Sample records for fabrication facility recycle

  1. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less

  2. Looking North at Uranium recovery Recycle Tanks in Red Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North at Uranium recovery Recycle Tanks in Red Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  3. Recyclable patterning of silver nanowire percolated network for fabrication of flexible transparent electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Byungwook; Kim, Youngmin; Han, Chul Jong; Oh, Min Suk; Kim, Jong-Woong

    2018-01-01

    Recent studies have revealed that silver nanowires (AgNWs) are a promising material for highly flexible transparent electrodes. Here we introduce a novel photoinduced recyclable approach to AgNW patterning to overcome the issue of loss of material during fabrication of AgNW patterns, which is a leading factor in the high fabrication costs of AgNW-based electrodes. Our patterning scheme involves the selective irradiation of an AgNW/polymer composite with high-intensity pulsed light, followed by immersion of the sample in a liquid and an ultrasonication treatment. The nanowires that detach during sonication could be recycled, and the recycled AgNWs achieved comparable performance to that of pristine AgNWs. The recycled AgNWs were also superior to commercial indium tin oxide films and other competing materials. We successfully demonstrated a high performance transparent heater by employing the recyclable patterning method and recycled AgNWs.

  4. Unanticipated potential cancer risk near metal recycling facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raun, Loren, E-mail: raun@rice.edu; Pepple, Karl, E-mail: pepple.karl@epa.gov; Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov

    2013-07-15

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside themore » facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind

  5. Physical properties of recycled PET non-woven fabrics for buildings

    NASA Astrophysics Data System (ADS)

    Üstün Çetin, S.; Tayyar, A. E.

    2017-10-01

    Recycled fibers have been commonly used in non-woven production technology for engineering applications such as textile engineering and civil engineering. Nonwovens including recycled fibers can be utilized in insulation, roofing and floor separation applications. In this study, physical performance properties such as drape, bending resistance, tensile strength, and breaking elongation values of non-woven fabrics consisting of v-PET (virgin) and r-PET (recycled) fibers in five different blend ratios are examined comparatively. The test results indicated that r-PET can be used in non-wovens for civil engineering applications such as insulation, roofing and floor separation fulfilling the acceptable quality level values.

  6. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    NASA Astrophysics Data System (ADS)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  7. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine.

    PubMed

    Gibb, Herman Jones; Kozlov, Kostj; Buckley, Jessie Poulin; Centeno, Jose; Jurgenson, Vera; Kolker, Allan; Conko, Kathryn; Landa, Edward; Panov, Boris; Panov, Yuri; Xu, Hanna

    2008-08-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 microg/g-Cr (urine), 2.58 microg/L (blood), 3.95 microg/g (hair), and 1.16 microg/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility.

  8. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine

    USGS Publications Warehouse

    Gibb, H.J.; Kozlov, K.; Buckley, J.P.; Centeno, J.; Jurgenson, V.; Kolker, A.; Conko, K.; Landa, E.; Panov, B.; Panov, Y.; Xu, H.

    2008-01-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 ??g/g-Cr (urine), 2.58 ??g/L (blood), 3.95 ??g/g (hair), and 1.16 ??g/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility. Copyright ?? 2008 JOEH, LLC.

  9. Availability analysis of an HTGR fuel recycle facility. Summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharmahd, J.N.

    1979-11-01

    An availability analysis of reprocessing systems in a high-temperature gas-cooled reactor (HTGR) fuel recycle facility was completed. This report summarizes work done to date to define and determine reprocessing system availability for a previously planned HTGR recycle reference facility (HRRF). Schedules and procedures for further work during reprocessing development and for HRRF design and construction are proposed in this report. Probable failure rates, transfer times, and repair times are estimated for major system components. Unscheduled down times are summarized.

  10. Fatal chlorine gas exposure at a metal recycling facility: Case report.

    PubMed

    Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J

    2018-06-01

    At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.

  11. Evaluating the progress of the UK's Material Recycling Facilities: a mini review.

    PubMed

    Ali, Muhammad; Courtenay, Peter

    2014-12-01

    Over the last 15 years, the UK has made great strides in reducing the amount of waste being sent to landfill while also increasing the amount of waste being recycled. The key drivers for this change are the European Union Landfill Directive (1999/31/EC) and the UK Landfill Tax. However, also playing their part are the growing numbers of Material Recycling Facilities (MRFs), which process recyclables. This mini review evaluates the current state of MRFs in the UK, through extensive secondary research, and detailed primary data analysis focussing on MRFs located in South-East England, UK. This study also explores technologies that aim to generate energy from waste, including Waste-to-Energy (WtE) and Refuse-derived Fuel (RDF) facilities. These facilities can have a huge appetite for waste, which can be detrimental to recycling efforts as some of the waste being sent there should be recycled. It was found that the waste sent to a typical UK MRF would recycle around 92% of materials while 6% was sent to energy recovery and the remaining 2% ended up in landfill. Therefore, the total estimated rejected or non-compliance materials from MRFs are around 8%. A key recommendation from this study is to adopt a strategy to combine MRFs with a form of energy generation, such as WtE or RDF. This integrated approach would ensure any residual waste arising from the recycling process can be used as a sustainable fuel, while also increasing the recycling rates. © The Author(s) 2014.

  12. Characterization of wood mulch and leachate/runoff from three wood recycling facilities.

    PubMed

    Kannepalli, Sarat; Strom, Peter F; Krogmann, Uta; Subroy, Vandana; Giménez, Daniel; Miskewitz, Robert

    2016-11-01

    Large-scale open storage of wood mulch is common practice at wood recycling facilities. During rain and snow melt, leachate with soluble compounds and suspended particles is released from mulch stockpiles. The objective of this study was to determine the quality of leachate/runoff from wood recycling facilities to evaluate its potential to contaminate receiving waterbodies. Wood mulch (n = 30) and leachate/runoff (n = 26) samples were collected over 1.5 years from three wood recycling facilities in New Jersey, USA. Differences by site were found (p < 0.05) for most of the 21 constituents tested in the solid wood mulch samples. Biochemical oxygen demand (range <20-3000 mg/L), chemical oxygen demand (134-6000 mg/L) and total suspended solids (69-401 mg/L) median concentrations of the leachate/runoff samples were comparable to those of untreated domestic wastewater. Total Kjeldahl N, total P and fecal coliform median values were slightly lower than typical wastewater values. Dose-response studies with leachate/runoff samples using zebrafish (Danio rerio) embryos showed that mortality and developmental defects typically did not occur even at the highest concentration tested, indicating low toxicity, although delayed development did occur. Based on this study, leachate/runoff from wood recycling facilities should not be released to surface waters as it is a potential source of organic contamination and low levels of nutrients. A study in which runoff from a controlled drainage area containing wood mulch of known properties is monitored would allow for better assessment of the potential impact of stormwater runoff from wood recycling facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less

  14. Stormwater Pollution Prevention Plan - TA-60 Material Recycling Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Leonard Frank

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA- 60 Material Recycling Facility at Los Alamos National Laboratory. Los Alamosmore » National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Material Recycling Facility. The current permit expires at midnight on June 4, 2020.« less

  15. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less

  16. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindell, M.A.; Grape, S.; Haekansson, A.

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakestmore » barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)« less

  17. One-step fabrication of recycled Ag nanoparticles/graphene aerogel with high mechanical property for disinfection and catalytic reduction of 4-nitrophonel.

    PubMed

    Zhang, Yi; Yang, Jia-Cheng E; Fu, Ming-Lai; Yuan, Baoling; Gupta, Kiran

    2018-05-15

    Fabrication of smart composites with expected removal property and excellent recycle performance for micro-pollutants including microbes and organic contaminants without formation of second-pollutants is highly desired. In this work, Ag nanoparticles (Ag NPs) homogenously loaded on graphene aerogel (GA) as Ag NPs/GA was facilely fabricated by a one-step process and the composite was characterized in detail. The bactericidal performance of the composite towards escherichia coli (E. coli) was evaluated and the catalytic activity was probed for the reduction of 4-nitrophenol (4-NP). Results showed that the composite contains about 44.4 wt% of well-dispersed Ag NPs with diameters ranging from 10 to 100 nm. Compared with the bare Ag particles or GA, Ag NPs/GA exhibited an enhanced bactericidal performance for 8-lg of E. coli cells with 100% inactivation rate and catalytic activity for 4-NP with 96.6% degradation rate, respectively. Impressively, the 100% inactivation rates for 8-lg of E. coli remained after 7 recycles and the releasing silver was negligible compared with the loaded Ag NPs. Moreover, the used Ag NPs/GA for the catalytic reduction of 4-NP can be regenerated easily by calcination in inert atmosphere. Hence, Ag NPs/GA can be regarded as a promising and cost-efficient composite for environmental remediation.

  18. Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity

    PubMed Central

    Huang, Sheng-Yun; Zhao, Bo; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-01-01

    Large-area freestanding graphene films are facilely fabricated by reducing graphene oxide films on recyclable Cu foils in H2-containing atmosphere at high temperature. Cu might act as efficient catalysts for considerably improved reduction of graphene oxide according to the SEM, EDS, XRD, XPS, Raman and TGA results. Comparing to the graphene films with ~30 μm thickness reduced without Cu substrate at 900 °C, the thermal conductivity and electrical conductivity of graphene films reduced on Cu foils are enhanced about 140% to 902 Wm−1K−1 and 3.6 × 104 S/m, respectively. Moreover, the graphene films demonstrate superior thermal conductivity of ~1219 Wm−1K−1 as decreasing the thickness of films to ~10 μm. The graphene films also exhibit excellent mechanical properties and flexibility. PMID:26404674

  19. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.

    PubMed

    Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde

    2016-01-20

    Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Take-home lead exposure among children with relatives employed at a battery recycling facility - Puerto Rico, 2011.

    PubMed

    2012-11-30

    The recycling of lead has increased during the past 20 years, with more workers and their families potentially being exposed to lead from recycling facilities, including facilities that recycle lead-acid batteries. During November 2010-May 2011, four voluntary blood lead screening clinics for children of employees of a battery recycling facility in Puerto Rico were conducted. A total of 227 persons from 78 families had blood lead tests. Among 68 children aged <6 years, 11 (16%) had confirmed blood lead levels (BLLs) ≥10 µg/dL, the BLL at which CDC recommended individual intervention to reduce BLLs in 2010, and 39 (57%) children aged <6 years had venous or capillary BLLs ≥5 µg/dL, the reference value for elevated BLLs in children established by CDC in 2012. To determine whether take-home lead exposure contributed to the children's BLLs of ≥10 µg/dL, vehicle and household environmental samples were collected and analyzed. Eighty-five percent of vehicle dust samples and 49% of home dust samples exceeded the U.S. Environmental Protection Agency (EPA) level of concern of ≥40 µg/ft² (430.6 µg/m²) [corrected]. EPA began clean-up of employee homes and vehicles, focusing first on homes with children with BLLs ≥10 µg/dL. EPA also required that the company set up shower facilities, shoe washes, and clean changing areas at the battery recycling facility. Lastly, CDC assigned a case manager to provide education, environmental follow-up, and case management of all children with BLLs ≥5 µg/dL. On average, children's BLLs have decreased 9.9 µg/dL since being enrolled in case management.

  1. Environmental fate of hexabromocyclododecane from a new Canadian electronic recycling facility.

    PubMed

    Tomko, Geoffrey; McDonald, Karen M

    2013-01-15

    An electronics recycling facility began operation at the municipal landfill site for the City of Edmonton, Canada in March 2008 with the goal of processing 30,000 tonnes of electronic wastes per year. Of the many by-products from the process, brominated fire retardants such as hexabromocyclododecane (HBCD) can evolve off of e-wastes and be released into the environmental media. HBCD has been identified by many countries and international bodies as a chemical of concern because of its ability to bioaccumulate in the ecosystem. An evaluation of the potential emission of HBCD indicates that up to 500 kg per year may be released from a landfill and recycling facility such as that operating in Edmonton. A multimedia fugacity model was used to evaluate the dispersion and fate of atmospherically emitted HBCD traveling into surrounding agricultural land and forested parkland. The model indicates that the three isomers of HBCD partitioned into environmental media similarly. Much of the HBCD is lost through atmospheric advection, but it is also found in soil and sediment. Modeled air concentrations are similar to those measured at locations with a history of e-waste recycling. Since HBCD has been shown to bioaccumulate, the HBCD released from this source has the long-term potential to affect agricultural food crops and the park ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn thesemore » actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.« less

  3. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foare, Genevieve; Meze, Florian; Bader, Sven

    2013-07-01

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were dividedmore » into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)« less

  4. Evaluating the Effects of Air Pollution from a Plastic Recycling Facility on the Health of Nearby Residents.

    PubMed

    Xin, Zhao; Tsuda, Toshihide; Doi, Hiroyuki

    2017-06-01

    We evaluated how exposure to airborne volatile organic compounds emitted from a plastic recycling facility affected nearby residents, in a cross-sectional study. Individuals>10 years old were randomly sampled from 50 households at five sites and given questionnaires to complete. We categorized the subjects by distance from the recycling facility and used this as a proxy measure for pollutant exposure. We sought to improve on a preceding study by generating new findings, improving methods for questionnaire distribution and collection, and refining site selection. We calculated the odds of residents living 500 or 900 m away from the facility reporting mucocutaneous and respiratory symptoms using a reference group of residents 2,800 m away. Self-reported nasal congestion (odds ratio=3.0, 95% confidence interval=1.02-8.8), eczema (5.1, 1.1-22.9), and sore throat (3.9, 1.1-14.1) were significantly higher among residents 500 m from the facility. Those 900 m away were also considerably more likely to report experiencing eczema (4.6, 1.4-14.9). Air pollution was found responsible for significantly increased reports of mucocutaneous and respiratory symptoms among nearby residents. Our findings confirm the effects of pollutants emitted from recycling facilities on residents' health and clarify that study design differences did not affect the results.

  5. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistentmore » with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.« less

  6. Recycling steel. Conducting a waste audit.

    PubMed

    Crawford, G

    1996-01-01

    This is the second in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the basic methods of recycling steel cans, and includes information on conducting a waste audit and negotiating with a hauler regarding the benefits of recycling. The previous article discussed how steel is recycled across the country. The next article will convey a case history of actual foodservice recycling practice from a healthcare facility.

  7. A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lu, Na; Shao, Changlu; Li, Xinghua; Miao, Fujun; Wang, Kexin; Liu, Yichun

    2017-01-01

    Semiconductor photocatalysis demonstrates to be an effective approach for eliminating most types of environment contaminants and for producing hydrogen. Herein, a facile synthesis route combining electrospinning technique and thermal treatment method under NH3 atmosphere has been presented as a straightforward protocol for the fabrication of nitrogen-doped In2O3 (N-In2O3) nanofibers, the nitrogen content of which can be well controlled by adjusting the annealing temperature. Photocatalytic tests show that the N-In2O3 nanofibers demonstrate an improved degradation rate of Rhodamine B (RB) compared with pure In2O3 nanofibers under visible-light irradiation. This can be attributed to the nitrogen atom introducing at interstitial sites as well as the generation of oxygen vacancy on the surface of In2O3 nanofibers, resulting in the enhanced utilization of visible light for the N-In2O3 nanofibers. Furthermore, the obtained N-In2O3 nanofibers with the advantage of ultra-long one-dimensional nanostructures can be recycled several times by facile sedimentation and hence present almost no decrease in photocatalytic activity indicative of a well regeneration capability. Therefore, the as-fabricated nitrogen-doped In2O3 nanofibers as a promising photocatalyst present good photocatalytic degradation of organic pollutant in waste water for practical application.

  8. The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling.

    PubMed

    Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki

    2012-08-15

    In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This

  9. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  10. Construction and demolition waste as a source of PVC for recycling.

    PubMed

    Prestes, Sabrina Moretto Darbello; Mancini, Sandro Donnini; Rodolfo, Antonio; Keiroglo, Raquel Carramillo

    2012-02-01

    Construction and demolition waste can contain considerable amounts of polyvinyl chloride (PVC). This paper describes a study of the recycling of PVC pipes collected from such waste materials. In a sorting facility for the specific disposal of construction and demolition waste, PVC was found to represent one-third of the plastics separated by workers. Pipes were sorted carefully to preclude any possible contamination by poly(ethylene terephthalate) (PET) found in the waste. The material was ground into two distinct particle sizes (final mesh of 12.7 and 8 mm), washed, dried and recycled. The average formulation of the pipes was determined based on ash content tests and used in the fabrication of a similar compound made mainly of virgin PVC. Samples of recycled pipes and of compound based on virgin material were subjected to tensile and impact tests and provided very similar results. These results are a good indication of the application potential of the recycled material and of the fact that longer grinding to obtain finer particles is not necessarily beneficial.

  11. Metal Exposures at three U.S. electronic scrap recycling facilities.

    PubMed

    Ceballos, Diana; Beaucham, Catherine; Page, Elena

    2017-06-01

    Many metals found in electronic scrap are known to cause serious health effects, including but not limited to cancer and respiratory, neurologic, renal, and reproductive damage. The National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention performed three health hazard evaluations at electronic scrap recycling facilities in the U.S. to characterize employee exposure to metals and recommend control strategies to reduce these exposures. We performed air, surface, and biological monitoring for metals. We found one overexposure to lead and two overexposures to cadmium. We found metals on non-production surfaces, and the skin and clothing of workers before they left work in all of the facilities. We also found some elevated blood lead levels (above 10 micrograms per deciliter), however no employees at any facility had detectable mercury in their urine or exceeded 34% of the OELs for blood or urine cadmium. This article focuses on sampling results for lead, cadmium, mercury, and indium. We provided recommendations for improving local exhaust ventilation, reducing the recirculation of potentially contaminated air, using respirators until exposures are controlled, and reducing the migration of contaminants from production to non-production areas. We also recommended ways for employees to prevent taking home metal dust by using work uniforms laundered on-site, storing personal and work items in separate lockers, and using washing facilities equipped with lead-removing cleaning products.

  12. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... established recycling program for reuse or use in manufacturing or assembling another item. (b) Marketers... the availability of recycling programs and collection sites to consumers. (1) When recycling..., means at least 60 percent. (2) When recycling facilities are available to less than a substantial...

  13. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... established recycling program for reuse or use in manufacturing or assembling another item. (b) Marketers... the availability of recycling programs and collection sites to consumers. (1) When recycling..., means at least 60 percent. (2) When recycling facilities are available to less than a substantial...

  14. Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel

    NASA Astrophysics Data System (ADS)

    Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung

    2005-02-01

    A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.

  15. Successful Demolition of Historic Cape Canaveral Air Force Station Launch Facilities: Managing the Process to Maximize Recycle Value to Fund Demolition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.; Hambro, L.; Hooper, K.

    2008-07-01

    This paper will present the history of the Atlas 36 and Titan 40 Space Launch Complexes (SLC), the facility assessment process, demolition planning, recycle methodology, and actual facility demolition that resulted in a 40% reduction in baseline cost. These two SLC launched hundreds of payloads into space from Cape Canaveral Air Force Station (AFS), Florida. The Atlas-Centaur family of rockets could lift small- to medium-size satellites designed for communications, weather, or military use, placing them with near pinpoint accuracy into their intended orbits. The larger Titan family was relied upon for heavier lifting needs, including launching military satellites as wellmore » as interplanetary probes. But despite their efficiency and cost-effectiveness, the Titan rockets, as well as earlier generation Atlas models, were retired in 2005. Concerns about potential environmental health hazards from PCBs and lead-based paint chipping off the facilities also contributed to the Air Force's decision in 2005 to dismantle and demolish the Atlas and Titan missile-launching systems. Lockheed Martin secured the complex following the final launch, removed equipment and turned over the site to the Air Force for decommissioning and demolition (D and D). AMEC was retained by the Air Force to perform demolition planning and facility D and D in 2004. AMEC began with a review of historical information, interviews with past operations personnel, and 100% facility assessment of over 100 structures. There where numerous support buildings that due to their age contained asbestos containing material (ACM), PCB-impacted material, and universal material that had to be identified and removed prior to demolition. Environmental testing had revealed that the 36B mobile support tower (MST) exceeded the TSCA standard for polychlorinated biphenyls (PCB) paint (<50 ppm), as did the high bay sections of the Titan Vertical Integration Building (VIB). Thus, while most of the steel structures could

  16. Robust and durable superhydrophobic cotton fabrics for oil/water separation.

    PubMed

    Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo

    2013-08-14

    By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.

  17. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  18. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    PubMed

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. CAD/CAM transtibial prosthetic sockets from central fabrication facilities: How accurate are they?

    PubMed Central

    Sanders, Joan E.; Rogers, Ellen L.; Sorenson, Elizabeth A.; Lee, Gregory S.; Abrahamson, Daniel C.

    2014-01-01

    This research compares transtibial prosthetic sockets made by central fabrication facilities with their corresponding American Academy of Orthotists and Prosthetists (AAOP) electronic shape files and assesses the central fabrication process. We ordered three different socket shapes from each of 10 manufacturers. Then we digitized the sockets using a very accurate custom mechanical digitizer. Results showed that quality varied considerably among the different manufacturers. Four of the companies consistently made sockets within +/−1.1% volume (approximately 1 sock ply) of the AAOP electronic shape file, while six other companies did not. Six of the companies showed consistent undersizing or oversizing in their sockets, which suggests a consistent calibration or manufacturing error. Other companies showed inconsistent sizing or shape distortion, a difficult problem that represents a most challenging limitation for central fabrication facilities. PMID:18247236

  20. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision to regulatory guide (RG) 3.39, ``Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This guide endorses the standard format and content for license applications and integrated safety analysis (ISA) summaries described in the current version of NUREG-1718, ``Standard Review Plan for the Review of an Application for a Mixed Oxide (MOX) Fuel Fabrication Facility,'' as a method that the NRC staff finds acceptable for meeting the regulatory requirements of Title 10 of the Code of Federal Regulations (10 CFR) part 70, ``Domestic Licensing of Special Nuclear Material'' for mixed oxide fuel fabrication facilities.

  1. Solution-Based Fabrication of Polycrystalline Si Thin-Film Transistors from Recycled Polysilanes.

    PubMed

    Sberna, Paolo M; Trifunovic, Miki; Ishihara, Ryoichi

    2017-07-03

    Currently, research has been focusing on printing and laser crystallization of cyclosilanes, bringing to life polycrystalline silicon (poly-Si) thin-film transistors (TFTs) with outstanding properties. However, the synthesis of these Si-based inks is generally complex and expensive. Here, we prove that a polysilane ink, obtained as a byproduct of silicon gases and derivatives, can be used successfully for the synthesis of poly-Si by laser annealing, at room temperature, and for n- and p-channel TFTs. The devices, fabricated according to CMOS compatible processes at 350 °C, showed field effect mobilities up to 8 and 2 cm 2 /(V s) for n- and p-type TFTs, respectively. The presented method combines a low-cost coating technique with the usage of recycled material, opening a route to a convenient and sustainable production of large-area, flexible, and even disposable/single-use electronics.

  2. Financing electronic waste recycling Californian households' willingness to pay advanced recycling fees.

    PubMed

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-09-01

    The growth of electronic waste (e-waste) is of increasing concern because of its toxic content and low recycling rates. The e-waste recycling infrastructure needs to be developed, yet little is known about people's willingness to fund its expansion. This paper examines this issue based on a 2004 mail survey of California households. Using an ordered logit model, we find that age, income, beliefs about government and business roles, proximity to existing recycling facilities, community density, education, and environmental attitudes are significant factors for explaining people's willingness to pay an advanced recycling fee (ARF) for electronics. Most respondents are willing to support a 1% ARF. Our results suggest that policymakers should target middle-aged and older adults, improve programs in communities with existing recycling centers or in rural communities, and consider public-private partnerships for e-waste recycling programs.

  3. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China.

    PubMed

    Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam

    2009-02-01

    Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of

  4. Validation of cleaning method for various parts fabricated at a Beryllium facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Cynthia M.

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic berylliummore » disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.« less

  5. Steel can recycling: how to cut costs and support the environment.

    PubMed

    Crawford, G

    1995-01-01

    This is the first in a series of three articles regarding steel can recycling from foodservice operations of healthcare facilities. This article highlights the benefits of recycling and how steel is recycled across the country; the second will focus on the basic methods of recycling steel cans, and will include information on conducting a waste audit and negotiating with a hauler; the final article will convey a case history of actual foodservice recycling practice from a healthcare facility.

  6. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2018-04-16

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  7. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    PubMed

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion

  8. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  9. A facile and low-cost micro fabrication material: flash foam.

    PubMed

    He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong

    2015-08-28

    Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost.

  10. A facile and low-cost micro fabrication material: flash foam

    PubMed Central

    He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong

    2015-01-01

    Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost. PMID:26314247

  11. In-Space Recycler Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Hoyt, Rob; Werkheiser, NIKI; Kim, Tony

    2016-01-01

    In 2014, a 3D printer was installed and used successfully on the International Space Station (ISS), creating the first additively manufactured part in space. While additive manufacturing is a game changing technology for exploration missions, the process still requires raw feedstock material to fabricate parts. Without a recycling capability, a large supply of feedstock would need to be stored onboard, which negates the logistical benefits of these capabilities. Tethers Unlimited, Inc. (TUI), received a Small Business Innovation Research (SBIR) award to design and build the first In-space Recycler for demonstration aboard the ISS in 2017. To fully test this technology in microgravity, parts will be 3D printed, recycled into reusable filament, and then reprinted into new parts. Recycling scrap into printer filament is quite challenging in that a recycler must be able to handle a large variety of possible scrap configurations and densities. New challenges include: dealing with inevitable contamination of the scrap material, minimizing damage to the molecular structure of the plastic during reprocessing, managing a larger volume of hot liquid plastic, and exercising greater control over the cooling/resolidification of the material. TUI has developed an architecture that addresses these challenges by combining standard, proven technologies with novel, patented processes developed through this effort. Results show that the filament diameter achieved is more consistent than commercial filament, with only minimal degradation of material properties over recycling steps. In May 2016, TUI completed fabrication of a flight prototype, which will ultimately progress to the demonstration unit for the ISS as a testbed for future exploration missions. This capability will provide significant cost savings by reducing the launch mass and volume required for printer feedstock as well as reduce waste that must be stored or disposed.

  12. Polyurethane-acrylate-based hydrophobic film: Facile fabrication, characterization, and application

    NASA Astrophysics Data System (ADS)

    Park, Jongsung; Nguyen, Bui Quoc Huy; Kim, Ji-Kwan; Shanmugasundaram, Arunkumar; Lee, Dong-Weon

    2018-06-01

    Polyurethane-acrylate (PUA) is a versatile UV-curable polymer with a short curing time at room temperature, whose surface structure can be flexibly modified by applying various micropatterns. In this paper, we propose a facile and cost-effective fabrication method for the continuous production of an optically transparent PUA-based superhydrophobic thin film. Poly(dimethylsiloxane) (PDMS) was employed as a soft mold for the fabrication of PUA films through the roll-to-roll technique. In addition, nanosilica was spray-coated onto the PUA surface to further improve the hydrophobicity. The fabricated PUA thin film showed the highest static water contact angle (WCA) of ∼140°. The high durability of the PUA film was also demonstrated through mechanical impacting tests. Furthermore, only ∼2% of voltage loss was observed in the solar panel covered with the PUA-based superhydrophobic film. These obtained results indicate the feasibility of applying the film as a protective layer in applications requiring a high transparency and a self-cleaning effect.

  13. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry

    PubMed Central

    Ceballos, Diana M.; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees. PMID:25738822

  14. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.

    PubMed

    Ceballos, Diana M; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees.

  15. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Kannan, K.; Cheng, J.

    2008-11-15

    Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less

  16. Ship recycling and marine pollution.

    PubMed

    Chang, Yen-Chiang; Wang, Nannan; Durak, Onur Sabri

    2010-09-01

    This paper discusses the historical background, structure and enforcement of the '2009 Hong Kong International Convention on the Safe and Environmentally Sound Recycling of Ships.' the 2009 Hong Kong Convention establishes control and enforcement instruments related to ship recycling, determining the control rights of Port States and the obligations of Flag States, Parties and recycling facilities under its jurisdiction. The Convention also controls the communication and exchange of information procedures, establishes a reporting system to be used upon the completion of recycling, and outlines an auditing system for detecting violations. The Convention, however, also contains some deficiencies. This paper concludes these deficiencies will eventually influence the final acceptance of this Convention by the international community. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Mirzaei, Ali; Kim, Hyoun Woo; Kim, Sang Sub

    2018-05-01

    Stainless steels are among the most common engineering materials and are used extensively in humid areas. Therefore, it is important that these materials must be robust to humidity and corrosion. This paper reports the fabrication of superhydrophobic surfaces from austenitic stainless steel (type AISI 304) using a facile two-step chemical etching method. In the first step, the stainless steel plates were etched in a HF solution, followed by a fluorination process, where they showed a water contact angle (WCA) of 166° and a sliding angle of 5° under the optimal conditions. To further enhance the superhydrophobicity, in the second step, they were dipped in a 0.1 wt.% NaCl solution at 100 °C, where the WCA was increased to 168° and the sliding angle was decreased to ∼2°. The long-term durability of the fabricated superhydrophobic samples for 1 month storage in air and water was investigated. The potential applicability of the fabricated samples was demonstrated by the excellent superhydrophobicity after 1 month. In addition, the self-cleaning properties of the fabricated superhydrophobic surface were also demonstrated. This paper outlines a facile, low-cost and scalable chemical etching method that can be adopted easily for large-scale purposes.

  18. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  19. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  20. Recycled wind turbine blades as a feedstock for second generation composites.

    PubMed

    Mamanpush, Seyed Hossein; Li, Hui; Englund, Karl; Tabatabaei, Azadeh Tavousi

    2018-06-01

    With an increase in renewable wind energy via turbines, an underlying problem of the turbine blade disposal is looming in many areas of the world. These wind turbine blades are predominately a mixture of glass fiber composites (GFCs) and wood and currently have not found an economically viable recycling pathway. This work investigates a series of second generation composites fabricated using recycled wind turbine material and a polyurethane adhesive. The recycled material was first comminuted via a hammer-mill through a range of varying screen sizes, resinated and compressed to a final thickness. The refined particle size, moisture content and resin content were assessed for their influence on the properties of recycled composites. Static bending, internal bond and water sorption properties were obtained for all composites panels. Overall improvement of mechanical properties correlated with increase in resin content, moisture content, and particle size. The current investigation demonstrates that it is feasible and promising to recycle the wind turbine blade to fabricate value-added high-performance composite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Facilely Fabricating Multifunctional N-Enriched Carbon.

    PubMed

    Wan, Mi Mi; Sun, Xiao Dan; Li, Yan Yan; Zhou, Jun; Wang, Ying; Zhu, Jian Hua

    2016-01-20

    A new synthetic strategy, named "carbonization in limited space" and based on the specific interaction between eutectic salt and dual-ionic liquids (dual-ILs), is reported in this article. N-Containing dual-ILs (1,4-diethyl-1,4-diazaniabicyclo[2,2,2]octane imidazolide-4,5-dicyanoiazolide, [2C2DABCO](2+)[Im](-)[CN-Im](-)) were synthesized as new carbon-nitrogen precursors, while eutectic salt was chosen as a reuseable template in order to facilely fabricate the N-doped porous carbon with sheetlike morphology. Nitrogen can be directly and efficiently incorporated into the porous carbon, resulting in the materials with suitable N content, tunable pore structure, and controllable thickness of sheet as well as high surface area. They exhibited good performance as electrodes for supercapacitors, photocatalysts in degradation of methyl orange (MO) under visible light, and the sorbent to capture tobacco-specific N-nitrosamines (TSNAs) in solution, offering a new simplified but effective method to prepare versatile carbon material.

  2. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei

    2018-04-01

    We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.

  3. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    NASA Astrophysics Data System (ADS)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  4. Model institutional infrastructures for recycling of photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; andmore » governments.« less

  5. Recycling Strategy for Fabricating Low-Cost and High-Performance Carbon Nanotube TFT Devices.

    PubMed

    Yu, Xiaoqin; Liu, Dan; Kang, Lixing; Yang, Yi; Zhang, Xiaopin; Lv, Qianjin; Qiu, Song; Jin, Hehua; Song, Qijun; Zhang, Jin; Li, Qingwen

    2017-05-10

    High-purity semiconducting single-walled carbon nanotubes (s-SWNTs) can be obtained by conjugated polymer wrapping. However, further purification of sorted s-SWNTs and high costs of raw materials are still challenges to practical applications. It is inevitable that a lot of polymers still cover the surface of s-SWNTs after separation, and the cost of the polymer is relatively higher than that of SWNTs. Here, we demonstrated a facile isolated process to improve the quality of s-SWNT solutions and films significantly. Compared with the untreated s-SWNTs, the contact resistance between the s-SWNT and the electrode is reduced by 20 times, and the thin-film transistors show 300% enhancement of current density. In this process, most of the polymers can be recycled and reused directly without any purification, which can greatly decrease the cost for s-SWNT separation. The results presented herein demonstrate a new scalable and low-cost approach for large-scale application of s-SWNTs in the electronics industry.

  6. Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice.

    PubMed

    Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian

    2015-10-06

    Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the

  7. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  8. Process Waste Assessment Machine and Fabrication Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-03-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Machine and Fabrication Shop at Sandia National Laboratories, Bonding 913, Room 119. Spent machine coolant is the major hazardous chemical waste generated in this facility. The volume of spent coolant generated is approximately 150 gallons/month. It is sent off-site to a recycler, but a reclaiming system for on-site use is being investigated. The Shop`s line management considers hazardous waste minimization very important. A number of steps have already been taken to minimize wastes, including replacement of a hazardous solvent with biodegradable, non-caustic solution and filtration unit; wastemore » segregation; restriction of beryllium-copper alloy machining; and reduction of lead usage.« less

  9. Development potential of e-waste recycling industry in China.

    PubMed

    Li, Jinhui; Yang, Jie; Liu, Lili

    2015-06-01

    Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173 km to 239 km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013. © The Author(s) 2015.

  10. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    PubMed

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  11. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.

  12. Hazardous substances in indoor dust emitted from waste TV recycling facility.

    PubMed

    Deng, Jingjing; Guo, Jie; Zhou, Xiaoyu; Zhou, Peng; Fu, Xiaoxu; Zhang, Wei; Lin, Kuangfei

    2014-06-01

    Various hazardous substances contained in waste TV sets might be released into environment via dust during recycling activities. Two brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), and five kinds of heavy metals (Cu, Pb, Cd, Cr, and Ni) were detected in indoor dust collected from two workshops (TV dismantling workshop and subsequent recycling workshop). PBDEs concentrations in dust from waste wires recycling line (722,000 ng/g) were the highest among the studied sites, followed by those in manual dismantling-sorting line (117,000 ng/g), whereas TBBPA concentrations were the highest in manual dismantling-sorting line (557 ng/g) and printed circuit board (PCB) recycling line (428 ng/g). For heavy metals, Cu and Pb were the most enriched metals in all dust samples. The highest concentration of Pb (22,900 mg/kg) was found in TV dismantling workshop-floor dust. Meanwhile, Cu was the predominant metal in dust from the PCB recycling line, especially in dust collected from electrostatic separation area (42,700 mg/kg). Occupational exposure assessment results showed that workers were the most exposed to BDE-209 among the four PBDE congeners (BDE-47, BDE-99, BDE-153, and BDE-209) in both workshops. The hazard quotient (HQ) indicated that noncancerous effects were unlikely for both BFRs and heavy metals (HQ < 1), and carcinogenic risks for Cd, Cr, and Ni (risk < 10(-6)) on workers in two workshops were relatively low.

  13. Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California.

    PubMed

    Kang, Hai-Yong; Schoenung, Julie M

    2006-03-01

    The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.

  14. Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Xiao, Gang; Zhao, Yilin; Li, Linghui; Pratt, Jonathan O.; Su, Haijia; Tan, Tianwei

    2018-04-01

    This paper presents a facile, rapid, and controllable procedure for the recovery of trace Ag+ ions and in situ assembly of well dispersed Ag nanoparticles on chitosan-TiO2 composites through bioaffinity adsorption followed by photocatalytic reduction. The prepared Ag nanoparticles are proven to be efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. Well dispersed quasi-spherical Ag NPs are synthesized in 20 min in the designed inner-irradiated photocatalytic system under a wide range of Ag+ concentrations (50-200 mg l-1), temperatures (10 °C-25 °C) conditions, and UV or visible light irradiation. The synthesized Ag NPs can catalyze the reduction of 4-nitrophenol by NaBH4 at 100% conversion in 120 min and preserve the catalytic activity in five successive cycles. This procedure for trace Ag+ ions recovery and Ag NPs assembly has the potential to be scaled up for the mass production of recyclable Ag nanocatalysts. The present work provides a green and efficient procedure for the conversion of hazardous 4-nitrophenol to industrially important 4-aminophenol and also sheds a light on designing scaled-up procedures for treating high volumes of wastewater with dilute heavy metals to produce recyclable metallic nanocatalysts in aqueous systems.

  15. Scrap computer recycling in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Chang, S.L.; Wang, K.M.

    1999-07-01

    It is estimated that approximately 700,000 scrap personal computers will be generated each year in Taiwan. The disposal of such a huge amount of scrap computers presents a difficult task for the island due to the scarcity of landfills and incineration facilities available locally. Also, the hazardous materials contained in the scrap computers may cause serious pollution to the environment, if they are not properly disposed. Thus, EPA of Taiwan has declared scrap personal computers as a producer responsibility recycling product on July 1997 to mandate that the manufacturers, importers and sellers of personal computers have to recover and recyclemore » their scrap computers properly. Beginning on June 1, 1998, a scrap computer recycling plan is officially implemented on the island. Under this plan, consumers can deliver their unwanted personal computers to the designated collection points to receive reward money. Currently, only six items are mandated to be recycled in this recycling plan. They are notebooks, monitor and the hard disk, power supply, printed circuit board and shell of the main frame of the personal computer. This paper presents the current scrap computer recycling system in Taiwan.« less

  16. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    NASA Astrophysics Data System (ADS)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  17. Waste reduction and recycling initiatives in Japanese cities: lessons from Yokohama and Kamakura.

    PubMed

    Hotta, Yasuhiko; Aoki-Suzuki, Chika

    2014-09-01

    Waste reduction and recycling at the city level will acquire greater significance in the near future due to rising global volumes of waste. This paper seeks to identify policy-relevant drivers for successful promotion of waste reduction and recycling. Factors influencing the success of waste reduction and recycling campaigns are identified. Two case study cities in Japan which depict the successful use of the 3Rs (reduce, reuse and recycle) at the municipal level are presented. In these cases, the existence of incinerators, which are generally considered as disincentives for recycling, was not functioning as a disincentive but rather as an incentive for waste reduction. Owing to the high cost of incineration facilities, the movement to close incinerators has become a strong incentive for waste reduction and recycling in these two cities. The study suggests that careful consideration is necessary when making decisions concerning high-cost waste treatment facilities with high installation, maintenance and renewal outlays. In addition, intensive source separation and other municipal recycling initiatives have a high potential for producing positive results. © The Author(s) 2014.

  18. Polychlorinated biphenyls in the surrounding of an e-waste recycling facility in North-Rhine Westphalia: Levels in plants and dusts, spatial distribution, homologue pattern and source identification using the combination of plants and wind direction data.

    PubMed

    Klees, Marcel; Hombrecher, Katja; Gladtke, Dieter

    2017-12-15

    During this study the occurrence of polychlorinated biphenyls (PCBs) in the surrounding of an e-waste recycling facility in North-Rhine Westphalia was analysed. PCB levels were analysed in curly kale, spruce needles, street dusts and dusts. Conspicuously high PCB concentrations in curly kale and spruce needles were found directly northwards of the industrial premises. Furthermore a concentration gradient originating from the industrial premises to the residential areas in direction southwest to northeast was evident. Homologue patterns of highly PCB contaminated dusts and street dusts were comparable to the homologue patterns of PCB in curly kale and spruce needles. This corroborates the suspicion that the activities at the e-waste recycling facility were responsible for the elevated PCB levels in curly kale and spruce needles. The utilization of multiple linear regression of wind direction data and analysed PCB concentrations in spruce needles proved that the e-waste recycling facility caused the PCB emissions to the surrounding. Additionally, this evaluation enabled the calculation of source specific accumulation constants for certain parts of the facility. Consequently the different facility parts contribute with different impacts to the PCB levels in bioindicators. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Taiwan`s experience with municipal waste recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.

    1998-12-31

    Currently, each person on the average produces 1.15 kg of the municipal waste per day and a total of 9 million metric tons were generated annually in Taiwan. The disposal of such a huge amount of waste presents tremendous challenge for the island due to the scarcity of landfills and incineration facilities available locally. EPA of Taiwan, R.O.C. thus takes an active role in promoting waste recycling to reduce the garbage produced in municipalities. In order to efficiently utilize the government`s human and financial resources used in recycling, started from January 31, 1989, EPA has mandated the producer responsibility recyclingmore » program for several designated post-consumer products such as PET, PVC bottles, scrap tires, scrap motor vehicles, etc. Producer responsibility recycling program specifies that the manufacturers, importers and sellers of these designated products have the responsibility to retrieve their products and recycle them properly. Several negative effects have been encountered while the implementation of this producer responsibility recycling program in Taiwan which resulted in a modification of this recycling program recently. This paper presents the encountered experiences on the implementation of municipal waste recycling program in Taiwan.« less

  20. Recycling in a megacity.

    PubMed

    Themelis, Nickolas J; Todd, Claire E

    2004-04-01

    In the aftermath of the 9/11 disaster, Mayor Bloomberg of New York City unveiled an aggressive budget plan that included the temporary suspension of glass and plastics recycling. This was considered by many to be anti-environmental, but the results of this study show that for lack of markets, even at zero or negative prices, nearly 90% of the plastic and glass set aside by thoughtful New Yorkers was transported to materials recovery facilities (MRFs) and from there to landfills. Sending bales of plastics to landfills is not limited to New York City. It is an environmental paradox that the United States is digging up new oil fields in pristine areas and, at the same time, continues to convert greenfields to brownfields by burying nearly 20 million tons of plastic fuel annually. The study also determined that at the present rate of source separation, estimated to be less than 30% of the available recyclables in 1999, building large, modern MRFs may increase substantially the rate of New York City recycling and also allow single-stream collection of commingled recyclables, as is done in Phoenix, AZ. Single-stream collection simplifies separation at the source by citizens and increases the amount of collected recyclables. Also, because collection represents a large fraction of the costs of waste management, it may have a significant economic advantage.

  1. Economic analysis of recycling contaminated concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, A.; Ayers, K.W.; Boren, J.K.

    1997-02-01

    Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.

  2. Utility of Recycled Bedding for Laboratory Rodents

    PubMed Central

    Miyamoto, Toru; Li, Zhixia; Kibushi, Tomomi; Okano, Shinya; Yamasaki, Nakamichi; Kasai, Noriyuki

    2009-01-01

    Animal facilities generate a large amount of used bedding containing excrement as medical waste. We developed a recycling system for used bedding that involves soft hydrothermal processing. In this study, we examined the effects of bedding type on growth, hematologic and serum biochemical values, and organ weights of female and male mice reared on either recycled or fresh bedding from 3 to 33 wk of age. Neither growth nor physiology differed between mice housed on recycled bedding compared with fresh bedding. When 14-wk-old mice were bred, litter size and total number of weaned pups showed no significant differences between animals raised on recycled or fresh bedding. Because bedding type influences the environment within cages and animal rooms, we evaluated particulate and ammonia data from cages and animal rooms. Values were significantly lower from cages and rooms that used recycled bedding than from those using fresh bedding, thus indicating that recycled bedding has the potential to improve the environment within both cages and animal rooms. Overall, this study revealed that recycled bedding is an excellent material for use in housing laboratory rodents. Specifically, recycled bedding may reduce medical waste and maintain healthy environments within cages and animal rooms. PMID:19653951

  3. Mercury recycling in the United States in 2000

    USGS Publications Warehouse

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    Reclamation and recycling of mercury from used mercury- containing products and treatment of byproduct mercury from gold mining is vital to the continued, though declining, use of this metal. Mercury is reclaimed from mercury-containing waste by treatment in multistep high-temperature retorts-the mercury is volatized and then condensed for purification and sale. Some mercury-containing waste, however, may be landfilled, and landfilled material represents loss of a recyclable resource and a threat to the environment. Related issues include mercury disposal and waste management, toxicity and human health, and regulation of mercury releases in the environment. End-users of mercury-containing products may face fines and prosecution if these products are improperly recycled or not recycled. Local and State environmental regulations require adherence to the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act to regulate generation, treatment, and disposal of mercury-containing products. In the United States, several large companies and a number of smaller companies collect these products from a variety of sources and then reclaim and recycle the mercury. Because mercury has not been mined as a principal product in the United States since 1992, mercury reclamation from fabricated products has become the main source of mercury. Principal product mercury and byproduct mercury from mining operations are considered to be primary materials. Mercury may also be obtained as a byproduct from domestic or foreign gold-processing operations. In the early 1990s, U.S. manufacturers used an annual average that ranged from 500 to 600 metric tons of recycled and imported mercury for fabrication of automobile convenience switches, dental amalgam, fluorescent lamps, medical uses and thermometers, and thermostats. The amount now used for fabrication is estimated to be 200 metric tons per year or less. Much of the data on

  4. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  5. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

    NASA Astrophysics Data System (ADS)

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-09-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  6. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing.

    PubMed

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-12-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  7. The formal electronic recycling industry: Challenges and opportunities in occupational and environmental health research.

    PubMed

    Ceballos, Diana Maria; Dong, Zhao

    2016-10-01

    E-waste includes electrical and electronic equipment discarded as waste without intent of reuse. Informal e-waste recycling, typically done in smaller, unorganized businesses, can expose workers and communities to serious chemical health hazards. It is unclear if formalization into larger, better-controlled electronics recycling (e-recycling) facilities solves environmental and occupational health problems. To systematically review the literature on occupational and environmental health hazards of formal e-recycling facilities and discuss challenges and opportunities to strengthen research in this area. We identified 37 publications from 4 electronic databases (PubMed, Web of Science, Environmental Index, NIOSHTIC-2) specific to chemical exposures in formal e-recycling facilities. Environmental and occupational exposures depend on the degree of formalization of the facilities but further reduction is needed. Reported worker exposures to metals were often higher than recommended occupational guidelines. Levels of brominated flame-retardants in worker's inhaled air and biological samples were higher than those from reference groups. Air, dust, and soil concentrations of metals, brominated flame-retardants, dioxins, furans, polycyclic-aromatic hydrocarbons, or polychlorinated biphenyls found inside or near the facilities were generally higher than reference locations, suggesting transport into the environment. Children of a recycler had blood lead levels higher than public health recommended guidelines. With mounting e-waste, more workers, their family members, and communities could experience unhealthful exposures to metals and other chemicals. We identified research needs to further assess exposures, health, and improve controls. The long-term solution is manufacturing of electronics without harmful substances and easy-to-disassemble components. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Human health risk assessment of occupational and residential exposures to dechlorane plus in the manufacturing facility area in China and comparison with e-waste recycling site.

    PubMed

    Wang, De-Gao; Alaee, Mehran; Byer, Jonathan D; Brimble, Samantha; Pacepavicius, Grazina

    2013-02-15

    A screening level human health risk assessment based on the worst-case scenario was conducted on the occupational and residential exposures to dechlorane plus (DP) in the manufacturing facility region and an electronic-waste (e-waste) recycling site in China, which are two of the most polluted areas of DP in the world. Total estimated exposure doses (EEDs) via dietary intake, dermal contact, and inhalation was approximately 0.01 mg kg(-1) d(-1) for people living in the manufacturing facility region. In comparison, total EEDs (approximate 0.03 μg kg(-1), d(-1)) were 300-fold lower in people living near an e-waste recycling site in China. Chronic oral, dermal, and inhalation reference doses (RfDs) were estimated to be 5.0, 2.0, and 0.01 mg kg(-1)d (-1), respectively. The oral RfD was markedly greater than Mirex (2×10(-4) mg kg(-1) d(-1)) and decabromodiphenyl ether (BDE-209; 7×10(-3) mg kg(-1) d(-1)), which have been or might be replaced by DP as a flame retardant with less toxicity. Monte Carlo simulation was used to generate the probability densities and functions for the hazard index which was calculated from the EEDs and RfDs to assess the human health risk. The hazard index was three orders of magnitude lower than 1, suggesting that occupational and residential exposures were relatively safe in the manufacturing facility region and e-waste recycling site. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  10. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  11. Structural fabrication quality as a factor of industrial facilities safety

    NASA Astrophysics Data System (ADS)

    Tishkov, E. V.; Kardaev, E. M.; Stolbova, S. Yu; Shishova, O. S.

    2018-04-01

    In the conditions of industrial facilities high wear degree, it is very important to ensure the possibility of their safe operation in order to avoid various kinds of accidents and catastrophes. As practice shows, industrial plant collapses can occur suddenly under normal operating conditions. Usually, such accidents can take place at different stages of structures life cycle. One of the reasons for this is the initially low quality of reinforced concrete structures fabrication. The article considers the factors contributing to the collapse of reinforced concrete structures of water purification tanks located on the territory of the Omsk Region. The main surveys results on tank structures after collapse with the use of ultrasonic and physical methods of investigation are presented. On the basis of the obtained data analysis, it was found that the main cause of the accidents was the insufficient load-bearing capacity of typical reinforced concrete structures, caused by defects in their fabrication in the factory conditions because of exceeding the standard displacement from the design position of the working reinforcement. Recommendations are given on the identification of defective structures and the prevention of similar accidents when operating similar tanks at manufacturing plants constructed from standard designs.

  12. Compressible and Recyclable Monolithic g-C3N4/Melamine Sponge: A Facile Ultrasonic-coating Approach and Enhanced Visible-light Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Qian; Zhang, Ruiyang; Ran, Tao; Wan, Wenchao; Zhou, Ying

    2018-05-01

    Powdery photocatalysts seriously restrict their practical application due to the difficult recycle and low photocatalytic activity. In this work, a monolithic g-C3N4/melamine sponge (g-C3N4/MS) was successfully fabricated by a cost-effective ultrasonic-coating route, which is easy to achieve the uniform dispersion and firm loading of g-C3N4 on MS skeleton. The monolithic g-C3N4/MS entirely inherits the porous structure of MS and results in a larger specific surface area (SSA) than its powdery counterpart. Benefit from this monolithic structure, g-C3N4/MS gains more exposed active sites, enhanced visible-light absorption and separation of photogenerated carriers, thus achieving noticeable photocatalytic activity on nitric oxide (NO) removal, rhodamine B (RhB) degradation and CO2 reduction. Specifically, NO removal ratio is as high as 78.6% which is 4.5 times higher than that of the powdery g-C3N4, while RhB degradation rate reaches 97.88%, and yield rate of CO and CH4 attains 7.48 and 3.93 μmol g-1 h-1. Importantly, the features of low-density, high porosity, good elasticity and firmness, not only endow g-C3N4/MS with flexibility in various environmental applications, but also make it easy to recycle and stable for long-time application. Our work provides a feasible approach to fabricate novel monolithic photocatalysts with large-scale production and application.

  13. Compressible and Recyclable Monolithic g-C3N4/Melamine Sponge: A Facile Ultrasonic-Coating Approach and Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Yang, Ye; Zhang, Qian; Zhang, Ruiyang; Ran, Tao; Wan, Wenchao; Zhou, Ying

    2018-01-01

    Powdery photocatalysts seriously restrict their practical application due to the difficult recycle and low photocatalytic activity. In this work, a monolithic g-C 3 N 4 /melamine sponge (g-C 3 N 4 /MS) was successfully fabricated by a cost-effective ultrasonic-coating route, which is easy to achieve the uniform dispersion and firm loading of g-C 3 N 4 on MS skeleton. The monolithic g-C 3 N 4 /MS entirely inherits the porous structure of MS and results in a larger specific surface area (SSA) than its powdery counterpart. Benefit from this monolithic structure, g-C 3 N 4 /MS gains more exposed active sites, enhanced visible-light absorption and separation of photogenerated carriers, thus achieving noticeable photocatalytic activity on nitric oxide (NO) removal and CO 2 reduction. Specifically, NO removal ratio is as high as 78.6% which is 4.5 times higher than that of the powdery g-C 3 N 4 , and yield rate of CO and CH 4 attains 7.48 and 3.93 μmol g -1 h -1 . Importantly, the features of low-density, high porosity, good elasticity, and firmness, not only endow g-C 3 N 4 /MS with flexibility in various environmental applications, but also make it easy to recycle and stable for long-time application. Our work provides a feasible approach to fabricate novel monolithic photocatalysts with large-scale production and application.

  14. Compressible and Recyclable Monolithic g-C3N4/Melamine Sponge: A Facile Ultrasonic-Coating Approach and Enhanced Visible-Light Photocatalytic Activity

    PubMed Central

    Yang, Ye; Zhang, Qian; Zhang, Ruiyang; Ran, Tao; Wan, Wenchao; Zhou, Ying

    2018-01-01

    Powdery photocatalysts seriously restrict their practical application due to the difficult recycle and low photocatalytic activity. In this work, a monolithic g-C3N4/melamine sponge (g-C3N4/MS) was successfully fabricated by a cost-effective ultrasonic-coating route, which is easy to achieve the uniform dispersion and firm loading of g-C3N4 on MS skeleton. The monolithic g-C3N4/MS entirely inherits the porous structure of MS and results in a larger specific surface area (SSA) than its powdery counterpart. Benefit from this monolithic structure, g-C3N4/MS gains more exposed active sites, enhanced visible-light absorption and separation of photogenerated carriers, thus achieving noticeable photocatalytic activity on nitric oxide (NO) removal and CO2 reduction. Specifically, NO removal ratio is as high as 78.6% which is 4.5 times higher than that of the powdery g-C3N4, and yield rate of CO and CH4 attains 7.48 and 3.93 μmol g−1 h−1. Importantly, the features of low-density, high porosity, good elasticity, and firmness, not only endow g-C3N4/MS with flexibility in various environmental applications, but also make it easy to recycle and stable for long-time application. Our work provides a feasible approach to fabricate novel monolithic photocatalysts with large-scale production and application.

  15. Flexible 3D Fe@VO2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes.

    PubMed

    Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei

    2018-10-01

    Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Polybrominated dibenzo-p-dioxins/ dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China.

    PubMed

    Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam

    2009-10-01

    The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by

  17. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...

    2017-12-22

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  18. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  19. Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temitope A. Taiwo; Samuel E. Bays; Abdullatif M. Yacout

    2011-03-01

    A study in the United States has evaluated the attributes of the heterogeneous recycle approach for plutonium and minor actinide transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach, where pertinent. The work investigated the characteristics, advantages, and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separation and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources was included in the findings. The intent ofmore » the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time.« less

  20. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation.

    PubMed

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-11-21

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil-water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil-water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO 2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning.

  1. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation

    PubMed Central

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-01-01

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil–water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil–water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning. PMID:27869194

  2. "This is public health: recycling counts!" Description of a pilot health communications campaign.

    PubMed

    L Chase, Nancy; Dominick, Gregory M; Trepal, Amy; Bailey, Leanne S; Friedman, Daniela B

    2009-12-01

    This paper describes the development, implementation, and evaluation of a pilot recycling campaign. The goal of the campaign was to increase people's awareness and knowledge about recycling and the link between a healthy environment and the public's health. A total of 258 individuals attended campaign week events and completed an initial survey. Results identified inconvenience of recycling facility locations as a key barrier to recycling. Post-campaign survey results revealed increased recycling of paper, plastic, glass, and cans (p < 0.05). The majority of participants "agreed" or "strongly agreed" that as a result of campaign messages they had greater awareness about recycling (88.4%) and their recycling efforts increased (61.6%).

  3. Mechanical recycling of continuous fiber-reinforced thermoplastic sheets

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Heiderich, Gilmar

    2016-03-01

    This contribution examines possible material recycling of offcuts generated during the production of continuous-fiber-reinforced composite sheets. These sheets consist of a polyamide 6 matrix and glass fiber fabric. In the initial step, the offcut is shredded to obtain particles; following that, the particles are processed in a twin-screw process to produce fiber-reinforced plastic pellets with varying fiber contents. These pellets are intended for use in injection molding processes as a substitution for new raw materials. This investigation centers on the mechanical properties which can be achieved with the recycled material after both the twin-screw process and injection molding.

  4. Fabrication of a temperature-responsive and recyclable MoS2 nanocatalyst through composting with poly (N-isopropylacrylamide)

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Chen, Pengpeng; Nie, Wangyan; Zhou, Yifeng

    2018-04-01

    A temperature-responsive, recyclable nanocatalyst was fabricated by composting the exfoliated molybdenum disulfide (MoS2) nanosheets with poly (N-isopropylacry lamide) (PNIPAM). The structure and morphology of MoS2/PNIPAM nanocatalyst was fully characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Thermogravimetry analysis (TGA), Scanning electron microscope (SEM) and Transmission electron microscopy (TEM). The temperature-responsive properties of the MoS2/PNIPAM nanocatalyst were confirmed by Dynamic Light Scattering (DLS) and Ultraviolet-visible ((UV-vis)) absorption spectroscopy. The catalytic activities of the MoS2/PNIPAM nanocatalyst were studied using the reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as the model reaction. Results showed that the catalytic activity of the MoS2/PNIPAM nanocatalyst could be regulated by temperature. Furthermore, when the temperature went higher than the low critical solution temperature (LCST) of PNIPAM, the MoS2/PNIPAM nanocatalyst tended to aggregated to form bulk materials from homogeneous suspension.

  5. Recycling in 1995: The lows after the highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCreery, P.

    1996-03-01

    1995 was a mixed year for recyclers. The boom in prices that began in mid-1994 ended in mid-1995; numerous gleaming new mills and plants that fed on recovered paper and plastics opened, but a few outdated facilities closed; Congress agreed on little legislation that would affect recycling operations; and some states failed to meet recycling goals set for the end of the year. In short, 1995 was something of a sobering reality after the heady days of 1994, when market prices boomed, the US Supreme Court declared flow control statutes to be unconstitutional, and states and municipalities reported sizable increasesmore » in the amount of materials being diverted from landfills. How recycling will fare in 1996 is uncertain. Although more mills and plants that consume recovered materials are slated to open, recycling officials are mixed on whether the federal government or any state will pass legislation impacting the industry. Additionally, the ups and downs of the recycling markets in 1995 have left many recyclers and analysts shaking their heads, saying that it is all but impossible to predict the future health of an industry that is experiencing growing pains.« less

  6. Comparison of bacteria populations in clean and recycled sand used for bedding in dairy facilities.

    PubMed

    Kristula, M A; Rogers, W; Hogan, J S; Sabo, M

    2005-12-01

    Bedding samples were collected twice from commercial dairy free-stall facilities that used recycled sand and clean sand in both the summer and winter. Collection began on the day sand was taken from the pile (d 0) and placed in the free stalls, and continued for 5 to 7 additional days. The number of colonies per gram of bedding of gram-negative bacteria, coliforms, Streptococcus spp., and Klebsiella spp. were estimated for each sand sample as well as amounts of dry and organic matter. Clean sand (CS) and recycled sand (RS) had the same bacterial counts when compared at any sampling time. The mean counts of bacterial populations did vary over the course of the study in both CS and RS. There was a significant increase in bacterial counts from d 0 to d 1 for gram-negative bacteria, coliforms, and Streptococcus spp. in both winter and summer. Counts of gram-negative bacteria, coliforms, Klebsiella spp., and Streptococcus spp. did not differ from d 1 to 7 in the winter. Total counts of gram-negative bacteria did not differ from d 1 to 7 in the summer. On d 1 in the summer, coliform counts were lower than at d 5 to 7, and Klebsiella spp. counts were lower than on d 3 to 7. Streptococcus spp. counts were high on d 1 and were constant through d 7 in both winter and summer trials. The number of coliform and Klebsiella spp. in both CS and RS was below the threshold thought to cause mastitis during the sampling times. The number of Streptococcus spp. was high in both CS and RS during the sampling periods. Other management factors need to be identified to decrease the number of Streptococcus spp. in bedding. Recycled sand had a higher organic matter and lower dry matter compared with CS in winter and summer. The results for this study were obtained from multiple herd comparisons, and herd was a significant effect suggesting that different management systems influence the number and types of bacteria in both CS and RS.

  7. TECHNOLOGY EVALUATION REPORT: TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN. Project Summary

    EPA Science Inventory

    A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...

  8. Characterization of DWPF recycle condensate materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Adamson, D. J.; King, W. D.

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF themore » Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.« less

  9. Selenium Recycling in the United States in 2004

    USGS Publications Warehouse

    George, Micheal W.; Wagner, Lorie A.

    2009-01-01

    The vast majority of selenium consumption in the United States is in dissipative uses, such as alloys, animal feeds, fertilizers, glass decolorizer, and pigments. The nondissipative use as a photoreceptor for xerographic copiers is declining. As a result of a lack of a substantial supply of selenium-containing scrap, there are no longer selenium recycling facilities in the United States. Selenium-containing materials collected for recycling, primarily selenium-containing photocopier drums, are exported for processing in other countries. Of the estimated 350 metric tons (t) of selenium products that went to the U.S. market in 2004, an estimated 300 t went to dissipative uses. An estimated 4 t was recovered from old scrap and exported for recycling.

  10. Pilot-based assessment of the economics of recycling construction demolition waste.

    PubMed

    Srour, Issam M; Chehab, Ghassan R; El-Fadel, Mutasem; Tamraz, Sandy

    2013-11-01

    The significant amount of waste generated from construction demolition has become a chronic problem in many developing countries. Using data obtained from demolition contractors and various other sources, this paper proposes a framework for proper handling of construction demolition waste (CDW) to serve as a decision support tool in countries suffering from the lack of national CDW management guidelines. The framework is then demonstrated through a case study in the city of Beirut, Lebanon, and a sensitivity analysis is carried out to examine the economic feasibility of developing a recycling facility. The analysis showed that in order for a facility to be feasible, a gate fee should be charged in the presence of a market for recycled aggregates. The results confirm the significance of instigating and implementing legislation to control illegal dumping, constructing, and managing engineered landfills, and establishing markets for recycled CDW.

  11. Childhood Lead Exposure from Battery Recycling in Vietnam.

    PubMed

    Daniell, William E; Van Tung, Lo; Wallace, Ryan M; Havens, Deborah J; Karr, Catherine J; Bich Diep, Nguyen; Croteau, Gerry A; Beaudet, Nancy J; Duy Bao, Nguyen

    2015-01-01

    Battery recycling facilities in developing countries can cause community lead exposure. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL) measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL) were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results.

  12. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su

    2015-06-01

    Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.

  13. Vanadium recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  14. Properties of concrete blocks prepared with low grade recycled aggregates.

    PubMed

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  15. Evaluation of lead levels in children living near a Los Angeles county battery recycling facility.

    PubMed Central

    Wohl, A R; Dominguez, A; Flessel, P

    1996-01-01

    This cross-sectional study examined the association between environmental lead measurements surrounding a Los Angeles County battery recycling facility and the blood lead levels of the children living nearby. Environmental lead measurements and blood lead levels of young children living in a community adjacent to a stationary lead source were compared to those living in a community without a stationary lead source. Predictors of blood lead level were identified. The blood lead levels of the children living near the secondary lead smelter were within the normal range (< 5 micrograms/dl). The absence of ground cover was associated with slightly increased blood lead levels; however, this increase was not of biological significance. Lead levels in surface soil near the stationary lead source were elevated compared to the control community; however, the soil affected community, which may be due in part to controls recently installed at the stationary lead source. PMID:8919770

  16. Looking North into Lab Metallurgy Testing Area and Enrichment Motor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North into Lab Metallurgy Testing Area and Enrichment Motor within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  17. Multi-functional micromotor: microfluidic fabrication and water treatment application.

    PubMed

    Chen, Anqi; Ge, Xue-Hui; Chen, Jian; Zhang, Liyuan; Xu, Jian-Hong

    2017-12-05

    Micromotors are important for a wide variety of applications. Here, we develop a microfluidic approach for one-step fabrication of a Janus self-propelled micromotor with multiple functions. By fine tuning the fabrication parameters and loading functional nanoparticles, our micromotor reaches a high speed and achieves an oriented function to promote the water purification efficiency and recycling process.

  18. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Ma; Rudolf Addink; Sehun Yun

    2009-10-01

    In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less

  19. Facilities Recycling for Energy Conservation.

    ERIC Educational Resources Information Center

    Fredrickson, John H.

    Conservation of energy is within the control and very much within the responsibility of educators. Schools are among the greatest "wasters" of energy in the nation today. Principals must become more knowledgeable about their buildings than they have been in the past. Indepth inspections of the school facilities will identify the most flagrant…

  20. Looking Northwest at Uranium Dryers Along North Side of Green ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Uranium Dryers Along North Side of Green Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  1. Silk fabric dyed with extract of sophora flower bud.

    PubMed

    Yan, Su; Pan, Shanshan; Ji, Junling

    2018-02-01

    This study analysed the use of sophora flower bud extract for dyeing and the resulting colour character and fastness of dyed silk fabric. The pigment composition on the silk fabric and recycling of this extract were also studied. The results indicated that the dyed silk fabric possessed good washing, rubbing and perspiration fastness, and the pigment composition on the silk fabric was mainly rutin and quercetin. The average recovery rate of the dye was 55.00%. These results demonstrate that the sophora flower bud extract is an effective natural dye.

  2. Fabrication of (U, Zr) C-fueled/tungsten-clad specimens for irradiation in the Plum Brook Reactor Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.

  3. Childhood Lead Exposure from Battery Recycling in Vietnam

    PubMed Central

    Van Tung, Lo; Wallace, Ryan M.; Havens, Deborah J.; Karr, Catherine J.; Bich Diep, Nguyen; Croteau, Gerry A.; Beaudet, Nancy J.; Duy Bao, Nguyen

    2015-01-01

    Background. Battery recycling facilities in developing countries can cause community lead exposure. Objective. To evaluate child lead exposure in a Vietnam battery recycling craft village after efforts to shift home-based recycling outside the village. Methods. This cross-sectional study evaluated 109 children in Dong Mai village, using blood lead level (BLL) measurement, parent interview, and household observation. Blood samples were analyzed with a LeadCare II field instrument; highest BLLs (≥45 μg/dL) were retested by laboratory analysis. Surface and soil lead were measured at 11 households and a school with X-ray fluorescence analyzer. Results. All children had high BLLs; 28% had BLL ≥45 μg/dL. Younger age, family recycling, and outside brick surfaces were associated with higher BLL. Surface and soil lead levels were high at all tested homes, even with no recycling history. Laboratory BLLs were lower than LeadCare BLLs, in 24 retested children. Discussion. In spite of improvements, lead exposure was still substantial and probably associated with continued home-based recycling, legacy contamination, and workplace take-home exposure pathways. There is a need for effective strategies to manage lead exposure from battery recycling in craft villages. These reported BLL values should be interpreted cautiously, although the observed field-laboratory discordance may reflect bias in laboratory results. PMID:26587532

  4. Looking South at south End of Green Room Including Scrubber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking South at south End of Green Room Including Scrubber for Incinerator within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  5. Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southeast at Precipitation System, Steam Dryer and Centrifuge in Red Room within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  6. Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  7. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the... Rockville, Maryland this 16th day of November 2012. E. Roy Hawkens, Chief Administrative Judge, Atomic...

  8. “This Is Public Health: Recycling Counts!” Description of a Pilot Health Communications Campaign

    PubMed Central

    L.Chase, Nancy; Dominick, Gregory M.; Trepal, Amy; Bailey, Leanne S.; Friedman, Daniela B.

    2009-01-01

    This paper describes the development, implementation, and evaluation of a pilot recycling campaign. The goal of the campaign was to increase people’s awareness and knowledge about recycling and the link between a healthy environment and the public’s health. A total of 258 individuals attended campaign week events and completed an initial survey. Results identified inconvenience of recycling facility locations as a key barrier to recycling. Post-campaign survey results revealed increased recycling of paper, plastic, glass, and cans (p < 0.05). The majority of participants “agreed” or “strongly agreed” that as a result of campaign messages they had greater awareness about recycling (88.4%) and their recycling efforts increased (61.6%). PMID:20049239

  9. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances.

    PubMed

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-28

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO(4) photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.

  10. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  11. Recovering valuable metals from recycled photovoltaic modules.

    PubMed

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  12. Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells.

    PubMed

    Liu, Hongxia; Wang, Chaoyang; Gao, Quanxing; Chen, Jianxin; Ren, Biye; Liu, Xinxing; Tong, Zhen

    2009-07-06

    Well-defined magnetic nanocomposite beads with alginate gel cores and shells of iron oxide (gamma-Fe(2)O(3)) nanoparticles were prepared by self-assembly of colloidal particles at liquid-liquid interfaces and subsequent in situ gelation. Fe(2)O(3) nanoparticles could spontaneously adsorb onto the water droplet surfaces to stabilize water-in-hexane emulsions. Water droplets containing sodium alginate were in situ gelled by calcium cations, which were released from calcium-ethylenediamine tetraacetic acid (Ca-EDTA) chelate by decreasing pH value through slow hydrolysis of d-glucono-delta-lactone (GDL). The resulting hybrid beads with a core-shell structure were easily collected by removing hexane. This facile and high efficient fabrication had a 100% yield and could be carried out at room temperature. Insulin microcrystal was encapsulated into the hybrid beads by dispersing them in the aqueous solution of alginate sodium in the fabrication process. The sustained release could be obtained due to the dual barriers of the hydrogel core and the close-packed inorganic shell. The release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The hybrid beads may find applications as delivery vehicles for biomolecules, drugs, cosmetics, food supplements and living cells.

  13. Challenges and Alternatives to Plastics Recycling in the Automotive Sector.

    PubMed

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-08-15

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  14. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    PubMed Central

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-01-01

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products. PMID:28788167

  15. Looking Northeast at Southwest End of Maintenance Shop with Milling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northeast at Southwest End of Maintenance Shop with Milling Machines, Hoist, Electrical Boxes in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  16. Looking East at Motor Control System, Clarity Columns and Blend ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  17. Recent trends in automobile recycling: An energy and economic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curlee, T.R.; Das, S.; Rizy, C.G.

    1994-03-01

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the Unitedmore » States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.« less

  18. Evaluation of a Zirconium Recycle Scrubber System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Bruffey, Stephanie H.

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from amore » synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.« less

  19. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    PubMed

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  20. Take a Ride Along NIF’s Optics Recycle Loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouthillier, Lauren; Folta, Jim; Welday, Brian

    The National Ignition Facility uses over 40,000 optics to help guide 192 laser beams onto a target the size of a pencil eraser. Check out how the optics recycle loop repairs optics, saving time and money.

  1. Gas and water recycling system for IOC vivarium experiments

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Otsubo, K.

    1986-01-01

    Water and gas recycling units designed as one of the common experiment support system for the life science experiment facilities used in the Japanese Experiment Module are discussed. These units will save transportation and operation costs for the life science experiments in the space station. These units are also designed to have interfaces so simple that the connection to another life science experiment facilities such as the Research Animal Holding Facility developed by the Rockheed Missiles and Space Company can be easily done with small modification.

  2. Microstructure and Mechanical Properties of Recycled Aggregate Concrete in Seawater Environment

    PubMed Central

    Yue, Pengjun; Tan, Zhuoying; Guo, Zhiying

    2013-01-01

    This study aims to conduct research about the microstructure and basic properties of recycled aggregate concrete under seawater corrosion. Concrete specimens were fabricated and tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. The basic properties of recycled aggregate concrete (RAC) including the compressive strength, the elastic modulus, and chloride penetration depth were explicitly investigated. And the microstructure of recycled concrete aggregate (RCA) was revealed to find the seawater corrosion by using scanning electron microscope (SEM). The results showed that higher amount of the RCA means more porosity and less strength, which could lower both the compressive strength and resistance to chloride penetration. This research could be a guide in theoretical and numerical analysis for the design of RAC structures. PMID:24453830

  3. Recycling Buildings for Libraries: A Moving Account.

    ERIC Educational Resources Information Center

    Shields, Gerald R.

    1994-01-01

    Described a project that moved a retired Carnegie library four blocks and back into service as an annex to the Mexico-Audrain Library System (Missouri). Insights are provided into the practicality of recycling buildings as public library facilities and the effects that such efforts can have on community pride and involvement. (SLW)

  4. Elevated concentrations of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and polybrominated diphenyl ethers in hair from workers at an electronic waste recycling facility in eastern China.

    PubMed

    Ma, Jing; Cheng, Jinping; Wang, Wenhua; Kunisue, Tatsuya; Wu, Minghong; Kannan, Kurunthachalam

    2011-02-28

    Hair samples collected from e-waste recycling workers (n=23 males, n=4 females) were analyzed to assess occupational exposures to polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) at a large e-waste recycling facility in Taizhou, eastern China. Hair samples from a reference population composed of residents of Shanghai (n=11) were analyzed for comparison. The mean concentration of ∑PBDEs (range, 22.8-1020 ng/g dw; mean, 157 ng/g dw) found in hair samples from e-waste recycling workers was approximately 3 times higher than the mean determined for the reference samples. The congener profiles of PBDEs in hair from e-waste recycling workers were dominated by BDE 209, whereas the profiles in the reference-population samples showed comparable levels of BDE 47 and BDE 209. Total PCDD/F concentrations in hair from e-waste workers (range, 126-5820 pg/g dw; mean, 1670 pg/g dw) were approximately 18-fold greater than the concentrations measured in hair from the reference population. Concentrations of PCDFs were greater than concentrations of PCDDs, in all of the hair samples analyzed (samples from e-waste and non-e-waste sites). Tetrachlorodibenzofurans (TCDFs) were the major homologues in hair samples. Overall, e-waste recycling workers had elevated concentrations of both PBDEs and PCDD/Fs, indicating that they are exposed to high levels of multiple persistent organic pollutants. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Marshall Space Flight Center solid waste characterization and recycling improvement study: General office and laboratory waste, scrap metal, office and flight surplus

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The primary objectives of the study were to characterize the solid waste stream for MSFC facilities in Huntsville, Alabama, and to evaluate their present recycling program. The purpose of the study was to determine if improvements could be made in terms of increasing quantities of the present commodities collected, adding more recyclables to the program, and streamlining or improving operational efficiency. In conducting the study, various elements were implemented. These included sampling and sorting representative samples of the waste stream; visually inspecting each refuse bin, recycle bin, and roll-off; interviewing employees and recycling coordinators of other companies; touring local material recycling facilities; contacting experts in the field; and performing a literature search.

  6. Motivation recycling: pre-recycling case study in Minsk, Belarus.

    PubMed

    Miafodzyeva, Sviatlana; Brandt, Nils; Olsson, Monika

    2010-04-01

    Given the aim of motivating householders to behave in a recycling-friendly manner, there is a need to understand consumers' recycling behaviour. This paper documents and analyses acceptability and awareness of a pre-recycling society, through a survey carried out in the region of Minsk, Belarus. The results show a large number of people have no strong awareness about separate collection of household waste for recycling. By analysing the pre-recycling behaviour of Minsk citizens and substantive comparison with literature studies of a more mature recycling society such as Sweden, we indicate common sociodemographic variables for both cases and determine that these sociodemographic characteristics will directly influence recycling behaviour in countries like Belarus. It is also noted that the lack of recycling habit cannot directly predict subsequent recycling behaviour on the stage of implementation the recycling system.

  7. STUDY ON THE RECYCLING SYSTEM OF WASTE PLASTICS AND MIXED PAPER FROM A LONG-TERM PERSPECTIVE

    NASA Astrophysics Data System (ADS)

    Fujii, Minoru; Fujita, Tsuyoshi; Chen, Xudong; Ohnishi, Satoshi; Osako, Masahiro; Moriguchi, Yuichi; Yamaguchi, Naohisa

    Plastics and mixed paper in municipal solid waste are valuable resources with high calorific value. However, the recycling cost to utilize them tends to be expensive. In addition, recycling system has to be consistent with the reduce of wastes on which should be put higher-priority to lower carbon emission and save resources in the long term. In this paper, we proposed a recycling system (smart recycling system) which consists of a local center an d existing facilities in arterial industries. In the local center, collected waste plastics and mixed paper from household are processed on the same line into a form suitable for transportation and handling in a facility of arterial in dustry which can utilize those wastes effectively. At the same time, a part of plastics with high quality is processed into a recycled resin in the center. It was suggested that, by utilizing existing facilities in arterial industries which have enough and flexible capacity to accept those wastes, the system can be a robust system even if the amount of wastes generation fluctuates widely. The effect of CO2 reduction and cost by installing the system were calculated and it was estimated that 3.5 million ton of additional annual CO2 reduction could be brought in Tokyo and surrounding three prefectures without co nsiderable increase in cost.

  8. Opportunities for the Multi Recycling of Used MOX Fuel in the US - 12122

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, P.; Bailly, F.; Bouvier, E.

    Over the last 50 years the US has accumulated an inventory of used nuclear fuel (UNF) in the region of 64,000 metric tons in 2010, and adds an additional 2,200 metric tons each year from the current fleet of 104 Light Water Reactors. This paper considers a fuel cycle option that would be available for a future pilot U.S. recycling plant that could take advantage of the unique opportunities offered by the age and size of the large U.S. UNF inventory. For the purpose of this scenario, recycling of UNF must use the available reactor infrastructure, currently LWR's, and themore » main product of recycling is considered to be plutonium (Pu), recycled into MOX fuel for use in these reactors. Use of MOX fuels must provide the service (burn-up) expected by the reactor operator, with the required level of safety. To do so, the fissile material concentration (Pu-239, Pu-241) in the MOX must be high enough to maintain criticality, while, in current recycle facilities, the Pu-238 content has to be kept low enough to prevent excessive heat load, neutron emission, and neutron capture during recycle operations. In most countries, used MOX fuel (MOX UNF) is typically stored after one irradiation in an LWR, pending the development of the GEN IV reactors, since it is considered difficult to directly reuse the recycled MOX fuel in LWRs due to the degraded Pu fissile isotopic composition. In the US, it is possible to blend MOX UNF with LEUOx UNF from the large inventory, using the oldest UNF first. Blending at the ratio of about one MOX UNF assembly with 15 LEUOx UNF assemblies, would achieve a fissile plutonium concentration sufficient for reirradiation in new MOX fuel. The Pu-238 yield in the new fuel will be sufficiently low to meet current fuel fabrication standards. Therefore, it should be possible in the context of the US, for discharged MOX fuel to be recycled back into LWR's, using only technologies already industrially deployed worldwide. Building on that possibility, two

  9. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  10. Recycling.

    ERIC Educational Resources Information Center

    Sinker, Barbara

    1986-01-01

    Discusses the range of benefits resulting from recycling efforts and projects. Presents information and data related to the recycling of metals, cans, paper, fans, and plastics. Suggestions for motivating and involving youth in recycling programs are also offered. (ML)

  11. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility.

    PubMed

    Kumar, Anil; Saini, Harvinder Singh; Kumar, Sudhir

    2018-02-01

    Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC 50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.

  12. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Gao, Guang; Zhang, Xin

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (Ru xNi 1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophasemore » before pyrolysis and silica removal. The resulting Ru xNi 1–x–OMC materials are in-depth characterized with X-ray diffraction, N 2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru 0.9Ni 0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h –1) was obtained, and the Ru 0.9Ni 0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.« less

  13. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated

  14. Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yeh, Yaowen; Liu, Rui; You, Jinmao; Qu, Fengli

    2015-07-01

    A simple and green method for the controllable synthesis of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ˜240 nm were coated with a polydopamine shell layer with a tunable thickness of 15-45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for potential applications.

  15. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    NASA Astrophysics Data System (ADS)

    Knight, Chase C.

    of the polymer matrix. To date, very few studies have been reported in this area and the studies thus far have only focused on small scale feasibility and have only shown the recovery of random fibers. The goal of this research is to advance the knowledge in the field of sub-critical and supercritical fluid recycling by providing fundamental information that will be necessary to move this process forward to an industrial scale. This dissertation work consists of several phases of studies. In the first phase of this research, the feasibility of recycling woven CFRP was established on a scale approximately 30 times larger than previously reported. The industrial relevance was also conveyed, as the process was shown to remove up 99% of a highly cross-linked resin from an aerospace grade composite system with 100% retention of the single filament tensile strength and modulus whilst also retaining the highly valuable woven fiber structure. The second phase of research demonstrated the power of this technology to recycle multi-layer composites and provide the ability to reuse the highly valuable materials. Up to 99% resin elimination was achieved for a woven 12-layer aerospace grade composite. The recycled woven fabric layers, with excellent retention of the fiber architecture, were directly reused to fabricate reclaimed fiber composites (RFC). Manufacturing issues associated with the use of the recycled fiber were investigated. Several fabrication technologies were used to fabricate the composite, and the composites show moderate short beam shear strength and may be suitable for certain industrial applications. Moreover, fresh composites were also recycled, recovered, and reused to investigate the retention of flexural properties of the fibers after recycling. Up to 95% of the flexural strength and 98% of the flexural modulus was retained in the reclaimed fiber composites. The recycled resin residual can be incorporated into fresh resin and cured, demonstrating a near

  16. Energy Return on Investment - Fuel Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, W; Simon, A J; Fratoni, M

    2012-06-06

    This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community,more » and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.« less

  17. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less

  18. Recycling

    NASA Astrophysics Data System (ADS)

    Goto, Junya; Santorelli, Michael

    Recycling systems are classified into those employing typically three methods, and the progress of each method is described. In mechanical recycling, powders of phenolic materials are recovered via a mechanical process and reused as fillers or additives in virgin materials. The effects to flowability, curability, and mechanical properties of the materials are explained. In feedstock recycling, monomers, oligomers, or oils are recovered via chemical processes and reused as feedstock. Pyrolysis, solvolysis or hydrolysis, and supercritical or subcritical fluid technology will also be introduced. When using a subcritical fluid of phenol, the recycled material maintains excellent properties similar to the virgin material, and a demonstration plant has been constructed to carry out mass production development. In energy recovery, wastes of phenolic materials are used as an alternative solid fuel to coal because they are combustible and have good calorific value. Industrial wastes of these have been in practical use in a cement plant. Finally, it is suggested that the best recycling method should be selected according to the purpose or situation, because every recycling method has both strengths and weaknesses. Therefore, quantitative and objective evaluation methods in recycling are desirable and should be established.

  19. Preliminary result on the enhancement of Ufer electrodes using recycle additives materials

    NASA Astrophysics Data System (ADS)

    Zulkifli, Muhammad Haziq Aniq Bin; Ahmad, Hussein Bin

    2016-11-01

    Ground building pillars is to be used as ground rod. The pillars are design, fabricated, and formulated with new ground fillers. The additives will be used from recycle waste materials mainly from the palm oil plant process. Micro scale building pillars will be fabricated and install in the test ground at all of the location. Earth tester meter are used to measure and collect the data of the soil resistivity when the research is conducted. In collecting these data, 3-terminal methods are used to carry the measurements. This experiment will be conducted for 30 weeks and regular measurements at the test ground copper grids will be conducted to measure the ground electrode resistance. The study will mainly base on IEC 62503-3. The used of reinforcing rods and mixture of recycle additives could produce a better grounding system that are suitable and can be used in all kind of soil condition and large industries.

  20. Facile Fabrication of Hierarchically Thermoresponsive Binary Polymer Pattern for Controlled Cell Adhesion.

    PubMed

    Hou, Jianwen; Cui, Lele; Chen, Runhai; Xu, Xiaodong; Chen, Jiayue; Yin, Ligang; Liu, Jingchuan; Shi, Qiang; Yin, Jinghua

    2018-03-01

    A versatile platform allowing capture and detection of normal and dysfunctional cells on the same patterned surface is important for accessing the cellular mechanism, developing diagnostic assays, and implementing therapy. Here, an original and effective method for fabricating binary polymer brushes pattern is developed for controlled cell adhesion. The binary polymer brushes pattern, composed of poly(N-isopropylacrylamide) (PNIPAAm) and poly[poly(ethylene glycol) methyl ether methacrylate] (POEGMA) chains, is simply obtained via a combination of surface-initiated photopolymerization and surface-activated free radical polymerization. This method is unique in that it does not utilize any protecting groups or procedures of backfilling with immobilized initiator. It is demonstrated that the precise and well-defined binary polymer patterns with high resolution are fabricated using this facile method. PNIPAAm chains capture and release cells by thermoresponsiveness, while POEGMA chains possess high capability to capture dysfunctional cells specifically, inducing a switch of normal red blood cells (RBCs) arrays to hemolytic RBCs arrays on the pattern with temperature. This novel platform composed of binary polymer brush pattern is smart and versatile, which opens up pathways to potential applications as microsensors, biochips, and bioassays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effective recycling of manganese oxide cathodes for lithium based batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    A facile cathode recycling process is demonstrated where the previously used binder-free self-supporting cathodes (BFSSC) are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life.

  2. Facile fabrication of networked patterns and their superior application to realize the virus immobilized networked pattern circuit.

    PubMed

    Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku

    2010-12-07

    A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.

  3. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of

  4. Energy Systems Fabrication Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    Fabrication The fuel cell fabrication hub includes laboratory spaces with local exhaust and chemical fume hoods that support electrolysis and other chemical process research. Key Infrastructure Perchloric acid washdown hood, local exhaust, specialty gas manifolding, deionized water, chemical fume hoods, glassware

  5. Cost-assessment Analysis of Local Vehicle Scrapping Facility

    NASA Astrophysics Data System (ADS)

    Grabowski, Lukasz; Gliniak, Maciej; Polek, Daria; Gruca, Maria

    2017-12-01

    The purpose of the paper was to analyse the costs of recycling vehicles at local vehicle scrapping facility. The article contains regulations concerning vehicle decommissioning, describes the types of recovery, vehicles recycling networks, analyses the structure of a disassembly station, as well as the financial and institutional system in charge of dealing with the recycling of vehicles in Poland. The authors present the number of scrapped vehicles at local recycling company and the level of achieved recovery and recycling. The research presented in the article shows financial situation of the vehicle scrapping industry. In addition, it has been observed that the number of subsidies are directly proportional to the number of scrapped vehicles, and achieved levels of recycling and recovery depends on the percentage of incomplete vehicles.

  6. Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.; ...

    2018-01-25

    The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less

  7. Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.

    The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less

  8. Recycling microcavity optical biosensors.

    PubMed

    Hunt, Heather K; Armani, Andrea M

    2011-04-01

    Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.

  9. DWPF Recycle Evaporator Simulant Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming,more » scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite

  10. Comparison of recycling outcomes in three types of recycling collection units.

    PubMed

    Andrews, Ashley; Gregoire, Mary; Rasmussen, Heather; Witowich, Gretchen

    2013-03-01

    Commercial institutions have many factors to consider when implementing an effective recycling program. This study examined the effectiveness of three different types of recycling bins on recycling accuracy by determining the percent weight of recyclable material placed in the recycling bins, comparing the percent weight of recyclable material by type of container used, and examining whether a change in signage increased recycling accuracy. Data were collected over 6 weeks totaling 30 days from 3 different recycling bin types at a Midwest University medical center. Five bin locations for each bin type were used. Bags from these bins were collected, sorted into recyclable and non-recyclable material, and weighed. The percent recyclable material was calculated using these weights. Common contaminates found in the bins were napkins and paper towels, plastic food wrapping, plastic bags, and coffee cups. The results showed a significant difference in percent recyclable material between bin types and bin locations. Bin type 2 was found to have one bin location to be statistically different (p=0.048), which may have been due to lack of a trash bin next to the recycling bin in that location. Bin type 3 had significantly lower percent recyclable material (p<0.001), which may have been due to lack of a trash bin next to the recycling bin and increased contamination due to the combination of commingled and paper into one bag. There was no significant change in percent recyclable material in recycling bins post signage change. These results suggest a signage change may not be an effective way, when used alone, to increase recycling compliance and accuracy. This study showed two or three-compartment bins located next to a trash bin may be the best bin type for recycling accuracy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. An evaluation of concrete recycling and reuse practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhjiri, K.S.; MacKinney, J.

    1997-02-01

    Nuclear facilities operated by the Department of Energy (DOE), Department of Defense (DOD), and NRC licensees contain many concrete structures that are contaminated with radioactivity. Dismantling these structures will result in significant quantities of waste materials, both contaminated and uncontaminated. Bartlett estimates the total volume of waste from demolition of concrete structures to be on the order of 4 million cubic meters, but that only 20,000 cubic meters would be contaminated with radioactivity. Other studies suggest that as much as 5% of the concrete in these facilities would be contaminated with radioactivity. While the actual quantity of contaminated material shouldmore » be fixed with greater precision, the fact that so much uncontaminated concrete exists (over 95% of the total 4 million cubic meters) suggests that a program that recycles concrete could produce substantial savings for both government agencies (DOE, DOD) and private companies (NRC licensees). This paper presents a fundamental discussion of (1) various methods of processing concrete, (2) demolition methods, especially those compatible with recycling efforts, and (3) state-of-the-art concrete dismantlement techniques.« less

  12. Occupational exposure in the fluorescent lamp recycling sector in France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, François, E-mail: francois.zimmermann@inrs.fr; Lecler, Marie-Thérèse; Clerc, Frédéric

    Highlights: • Chemical risks were assessed in the five fluorescent lamp recycling facilities. • The main hazardous agents are mercury vapors and dust containing lead and yttrium. • Exposure and pollutant levels were correlated with steps and processes. • All the stages and processes are concerned by worrying levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities bymore » field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m{sup 3}, 15.4 μg/m{sup 3}, 14.0 μg/m{sup 3}, 247.6 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1 mg/m{sup 3}, 9.0 μg/m{sup 3}, 9.0 μg/m{sup 3}, 219.2 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees’ skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures.« less

  13. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  14. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  15. Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.

    PubMed

    Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui

    2014-09-10

    Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.

  16. Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption

    NASA Astrophysics Data System (ADS)

    Zhao, Donglin; Zhu, Hongyu; Wu, Changnian; Feng, Shaojie; Alsaedi, Ahmed; Hayat, Tasawar; Chen, Changlun

    2018-06-01

    A novel magnetic Fe3O4/graphene composite (FGC) was fabricated by a facile one-step reaction route and shown to be effective for sorbing U(VI) from aqueous solution. The structure, properties and application of the prepared FGC composite were well evaluated. The high saturation magnetization (45.6 emu/g) made FGC easier to be separated from the media within several seconds under an external magnetic. Effects of different ambient conditions (i.e., pH and ionic strength, contact time, temperatures) on sorption behaviors of U(VI) on FGC were carried out by batch experiments. According to the calculation of Langmuir model, the maximum sorption capacity of U(VI) on the FGC at pH 5.5 and 298 K was 176.47 mg/g. The sorption was correlated with the effects of pH, contact time, and temperature. X-ray photoelectron spectroscopy analysis revealed that U(VI) was sorbed on FGC via oxygen-containing functional groups. This work demonstrated that FGC could be recycled and used as an effective recyclable sorbent for sorption of U(VI).

  17. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    PubMed

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  18. Recycling Lesson Plan

    ERIC Educational Resources Information Center

    Okaz, Abeer Ali

    2013-01-01

    This lesson plan designed for grade 2 students has the goal of teaching students about the environmental practice of recycling. Children will learn language words related to recycling such as: "we can recycle"/"we can't recycle" and how to avoid littering with such words as: "recycle paper" and/or "don't throw…

  19. Investigation of Childhood Lead Poisoning from Parental Take-Home Exposure from an Electronic Scrap Recycling Facility — Ohio, 2012.

    PubMed

    Newman, Nick; Jones, Camille; Page, Elena; Ceballos, Diana; Oza, Aalok

    2015-07-17

    Lead affects the developing nervous system of children, and no safe blood lead level (BLL) in children has been identified. Elevated BLLs in childhood are associated with hyperactivity, attention problems, conduct problems, and impairment in cognition. Young children are at higher risk for environmental lead exposure from putting their hands or contaminated objects in their mouth. Although deteriorating lead paint in pre-1979 housing is the most common source of lead exposure in children, data indicate that ≥30% of children with elevated BLLs were exposed through a source other than paint. Take-home contamination occurs when lead dust is transferred from the workplace on employees' skin, clothing, shoes, and other personal items to their car and home. Recycling of used electronics (e-scrap) is a relatively recent source of exposure to developmental neurotoxicants, including lead. In 2010, the Cincinnati Health Department and Cincinnati Children's Hospital Pediatric Environmental Health Specialty Unit (PEHSU) investigated two cases of childhood lead poisoning in a single family. In 2012, CDC's National Institute for Occupational Safety and Health (NIOSH) learned about the lead poisonings during an evaluation of the e-scrap recycling facility where the father of the two children with lead poisoning worked. This report summarizes the case investigation. Pediatricians should ask about parents' occupations and hobbies that might involve lead when evaluating elevated BLLs in children, in routine lead screening questionnaires, and in evaluating children with signs or symptoms of lead exposure.

  20. Facile approach to the fabrication of a micropattern possessing nanoscale substructure.

    PubMed

    Ji, Qiang; Jiang, Xuesong; Yin, Jie

    2007-12-04

    On the basis of the combined technologies of photolithography and reaction-induced phase separation (RIPS), a facile approach has been successfully developed for the fabrication of a micropattern possessing nanoscale substructure on the thin film surface. This approach involves three steps. In the first step, a thin film was prepared by spin coating from a solution of a commercial random copolymer, polystyrene-r-poly(methyl methacrylate) (PS-r-PMMA) and a commercial crosslinker, trimethylolpropane triacrylate (TMPTA). In the second step, photolithograph was performed with the thin film using a 250 W high-pressure mercury lamp to produce the micropattern. Finally, the resulting micropattern was annealed at 200 degrees C for a certain time, and reaction-induced phase separation occurred. After soaking in chloroform for 4 h, nanoscale substructure was obtained. The whole processes were traced by atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and Fourier transform infrared (FTIR) spectroscopy, and the results supported the proposed structure.

  1. The quality study of recycled glass phosphor waste for LED

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  2. PRESENT CONDITION OF FOOD WASTE RECYCLING LOOP BASED ON RECYCLING PROJECT CERTIFICATION OF THE FOOD WASTE RECYCLING LAW

    NASA Astrophysics Data System (ADS)

    Kita, Tomoko; Kanaya, Ken

    Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.

  3. Recyclable thermosetting thermal pad using silicone-based polyurethane crosslinked by Diels-Alder adduct

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woong; Lee, Da Hee; Jeon, Hee-Jeong; Jang, Sung Il; Cho, Hyun Min; Kim, Youngmin

    2018-01-01

    The recyclable silicone-based thermoset was successfully synthesized by making use of a Diels-Alder (DA) adduct as a cross-linker. The incorporation of the furan-tethered diol 1 into the polymer backbones realized the crosslinking of polymers via the DA reaction. The thermosetting polymer was dissolved in DMF after the retro DA reaction which was monitored by 1H NMR spectroscopy. Due to the retro DA reaction, polymer showed the mendable behavior when it was scratched followed by being heated. This polymer was mixed with alumina powders to fabricate the thermal pad. The thermal resistance of this pad was measured to be 0.48 K/W by a thermal transient test. The thermosetting composite was recycled via the retro DA reaction. The thermal resistance of the recycled one was similar to that of the original one.

  4. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, G.M.

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged inmore » inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the

  5. Impact of minor actinide recycling on sustainable fuel cycle options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    improve the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.« less

  6. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling.

    PubMed

    Taurino, Rosa; Pozzi, Paolo; Zanasi, Tania

    2010-12-01

    In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes. This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Recycling pool provides innovative financing for an integrated system.

    PubMed

    Ciolek, R J; Fahy, P A

    1997-12-01

    Not-for-profit integrated delivery systems require innovative financing mechanisms to compete effectively with expanding for-profit systems. The Massachusetts Health and Educational Facilities Authority (Mass HEFA), in collaboration with Partners HealthCare Systems, Inc., Boston, Massachusetts, developed such a mechanism--a capital asset recycling pool funded through a $150 million bond issue. The recycling pool gives Partners flexible access to tax-exempt capital to fund routine capital expenses across the system and has enabled the system to centralize control of capital resources. Over the pool's 30-year life-span, Partners will be able to issue tax-exempt loans from the pool to any of its affiliates or, with Mass HEFA and insurer approval, transfer the funds to outside organizations. When the loans are repaid, the funds remain available and can be recycled at no additional cost to fund further capital projects. Creation of the pool was made possible by Partners' outstanding credit, strong market position, expanding primary care network, and substantial unrestricted net assets.

  8. 30 CFR 285.702 - What must I include in my Fabrication and Installation Report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Reports § 285.702 What must I include in my Fabrication and... fabricated and installed in accordance with the design criteria identified in the Facility Design Report...

  9. Recycling Lesson Plans.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting…

  10. Developing improved opportunities for the recycle and reuse of materials in road, bridge and construction projects : [summary].

    DOT National Transportation Integrated Search

    2014-01-01

    Reducing waste and reusing materials is now : a part of the everyday fabric of life. Recycling : glass, paper, and plastic is an activity in many : households and businesses. Similarly, the : transportation sector generates huge quantities : of concr...

  11. Vapor-liquid interfacial reaction to fabricate superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabric for oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Liang, Tao; Lai, Xuejun; Su, Xiaojing; Zhang, Lin; Zeng, Xingrong

    2018-01-01

    With oil spill accidents and oil industrial wastewater increasing, oil/water separation has attracted much attention in recent years. Herein, we report the fabrication of superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabrics for oil/water separation via vapor-liquid interfacial reaction. It is based on sol-gel reaction of tetraethyl orthosilicate (TEOS) to generate silica and thiol-ene reaction between poly(ethylene glycol) dimethacrylate (PEGDMA) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) to form crosslinked hydrophilic polymer on polyester fabric under the catalysis of butylamine/ammonia vapor. The chemical structure of the surfaces on thiol-ene/silica hybrid decorated fabric was confirmed by FTIR and XPS, and obvious micro-nano morphology and roughness were observed with SEM and AFM. The water contact angle of the fabric attained 0° in 0.36 s, and the underwater oil contact angle reached up to 160°. Importantly, the fabric exhibited high separation efficiency at 99.5%, fast water flux above 71600 Lm-2h-1 and excellent recyclability in oil/water separation. Our findings open a new strategy to fabricate organic-inorganic hybrid superhydrophobic and underwater superoleophobic materials for oil/water separation.

  12. Recycling of typical supercapacitor materials.

    PubMed

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2. © The Author(s) 2016.

  13. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  14. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  15. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  16. 77 FR 74006 - Polychlorinated Biphenyls (PCBs); Recycling Plastics From Shredder Residue

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... show photographic identification, pass through a metal detector, and sign the EPA visitor log. All visitor bags are processed through an X-ray machine and subject to search. Visitors will be provided an... from metals recycling facilities (referred to by ISRI as automobile shredder residue (ASR) aggregate...

  17. Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.

    PubMed

    Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-04-26

    Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pK a (∼3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ∼33 °C) provide the composite membranes with great thermoresponsive characteristics. The microstructures, permeability performances, and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.

  18. Hazardous organic chemicals in rubber recycled tire playgrounds and pavers.

    PubMed

    Llompart, Maria; Sanchez-Prado, Lucia; Pablo Lamas, J; Garcia-Jares, Carmen; Roca, Enrique; Dagnac, Thierry

    2013-01-01

    In this study, the presence of hazardous organic chemicals in surfaces containing recycled rubber tires is investigated. Direct material analyses using solvent extraction, as well as SPME analysis of the vapour phase above the sample, were carried out. Twenty-one rubber mulch samples were collected from nine different playgrounds. In addition, seven commercial samples of recycled rubber pavers were acquired in a local store of a multinational company. All samples were extracted by ultrasound energy, followed by analysis of the extract by GC-MS. The analysis confirmed the presence of a large number of hazardous substances including PAHs, phthalates, antioxidants (e.g. BHT, phenols), benzothiazole and derivatives, among other chemicals. The study evidences the high content of toxic chemicals in these recycled materials. The concentration of PAHs in the commercial pavers was extremely high, reaching values up to 1%. In addition, SPME studies of the vapour phase above the samples confirm the volatilisation of many of those organic compounds. Uses of recycled rubber tires, especially those targeting play areas and other facilities for children, should be a matter of regulatory concern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effective recycling of manganese oxide cathodes for lithium based batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less

  20. Effective recycling of manganese oxide cathodes for lithium based batteries

    DOE PAGES

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...

    2016-02-29

    Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less

  1. Reduce--recycle--reuse: guidelines for promoting perioperative waste management.

    PubMed

    Laustsen, Gary

    2007-04-01

    The perioperative environment generates large amounts of waste, which negatively affects local and global ecosystems. To manage this waste health care facility leaders must focus on identifying correctable issues, work with relevant stakeholders to promote solutions, and adopt systematic procedural changes. Nurses and managers can moderate negative environmental effects by promoting reduction, recycling, and reuse of materials in the perioperative setting.

  2. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    NASA Astrophysics Data System (ADS)

    Hendrickson, Thomas P.; Kavvada, Olga; Shah, Nihar; Sathre, Roger; Scown, Corinne D.

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23-45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6-56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location.

  3. Facile fabrication of bowl-shaped microparticles for oral curcumin delivery to ulcerative colitis tissue.

    PubMed

    Chen, Qiubing; Gou, Shuangquan; Huang, Yamei; Zhou, Xin; Li, Qian; Han, Moon Kwon; Kang, Yuejun; Xiao, Bo

    2018-05-05

    Oral microparticles (MPs) have been considered as promising drug carriers in the treatment of ulcerative colitis (UC). Here, a facile strategy based on a conventional emulsion-solvent evaporation technique was used to fabricate bowl-shaped MPs (BMPs), and these MPs loaded with anti-inflammatory drug (curcumin, CUR) during the fabrication process. The physicochemical properties of the resultant BMPs were characterized by dynamic light scattering, scanning electron microscope, confocal laser scanning microscope and X-ray diffraction as well as contact angle goniometer. Results indicated that BMPs had a desirable hydrodynamic diameter (1.84 ± 0.20 μm), a negative zeta potential (-26.5 ± 1.13 mV), smooth surface morphology, high CUR encapsulation efficiency and controlled drug release profile. It was found that CUR molecules were dispersed in an amorphous state within the polymeric matrixes. In addition, BMPs showed excellent hydrophilicity due to the presence of Pluronic F127 and poly(vinyl alcohol) on their surface. More importantly, orally administered BMPs could efficiently alleviate UC based on a dextran sulfate sodium-induced mouse model. These results collectively suggest that BMP can be exploited as a readily scalable oral drug delivery system for UC therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract.

    PubMed

    Zhou, Yuyang; Tang, Ren-Cheng

    2018-01-01

    Recently, there is a growing trend towards the functionalization of silk through nanotechnology for the prevention of fiber damage from microbial attack and the enhancement of hygienic aspects. Considering sustainable development and environmental protection, the eco-friendly fabrication of silver nanoparticles (AgNPs)-modified silk using natural extracts has currently become a hot research area. This study presents a facile strategy for the fabrication of colorful and multifunctional silk fabric using biogenic AgNPs prepared by honeysuckle extract as natural reductant and stabilizing agents. The influences of pH and reactant concentrations on the AgNPs synthesis were investigated. The color characteristics and functionalities of AgNPs treated silk were evaluated. The results revealed that the particle size of AgNPs decreased with increasing pH. The diameter of AgNPs decreased with increasing amount of honeysuckle extract and reducing amount of silver nitrate. The transmission electron microscopy image showed that the AgNPs were spherical in shape with a narrow size distribution. The treated silk showed excellent antibacterial activities against E. coli and S. aureus, and certain antioxidant activity. Both of the antibacterial and antioxidant activities were well maintained even after 30 washing cycles. This work provides a sustainable and eco-friendly approach to the fabrication of AgNPs coated silk for colorful and long-term multifunctional textiles using honeysuckle extract. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fires at storage sites of organic materials, waste fuels and recyclables.

    PubMed

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  6. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    NASA Astrophysics Data System (ADS)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  7. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst.

    PubMed

    Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira

    2015-11-20

    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Exposure to hazardous substances in Cathode Ray Tube (CRT) recycling sites in France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecler, Marie-Thérèse, E-mail: marie-therese.lecler@inrs.fr; Zimmermann, François; Silvente, Eric

    Highlights: • Chemical risks were assessed in the nine cathode ray tube screens recycling facilities. • The main hazardous agents are dust containing lead, cadmium, barium and yttrium. • Exposure and pollutant levels are described for different operations and processes. • All the operations and processes are concerned by significant levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The Waste Electrical and Electronic Equipment (WEEE) or e-waste recycling sector has grown considerably in the last fifteen years due to the ever shorter life cycles of consumables and an increasingly restrictive policy context. Cathode Ray Tubesmore » (CRTs) from used television and computer screens represent one of the main sources of e-waste. CRTs contain toxic materials such as lead, cadmium, barium, and fluorescent powders which can be released if recycling of CRTs is not appropriate. Exposure to these harmful substances was assessed in nine workshops where CRT screens are treated. Particulate exposure levels were measured using a gravimetric method and metals were analysed by plasma emission spectrometry. The maximum levels of worker exposure were 8.8 mg/m{sup 3}, 1504.3 μg/m{sup 3}, 434.9 μg/m{sup 3}, 576.3 μg/m{sup 3} and 2894.3 μg/m{sup 3} respectively for inhalable dust, barium, cadmium, lead and yttrium. The maximum levels of airborne pollutants in static samples were 39.0 mg/m{sup 3}, 848.2 μg/m{sup 3}, 698.4 μg/m{sup 3}, 549.3 μg/m{sup 3} and 3437.9 μg/m{sup 3} for inhalable dust, barium, cadmium, lead and yttrium. The most harmful operations were identified, and preventive measures for reducing the chemical risk associated with screen recycling were proposed. Workplace measurements were used to define recommendations for reducing the chemical risks in CRT screens recycling facilities and for promoting the design and development of “clean and safe” processes in emerging recycling channels.« less

  9. Environmental risk related to specific processes during scrap computer recycling and disposal.

    PubMed

    Li, Jinhui; Shi, Pixing; Shan, Hongshan; Xie, Yijun

    2012-12-01

    The purpose of this work was to achieve a better understanding of the generation of toxic chemicals related to specific processes in scrap computer recycling and disposal, such as thermal recycling of printed circuit boards (PCBs) and the landfilling or dumping of cathode ray tubes (CRTs). Tube furnace pyrolysis was carried out to simulate different thermal treatment conditions for the identification of the by-products and potential environmental risk from thermal recycling ofPCBs. The Toxicity Characteristic Leaching Procedure (TCLP) and a column test were used to study the leaching characteristics of lead from waste CRT glass, which is one of the most important environmental concerns arising from the disposal of e-waste. The results indicate that more attention should be paid to the benzene series when recycling PCBs under thermal conditions, especially for workers without any personal protection equipment. The impact of immersion on the leaching of lead from CRT leaded glass was more effective than the impact of washing only by acid rain. Thus when waste leaded glass has to be stored for some reason, the storage facility should be dry.

  10. Improving the layout of recycling centres by use of lean production principles.

    PubMed

    Sundin, Erik; Björkman, Mats; Eklund, Mats; Eklund, Jörgen; Engkvist, Inga-Lill

    2011-06-01

    There has been increased focus on recycling in Sweden during recent years. This focus can be attributed to external environmental factors such as tougher legislation, but also to the potential gains for raw materials suppliers. Recycling centres are important components in the Swedish total recycling system. Recycling centres are manned facilities for waste collection where visitors can bring, sort and discard worn products as well as large-sized, hazardous, and electrical waste. The aim of this paper was to identify and describe the main flows and layout types at Swedish recycling centres. The aim was also to adapt and apply production theory for designing and managing recycling centre operations. More specifically, this means using lean production principles to help develop guidelines for recycling centre design and efficient control. Empirical data for this research was primarily collected through interviews and questionnaires among both visitors and employees at 16 Swedish recycling centres. Furthermore, adapted observation protocols have been used in order to explore visitor activities. There was also close collaboration with a local recycling centre company, which shared their layout experiences with the researchers in this project. The recycling centres studied had a variety of problems such as queues of visitors, overloading of material and improper sorting. The study shows that in order to decrease the problems, the recycling centres should be designed and managed according to lean production principles, i.e. through choosing more suitable layout choices with visible and linear flows, providing better visitor information, and providing suitable technical equipment. Improvements can be achieved through proper planning of the layout and control of the flow of vehicles, with the result of increased efficiency and capacity, shorter visits, and cleaner waste fractions. The benefits of a lean production mindset include increased visitor capacity, waste

  11. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures andmore » are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The

  12. Rethink, Rework, Recycle.

    ERIC Educational Resources Information Center

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  13. Contamination issues in a continuous ethanol production corn wet milling facility

    USDA-ARS?s Scientific Manuscript database

    Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...

  14. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  15. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    PubMed

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  16. Recycling of nonmetallics

    USGS Publications Warehouse

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  17. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    DTIC Science & Technology

    2015-01-01

    measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors...control number. 1. REPORT DATE 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Facile Fabrication of 3D...Claussen, S. Jedlicka, J.L. Rickus, D.M. Porterfield, J. Neurosci. Methods 189 (2010) 14–22. [17] E.S. McLamore, J. Shi, D. Jaroch, J.C. Claussen, A

  18. Associations between polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress in people living near e-waste recycling facilities in China.

    PubMed

    Lu, Shao-You; Li, Yan-Xi; Zhang, Jian-Qing; Zhang, Tao; Liu, Gui-Hua; Huang, Ming-Zhi; Li, Xiao; Ruan, Ju-Jun; Kannan, Kurunthachalam; Qiu, Rong-Liang

    2016-09-01

    Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4μg/g Cre) were significantly higher (p<0.05) than those found in both rural (11.7μg/g Cre) and urban (10.9μg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6μg/g Cre) showed significantly higher (p<0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2μg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4μg/g Cre) and non-smokers (24.7μg/g Cre) were not significant (p>0.05) in e-waste dismantling sites, while these differences were significant (p<0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r=0.284, p<0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Soluble Graphene Nanosheets from Recycled Graphite of Spent Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Liangliang; Liu, Xiya; Wan, Chuanyun; Ye, Xiangrong; Wu, Fanhong

    2018-02-01

    Soluble graphene nanosheets are fabricated from recycled graphite of spent lithium ion batteries through a modified Hammers process followed by deoxygenation with NaOH-KOH eutectic. Ultrasonic exfoliation in N-methyl-pyrrolidone indicates the loosened graphene layers in recycled graphite are prone to exfoliation. Reduction of the exfoliated graphene oxide sheets was conducted in molten NaOH-KOH eutectic at different temperatures. The results show that molten NaOH-KOH effectively eliminates the unsaturated oxygen-containing moieties from the exfoliated graphene oxide sheets while creating more hydroxyl functional groups. Higher temperature treatment is more prone to remove hydroxyls while producing the shrinkage on the surface of graphene sheets. Graphene sheet with a good solubility is produced when the graphene oxide is heat-treated at 220 °C for 10 h. After reduction, the graphene oxide sheets exhibit excellent dispersibility or solubility in water, ethanol and other polar solvents, therefore being highly desirable for solution processing of graphene materials. Such study not only identifies a high-quality stockpile to prepare soluble graphene but also paves a feasible alternative of graphite recycling from spent lithium batteries.

  20. PROPOSED PROCESS FOR MANAGEMENT OF TEXTILE WASTE FROM REDESIGNED SECONDHAND CLOTHING PRODUCTION IN HAITI: NO-WASTE, RECYCLING AND REPURPOSING

    EPA Science Inventory

    Outputs of this project include a “redesign matrix” created by apparel design faculty members and graduate students and a “biodegradable/recyclable fabric matrix” created by both fiber science and apparel design students and faculty – both with...

  1. Green Science: Revisiting Recycling

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  2. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Li, Yubing; He, Jingjing; Wang, Bing; Wang, Kunjie; Feng, Huixia

    2017-12-01

    Herein, we report an ultra-facile fabrication method for a phosphorus doped egg-like hierarchic porous carbon by microwave irradiation combining with self-activation strategy under air atmosphere. Comparing with the traditional pyrolytic carbonization method, the reported method exhibits incomparable merits, such as high energy efficiency, ultra-fast and inert atmosphere protection absent fabrication process. Similar morphology and graphitization degree with the sample fabricated by the traditional pyrolytic carbonization method under inert atmosphere protection for 2 h can be easily achieved by the reported microwave irradiation method just for 3 min under ambient atmosphere. The samples fabricated by the reported method display a unique phosphorus doped egg-like hierarchic porous structure, high specific surface area (1642 m2 g-1) and large pore volume (2.04 cm3 g-1). Specific capacitance of the samples fabricated by the reported method reaches up to 209 F g-1, and over 96.2% of initial capacitance remains as current density increasing from 0.5 to 20 A g-1, indicating the superior capacitance performance of the fabricated samples. The hierarchic porous structure, opened microporosity, additional pseudocapacitance, high electrolyte-accessible surface area and good conductivity make essential contribution to its superior capacitance performance.

  3. Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in 3D printing

    NASA Astrophysics Data System (ADS)

    Zhao, Xing Guan; Hwang, Kyung-Jun; Lee, Dongoh; Kim, Taemin; Kim, Namsu

    2018-05-01

    Dopamine readily adsorbs onto almost all kinds of surfaces and develops cohesive strength through self-polymerization; hence, aqueous solutions of dopamine can be used as adhesives. These properties were used to prevent the degradation in the mechanical properties of recycled PLA fabricated by 3D printer. The mechanical properties of 3D printed PLA play a critical role in determining its applications. To reduce the manufacturing cost as well as environmental pollutants, recycling of 3D printed materials has attracted many attentions. However, recycling of polymeric materials causes the degradation of the mechanical properties. Our study is aimed at advancing the current knowledge on the adhesion behavior of polydopamine coatings on PLA pellets used in 3D printing process. Polydopamine was synthesized by oxidative polymerization and used to coat PLA specimens. The adhesion behavior and mechanical properties of the 3D printed specimens were evaluated by tensile tests. It was found that the mechanical properties of recycled specimen with polydopamine coating have been improved. Microstructural and chemical characterization of the coated specimens was carried out using FE-SEM, FTIR, and XPS analyses.

  4. Characterization of Airborne Particles in an Electronic Waste Recycling Facility and Their Toxicity Assessment

    EPA Science Inventory

    Improper disposal of electronic waste (e-waste) can lead to release of toxic chemicals into the environment and also may pose health risks. Thus, recycling e-waste, instead of landfilling, is considered to be an effective way to reduce pollutant release and exposure. However, lit...

  5. Looking West From rear (East) End of Office Building Including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking West From rear (East) End of Office Building Including Recycle Storage Area, Loading Docks, and Decontamination Zone - Hematite Fuel Fabrication Facility, Office, 3300 State Road P, Festus, Jefferson County, MO

  6. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  7. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells

    PubMed Central

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M.; Rodriguez-Boulan, Enrique J.

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  8. HEAVY METALS IN RECOVERED FINES FOR CONSTRUCTION AND DEMOLITION DEBRIS RECYCLING FACILITIES IN FLORIDA

    EPA Science Inventory

    A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil....

  9. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  10. Novel β-C3N4/CuO nanoflakes: facile synthesis and unique photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zou, Lan-Rong; Huang, Gui-Fang; Li, Dong-Feng; Tian, Qing-Nan; Yang, Ke; Si, Yuan; Chang, Shengli; Zhang, Xue-Ao; Huang, Wei-Qing

    2017-09-01

    For the first time, novel β-C3N4/CuO composites with superior photocatalytic activity are successfully fabricated via a facile reflux method followed by a thermal process. The morphologies, particle size and microstructure of the synthesized β-C3N4/CuO composites largely depended upon copper chloride and the volume ratio of V water:V ethanol in the mixed precursors. The fabricated β-C3N4/CuO nanoflakes exhibited obviously enhanced visible light photocatalytic activity for the degradation of methylene blue (MB) with an  ˜3.4 and 1.9 fold increase in efficiency over that of pure g-C3N4 and commercial P25, respectively. The β-C3N4/CuO composite photocatalyst also showed photocatalytic activity for the degradation of methyl orange (MO). Moreover, the β-C3N4/CuO nanoflakes showed almost no loss of photocatalytic activity after three recycles of the degradation of the MB. A multiple synergetic mechanism in β-C3N4/CuO nanoflakes, which is featured by the highly reactive {0 0 2} facets, exposed many active sites of nanoflakes and the efficient charge separation are proposed to account for the distinguished photocatalytic activity. This work provides a facile and cost-effective strategy for designing novel β-C3N4/CuO photocatalysts for application in environmental purification.

  11. Looking Southwest at Southwest End of Erbia Building Showing Typical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Southwest End of Erbia Building Showing Typical Wall and Roof Juncture Including a Recycling Furnace - Hematite Fuel Fabrication Facility, Erbia Plant, 3300 State Road P, Festus, Jefferson County, MO

  12. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    NASA Astrophysics Data System (ADS)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-01

    In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  13. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  14. Facile fabrication of corrosion-resistant superhydrophobic and superoleophilic surfaces with MnWO(4):Dy(3+) microbouquets.

    PubMed

    Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng

    2014-04-21

    Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165° and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions.

  15. Soil contamination from lead battery manufacturing and recycling in seven African countries.

    PubMed

    Gottesfeld, Perry; Were, Faridah Hussein; Adogame, Leslie; Gharbi, Semia; San, Dalila; Nota, Manti Michael; Kuepouo, Gilbert

    2018-02-01

    Lead battery recycling is a growing hazardous industry throughout Africa. We investigated potential soil contamination inside and outside formal sector recycling plants in seven countries. We collected 118 soil samples at 15 recycling plants and one battery manufacturing site and analyzed them for total lead. Lead levels in soils ranged from < 40-140,000mg/kg. Overall mean lead concentrations were ~23,200mg/kg but, average lead levels were 22-fold greater for soil samples from inside plant sites than from those collected outside these facilities. Arithmetic mean lead concentrations in soil samples from communities surrounding these plants were ~2600mg/kg. As the lead battery industry in Africa continues to expand, it is expected that the number and size of lead battery recycling plants will grow to meet the forecasted demand. There is an immediate need to address ongoing exposures in surrounding communities, emissions from this industry and to regulate site closure financing procedures to ensure that we do not leave behind a legacy of lead contamination that will impact millions in communities throughout Africa. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development of a new quality fair access best value performance indicator (BVPI) for recycling services.

    PubMed

    Harder, M K; Stantzos, N; Woodard, R; Read, A

    2008-01-01

    Recycling schemes are being used worldwide to reduce the impact of municipal waste. Those using public funds are usually obliged to set performance indicators by which the standards of such schemes can be measured. In the UK, a set of statutory Best Value Performance Indicators (BVPI) must be reported annually, such as the Quality of Fair Access, which monitors the public's access to recycling facilities within 1000 m (known as BVPI 91). This work shows that BVPI 91, and performance indicators like it, quantify only very basic recycling services. A much more sensitive performance indicator is developed in this paper, labelled as the Maximum Practicable Recycling Rate Provision (MPRRP) achievable by a local authority. It indicates the percentage of local waste that could be reasonably recycled using the services provided, calculated on the basis of the average composition of the local waste, the local population coverage for collection of any materials, and nationally provided information stating how much of each material stream is generally suitable (practical) for recycling. Evidence for the usefulness of this new quantity is presented. Although this paper refers a particular performance indicator in the UK, its findings are applicable to all urban areas worldwide needing to monitor recycling service. Furthermore, the MPRRP could be used for planning purposes, and for determining the level of performance of an existing service, by comparing its predicted recycling rate to that actually obtained. Further work is now being carried out on this.

  17. Quantitative Analysis of Endocytic Recycling of Membrane Proteins by Monoclonal Antibody-Based Recycling Assays.

    PubMed

    Blagojević Zagorac, Gordana; Mahmutefendić, Hana; Maćešić, Senka; Karleuša, Ljerka; Lučin, Pero

    2017-03-01

    In this report, we present an analysis of several recycling protocols based on labeling of membrane proteins with specific monoclonal antibodies (mAbs). We analyzed recycling of membrane proteins that are internalized by clathrin-dependent endocytosis, represented by the transferrin receptor, and by clathrin-independent endocytosis, represented by the Major Histocompatibility Class I molecules. Cell surface membrane proteins were labeled with mAbs and recycling of mAb:protein complexes was determined by several approaches. Our study demonstrates that direct and indirect detection of recycled mAb:protein complexes at the cell surface underestimate the recycling pool, especially for clathrin-dependent membrane proteins that are rapidly reinternalized after recycling. Recycling protocols based on the capture of recycled mAb:protein complexes require the use of the Alexa Fluor 488 conjugated secondary antibodies or FITC-conjugated secondary antibodies in combination with inhibitors of endosomal acidification and degradation. Finally, protocols based on the capture of recycled proteins that are labeled with Alexa Fluor 488 conjugated primary antibodies and quenching of fluorescence by the anti-Alexa Fluor 488 displayed the same quantitative assessment of recycling as the antibody-capture protocols. J. Cell. Physiol. 232: 463-476, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Mechanical recycling of waste electric and electronic equipment: a review.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low

  19. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    PubMed

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  20. Recycle Alaska: Reduce, Reuse, Recycle. Activities Handbook, Teacher's Guide, and Student Worksheets.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Recycling is a very important aspect of conserving the environment for future generations. This guide addresses the topic of litter prevention for the Alaskan environment and contains 42 activities. Activity topics covered include Natural Cycles, Human Interruption of Natural Cycles, Reduce, Reuse, Recycle and Recycled Classroom. Grade level,…

  1. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  2. Wood Pallets and Landfills - Status and Opportunities for Economic Recovery and Recycling

    Treesearch

    Philip A. Araman; Robert J. Bush; A.L. Hammett; E. Brad Hager

    1998-01-01

    Wood pallet recovery, repair, and recycling are sound environmental activities that can reduce both forest resource demands and waste in landfills. Our studies found that 6.16 million tons of wood pallets (or 223.6 million pallets) entered municipal solid waste (MSW) and construction and demolition (C&D) landfill facilities in 1995. At the same time, wood pallet...

  3. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems;more » water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.« less

  4. Ultrasmooth Quantum Dot Micropatterns by a Facile Controllable Liquid-Transfer Approach: Low-Cost Fabrication of High-Performance QLED.

    PubMed

    Zhang, Min; Hu, Binbin; Meng, Lili; Bian, Ruixin; Wang, Siyuan; Wang, Yunjun; Liu, Huan; Jiang, Lei

    2018-06-26

    Fabrication of a high quality quantum dot (QD) film is essentially important for a high-performance QD light emitting diode display (QLED) device. It is normally a high-cost and multiple-step solution-transfer process where large amounts of QDs were needed but with only limited usefulness. Thus, developing a simple, efficient, and low-cost approach to fabricate high-quality micropatterned QD film is urgently needed. Here, we proposed that the Chinese brush enables the controllable transfer of a QD solution directly onto a homogeneous and ultrasmooth micropatterned film in one step. It is proposed that the dynamic balance of QDs was enabled during the entire solution transfer process under the cooperative effect of Marangoni flow aroused by the asymmetric solvent evaporation and the Laplace pressure different by conical fibers. By this approach, QD nanoparticles were homogeneously transferred onto the desired area on the substrate. The as-prepared QLED devices show rather high performances with the current efficiencies of 72.38, 26.03, and 4.26 cd/A and external quantum efficiencies of 17.40, 18.96, and 6.20% for the green, red, and blue QLED devices, respectively. We envision that the result offers a low-cost, facile, and practically applicable solution-processing approach that works even in air for fabricating high-performance QLED devices.

  5. America Recycles Day

    NASA Image and Video Library

    2017-11-17

    In the parking lot of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a member of Goodwill Industries loads used household material for recycling. During the two-day event, employees dropped off items as part of America Recycles Day. The center partnered with Goodwill Industries and several other local organizations to collect items for reprocessing. The annual event is a program of Keep America Beautiful, dedicated to promoting and celebrating recycling.

  6. Rab15 Effector Protein: A Novel Protein for Receptor Recycling from the Endocytic Recycling CompartmentD⃞

    PubMed Central

    Strick, David J.; Elferink, Lisa A.

    2005-01-01

    Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351

  7. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE PAGES

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  8. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  9. Highly Efficient and Facile Photocatalytic Recycling System Suitable for ICAR ATRP of Hydrophilic Monomers.

    PubMed

    Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2016-08-01

    Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (ATRP) of hydrophilic monomers in heptane/ethanol latent-biphasic system for copper catalyst separation and recycling have been realized for the first time at room temperature with different wavelengths of visible light LED (green, blue, purple, and white LED) as external stimulus, using 2-bromophenylacetate as the ATRP initiator and camphorquinone/triethylamine as the photoinitiator. In this system, hybrid catalyst complex (HCc) is synthesized as a novel nonpolar catalyst, which is preferentially dissolved in heptane. The hydrophilic polymers obtained catalyzed by HCc in heptane/ethanol mixture solvent show typical "living" features, for example, the values of Mn,GPC increase linearly with monomer conversion up to quantitative level (>96%) and the molecular weight distributions were kept narrow (Mw /Mn < 1.20) throughout the polymerization process. It should be noted that the excellent controllability of this novel polymerization system can be achieved even after 5 catalyst recycling experiments under LED irradiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dip TIPS as a Facile and Versatile Method for Fabrication of Polymer Foams with Controlled Shape, Size and Pore Architecture for Bioengineering Applications

    PubMed Central

    Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M.; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František

    2014-01-01

    The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the “Dip TIPS” as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields. PMID:25275373

  11. Dip TIPS as a facile and versatile method for fabrication of polymer foams with controlled shape, size and pore architecture for bioengineering applications.

    PubMed

    Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František

    2014-01-01

    The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.

  12. Certified Electronics Recyclers

    EPA Pesticide Factsheets

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  13. Nonproliferation Uncertainties, a Major Barrier to Used Nuclear Fuel Recycle in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D; Ehinger, Michael H

    2011-01-01

    A study and comparison of the goals and understandings of nonproliferation authorities with those of used nuclear fuel (UNF) recycle advocates have uncovered (1) some of the basic reasons for the creation of uncertainties by each of the parties, (2) why these uncertainties have become a major barrier to a decision to recycle UNF components in the United States, and (3) what steps can be taken to clarify these uncertainties. Recent papers and viewpoints expressed by nonproliferation authorities and technical consultants were reviewed, summarized, and compared with results of recent fuel cycle systems analyses made at Oak Ridge National Laboratory.more » 1 Similarities and differences were identified, including both technical and policy factors. Nonproliferation authorities and a few UNF recycle advocates have recognized that the reprocessing technologies used for UNF component recycle do not offer significant nonproliferation differences; thus, the methods used can be chosen on some other basis, such as process efficiency, maturity, and/or economics. This paper reviews the safeguards implications beyond the simple assessment of UNF recycle technology selection. Differences in understanding that led to uncertainty barriers to UNF recycle include (1) the vulnerability of unseparated UNF, (2) the effects of time factors on production and accumulation of fissile plutonium isotopes and decay of the ?self-protecting radiation barrier,? (3) the chemistry of UNF components and relative ease of separation, and (4) the significant differences in commercialscale ?safeguards-by-design? UNF recycle facilities and smaller-scale covert operations. Application of safeguards-by-design and engineered safeguards can provide the defense-in-depth necessary for sufficient safeguards. Establishing these requirements for governing acceptable commercial UNF component recycle is essential.« less

  14. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that themore » Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.« less

  15. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida look over appliances donated for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  16. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida sort through items donated for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  17. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    PubMed

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Hydrophilicity Reinforced Adhesion of Anodic Alumina Oxide Template Films to Conducting Substrates for Facile Fabrication of Highly Ordered Nanorod Arrays.

    PubMed

    Wang, Chuanju; Wang, Guiqiang; Yang, Rui; Sun, Xiangyu; Ma, Hui; Sun, Shuqing

    2017-01-17

    Arrays of ordered nanorods are of special interest in many fields. However, it remains challenging to obtain such arrays on conducting substrates in a facile manner. In this article, we report the fabrication of highly ordered and vertically standing nanorod arrays of both metals and semiconductors on Au films and indium tin oxide glass substrates without an additional layering. In this approach, following the simple hydrophilic treatment of an anodic aluminum oxide (AAO) membrane and conducting substrates, the AAO membrane was transferred onto the modified substrates with excellent adhesion. Subsequently, nanorod arrays of various materials were electrodeposited on the conducting substrates directly. This method avoids any expensive and tedious lithographic and ion milling process, which provides a simple yet robust route to the fabrication of arrays of 1D materials with high aspect ratio on conducting substrates, which shall pave the way for many practical applications in a range of fields.

  19. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY RECYCLING SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...

  20. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW

  1. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    PubMed

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  2. Humidity Sensors Printed on Recycled Paper and Cardboard

    PubMed Central

    Mraović, Matija; Muck, Tadeja; Pivar, Matej; Trontelj, Janez; Pleteršek, Anton

    2014-01-01

    Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%–80% relative humidity (RH) at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%–90%). Two different types of capacitor sensors have been investigated: lateral (comb) type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID) chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag's IC to achieve UHF-RFID functionality with data logging capability. PMID:25072347

  3. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  4. Fast and facile fabrication of antifouling and hemocompatible PVDF membrane tethered with amino-acid modified PEG film

    NASA Astrophysics Data System (ADS)

    Zhang, Shuyou; Cao, Jingjing; Ma, Na; You, Meng; Wang, Xushan; Meng, Jianqiang

    2018-01-01

    A fast and facile protocol is reported aiming at improving the antifouling property and hemocompatibility of poly(vinylidene fluoride) (PVDF) membranes by tethering PEG hydrogel and zwitterion immobilization. The coated PEG hydrogel was first prepared by interfacial polymerization and tethered on an alkali treated PVDF membrane (PVDFA) surface via a simultaneous thio-ene and thiol-epoxy reaction. Then, the thiol groups of cysteine reacted with the epoxy groups in PEG hydrogel to fabricate the PVDFA-g-Cys membrane. The membrane fabrication was complete within less than 20 min and was conducted in mild conditions. The successful preparation of PVDFA-g-Cys membrane was confirmed by ATR-FTIR and XPS. Raman spectroscopy showed that the hydrogels covalently bonded to the PVDF membrane surface. The membrane retained its mechanical strength after modification. The SEM measurements suggested that the membrane became denser after hydrogel coating, meanwhile, the EDX test verified that the functional species uniformly distributed in the membrane matrix. Water contact angle (WCA), protein adsorption and protein filtration tests showed significant improvements in hydrophilicity and antifouling properties for the modified membrane. The negativity of the membrane surface measured by the streaming potential method provides a basis for protein resistance and hemocompatibility. Moreover, the suppressed platelet adhesion and prolonged plasma coagulant time show that the PVDFA-g-Cys membrane has ultralow thrombotic potential and better hemocompatibility. The reported surface modification method combing thio-ene and thio-epoxy chemistry not only facilitates fabrication of hemocompatible PVDF membrane but also provide an universal chemical platform for multifunctionalization of porous membranes.

  5. A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Van Thanh, Dang; Van Thien, Nguyen; Thang, Bui Hung; Van Chuc, Nguyen; Hong, Nguyen Manh; Trang, Bui Thi; Lam, Tran Dai; Huyen, Dang Thi Thu; Hong, Phan Ngoc; Minh, Phan Ngoc

    2016-05-01

    In this study, we report a highly efficient, convenient, and cost-effective technique for producing graphite nanoplatelets (GNPs) from plasma-expanded graphite oxides (PEGOs) obtained directly from low-cost, recycled graphite electrodes of used batteries, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy confirmed the successful preparation of GNPs. Scanning electron microscopy revealed that the GNPs have lateral width from several hundreds of nanometers to 1.5 μm with an approximate thickness of 20-50 nm. These GNPs can serve as a precursor for the preparation of GNPs-based nanocomposite.

  6. Fabrication of SiC-Particles-Shielded Al Spheres upon Recycling Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Madarasz, D.; Budai, I.; Kaptay, G.

    2011-06-01

    Wettability of liquid A359 alloy on SiC particles under molten salt NaCl-KCl-NaF is found at 180 deg, meaning that SiC particles prefer the molten salt phase against the Al phase or the Al/molten salt interface. Thus, this molten salt can be used for recycling, i.e., to separate the phases in the SiC reinforced Al matrix composites. If the separation process is interrupted, Al droplets (submillimeter solidified powder) can be produced, stabilized/surrounded by a monolayer of shielding SiC particles.

  7. One-step fabrication of multifunctional micromotors

    NASA Astrophysics Data System (ADS)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  8. Lead poisoning of horses in the vicinity of a battery recycling plant.

    PubMed

    Palacios, H; Hibarren, I; Olalla, M J; Cala, V

    2002-05-06

    The diagnosis of lead poisoning in horses living on farmland in the vicinity of a battery recycling plant was based on clinical signs as well as on laboratory findings. Chemical analysis of six surface soils (0-15 cm) and herbage samples taken at different distances to the recycling plant showed very high total lead levels in the closest sites to the facility and a clear decrease with distance. Total lead levels in soil samples ranged from 127 to 5657 mg kg(-1), with more than 70% of lead extractable by EDTA in the most polluted soils. Lead levels in the aerial part of herbage samples were in the range of 113-4741 mg kg(-1). A water washing pre-treatment of the vegetal samples considerably diminished the concentration of lead, suggesting that airborne lead particles from the facility emissions were fixed on the shoots. The analysis of samples taken from six dead horses showed lead concentrations, expressed as mg kg(-1) (d.w.), as follows: blood: 0.20-0.89; liver: 2.5-15; kidney: 1.70-6.75. Lead intake levels, estimated according to the ingestion rate of Grammineae forage, illustrates that the apported lead through the ingestion of vegetation growing in the closest sites to the recycling plant was approximately 99.5 mg Pb/kg body weight/day surpassing the fatal dosage for horses of 2.4 mg Pb/kg body weight/day reported by Hammond and Aronson, Ann NY Acad Sci, 1964; 111: 595-611.

  9. Urinary Concentrations of Bisphenols and Their Association with Biomarkers of Oxidative Stress in People Living Near E-Waste Recycling Facilities in China.

    PubMed

    Zhang, Tao; Xue, Jingchuan; Gao, Chuan-zi; Qiu, Rong-liang; Li, Yan-xi; Li, Xiao; Huang, Ming-zhi; Kannan, Kurunthachalam

    2016-04-05

    In this study, concentrations of bisphenol A (BPA) and seven other bisphenols (BPs) were measured in urine samples collected from people living in and around e-waste dismantling facilities, and in matched reference population from rural and urban areas in China. BPA, bisphenol S (BPS), and bisphenol F (BPF) were frequently detected (detection frequencies: > 90%) in urine samples collected from individuals who live near e-waste facilities, with geometric mean (GM) concentrations of 2.99 (or 3.75), 0.361 (or 0.469), and 0.349 (or 0.435) ng/mL (or μg/g Cre), respectively; the other five BPs were rarely found in urine samples, regardless of the sampling location. The urinary concentrations of BPA and BPF, but not BPS, were significantly higher in individuals from e-waste recycling locations than did individuals from a rural reference location. Our findings indicated that e-waste dismantling activities contribute to human exposure to BPA and BPF. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured in urine as a marker of oxidative stress. In the e-waste dismantling location, urinary 8-OHdG was significantly and positively correlated (p < 0.001) with urinary BPA and BPS, but not BPF; a similar correlation was also observed in reference sites. These findings suggest that BPA and BPS exposures are associated with elevated oxidative stress.

  10. 30 CFR 285.708 - What are the CVA's or project engineer's primary duties for fabrication and installation review?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified... Facility Design Report and Fabrication and Installation Report. (1) If the CVA or project engineer finds...

  11. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    A sign tells NASA Kennedy Space Center employees they have come to the right place to donate items for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  12. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida set up giveaway items and sort through donations for reuse or recycling in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  13. Recycling potential of post-consumer plastic packaging waste in Finland.

    PubMed

    Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta

    2018-01-01

    Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the

  14. Recycling at Camp.

    ERIC Educational Resources Information Center

    Cummins, William M.

    1988-01-01

    Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)

  15. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  16. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  17. Auditing an intensive care unit recycling program.

    PubMed

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  18. Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.

    1999-01-01

    NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.

  19. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    PubMed

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Optical Fabrication and Measurement AXAF and CIRS

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    This paper presents a final report on Optical Fabrication and Measurement AXAF (Advanced X-Ray Astrophysics Facility) and CIRS (Composite Infrared Spectrometer) from July 12, 1994 to August 16, 1996.. This paper includes specific tasks to be performed. The tasks are as follows: 1) Preparation and Characterization of Zerodur Glass Samples; 2) Develop and Fabricate AXAF and CIRS Metrology Tooling; 3) Update AXAF Technical Data Base; and 4) Perform Fabrication Related Metrology Tasks for CIRS. This paper also includes final activities from the July, 1996 report to August 1996.

  1. A tale of five cities: Using recycling frameworks to analyse inclusive recycling performance.

    PubMed

    Scheinberg, Anne; Simpson, Michael

    2015-11-01

    'Recycling' is a source of much confusion, particularly when comparing solid waste systems in high-income countries with those in low- and middle-income countries. Few analysts can explain why the performance and structure of recycling appears to be so different in rich countries from poor ones, nor why well-meaning efforts to implement recycling so often fail. The analysis of policy drivers, and the Integrated Sustainable Waste Management (ISWM) framework, come close to an explanation.This article builds on these earlier works, focusing in on five cities profiled in the 2010 UN-Habitat publication (Scheinberg A, Wilson DC and Rodic L (2010) Solid Waste Management in the World's Cities. UN-Habitat's Third Global Report on the State of Water and Sanitation in the World's Cities. Newcastle-on-Tyne, UK: Earthscan Publications). Data from these cities and others provides the basis for developing a new tool to analyse inclusive recycling performance. The points of departure are the institutional and economic relationships between the service chain, the public obligation to remove waste, pollution, and other forms of disvalue, and the value chain, a system of private enterprises trading valuable materials and providing markets for recyclables. The methodological innovation is to use flows of materials and money as indicators of institutional relationships, and is an extension of process flow diagramming.The authors are using the term 'recycling framework analysis' to describe this new form of institutional analysis. The diagrams increase our understanding of the factors that contribute to high-performance inclusive recycling. By focusing on institutional relationships, the article seeks to improve analysis, planning, and ultimately, outcomes, of recycling interventions. © The Author(s) 2015.

  2. Resource Efficient Metal and Material Recycling

    NASA Astrophysics Data System (ADS)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  3. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell.

    PubMed

    Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo

    2014-02-15

    We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. © 2013 Elsevier B.V. All rights reserved.

  4. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  5. Printability of papers recycled from toner and inkjet-printed papers after deinking and recycling processes.

    PubMed

    Karademir, Arif; Aydemir, Cem; Tutak, Dogan; Aravamuthan, Raja

    2018-04-01

    In our contemporary world, while part of the fibers used in the paper industry is obtained from primary fibers such as wood and agricultural plants, the rest is obtained from secondary fibers from waste papers. To manufacture paper with high optical quality from fibers of recycled waste papers, these papers require deinking and bleaching of fibers at desired levels. High efficiency in removal of ink from paper mass during recycling, and hence deinkability, are especially crucial for the optical and printability quality of the ultimate manufactured paper. In the present study, deinkability and printability performance of digitally printed paper with toner or inkjet ink were compared for the postrecycling product. To that end, opaque 80 g/m 2 office paper was digitally printed under standard printing conditions with laser toner or inkjet ink; then these sheets of paper were deinked by a deinking process based on the INGEDE method 11 p. After the deinking operation, the optical properties of the obtained recycled handsheets were compared with unprinted (reference) paper. Then the recycled paper was printed on once again under the same conditions as before with inkjet and laser printers, to monitor and measure printing color change before and after recycling, and differences in color universe. Recycling and printing performances of water-based inkjet and toner-based laser printed paper were obtained. The outcomes for laser-printed recycled paper were better than those for inkjet-printed recycled paper. Compared for luminosity Y, brightness, CIE a* and CIE b* values, paper recycled from laser-printed paper exhibited higher value than paper recycled from inkjet-printed paper.

  6. Sustainable management and supply of natural and recycled aggregates in a medium-size integrated plant.

    PubMed

    Faleschini, Flora; Zanini, Mariano Angelo; Pellegrino, Carlo; Pasinato, Stefano

    2016-03-01

    The consumption of natural aggregates in civil engineering applications can cause severe environmental impacts on a regional scale, depleting the stock of bulk resources within a territory. Several methods can improve the environmental sustainability of the whole aggregates' supply process, including natural and recycled aggregates' productive chains, for instance promoting the use of recycled aggregates (RA). However, when quarrying and recycling activities are considered as stand-alone processes, also the RA supply chain may not be as sustainable as expected, due to the high environmental loads associated to transportation, if high distances from the production to the use sites are involved. This work gives some insights on the environmental impact assessment of the aggregates' industry in the Italian context, through a comparative assessment of the environmental loads of natural and recycled aggregates' productive chains. An integrated plant for the extraction of virgin aggregates and recycling of construction and demolition waste (C&DW) was analyzed as significant case study, with the aim to identify the influence of sustainable solutions on the overall emissions of the facility. A Life Cycle Assessment (LCA) approach was used, using site-specific data and paying particular attention on transportation-related impacts, land use, avoided landfill and non-renewable resources preservation. From this work it was possible to evaluate the influence of transportation and PV energy use on the overall environmental emissions of natural and recycled aggregates' productive chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Marshall Space Flight Center solid waste characterization and recycling improvement study

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.

  8. You're a "What"? Recycling Coordinator

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  9. Approaching Moisture Recycling Governance

    NASA Astrophysics Data System (ADS)

    Keys, Patrick; Wang-Erlandsson, Lan; Gordon, Line; Galaz, Victor; Ebbesson, Jonas

    2017-04-01

    The spatial and temporal dynamics of water resources are a continuous challenge for effective and sustainable national and international governance. Despite the surface watershed being the typical unit of water management, recent advances in hydrology have revealed 'atmospheric watersheds' - otherwise known as precipitationsheds. Also, recent research has demonstrated that water flowing within a precipitationshed may be modified by land-use change in one location, while the effect of this modification could be felt in a different province, nation, or continent. Notwithstanding these insights, the major legal and institutional implications of modifying moisture recycling have remained unexplored. In this presentation, we examine potential approaches to moisture recycling governance. We first identify a set of international study regions, and then develop a typology of moisture recycling relationships within these regions ranging from bilateral moisture exchange to more complex networks. This enables us to classify different types of legal and institutional governance principles. Likewise, we relate the moisture recycling types to existing land and water governance frameworks and management practices. The complexity of moisture recycling means institutional fit will be difficult to generalize for all moisture recycling relationships, but our typology allows the identification of characteristics that make effective governance of these normally ignored water flows more tenable.

  10. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  11. The Three Rs: Reduce, Reuse, Recycle.

    ERIC Educational Resources Information Center

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  12. Fabrication Characterization of Solar-Cell Silicon Wafers Using a Circular-Rhombus Tool

    NASA Astrophysics Data System (ADS)

    Pa, Pai-Shan

    2010-01-01

    A new recycling fabrication method using a custom-built designed circular-rhombus tool for a process combining of micro-electroetching and electrochemical machining for removal of the surface layers from silicon wafers of solar cells is demonstrated. The low yields of epoxy film and Si3N4 thin-film depositions are important factors in semiconductor production. The aim of the proposed recycling fabrication method is to replace the current approach, which uses strong acid and grinding and may damage the physical structure of silicon wafers and pollute to the environment. A precisely engineered clean production approach for removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers of solar cells that can reduce pollution and cost. A large diameter cathode of the circular-rhombus tool (with a small gap between the anode and the cathode) corresponds to a high rate of epoxy film removal. A high feed rate of the silicon wafers combined with a high continuous DC electric voltage results in a high removal rate. The high rotational speed of the circular-rhombus tool increases the discharge mobility and improves the removal effect associated with the high feed rate of the workpiece. A small port radius or large end angle of the rhombus anode provides a large discharge space and good removal effect only a short period of time is required to remove the Si3N4 layer and epoxy film easily and cleanly.

  13. Reuse, Reduce, Recycle.

    ERIC Educational Resources Information Center

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  14. A Facile Strategy for Catalyst Separation and Recycling Suitable for ATRP of Hydrophilic Monomers Using a Macroligand.

    PubMed

    Jiang, Xiaowu; Wu, Jian; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2016-01-01

    How to simply and efficiently separate and recycle catalyst has still been a constraint for the wide application of atom transfer radical polymerization (ATRP), especially for the polymerization systems with hydrophilic monomers because the polar functional groups may coordinate with transition metal salts, resulting in abundant catalyst residual in the resultant water-soluble polymers. In order to overcome this problem, a latent-biphasic system is developed, which can be successfully used for ATRP catalyst separation and recycling in situ for various kinds of hydrophilic monomers for the first time, such as poly(ethylene glycol) monomethyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), N,N-dimethyl acrylamide (DMA), and N-isopropylacrylamide (NIPAM). Herein, random copolymer of octadecyl acrylate (OA), MA-Ln (2-(bis(pyridin-2-ylmethyl)amino)ethyl acrylate), and POA-ran-P(MA-Ln) is designed as the macroligand, and heptane/ethanol is selected as the biphasic solvent. Copper(II) bromide (CuBr2 ) is employed as the catalyst, PEG-bound 2-bromo-2-methylpropanoate (PEG350 -Br) as the water-soluble ATRP initiator and 2,2'-azobis(isobutyronitrile) (AIBN) as the azo-initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP system. Importantly, well-defined water-soluble polymers are obtained even though the recyclable catalyst is used for sixth times. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Initial research on recycled tyre bales for road infrastructure applications

    NASA Astrophysics Data System (ADS)

    Duda, Aleksander; Sobala, Dariusz

    2017-12-01

    The paper reviews selected surveys carried out within the R&D project, co-financed with the European Regional Development Fund, called "ReUse - Innovative Recycling Materials, Enhancing the Sustainability of Bridge Facilities" (Innotech No. K3 / IN3 / 38/228116 / NCBiR / 15). The aim of the project and conducted research is to develop and implement innovative, cheap and environmentally-friendly recycled construction material in the form of tyre bales made from compressed used car tyres. This material is likely to be applied in civil engineering, especially in transport infrastructure, geotechnical and hydraulic engineering. New material is cheap and has unique properties such as low weight, high water permeability, high vibration and noise-damping capacity, low pressure coefficient values and other parameters that technically and economically allow it to replace natural aggregates. The extensive practical application of new material will facilitate the replacement of waste management methods with the environmentally friendly ones.

  16. Spectral X-ray Radiography for Safeguards at Nuclear Fuel Fabrication Facilities: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Smith, Leon E.

    The methods currently used by the International Atomic Energy Agency to account for nuclear materials at fuel fabrication facilities are time consuming and require in-field chemistry and operation by experts. Spectral X-ray radiography, along with advanced inverse algorithms, is an alternative inspection that could be completed noninvasively, without any in-field chemistry, with inspections of tens of seconds. The proposed inspection system and algorithms are presented here. The inverse algorithm uses total variation regularization and adaptive regularization parameter selection with the unbiased predictive risk estimator. Performance of the system is quantified with simulated X-ray inspection data and sensitivity of the outputmore » is tested against various inspection system instabilities. Material quantification from a fully-characterized inspection system is shown to be very accurate, with biases on nuclear material estimations of < 0.02%. It is shown that the results are sensitive to variations in the fuel powder sample density and detector pixel gain, which increase biases to 1%. Options to mitigate these inaccuracies are discussed.« less

  17. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitzsche, Olaf; Thierfeldt, Stefan; Hummel, Lothar

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detectormore » was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)« less

  18. The Hang-Ups on Recycling

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    While all seem to agree that recycling will alleviate solid waste problems and energy and mineral shortages, recycling is, at present, bogged down by the thin market for recycled materials, the recessionary business picture, the vertical integration of many companies, unfavorable tax laws, and high rail freight rates. (BT)

  19. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  20. Facile synthesis of reduced graphene oxide-gold nanohybrid for potential use in industrial waste-water treatment

    NASA Astrophysics Data System (ADS)

    Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar

    2016-01-01

    Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.

  1. Precipitation recycling in the Amazon basin

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1994-01-01

    Precipitation recycling is the contribution of evaporation within a region to precipitation in that same region. The recycling rate is a diagnostic measure of the potential for interactions between land surface hydrology and regional climate. In this paper we present a model for describing the seasonal and spatial variability of the recycling process. The precipitation recycling ratio, rho, is the basic variable in describing the recycling process. Rho is the fraction of precipitation at a certain location and time which is contributed by evaporation within the region under study. The recycling model is applied in studyiing the hydrologic cycle in the Amazon basin. It is estimated that about 25% of all the rain that falls in the Amazon basin is contributed by evaporation within the basin. This estimate is based on analysis of a data set supplied by the European Centre for Medium-range Weather Forecasts (ECMWF). The same analysis is repeated using a different data set from the Geophysical Fluid Dynamics Laboratory (GFDL). Based on this data set, the recycling ratio is estimated to be 35%. The seasonal variability of the recycling ratio is small compared with the yearly average. The new estimates of the recycling ratio are compared with results of previous studies, and the differences are explained.

  2. Analyzing effective municipal solid waste recycling programs: the case of county-level MSW recycling performance in Florida, USA.

    PubMed

    Park, Seejeen; Berry, Frances S

    2013-09-01

    Municipal solid waste (MSW) recycling performance, both nationally and in Florida, USA, has shown little improvement during the past decade. This research examines variations in the MSW recycling program performance in Florida counties in an attempt to identify effective recycling programs. After reviewing trends in the MSW management literature, we conducted an empirical analysis using cross-sectional multiple regression analysis. The findings suggest that the convenience-based hypothesis was supported by showing that curbside recycling had a positive effect on MSW recycling performance. Financial (cost-saving) incentive-based hypotheses were partially supported meaning that individual level incentives can influence recycling performance. Citizen environmental concern was found to positively affect the amount of county recycling, while education and political affiliation yielded no significant results. In conclusion, this article discusses the implications of the findings for both academic research and practice of MSW recycling programs.

  3. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  4. Text Recycling in Scientific Writing.

    PubMed

    Moskovitz, Cary

    2018-03-15

    Text recycling, often called "self-plagiarism", is the practice of reusing textual material from one's prior documents in a new work. The practice presents a complex set of ethical and practical challenges to the scientific community, many of which have not been addressed in prior discourse on the subject. This essay identifies and discusses these factors in a systematic fashion, concluding with a new definition of text recycling that takes these factors into account. Topics include terminology, what is not text recycling, factors affecting judgements about the appropriateness of text recycling, and visual materials.

  5. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates.

    PubMed

    Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio

    2018-01-01

    Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2  h -1  kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Recycling Behavior: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  7. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida accept items donated by employees in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  8. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida shred a disposed hard drive in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  9. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.

    PubMed

    Kostanyan, Artak E

    2015-12-04

    The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.

    PubMed

    Hou, Hongying; Yao, Yuan; Liu, Song; Duan, Jixiang; Liao, Qishu; Yu, Chengyi; Li, Dongdong; Dai, Zhipeng

    2017-07-01

    The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection. Copyright © 2017. Published by Elsevier Ltd.

  11. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  12. The Green Dialysis Survey: Establishing a Baseline for Environmental Sustainability across Dialysis Facilities in Victoria, Australia.

    PubMed

    Barraclough, Katherine A; Gleeson, Alice; Holt, Stephen G; Agar, John Wm

    2017-11-02

    The Green Dialysis Survey aimed to 1) establish a baseline for environmental sustainability (ES) across Victorian dialysis facilities, and 2) guide future initiatives to reduce the environmental impact of dialysis delivery. Nurse unit managers of all Victorian public dialysis facilities received an online link to the survey, which asked 107 questions relevant to the ES of dialysis services. Responses were received from 71/83 dialysis facilities in Victoria (86%), representing 628/660 dialysis chairs (95%). Low energy lighting was present in 13 facilities (18%), 18 (25%) recycled reverse osmosis water and 7 (10%) reported use of renewable energy. Fifty-six facilities (79%) performed comingled recycling but only 27 (38%) recycled polyvinyl chloride plastic. A minority educated staff in appropriate waste management (n=30;42%) or formally audited waste generation and segregation (n=19;27%). Forty-four (62%) provided secure bicycle parking but only 33 (46%) provided shower and changing facilities. There was limited use of tele- or video-conferencing to replace staff meetings (n=19;27%) or patient clinic visits (n=13;18%). A minority considered ES in procurement decisions (n=28;39%) and there was minimal preparedness to cope with climate change. Only 39 services (49%) confirmed an ES policy and few had ever formed a green group (n=14; 20%) or were currently undertaking a green project (n=8;11%). Only 15 facilities (21%) made formal efforts to raise awareness of ES. This survey provides a baseline for practices that potentially impact the environmental sustainability of dialysis units in Victoria, Australia. It also identifies achievable targets for attention. This article is protected by copyright. All rights reserved.

  13. Innovative Vacuum Distillation for Magnesium Recycling

    NASA Astrophysics Data System (ADS)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  14. Four Fabric Structures. A Report.

    ERIC Educational Resources Information Center

    Green, Peter

    Photographs and descriptions of four projects using fabric to enclose large spaces are published so that administrators and designers looking for ways to build recreational facilities can consider these innovative shelters. Three of the four examples in this publication are air-supported structures: University of Santa Clara, Charles Wright…

  15. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Computers, monitors, vacuum cleaners and other electronics have been donated by employees at NASA's Kennedy Space Center in Florida in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  16. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Members of the Sustainability team at NASA's Kennedy Space Center in Florida take a bin of disposed hard drives to be shredded in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more.

  17. One-step fabrication of multifunctional micromotors.

    PubMed

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-09-07

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.

  18. Improving information recognition and performance of recycling chimneys.

    PubMed

    Durugbo, Christopher

    2013-01-01

    The aim of this study was to assess and improve how recyclers (individuals carrying out the task of recycling) make use of visual cues to carryout recycling tasks in relation to 'recycling chimneys' (repositories for recycled waste). An initial task analysis was conducted through an activity sampling study and an eye tracking experiment using a mobile eye tracker to capture fixations of recyclers during recycling tasks. Following data collection using the eye tracker, a set of recommendations for improving information representation were then identified using the widely researched skills, rules, knowledge framework, and for a comparative study to assess the performance of improved interfaces for recycling chimneys based on Ecological Interface Design principles. Information representation on recycling chimneys determines how we recycle waste. This study describes an eco-ergonomics-based approach to improve the design of interfaces for recycling chimneys. The results are valuable for improving the performance of waste collection processes in terms of minimising contamination and increasing the quantity of recyclables.

  19. Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification

    NASA Astrophysics Data System (ADS)

    Cheong, Ling-Zhi; Wei, Yayu; Wang, Hongbin; Wang, Zhiying; Su, Xiurong; Shen, Cai

    2017-08-01

    Zeolitic imidazolate frameworks (ZIF) represent one of the metal organic frameworks (MOF) with high potential for enzyme immobilization due to their exceptional chemical and thermal stability, negligible cytotoxicity, and easy synthesis under mild biocompatible conditions. Amine-functionalized ZIF-8 (An-ZIF-8) are capable of forming multipoint attachment via hydrogen bonding with lipase which will immobilize and further enhance stabilization of lipase. In addition, increased hydrophilicity of An-ZIF-8 will increase partitioning of An-ZIF-8 immobilized lipase at the aqueous/organic interface which enable lipase to expose its active site and retain its catalytic activity at its highest. Present study reports the use of ZIF-8 and An-ZIF-8 nanoparticles as carrier for Burkholderia cepacia lipase (BCL), compares the ester hydrolysis and transesterification activities of immobilized lipase with those of free lipase, and evaluates the reusability and recovery rate of the immobilized lipase. An-ZIF-8 nanoparticles (average 130.42 ± 0.55 nm) were facilely synthesized via mixing ZIF-8 nanoparticles with ammonia hydroxide solution. Despite having similar characteristics of high crystallinity and forming cuboid-like particles, An-ZIF-8 demonstrated significantly ( P < 0.05) lower Brunauer-Emmett-Teller (BET) surface area and higher thermal stability than ZIF-8. BCL were successfully immobilized on ZIF-8 (BCL@ZIF-8) and An-ZIF-8 (BCL@An-ZIF-8) nanoparticles with an average lipase loading rate of 8 mg/g MOF. The immobilized BCL demonstrated no significant differences in terms of esters hydrolysis and transesterification activities with those of free BCL. BCL@An-ZIF-8 demonstrated superior catalytic stability in comparison to BCL@ZIF-8 with retainment of more than 80% of its initial hydrolysis and transesterification activity for at least 10 repeated runs. In addition, more than 80% of the BCL@An-ZIF-8 can be easily recovered during each cycle of the reusability test through

  20. Long-Range Facilities - Plan

    DTIC Science & Technology

    1981-07-31

    3. DATES COVERED 00-00-1981 to 00-00-1981 4. TITLE AND SUBTITLE Long-Range Facilities - Plan 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...sternwheeler “Mark Twain” for Disneyland and fabrication of eight 52 foot submarines for the Disneyland “Navy.” This was followed by fabrication of the masts...converting the PRESIDENT GRANT , PRESIDENT McKINLEY and PRESIDENT FILLMORE to container ships for American President Lines, Ltd. These ships were designed to

  1. Facile fabrication and electrical investigations of nanostructured p-Si/n-TiO2 hetero-junction diode

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2018-05-01

    In this work, we have fabricated the nanostructured p-Si/n-TiO2 hetero-junction diode by using a facile spin-coating method. The XRD analysis suggests the presence of well crystalline anatase TiO2 film on Si with small grain size (˜16 nm). We have drawn the band alignment using Anderson model to understand the electrical transport across the junction. The current-voltage (J-V) characteristics analysis reveals the good rectification ratio (103 at ± 3 V) and slightly higher ideality factor (4.7) of our device. The interface states are responsible for the large ideality factor as Si/TiO2 form a dissimilar interface and possess a large number of dangling bonds. The study reveals the promises to be used Si/TiO2 diode as an alternative to the traditional p-n homo-junction diode, which typically require high budget.

  2. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors.

    PubMed

    Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-04-01

    Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.

  3. America Recycles Day

    NASA Image and Video Library

    2017-11-17

    In the parking lot of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, employees drop off used household items as part of America Recycles Day. The center recently partnered with Goodwill Industries and several other local organizations to collect items for reprocessing. The annual event is a program of Keep America Beautiful, dedicated to promoting and celebrating recycling.

  4. Polybrominated diphenyl ethers--plasma levels and thyroid status of workers at an electronic recycling facility.

    PubMed

    Julander, A; Karlsson, M; Hagström, K; Ohlson, C G; Engwall, M; Bryngelsson, I-L; Westberg, H; van Bavel, B

    2005-08-01

    Personnel working with electronic dismantling are exposed to polybrominated diphenyl ethers (PBDEs), which in animal studies have been shown to alter thyroid homeostasis. The aim of this longitudinal study was to measure plasma level of PBDEs in workers at an electronic recycling facility and to relate these to the workers' thyroid status. PBDEs and three thyroid hormones: triiodothyronine (T(3)), thyroxin (T(4)) and thyroid stimulating hormone (TSH) were repeatedly analysed in plasma from 11 workers during a period of 1.5 years. Plasma levels of PBDEs at start of employment were <0.5-9.1 pmol/g lipid weight (l.w.). The most common congener was PBDE #47 (median 2.8 pmol/g l.w.), followed by PBDE #153 (median 1.7 pmol/g l.w.), and PBDE #183 had a median value of <0.19 pmol/g l.w. After dismantling the corresponding median concentrations were: 3.7, 1.7 and 1.2 pmol/g l.w., respectively. These differences in PBDE levels were not statistically significant. PBDE #28 showed a statistically significantly higher concentration after dismantling than at start of employment (P=0.016), although at low concentrations (start 0.11 pmol/g l.w. and dismantling 0.26 pmol/g l.w.). All measured levels of thyroid hormones (T(3), T(4) and TSH) were within the normal physiological range. Statistically significant positive correlations were found between T(3) and #183 in a worker, between T(4) and both #28 and #100 in another worker and also between TSH and #99 and #154 in two workers. The workers' plasma levels of PBDEs fluctuated during the study period. Due to small changes in thyroid hormone levels it was concluded that no relevant changes were present in relation to PBDE exposure within the workers participating in this study.

  5. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  6. Education & Collection Facility GSHP Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joplin, Jeff

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an

  7. Recycled poly(ethylene terephthalate) for direct food contact applications: challenge test of an inline recycling process.

    PubMed

    Franz, R; Welle, F

    2002-05-01

    Of all the plastics used for packaging, due to its low diffusivity and chemical inertness, poly(ethylene terephthalate) (PET) is one of the favoured candidate plastics for closed-loop recycling for new packaging applications. In the work reported here, a PET-recycling process was investigated with respect to its cleaning efficiency and compliance of the PET recyclate with food law. The key technology of the investigated PET-recycling process to remove contaminants consists of a predecontamination-extruder combination. At the end of the recycling process, there is either a pelletizing system or downstream equipment to produce preforms or flat sheets. Therefore, the process has two process options, an inline production of PET preforms and a batch option producing PET pellets. In the case of possible misuse of PET bottles by the consumer, the inline process produces higher concentrations in the bottle wall of the recyclate containing preforms. Owing to the dilution of the PET output material by large amounts of uncontaminated PET, the batch option is the less critical process in terms of consumer protection. Regarding an appropriate testing procedure for the evaluation of a bottle-to-bottle recycling process, both process options have their own specific requirements with respect to the design of a challenge test. A novel challenge test approach to the inline mode of a recycling process is presented here.

  8. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    Computers, monitors, vacuum cleaners and other electronics have been donated by employees at NASA's Kennedy Space Center in Florida in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  9. Frequent Questions on Recycling

    EPA Pesticide Factsheets

    This is a list of frequent questions on recycling, broken down into five categories. These are answers to common questions that EPA has received from press and web inquiries. This list is located on the Reduce, Reuse, Recycle website.

  10. Recycling Research. Tracking Trash.

    ERIC Educational Resources Information Center

    DeLago, Louise Furia

    1991-01-01

    An activity in which students research the effectiveness of recycling is presented. Students compare the types and amount of litter both before and after recycling is implemented. Directions for the activity and a sample data sheet are included. (KR)

  11. Recycled Art: Create Puppets Using Recycled Objects.

    ERIC Educational Resources Information Center

    Clearing, 2003

    2003-01-01

    Presents an activity from "Healthy Foods from Healthy Soils" for making puppets using recycled food packaging materials. Includes background information, materials, instructions, literature links, resources, and benchmarks. (NB)

  12. 40 CFR 35.917-1 - Content of facilities plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.917-1... application of BPWTT would not meet water quality standards, the facilities plan shall provide for attaining... employing the reuse of waste water and recycling of pollutants; (iii) Land application techniques; (iv...

  13. 40 CFR 35.917-1 - Content of facilities plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.917-1... application of BPWTT would not meet water quality standards, the facilities plan shall provide for attaining... employing the reuse of waste water and recycling of pollutants; (iii) Land application techniques; (iv...

  14. Are scarce metals in cars functionally recycled?

    PubMed

    Andersson, Magnus; Ljunggren Söderman, Maria; Sandén, Björn A

    2017-02-01

    Improved recycling of end-of-life vehicles (ELVs) may serve as an important strategy to address resource security risks related to increased global demand for scarce metals. However, in-depth knowledge of the magnitude and fate of such metals entering ELV recycling is lacking. This paper quantifies input of 25 scarce metals to Swedish ELV recycling, and estimates the extent to which they are recycled to material streams where their metal properties are utilised, i.e. are functionally recycled. Methodologically, scarce metals are mapped to main types of applications within newly produced Swedish car models and subsequently, material flow analysis of ELV waste streams is used as basis for identifying pathways of these applications and assessing whether contained metals are functionally recycled. Results indicate that, of the scarce metals, only platinum may be functionally recycled in its main application. Cobalt, gold, manganese, molybdenum, palladium, rhodium and silver may be functionally recycled depending on application and pathways taken. For remaining 17 metals, functional recycling is absent. Consequently, despite high overall ELV recycling rates of materials in general, there is considerable risk of losing ELV scarce metals to carrier metals, construction materials, backfilling materials and landfills. Given differences in the application of metals and identified pathways, prospects for increasing functional recycling are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Frank; Hwan Seo Park; Yung Zun Cho

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration betweenmore » US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.« less

  16. Solid waste recycling in Rajshahi city of Bangladesh.

    PubMed

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahagnoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    The designs and fabrication methods, equipment, facilities, economics, and schedules, for the square sail sheet alternate are evaluated. The baseline for the spinning sail blade design and related fabrication issues are assessed.

  18. Carambola optics for recycling of light.

    PubMed

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  19. Text recycling: acceptable or misconduct?

    PubMed

    Harriman, Stephanie; Patel, Jigisha

    2014-08-16

    Text recycling, also referred to as self-plagiarism, is the reproduction of an author's own text from a previous publication in a new publication. Opinions on the acceptability of this practice vary, with some viewing it as acceptable and efficient, and others as misleading and unacceptable. In light of the lack of consensus, journal editors often have difficulty deciding how to act upon the discovery of text recycling. In response to these difficulties, we have created a set of guidelines for journal editors on how to deal with text recycling. In this editorial, we discuss some of the challenges of developing these guidelines, and how authors can avoid undisclosed text recycling.

  20. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    PubMed

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (P<0.01). Sixty-two percent of jobs in smelting facilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  1. A Facile Method to Fabricate Double Gyroid as A Polymer Template for Nanohybrids

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Fang; Ho, Rong-Ming

    2015-03-01

    Here, we suggest a facile method to acquire double gyroid (DG) phase from the self-assembly of chiral block copolymers (BCPs*), polystyrene- b-poly(L-lactide) (PS-PLLA). A wide region for the formation of DG can be found in the phase diagram of the BCPs*, suggesting that helical phase (H*) from the self-assembly of BCPs* can serve as a stepping stone for the formation of the DG due to an easy path for order-order transition from two-dimensional to three-dimensional (network) structure. Moreover, the order-order transition from metastable H* to stable DG can be expedited by blending the PS-PLLA with compatible entity. Moreover, PS-PLLA blends are prepared by using styrene oligomer (S) to fine-tune the morphologies of the blends at which the molecular weight ratio of the S and compatible PS block (r) is less than 0.1. Owing to the use of the low-molecular-weight oligomer, the increase of BCP chain mobility in the blends significantly reduces the transformation time for the order-order transition from H* to DG. Consequently, nanoporous gyroid SiO2 can be fabricated using hydrolyzed PS-PLLA blends as a template for sol-gel reaction followed by removal of the PS matrix.

  2. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.

    PubMed

    Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2018-03-01

    Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. America Recycles Day

    NASA Image and Video Library

    2017-11-17

    In the parking lot of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, employees drop off used household items, such as this television, as part of America Recycles Day. The center recently partnered with Goodwill Industries and several other local organizations to collect items for reprocessing. The annual event is a program of Keep America Beautiful, dedicated to promoting and celebrating recycling.

  4. Highly flexible binder-free core-shell nanofibrous electrode for lightweight electrochemical energy storage using recycled water bottles

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian H.; Naguib, Hani E.

    2016-08-01

    The creation of a novel flexible nanocomposite fiber with conductive polymer polyaniline (PAni) coating on a polyethylene terephthalate (PET) substrate allowed for increased electrochemical performance while retaining ideal mechanical properties such as very high flexibility. Binder-free PAni-wrapped PET (PAni@PET) fiber with a core-shell structure was successfully fabricated through a novel technique. The PET nanofiber substrate was fabricated through an optimized electrospinning method, while the PAni shell was chemically polymerized onto the surface of the nanofibers. The PET substrate can be made directly from recycled PETE1 grade plastic water bottles. The resulting nanofiber with an average diameter of 121 nm ± 39 nm, with a specific surface area of 83.72 m2 g-1, led to better ionic interactions at the electrode/electrolyte interface. The PAni active layer coating was found to be 69 nm in average thickness. The specific capacitance was found to have increased dramatically from pure PAni with carbon binders. The specific capacitance was found to be 347 F g-1 at a relatively high scan rate of 10 mV s-1. The PAni/PET fiber also experienced very little degradation (4.4%) in capacitance after 1500 galvanostatic charge/discharge cycles at a specific current of 1.2 A g-1. The mesoporous structure of the PAni@PET fibrous mat also allowed for tunable capacitance by controlling the pore sizes. This novel fabrication method offers insights for the utilization of recycled PETE1 based bottles as a high performance, low cost, highly flexible supercapacitor device.

  5. Plastics recycling: challenges and opportunities.

    PubMed

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  6. Plastics recycling: challenges and opportunities

    PubMed Central

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  7. Requirements Doc for Refurb of JASPER Facility in B131HB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, Kenn M.

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less

  8. Cost effectiveness of recycling: A systems model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu; Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000; Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have alsomore » found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.« less

  9. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  10. NNSA B-Roll: MOX Facility

    ScienceCinema

    None

    2017-12-09

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  11. NNSA B-Roll: MOX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  12. 2016 America's Recycle Day

    NASA Image and Video Library

    2016-11-15

    A sign points the way to the electronic waste collection site, where NASA Kennedy Space Center employees donated computers, monitors, vacuum cleaners and other electronics in conjunction with America Recycles Day. America Recycles Day is a nationally recognized initiative dedicated to promoting recycling in the United States. Kennedy partnered with several organizations in order to donate as many of the items as possible to those who could use them the most in the Space Coast community. Space center personnel brought in electronic waste, gently used household goods, clothing and more. The two-day event was sponsored by Kennedy's Sustainability team.

  13. 78 FR 69531 - America Recycles Day, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    .... Recycling not only reduces pollution, but also saves energy, preserves valuable raw materials, and reduces... recycling a part of our daily lives. We should reuse or donate when possible, and recycle or compost as much as we are able. Students can get involved by championing waste-free lunches, recycling programs, and...

  14. Facile fabrication of superhydrophobic flower-like polyaniline architectures by using valine as a dopant in polymerization

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Bi, Hong

    2012-03-01

    A facile method was developed to fabricate superhydrophobic, flower-like polyanline (PANI) architectures with hierarchical nanostructures by adding valine in polymerization as a dopant. The water contact angle of the prepared PANI film was measured to be 155.3°, and the hydrophobic surface of the PANI architectures can be tuned easily by varying the polymerization time as well as valine doping quantity. It is believed that valine plays an important role in not only growth of the hierarchical PANI structures but also formation of the superhydrophobic surface, for it provides functional groups such as sbnd COOH, sbnd NH2 and a hydrophobic terminal group which may further increase intra-/inter-molecular interactions including hydrogen bonding, π-π stacking and hydrophobic properties. Similar flower-like PANI architectures have been prepared successfully by employing other amino acids such as threonine, proline and arginine. This method makes it possible for widespread applications of superhydrophobic PANI film due to its simplicity and practicability.

  15. Optical Properties of Polypropylene upon Recycling

    PubMed Central

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites. PMID:24288478

  16. Optical properties of polypropylene upon recycling.

    PubMed

    De Santis, Felice; Pantani, Roberto

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  17. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  18. Corrosion impact of reductant on DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most

  19. Recycling research progress at the Forest Products Laboratory.

    Treesearch

    1995-01-01

    This document summarizes accomplishments of USDA Forest Service researchers in the area of recycling. Specifically, it describes work in economic assessment, paper recycling, recycled housing and industrial applications of recycled materials, other recycling applications, and technology transfer. The literature list includes the references cited in the text and...

  20. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet... the State in writing by Decemeber 8, 2003, if the system recycles spent filter backwash water... the origin of all flows which are recycled (including, but not limited to, spent filter backwash water...

  1. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet... the State in writing by Decemeber 8, 2003, if the system recycles spent filter backwash water... the origin of all flows which are recycled (including, but not limited to, spent filter backwash water...

  2. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet... the State in writing by Decemeber 8, 2003, if the system recycles spent filter backwash water... the origin of all flows which are recycled (including, but not limited to, spent filter backwash water...

  3. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet... the State in writing by Decemeber 8, 2003, if the system recycles spent filter backwash water... the origin of all flows which are recycled (including, but not limited to, spent filter backwash water...

  4. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet... the State in writing by Decemeber 8, 2003, if the system recycles spent filter backwash water... the origin of all flows which are recycled (including, but not limited to, spent filter backwash water...

  5. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.

    PubMed

    Kim, Jiseok; Lew, Brian; Kim, Woo Soo

    2011-12-06

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.

  6. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method

    PubMed Central

    2011-01-01

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures. PACS: 05.70.Np, 68.55.am, 68.55.jm PMID:22145673

  7. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.

  8. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress in the development of a beam builder to be deployed by space shuttle for assembly of large structures in space is reported. The thermal coating for the structural truss was selected and the detail truss design and analysis completed. Data acquired during verification of the design of the basic 'building block' truss are included as well as design layouts for various fabrication facility subsystems.

  9. Auditing Operating Room Recycling: A Management Case Report.

    PubMed

    McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane

    2015-08-01

    Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints.

  10. Electric vehicle recycling 2020: Key component power electronics.

    PubMed

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  11. Recycling of plastic: accounting of greenhouse gases and global warming contributions.

    PubMed

    Astrup, Thomas; Fruergaard, Thilde; Christensen, Thomas H

    2009-11-01

    Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO(2)-eq. tonne( -1) of plastic waste depending on treatment at the MRF and CO(2) emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60- 1600 kg CO(2)-eq. tonne( -1) of plastic waste depending on substitution ratios and CO(2) emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.

  12. Recycling Technology: Can It Be Taught?

    ERIC Educational Resources Information Center

    Clum, James A.; Loper, Carl R., Jr.

    This paper describes the content of a seminar-type engineering course dealing with materials reutilization (recycling). The course, consisting of lecture and discussion by various faculty and outside experts as well as student presentations of research papers on recycling topics, is intended to investigate current areas in which recycling of…

  13. Management options for recycling radioactive scrap metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are threemore » basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.« less

  14. Proceedings of the twelfth target fabrication specialists` meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less

  15. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Micale, Caterina; Morettini, Emanuela

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh watermore » eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.« less

  16. Photocatalytic and photoelectrochemical performance of Ta{sub 3}N{sub 5} microcolumn films fabricated using facile reactive sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Der-Hwa; Chang, Kao-Shuo, E-mail: kschang@mail.ncku.edu.tw; Promotion Center for Global Materials Research, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan

    2016-08-21

    This paper presents the photocatalytic and photoelectrochemical (PEC) properties of Ta{sub 3}N{sub 5} microcolumn films. The highlights include (1) overcoming the fundamental barrier of standard reactive sputtering for fabricating microcolumns; (2) preventing unnecessary complexity from complicating facile sputtering; (3) an alternative but effective approach for fabricating Ta{sub 3}N{sub 5} without using caustic NH{sub 3} gases; (4) investigating morphology tuning for favorable photocatalysis and PEC reactions; and (5) elucidating the relationships of the structures, morphologies, and properties of Ta{sub 3}N{sub 5} microcolumns. High-resolution transmission electron microscopy and selective-area electron diffraction verified the polycrystallinity of Ta{sub 3}N{sub 5} microcolumns, of which themore » elemental compositions and stoichiometry were measured using electron-probe energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The corresponding band gap was determined to be approximately 2.1 eV. The sample exhibited a superior photodegradation capability; the photodegradation rate constant k was determined to be approximately 1.4 times higher than that of P25 under UV irradiation. A photocatalytic and PEC cycling test indicated the photodegradation reusability and photostability of the Ta{sub 3}N{sub 5} microcolumns. The incident photon-to-current efficiency performance reached 6%, suggesting that these microcolumns hold potential for application in PEC devices.« less

  17. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    PubMed

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li 2 CO 3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H 2 SO 4 , and the cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is miro spherical morphology without any impurities, which can meet with LiNi 1/3 Co 1/3 Mn 1/3 O 2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Low-cost and facile fabrication of a paper-based capillary electrophoresis microdevice for pathogen detection.

    PubMed

    Lee, Jee Won; Lee, Dohwan; Kim, Yong Tae; Lee, Eun Yeol; Kim, Do Hyun; Seo, Tae Seok

    2017-05-15

    This paper describes the development of a novel paper-based capillary electrophoresis (pCE) microdevice using mineral paper, which is durable, oil and tear resistant, and waterproof. The pCE device is inexpensive (~$1.6 per device for materials), simple to fabricate, lightweight, and disposable, so it is more adequate for point-of-care (POC) pathogen diagnostics than a conventional CE device made of glass, quartz, silicon or polymer. In addition, the entire fabrication process can be completed within 1h without using expensive clean room facilities and cumbersome photolithography procedures. A simple cross-designed pCE device was patterned on the mineral paper by using a plotter, and assembled with an OHP film via a double-sided adhesive film. After filling the microchannel with polyacrylamide gel, the injection, backbiasing, and separation steps were sequentially operated to differentiate single-stranded DNA (ssDNA) with 4 bp resolution in a 2.9cm-long CE separation channel. Furthermore, we successfully demonstrated the identification of the PCR amplicons of two target genes of Escherichia coli O157:H7 (rrsH gene, 121 bp) and Staphylococcus aureus (glnA gene, 225 bp). For accurate assignment of the peaks in the electropherogram, two bracket ladders (80 bp for the shortest and 326 bp for the longest) were employed, so the two amplicons of the pathogens were precisely identified on a pCE chip within 3min using the relative migration time ratio without effect of the CE environments. Thus, we believe that the pCE microdevice could be very useful for the separation of nucleic acids, amino acids, and ions as an analytical tool for use in the medical applications in the resource-limited environments as well as fundamental research fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    PubMed

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Recycling Pressure-Sensitive Products

    Treesearch

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  1. Materials Recycling: The Virtue of Necessity. Worldwatch Paper 56.

    ERIC Educational Resources Information Center

    Chandler, William U.

    This report focuses on the necessity and advantages of recycling. Following an introduction, the report is divided into five sections, addressing respectively: the necessity of recycling; waste paper recycling; aluminum recycling; iron and steel recycling; and three steps to a "recycling society." These steps include: (1) requiring that consumers…

  2. Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates.

    PubMed

    Xu, Ping; Mack, Nathan H; Jeon, Sea-Ho; Doorn, Stephen K; Han, Xijiang; Wang, Hsing-Lin

    2010-06-01

    We report a facile synthesis of large-area homogeneous three-dimensional (3D) Ag nanostructures on Au-supported polyaniline (PANI) membranes through a direct chemical reduction of metal ions by PANI. The citric acid absorbed on the Au nuclei that are prefabricated on PANI membranes directs Ag nanoaprticles (AgNPs) to self-assemble into 3D Ag nanosheet structures. The fabricated hybrid metal nanostructures display uniform surface-enhanced Raman scattering (SERS) responses throughout the whole surface area, with an average enhancement factor of 10(6)-10(7). The nanocavities formed by the stereotypical stacking of these Ag nanosheets and the junctions and gaps between two neighboring AgNPs are believed to be responsible for the strong SERS response upon plasmon absorption. These homogeneous metal nanostructure decorated PANI membranes can be used as highly efficient SERS substrates for sensitive detection of chemical and biological analytes.

  3. Fabrication of PAN@TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Shi, Yongzheng; Yang, Dongzhi; Li, Yuan; Qu, Jin; Yu, Zhong-Zhen

    2017-12-01

    Although TiO2-based photocatalysts have exhibited a great potential for degradation of organic pollutants, it is still necessary to simultaneously enhance their visible-light-driven photocatalytic efficiency and physical recyclability. Herein, highly efficient, visible-light-driven photocatalytically active, and recyclable nanofibrous membranes with thin TiO2/Ag heterojunction layer are prepared using electrospun polyacrylonitrile (PAN) nanofibrous membrane as the substrate. By regulating the concentration and hydrolysis process of Ti precursors, TiO2 nanoparticles steadily grow on the PAN nanofibers with high-specific surface area to form a continuous mesoporous shell with the thickness of 20 nm for efficient degradation of organic pollutants. Furthermore, to form a stable heterojunction structure, Ag nanoparticles are deposited on the TiO2 surface by using dopamine as a binder and reductant. The presence of Ag nanoparticles leads to an obvious red-shift from 380 nm to 490 nm, which improves the utilization efficiency of visible light, and reduces the electron/hole recombination rate simultaneously. The resulting PAN@TiO2/Ag membranes hold enhanced photocatalytic activity for methylene blue degradation within 1 h under visible light irradiation, and satisfactory recyclability, which endow them with a great potential for adsorption and photocatalytic applications.

  4. Development of methods for the decrease in instability of recycling water of conjugated closed-circuit cooling system of HPP

    NASA Astrophysics Data System (ADS)

    Chichirov, A. A.; Chichirova, N. D.; Vlasov, S. M.; Lyapin, A. I.; Misbakhov, R. Sh.; Silov, I. Yu.; Murtazin, A. I.

    2016-10-01

    On Russian HPPs, conjugated closed-circuit cooling systems, where purge water is used as initial for water-treatment facilities, are widespread. For this reason, it is impossible to use general methods for the stabilization treatment of recycling water in order to prevent scale formation in the units of a system, namely, turbine condensers and cooling towers. In this paper, the methods for the decrease in the instability of recycling water using the methods of chemical engineering, such as stabilization and synchronization of flows and organization of recycles, are suggested. The results of an industrial experiment on the implementation of stabilization treatment of recycling water by the organization of recycle are given. The experiment was carried out on Kazan CHPP-3. The flow scheme involved the recycle of chemically purified water (CPW) for the heat network make-up to the closed-circuit cooling system. The experiment was carried out at three stages with the gradual change of the consumption of the recycle, namely, 0, 50, and 100 t/h. According to the results of experiments, the reliable decrease in the rate of the sedimentation was recorded on the units of the system, namely, turbine condenser and chimney-type cooling tower. This is caused by two reasons. Firstly, this is periodic excessive concentration of recycling water due to the nonstationary character of inlet and outlet flows. Secondly, this is seasonal (particularly, in the summer period) exceeding of the evaporation coefficient. As a result of stabilization and synchronization of flows and organization of recycles, the quality of clarified and chemically purified water for the heat network make-up increases and the corrosion of iron- and copper-containing structural materials decreases. A natural decrease in temperature drop on the operating turbine condensers is mentioned.

  5. Recycling Decisions and Green Design.

    ERIC Educational Resources Information Center

    Lave, Lester B.; And Others

    1994-01-01

    Explores the facts and perceptions regarding recycling, what can be done to make products more environmentally compatible, and how to think about recycling decisions in a more helpful way. (Contains 39 references.) (MDH)

  6. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  7. Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation.

    PubMed

    Chen, Jiucun; You, Hui; Xu, Liqun; Li, Tianhao; Jiang, Xianquan; Li, Chang Ming

    2017-11-15

    Oil leakages often cause fatal disasters for environmental pollution but an efficient treatment of the oil spills is still very challenging. Sponge-substrates with superhydrophobicity and superoleophilicity have been attracted much attention for oil/water separation. In this study, an inexpensive commercial melamine sponge was chemically modified for the uses of oil spills treatment by oil/water separation. Inspiring from the superhydrophobic property of lotus leaf, pyrrole was polymerized by a simple vapor-phase deposition to encapsulate the raw melamine-formaldehyde (MF) sponge. The as-formed thin polypyrrole walls were utilized as reducing reagent to generate Ag nanoparticles on the capsuled sponge. Accordingly, a superhydrophobic melamine sponge with a two-tier hierarchical structure was achieved after fluorination, and this material was applied to absorb oil from water. The absorption capacity, absorption rate and recyclability were investigated. This superhydrophobic sponge exhibited an efficient and fast oil/water separation performance in complicated environment and could be applied in industrial production because of its low cost and simple fabrication procedure. This study presents a facile strategy for the fabrication of efficient oil sorbents based on a two-tier hierarchical structure, providing a novel means for the upgrading of engineered sorption materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2001-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, in the water, and in the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium from extraction through its uses with particular emphasis on recycling. In 1998, the recycling rate for magnesium was estimated to be 33 percent?almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from diecasting operations. The principal source of old scrap was recycled aluminum beverage cans.

  9. Isolation and recovery of cellulose from waste nylon/cotton blended fabrics by 1-allyl-3-methylimidazolium chloride.

    PubMed

    Lv, Fangbing; Wang, Chaoxia; Zhu, Ping; Zhang, Chuanjie

    2015-06-05

    Development of a simple process for separating cellulose and nylon 6 from their blended fabrics is indispensable for recycling of waste mixed fabrics. An efficient procedure of dissolution of the fabrics in an ionic liquid 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) and subsequent filtration separation has been demonstrated. Effects of treatment temperature, time and waste fabrics ratio on the recovery rates were investigated. SEM images showed that the cotton cellulose dissolved in [AMIM]Cl while the nylon 6 fibers remained. The FTIR spectrum of regenerated cellulose (RC) was similar with that of virgin cotton fibers, which verified that no other chemical reaction occurred besides breakage of hydrogen bonds during the processes of dissolution and separation. TGA curves indicated that the regenerated cellulose possessed a reduced thermal stability and was effectively removed from waste nylon/cotton blended fabrics (WNCFs). WNCFs were sufficiently reclaimed with high recovery rate of both regenerated cellulose films and nylon 6 fibers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2017-12-22

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  11. Antimony recycling in the United States in 2000

    USGS Publications Warehouse

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  12. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress on fabrication facility (beam builder) support structure control, clamp/weld block, and welding and truss cut off is discussed. The brace attachment design was changed and the design of the weld mechanism was modified which achieved the following system benefits: (1) simplified weld electrode life; (2) reduced weld power requirements; and (3) simplified brace attachment mechanisms. Static and fatigue characteristics of spot welded 2024T3 aluminum joints are evaluated.

  13. Feasibility of recycling rubber-modified paving materials.

    DOT National Transportation Integrated Search

    2005-02-01

    Recycling has proved to be a sound, economical method of conserving and reusing scarce material resources used in AC pavement construction. Considerable experience with recycling conventional AC mixtures indicates that the resulting recycled pavement...

  14. Mechanical and chemical recycling of solid plastic waste.

    PubMed

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Filter Backwash Recycling Rule Documents

    EPA Pesticide Factsheets

    The purpose of the FBRR is to require (PWSs) to review their recycle practices and, where appropriate, work with the state Primacy Agency to make any necessary changes to recycle practices that may compromise microbial control.

  16. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    PubMed

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.

  17. Coal liquefaction with preasphaltene recycle

    DOEpatents

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  18. An assessment of polybrominated diphenyl ethers and polychlorinated biphenyls in the indoor dust of e-waste recycling facilities in South Africa: implications for occupational exposure.

    PubMed

    Abafe, Ovokeroye A; Martincigh, Bice S

    2015-09-01

    Workplace exposure to persistent organic pollutants is a concern for human health. This study examined the presence of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in the indoor dust from two major e-waste recycling sites and a university electronic equipment repair workshop in Durban, South Africa, in order to evaluate the implication of dust for occupational exposure. The mean ∑(n = 8)PBDEs and ∑(n = 3)PCBs were 20,094 and 235 ng g(-1), respectively. The levels of PBDEs and PCBs obtained in one of the recycling sites (123-27,530 and 161-593 ng g(-1)) were significantly higher than the levels obtained (91-7686 and facilities are cleaned thoroughly regularly.

  19. Aluminum recycling in the United States in 2000

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2006-01-01

    As one of a series of reports on metals recycling, this report discusses the flow of aluminum from production through its uses with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2000. This materials flow study includes a description of aluminum supply and demand factors for the United States to illustrate the extent of aluminum recycling and to identify recycling trends. Understanding the system of materials flow from source to ultimate disposition can assist in improving the management of natural resources in a manner that is compatible with sound environmental practices. In 2000, the old scrap recycling efficiency for aluminum was estimated to be 42 percent. Almost 60 percent of the aluminum that was recycled in 2000 came from new scrap, and the recycling rate was estimated to be 36 percent. The principal source of old scrap was recycled aluminum beverage cans.

  20. MOBILE ON-SITE RECYCLING OF METALWORKING FLUIDS

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling metalworking fluids through a mobile recycling unit. The specific recycling unit evaluated is based on the technology of filtration, pasteurization, and centrifugation. Metal...

  1. Facile fabrication of mesoporous silica micro-jets with multi-functionalities† †Electronic supplementary information (ESI) available: Detailed BET experiments, videos and supplementary data. See DOI: 10.1039/c7nr04527a

    PubMed Central

    Vilela, D.; Hortelao, A. C.; Balderas-Xicohténcatl, R.; Hirscher, M.; Hahn, K.

    2017-01-01

    Self-propelled micro/nano-devices have been proved as powerful tools in various applications given their capability of both autonomous motion and on-demand task fulfilment. Tubular micro-jets stand out as an important member in the family of self-propelled micro/nano-devices and are widely explored with respect to their fabrication and functionalization. A few methods are currently available for the fabrication of tubular micro-jets, nevertheless there is still a demand to explore the fabrication of tubular micro-jets made of versatile materials and with the capability of multi-functionalization. Here, we present a facile strategy for the fabrication of mesoporous silica micro-jets (MSMJs) for tubular micromotors which can carry out multiple tasks depending on their functionalities. The synthesis of MSMJs does not require the use of any equipment, making it facile and cost-effective for future practical use. The MSMJs can be modified inside, outside or both with different kinds of metal nanoparticles, which provide these micromotors with a possibility of additional properties, such as the anti-bacterial effect by silver nanoparticles, or biochemical sensing based on surface enhanced Raman scattering (SERS) by gold nanoparticles. Because of the high porosity, high surface area and also the easy surface chemistry process, the MSMJs can be employed for the efficient removal of heavy metals in contaminated water, as well as for the controlled and active drug delivery, as two proof-of-concept examples of environmental and biomedical applications, respectively. Therefore, taking into account the new, simple and cheap method of fabrication, highly porous structure, and multiple functionalities, the mesoporous silica based micro-jets can serve as efficient tools for desired applications. PMID:28891580

  2. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2002-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, the water, and the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium in the United States from extraction through its uses with particular emphasis on recycling. In 1998, the recycling efficiency for magnesium was estimated to be 33 percent--almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from die-casting operations. The principal source of old scrap was recycled aluminum beverage cans.

  3. Sustaining the environment through recycling: an empirical study.

    PubMed

    Ramayah, T; Lee, Jason Wai Chow; Lim, Shuwen

    2012-07-15

    This paper examines the determinants of recycling behaviour among 200 university students from the perspective of the theory of planned behaviour (TPB). Data was analysed using Structural Equation Modelling technique. Findings indicate that environmental awareness was significantly related to attitude towards recycling, whilst attitude and social norms had significant impact on recycling behaviour. However, convenience and cost of recycling were not significant reasons for recycling. The study has enhanced the understanding of the determinants of recycling behaviour and has implications for schools and governmental agencies in educating and encouraging positive recycling behaviour. It also confirms the appropriateness of the TPB in examining studies of this nature. Further suggestions for future research are offered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  5. Recycling of polymers: a review.

    PubMed

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electronic labelling in recycling of manufactured articles.

    PubMed

    Olejnik, Lech; Krammer, Alfred

    2002-12-01

    The concept of a recycling system aiming at the recovery of resources from manufactured articles is proposed. The system integrates electronic labels for product identification and internet for global data exchange. A prototype for the recycling of electric motors has been developed, which implements a condition-based recycling decision system to automatically select the environmentally and economically appropriate recycling strategy, thereby opening a potential market for second-hand motors and creating a profitable recycling process itself. The project has been designed to evaluate the feasibility of electronic identification applied on a large number of motors and to validate the system in real field conditions.

  7. 49 CFR 193.2703 - Design and fabrication.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design and fabrication. 193.2703 Section 193.2703 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  8. Long-term aging of recycled binders : [summary].

    DOT National Transportation Integrated Search

    2015-10-01

    At 80 million tons a year representing more than 80% of all milled asphalt pavement : asphalt paving is Americas most recycled material. Asphalt can be recycled in place, which is : very cost effective; however, aging of recycled binder ca...

  9. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  10. New approaches for MOX multi-recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gain, T.; Bouvier, E.; Grosman, R.

    Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the usedmore » assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.« less

  11. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  12. Study on Consumer Opposition to Exporting Recyclable Wastes

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiyuki; Koizumi, Kunishige; Zhou, Weisheng

    Trans-boundary trade from Japan to China of recyclable wastes such as waste copper has increased rapidly, because of resource demands through economic growth. These wastes are recycled at high rates thanks to the Chinese manual recycling process by a lot of low wage migrant workers from rural districts. China benefits by supplying jobs to many migrant workers and getting cheap resources. Although, Japanese consumers may have some opposition to exporting end-of-pipe home appliance wastes to foreign countries. From the results of the path-analysis from the questionnaire to Japanese consumers, it became clear that their reluctance came from anxiety about illegal dumping, the labor environment at the import country and the destruction of the ecosystem. Through conjoint analysis, willingness to pay the recycling fee decreases - 1,625 yen (equal to 34% of the current recycling fee of 4,630 yen) when choosing global recycling as opposed to domestic recycling, hypothesizing that consumers would rather recycle domestically instead of globally.

  13. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. Dust recycling technology in Kimitsu Works

    NASA Astrophysics Data System (ADS)

    Oda, Hiroshi; Ibaraki, Tetsuharu

    Dust recycling technology by the rotary hearth furnace has been applied at Nippon Steel‧s Kimitsu Works since 2000. The dust and sludge with iron oxide and carbon are agglomerated into shaped articles and the iron oxide is reduced in a high temperature atmosphere. Zinc and other impurities in the dust and sludge are expelled and exhausted into off gas. The DRI pellets made from the dust and sludge have 70% metallization and are strong enough for being recycled to the blast furnaces. No.1 plant, which was constructed in May 2000 and has an agglomeration method of pelletizing, recycles mainly dry dusts. No.2 plant, which was constructed in December 2002 and has an agglomeration method of extrusion, recycles mainly sludge. The combination of the two plants is a solution for recycling various kinds of dusts and sludge emitted in a large scale steel works as Kimitsu Works

  15. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  16. What do we know about metal recycling rates?

    USGS Publications Warehouse

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  17. Fabrication of Yolk-Shell Cu@C Nanocomposites as High-Performance Catalysts in Oxidative Carbonylation of Methanol to Dimethyl Carbonate

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Hao, Panpan; Shi, Ruina; Yang, Leilei; Liu, Shusen; Zhao, Jinxian; Ren, Jun; Li, Zhong

    2017-08-01

    A facile way was developed to fabricate yolk-shell composites with tunable Cu cores encapsulated within hollow carbon spheres (Cu@C) with an average diameter about 210 nm and cavity size about 80 nm. During pyrolysis, the confined nanospace of hollow cavity ensures that the nucleation-and-growth process of Cu nanocrystals take place exclusively inside the cavities. The size of Cu cores can be easily tuned from 30 to 55 nm by varying the copper salt concentration. By deliberately creating shell porosity through KOH chemical activation, at an optimized KOH/HCS mass ratio of 1/4, the catalytic performance for the oxidative carbonylation of methanol to dimethyl carbonate (DMC) of the activated sample is enhanced remarkably with TOF up to 8.6 h-1 at methanol conversion of 17.1%. The activated yolk-shell catalyst shows promising catalytic properties involving the reusability with slight loss of catalytic activity and negligible leaching of activated components even after seven recycles, which is beneficial to the implementation of clean production for the eco-friendly chemical DMC thoroughly.

  18. Asphalt recycling technology: Literature review and research plan

    NASA Astrophysics Data System (ADS)

    Newcomb, D. E.; Epps, J. A.

    1981-06-01

    A review of current technology for the rehabilitation and maintenance of pavement surfaces by recycling was conducted. While the primary concern was asphalt concrete recycling, a brief review of portland cement concrete recycling is included. Reports of cases involving recycling technology and lessons learned are reviewed. Recommendations are presented outlining research required to advance the state-of-the-art in a manner that will permit the U.S. Air Force to fully attain the benefits of recycling technology.

  19. 76 FR 71861 - America Recycles Day, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... families have advanced the common good of our Nation by recycling regularly and promoting conservation... then, we have bolstered recycling programs through individual action, community engagement, and... today, we must update and expand existing recycling programs and dedicate ourselves to devising new...

  20. 77 FR 69729 - America Recycles Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... building a more sustainable future. Each year, recycling puts millions of pounds of valuable materials back... toward a greener economy and help power an entire industry centered on recycling, reuse, and refurbishing... reducing, reusing, and recycling efforts throughout the year. [[Page 69732

  1. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the mechanical/structural assembly of the beam builder is reported. The following structures were investigated: cross brace magazine/dispenser subsystem; and rolling mill supply reel, guide, and drive. The fabrication facility design and a detail design of all major subsystem components are discussed. The number of spot welds per structural joint were reduced which enables the doubling of length of truss which can be produced within known electrode life limits.

  2. Is Municipal Solid Waste Recycling Economically Efficient?

    NASA Astrophysics Data System (ADS)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  3. Residual Strength Characterization of Unitized Structures Fabricated Using Different Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Smith, S. W.; Johnston, W. M.

    2008-01-01

    This viewgraph presentation describes residual strength analysis of integral structures fabricated using different manufacturing procedures. The topics include: 1) Built-up and Integral Structures; 2) Development of Prediction Methodology for Integral Structures Fabricated using different Manufacturing Procedures; 3) Testing Facility; 4) Fracture Parameters Definition; 5) Crack Branching in Integral Structures; 6) Results and Discussion; and 7) Concluding Remarks.

  4. 30 CFR 285.700 - What reports must I submit to MMS before installing facilities described in my approved SAP, COP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Reports... (§ 285.651): (1) A Facility Design Report; and (2) A Fabrication and Installation Report. (b) You may...

  5. Hoop Tensile Characterization Of SiC/SiC Cylinders Fabricated From 2D Fabric

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Yun, HeeMann; DiCarlo, James A.; Barnett, Terry R.

    2002-01-01

    Tensile stress-strain properties in the hoop direction were obtained for 100-mm diameter SiC/SiC cylinders using ring specimens machined from the cylinder ends. The cylinders were fabricated from 2D balanced fabric with several material variants, including wall thickness (6, 8, and 12 plies), Sic fiber type (Sylramic, Sylramic-iBN, Hi-Nicalon, and Hi-Nicalon S), fiber sizing type, and matrix type (full CVI Sic, and partial CVI plus melt-infiltrated SiC-Si). Fiber ply splices existed in the all the hoops. Tensile hoop measurements were made at room temperature and 1200 C using hydrostatic ring test facilities. The hoop results are compared with in-plane data measured on flat panels using same material variants, but containing no splices.

  6. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    NASA Astrophysics Data System (ADS)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Chan, Ngai Yui; Au, Kit; Yao, Jianjun; Ng, Sheung Mei; Leung, Chi Wah; Li, Qiang; Guo, Dong; Wa Chan, Helen Lai; Dai, Jiyan

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ˜62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  7. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer

    NASA Astrophysics Data System (ADS)

    Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic

    2014-06-01

    An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.

  8. Sorting Recycled Trash: An Activity for Earth Day 2007

    ERIC Educational Resources Information Center

    Harris, Mary E.; Harris, Harold H.

    2007-01-01

    Middle or high school students celebrate Earth Day on April 22, 2007 by participating in the activity to separate commingled recyclable trash to simulate sorting in a recycling center. Students would gain an appreciation for recyclable trash, after it is taken to a recycling center and learn about properties of recyclables.

  9. Additive Manufacturing of Syntactic Foams: Part 1: Development, Properties, and Recycling Potential of Filaments

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar; Patil, Balu; Hoffmann, Niklas; Saltonstall, Brooks; Doddamani, Mrityunjay; Gupta, Nikhil

    2018-03-01

    This work focuses on developing filaments of high-density polyethylene (HDPE) and their hollow particle-filled syntactic foams for commercial three-dimensional (3D) printers based on fused filament fabrication technology. Hollow fly-ash cenospheres were blended by 40 wt.% in a HDPE matrix to produce syntactic foam (HDPE40) filaments. Further, the recycling potential was studied by pelletizing the filaments again to extrude twice (2×) and three times (3×). The filaments were tensile tested at 10-4 s-1, 10-3 s-1, and 10-2 s-1 strain rates. HDPE40 filaments show an increasing trend in modulus and strength with the strain rate. Higher density and modulus were noticed for 2× filaments compared to 1× filaments because of the crushing of some cenospheres in the extrusion cycle. However, 2× and 3× filament densities are nearly the same, showing potential for recycling them. The filaments show better properties than the same materials processed by conventional injection molding. Micro-CT scans show a uniform dispersion of cenospheres in all filaments.

  10. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  11. Particle Size Distribution in Aluminum Manufacturing Facilities.

    PubMed

    Liu, Sa; Noth, Elizabeth M; Dixon-Ernst, Christine; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-10-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM 2.5 measured by PMI was compared to PM 2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM 1.0 ) and quasi-ultrafine (PM 0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM 2.5 versus MiniMOUDI_PM 2.5 was 1.03 mg/m 3 per mg/m 3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM 10 which was PM 1.0 or PM 0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities.

  12. Financing Strategies For A Nuclear Fuel Cycle Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Shropshire; Sharon Chandler

    2006-07-01

    To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due tomore » government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs

  13. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  14. Cost effectiveness of recycling: a systems model.

    PubMed

    Tonjes, David J; Mallikarjun, Sreekanth

    2013-11-01

    Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Wee Recyclers. An Activity Guide for Ages 3-5.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Recycling and reusing are skills that can be developed in early child care programs. This activity guide is intended to help teach children (ages 3-5) about recycling using simple, hands-on activities. Teacher-directed activities involve setting up a recycling center, sorting recyclable items, landfills, litter, a recycling alphabet, and ways that…

  16. Recycling Solid Waste in Chattanooga

    ERIC Educational Resources Information Center

    Vredeveld, Ruth; Martin, Robin

    1973-01-01

    Students undertook a group project in collaboration with city officials to study garbage types in the community and possibilities of recycling solid wastes. Data collected from various sources revealed that public attitude was favorable for recycling efforts and that it was feasible economically. (PS)

  17. Facile fabrication of highly controllable gating systems based on the combination of inverse opal structure and dynamic covalent chemistry.

    PubMed

    Wang, Chen; Yang, Haowei; Tian, Li; Wang, Shiqiang; Gao, Ning; Zhang, Wanlin; Wang, Peng; Yin, Xianpeng; Li, Guangtao

    2017-06-01

    A three-dimensional (3D) inverse opal with periodic and porous structures has shown great potential for applications not only in optics and optoelectronics, but also in functional membranes. In this work, the benzaldehyde group was initially introduced into a 3D nanoporous inverse opal, serving as a platform for fabricating functional membranes. By employing the dynamic covalent approach, a highly controllable gating system was facilely fabricated to achieve modulable and reversible transport features. It was found that the physical/chemical properties and pore size of the gating system could easily be regulated through post-modification with amines. As a demonstration, the gated nanopores were modified with three kinds of amines to control the wettability, surface charge and nanopore size which in turn was exploited to achieve selective mass transport, including hydrophobic molecules, cations and anions, and the transport with respect to the physical steric hindrance. In particular, the gating system showed extraordinary reversibility and could recover to its pristine state by simply changing pH values. Due to the unlimited variety provided by the Schiff base reaction, the inverse opal described here exhibits a significant extendibility and could be easily post-modified with stimuli-responsive molecules for special purposes. Furthermore, this work can be extended to employ other dynamic covalent routes, for example Diels-Alder, ester exchange and disulfide exchange-based routes.

  18. Melt-and-mold fabrication (MnM-Fab) of reconfigurable low-cost devices for use in resource-limited settings.

    PubMed

    Li, Zhi; Tevis, Ian D; Oyola-Reynoso, Stephanie; Newcomb, Lucas B; Halbertsma-Black, Julian; Bloch, Jean-Francis; Thuo, Martin

    2015-12-01

    Interest in low-cost analytical devices (especially for diagnostics) has recently increased; however, concomitant translation to the field has been slow, in part due to personnel and supply-chain challenges in resource-limited settings. Overcoming some of these challenges require the development of a method that takes advantage of locally available resources and/or skills. We report a Melt-and-mold fabrication (MnM Fab) approach to low-cost and simple devices that has the potential to be adapted locally since it requires a single material that is recyclable and simple skills to access multiple devices. We demonstrated this potential by fabricating entry level bio-analytical devices using an affordable low-melting metal alloy, Field's metal, with molds produced from known materials such as plastic (acrylonitrile-butadiene-styrene (ABS)), glass, and paper. We fabricated optical gratings then 4×4 well plates using the same recycled piece of metal. We then reconfigured the well plates into rapid prototype microfluidic devices with which we demonstrated laminar flow, droplet generation, and bubble formation from T-shaped channels. We conclude that this MnM-Fab method is capable of addressing some challenges typically encountered with device translation, such as technical know-how or material supply, and that it can be applied to other devices, as needed in the field, using a single moldable material. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory.

    PubMed

    Gao, Shutao; Hong, Jianwen; Yu, Zhiqiang; Wang, Jingzhi; Yang, Guoyi; Sheng, Guoying; Fu, Jiamo

    2011-12-01

    Polybrominated diphenyl ethers (PBDEs) were determined in 60 surface soils from two e-waste recycling sites (Qingyuan and Guiyu, China) and their surrounding areas to assess the extent and influence of PBDEs from e-waste recycling sites on the surrounding areas. A total of 32 surface soils from industrial areas in South China were also investigated for comparison. The mean concentrations of total PBDEs in the e-waste recycling sites of Guiyu and Qingyuan were 2,909 and 3,230 ng/g dry weight, respectively, whereas the PBDE concentrations decreased dramatically (1-2 orders of magnitude) with increasing distance from the recycling site, suggesting that the e-waste recycling activities were the major source of PBDEs in the surrounding areas. Decabromodiphenyl ethers accounted for 77.0 to 85.8% of total PBDEs in e-waste recycling areas, whereas it accounted for 90.2% in industrial areas. Principal component analysis showed that the major source of PBDEs in e-waste recycling areas were a combination of penta-, octa-, and deca-BDE commercial formulations, whereas deca-BDE commercial formulations were the major source of PBDE congeners in industrial areas. The inventories of PBDEs gave preliminary estimates of 6.22 tons and 13.4 tons for the e-waste recycling areas and industrial areas. The results suggested that significantly higher PBDEs in the e-waste recycling sites have already affected surrounding areas negatively within a relatively large distance. Because of the environmental persistence, bioaccumulation, and toxicity of PBDEs, improving the recycling techniques employed at such facilities and developing e-waste management policies are necessary. Copyright © 2011 SETAC.

  20. Modeling to Evaluate Coordination and Flexibility in Aluminum Recycling Operations

    NASA Astrophysics Data System (ADS)

    Brommer, Tracey; Olivetti, Elsa; Fjeldbo, Snorre; Kirchain, Randolph

    Reprocessing of aluminum production byproducts or dross for use in secondary production presents a particular challenge to the aluminum industry. While use of these non-traditional secondary materials is of interest due to their reduced energy and economic burden over virgin counterparts, these materials necessitate the use of particular furnaces, specialized handling and processing conditions. Therefore, to make use of them firms may pursue use of an intermediate recycling facility that can reprocess the secondary materials into a liquid product. After reprocessing downstream aluminum remelters could incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges result because of the energy cost to maintain the liquid. Further coordination challenges result from the need to establish long term recycling production plans in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses?

  1. Who owns the recyclables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, B.

    On March 31, the California Supreme Court decided the much awaited Rancho Mirage'' case (Waste Management of the Desert, Inc., and the City of Rancho Mirage v. Palm Springs Recycling Center, Inc.), and held that the California Integrated Waste Management Act of 1989 does not allow an exclusive franchise for the collection of recyclables not discarded by their owner.'' This ends a three-year slugfest between secondary materials processors in the state and municipalities and their franchised garbage haulers who also collect and process recyclables as part of their exclusive arrangement. Central to this nationally-watched litigation is a most fundamental questionmore » in waste management: at what point in time do articles in the solid waste stream become actual or potentially valuable secondary materials« less

  2. 43 CFR 404.9 - What types of infrastructure and facilities may be included in an eligible rural water supply...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... water conservation, groundwater recovery, and water reuse and recycling; (g) Associated features to... facilities may be included in an eligible rural water supply project? 404.9 Section 404.9 Public Lands... RURAL WATER SUPPLY PROGRAM Overview § 404.9 What types of infrastructure and facilities may be included...

  3. 50 Simple Things Kids Can Do To Recycle. California Edition.

    ERIC Educational Resources Information Center

    Javna, John

    This book provides 50 recycling ideas for children and features Recycle Rex, the state of California's "spokesdinosaur" for recycling. An introduction contains recycling background information on waste disposal options and reducing, reusing, and recycling. Recycling suggestions are divided into nine sections: (1) "Learn What You Can…

  4. Characterization of DWPF recycle condensate tank materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2015-01-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to undertand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF themore » Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here. The composition of the Sludge Batch 8 (SB8) RCT material is largely a low base solution of 0.2M NaNO 2 and 0.1M NaNO 3 with a small amount of formate present. Insoluble solids comprise only 0.05 wt.% of the slurry. The solids appear to be largely sludge-like solids based on elemental composition and SEM-EDS analysis. The sample contains an elevated concentration of I-129 (38x) and substantial 59% fraction of Tc-99, as compared to the incoming SB8 Tank 40 feed material. The Hg concentration is 5x, when compared to Fe, of that expected based on sludge carryover. The total U and Pu concentrations are reduced significantly, 0.536 wt.% TS and 2.42E-03 wt.% TS, respectively, with the fissile components, U-233, U-235, Pu-239, and Pu-241, an order of magnitude lower in concentration than those in the SB8 Tank 40 DWPF feed material. This report will be revised to include the foaming study requested in the TTR and outlined in the TTQAP when that work is concluded.« less

  5. Recycling behaviour in healthcare: waste handling at work.

    PubMed

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.

  6. Consumer-mediated recycling and cascading trophic interactions.

    PubMed

    Leroux, Shawn J; Loreau, Michel

    2010-07-01

    Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.

  7. Recycling Study Guide [Resource Packet].

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    This resource packet contains six documents developed by the Wisconsin Department of Natural Resources in order to help teachers infuse the environmental education topics of recycling and solid waste into social studies, art, English, health, mathematics, science, and environmental education classes. "Recycling Study Guide" contains 19…

  8. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  9. Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.

    PubMed

    Zhao, Tianyi; Zhang, Dongmei; Yu, Cunming; Jiang, Lei

    2016-09-14

    Low cost, eco-friendly, and easily scaled-up processes are needed to fabricate efficient oil/water separation materials, especially those useful in harsh environments such as highly acidic, alkaline, and salty environments, to deal with serious oil spills and industrial organic pollutants. Herein, a highly efficient oil/water separation mesh with durable chemical stability was fabricated by simply scratching and pricking a conventional polyethylene (PE) film. Multiscaled morphologies were obtained by this scratching and pricking process and provided the mesh with a special wettability performance termed superhydrophobicity, superoleophilicity, and low water adhesion, while the inert chemical properties of PE delivered chemical etching resistance to the fabricated mesh. In addition to a highly efficient oil/corrosive liquid separation, the fabricated PE mesh was also reusable and exhibited ultrafast oil/water separation solely by gravity. The easy operation, chemical durability, reusability, and efficiency of the novel PE mesh give it high potential for use in industrial and consumer applications.

  10. Germanium recycling in the United States in 2000

    USGS Publications Warehouse

    Jorgenson, John D.

    2006-01-01

    This report describes the recycling flow of germanium in the United States in 2000, as well as other germanium material flow streams. Germanium was recycled mostly from new scrap that was generated during the manufacture of germanium-containing fiber optic cables and from new and old scrap products of germanium-containing infrared imaging devices. In 2000, about 11.5 metric tons of germanium was recycled, about 40 percent of which was derived from old scrap. The germanium recycling rate was estimated to be 50 percent, and germanium scrap recycling efficiency, 76 percent.

  11. Tantalum recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of tantalum in the United States in 1998 with emphasis on the extent to which tantalum was recycled/reused. Tantalum was mostly recycled from new scrap that was generated during the manufacture of tantalum-related electronic components and new and old scrap products of tantalum-containing cemented carbides and superalloys. In 1998, about 210 metric tons of tantalum was recycled/reused, with about 43% derived from old scrap. The tantalum recycling rate was calculated to be 21%, and tantalum scrap recycling efficiency, 35%.

  12. A study of drop-off recycling in Norman, Oklahoma: Behavior of recyclers and nonrecyclers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, J.L.; Everett, J.W.

    The reality of growing negative public opinion to new landfills prompted a newfound popularity for recycling programs as an alternative to traditional waste management in municipalities. The purpose of this research is to examine the behavioral and attitudinal differences between recyclers and nonrecyclers. These differences were tested statistically based on recycling behavior data gathered through two independent questionnaire surveys, one administered through utility bill statements, the other administered directly by the first author. Data were collected on: contact with the recycling organization, demographics, participation, convenience, incentives, ideological agreement, and assessment rationale. Seven hypotheses were tested, addressing most aspects of themore » Environmental Collective Action model (ECA), first proposed by the second author in 1994. The surveys were administered to City of Norman, Oklahoma residents. Norman operates several drop-off centers within the city limits. The results of the analysis indicate that individuals do make the decision to participate based on the principles outlined in the model of participation. All seven hypotheses are supported by the data in both surveys.« less

  13. Textile Recycling, Convenience, and the Older Adult.

    ERIC Educational Resources Information Center

    Domina, Tanya; Koch, Kathryn

    2001-01-01

    Results of a study to examine the recycling practices and needs of older adults (n=217) indicated that older adults do recycle traditional materials, but need accommodations for physical limitations. They report textile recycling as time consuming and difficult and used donations to religious organizations as their principal means of textile…

  14. 75 FR 71003 - America Recycles Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... America Recycles Day, 2010 By the President of the United States of America A Proclamation Each small act... impact on the health of our environment. On America Recycles Day, we celebrate the individuals... clean energy economy. While we can celebrate the breadth of our successes on America Recycles Day, we...

  15. Quantify the energy and environmental effects of using recycled asphalt and recycled concrete for pavement construction phase I : final report.

    DOT National Transportation Integrated Search

    2009-08-01

    The objective of this study is to quantify the energy and environment impacts from using recycled materials : for highway construction. Specifically, when recycled asphalt pavement is re-used for producing hot mix : asphalt or when recycled concrete ...

  16. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  17. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  18. Review: Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities.

    PubMed

    Gottesfeld, Perry; Pokhrel, Amod K

    2011-09-01

    The battery industry is the largest consumer of lead, using an estimated 80% of the global lead production. The industry is also rapidly expanding in emerging market countries. A review of published literature on exposures from lead-acid battery manufacturing and recycling plants in developing countries was conducted. The review included studies from 37 countries published from 1993 to 2010 and excluded facilities in developed countries, such as the United States and those in Western Europe, except for providing comparisons to reported findings. The average worker blood lead level (BLL) in developing countries was 47 μg/dL in battery manufacturing plants and 64 μg/dL in recycling facilities. Airborne lead concentrations reported in battery plants in developing countries averaged 367 μg/m3, which is 7-fold greater than the U.S. Occupational Safety and Health Administration's 50 μg/m3 permissible exposure limit. The geometric mean BLL of children residing near battery plants in developing countries was 19 μg/dL, which is about 13-fold greater than the levels observed among children in the United States. The blood lead and airborne lead exposure concentrations for battery workers were substantially higher in developing countries than in the United States. This disparity may worsen due to rapid growth in lead-acid battery manufacturing and recycling operations worldwide. Given the lack of regulatory and enforcement capacity in most developing countries, third-party certification programs may be the only viable option to improve conditions.

  19. Information Sources on Rural Recycling.

    ERIC Educational Resources Information Center

    Notess, Greg; Kuske, Jodee

    1992-01-01

    Provides resources for rural recycling operations with the principle aim of assisting rural government officials, planners, residents, and educators to encourage recycling as an integral part of an individual's or community's solid waste management plan. Sources range from bibliographies, directories, and government documents to case studies. (49…

  20. Dismantling of the 904 Cell at the HAO/Sud Facility - 13466

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaudey, C.E.; Crosnier, S.; Renouf, M.

    2013-07-01

    La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshopmore » to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)« less

  1. 16 CFR 260.13 - Recycled content claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... one-half the weight of the total package. The box is 20% recycled content by weight, while the plastic... paperboard box in a shrink-wrapped plastic cover, indicates that it has recycled packaging. The paperboard box is made entirely of recycled material, but the plastic cover is not. The claim is deceptive...

  2. 16 CFR 260.13 - Recycled content claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... one-half the weight of the total package. The box is 20% recycled content by weight, while the plastic... paperboard box in a shrink-wrapped plastic cover, indicates that it has recycled packaging. The paperboard box is made entirely of recycled material, but the plastic cover is not. The claim is deceptive...

  3. School Recycling Programs: A Handbook for Educators.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This brochure describes some of the many recycling program options that schools can implement in their communities. It focuses on implementing actual recycling projects as a way of teaching the importance and benefits of recycling. The text examines the solid waste crisis and why Americans cannot continue to possess a disposable mentality. It…

  4. Guide to conducting state recycling economic development finance workshops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The objective of this project was to demonstrate a two-pronged program for educating economic development and recycling officials about recycling business development opportunities. The project consisted of conducting a stat recycling finance workshop in each of three Northeastern states, as well as recycling economic development finance training program for the region`s economic development and recycling officials. The goal of the project is to facilitate the expansion of recycling businesses in the Northeast. The guide details seven steps to conducting a recycling economic development finance workshop: (1) establish a workshop planning committee, (2) select the target audience, (3) develop the workshopmore » message, (4) identify the message deliverer, (5) choose workshop topics and structure the workshop, (6) attract the audience, and (7) Conduct follow-up. In the process of planning and conducting the three state workshops for this project, NERC learned several important lessons: (1) Conduct workshops that are specific to the recycling and economic development programs in the state. (2) Include recycling business case studies on the workshop agenda. (3) Enhance the workshop with recycling economic development finance training. Develop a comprehensive marketing strategy.« less

  5. Cadmium Recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 t, and an estimated 285 t was recovered. Recycling efficiency was estimated to be about 15 percent.

  6. Cadmium recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 metric tons, and an estimated 285 tons was recovered. Recycling efficiency was estimated to be about 15 percent.

  7. Recycled material availability in Maryland - a synthesis study.

    DOT National Transportation Integrated Search

    2016-10-01

    There is growing interest in using recycled materials in highway construction nationwide. The research study focused : on four types of recycled materials: recycled concrete aggregate (RCA), reclaimed asphalt pavement (RAP), dredged : materials, and ...

  8. SBS vs Inhouse Recycling Methods-An Invitro Evaluation

    PubMed Central

    Verma, Jaya Krishanan; Arun; Sundari, Shanta; Chandrasekhar, Shyamala; Kumar, Aravind

    2015-01-01

    Introduction In today’s world of economic crisis it is not feasible for an orthodontist to replace each and every debonded bracket with a new bracket- quest for an alternative thrives Orthodontist. The concept of recycling bracket for its reuse has evolved over a period of time. Orthodontist can send the brackets to various commercial recycling companies for recycling, but it’s impractical as these are complex procedures and require time and usage of a new bracket would seem more feasible. Thereby, in-house methods have been developed. The aim of the study was to determine the SBS (Shear Bond Strength) and to compare, evaluate the efficiency of in house recycling methods with that of the SBS of new brackets. Materials and Methods Five in–house-recycling procedures-Adhesive Grinding Method, Sandblasting Method, Thermal Flaming Method, Buchman method and Acid Bath Method were used in the present study. Initial part of the study included the use of UV/Vis spectrophotometer where in the absorption level of base of new stainless steel bracket is compared with the base of a recycled bracket. The difference seen in the UV absorbance can be attributed to the presence of adhesive remnant. For each recycling procedure the difference in UV absorption is calculated. New stainless steel brackets and recycled brackets were tested for its shear bond strength with Instron testing machine. Comparisons were made between shear bond strength of new brackets with that of recycled brackets. The last part of the study involved correlating the findings of UV/Vis spectrophotometer with the shear bond strength for each recycling procedure. Results Among the recycled brackets the Sandblasting technique showed the highest shear bond strength (19.789MPa) and the least was shown by the Adhesive Grinding method (13.809MPa). Conclusion The study concludes that sand blasting can be an effective choice among the 5 in house methods of recycling methods. PMID:26501002

  9. Perspectives on recycling centres and future developments.

    PubMed

    Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E

    2016-11-01

    The overall aim of this paper is to draw combined, all-embracing conclusions based on a long-term multidisciplinary research programme on recycling centres in Sweden, focussing on working conditions, environment and system performance. A second aim is to give recommendations for their development of new and existing recycling centres and to discuss implications for the future design and organisation. Several opportunities for improvement of recycling centres were identified, such as design, layout, ease with which users could sort their waste, the work environment, conflicting needs and goals within the industry, and industrialisation. Combining all results from the research, which consisted of different disciplinary aspects, made it possible to analyse and elucidate their interrelations. Waste sorting quality was recognized as the most prominent improvement field in the recycling centre system. The research identified the importance of involving stakeholders with different perspectives when planning a recycling centre in order to get functionality and high performance. Practical proposals of how to plan and build recycling centres are given in a detailed checklist. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Platinum recycling in the United States in 1998

    USGS Publications Warehouse

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  11. Radiological Risk Assessments for Occupational Exposure at Fuel Fabrication Facility in AlTuwaitha Site Baghdad – Iraq by using RESRAD Computer Code

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ziadoon H.; Ibrahim, S. A.; Mohammed, M. K.; Shaban, A. H.

    2018-05-01

    The purpose of this study is to evaluate the radiological risks for workers for one year of their activities at Fuel Fabrication Facility (FFF) so as to make the necessary protection to prevent or minimize risks resulted from these activities this site now is under the Iraqi decommissioning program (40). Soil samples surface and subsurface were collected from different positions of this facility and analyzed by gamma rays spectroscopy technique High Purity Germanium detector (HPGe) was used. It was found out admixture of radioactive isotopes (232Th 40K 238U 235U137Cs) according to the laboratory results the highest values were (975758) for 238U (21203) for 235U (218) for 232Th (4046) for 40K and (129) for 137Cs in (Bqkg1) unit. The annual total radiation dose and risks were estimated by using RESRAD (onsite) 70 computer code. The highest total radiation dose was (5617μSv/year) in area that represented by soil sample (S7) and the radiological risks morbidity and mortality (118E02 8661E03) respectively in the same area

  12. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  13. 30 CFR 285.709 - When conducting onsite fabrication inspections, what must the CVA or project engineer verify?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified...

  14. Photolithography diagnostic expert systems: a systematic approach to problem solving in a wafer fabrication facility

    NASA Astrophysics Data System (ADS)

    Weatherwax Scott, Caroline; Tsareff, Christopher R.

    1990-06-01

    One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles

  15. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1975-01-01

    Progress is reported during the apparatus design, fabrication, and assembly phases of a program to grow wide, thin silicon dendritic web. The growth facility was essentially completed with any significant problems arising. A complete set of detailed fabrication drawings is included as an appendix.

  16. American Art of Conspicuous Recycling.

    ERIC Educational Resources Information Center

    Gomez, Aurelia

    1999-01-01

    Characterizes the use of recycling "junk" as a means for creating art by exploring various recycling traditions that are present in the United States. Demonstrates to students that "junk" can be fashioned into beautiful works of art. Offers four works of art and provides discussion questions and project ideas for each artwork. (CMK)

  17. Facile Fabrication of Multifunctional Aramid Nanofiber Films by Spin Coating

    NASA Astrophysics Data System (ADS)

    Lyu, Jing; Liu, Lehao; Zhao, Xing; Shang, Yudong; Zhao, Tingkai; Li, Tiehu

    2016-11-01

    Polymer matrices with excellent mechanical properties, thermal stability and other features are highly demanded for the effective utilization within nanocomposites. Here, we fabricate free-standing aramid nanofiber films via spin coating of an aramid nanofiber/dimethyl sulfoxide solution. Compared with traditional film fabrication methods, this process is time-saving and also able to easily tune the thickness of the films. The resultant films show greatly improved stretchability than that of Kevlar threads and relatively high mechanical strength. Typically, these films with a thickness of 5.5 µm show an ultimate strength of 182 MPa with an ultimate tensile strain of 10.5%. We also apply a finite element modeling to simulate the strain and strength distributions of the films under uniaxial tension, and the results of the simulation are in accordance with the experimental data. Furthermore, the aramid nanofiber films exhibit outstanding thermostability (decomposition at 550 °C under N2 atmosphere and 500 °C in air) and chemical inertness, which would endure acid and alkali. The simple method demonstrated here provides an important way to prepare high-performance aramid nanofiber films for designing new composite systems.

  18. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaoğlu, E., E-mail: ekaraoglu@fatih.edu.tr; Özel, U.; Caner, C.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4}more » nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.« less

  19. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ams, Martin; Dekker, Peter; Gross, Simon; Withford, Michael J.

    2017-01-01

    Optical waveguide Bragg gratings (WBGs) can be created in transparent materials using femtosecond laser pulses. The technique is conducted without the need for lithography, ion-beam fabrication methods, or clean room facilities. This paper reviews the field of ultrafast laser-inscribed WBGs since its inception, with a particular focus on fabrication techniques, WBG characteristics, WBG types, and WBG applications.

  20. Integration of Demilitarization Contractors and Recyclers - Collateral Benefits of On-Site Training of Recyclers

    DTIC Science & Technology

    2010-07-01

    item Spherical? Wedge Shaped? Cylindrical? These items are potentially very dangerous 29 Spherical = Not Good If found in a recycling yard, don’t...touch! Call 9-1-1 BLU-63 30 Wedge Shape = Not Good If found in a recycling yard, don’t touch! Call 9-1-1 M72M43 31 Cylindrical = Not Good If found in a

  1. Scavengers: A behind-the-scenes recycling battle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, J.A.

    Though it may not garner a spotlight as the number-one issue facing the recycling industry, the theft of recyclables is a subtle and elusive vexation that is costing haulers and recyclers thousands of dollars each year. Scavenging is not a new dilemma for the industry. But aside from an occasional seminar on the topic, not much attention has been devoted to the problem, despite the fact that poaching deprives curbside programs of revenues that help offset operating costs. In some locations, losses due to scavenging have sabotaged the efficacy of curbside recycling as a whole.

  2. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    PubMed

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  3. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling.

    PubMed

    Tong, Ping; Zhang, Lan; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-11-15

    A new "signal-on" aptasensor for ultrasensitive detection of Ochratoxin A (OTA) in wheat starch was developed based on exonuclease-catalyzed target recycling. To construct the aptasensor, a ferrocene (Fc) labeled probe DNA (S1) was immobilized on a gold electrode (GE) via Au-S bonding for the following hybridization with the complementary OTA aptamer, with the labeled Fc on S1 far from the GE surface. In the presence of analyte OTA, the formation of aptamer-OTA complex would result in not only the dissociation of aptamer from the double-strand DNA but also the transformation of the probe DNA into a hairpin structure. Subsequently, the OTA could be liberated from the aptamer-OTA complex for analyte recycling due to the employment of exonuclease, which is a single-stranded DNA specific exonuclease to selectively digest the appointed DNA (aptamer). Owing to the labeled Fc in close proximity to the electrode surface caused by the formation of the hairpin DNA and to the analyte recycling, differential pulse voltammetry (DPV) signal could be produced with enhanced signal amplification. Based on this strategy, an ultrasensitive aptasensor for the detection of OTA could be exhibited with a wide linear range of 0.005-10.0ngmL(-1) with a low detection limit (LOD) of 1.0pgmL(-1) OTA (at 3σ). The fabricated biosensor was then applied for the measurement of OTA in real wheat starch sample and validated by ELISA method. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Durable Recycled Superpave Mixes in Kansas

    DOT National Transportation Integrated Search

    2018-04-01

    The use of economical and environment-friendly recycled asphalt materials has become increasingly popular for asphalt pavement construction. In general, reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) are used in hot-mix asphalt ...

  6. Recycling in 1998: States moving forward to reach higher goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heumann, J.M.; Egan, K.

    1998-08-01

    As the end of the decade--and century--approaches, the US still is working to push the recycling envelope. The US as a whole has reached its higher recycling rate ever--27%, according to the US EPA, and individual states are striving to meet and surpass their own recycling goals. Yet, it is difficult to compare rates and goals and budgets of individual states to one another, and come up with the nationwide trend in terms of recycling. Comparing recycling programs from state to state is like comparing apples and oranges. Individual states recycle a different amount of material, include a range ofmore » materials in their recycling-rate calculations, and have a variety of costs associated with performing these activities. Recycling in New York City is nothing like recycling in Boise, Idaho, for instance. This article presents information from all 50 states and the District of Columbia on their recycling rates, goals, waste generation rates, and the resources they have allocated toward recycling efforts.« less

  7. Leaching standards for mineral recycling materials--a harmonized regulatory concept for the upcoming German Recycling Decree.

    PubMed

    Susset, Bernd; Grathwohl, Peter

    2011-02-01

    In this contribution we give a first general overview of results of recent studies in Germany which focused on contaminant leaching from various materials and reactive solute transport in the unsaturated soil zone to identify the key factors for groundwater risk assessment. Based on these results we developed new and improved existing methods for groundwater risk assessment which are used to derive a new regulatory concept for the upcoming "Decree for the Requirements of the Use of Alternative Mineral Building Materials in Technical Constructions and for the Amendment of the Federal Soil Protection and Contaminated Sites Ordinance" of the German Federal Ministry of Environment. The new concept aims at a holistic and scientifically sound assessment of the use of mineral recycling materials (e.g., mineral waste, excavated soils, slag and ashes, recycling products, etc.) in technical constructions (e.g., road dams) and permanent applications (e.g., backfilling and landscaping) which is based on a mechanistic understanding of leaching and transport processes. Fundamental for risk assessment are leaching standards for the mineral recycling materials. For each application of mineral recycling materials specific maximum concentrations of a substance in the seepage water at the bottom of an application were calculated. Technical boundary conditions and policy conventions derived from the "German precautionary groundwater and soil protection policy" were accounted to prevent adverse environmental effects on the media soil and groundwater. This includes the concentration decline of highly soluble substances (e.g., chloride and sulphate), retardation or attenuation of solutes, accumulation of contaminants in sub-soils and the hydraulic properties of recycling materials used for specific applications. To decide whether the use of a mineral recycling material is possible in a specific application, the leaching qualities were evaluated based on column percolation tests with

  8. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    PubMed

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  9. Secondary resources and recycling in developing economies.

    PubMed

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Plasma power recycling at the divertor surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xian -Zhu; Guo, Zehua

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less

  11. Plasma power recycling at the divertor surface

    DOE PAGES

    Tang, Xian -Zhu; Guo, Zehua

    2016-12-03

    With a divertor made of solid materials like carbon and tungsten, plasma ions are expected to be recycled at the divertor surface with a time-averaged particle recycling coefficient very close to unity in steady-state operation. This means that almost every plasma ion (hydrogen and helium) will be returned to the plasma, mostly as neutrals. The power flux deposited by the plasma on the divertor surface, on the other hand, can have varying recycling characteristics depending on the material choice of the divertor; the run-time atomic composition of the surface, which can be modified by material mix due to impurity migrationmore » in the chamber; and the surface morphology change over time. In general, a high-Z–material (such as tungsten) surface tends to reflect light ions and produce stronger power recycling, while a low-Z–material (such as carbon) surface tends to have a larger sticking coefficient for light ions and hence lower power recycling. Here, an explicit constraint on target plasma density and temperature is derived from the truncated bi-Maxwellian sheath model, in relation to the absorbed power load and power recycling coefficient at the divertor surface. Lastly, it is shown that because of the surface recombination energy flux, the attached plasma has a sharper response to power recycling in comparison to a detached plasma.« less

  12. Sustainability and training materials for in-place recycling.

    DOT National Transportation Integrated Search

    2016-04-22

    Hot and cold in-place recycling techniques recycle 100 percent of a hot mix asphalt (HMA) pavement, in place, during the maintenance/rehabilitation process. Numerous studies have shown in-place recycling to be a sustainable, cost-effective procedure ...

  13. The Dynamic Earth: Recycling Naturally!

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  14. Recycled materials in Portland cement concrete

    DOT National Transportation Integrated Search

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  15. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  16. Hot plant recycling of asphaltic concrete : final report.

    DOT National Transportation Integrated Search

    1980-05-01

    This report covers the design, construction and evaluation of two hot mix recycling projects. One project recycled two inches of existing dense-asphaltic concrete through a modified batch plant. The second project recycled a total of five inches of e...

  17. Over-Expression of Rififylin, a New RING Finger and FYVE-like Domain-containing Protein, Inhibits Recycling from the Endocytic Recycling Compartment

    PubMed Central

    Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel

    2004-01-01

    Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate–binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane. PMID:15229288

  18. Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment.

    PubMed

    Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel

    2004-10-01

    Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate-binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane.

  19. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    NASA Astrophysics Data System (ADS)

    Quan, Yun-Yun; Zhang, Li-Zhi

    2014-02-01

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  20. Phosphorene: Fabrication, properties, and applications

    DOE PAGES

    Kou, Liangzhi; Chen, Changfeng; Smith, Sean C.

    2015-06-24

    Phosphorene, the single- or few-layer form of black phosphorus, was recently rediscovered as a two-dimensional layered material holding great promise for applications in electronics and optoelectronics. Research into its fundamental properties and device applications has since seen exponential growth. In this Perspective, we review recent progress in phosphorene research, touching upon topics on fabrication, properties, and applications; we also discuss challenges and future research directions. We highlight the intrinsically anisotropic electronic, transport, optoelectronic, thermoelectric, and mechanical properties of phosphorene resulting from its puckered structure in contrast to those of graphene and transition-metal dichalcogenides. The facile fabrication and novel properties ofmore » phosphorene have inspired design and demonstration of new nanodevices; however, further progress hinges on resolutions to technical obstructions like surface degradation effects and nonscalable fabrication techniques. We also briefly describe the latest developments of more sophisticated design concepts and implementation schemes that address some of the challenges in phosphorene research. As a result, it is expected that this fascinating material will continue to offer tremendous opportunities for research and development for the foreseeable future.« less