materials typical of advanced multi-junction devices. The blanket materials are intrinsically insensitive to atomic oxygen degradation, are space rated, and are compatible with standard cell bonding processes. The deployment mechanism is simple and reliable and the structure is inherently stiff (high natural frequency). Mechanical vibration modes are also readily damped. The basic design is presented as well as supporting analysis and development tests.

  3. Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.

    PubMed

    Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo

    2013-09-01

    In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.

  4. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Leung, D. C.

    1981-01-01

    Solar cells were fabricated from EFG ribbons dendritic webs, cast ingots by heat exchanger method, and cast ingots by ubiquitous crystallization process. Baseline and other process variations were applied to fabricate solar cells. EFG ribbons grown in a carbon-containing gas atmosphere showed significant improvement in silicon quality. Baseline solar cells from dendritic webs of various runs indicated that the quality of the webs under investigation was not as good as the conventional CZ silicon, showing an average minority carrier diffusion length of about 60 um versus 120 um of CZ wafers. Detail evaluation of large cast ingots by HEM showed ingot reproducibility problems from run to run and uniformity problems of sheet quality within an ingot. Initial evaluation of the wafers prepared from the cast polycrystalline ingots by UCP suggested that the quality of the wafers from this process is considerably lower than the conventional CZ wafers. Overall performance was relatively uniform, except for a few cells which showed shunting problems caused by inclusions.

  5. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.

    PubMed

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B-H; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  6. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array

    NASA Astrophysics Data System (ADS)

    Wang, Sihong; Xu, Jie; Wang, Weichen; Wang, Ging-Ji Nathan; Rastak, Reza; Molina-Lopez, Francisco; Chung, Jong Won; Niu, Simiao; Feig, Vivian R.; Lopez, Jeffery; Lei, Ting; Kwon, Soon-Ki; Kim, Yeongin; Foudeh, Amir M.; Ehrlich, Anatol; Gasperini, Andrea; Yun, Youngjun; Murmann, Boris; Tok, Jeffery B.-H.; Bao, Zhenan

    2018-03-01

    Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable—like human skin—would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a

  7. Solar Array Tracking Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maish, Alexander

    1995-06-22

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  8. Options Studied for Managing Space Station Solar Array Electrical Hazards for Sequential Shunt Unit Replacement

    NASA Technical Reports Server (NTRS)

    Delleur, Ann M.; Kerslake, Thomas W.; Levy, Robert K.

    2004-01-01

    The U.S. solar array strings on the International Space Station are connected to a sequential shunt unit (SSU). The job of the SSU is to shunt, or short, the excess current from the solar array, such that just enough current is provided downstream to maintain the 160-V bus voltage while meeting the power load demand and recharging the batteries. Should an SSU fail on-orbit, it would be removed and replaced with the on-orbit spare during an astronaut space walk or extravehicular activity (EVA) (see the photograph). However, removing an SSU during an orbit Sun period with input solar array power connectors fully energized could result in substantial hardware damage and/or safety risk to the EVA astronaut. The open-circuit voltage of cold solar-array strings can exceed 320 V, and warm solar-array strings could feed a short circuit with a total current level exceeding 240 A.

  9. Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster

    NASA Technical Reports Server (NTRS)

    Gruber, R. P.

    1977-01-01

    A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.

  10. Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)

    1991-01-01

    A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.

  11. The systems impact of a concentrated solar array on a Jupiter orbiter

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.

    1981-01-01

    Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.

  12. Integral glass encapsulation for solar arrays

    NASA Technical Reports Server (NTRS)

    Landis, G. A.

    1981-01-01

    Electrostatic bonding technology, an encapsulation technique for terrestrial solar array was developed. The process produces full integral, hermetic bonds with no adhesives or pottants. Panels of six solar cells on a simple glass superstrate were produced. Electrostatic bonding for making the cell front contact was also developed. A metal mesh is trapped into contact with the cell front during the bonding process. Six cell panels using the bonded mesh as the only cell front contact were produced. The possibility of using lower cost glass, with a higher thermal expansion mismatch to silicon, by making lower temperature bonds is developed. However, this requires a planar surface cell.

  13. Expanded Owens Valley Solar Array Science and Data Products

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Hurford, G. J.; Nita, G. M.; Fleishman, G. D.; McTiernan, J. M.

    2010-05-01

    The Owens Valley Solar Array (OVSA) has been funded for major expansion, to create a university-based facility serving a broad scientific community, to keep the U.S. competitive in the field of solar radio physics. The project, funded by the National Science Foundation through the MRI-Recovery and Reinvestment program, will result in a world-class facility for scientific research at microwave radio frequencies (1-18 GHz) in solar and space weather physics. The project also includes an exciting program of targeted astronomical science. The solar science to be addressed focuses on the magnetic structure of the solar corona, on transient phenomena resulting from magnetic interactions, including the sudden release of energy and subsequent particle acceleration and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelength bands. The New Jersey Institute of Technology (NJIT) will upgrade OVSA from its current complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We will detail the new science addressed by the expanded array, and provide an overview of the expected data products.

  14. A simple method for verifying the deployment of the TOMS-EP solar arrays

    NASA Technical Reports Server (NTRS)

    Koppersmith, James R.; Ketchum, Eleanor

    1995-01-01

    The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) mission relies upon a successful deployment of the spacecraft's solar arrays. Several methods of verification are being employed to ascertain the solar array deployment status, with each requiring differing amounts of data. This paper describes a robust attitude-independent verification method that utilizes telemetry from the coarse Sun sensors (CSS's) and the three-axis magnetometers (TAM's) to determine the solar array deployment status - and it can do so with only a few, not necessarily contiguous, points of data. The method developed assumes that the solar arrays are deployed. Telemetry data from the CSS and TAM are converted to the Sun and magnetic field vectors in spacecraft body coordinates, and the angle between them is calculated. Deployment is indicated if this angle is within a certain error tolerance of the angle between the reference Sun and magnetic field vectors. Although several other methods can indicate a non-deployed state, with this method there is a 70% confidence level in confirming deployment as well as a nearly 100% certainty in confirming a non-deployed state. In addition, the spacecraft attitude (which is not known during the first orbit after launch) is not needed for this algorithm because the angle between the Sun and magnetic field vectors is independent of the spacecraft attitude. This technique can be applied to any spacecraft with a TAM and with CSS's mounted on the solar array(s).

  15. Interaction of a solar array with an ion thruster due to the charge-exchange plasma

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    The generation of a charge exchange plasma by a thruster, the transport of this plasma to the solar array, and the interaction of the solar array with the plasma after it arrives are all described. The generation of this plasma is described accurately from thruster geometry and operating conditions. The transport of the charge exchange plasma was studied experimentally with a 15 cm thruster. A model was developed for simple thruster array configurations. A variety of experiments were surveyed for the interaction of the plasma at the solar array.

  16. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell.

    PubMed

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-12-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH 3 NH 3 PbI 3 , in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300~800 nm. A large short-circuit current density of 28.8 mA/cm 2 and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  17. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  18. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  19. Hardened Solar Array High Temperature Adhesive.

    DTIC Science & Technology

    1981-04-01

    SHERWOOO. D SASIU.IS F3361S-0-C-201S UNCLASSI ED 1AC-SCG-IOOIIR AFVAL-TR-OL-201? NLm,,hinii EhhhEE11I1 AFWAL-TR-81- 2017 i : HARDENED SOLAR ARRAY D HIGH...Tg and as a consequence forms a film on the container and also precipitates as tacky waxlike particles, rather than the desired flocullated

  20. Thermal design of spacecraft solar arrays using a polyimide foam

    NASA Astrophysics Data System (ADS)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  1. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals.

    PubMed

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-25

    We present a method to synthesize CuO nanorod array/TiO 2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO 2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO 2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO 2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO 2 . In this work, a solar cell with the structure FTO/CuO nanoarray/TiO 2 /Al is successfully fabricated, which exhibits an open-circuit voltage (V oc ) of 0.20 V and short-circuit current density (J sc ) of 0.026 mA cm -2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO 2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO 2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO 2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO 2 . This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO 2 heterojunction solar cells.

  2. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  3. Method of fabricating a solar cell

    DOEpatents

    Pass, Thomas; Rogers, Robert

    2016-02-16

    Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

  4. Method of fabricating a solar cell

    DOEpatents

    Pass, Thomas; Rogers, Robert

    2014-02-25

    Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.

  5. Glass for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1980-01-01

    Various aspects of glass encapsulation that are important for the designer of photovoltaic systems are discussed. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the low-cost solar array project goals for arrays: (1) a low degradation rate, (2) high reliability, (3) an efficiency greater than 10 percent, (4) a total array price less than $500/kW, and (5) a production capacity of 500,000 kW/yr. The glass design areas discussed include the types of glass, sources and costs, physical properties, and glass modifications, such as antireflection coatings.

  6. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Bunker, S.

    1981-01-01

    A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.

  7. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  8. Parametric study of two planar high power flexible solar array concepts

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.

    1978-01-01

    The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.

  9. Effect of wind speed on performance of a solar-pv array

    USDA-ARS?s Scientific Manuscript database

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  10. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    PubMed

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  11. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  12. Fabrication of micro-lens array on convex surface by meaning of micro-milling

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Du, Yunlong; Wang, Bo; Shan, Debin

    2014-08-01

    In order to develop the application of the micro-milling technology, and to fabricate ultra-precision optical surface with complex microstructure, in this paper, the primary experimental research on micro-milling complex microstructure array is carried out. A complex microstructure array surface with vary parameters is designed, and the mathematic model of the surface is set up and simulated. For the fabrication of the designed microstructure array surface, a micro three-axis ultra-precision milling machine tool is developed, aerostatic guideway drove directly by linear motor is adopted in order to guarantee the enough stiffness of the machine, and novel numerical control strategy with linear encoders of 5nm resolution used as the feedback of the control system is employed to ensure the extremely high motion control accuracy. With the help of CAD/CAM technology, convex micro lens array on convex spherical surface with different scales on material of polyvinyl chloride (PVC) and pure copper is fabricated using micro tungsten carbide ball end milling tool based on the ultra-precision micro-milling machine. Excellent nanometer-level micro-movement performance of the axis is proved by motion control experiment. The fabrication is nearly as the same as the design, the characteristic scale of the microstructure is less than 200μm and the accuracy is better than 1μm. It prove that ultra-precision micro-milling technology based on micro ultra-precision machine tool is a suitable and optional method for micro manufacture of microstructure array surface on different kinds of materials, and with the development of micro milling cutter, ultraprecision micro-milling complex microstructure surface will be achieved in future.

  13. By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.

  14. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.

    PubMed

    Cui, B; Clime, L; Li, K; Veres, T

    2008-04-09

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

  15. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    NASA Astrophysics Data System (ADS)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  16. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, KNEELS TO SHOW HOW ONE OF THE THIN-FILM SIDES OR "PETALS" IN WHICH PHOTO-VOLTAIC CELLS ARE EMBEDDED, IS FOLDED AND STOWED BEFORE LAUNCH. LOOKING ON DURING A DEMONSTRATION AFTER TESTING AT NEXOLVE, ARE LES JOHNSON, LEFT, ALSO CO-PRINCIPAL INVESTIGATOR, AND DARREN BOYD, RIGHT, THE RADIO FREQUENCY LEAD FOR THE PROJECT.

  17. Concept Definition Study for In-Space Structural Characterization of a Lightweight Solar Array

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pappa, Richard S.; Jones, Thomas W.; Spellman, Regina; Scott, Willis; Mockensturm, Eric M.; Liddle, Donn; Oshel, Ed; Snyder, Michael

    2002-01-01

    A Concept Definition Study (CDS) was conducted to develop a proposed "Lightweight High-Voltage Stretched-Lens Concentrator Solar Array Experiment" under NASA's New Millennium Program Space Technology-6 (NMP ST-6) activity. As part of a multi-organizational team, NASA Langley Research Center's role in this proposed experiment was to lead Structural Characterization of the solar array during the flight experiment. In support of this role, NASA LaRC participated in the CDS to de.ne an experiment for static, dynamic, and deployment characterization of the array. In this study, NASA LaRC traded state-of-the-art measurement approaches appropriate for an in-space, STS-based flight experiment, provided initial analysis and testing of the lightweight solar array and lens elements, performed a lighting and photogrammetric simulation in conjunction with JSC, and produced an experiment concept definition to meet structural characterization requirements.

  18. P6 Truss solar array, SABB and PV Radiator seen during EVA 3

    NASA Image and Video Library

    2005-08-03

    Photograph documenting the P6 Truss Solar Array Wing (SAW), Mast Canisters, Photovoltaic (PV) Radiator and Solar Array Blanket Boxes (SABB) as seen by the STS-114 crew during the third of three Extravehicular Activities (EVAs) of the mission. Part of the orbiter Discovery's nosecone is visible in the upper right of the frame.

  19. Development of the Ultra-Light Stretched Lens Array

    NASA Technical Reports Server (NTRS)

    O'Neill, M. J.; McDanal, A. J.; George, P. J.; Piszczor, M. F.; Edwards, D. L.; Botke, M. M.; Jaster, P. A.; Brandhorst, H. W.; Eskenazi, M.I.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    At the last IEEE (Institute of Electrical and Electronics Engineers) PVSC (Photovoltaic Specialists Conference), the new stretched lens array (SLA) concept was introduced. Since that conference, the SLA team has made significant advances in the SLA technology, including component level improvements, array level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper will describe the evolved version of the SLA, highlighting the improvements in the lens, solar cell, rigid panel structure, and complete solar array wing. The near term SLA will provide outstanding wing level performance: greater than 180 W/kg specific power, greater than 300 W/sq m power density, greater than 300 V operational voltage, and excellent durability in the space environment.

  20. EOL performance comparison of GaAs/Ge and Si BSF/R solar arrays

    NASA Technical Reports Server (NTRS)

    Woike, Thomas J.

    1993-01-01

    EOL power estimates for solar array designs are significantly influenced by the predicted degradation due to charged particle radiation. New radiation-induced power degradation data for GaAs/Ge solar arrays applicable to missions ranging from low earth orbit (LEO) to geosynchronous earth orbit (GEO) and compares these results to silicon BSF/R arrays. These results are based on recently published radiation damage coefficients for GaAs/Ge cells. The power density ratio (GaAs/Ge to Si BSF/R) was found to be as high as 1.83 for the proton-dominated worst-case altitude of 7408 km medium Earth orbit (MEO). Based on the EOL GaAs/Ge solar array power density results for MEO, missions which were previously considered infeasible may be reviewed based on these more favorable results. The additional life afforded by using GaAs/Ge cells is an important factor in system-level trade studies when selecting a solar cell technology for a mission and needs to be considered. The data presented supports this decision since the selected orbits have characteristics similar to most orbits of interest.

  1. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  2. High Voltage Solar Array ARC Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, T.; Vaughn, J.; Carruth, M. R.; Mikellides, I. G.; Jongeward, G. A.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2003-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (112HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration "trigger" arcs as well as long duration "sustained" arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of vo!tage, (current and power. The data will be used to propose a new, high-voltage (>300 V) solar array design for which the likelihood of damage from arcing is minimal.

  3. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    NASA Technical Reports Server (NTRS)

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  4. Design and Development of the Space Technology 5 (ST5) Solar Arrays

    NASA Technical Reports Server (NTRS)

    Lyons, John; Fatemi, Navid; Gamica, Robert; Sharma, Surya; Senft, Donna; Maybery, Clay

    2005-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Technology 5 (ST5) is designed to flight-test the concept of miniaturized 'small size" satellites and innovative technologies in Earth's magnetosphere. Three satellites will map the intensity and direction of the magnetic fields within the inner magnetosphere. Due to the small area available for the solar arrays, and to meet the mission power requirements, very high-efficiency multijunction solar cells were selected to power the spacecraft built by NASA Goddard Space Flight Center (GSFC). This was done in partnership with the Air Force Research Lab (AFRL) through the Dual-Use Science and Technology (DUS&T) program. Emcore's InGaP/lnGaAs/Ge Advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of 28.0% (one-sun, 28 C), were used to populate the arrays. Each spacecraft employs 8 identical solar panels (total area of about 0.3 square meters), with 15 large-area solar cells per panel. The requirement for power is to support on-orbit average load of 13.5 W at 8.4 V, with plus or minus 5% off pointing. The details of the solar array design, development and qualification considerations, as well as ground electrical performance & shadowing analysis results are presented.

  5. Flat-plate solar array project. Volume 4: High-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)

    1986-01-01

    The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.

  6. Spoked wheels to deploy large surfaces in space-weight estimates for solar arrays

    NASA Technical Reports Server (NTRS)

    Crawford, R. F.; Hedgepeth, J. M.; Preiswerk, P. R.

    1975-01-01

    Extensible booms were used to deploy and support solar cell arrays of varying areas. Solar cell array systems were built with one or two booms to deploy and tension a blanket with attached cells and bussing. A segmented and hinged rim supported by spokes joined to a common hub is described. This structure can be compactly packaged and deployed.

  7. Supporting Structures for Flat Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1986-01-01

    Strong supporting structures for flat solar photovoltaic arrays built with such commonly available materials as wood and galvanized steel sheet. Structures resist expected static loads from snow and ice as well as dynamic loads from winds and even Earthquake vibrations. Supporting structure uses inexpensive materials. Parts prefabricated to minimize assembly work in field.

  8. Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning Petri net

    NASA Astrophysics Data System (ADS)

    Wu, Jianing; Yan, Shaoze; Xie, Liyang

    2011-12-01

    To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.

  9. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  10. The fabrication of ordered arrays of exchange biased Ni/FeF2 nanostructures.

    PubMed

    Kovylina, M; Erekhinsky, M; Morales, R; Schuller, I K; Labarta, A; Batlle, X

    2010-04-30

    The fabrication of ordered arrays of exchange biased Ni/FeF(2) nanostructures by focused ion beam lithography is reported. High quality nano-elements, with controlled removal depth and no significant re-deposition, were carved using small ion beam currents (30 pA), moderate dwell times (1 micros) and repeated passages over the same area. Two types of nanostructures were fabricated: square arrays of circular dots with diameters from 125 +/- 8 to 500 +/- 12 nm and periodicities ranging from 200 +/- 8 to 1000 +/- 12 nm, and square arrays of square antidots (207 +/- 8 nm in edge length) with periodicities ranging from 300 +/- 8 to 1200 +/- 12 nm. The arrays were characterized using scanning ion and electron microscopy, and atomic force microscopy. The effect of the patterning on the exchange bias field (i.e., the shift in the hysteresis loop of ferromagnetic Ni due to proximity to antiferromagnetic FeF(2)) was studied using magneto-transport measurements. These high quality nanostructures offer a unique method to address some of the open questions regarding the microscopic origin of exchange bias. This is not only of major relevance in the fabrication and miniaturization of magnetic devices but it is also one of the important proximity phenomena in nanoscience and materials science.

  11. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  12. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  13. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  14. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  15. The Advanced Photovoltaic Solar Array (APSA) technology status and performance

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1991-01-01

    In 1985, the Jet Propulsion Laboratory initiated the Advanced Photovoltaic Solar Array (APSA) program. The program objective is to demonstrate a producible array system by the early 1990s with a specific performance of at least 130 W/kG (beginning-of-life) as an intermediate milestone towards the long range goal of 300 W/kG. The APSA performance represents an approximately four-fold improvement over existing rigid array technology and a doubling of the performance of the first generation NASA/OAST SAFE flexible blanket array of the early 1980s.

  16. Conical islands of TiO2 nanotube arrays in the photoelectrode of dye-sensitized solar cells.

    PubMed

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2015-01-01

    Ti conical island structures were fabricated using photolithography and the reactive ion etching method. The resulting conical island structures were anodized in ethylene glycol solution containing 0.25 wt% NH4F and 2 vol% H2O, and conical islands composed of TiO2 nanotubes were successfully formed on the Ti foils. The conical islands composed of TiO2 nanotubes were employed in photoelectrodes for dye-sensitized solar cells (DSCs). DSC photoelectrodes based on planar Ti structures covered with TiO2 nanotubes were also fabricated as a reference. The short-circuit current (J sc) and efficiency of DSCs based on the conical island structures were higher than those of the reference samples. The efficiency of DSCs based on the conical island structures reached up to 1.866%. From electrochemical impedance spectroscopy and open-circuit voltage (V oc) decay measurements, DSCs based on the conical island structures exhibited a lower charge transfer resistance at the counter cathode and a longer electron lifetime at the interface of the photoelectrode and electrolyte compared to the reference samples. The conical island structure was very effective at improving performances of DSCs based on TiO2 nanotubes. Graphical AbstractConical islands of TiO2 nanotube arrays are fabricated by an anodizing process with Ti protruding dots which have a conical shape. The conical islands are applied for use in DSC photoelectrodes. DSCs based on the conical islands of TiO2 nanotube arrays have the potential to achieve higher efficiency levels compared to DSCs based on normal TiO2 nanotubes and TiO2 nanoparticles because the conical islands of TiO2 nanotube arrays enlarge the surface area for dye adsorption.

  17. Aeroheating Thermal Model Correlation for Mars Global Surveyor (MGS) Solar Array

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.

    2003-01-01

    The Mars Global Surveyor (MGS) Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time dependent aerodynamic heating. Also, the thermal model itself needed to accurately capture the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar cell assembly properties, and adding detail to radiation and heat flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar array aeroheating analysis, which were used during onorbit operations.

  18. Antenna and solar arrays from Soyuz spacecraft

    NASA Image and Video Library

    2013-08-29

    View of antenna and solar arrays (with an Earth limb in the background) taken from a window in the Russian Soyuz spacecraft currently docked to the International Space Station. Photo taken by an Expedition 36 crewmember. Per Twitter message: View out the window to the right of my seat in Soyuz while docked to ISS.

  19. The Murchison Widefield Array: solar science with the low frequency SKA Precursor

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Oberoi, D.; Cairns, I.; Donea, A.; Duffin, R.; Arcus, W.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Bunton, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A.; deSouza, L.; Emrich, D.; Gaensler, B. M.; R, Goeke; Greenhill, L. J.; Hazelton, B. J.; Herne, D.; Hewitt, J. N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kennewell, J. A.; Kincaid, B. B.; Koenig, R.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Ord, S. M.; Pathikulangara, J.; Prabu, T.; Remillard, R. A.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Sault, R. J.; Udaya-Shankar, N.; Srivani, K. S.; Stevens, J.; Subrahmanyan, R.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2013-06-01

    The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements (known as tiles) distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper concentrates on the capabilities of the MWA for solar science and summarises some of the solar science results to date, in advance of the initial operation of the final instrument in 2013.

  20. Fabrication of polydimethylsiloxane (PDMS) - based multielectrode array for neural interface.

    PubMed

    Kim, Jun-Min; Oh, Da-Rong; Sanchez, Joaquin; Kim, Shang-Hyub; Seo, Jong-Mo

    2013-01-01

    Flexible multielectrode arrays (MEAs) are being developed with various materials, and polyimide has been widely used due to the conveniece of process. Polyimide is developed in the form of photoresist. And this enable precise and reproducible fabrication. PDMS is another good candidate for MEA base material, but it has poor surface energy and etching property. In this paper, we proposed a better fabrication process that could modify PDMS surface for a long time and open the site of electrode and pad efficiently without PDMS etching.

  1. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325

  2. Fabrication of close-packed TES microcalorimeter arrays using superconducting molybdenum/gold transition-edge sensors

    NASA Astrophysics Data System (ADS)

    Finkbeiner, F. M.; Brekosky, R. P.; Chervenak, J. A.; Figueroa-Feliciano, E.; Li, M. J.; Lindeman, M. A.; Stahle, C. K.; Stahle, C. M.; Tralshawala, N.

    2002-02-01

    We present an overview of our efforts in fabricating Transition-Edge Sensor (TES) microcalorimeter arrays for use in astronomical x-ray spectroscopy. Two distinct types of array schemes are currently pursued: 5×5 single pixel TES array where each pixel is a TES microcalorimeter, and Position-Sensing TES (PoST) array. In the latter, a row of 7 or 15 thermally-linked absorber pixels is read out by two TES at its ends. Both schemes employ superconducting Mo/Au bilayers as the TES. The TES are placed on silicon nitride membranes for thermal isolation from the structural frame. The silicon nitride membranes are prepared by a Deep Reactive Ion Etch (DRIE) process into a silicon wafer. In order to achieve the concept of closely packed arrays without decreasing its structural and functional integrity, we have already developed the technology to fabricate arrays of cantilevered pixel-sized absorbers and slit membranes in silicon nitride films. Furthermore, we have started to investigate ultra-low resistance through-wafer micro-vias to bring the electrical contact out to the back of a wafer. .

  3. Powering the future - a new generation of high-performance solar arrays

    NASA Astrophysics Data System (ADS)

    Geyer, Freddy; Caswell, Doug; Signorini, Carla

    2007-08-01

    Funded by ESA's Advanced Research in Telecommunication (ARTES) programme, Thales Alenia Space has developed a new generation of high-power ultra-lightweight solar arrays for telecommunications satellites. Thanks to close cooperation with its industrial partners in Europe, the company has generically qualified a solar array io meet market needs. Indeed, three flight projects were already using the new design as qualification was completed. In addition, the excellent mechanical and thermal behaviour of the new panel structure are contributing to other missions such as Pleïades and LISA Pathfinder.

  4. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  5. Preliminary Results from the Flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the OAST-2 mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials and floating potentials for arrays and spacecraft in LEO.

  6. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    PubMed

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  7. Polymeric waveguide array with 45 degree slopes fabricated by bottom side tilted exposure

    NASA Astrophysics Data System (ADS)

    Lin, Xiaohui; Dou, Xinyuan; Wang, Alan X.; Chen, Ray T.

    2011-01-01

    This paper demonstrated a practical fabrication process of polymeric waveguide array (12 channels) with 50μm(W)×50μm(H)×23mm(L) dimension and mirror embedded 45° degree slopes for vertical coupling purpose. The entire process contained three main parts: a SU8 pre-mold with 45° slope, a PDMS mold and the final waveguide array device. The key step of fabricating the pre-mold included a bottom side tilted exposure of SU8 photo resist. By placing the sample upside down, tilting by 58.7° and immersing into DI water, the ultraviolet (UV) beam that shined vertically was directed to go through from the bottom of the glass substrate into top side SU8 resist with 45° angle to form the surface. This method was able to guarantee no-gap contact between the mask pattern and the photo resist when exposing. By comparing the process complexity and achieved structure of the top and bottom side exposure, the later was proved to be a promising method for making high quality tilted structure without any tailing effect. The reversed PDMS mold was then fabricated on the SU8 pre-mold. The PDMS mold was used to imprint the cladding layer of the waveguide array. After metal deposition, core filling and top cladding layer coating, the final polymeric waveguide array device was achieved. For performance evaluation, 850nm laser beam from VCSEL was modulated to 10Gbps signals and vertically coupled into the waveguide array. The eye diagrams revealed high Q factor when transmitting signals along these waveguide array.

  8. Reduction of bonding resistance of two-terminal III-V/Si tandem solar cells fabricated using smart-stack technology

    NASA Astrophysics Data System (ADS)

    Baba, Masaaki; Makita, Kikuo; Mizuno, Hidenori; Takato, Hidetaka; Sugaya, Takeyoshi; Yamada, Noboru

    2017-12-01

    This paper describes a method that remarkably reduces the bonding resistance of mechanically stacked two-terminal GaAs/Si and InGaP/Si tandem solar cells, where the top and bottom cells are bonded using a Pd nanoparticle array. A transparent conductive oxide (TCO) layer, which partially covers the surface of the Si bottom cell below the electrodes of the III-V top cell, significantly enhances the fill factor (FF) and cell conversion efficiency. The partial TCO layer reduces the bonding resistance and thus, increases the FF and efficiency of InGaP/Si by factors of 1.20 and 1.11, respectively. Eventually, the efficiency exceeds 15%. Minimizing the optical losses at the bonding interfaces of the TCO layer is important in the fabrication of high-efficiency solar cells. To help facilitate this, the optical losses in the tandem solar cells are thoroughly characterized through optical simulations and experimental verifications.

  9. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.

    PubMed

    Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo

    2009-06-15

    Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.

  10. Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Button, Robert M.

    1999-01-01

    A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak

  11. Design and fabrication of a high temperature leading edge heating array, phase 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress during a Phase 1 program to design a high temperature heating array is reported for environmentally testing full-scale shuttle leading edges (30 inch span, 6 to 15 inch radius) at flight heating rates and pressures. Heat transfer analyses of the heating array, individual modules, and the shuttle leading edge were performed, which influenced the array design, and the design, fabrication, and testing of a prototype heater module.

  12. The Advanced Photovoltaic Solar Array Program Update

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, P. M.

    1993-01-01

    The paper continues the status reporting of the development of an ultraweight flexible blanket, flatlpack, fouldout solar array testbed wing that was presented at the First and Second European Space Power Conferences. To date a testbed wing has been built and subjected to a variety of critical functional tests before and after exposrue to simulated launch environments.

  13. Proceedings of the Low-Cost Solar Array Wafering Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1982-01-01

    The technology and economics of silicon ingot wafering for low cost solar arrays were discussed. Fixed and free abrasive sawing wire, ID, and multiblade sawing, materials, mechanisms, characterization, and innovative concepts were considered.

  14. Solar Array Panels and Earths Horizon during Expedition 13

    NASA Image and Video Library

    2006-07-24

    ISS013-E-64485 (24 July 2006) --- Earth's horizon and station solar array panels are featured in this image photographed by an Expedition 13 crewmember from a window on the International Space Station.

  15. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser

    NASA Astrophysics Data System (ADS)

    Luo, Zhi; Yin, Kai; Dong, Xinran; Duan, Ji'an

    2018-04-01

    A simple and efficient technique for fabricating parabolic cylindrical microlens arrays (CMLAs) on the surface of fused silica by shaped femtosecond (fs) laser direct-writing is demonstrated. By means of spatially shaping of a Gaussian fs laser beam to a Bessel distribution, an inversed cylindrical shape laser intensity profile is formed in a specific cross-sectional plane among the shaped optical field. Applying it to experiments, large area close-packed parabolic CMLAs with line-width of 37.5 μm and array size of about 5 × 5 mm are produced. The cross-sectional outline of obtained lenslets has a satisfied parabolic profile and the numerical aperture (NA) of lenslets is more than 0.35. Furthermore, the focusing performance of the fabricated CMLA is also tested in this work and it has been demonstrated that the focusing power of the CMLA with a parabolic profile is better than that with a semi-circular one.

  16. Light management in perovskite solar cells and organic LEDs with microlens arrays

    DOE PAGES

    Peer, Akshit; Biswas, Rana; Park, Joong -Mok; ...

    2017-04-28

    Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.

  17. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  18. Clearance Analysis of Node 3 Aft CBM to the Stowed FGB Solar Array

    NASA Technical Reports Server (NTRS)

    Liddle, Donn

    2014-01-01

    In early 2011, the ISS Vehicle Configuration Office began considering the relocation of the Permanent Multipurpose Module (PMM) to the aft facing Common Berthing Mechanism (CBM) on Node 3 to open a berthing location for visiting vehicles on the Node 1 nadir CBM. In this position, computer-aided design (CAD) models indicated that the aft end of the PMM would be only a few inches from the stowed Functional Cargo Block (FGB) port solar array. To validate the CAD model clearance analysis, in the late summer of 2011 the Image Science and Analysis Group (ISAG) was asked to determine the true geometric relationship between the on-orbit aft facing Node 3 CBM and the FGB port solar array. The desired measurements could be computed easily by photogrammetric analysis if current imagery of the ISS hardware were obtained. Beginning in the fall of 2011, ISAG used the Dynamic Onboard Ubiquitous Graphics (DOUG) program to design a way to acquire imagery of the aft face of Node 3, the aft end-cone of Node 1, the port side of pressurized mating adapter 1 (PMA1), and the port side of the FGB out to the tip of the port solar array using cameras on the Space Station Remote Manipulator System (SSRMS). This was complicated by the need to thread the SSRMS under the truss, past Node 3 and the Cupola, and into the space between the aft side of Node 3 and the FGB solar array to acquire more than 100 images from multiple positions. To minimize the number of SSRMS movements, the Special Purpose Dexterous Manipulator (SPDM) would be attached to the SSRMS. This would make it possible to park the SPDM in one position and acquire multiple images by changing the viewing orientation of the SPDM body cameras using the pan/tilt units on which the cameras are mounted. Using this implementation concept, ISAG identified four SSRMS/SPDM positions from which all of the needed imagery could be acquired. Based on a photogrammetric simulation, it was estimated that the location of the FGB solar array could be

  19. Fabrication and characterization of nanowalls CdS/dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Abdulelah, Haider; Ali, Basil; Mahdi, M. A.; Hassan, J. J.; Al-Taay, H. F.; Jennings, P.

    2017-06-01

    A microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate nanowalls CdS nanocrystalline thin film. Nanomaterials (such as nanowalls structure) have attracted significant attention due to their fascinating properties and unique applications, especially in optoelectronic nanodevices. Here we describe the fabrication of dye sensitized solar cells (DSSCs) based nanowalls cadmium sulfide (CdS) nanocrystalline thin films. The surface morphology, crystalline structure, and optical properties of the prepared nanocrystalline thin films are investigated. Rhodamine B, Malachite green, Eosin methylene blue, and Cresyl violet perchlorate dyes are used to fabricate the DSSCS devices. Current-voltage (I-V) characteristics show that the nanowall CdS/Eosin methylene blue device is the highest conversion efficiency of 0.89% under 100 mW/cm2. However, heat treatment of the fabricated solar cells causes significant enhancement in the output of all devices.

  20. Solar panels offer array of hope.

    PubMed

    Baillie, Jonathan

    2009-01-01

    The installation of what is believed to be the largest array of solar thermal panels currently in use at a UK NHS hospital has taken place at an ideal time for the facility in question, Harlow's Princess Alexandra Hospital, with the hospital's gas bill alone having risen by 153% over the past nine months thanks to soaring energy prices, and the estates department keen to mitigate the effects in any way possible. Jonathan Baillie reports.

  1. Recent Progress on the Stretched Lens Array (SLA)

    NASA Technical Reports Server (NTRS)

    O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry

    2005-01-01

    At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.

  2. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  3. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-01

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  4. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.

    PubMed

    Wu, Yao; Yan, Xin; Wei, Wei; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2018-04-25

    We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the recombination loss in heavily doped regions and the minority carrier recombination at the top contact. The results show that the conversion efficiency of GaAs nanowires can be greatly enhanced by using AlGaAs for the p segment instead of GaAs. A maximum efficiency enhancement of 8.42% has been achieved in this study. And for axial nanowire, by using AlGaAs for the top p segment, a relatively long top segment can be employed without degenerating device performance, which could facilitate the fabrication and contacting of nanowire array solar cells. While for radial nanowires, AlGaAs/GaAs nanowires show better tolerance to p-shell thickness and surface condition.

  5. Method of fabricating a PbS-PbSe IR detector array

    NASA Technical Reports Server (NTRS)

    Barrett, John R. (Inventor)

    1987-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chiping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  6. Solar energy emplacement developer

    NASA Technical Reports Server (NTRS)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  7. Bonding machine for forming a solar array strip

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Downing, R. G.; Middleton, O.; Mueller, R. L.; Yasui, R. K.; Cairo, F. J.; Person, J. K. (Inventor)

    1979-01-01

    A machine is described for attaching solar cells to a flexable substrate on which printed circuitry has been deposited. The strip is fed through: (1) a station in which solar cells are elevated into engagement with solder pads for the printed circuitry and thereafter heated by an infrared lamp; (2) a station at which flux and solder residue is removed; (3) a station at which electrical performance of the soldered cells is determined; (4) a station at which an encapsulating resin is deposited on the cells; (5) a station at which the encapsulated solar cells are examined for electrical performance; and (6) a final station at which the resulting array is wound on a takeup drum.

  8. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  9. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  10. The design and fabrication of microstrip omnidirectional array antennas for aerospace applications

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; Appleton, M. W.; Lusby, T. K.

    1976-01-01

    A microstrip antenna design concept was developed that will provide quasi-omnidirectional radiation pattern characteristics about cylindrical and conical aerospace structures. L-band and S-band antenna arrays were designed, fabricated, and, in some cases, flight tested for rocket, satellite, and aircraft drone applications. Each type of array design is discussed along with a thermal cover design that was required for the sounding rocket applications.

  11. The proposed NRAO millimeter array and its use for solar studies

    NASA Technical Reports Server (NTRS)

    Kundu, Mukul R.

    1986-01-01

    A brief summary is given of the proposed National Radio Astronomy Observatory (NRAO) Millimeter Array discussed at a workshop held in Green Bank, W. Va., September 30 to October 2, 1985. A brief description of the solar studies that can be made with such an array is provided.

  12. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  13. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.

    PubMed

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-12-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm(2), which is about 76 % higher than the flat counterpart (22.63 mA/cm(2)) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm(2)). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.

  14. Experimental simulation of space plasma interactions with high voltage solar arrays

    NASA Technical Reports Server (NTRS)

    Stillwell, R. P.; Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Operating high voltage solar arrays in the space environment can result in anomalously large currents being collected through small insulation defects. Tests of simulated defects have been conducted in a 45-cm vacuum chamber with plasma densities of 100,000 to 1,000,000/cu cm. Plasmas were generated using an argon hollow cathode. The solar array elements were simulated by placing a thin sheet of polyimide (Kapton) insulation with a small hole in it over a conductor. Parameters tested were: hole size, adhesive, surface roughening, sample temperature, insulator thickness, insulator area. These results are discussed along with some preliminary empirical correlations.

  15. The advantages of the high voltage solar array for electric propulsion

    NASA Technical Reports Server (NTRS)

    Sater, B. L.

    1973-01-01

    The high voltage solar array (HVSA) offers improvements in efficiency, weight, and reliability for the electric propulsion power system. The basic HVSA technology involves designing the solar array to deliver power in the form required by the ion thruster. This paper delves into conventional power processes and problems associated with ion thruster operation using SERT II experience for examples. In this light, the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT II thruster system in conjunction with HVSA are discussed. Thruster operation was observed to be normal and in some respects improved.

  16. SOLARTRAK. Solar Array Tracking Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manish, A.B.; Dudley, J.

    1995-06-01

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board`s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  17. Brazilian Decimetre Array (Phase-1): Initial solar observations

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Sawant, H. S.; Cecatto, J. R.; Faria, C.; Fernandes, F. C. R.; Kathiravan, C.; Suryanarayana, G. S.

    An East-West one-dimensional radio interferometer array consisting of 5 parabolic dish antennas has been set-up at Cachoeira Paulista, Brazil (Longitude: 45°0'20″W, Latitude: 22°41'19″S) for observations of Sun and some of the strong sidereal sources by the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. This is Phase-1 of the proposed Brazilian Decimetre Array (BDA) and can be operated at any frequency in the range 1.2-1.7 GHz. The instrument is functional since November 2004 onwards at 1.6 GHz. The angular and temporal resolution at the above frequency range are ˜3' and 100 ms, respectively. We present here the initial solar observations carried out with this array.

  18. Method of fabricating a back-contact solar cell and device thereof

    DOEpatents

    Li, Bo; Smith, David; Cousins, Peter

    2014-07-29

    Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.

  19. Method of fabricating a back-contact solar cell and device thereof

    DOEpatents

    Li, Bo; Smith, David; Cousins, Peter

    2016-08-02

    Methods of fabricating back-contact solar cells and devices thereof are described. A method of fabricating a back-contact solar cell includes forming an N-type dopant source layer and a P-type dopant source layer above a material layer disposed above a substrate. The N-type dopant source layer is spaced apart from the P-type dopant source layer. The N-type dopant source layer and the P-type dopant source layer are heated. Subsequently, a trench is formed in the material layer, between the N-type and P-type dopant source layers.

  20. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  1. A users evaluation of SAMIS. [Solar Array Manufacturing Industry Simulation

    NASA Technical Reports Server (NTRS)

    Grenon, L. A.; Coleman, M. G.

    1981-01-01

    SAMIS, the Solar Array Manufacturing Industry Simulation computer program was developed by Jet Propulsion Laboratories (JPL) to provide a method whereby manufacturers or potential manufacturers of photovoltaics could simulate a solar industry using their own particular approach. This paper analyzes the usefulness of SAMIS to a growing photovoltaic industry and clearly illustrates its limitations as viewed by an industrial user.

  2. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    NASA Astrophysics Data System (ADS)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  3. Design and fabrication of brayton cycle solar heat receiver

    NASA Technical Reports Server (NTRS)

    Mendelson, I.

    1971-01-01

    A detail design and fabrication of a solar heat receiver using lithium fluoride as the heat storage material was completed. A gas flow analysis was performed to achieve uniform flow distribution within overall pressure drop limitations. Structural analyses and allowable design criteria were developed for anticipated environments such as launch, pressure containment, and thermal cycling. A complete heat receiver assembly was fabricated almost entirely from the refractory alloy, niobium-1% zirconium.

  4. Electrostatic Discharge Test of Multi-Junction Solar Array Coupons After Combined Space Environmental Exposures

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George

    2010-01-01

    A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.

  5. Test plane uniformity analysis for the MSFC solar simulator lamp array

    NASA Technical Reports Server (NTRS)

    Griner, D. B.

    1976-01-01

    A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.

  6. Fabrication of focus-tunable liquid crystal microlens array with spherical electrode

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ming; Su, Guo-Dung J.

    2016-09-01

    In this paper, a new approach to fabricate a liquid crystal (LC) microlens array with spherical-shaped electrode is demonstrated, which can create the inhomogeneous electric field. Inkjet-printing, hydrophilic confinement, self-assemble and replication process is used to form the convex microlens array on glass. After the spherical-shaped electrode is done, we assemble it with ITO glass to form a liquid crystal cell. We used Zemax® to simulate the liquid crystal lens as a Gradient-index (GRIN) lens. The simulation results show that a GRIN lens model can well match with the theoretical focal length of liquid crystal lens. The dimension of the glass is 1.5 cm x 1.5 cm x 0.7 mm which has 7 concave microlens on the top surface. These microlens have same diameter and height about 300 μm and 85 μm. The gap between each other is 100 μm. We first fabricate microlens array on silicon substrate by hydrophilic confinement, which between hydrophilicity of silicon substrate and hydrophobicity of SU-8, and inkjet printing process. Then we start replication process with polydimethylsiloxane (PDMS) to transfer microlens array form silicon to glass substrate. After the transparent conducted polymer, PEDOT:PSS, is spin-coated on the microlens arrays surface, we flatten it by NOA65. Finally we assemble it with ITO glass and inkjet liquid crystal. From measuring the interference rings, the optical power range is from 47.28 to 331 diopter. This will be useful for the optical zoom system or focus-tunable lens applications.

  7. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics.

  8. Design and Fabrication of Electrostatically Actuated Silicon Microshutters Arrays

    NASA Technical Reports Server (NTRS)

    Oh, L.; Li, M.; Kim, K.; Kelly, D.; Kutyrev, A.; Moseley, S.

    2017-01-01

    We have developed a new fabrication process to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters are fabricated on silicon with thin silicon nitride membranes. A pixel size of each microshutter is 100 x 200 micrometers 2. The microshutters rotate 90 degrees on torsion bars. The selected microshutters are actuated, held, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.

  9. Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Cui, Peng; Zhao, Xing; Li, Meicheng; Chu, Lihua; Wang, Tianyue; Jiang, Bing

    2015-03-01

    A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and transport via WO3 supporters, as well as the nanostructure array morphology of WO3 for deposition of fine Pt nanoparticles. This work provides an approach for developing highly catalytic and low-cost Pt based CEs, which also has implications for the development of Pt/WO3 nanoplate arrays for other applications.A tungsten trioxide (WO3) nanoplate array is fabricated directly on the FTO/glass substrate and used as a platinum (Pt) nanoscale supporter for a highly efficient and low Pt-consumption counter electrode (CE) in dye-sensitized solar cells (DSCs). A Pt/WO3 composite structure, with Pt nanoparticles having a diameter of 2-3 nm, increases the electrochemical catalytic activity in catalyzing the reduction of triiodide. Accordingly, the power conversion efficiency is increased from less than 1% for WO3 CE and 8.1% for Pt CE, respectively, to 8.9% for Pt/WO3 CE. Moreover, the use of Pt/WO3 CE can dramatically reduce the consumption of scarce Pt material, with a relatively low Pt-loading of ~2 μg cm-2, while maintaining a much better performance. The excellent performance of Pt/WO3 CE is attributed to the efficient electron injection and

  10. Development of lightweight aluminum hollowcore solar cell array technology

    NASA Technical Reports Server (NTRS)

    Carlson, J. A.

    1971-01-01

    A baseline configuration for a three section folding array, with retraction capability, was developed which would utilize electroformed aluminum hollowcore substrates and beryllium frames. The three section array was not fabricated because of difficulties with impurities in the aluminum electroforming bath. A procedure was developed for etching the copper mandrel from virtually any size of aluminum hollowcore panel in approximately one hour. Procedures were developed for analyzing the content of peroxide, water, total aluminum, and lithium-aluminum-hydride in an aluminum electroforming solution.

  11. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur

    2004-01-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  12. Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal

    NASA Astrophysics Data System (ADS)

    Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko

    2017-04-01

    In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.

  13. Amorphous silicon cell array powered solar tracking apparatus

    DOEpatents

    Hanak, Joseph J.

    1985-01-01

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  14. Evaluation of concentrated space solar arrays using computer modeling. [for spacecraft propulsion and power supplies

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1979-01-01

    A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.

  15. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  17. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  18. Deployment/retraction ground testing of a large flexible solar array

    NASA Technical Reports Server (NTRS)

    Chung, D. T.

    1982-01-01

    The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.

  19. Fabrication of overlaid nanopattern arrays for plasmon memory

    NASA Astrophysics Data System (ADS)

    Okabe, Takao; Wadayama, Hisahiro; Taniguchi, Jun

    2018-01-01

    Stacking technique of nanopattern array is gathering attention to fabricate next generation data storage such as plasmon memory. This technique provides multi- overlaid nanopatterns which made by nanoimprint lithography. In the structure, several metal nanopatterned layer and resin layer as a spacer are overlaid alternately. The horizontal position of nanopatterns to under nanopatterns and thickness of resin layer as spacer should be controlled accurately, because these parameters affect reading performance and capacity of plasmon memory. In this study, we developed new alignment mark to fabricate multi- overlaid nanopatterns. The alignment accuracy with the order of 300 nm was demonstrated for Ag nanopatterns in 2 layers. The alignment mark can measure the thickness of spacer. The relationship of spacer thickness and position of scale bar on the alignment mark was measured. The usefulness of the alignment mark for highdensity plasmon memory is shown.

  20. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.

    PubMed

    Cai, Hongbing; Meng, Qiushi; Zhao, Hui; Li, Mingling; Dai, Yanmeng; Lin, Yue; Ding, Huaiyi; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping

    2018-06-13

    The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 10 6 and a detection limit of 10 -11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe 2 . Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.

  1. The ARA Mark 3 solar array design and development

    NASA Technical Reports Server (NTRS)

    vanHassel, Rob H. A.

    1996-01-01

    The ARA (Advanced Rigid Array) Mark3 solar array of Fokker Space BV is currently in its final stages of qualification (wing tests to be completed in March, 1996; unit/part tests in April, 1996). With regard to its predecessor, the ARA Mark2, the design has not only been improved in terms of mechanical and electrical performance, but also with regard to production cost and throughput time. This 'state of the art' array is designed to fit the needs of a wide variety of geostationary telecommunications satellites and is qualified for launch on the complete range of medium/large size commercial launchers (Ariane IV & V, Atlas, Delta, Proton, Long March, H2). The first mission to fly the new ARA Mk3 array is Hot Bird 2 (customer: Eutelsat, prime contractor: Matra Marconi Space; launch: mid-1996). In this configuration, its end of life (EOL) power-to-mass ratio is 42 W/kg, with an operational life of more than 12 years. The main mechanisms on a solar array are typically found in the deployment system and in the hold down and release system. During the design and development phase of these mechanisms, extensive engineering and qualification tests have been performed. This paper presents the key design features of these mechanisms and the improvements that were made with regard to their predecessors. It also describes the qualification philosophy on unit/part and wing level. Finally, some of the development items that turned out to be critical, as well as the lessons learned from them, are discussed.

  2. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Minahan, J. A.

    1981-01-01

    The fabrication of solar cells from several unconventional silicon materials is described, and cell performance measured and analyzed. Unconventional materials evaluated are edge defined film fed grown (EFG), heat exchanger method (HEM), dendritic web grown, and continuous CZ silicons. Resistivity, current voltage, and spectral sensitivity of the cells were measured. Current voltage was measured under AM0 and AM1 conditions. Maximum conversion efficiencies of cells fabricated from these and other unconventional silicons were compared and test results analyzed. The HEM and continuous CZ silicon were found to be superior to silicon materials considered previously.

  3. Fabrication and Doping Methods for Silicon Nano- and Micropillar Arrays for Solar-Cell Applications: A Review.

    PubMed

    Elbersen, Rick; Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2015-11-18

    Silicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination. Due to the vast silicon nano- and microfabrication toolbox that exists nowadays, many versatile methods for the preparation of such highly structured samples are available. Furthermore, the formation of p/n junctions on structured surfaces is possible by a variety of doping techniques, in large part transferred from microelectronic circuit technology. The right choice of doping method, to achieve good control of junction depth and doping level, can contribute to an improvement of the overall efficiency that can be obtained in devices for energy applications. A review of the state-of-the-art of the fabrication and doping of silicon micro and nanopillars is presented here, as well as of the analysis of the properties and geometry of thus-formed 3D-structured p/n junctions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Validation Report for the EO-1 Lightweight Flexible Solar Array Experiment

    NASA Technical Reports Server (NTRS)

    Carpenter, Bernie; Lyons, John; Day, John (Technical Monitor)

    2001-01-01

    The controlled deployment of the Lightweight Flexible Solar Array (LFSA) experiment using the shape memory alloy release and deployment system has been demonstrated. Work remains to be done in increasing the efficiency of Copper Indium Diselinide (CIS) terminations to the flexible harness that carries current from the array to the I-V measurement electronics.

  5. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium

  6. Space Station Solar Array Joint Repair

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Allmon, Curtis; Reznik, Carter; McFatter, Justin; Davis, Robert E.

    2015-01-01

    In Oct 2007 the International Space Station (ISS) crew noticed a vibrating camera in the vicinity of Starboard Solar Alpha Rotary Joint (SARJ). It had less than 5 months of run time when the anomaly was observed. This approximately 3.2 meter diameter bearing joint supports solar arrays that power the station critical to its operation. The crew performed an EVA to identify what was causing the vibration. It was discovered that one of the 3 bearing tracks of this unconventional bearing had significant spalling damage. This paper discusses the SARJ's unique bearing design and the vulnerability in its design leading to the observed anomaly. The design of a SARJ vacuum test rig is also described along with the results of a life test that validated the proposed repair should extend the life of the SARJ a minimum of 18 years on-orbit.

  7. Features of the solar array drive mechanism for the space telescope

    NASA Technical Reports Server (NTRS)

    Hostenkamp, R. G.

    1985-01-01

    The solar array drive mechanism for the Space Telescope embodies several features not customarily found on solar array drives. Power and signal transfer is achieved by means of a flexible wire harness for which the chosen solution, consisting of 168 standard wires, is described. The torque performance data of the harness over its temperature range are presented. The off load system which protects the bearings from the launch loads is released by a trigger made from Nitinol, the memory alloy. The benefits of memory alloy and the caveats for the design are briefly discussed. The design of the off load system is described and test experience is reported.

  8. Conceptual design study of concentrator enhanced solar arrays for space applications Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Concentrator concepts which utilize Kapton mirror material were evaluated and selected for solar array use due to their zero mass. All concepts considered employed thin silicon solar cells. Design requirements for the concentrator were: the cell temperature was not to exceed 150 C; the concentrators were to produce illumination of the array within 15% of being perfectly uniform; the concentrators were to operate while misaligned as much as 5 degrees with the solar axis. Concentrator designs along with mirror structure and configurations are discussed and comparisons are made for optimal space applications.

  9. Fabrication of transparent TiO2 nanotube-based photoanodes for CdS/CdTe quantum co-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gualdrón-Reyes, A. F.; Cárdenas-Arenas, A.; Martínez, C. A.; Kouznetsov, V. V.; Meléndez, A. M.

    2017-01-01

    In order to fabricate a solar cell, ordered TiO2 nanotube (TNT) arrays were prepared by double anodization. TNT arrays with variable lengths were obtained by changing the duration of the anodizing process of up to 3h. TNT membranes were transferred to indium tin oxide substrates and attached with a B-TiO2 sol. TNT photoanode with the best photoelectrochemical performance was sensitized with CdS by SILAR method. On other hand, CdTe quantum dots prepared via colloidal synthesis were deposited on TNT photoanodes for 2h, 4h and 6h. In addition, TNT/CdS was loaded with CdTe quantum dots for 4 h. Morphology and chemical modification of TiO2 were characterized by FESEM and XPS, while their photoelectrochemical performance was measured by open-circuit photopotential and photovoltammetry under visible light. TiO2 nanotubes grown during 2.5h showed the highest photocurrent due to presence of Ti3+ donor states by N and F co-doping, increasing the number of photogenerated electrons transported to back collector. TNT/CdS/CdTe photoanode reach the highest conversion efficiency under AM 1.5G simulated solar illumination.

  10. Method of construction of a multi-cell solar array

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Hollis, B. R., Jr.; Feltner, W. R. (Inventor)

    1979-01-01

    The method of constructing a high voltage, low power, multicell solar array is described. A solar cell base region is formed in a substrate such as but not limited to silicon or sapphire. A protective coating is applied on the base and a patterned etching of the coating and base forms discrete base regions. A semiconductive junction and upper active region are formed in each base region, and defined by photolithography. Thus, discrete cells which are interconnected by metallic electrodes are formed.

  11. Discarded solar array panel removed from Hubble Space telescope

    NASA Image and Video Library

    1993-12-06

    STS061-95-031 (6 Dec 1993) --- The damaged solar array panel removed from the Hubble Space Telescope (HST) is backdropped over northern Sudan. Astronaut Kathryn C. Thornton, just out of frame at top right, watched the panel after releasing it moments earlier.

  12. Design of a solar array simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Butler, Steve J.; Sable, Dan M.; Lee, Fred C.; Cho, Bo H.

    1992-01-01

    The present spacecraft solar array simulator addresses both dc and ac characteristics as well as changes in illumination and temperature and performance degradation over the course of array service life. The computerized control system used allows simulation of a complete orbit cycle, in addition to automated diagnostics. The simulator is currently interfaced with the NASA EOS testbed.

  13. Genesis Solar Wind Array Collector Fragments Post-Recovery Status

    NASA Astrophysics Data System (ADS)

    Allton, J. H.

    2005-12-01

    The Genesis solar wind sample return mission spacecraft was launched with 271 whole and 30 half hexagonally-shaped collectors. At 65 cm2 per hexagon, the total collection area was 18,600 cm2. These 301 collectors were comprised of 9 materials mounted on 5 arrays, each of which was exposed to a specific regime of the solar wind. Thoughtfully, collectors exposed to a specific regime were made of a unique thickness: bulk solar wind (700 μm thick), transient solar wind associated with coronal mass ejection (650 μm), high speed solar wind from coronal holes (600 μm), and interstream low-speed solar wind (550 μm). Thus, it is easy to distinguish the solar wind regime sampled by measuring the fragment thickness. Nearly 10,000 fragments have been enumerated, constituting about 20% of the total area. The sapphire-based hexagons survived better than the silicon hexagons as seen in the percent pre-flight whole collectors compared to the percent of recovered fragments in 10 to 25 mm size range. Silicon-based collectors accounted for 57% of the hexagons flown but 18% of the recovered fragments. However, a) gold coating on sapphire accounted for 12% flown and 27% of the recovered; b) aluminum coating on sapphire for 9% flown and 25% of the recovered; c) silicon coating on sapphire for 7% flown and 18% of the recovered; and d) sapphire for 7% flown and 10% of the recovered. Due to the design of the array frames, many of the recovered fragments were trapped in baffles very near their original location and were relatively protected from outside debris. Collector fragments are coated with particulate debris, and there is evidence that a thin molecular film was deposited on collector surfaces during flight. Therefore, in addition to allocations distributed for solar wind science analysis, poorer quality samples have been used in specimen cleaning tests.

  14. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  15. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  16. Atomic Oxygen Exposure of Polyimide Foam for International Space Station Solar Array Wing Blanket Box

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Albyn, K. C.; Watts, E. W.

    2006-01-01

    Onorbit photos of the International Space Station (ISS) solar array blanket box foam pad assembly indicate degradation of the Kapton film covering the foam, leading to atomic oxygen (AO) exposure of the foam. The purpose of this test was to determine the magnitude of particulate generation caused by low-Earth orbital environment exposure of the foam and also by compression of the foam during solar array wing retraction. The polyimide foam used in the ISS solar array wing blanket box assembly is susceptible to significant AO erosion. The foam sample in this test lost one-third of its mass after exposure to the equivalent of 22 mo onorbit. Some particulate was generated by exposure to simulated orbital conditions and the simulated solar array retraction (compression test). However, onorbit, these particles would also be eroded by AO. The captured particles were generally <1 mm, and the particles shaken free of the sample had a maximum size of 4 mm. The foam sample maintained integrity after a compression load of 2.5 psi.

  17. The concentration principle applied to spaceborne solar arrays. Application to the coorbiting platform mission: Studies synthesis

    NASA Astrophysics Data System (ADS)

    Laget, R.

    1986-01-01

    Studies that led to selection of the distributed concentration biplane concept for the solar cell generator to be flown on the coorbiting platform mission, and the major characteristics of such a spaceborne solar array are summarized. It is concluded that there is not a considerable interest in concentration either for array area reduction or cost reduction, although improvements of 15% for both domains are feasible. Only predevelopment activities to verify concentrator performances and system studies to assess respective importance of cost and area saving may increase the level of interest of concentrator solar arrays for this kind of mission.

  18. Modelling and fabrication of high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Smith, A. W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. The third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high efficiency silicon cells.

  19. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  20. Flight performance of the Pioneer Venus Orbiter solar array

    NASA Technical Reports Server (NTRS)

    Goldhammer, L. J.; Powe, J. S.; Smith, Marcie

    1987-01-01

    The Pioneer Venus Orbiter (PVO) solar panel power output capability has degraded much more severely than has the power output capability of solar panels that have operated in earth-orbiting spacecraft for comparable periods of time. The incidence of solar proton events recorded by the spacecraft's scientific instruments accounts for this phenomenon only in part. It cannot explain two specific forms of anomalous behavior observed: 1) a variation of output per spin with roll angle, and 2) a gradual degradation of the maximum output. Analysis indicates that the most probable cause of the first anomaly is that the solar cells underneath the spacecraft's magnetometer boom have been damaged by a reverse biasing of the cells that occurs during pulsed shadowing of the cells by the boom as the spacecraft rotates. The second anomaly might be caused by the effects on the solar array of substances from the upper atmosphere of Venus.